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Abstract. Finite group rings carry a natural involution that defines a form

ring structure. We investigate the associated Clifford-Weil groups for the in-

decomposable representations of the groups of order 2, 3 and the symmetric
group Sym3 over the fields with 2 and 3 elements as well as suitable sym-

metrizations. An analogue of Kneser’s neighboring method is introduced, to
classify all self-dual codes in a given representation.

1. Introduction.

Let G be a finite group and K be a finite field. Then the group algebra KG is
a finite K-algebra with a natural K-linear involution

:
∑
g∈G

agg 7→
∑
g∈G

agg
−1.

This defines a form ring structure Rε(KG) on KG where ε = ±1; see Section 2).
A finite representation ρ of Rε(KG) consists of a finite KG-module V together

with a G-invariant non-degenerate K-bilinear form β : V × V → K which is sym-
metric, if ε = 1 and skew-symmetric if ε = −1. We do not deal with Hermitian
forms here, since in our examples K will be a prime field.

In this language, a self-dual code C of length N for the representation ρ (for
short, a code in ρ) is a KG-submodule of V N that is self-dual with respect to

βN : V N × V N → K,βN ((x1, . . . , xN ), (y1, . . . , yN )) =
N∑
i=1

β(xi, yi).
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The complete weight enumerator of a code C ≤ V N is

cwe(C) :=
∑
c∈C

N∏
i=1

xci ∈ C[xv | v ∈ V ]

and a homogeneous polynomial of degree N in |V | variables.
In Section 2 we will give explicit generators for a finite complex matrix group, the

associated Clifford-Weil group C(ρ) such that cwe(C) is invariant under all variable
substitutions defined by elements in C(ρ), hence cwe(C) ∈ Inv(C(ρ)) lies in the
invariant ring Inv(C(ρ)).

In fact the main results of [7] (Corollary 5.7.4 and 5.7.5) show that for a fairly
general class of form rings Inv(C(ρ)) is generated as a vector space over C by the
complete weight enumerators of self-dual codes in ρ. We conjecture that this is
true for arbitrary finite form rings (cf. [7, Conjecture 5.7.2]) and in particular also
for Rε(KG), but we do not know how to prove this for arbitrary finite group rings
KG.

We denote the cyclic group of order n by Zn and the symmetric group of degree
n by Symn. Moreover we let Fp be the field with p elements.

2. Rings with involution.

Rings with involution define certain form rings as explained below. We will apply
the theory developed in this section to group rings with the natural involution .

Let R be a ring with 1 and
J : R→ R, x 7→ xJ

an involution, i.e. a ring antiautomorphism of order 1 or 2. So (ab)J = bJaJ and
(aJ)J = a for all a, b ∈ R. Moreover let ε ∈ Z(R) be a central unit of R such
that εJε = 1. As explained in [7, Lemma 1.4.5] this setting defines a twisted ring
(R, id,M = R) where the twist τ on M = R is defined by

τ : R→ R, a 7→ aJε.

The quadrupel
R(R, J, ε) := (R, id,M = R,Φ = R)

is a form ring (see [7, Definition 1.7.1]) with mappings

{{ }} : M → Φ,m 7→ m and λ : Φ→M,φ 7→ φ+ φJε.

The R-qmodule structure on Φ is given by

φ[x] = xJφx for all φ ∈ Φ, x ∈ R.
A representation of the form ringR(R, J, ε) is given by a left R-module V together

with a non-degenerate biadditive form β : V × V → A into some abelian group A
such that

β(v, rw) = β(rJv, w) and β(v, w) = β(w, εv) for all v, w ∈ V, r ∈ R.
That β is non-degenerate means that it induces an isomorphism

β∗ : V → Hom(V,A), v 7→ (w 7→ β(w, v))

which is then an isomorphism of R-left-modules, where Hom(V,A) is an R-left-
module by

(rf)(v) := f(rJv) for all f ∈ Hom(V,A), r ∈ R, v ∈ V.
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The corresponding homomorphisms

ρM : R→ Bil(V,A), ρΦ : Φ→ Quad0(V,A)

are given by

ρM (m) : (v, w) 7→ β(v,mw), ρΦ(φ) : v 7→ β(v, φv).

2.1. Symmetric idempotents. An idempotent e2 = e ∈ R is called symmetric,
if eR ∼= eJR as right R-modules. In this case there are ue ∈ eReJ and ve ∈ eJRe
such that ueve = e and veue = eJ . A set of representatives of the R∗-conjugacy
classes of symmetric idempotents in R will be denoted by SymId(R).

2.2. The associated Clifford-Weil group. In coding theory one is mainly inter-
ested in finite alphabets V . We now assume that R is a finite dimensional algebra
over a finite field K such that the restriction of J is the identity on K. For any
representation ρ = (V, β) of the form ring R(R, J, ε) we may take the abelian group
A to be the field K and β∗ : V → V ∗ := HomK(V,K). Let p be the characteristic of
K and trace : K → Fp denote the trace from K into its prime field Fp. Identifying
Fp ∼= Z/pZ with 1

pZ/Z ≤ Q/Z the form β : V × V → K defines a biadditive form

β̃ : V × V → Q/Z, β̃(v, w) :=
1
p

trace(β(v, w))

which is again non-degenerate by the non-degeneracy of the trace form.
To define the associated Clifford-Weil group C(ρ) we index a basis (ev|v ∈ V ) of

C|V | by the elements of V . Then C(ρ) ≤ GL|V |(C) is the finite complex matrix
group

C(ρ) = 〈mr, dφ, he,ue,ve
: r ∈ R∗, φ ∈ R, e = ueve ∈ SymId(R)〉

where
mr : bv 7→ brv, dφ : bv 7→ exp(2πiβ̃(v, φv))bv

and

he,ue,ve
: bv 7→

1
|eV |1/2

∑
w∈eV

exp(2πiβ̃(w, vev))bw+(1−e)v.

2.3. Symmetrized weight enumerators. Very often certain elements of V share
the same property (for instance they have the same Hamming weight). Then one
might be interested in the symmetrized weight enumerators of the codes rather than
the complete weight enumerators. One way to obtain the ring spanned by these
symmetrized weight enumerators is of course to first calculate generators of the ring
of complete weight enumerators and then apply the appropriate symmetrization.
Since the ring spanned by the complete weight enumerators might be rather large,
it is very helpful to have shortcuts to this procedure. This is only possible, if the
action of the associated Clifford-Weil group commutes with the symmetrization.

Definition 2.1. Let G ≤ Sym(V ) be a group permuting the elements of V and
X0, . . . , Xn denote the G-orbits on V . Then the G-symmetrized weight enumerator
sweG(C) of a code C ≤ V N is the homogeneous polynomial in C[x0, . . . , xn] of
degree N ,

sweG(C) :=
∑
c∈C

n∏
i=0

x
ai(c)
i
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where ai(c) := |{j ∈ {1, . . . , N} | cj ∈ Xi}| for 0 ≤ i ≤ n. The V -Hamming weight
enumerator of C is

hweV (C) :=
∑
c∈C

xN−wV (c)ywV (c) ∈ C[x, y]

where the V -weight of c = (c1, . . . , cN ) ∈ V N is

wV (c) := |{i ∈ {1, . . . , N} | ci 6= 0}|.

There are certain symmetrizations that commute with the action of the associ-
ated Clifford-Weil group, for instance if one takes G to be a subgroup of the central
unitary group of R as defined and proven below. Usually the symmetization yield-
ing the V -Hamming weight enumerators does not commute with C(ρ) and one may
not expect that in general the V -Hamming weight enumerators of self-dual codes
in a given representation generate the invariant ring of a finite group (see the end
of Section 7.2 and [7, Section 5.8] for examples).

Definition 2.2. Let (R, J) be a ring with involution. Then the central unitary group

ZU(R, J) := {g ∈ Z(R) | ggJ = gJg = 1}.

Theorem 2.3. Let ρ := (V, β) be a finite representation of the form ring R(R, J)
and U ≤ ZU(R, J). Then

ρ(U) := 〈mu | u ∈ U〉
is in the center of C(ρ).

Proof. Clearly ρ(U) ≤ C(ρ) commutes with the generators mr for r ∈ R∗ since U
is central in R∗. For φ ∈ Φ, u ∈ U and v ∈ V we have

β(uv, φuv) = β(uv, uφv) = β(uJuv, φv) = β(v, φv)

so mu commutes with dφ. To see that mu commutes with the last type he,ue,ve of
generators of C(ρ) one has to note that ueV = eV since u is a central unit and that
β(uw, veuv) = β(w, vev) for all v, w ∈ V, u ∈ U . �

Remark 2.4. The theorem uses that {{ }} is surjective in our situation. In general
one has to replace ZU(R, J) by its subgroup

Uρ = {g ∈ ZU(R, J) | ρ(φ)(gv) = ρ(φ(v)) for all v ∈ V, φ ∈ Φ}

to obtain the same theorem as above.

Corollary 2.5. Let ρ := (V, β) be a finite representation of the form ring R(R, J)
and U ≤ ZU(R, J). Then U acts as permutations on the set V and the correspond-
ing symmetrization commutes with the action of C(ρ).

In this setup we can define the U -symmetrized Clifford-Weil group,

C(U)(ρ) ≤ GLn+1(C).

Generators for g(U) the symmetrized group may be obtained from the generators g
of C(ρ) as follows. If

g
∑
v∈Xi

ev =
n∑
j=0

aij(
∑
w∈Xj

ew)
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then

g(U)(xi) =
n∑
j=0

aij
|Xj |
|Xi|

xj .

Of course ρ(U) is in the kernel of this symmetrization C(ρ)→ C(U)(ρ).

Remark 2.6. The invariant ring of C(U)(ρ) consists of the U -symmetrized invari-
ants of C(ρ). In particular, if the invariant ring of C(ρ) is spanned by the complete
weight enumerators of self-dual codes in ρ, then the invariant ring of C(U)(ρ) is
spanned by the U -symmetrized weight-enumerators of self-dual codes in ρ.

2.4. Form group rings. Let G be a finite group and K be a finite field. Then the
group algebra KG is a finite K-algebra with a natural K-linear involution

:
∑
g∈G

agg 7→
∑
g∈G

agg
−1.

Since ε = 1 and ε = −1 are central units in KG, the construction of Section 2
defines a natural form ring structure Rε(KG) on KG where ε = ±1.

A representation of the form ring Rε(KG) is given by a finite KG-module V
together with a G-invariant non-degenerate K-bilinear form β : V × V → K which
is symmetric, if ε = 1 and skew-symmetric if ε = −1.

3. A method to enumerate all self-dual codes.

There is a very nice and efficient method to enumerate all self-dual codes in
a given length representation of a form ring. This is based on M. Kneser’s ideas
[4], described in [6] for codes over finite fields and in [5] for ZG-lattices. We often
apply it to find self-dual codes in representations of the finite form ring R(KG) and
therefore we will describe it in a fairly general setting adopted to this situation.

Let (V, ρM , ρΦ, β) be a finite representation of a form ring (R,M,ψ,Φ) as defined
in [7, Section 1]. In particular V is a finite left-module for the ring R and β :
V ×V → Q/Z a non-degenerate form on V which induces an R-module isomorphism

β∗ : V → V ∗ := Hom(V,Q/Z), w 7→ (v 7→ β(v, w)).

A self-dual code C in ρ is a R-submodule C ≤ V such that

C = C⊥ := {v ∈ V | β(c, v) = 0 for all c ∈ C}.

Let
M(V ) := {C ≤ V | C = C⊥}

denote the set of all self-dual codes in V .

Lemma 3.1. Let C ∈M(V ) and

? {0} = V0 < V1 < . . . < Vs = C < Vs+1 < . . . < Vt = V

be a composition series of V with simple R-left-module Si := Vi/Vi−1 (1 ≤ i ≤ t).
Then t = 2s and there is a bijection π : {1, . . . , s} → {s + 1, . . . , t} such that
(Si)∗ = Sπ(i).

Proof. The mapping β∗ : V → Hom(C,Q/Z), v 7→ (c 7→ β(v, c)) is an epimorphism
with kernel C⊥. Hence V/C = V/C⊥ ∼= Hom(C,Q/Z) = C∗. Now the lemma
follows since the composition factors of C∗ are the dual S∗ = Hom(S,Q/Z) of the
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composition factors S of C.
Alternatively one may choose Vt−i = V ⊥i in the composition series ?. Then

Vt−i/Vt−i−1 = V ⊥i /V
⊥
i+1
∼= (Vi+1/Vi)∗

and the lemma follows from the Jordan-Hölder theorem on the uniqueness of com-
position factors. �

Corollary 3.2. If M(V ) 6= ∅ then each simple composition factor S of V that is
isomorphic to its dual, S ∼= S∗, occurs with even multiplicity in every composition
series of V .

Corollary 3.3. Any two modules C,D ∈M(V ) have the same composition lengths:
`(C) = `(D) = s = `(V )/2.

Definition 3.4. Two self-dual codes C,D ∈ M(V ) are called neighbors, if the R-
module C/C∩D is simple. The neighbor-graph is the graph Γ with vertex setM(V ).
Two vertices C,D ∈M(V ) are connected, if C and D are neighbors.

Theorem 3.5. The neighbor graph Γ is connected.

Proof. We define a distance on the set M(V ). For C,D ∈M(V ) let

d(C,D) := `(C/(C ∩D))

be the number of composition factors of the factor module C/(C ∩ D). Then
clearly d(C,D) = 0 if and only if C = D and d(C,D) = d(D,C) by Corollary 3.3
and Jordan-Hölder. Also the triangle inequality follows easily from the fact that
the number of composition factors is well defined. Clearly d(C,D) ≤ `(C) = s for
all C,D ∈M(V )
We claim that this distance d(C,D) is the number of edges in any shortest path in
Γ connecting C and D, which shows that the diameter of Γ is bounded from above
by s and in particular that Γ is connected.
To prove this claim we proceed by induction on n := d(C,D). For n = 0 and n = 1
the claim is true by definition. Now assume that n ≥ 2. Then we construct a code
C1 ∈M(V ) such that

d(C,C1) = 1 and d(C1, D) = n− 1.

To this aim let U := C ∩D and choose D > U1 > U such that U1/U ∼= S is simple.
This is possible since the composition length n = `(D/U) ≥ 2. Then U = U1 ∩ C
and

S ∼= U1/(U1 ∩ C) ∼= (U1 + C)/C.

The module X := (U1 +C)⊥ < C = C⊥ is a submodule of C with C/X ∼= S∗. Put

C1 := X + U1 = (U1 + C)⊥ + U1.

Then

C⊥1 = (U1 + C) ∩ (U⊥1 ) ⊇ X + U1 = C1



CLIFFORD-WEIL GROUPS FOR FINITE GROUP RINGS, SOME EXAMPLES. 191

since U1 ⊆ D = D⊥ ⊆ U⊥1 . Comparing the composition lengths we get C⊥1 = C1 ∈
M(V ). Clearly d(C,C1) = 1. Moreover C1 ∩D = U1 and hence d(C1, D) = n− 1.

•
C + U1

S∗

????????
S

��������

•C

S∗ ???????? • C1

???????????????

S�������� • D

���������������

•
X

???????????????

• U1
S

��������

•
U

�

This provides an algorithm to enumerate all elements ofM(V ). Start with some
self-dual code C ∈M(V ). For all composition factors S of V calculate all non-zero
R-homomorphisms ϕ : C → S. Their kernels U := ker(ϕ) provide all submodules
U ≤ C such that C/U ∼= S. The neighbors D of C such that D ∩ C = U can be
obtained as full preimages of the self-dual submodules D/U of U⊥/U (not equal
to C/U). Continue with all neighbors until all codes in M(V ) have been found.
Usually one is only interested in representatives of equivalence classes of codes in
M(V ), so there is a certain group G acting on M(V ) that preserves submodules
and duality. Then it is enough to work with representatives of the G-orbits. More
details can be found in [3].

4. F2Z2

The Type of singly even self-dual codes over F2Z2 is one of the rare cases for
which the invariant ring of the associated Clifford-Weil group is a polynomial ring.
The Type of doubly even self-dual codes over F2Z2 is interesting because of the
connection to Type IV codes over Z4. The Gray image of a Type IV code over Z4

is a doubly even F2Z2-linear self-dual code (see [1], [2]) However not all such codes
are Gray images of a Type IV code over Z4.

Let Z2 = 〈a〉. Then F2Z2
∼= F2[x]/(x2) via (1 + a) 7→ x. In particular the unit

group (F2Z2)∗ = 〈a〉 ∼= Z2 and F2Z2 has just two indecomposable modules, the
simple module S = F2 and the projective module P = F2Z2. The representation ρS
with underlying module S defines C(ρS) = C(2I) the Clifford-Weil group associated
to the Type of singly even binary self-dual codes which is treated in detail in [7,
Section 6.3].
Z2 acts on the module P ∼= F2

2 via

a 7→ ρP (a) =
(

0 1
1 0

)
and the two non-degenerate a-invariant bilinear forms (with Gram matrices I2 and
ρP (a)) are in the same orbit under (F2Z2)∗ and hence define the same notion of
duality. We choose β to be the standard form with Gram matrix I2. Then with
respect to the basis

e(0,0), e(1,0), e(0,1), e(1,1)
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of C[P ] the associated Clifford-Weil group C(F2Z2) is generated by

ma :=


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 , dφ := diag(1,−1,−1, 1), h1 =
1
2


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1


(φ = {{β }} ) has order 16 and is isomorphic to D8 × Z2, the direct product of the
dihedral group of order 8 and the cyclic group of order 2. C(F2Z2) is a real reflection
group and the invariant ring is the polynomial ring

Inv(C(F2Z2)) = C[p1, p2, p3, p4]

with
p1 = x+ t,

p2 = x2 + y2 + z2 + t2,

p3 = x2 + 2yz + t2,

p4 = x4 + y4 + z4 + t4 + 8xyzt+ 2x2t2 + 2y2z2

where we put x = x(0,0), y = x(1,0), z = x(0,1), t = x(1,1) for simplicity. These
polynomials are the complete weight enumerators of the codes Ci ≤ PN with
generator matrices

[(1, 1)],
[

(1, 0) (1, 0)
(0, 1) (0, 1)

]
,

[
(1, 1) (1, 1)
(1, 0) (0, 1)

]
,

and 
(1, 0) (0, 0) (0, 1) (1, 1)
(0, 1) (0, 0) (1, 0) (1, 1)
(0, 0) (1, 0) (1, 1) (0, 1)
(0, 0) (0, 1) (1, 1) (1, 0)

 .
For the module theoretic structure we get

C1
∼= S,C2

∼= C3
∼= P,C4

∼= P ⊕ P
(as F2Z2-modules). As binary codes, C2, C3 and C1 ⊥ C1 are equivalent, and C4

is equivalent to the extended Hamming code e8 of length 8.
To obtain the type of doubly even binary codes in PN , we may enlarge Φ and

obtain one additional generator dϕ := diag(1, i, i,−1), with i ∈ C, i2 = −1. The
group

CII(F2Z2) = 〈C(F2Z2), dϕ〉
has order 192 and Molien series

1 + λ4 + 2λ8

(λ4 − 1)3(λ12 − 1)
.

The invariant ring Inv(CII(F2Z2)) is a free module over the polynomial subring
R := C[p4, p5, p6, p7],

Inv(CII(F2Z2)) = R⊕Rq1 ⊕Rq2 ⊕Rq3

where p4 is as above, p5, p6, q1 are complete weight enumerators of further Z2-
structures of e8, q2 = cwe(e8 ⊗ P ), q3 is the complete weight enumerators of a
suitable Z2-structure on d+

16 and p7 is the weight enumerator of any Z2-structure
of the Golay code.
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To find the inequivalent doubly even codes in P 4 that are equivalent to e8 as
binary codes, we consider the automorphism group G = Aut(e8). There are 2 conju-
gacy classes of elements of order 2 inG which are conjugate to a = (1, 2)(3, 4)(5, 6)(7, 8)
in Sym8.

The a-invariant codes Ck have generator matrices (I4, Jk) with k = 1, . . . , 6,
where I4 is the 4× 4 unit matrix viewed as element of P 4×2 and

J1 =


(0, 1) (1, 1)
(1, 0) (1, 1)
(1, 1) (0, 1)
(1, 1) (1, 0)

 , J2 =


(1, 0) (1, 1)
(0, 1) (1, 1)
(1, 1) (0, 1)
(1, 1) (1, 0)

 , J3 =


(1, 0) (1, 1)
(0, 1) (1, 1)
(1, 1) (1, 0)
(1, 1) (0, 1)

 ,

J4 =


(1, 1) (1, 0)
(0, 1) (1, 1)
(1, 1) (0, 1)
(1, 0) (1, 1)

 , J5 =


(0, 1) (1, 1)
(1, 1) (1, 0)
(1, 1) (0, 1)
(0, 1) (1, 1)

 , J6 =


(1, 1) (1, 0)
(1, 0) (1, 1)
(1, 1) (0, 1)
(0, 1) (1, 1)

 .
with complete weight enumerators

cwe(C1) = p4 = x4 + 2x2t2 + 8xyzt+ y4 + 2y2z2 + z4 + t4

cwe(C2) = p5 = x4 + 2x2t2 + 2xy2t+ 4xyzt+ 2xz2t+ 2y3z + 2yz3 + t4

cwe(C3) = x4 + 2x2t2 + 4xy2t+ 4xz2t+ 4y2z2 + t4

cwe(C4) = x4 + 3xy2t+ 6xyzt+ 3xz2t+ y3z + yz3 + t4

cwe(C5) = p6 = x4 + 12xyzt+ y4 + z4 + t4

cwe(C6) = q1 = x4 + 4xy2t+ 4xyzt+ 4xz2t+ 2y2z2 + t4

For the secondary invariants of degree 8 one may take

q2 := cwe(e8 ⊗ P ) = x8 + y8 + z8 + t8 + 14(x4y4 + x4z4 + x4t4 + y4z4

+ y4t4 + z4t4) + 168x2y2z2t2

(where Z2 acts trivially on e8) and the weight enumerator of a Z2-structure of the
indecomposable Type II code d+

16 of length 16,

q3 = cwe(d+
16) = x8 + 4x6t2 + 2x5y2t+ 8x5yzt+ 2x5z2t+ 4x4y3z

+ 4x4y2z2 + 4x4yz3 + 6x4t4 + 4x3y2t3 + 32x3yzt3 + 4x3z2t3 + 8x2y4t2

+ 16x2y3zt2 + 24x2y2z2t2 + 16x2yz3t2 + 8x2z4t2 + 4x2t6 + 4xy5zt

+ 24xy4z2t+ 8xy3z3t+ 24xy2z4t+ 2xy2t5 + 4xyz5t+ 8xyzt5 + 2xz2t5 + 2y7z

+ 6y5z3 + 6y3z5 + 4y3zt4 + 4y2z2t4 + 2yz7 + 4yz3t4 + t8.

A corresponding generator matrix is

(1, 0) (0, 0) (0, 1) (0, 0) (0, 0) (0, 1) (0, 0) (0, 1)
(0, 1) (0, 0) (1, 0) (0, 0) (0, 0) (0, 1) (0, 0) (0, 1)
(0, 0) (1, 0) (1, 1) (0, 1) (0, 0) (0, 0) (1, 1) (1, 1)
(0, 0) (0, 1) (1, 1) (0, 1) (0, 0) (0, 1) (1, 1) (1, 0)
(0, 0) (0, 0) (0, 0) (1, 1) (0, 0) (0, 1) (0, 0) (0, 1)
(0, 0) (0, 0) (0, 0) (0, 0) (1, 0) (0, 1) (0, 1) (0, 1)
(0, 0) (0, 0) (0, 0) (0, 0) (0, 1) (0, 1) (1, 0) (0, 1)
(0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (1, 1) (0, 0) (1, 1)


The automorphism group of the extended binary Golay code G24 has one conju-

gacy class of elements that are conjugate in Sym24 to

a = (1, 2)(3, 4)(5, 6)(7, 8)(9, 10)(11, 12)(13, 14)(15, 16)(17, 18)(19, 20)(21, 22)(23, 24)
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yielding an F2Z2-structure of G24 with generator matrix (I12, J) where

J :=



(1, 0) (1, 1) (1, 0) (1, 1) (0, 0) (0, 1)
(0, 1) (1, 1) (0, 1) (1, 1) (0, 0) (1, 0)
(1, 1) (1, 0) (0, 1) (0, 0) (1, 1) (1, 0)
(1, 1) (0, 1) (1, 0) (0, 0) (1, 1) (0, 1)
(0, 0) (1, 1) (1, 0) (1, 0) (1, 1) (1, 0)
(0, 0) (1, 1) (0, 1) (0, 1) (1, 1) (0, 1)
(1, 0) (0, 1) (1, 1) (0, 1) (1, 0) (1, 0)
(0, 1) (1, 0) (1, 1) (1, 0) (0, 1) (0, 1)
(0, 1) (1, 0) (1, 0) (0, 1) (1, 0) (1, 1)
(1, 0) (0, 1) (0, 1) (1, 0) (0, 1) (1, 1)
(1, 1) (0, 0) (0, 1) (1, 1) (1, 0) (0, 1)
(1, 1) (0, 0) (1, 0) (1, 1) (0, 1) (1, 0)


whose complete weight enumerator yields the last generator

p7 = x12 + 15x8t4 + 14x6y4t2 + 64x6y3zt2 + 84x6y2z2t2 + 64x6yz3t2 + 14x6z4t2

+ 32x6t6 + 4x5y6t + 40x5y5zt + 92x5y4z2t + 112x5y3z3t + 92x5y2z4t + 40x5yz5t

+ 4x5z6t + x4y8 + 4x4y7z + 10x4y6z2 + 28x4y5z3 + 34x4y4z4 + 28x4y4t4 + 28x4y3z5

+ 128x4y3zt4 + 10x4y2z6 + 168x4y2z2t4 + 4x4yz7 + 128x4yz3t4 + x4z8 + 28x4z4t4

+ 15x4t8 + 24x3y6t3 + 112x3y5zt3 + 296x3y4z2t3 + 416x3y3z3t3 + 296x3y2z4t3

+ 112x3yz5t3 + 24x3z6t3 + 2x2y8t2 + 24x2y7zt2 + 76x2y6z2t2 + 168x2y5z3t2

+ 180x2y4z4t2 + 14x2y4t6 + 168x2y3z5t2 + 64x2y3zt6 + 76x2y2z6t2 + 84x2y2z2t6

+ 24x2yz7t2 + 64x2yz3t6 + 2x2z8t2 + 14x2z4t6 + 4xy6t5 + 40xy5zt5 + 92xy4z2t5

+ 112xy3z3t5 + 92xy2z4t5 + 40xyz5t5 + 4xz6t5 + 2y10z2 + 16y8z4 + y8t4 + 4y7zt4

+ 28y6z6 + 10y6z2t4 + 28y5z3t4 + 16y4z8 + 34y4z4t4 + 28y3z5t4 + 2y2z10 + 10y2z6t4

+ 4yz7t4 + z8t4 + t12.

5. F2 Sym3

The group ring F2 Sym3 = F2Z2 ⊕ F2×2
2 is the direct product of two blocks that

are invariant under the canonical involution. The first block is already dealt with
in Section 4. For the second block, we should note that the left modules of the
matrix ring R = F2×2

2 are of the form M = F2×1
2 ⊗ V for some F2-vector space V .

The self-dual R-submodules of M are of the form F2×1
2 ⊗ C = C(2) for a self-dual

binary code C ≤ V . The associated Clifford-Weil group is the real Clifford group
C2(2I) of genus 2 (see [7, Section 6.3]) of which the invariant ring is spanned by the
genus 2 complete weight enumerators of the self-dual binary codes.

6. F3 Sym3

F3 Sym3 has 6 indecomposable modules:

S+, S−, V+, V− = V+ ⊗ S−, P+, P− = P+ ⊗ S−
where S+ and S− are the two simple modules (with trivial character, respectively
the signum character), P+ and P− the two corresponding projective indecomposable
modules, P+ is just the natural permutation module of the symmetric group Sym3,
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and V+ = P+/ soc(P+), V− = P−/ soc(P−) are the two indecomposables with
composition length 2. Since V− ∼= HomF3(V+,F3), both modules V+ and V− do not
carry a Sym3-invariant non-degenerate bilinear form. F3 Sym3 acts on the simple
modules S+ and S− just as F3, so the self-dual codes in SN+ and SN− are the self-dual
ternary codes of length N . The corresponding Clifford-Weil group is described in
[7, Section 7.4.1]. The self-dual codes in PN+ are the same as the ones in PN− , so
it is enough to consider the representation ρP+ . The projective indecomposable
Sym3-module P+ is uniserial,

P+ > J(P+) > soc(P+) > 0

with composition factors (S+, S−, S+). The Clifford-Weil group C(P+) ≤ GL27(C)
has order 2839. Its invariant ring is far from being a polynomial ring. The Molien
series starts with

1 + 5λ4 + 40λ8 + 2321λ12 + 140997λ16 + . . . = f(λ)/N(λ)

with
N(λ) = (1− λ4)5(1− λ8)4(1− λ12)12(1− λ36)6

and a positive polynomial f of degree 376 with f(1) > 1022. So it is hopeless to
calculate the full invariant ring here. The 5 invariants of degree 4 are provided by
the complete weight enumerators p1, . . . , p5 of the codes C1, . . . , C5 with generator
matrices

(1, 1, 1) (0, 0, 0) (0, 0, 0) (0, 0, 0)
(0, 0, 0) (1, 1, 1) (0, 0, 0) (0, 0, 0)
(0, 0, 0) (0, 0, 0) (1, 1, 1) (0, 0, 0)
(0, 0, 0) (0, 0, 0) (0, 0, 0) (1, 1, 1)
(0, 1, 2) (0, 0, 0) (0, 1, 2) (0, 1, 2)
(0, 0, 0) (0, 1, 2) (0, 1, 2) (0, 2, 1)




(1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1)
(1, 1, 1) (0, 0, 0) (0, 0, 0) (2, 2, 2)
(0, 0, 0) (1, 1, 1) (0, 0, 0) (2, 2, 2)
(1, 0, 0) (1, 0, 0) (0, 0, 0) (1, 0, 0)
(0, 1, 2) (0, 0, 0) (0, 1, 2) (0, 2, 1)
(0, 0, 0) (0, 1, 2) (0, 2, 1) (0, 2, 1)




(1, 0, 0) (2, 0, 0) (0, 0, 0) (2, 0, 0)
(0, 1, 0) (0, 2, 0) (0, 0, 0) (0, 2, 0)
(0, 0, 1) (0, 0, 2) (0, 0, 0) (0, 0, 2)
(0, 0, 0) (1, 0, 0) (2, 0, 0) (2, 0, 0)
(0, 0, 0) (0, 1, 0) (0, 2, 0) (0, 2, 0)
(0, 0, 0) (0, 0, 1) (0, 0, 2) (0, 0, 2)




(1, 0, 0) (2, 0, 0) (0, 0, 0) (2, 0, 0)
(0, 1, 0) (0, 2, 0) (0, 0, 0) (0, 2, 0)
(0, 0, 1) (0, 0, 2) (0, 0, 0) (0, 0, 2)
(0, 0, 0) (0, 0, 0) (1, 1, 1) (0, 0, 0)
(1, 2, 0) (0, 0, 0) (0, 2, 1) (1, 2, 0)
(0, 1, 2) (0, 0, 0) (0, 2, 1) (0, 1, 2)




(1, 0, 0) (1, 0, 0) (1, 1, 1) (1, 0, 0)
(0, 1, 0) (0, 1, 0) (1, 1, 1) (0, 1, 0)
(0, 0, 1) (0, 0, 1) (1, 1, 1) (0, 0, 1)
(1, 0, 0) (2, 0, 0) (2, 0, 0) (1, 1, 1)
(0, 1, 0) (0, 2, 0) (0, 2, 0) (1, 1, 1)
(0, 0, 1) (0, 0, 2) (0, 0, 2) (1, 1, 1)


Imposing the additional condition that the codes contain the all-ones vector 1,

one gets a Clifford-Weil group of order 28311 with Molien series

1 + 2λ4 + 10λ8 + 403λ12 + 16200λ16 + . . . = g(λ)/N1(λ)

with
N1(λ) = (1− λ4)2(1− λ8)7(1− λ12)12(1− λ36)6

and a positive polynomial g of degree 388 with g(1) > 1022. The two invariants of
degree 4 are p1 and p2.
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7. F3Z3

F3Z3 has 3 indecomposable modules: the simple module S ∼= F3, the projective
module P ∼= F3Z3 and P/ soc(P ) = V of composition length 2.

7.1. The 3-dimensional module P . The module P is just the restriction of the
F3 Sym3-module P+ to Z3. The associated Clifford-Weil group C(P ) has order 2535

and Molien series starting with

1 + 37λ4 + 9294λ8 + . . . .

The additional condition that the codes contain the all-ones vector yields a Clifford-
Weil group of order 2537 whose Molien series starts with

1 + 6λ4 + 911λ8 + 148842λ12 + . . . .

A system of representatives for the Sym4-equivalence classes of self-dual F3Z3-
codes in P 4 may be calculated as follows.

An F3Z3-code C in P 4 is a self-dual code in F12
3 , with the additional property

that a := (1, 2, 3)(4, 5, 6)(7, 8, 9)(10, 11, 12) is contained in the permutation group
P (C) of C.

Up to monomial equivalence, there exist three self-dual codes in F12
3 . Hence for

each of these three codes D we have to determine the set GD := {π ∈ Mon | a ∈
P (Dπ)}, whereMon is the group of monomial permutations on twelve points. Since
the condition a ∈ P (Dπ) is equivalent with πaπ−1 ∈ Aut(D), the set GD can be
determined with elementary calculations. Now GD consists of right cosets of the
subgroup

< (1, 4)(2, 5)(3, 6), (1, 4, 7, 10)(2, 5, 8, 11)(3, 6, 9, 12) >∼= Sym4

in Mon, hence may be reduced to a set of coset representatives. The union of the
reduced sets GD then yields a system of representatives for the Sym4-equivalence
classes of self-dual F3Z3-codes in P 4, consisting of 48 codes.

Since it is hopeless to calculate generators for the invariant ring here, it is useful
to apply the strategy described in Section 2.3 to obtain generators for the ring
spanned by the U -symmetrized weight enumerators of the codes, where U ∼= Z6 is
the full central unitary group of (F3Z3, ). U preserves the composition series

P > V > S > 0

and has 3 orbits X3, X4, X5 of length 6 on P −V (distinguished by their Hamming
weight) one orbit X2 of length 6 on V − S, one orbit X1 on S − {0} and the orbit
X0 = {0}. The symmetrized Clifford-Weil group C(U)(P ) has order 2434 and Molien
series starting with

1 + 3λ4 + 9λ8 + 34λ12 + . . . =
f

g

with

g(λ) = (1− λ36)(1− λ12)2(1− λ4)3

and
f(λ) = λ60 + 5λ56 + 17λ52 + 18λ48 + 25λ44 + 25λ40 + 32λ36+
26λ32 + 27λ28 + 31λ24 + 21λ20 + 11λ16 + 13λ12 + 3λ8 + 1.
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The 48 codes of length 4 yield four different symmetrized weight enumerators which
generate the 3-dimensional space of invariants of degree 4.

x4
0 + 72x4x3x5(x0 + x1) + 24(x0x

3
2 + x1(2x3

2 + x3
3 + x3

4 + x3
5))+

144x2(x3x
2
4 + x2

3x5 + x4x
2
5) + 8x0x

3
1,

x4
0 + 24x0(x

3
4 + x3

3 + x3
2 + x3

5) + 144(x2x3x
2
4 + x1x3x4x5

+ x2x4x
2
5 + x2x

2
3x5) + 8x0x

3
1 + 48x1x

3
2,

x4
0 + 8x3

0x1 + 24x2
0x

2
1 + 216x0x

3
2 + 32x0x

3
1 + 432x3

2x1 + 16x4
1,

x4
0 + 2x3

0x1 + 6x0(x0x
2
1 + x3

4 + x3
3 + x3

5) + +36(x0 + 2x1)(x3x4x5 + 2x3
2)+

12x1(x
3
3 + x3

4 + x3
5) + 108x2(x3x

2
4 + x4x

2
5 + x2

3x5) + 14x0x
3
1 + 4x4

1

7.2. The 2-dimensional module V . The 2-dimensional indecomposable F3Z3-
module V has an F3-basis with respect to which a acts as

A =
(

0 2
1 2

)
and an A-invariant bilinear form with Gram matrix

F =
(

0 2
1 0

)
.

There are no symmetric non-degenerated invariant forms on V , so here we need to
work with R−(F3Z3) and ε = −1. The associated Clifford-Weil group is isomorphic
to Z2 × Z3 × Z3 × Sym3 of order 108. The Molien series is

d(λ)/n(λ) = 1 + λ+ λ2 + 7λ3 + 11λ4 + 11λ5 + 49λ6 + 91λ7 + . . .

with denominator
n(λ) = (1− λ)(1− λ3)4(1− λ6)4

and numerator
d(λ) = 2λ25 + 4λ24 + 18λ22 + 22λ21 + 16λ20 + 43λ19 + 65λ18 + 89λ17+
83λ16 + 91λ15 + 123λ14 + 89λ13 + 78λ12 + 71λ11 + 59λ10+
45λ9 + 25λ8 + 26λ7 + 16λ6 + 4λ4 + 2λ3 + 1

The invariant of degree 1 is of course the weight enumerator p of the code C1 :=
C = 〈(1, 1)〉 ≤ V . There are 13 self-dual codes in V 3, one of which is C3. The other
yield 6 different weight enumerators providing in total seven invariants of degree
3, that are linearly independent. Generator matrices (I3|Ji) of 6 such codes with
distinct weight enumerators are as follows:

J1 =

 2) (0, 2)
1) (2, 0)
1) (2, 2)

 , J2 =

 1) (0, 1)
2) (1, 0)
1) (2, 2)

 , J3 =

 1) (2, 0)
2) (2, 1)
1) (2, 2

 ,

J4 =

 2) (1, 2)
1) (0, 2)
1) (1, 1)

 , J5 =

 2) (2, 1)
1) (0, 1)
1) (2, 2)

 , J6 =

 2) (1, 0)
1) (1, 2)
1) (2, 2)

 .
The submodule structure of V is V > S > 0 with S = 〈(1, 1)〉. So V = X0 ∪

X1 ∪X2 with X0 = {(0, 0)}, X1 = V − S = {(1, 0), (2, 0), (0, 1), (0, 2), (1, 2), (2, 1)},
X2 = S − {(0, 0)} = {(1, 1), (2, 2)}. This partition of V is the set of orbits of the
central unitary group of the group ring and hence the corresponding symmetrization
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commutes with the action of the Clifford-Weil group. The resulting symmetrized
Clifford-Weil group is generated by

d := diag(1, ζ3, 1) and h =

 1/3 2 2/3
1/3 0 −1/3
1/3 −1 2/3


has order 18 and is isomorphic to the complex reflection group G = Z3×Sym3. All
12 codes of length 3 that are 6= C3 have the same symmetrized weight enumerator

p3 := x3
0 + 6x0x

2
2 + 18x3

1 + 2x3
2.

The invariant ring of G is the polynomial ring C[p1, p3, p6], where p1 := x0 + 2x2 is
the symmetrized weight enumerator of C and

p6 = x6
0 + 30x4

0x
2
2 + 40x3

0x
3
2 + 90x2

0x
4
2 + 60x0x

5
2 + 486x6

1 + 22x6
2

the symmetrized weight enumerator of a suitable code of length 6, for instance C6

with generator matrix
(1, 0) (0, 2) (0, 2) (0, 2) (0, 2) (1, 0)
(0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (1, 2)
(0, 0) (1, 1) (0, 0) (0, 0) (0, 0) (2, 2)
(0, 0) (0, 0) (1, 1) (0, 0) (0, 0) (2, 2)
(0, 0) (0, 0) (0, 0) (1, 1) (0, 0) (2, 2)
(0, 0) (0, 0) (0, 0) (0, 0) (1, 1) (2, 2)

 .
Continuing to symmetrize to obtain V -Hamming weight enumerators qi := pi(x, y, y) =
hweV (Ci) we will not obtain an invariant ring of a group. The subgroup of GL2(Q)
that stabilizes q1 and q3 is of order 2 and its invariant ring is

C[x+ 2y, x2 + 8y2]

which properly contains the ring spanned by q1, q3 and

q6 = (
1
3
q9
1q3 −

1
2
q6
1q

2
3 + q3

1q
3
3 +

1
6
q4
3)/(q3

1q3).

This shows that the assumption that the symmetrization commutes with the action
of the Clifford-Weil group is necessary.
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