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Abstract. Let Cg be a general curve of genus g. If g ≥ 4 then the monodromy

group of a primitive cover Cg → P1 of degree n is either Sn or An, and both
cases actually occur (under suitable conditions on n for fixed g). For g = 3

also the groups GL3(2) and AGL3(2) occur. In the present paper we settle

the last possible case of AGL4(2). This requires new methods (which may
be of independent interest) studying the combinatorial structure of degenerate

covers.

1. Introduction

Let Cg be a general curve of genus g ≥ 2 (over C). Then Cg has a cover to P1 of
degree n if and only if 2(n− 1) ≥ g. This is a classical fact of algebraic geometry.
If Cg has a cover to P1 of degree n, then there is such a cover that is simple, i.e.,
has monodromy group Sn and all inertia groups are generated by transpositions.
The question arises whether Cg admits other types of covers to P1.

If there is a cover Cg → P1 branched at r points of P1 and g ≥ 2 then r ≥ 3g
(see Remark 2.2 below). Zariski [Za] used this to show that if g > 6 then there is
no such cover with solvable monodromy group. The condition r ≥ 3g was further
used by Guralnick to restrict the possibilities for the monodromy group G of a cover
Cg → P1 of degree n. Assume the cover does not factor non-trivially, i.e., G is a
primitive subgroup of Sn. (Knowledge of this case is sufficient to know all types of
covers Cg → P1; this was already observed by Zariski [Za], see [GM]). If further
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146 THE COMBINATORICS OF DEGENERATE COVERS

g > 3, then G = Sn or G = An. For g = 3 there are 3 additional cases, with
n = 7, 8, 16 and G = GL3(2), AGL3(2), AGL4(2), respectively. This was proved
by Guralnick and Magaard [GM] and Guralnick and Shareshian [GS], using the
classification of finite simple groups.

As noted in [GM], it was not known whether the case G = An actually occurs.
This was answered in the affirmative in [MV]. Also the cases GL3(2) and AGL3(2)
in genus 3 were settled in [MV]. Here we show that also the last remaining case
G = AGL4(2) occurs in genus 3. This case is more difficult and requires new
techniques which may be of independent interest.

Our proof is based on studying degenerations of covers of P1, i.e., coalescing of
branch points. In the usual description using the stable compactification of M0,r,
coalescing of branch points means that the lower P1 degenerates into a tree of
genus 0 curves. We describe certain such degenerations of P1 by the notion of a
multi-list. The multi-list describes how the branch points are grouped together (in
various levels of degeneration) such that the topological model of the degenerate P1

is obtained by shrinking to a point certain standard paths around blocks of branch
points. The points of the degenerate P1 that arise from the shrinking of such a path
are the nodes. In our formal approach we actually do not refer to this operation
of shrinking paths, but we use the reverse operation of replacing a node by a
tube.

Recall the usual group-theoretic data associated with a cover of P1 of degree
n: The tuple of branch cycles σ = (σ1, . . . , σr), where the σi are permutations
in Sn associated with the branch points (local monodromy). This data depends
only on the choice of a homotopy basis of P1 minus the branch points, and is
therefore uniquely determined up to braid group action. Given the degeneration
of P1 (described by a multi-list) and the tuple σ of branch cycles of the original
cover of P1, there is canonically associated a cover of the degenerate P1. This
degenerate cover is constructed recursively in section 3.7. We have transformed this
construction into a [GAP4] program which computes the combinatorial structure of
this degenerate cover: The genera of the irreducible components, and the way these
components are linked together. We further compute the analogous information for
the stable model of this covering surface. This is the information actually used in
the third part of the paper. We reproduce the GAP code in the appendix of this
paper. Thus section 2 is purely topological, extending parts of the usual topological
theory of covers of P1 to the case of covers a tree of P1’s. Section 2 together with
the GAP code in the Appendix is independent of the rest of the paper and may be
of interest or usefulness in itself.

In section 3 we complete the proof of our main result by a detailed study of a
descending chain of subvarieties in the boundary of the moduli space M3. These
subvarieties classify stable curves of topological type given by the above stable
models of covering surfaces.

2. Moduli dimension of a tuple in Sn

2.1. The Hurwitz space classifying covers of type σ. Let P1 = P1
C the Rie-

mann sphere. Let U (r) be the open subvariety of (P1)r consisting of all (p1, ..., pr)
with pi 6= pj for i 6= j, and Ur the quotient of U (r) by the action of Sr per-
muting p1, . . . , pr. Thus Ur is the configuration space, consisting of unordered
r-tuples of distinct points from P1. Consider a cover f : X → P1 of degree n,
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with branch points p1, ..., pr ∈ P1. Pick p ∈ P1 \ {p1, ..., pr}, and choose loops γi
around pi such that γ1, ..., γr is a standard generating system of the fundamental
group Γ := π1(P1 \ {p1, ..., pr}, p) (see [V], Thm. 4.27); in particular, we have
γ1 · · · γr = 1. Such a system γ1, ..., γr is called a homotopy basis of P1 \ {p1, ..., pr}.
The group Γ acts on the fiber f−1(p) by path lifting, inducing a transitive sub-
group G of the symmetric group Sn (determined by f up to conjugacy in Sn). It
is called the monodromy group of f . The images of γ1, ..., γr in Sn form a tuple
of permutations called a tuple of branch cycles of f .

Let σ1, ..., σr be elements 6= 1 of the symmetric group Sn with σ1 · · ·σr = 1,
generating a transitive subgroup. Let σ = (σ1, ..., σr). We call such a tuple admis-
sible. We say a cover f : X → P1 of degree n is of type σ if it has σ as tuple of
branch cycles relative to some homotopy basis of P1 minus the branch points of f .
The genus g of X depends only on σ (by the Riemann-Hurwitz formula); we write
g = gσ. The braid orbit of σ is the smallest set of tuples in Sn that contains σ
and is closed under (component-wise) conjugation and under the braid operations

(g1, ..., gr)Qi = (g1, . . . , gi+1, g
−1
i+1gigi+1 , . . . , gr)

for i = 1, ..., r − 1.
Let Hσ be the set of equivalence classes of covers of type σ. (We use the usual

notion of equivalence of covers, see [V], p. 67.) Let σ, σ′ be admissible tuples in Sn
of length r. Let f : X → P1 be a cover of type σ. Then f is of type σ′ if and only
if σ′ lies in the braid orbit of σ. In other words, we have Hσ = Hσ′ if and only if
σ′ lies in the braid orbit of σ (see [FrV], [V], Ch. 10).

Let Ψσ : Hσ → Ur be the map that maps the equivalence class of a cover to
the set of branch points. The Hurwitz space Hσ carries a natural structure of
irreducible quasiprojective variety such that Ψσ is an algebraic morphism, and an
unramified covering in the complex topology (see [FrV],[V], [BeRo]). We also have
the morphism

Φσ : Hσ → Mg

mapping the equivalence class of a cover f : X → P1 to the class of X in the moduli
space Mg (where g = gσ). Hence the image of Φσ, i.e., the locus of genus g curves
admitting a cover to P1 of type σ, is irreducible.

Definition 2.1. The moduli dimension of σ, denoted by mod-dim(σ), is the di-
mension of the image of Φσ; i.e., the dimension of the locus of genus g curves
admitting a cover to P1 of type σ. We say σ has full moduli dimension if
mod-dim(σ) = dimMg. Obviously, the moduli dimension of σ depends only on
the braid orbit of σ, hence we call it the moduli dimension of the braid orbit.

A curve is called a general curve of genus g if it corresponds to a point of
Mg that does not lie in any proper closed subvariety of Mg defined over Q̄ (the
algebraic closure of the rationals). Clearly, an admissible tuple σ has full moduli
dimension if and only if each general curve of genus gσ admits a cover to P1 of type
σ.

The following Remark gives the necessary condition for full moduli dimension
used by Guralnick, Fried and Zariski (cf. [MV], Remark 2.2).

Remark 2.2. Let σ be an admissible tuple of length r in Sn, and g := gσ ≥ 2. If
σ has full moduli dimension then r ≥ 3g.



148 THE COMBINATORICS OF DEGENERATE COVERS

2.2. Group-theoretic consequences of the necessary criterion for full mod-
uli dimension. Let σ = (σ1, ..., σr) be an admissible tuple in Sn, and g := gσ ≥ 3.
Assume σ satisfies the necessary condition r ≥ 3g for full moduli dimension. As-
sume further σ generates a primitive subgroup G of Sn. If g ≥ 4 then G = Sn or
G = An by [GM] and [GS]. If g = 3 and G is not Sn or An then one of the following
holds (see [GM], Theorem 2):

(1) n = 7, G ∼= GL3(2)
(2) n = 8, G ∼= AGL3(2) (the affine group)
(3) n = 16, G ∼= AGL4(2)

The affine group AGLm(2) is the semi-direct product of GLm(2) with the group
of translations. We view it as permutation group on the 2m points of the affine
space (F2)m, on which it acts triply transitively. A transvection of AGLm(2) is
an involution that fixes a hyperplane of the corresponding affine space pointwise.

In cases (1) and (3), the tuple σ consists of 9 transvections of the respective
linear or affine group. In case (2), either σ consists of 10 transvections or it consists
of 8 transvections plus an element of order 2,3 or 4 (where the element of order 2
is a translation).

2.3. Braid orbits of full moduli dimension.

2.3.1. Braid orbits of 2-cycle tuples and 3-cycle tuples. Admissible tuples in Sn
of fixed length that consist only of transpositions form a single braid orbit (by
Clebsch 1872, see [V], Lemma 10.15). They correspond to the so-called simple
covers. Their braid orbit has full moduli dimension if and only if 2(n − 1) ≥ g,
where g = gσ (see the remarks in the Introduction).

Now consider admissible tuples in Sn, n ≥ 6, of fixed length that consist only
of 3-cycles. Such tuples generate An. Fried [Fr1] proved that such tuples exist and
form exactly two braid orbits (resp., one braid orbit) if g > 0 (resp., g = 0). In the
case g > 0, both braid orbits have full moduli dimension by [MV, Theorem 4.1].

It is to be expected that there is a wealth of braid orbits of full moduli dimension
whose tuples generate Sn or An. A classification seems hopeless.

2.3.2. Braid orbits of the exceptional tuples in genus 3. It was proved in [MV,
Remark 5.1] that the tuples in case (1) (i.e. 9 double transpositions in S7 generating
a group isomorphic to GL3(2)) form a single braid orbit. This braid orbit has full
moduli dimension by [MV, Theorem 5.2].

3. Covers of pinched surfaces

3.1. Pinched surfaces. A pinched surface R is a topological space which is ob-
tained from a disjoint union of compact Riemann surfaces R1, . . . , Rs by identifying
finitely many pairs of points (qµ, q′µ) (i.e., we identify qµ with q′µ for each µ). These
pairs are mutually disjoint. The common image of qµ and q′µ in R is denoted by
pµ. We denote the image of Rν in R by R̄ν . Each pµ is contained in at most two
R̄ν . It is allowed that R̄ν is linked to itself. The R̄ν are called the irreducible com-
ponents of R, and the pµ are called the nodes. A node is called to be a node of the
first, (resp. of the second) kind, if it lies on exactly one (resp. two) irreducible
components of R. A pinched surface is called non-singular if it has no nodes.
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3.2. Replacing a node by a tube. Let R be a pinched surface and p a node of R.
Then p has a neighborhood U that is homeomorphic to the union of two discs D1

and D2 that are linked at their midpoints. Let R̃ be the pinched surface obtained by
replacing U by a cylinder T whose two boundary circles coincide with the boundary
circles of D1 and D2. Obviously, the homeomorphism type of R̃ depends only on R
and p. We say R̃ is obtained by replacing the node p by a tube. There is a natural
continuous map π : R̃→ R mapping π−1(R \{p}) homeomorphically onto R \{p}.
Furthermore, π−1(p) is a circle which we call the waist-line of T .

3.3. The genus of a pinched surface. We return to the set-up of section 3.1.
The genus gν of the irreducible component R̄ν is the genus of the compact Riemann
surface Rν . The arithmetic genus g of a connected pinched surface is the genus
of the non-singular surface obtained by replacing the nodes by tubes. This genus
can be computed from the gν by the following formula. Let t be the number of
nodes. Then

(1) g = t + 1 +
s∑

ν=1

(gν − 1)

3.4. Stable pinched surfaces. An irreducible component of a pinched surface is
called exceptional, if it has genus 0, is linked to at most two other irreducible
components and has no node of the first kind.

A connected pinched surface R of genus g ≥ 2 is called stable if it has no
exceptional component. Such a surface of genus g = 1 is called stable, if it has no
exceptional component and at least one node.

The stable model of a pinched surface R of genus ≥ 2 is obtained by repeating
the following procedure until we obtain a stable pinched surface: Take an excep-
tional irreducible component and replace one of its nodes by a tube. The stable
model has the same genus.

3.5. Covers of pinched surfaces. Let S be a connected pinched surface and Ŝ
the non-singular surface obtained from S by replacing all nodes by tubes. Let
f̂ : R̂ → Ŝ be a cover of non-singular surfaces such that no branch point of f̂
maps to a node of S. Let T be a cylinder on Ŝ coming from a node of S. By
our assumption on f̂ , we may assume that T contains no branch point of f̂ . The
inverse image of T in R̂ is the disjoint union of cylinders Ti (because a cylinder is
homotopic to a circle). The waist-line W of T is homotopic to T , hence each Ti
contains exactly one component Wi of the inverse image of W. This Wi is a circle.
Shrinking each Wi to a point results in a pinched surface R. The cover f̂ : R̂→ Ŝ
induces a map f : R→ S. Each map R→ S obtained in this way is called a cover
of pinched surfaces. There is also a direct definition, see [BeRo, Def. 4.4].

Let S̃ be the pinched surface obtained by replacing a single node p of S by a
tube. Let R̃→ S̃ be the cover obtained from R̂→ Ŝ as in the previous paragraph.
In this situation we say that the cover R̃→ S̃ is obtained from R→ S by replacing
the node p by a tube.

3.6. Multi-lists. Let k be a non-negative integer. A multi-list P of level k is
defined as follows: If k = 0, then P is a positive integer. If k > 0, then P =
(P1, . . . , Pt), where Pi is a multi-list of level < k and one of the Pi has level k − 1.
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The integer tuple associated to P is defined as follows: If k = 0, then it is the
tuple (P ). If k > 0 and P = (P1, . . . , Pt) then the integer tuple associated with P
is the concatenation of the integer tuples associated with the Pi. We demand that
the integer tuple associated to P is a tuple of consecutive integers.

A multi-list of level 0 is called stable. A multi-list P = (P1, . . . , Pt) of level k > 0
is called stable, if t ≥ 2 and the Pi are stable for i = 1, . . . , t.

3.7. The cover associated to a multi-list and a tuple of permutations. Let
σ = (σ1, . . . , σr) be a tuple of permutations in Sn.

Let P = (P1, . . . , Pt) be a stable multi-list of level k ≥ 1 with associated integer
tuple (m,m + 1, . . . ,m′), where 1 ≤ m < m′ ≤ r. We define an associated cover
of pinched surfaces R → S, where S has genus 0 and carries a distinguished point
s0 which is not a node. This point s0 is ramified if and only if τ 6= 1, where
τ = (σm · · ·σm′)−1.

Let Pi1 , . . . , Pis be the entries of P of level ≥ 1. For j = i1, . . . , is let R(j) →
S(j) be the covering associated with the multi-list Pj of level ≤ k − 1 (defined by
induction).

Let S(0) be an additional sphere and choose t+ 1 distinct points p1, . . . , pt+1 on
S(0). The last of these points is the distinguished point s0 = pt+1. For i = 1, . . . , t
define τi = σk · · ·σk′ , where (k, k + 1, . . . , k′) is the integer tuple associated with
Pi.

Let R(0) be a cover of S(0) of type (τ1, . . . , τt, τ) (see [V]), that restricts to an
unramified cover of S(0) \ {p1, . . . , pt, pt+1}.

Define the cover R→ S as follows:

(1) The space S is obtained from the disjoint union of the S(j) (for j =
0, i1, . . . , is) by identifying the distinguished point of each S(j) with pj ∈
S(0).

(2) The space R is obtained from the disjoint union of the R(j) (for j =
0, i1, . . . , is) by linking R(0) to each R(j), j = i1, . . . , is, in the following
way: The points over pj , on R(0) as well as R(j), correspond to the orbits
of τj on {1, . . . , n}. We identify the points corresponding to the same orbit.

If P has associated integer tuple (1, . . . , r), then the associated cover R → S

arises from a cover R̂→ Ŝ of type σ (of non-singular surfaces) as in section 3.2.

Lemma 3.1. If σ generates a transitive subgroup of Sn, then R is connected.

Proof. By induction the connected components of R(i) are the orbits of the group
Hi, generated by σk, . . . , σk′ , where (k, k+ 1, . . . , k′) is the integer tuple associated
with Pi. The points over pi correspond to the orbits of τ . Those of these points
which lie in the same Hi-orbit belong to the same connected component. As Hi

is generated by σk, . . . , σk′ , this shows that the connected components correspond
to the orbits of the group generated by all of the σi. When this subgroup acts
transitive, then R is connected.

Remark 3.2. We have written a program in [GAP4] which computes the combi-
natorial structure of the covering surface R and its stable model R′. The input of
the program is the tuple σ and the multi-list P . The output yields the following
information for R as well as R′: The genera of the irreducible components, and the
links given by nodes of the first and second kind. For the convenience of the reader,
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we reproduce the GAP code in the appendix of this paper. For computing the genera
of the components of R and R′, we proceed as indicated in the following remark.

Remark 3.3. (Genus of the connected surface R)

Assume σ generates a transitive subgroup of Sn. Then the genus of the connected
pinched surface R can be computed by the formula (1) once the genera of the
irreducible components of R and the incidence relations are known. The incidence
relations can be read off from the algorithm constructing the cover R→ S in section
3.7. The genera can be computed step by step from the following procedure which
computes the genera of the components of R(0).

Let H be the subgroup of Sn generated by τ1, . . . , τt, τ . The components of R(0)

correspond to the H-orbits on {1, . . . , n}. Consider the component Ω corresponding
to the H orbit O. Let ν1, . . . , νt+1 be the restrictions of the generators of H to O.
By the Riemann-Hurwitz formula, the genus gΩ of Ω is given by

2(|O|+ gΩ − 1) =
t+1∑
i=1

Ind(νi)

where the index Ind(νi) is |O| minus the number of orbits of this permutation.

3.8. An example in genus 3: the group AGL4(2).

3.8.1. The tuple σ. Consider the following tuple σ = (σ1, . . . , σ9) in S16, where

σ1 := (2, 6)(3, 7)(10, 14)(11, 15)
σ2 := (2, 6)(3, 7)(10, 14)(11, 15)
σ3 := (2, 7)(3, 6)(9, 16)(12, 13)
σ4 := (1, 3)(6, 8)(10, 12)(13, 15)
σ5 := (2, 7)(4, 5)(10, 15)(12, 13)
σ6 := (2, 16)(4, 14)(6, 12)(8, 10)
σ7 := (1, 13)(3, 15)(6, 10)(8, 12)
σ8 := (1, 10)(2, 9)(5, 14)(6, 13)
σ9 := (1, 15)(2, 16)(3, 13)(4, 14)

We have σ1 · · ·σ9 = 1 and σ generates the group G = AGL4(F2) in its natural
action on F4

2, i.e. on 16 points. By the Riemann-Hurwitz formula we have gσ = 3
(cf. section 2.1 and section 2.2).

3.8.2. The multi-lists Pi. Consider the multi list

P = (((1, 2), 3), ((4, 5), 6), ((7, 8), 9))

The following sequence of multi-lists removes the singularities step by step

P0 := (((1, 2), 3), ((4, 5), 6), ((7, 8), 9))
P1 := ((1, 2, 3), ((4, 5), 6), ((7, 8), 9))
P2 := ((1, 2, 3), (4, 5, 6), ((7, 8), 9))
P3 := ((1, 2, 3), (4, 5, 6), (7, 8, 9))
P4 := (1, 2, 3, (4, 5, 6), (7, 8, 9))
P5 := (1, 2, 3, 4, 5, 6, (7, 8, 9))
P6 := (1, 2, 3, 4, 5, 6, 7, 8, 9)
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3.8.3. The associated covers. The construction of section 3.7 associates a sequence
of covers of pinched surfaces Ri → Si, i = 1, . . . , 6. The surface Si is a tree of
7 − i projective lines (i.e., spheres). Si+1 arises from Si by replacing a node by a
tube (two spheres of Si are joined by a tube and thereby merge into one sphere).
This implies the corresponding relation between the covering surfaces.

Remark 3.4. The cover Ri+1 → Si+1 arises from the cover Ri → Si by the process
of ”replacing a node by a tube” (see section 3.5).

For i = 0, . . . , 6 let R′i be the stable model of Ri. All Ri and R′i have (arithmetic)
genus 3 (see section 3.3 and 3.4).

R′0 : one component of genus 0 with 3 nodes of the second kind linking it
to 3 other components (which are mutually disjoint); each of the latter
has genus 0 and carries a node of the first kind.

R′1 : one component of genus 0 with 3 nodes of the second kind linking it
to 3 other components (which are mutually disjoint); two of the latter
have genus 0 and carry a node of the first kind; the third has genus 1.

R′2 : one component of genus 0 with 3 nodes of the second kind linking it
to 3 other components (which are mutually disjoint); one of the latter has
genus 0 and carries a node of the first kind; the two others have genus 1.

R′3 : three disjoint components of genus 1 linked by three nodes to a component
of genus 0

R′4 : three components of genus 1 linked by two nodes
R′5 : two components of genus 1, resp. 2, linked by a node
R′6 : one nonsingular component of genus 3

This information was computed by the program reproduced in the appendix (cf.
Remark 3.2). The combinatorial structure of the non-stable covering surfaces Ri is
much more complicated. From this it becomes apparent that it would have been
extremely tedious to do this computation by hand (although the final result, i.e.,
the structure of the R′i, is reasonably simple).

We describe the case i = 0. The surface R0 has 58 components of genus 0, the
maximal number of nodes on a component is 10. (Note that for any i, the surface
Ri has only nodes of the second kind. This is clear from the construction.)

4. The moduli-space of stable curves of genus g

The moduli spaceMg classifies stable curves over C of genus g. It is a projective
variety over C. We consider the set of complex points.

4.1. Covers of pinched surfaces and of algebraic curves.

Lemma 4.1. Let R→ S be a cover of pinched surfaces. Let e be a node of S. We
replace e by a tube and also all nodes of R which lie over e (as in section 3.2). This
gives a covering R′ → S′ of pinched surfaces of the same genera. Assume R → S
is a cover of algebraic curves over C of topological type R → S. Then there are
covers Rt → St, t ∈ [0, 1] of algebraic curves /C such that Rt → St is of topological
type R′ → S′ for t 6= 0, |t| < 1 and the following holds: Let pt be the point of Mg

that corresponds to the stable model of Rt. Then p0 = limt→0 pt in the complex
topology.
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Proof: Because of [Man, III.2.7(a),(b), 2.8 (d)], we get a family St, t ∈ [0, 1],
such that St is of type S for t = 0 and type S′ for t > 0. Because of the speciali-
sation theorem for the Kummerian fundamental group [BeRo, Proposition 7.14] or
[AsMaOd], the covering R → S deforms into a unique family Rt → St, t ∈ [0, 1].
Then Rt is of type R′ for t > 0.

4.2. The stratification of Mg by pinched surfaces. There is a stratification
of Mg by the topological type. Let R be a pinched surface of genus g. The stable
curves of genus g whose associated pinched surface is homeomorphic to R corre-
spond to the points of a locally closed subset Mg(R) of Mg (see [Man, III.2.8(d)];
that reference uses ”modular graphs” [Man, III Definition 2.4] instead of pinched
surfaces to describe the topological type of a stable curve).

Let R be a pinched surface of genus g. For any component c of R we define v(c)
as the number of nodes on c, with self-intersections counted twice. Then there is a
finite morphism ∏

c

Mg(c),v(c) →Mg(R)

(see [Man, III.2.8]). This shows that Mg(R) is irreducible and its dimension is
given by

dimMg(R) =
∑
c

(3g(c)− 3 + v(c))

Here we have used dimMg,r = 3g − 3 + r.
For the genus g we have the formula (1)

g = 1 +
∑
c

(g(c)− 1) + 1/2
∑
c

v(c)

For g ≥ 2 this implies

dimMg = 3g − 3 =
∑
c

(3g(c)− 3 + 3/2v(c))

Corollary 4.2.

codimMg(R) = 1/2
∑
v

c(v) = number of nodes of R.

Lemma 4.3. [Man, III.2.7(a),(b), 2.8 (d)] Let R and T be two pinched surfaces.
Then Mg(R) is contained in the boundary of Mg(T ) if T can be obtained from R
by replacing some nodes of R by tubes.

4.3. Full moduli dimension for AGL4(2). Let σ = (σ1, . . . , σ9), P , Ri and R′i
as in section 3.8. Let M(i) := M3(R′i), the locally closed, irreducible subset of
M3 classifying stable curves of topological type R′i. By Corollary 4.2 we have dim
M(i) = i, i = 0, . . . , 6.

By inspection we see that R′i+1 arises from R′i by replacing a node by a tube.
Therefore, M(i) is contained in the boundary of M(i+1) by Lemma 4.3.

Let Ω be the image in M3 of the Hurwitz space Hσ (see section 2.1). Let Ω̄ be
the Zariski-closure of Ω in M3. We want to show Ω̄ =M3.

Lemma 4.4. Assume R → S is a cover of algebraic curves over C of topological
type Ri → Si for some i = 0, . . . , 6. Then the stable model of R corresponds to a
point of Ω̄.
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Proof. For i = 6 this follows directly from the definition of Ω. Now assume
i = 5. By Remark 3.4 and Lemma 4.1, there are covers Rt → St, t ∈ [0, 1]
of algebraic curves /C such that the following holds: Rt → St is of topological
type R6 → S6 for t 6= 0, |t| < 1 and equals the given cover R → S for t = 0.
Furthermore, if pt denotes the point ofM3 that corresponds to the stable model of
Rt, then p0 = limt→0 pt in the complex topology. This proves the claim for i = 5.
By iterating this argument we conclude the proof.

Theorem 4.5. Each general curve of genus 3 has a cover to P1 with monodromy
group AGL4(2). More precisely, the tuple σ from section 3.8.1 (of nine transvec-
tions in AGL4(2)) has full moduli dimension.

Proof. It suffices to show that Ω̄ =M3 (cf. section 2.1). Recall that dimM(i) = i.
By Riemann’s Existence Theorem, there is a cover of algebraic curves over C of
topological type R0 → S0. It follows by Lemma 4.4 that M(0) ⊂ Ω̄. By Lemma
4.1 and because dim M(1) = 1 it follows that there is a Zariski-dense subset D
of points of M(1) which correspond to the stable model of an algebraic curve /C
covering another algebraic curve of type R1 → S1. By Lemma 4.4 we conclude that
M(1) ∩ Ω̄ is Zariski-dense in M(1). It follows that M(1) ⊂ Ω̄.

AssumeM(2) is not contained in Ω̄. Then the maximal dimension d of a compo-
nent of L :=M(2)∩ Ω̄ satisfies d < dimM(2) = 2. Since L is a locally closed subset
ofM3, each component of the complement of L in its closure has dimension strictly
less than d. Thus the closure of L would intersect M(1) in a Zariski-closed proper
subset. However, it follows from Lemma 4.1 and Lemma 4.4 that every point of D
lies in the closure of L. This contradiction shows that M(2) ⊂ Ω̄.

Continuing like this it finally follows thatM(6) ⊂ Ω̄. However,M(6) =M3, and
we are done.

APPENDIX: Computing the combinatorial structure of a
(pinched) covering surface given by a tuple of permutations
and a multi-list

Appendix A. Auxiliary subroutines

The first of the following subroutines computes the index of a permutation (i.e.,
the permutation degree minus the number of cycles). The second subroutine com-
putes the genus of any cover of P1 of type t (cf. section 2.1), where t generates a
transitive permutation group of degree n.

PermIndex:=function(p,deg)
return deg - Length(Orbits(Group(p),[1..deg]));

end;

OrbitGenus:=function(t,n)
if not IsTransitive(Group(t),[1..n]) then Print("Group intransitive");
return;
fi;

return 1-n+ Sum(List([1..Length(t)],
i->PermIndex(t[i],n)))/2 ;
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end;

Appendix B. The combinatorial structure of certain pinched
surfaces arising as coverings

Here we transform the recursive construction of the covering R→ S from section
3.7 into a GAP program (cf. Remark 3.2). Let T be an r-tuple of permutations of
degree n.

If P is a multi-list with associated integer tuple 1, . . . , r, the command
IncidMatrix(n, T, P ) produces the following output: A pair whose first entry is
the genus of R, where R→ S is the covering constructed from T and P in section
3.7. The second entry is a list I of records, with each record corresponding to a
component C of R. The attributes of the record yield the genus of C, and the
positions in I of the components linked with C.

The main construction occurs in the subroutine RecursiveIncidMatrix, which
performs the recursive construction from section 3.7. Most users will not need to
call the routine
RecursiveIncidMatrix, because it is called automatically by IncidMatrix. For
completeness, we remark that in RecursiveIncidMatrix, the multi-list P is more
generally allowed to have integer tuple (m,m+ 1, . . . ,m′), where 1 ≤ m < m′ ≤ r.

RecursiveIncidMatrix:=function(n,T,P)
local dist, G, g, B, record, Perm, Perm1, perm, Orbs, Inc, I, Comp,
Laengen, ii, i, j, k, l, m, aux, NewOrb, R, s;
Perm:=[]; Orbs:=[]; Comp:=[]; Laengen:=[];
if not IsList(P) then return [ T[P], [], [] ];
fi;

s:=Length(P);
for i in [1..s] do
R:=RecursiveIncidMatrix(n,T,P[i]);
Add(Perm,R[1]);
Add(Orbs,R[2]);
Append(Comp, R[3]); Add(Laengen,Length(R[3]));
od;

perm:=Product(Perm);
Add(Perm, perm-̂1);
G:=Group(Perm);
NewOrb:= Orbits(G,[1..n]);
Construction of Comp = list of records, one for each component of the curve
It has attributes genus and I=list of back distances to incident entries of Comp
m:=Length(NewOrb);
for j in [1..m] do
B:=NewOrb[j];
g:=1-Length(B)+
Sum(List([1..s+1],
i->PermIndex(GeneratorsOfGroup(Action(G,B))[i],Length(B))))/2;

record:=rec(genus:=g, Inc:= []);
for i in [1..s] do
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dist:=0;
for ii in [i+1..s] do
dist:=dist+ Laengen[ii];
od;

l:=Length(Orbs[i]);
for k in [1..l] do
I:=Intersection(NewOrb[j],Orbs[i][k]);
for aux in Orbits(Group(Perm[i]),I) do
Add(record.Inc,j+dist+l-k);
od;

od;
od;

Add(Comp,record);
od;

return [perm, NewOrb, Comp];
end;

--------------------------------------------------------------------
IncidMatrix:=function(n,T,P)
local k, I, II, j, s, r;
I:=RecursiveIncidMatrix(n,T,P)[3];
s:=Length(I);
for j in [1..s] do
II:= I[j].Inc;
r:=Length(II);
for k in [1..r] do
II[k]:= j-II[k];
Add(I[II[k]].Inc,j);

Incidence relation is made symmetric and absolute (i.e., no relative pointers)
od;

od;
return [ OrbitGenus(T,n), I];

end;

Appendix C. Computing the stable model of the covering surface

The routine StabMatrix has the same input as IncidMatrix. It computes the
same information with R replaced by its stable model R′.

StabMatrix:=function(n,T,P)
local g, f, flag, k, I, J, II, j, s, m;
II:= IncidMatrix(n,T,P);
I:= II[2];
s:=Length(I);
flag:=1;
now we make the corresponding curve stable if its arithmetic genus is > 1
if II[1]<2 then Print("Curve has genus <2, cannot be made stable");
fi;
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while flag=1 do
flag:=0;
for j in [1..s] do
if I[j].genus=0 and Length(I[j].Inc)=1 then
k:=I[j].Inc[1];
I[k].Inc:= Filtered(I[k].Inc, x-> not x=j);
I[j].Inc:=[]; flag:=1;
fi;

if I[j].genus=0 and Length(I[j].Inc)=2 then
k:=I[j].Inc[1];
m:=I[j].Inc[2];
I[k].Inc:= Filtered(I[k].Inc, x-> not x=j);
I[m].Inc:= Filtered(I[m].Inc, x-> not x=j);
Add(I[k].Inc,m);
Add(I[m].Inc,k);
I[j].Inc:=[]; flag:=1;
fi;

od;
od;

now we delete those components with no incidences left
and re-label the other components and incidence lists
J:=[];
f:=[];
for j in [1..s] do
if (not I[j].Inc= []) or I[j].genus>0 then
Add(J,I[j]);
f[j]:= Length(J);
fi;

od;
m:=Length(J);
for k in [1..m] do
J[k].Inc:= List(J[k].Inc, x-> f[x] );
od;

now we compute the arithmetic genus of the stable curve
as a consistency check (It has to equal II[1]).
We use the formula in Harris-Morrison, p. 48.
g:= Sum(List(J, x-> -1 + x.genus + Length(x.Inc)/2)) + 1;
if g= II[1] then Print(" Arithmetic genus is correct");
else Print(" Mistake: Arithmetic genus is wrong");
fi;

return [ II[1], J];
end;
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