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NUMERICAL BLOW-UP AND ASYMPTOTIC BEHAVIOR FOR
A SEMILINEAR PARABOLIC EQUATION WITH A NONLINEAR
BOUNDARY CONDITION

DIABATE NABONGO AND THEODORE K. BONI

ABSTRACT. This paper concerns the study of the numerical approximation for
the following initial-boundary value problem:

ut(z,t) = uge(x,t) + auP(z,t), 0<xz<1,¢t>0,

(P) { uz(0,t) =0, wuz(l,t)+bui(l,t)=0, ¢t>0,

u(z,0) =ug(xz) >0, 0<az<1,
where @ > 0, b > 0 and p > ¢ > 1. We show that under some conditions,
the solution of a semidiscrete form of (P) either decays uniformly to zero or
blows up in a finite time. When the blow-up occurs, we estimate the semidis-
crete blow-up time and prove that under some assumptions, the semidiscrete
blow-up time converges to the real one when the mesh size goes to zero. When
the semidiscrete solution goes to zero as t goes to infinity, we give its asymp-
totic behavior. Finally, we give some numerical experiments to illustrate our
analysis.

1. INTRODUCTION

Consider the following initial-boundary value problem:

(1) us(x,t) = uge(x,t) + auvP(z,t), 0<zx <1, t>0,
(2) ugy(0,8) =0, ugx(l,t)+bul(l,¢) =0, t>0,
(3) u(z,0) =up(z) >0, 0<z<1,

where a >0, b >0, p > ¢ > 1, ug € C?([0,1]),

(4) ug (x) + aub(z) >0 in [0,1],

(5) up(0) = 0, ug(1) + bul(1) = 0.

The particularity of this kind of problem is that the solution u of (1)—(3) may
develop singularities in a finite time. In other words, under some assumptions, there
exists a finite time T such that ||u(-,t)|lcc < +oofort € (0,T) but lim;_.7 ||u(-, t)||co =
+00 where [[u(+,t)[lcc = supgejo,1] [u(x,?)[. In this case, we say that the solution u
blows up in a finite time and the time 7T is called the blow-up time of the solution u.
When T is infinite, we say that the solution u exists globally. The theoretical study
of blow-up and asymptotic behavior of solutions for semilinear parabolic equations
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with nonlinear boundary conditions has been the subject of investigation of many
authors (see [2]-[5], [7], [13], [14] and the references cited therein).
The fact that p > 1, ¢ > 1 and the condition (5) ensure the local in time existence
and the uniqueness of the solution of (1)—(3) which is regular (see for instance [2],
3], {71, 9], [13]).
Since a > 0, b > 0, p > ¢ > 1, under the condition given in (4), it is also proved
that the solution u of (1)—(3) blows up in a finite time and we have an upper bound
of the blow-up time (see [2], [3], [7]).
Finally, it is shown that the solution u of (1)—(3) exists globally and decays uni-
formly to zero for small initial data (see [2], [4], [7]).

In this paper, we are interesting in the numerical study of (1)—(3). Let I be
a positive integer and define the grid z; = ih, 0 < i < I, where h = 1/I.
We approximate the solution u of the problem (1)—(3) by the solution Up(t) =
(Uo(t),Ur(t),...,Ur(t))T of the following semidiscrete equations

d

(6) ﬁUi(t) = 0%Us(t) +a(U;(1))?, 0<i<I—1, t>0,

g SUI0) = UL + a0 — ZO0), >0,

(8) Ui(0)=p; >0, 0<i<I,

where UL — Uipr(t) — 20};1-2(15) + UH(t)7 l<i<I-1,
2ty — 20 =200(0) o ) 2Wialt) —205(0)

h? h?
For the initial data ¢, = (@0, ..., 1)1, one may take ¢; = ug(x;), 0 < i < I but
this is not necessary. In fact, we shall see later that if ¢, is close to ug(z), then
the semidiscrete solution Uy, (t) approaches the continuous one (see Theorem 3.2
below).
We need the following definition.

Definition 1.1. We say that the solution Uy of (6)—(8) blows up in a finite time
if there exists a finite time Ty, such that

UL ()]0 < 400 fort € [0,Th) but limy_,7, ||Up(¥)|lcc = +00,

where ||Up(t)||oo = maxo<i<r |U;i(t)|. The time T}, is called the semidiscrete blow-up
time of the solution Up(t).

In this paper, under some assumptions on the initial data, we show that the
solution Uy(t) of (6)—(8) either blows up in a finite time or exists globally and
decays uniformly to zero. In the case where the blow-up occurs, we show that the
semidiscrete blow-up time converges to the real one when the mesh size goes to
zero. When the solution decays uniformly to zero, we give its asymptotic behavior.

Our work was motived by the papers in [1], [6] and [11]. In [1] and [11], the
authors have studied numerical blow-up for semilinear parabolic equations with
Dirichlet boundary conditions. In this paper, the results obtained in the case of
blow-up solutions generalize those found in [1] and [11] but this is not a simple
generalization because of the nonlinearity of boundary conditions. Let us illustrate
this fact. In the case where the semidiscrete solution blows up in a finite time, for
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the convergence of the semidiscrete blow-up time, our proof is based on an idea of
Friedman and McLeod in [8] and on the construction of an upper solution. In [1],
an upper solution has been also used to prove the convergence of the semidiscrete
blow-up time but in the present paper, because of the nonlinearity of boundary
conditions, the upper solution constructed is not usual. Indeed, we construct a
continuous upper solution and show after a semidiscretization that the discrete
version of the above solution is a good candidate as an upper solution for the
semidiscrete problem. Let us also notice that in [11], the author has proved the
convergence of the discrete blow-up time for a solution which blows up in L? norm
with 1 < p < 4o00. This condition is restrictive because in general, one deals
with solutions which blow up in L* norm. In [6], the phenomenon of extinction is
investigated using some semidiscrete and discrete schemes (we say that a solution
extincts in a finite time if it reaches the value zero in a finite time).

The rest of the paper is written in the following manner. In the next section, we
prove some lemmas about the discrete maximum principle. In the third section, we
show that under some assumptions, the solution Uy, (t) of (6)—(8) blows up in a finite
time and estimate its semidiscrete blow-up time. We also prove that the blow-up
time of the semidiscrete problem converges to the one of the continuous problem
when the mesh size goes to zero. In the fourth section, we show that the solution
of the semidiscrete problem goes to zero for small initial data and determine its
asymptotic behavior. Finally in the last section, we construct two schemes and
give some numerical results.

2. PROPERTIES OF THE SEMIDISCRETE SCHEME

In this section, we give some lemmas which will be used later.
The following lemma is a semidiscrete form of the maximum principle.

Lemma 2.1. Let a(t) € C°([0,T),RI*Y) and let Vi, (t) € CH([0,T),RI*Y) such
that
d

(9) @

(10) Vi(0) >0, 0<i<I.
Then we have V;(t) > 0for 0 <i <1, t€(0,T).

Vi(t) — 82Vi(t) + a;()Vi(t) >0, 0<i<I, te€(0,7T),

Proof. Let Ty < T and introduce the vector Zj(t) = e*V},(t) where X is such that
a;(t)—A>0,0<i<I tel0Tp]. Let m = minp<i<ro<t<t, Zi(t). Since for
i € {0,...,1}, Z;(t) is a continuous function, there exists to € [0,Tp] such that
m = Z;,(ty) for a certain ig € {0, ..., I}. It is not hard to see that

(12) 02 Z;, (t0) = 221(’50)};220(“) >0 if =0,
(13)0°Z;, (to) = Zipt1(to) = 2222@0) + Zig—1(to) >0 if 1<ig<I—1,
(14) §%Z;, (to) = 2Z11(t)) = 221t0) -y io=1.

h2
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Using (9), a straightforward computation reveals that
dZ;, (to)

(15) ol00) 527, (10) + i (10) - > (1) > 0.

According to (11)—(15), we arrive at (a;,(t) — A)Z;,(to) > 0, which implies that
m = Z;,(to) > 0. Therefore, Vj,(t) > 0 for t e [0,Tp] and we have the desired
result. ]

Another version of the maximum principle for semidiscrete equations is the fol-
lowing comparison lemma.

Lemma 2.2. Let V;,(t), Up(t) € C1([0,00),RI*1) and f € CO(R x R,R) such that
fort € (0,00)

(1 ‘;t() 2%(t)+f(%(t),t)<%;)—52 Ui(t) + f(Ui(t),1), 0<i<I,
(17) Vi(0) < Uy(0), 0<i<I.

Then we have V;(t) < U;(t), 0 <i <1, t € (0,00).

Proof. Define the vector Zp(t) = Up(t) — Vi, (t). Let to be the first ¢ > 0 such that
Zy(t) > 0 for t € [0,t9) but Z;,(to) = 0 for a certain iy € {0,...,1}. We observe
that

dZiy(to) _ 1. Zio(to) = Zig(to — k) _
dt k—0 k -
y%ﬂw:Zmﬂm%ﬂ%§@+&rﬁw201f1§%§1_L
827, (o) = 2%@@;2%@@20 if ip=0,
5 Ziy (to) = 2Z”1(t°2; 22ult) g st gy =1,

which implies that M 827, (to) + f (Ui, (to), to) — f (Vi (to), to) < 0. But this
inequality contradicts (16) and the proof is complete.
O

3. BLOW-UP SOLUTIONS

In this section, under some assumptions, we show that the solution Uy, of (6)—(8)
blows up in a finite time and estimate its semidiscrete blow-up time. In addition,
we prove that the semidiscrete blow-up time converges to the real one when the
mesh size goes to zero.

We need the following result.

Lemma 3.1. Let U, € RI* such that U, > 0. Then we have
S2UL > qUuiT'e%U;, 0<i< I
Proof. Apply Taylor’s expansion to obtain

52U = qUIT' 62Uy + (Us — UV“ Dga-2,

2q(g+1) 42
2p2 i
if 1<i<I-—1,

1

2179 — 17915277 i1 — U;)?
) U7, quZ 1) U1+(Uz+1 Ul) 2h2 ?
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_ +1) 4
§*U} = qUi 60U + (Ur-y — UI)2q(qh2 )77? ?

where 6; is an intermediate value between U; and U, 1 and 7; the one between U;_4
and U;. Use the fact that U, > 0 to complete the proof.

O
Now let us state a result on blow-up.

Theorem 3.1. Let Uy, be the solution of (6)—(8). Suppose that there exists a
positive constant A such that

(18) 62<pi+ag0f > Apl, 0<i<I.

Then the solution Uy, of (6)—(8) blows up in a finite time T}* with the following

estimation

lH@h”éo_q
A (¢g—1)

Proof. Let (0,7}) be the maximal time interval on which [|Up,(t)||ec < +00. Our
alm is to show that Tbh is finite and satisfies the above inequality. Introduce the
vector Jp,(t) defined as follows

(19) Ty <

d
(20) Ji:%Ui—AUf, 0<i<I.
A direct calculation yields
d 9 d d 9 1 d 9
S _ _ 2% _ N AU S U AS2U9.
dtJZ 0% J; dt(dtUl 5°U;) qU; dtUZ—&- 0°U;
From Lemma 3.1 62U¢ > qU? '62U; which implies that
d d . d d
—J; = 820, > —(=-U; — 8%°U;) — AqU{™ (== U; — 6°U;), 0 < i < I.
g z_dt(dtz z) qu; (dtz Z)7 ST
It follows from (6)—(7) that
d
@L—Vﬁzaﬂfﬂﬁ,ogiSJfL
d Uit -
=801 > (—2q0=L + apU?~ ") J1.

The relation (18), implies that J,(0) > 0. It follows from Lemma 2.1 that J,(t) is
nonnegative, which implies %Ui > AU/, 0 < i < I. We observe that

au;
Ui
Integrating these inequalities over (, Tbh)7 we arrive at
1 (Uit)
A (¢—1) °
Let ig such that ||Up,(t)||cc = Uy, (t). If we replace i by i and the time ¢ by 0 in the

1

above inequalities, we get the following estimation T} < %%
that the solution Uy (t) blows up in a finite time because the quantity on the right
hand side of the above inequality is finite. Use the fact that ||Ux(0)]lco = ||¢n oo
to complete the rest of the proof. |

(21) > Adt, 0<i<I.

(22) T —t < 0<i<I.

. This implies
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Remark 3.1. The inequalities (22) imply that

1 || Un(to)]| 55
T gy < LU

A (¢g-1)
Remark 3.2. Let us notice that the condition (18) is the discrete version of the
one given in (4) for the continuous solution.

if 0<ty<Tl

In the following theorem, we show that for each fixed time interval [0, 7] where
u is defined, the solution Uy (t) of (6)—(8) approximates u when the mesh parameter
h goes to zero.

Theorem 3.2. Assume that (1)-(3) has a solution u € C*1([0,1] x [0,T]) and the
initial condition at (8) satisfies
(23) lon = un(0)[loc = o(1) as h —0,

where up(t) = (u(xg,t),...,u(xr,t))T. Then, for h sufficiently small, the problem
(6)-(8) has a unique solution Uy, € C1([0,T],RI*Y) such that

(24)  max [Un(t) = un(®)loc = Ollln — un(0)ll +4?) a5 h—0.

Proof. The problem (6)-(8) has for each h, a unique solution Uy, € C*([0,T}"), R'*1).
Let t(h) the greatest value of ¢ > 0 such that
(25) 1UL(t) —un(t)]|eo <1 for ¢ e (0,t(h)).
The relation (23) implies that t(h) > 0 for h sufficiently small. Let t*(h) =
min{¢(h),T}. By the triangle inequality, we obtain

[UR(B)lloo < lluls )lloo + 1Un(E) — un(t)l|oo for &€ (0,£7(h)),
which implies that Uy, (¢) is bounded on the interval (0,¢*(h)). Let e, (t) = Up(t) —

up(x,t) be the error of discretization. Using Taylor’s expansion, we have for ¢t €
(0,27(h)),

d h? - _

aei (t) — 6261' (t) = Eum’zzx (xia t) + apff 161' (t)’
d , S S LI -
%el(t) -0 6[(t) = qul er + Tux;m(afbt) + Euzxwx(ajbt) - apg[ eI(t)v

where 6 is an intermediate value between Uy (t) and u(zy,t) and &; the one between
U;(t) and u(z;,t). Since U;(t) is bounded and u € C**!, there exist two positive
constants K and L such that

(26) %ei(t) — 8%e;(t) < Lle;(t)| + Kh?, 0<i<I—1,
L
(27) deét(t) —6%er(t) < W + Lles ()| + Kh?.

Consider the function z(z,t) = e(M+DHC2) (|| — 1 (0)|| 0o + Qh2) where M, C,
@ are constants which will be determined later. A direct calculation yields

2(2,t) — 2gw (2, 1) = (M + 1 — 20 — 4C%2%)2(, 1),
z:(0,8) =0, z,(1,t) =2Cz(1,1),

2(2,0) = ¢“% (on — un(0)]| o + QR).
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By a semidiscretization of the above problem, we may choose M, C, @ large enough
that

(28) %z(xi,t) —0%2(2i,t) > L|z(xi, t)| + KR?, 0<i<T—1,

d 2 L 2
09 o)~ Esent) > gleen ]+ Lofen) + K
(30) z(x;,0) > €;(0), 0<i<I.

It follows from Lemma 2.2 that z(x;,t) > e;(t ) for t € (0,t*(h)), 0 <i < I. By the
same way, we also prove that z(x;,t) > —e;(t) for ¢t € (O t*(h)), 0 < i < I, which
implies that

1U(8) = un(®)lloo < M T (lion = un(0)loo + QR%), ¢ € (0, (h)).
Let us show that t*(h) = T. Suppose that T' > t(h). From (25), we obtain

(31)  1=Un(t(h) = un(t(A)llso < M (|lon — un(0)lo + QR7).

Since the term in the right hand side of the above inequality goes to zero as h goes
to zero, we deduce that 1 < 0, which is impossible. Consequently t*(h) = T, and
we obtain the desired result. (I

Remark 3.3. Let us notice that if for the semidiscrete scheme in (6)-(8) we take
as initial data p; = up(x;), 0 < i < I, then we easily see that
un(0) = (u(zo,0), ..., u(zr,0))T = (uo(20), ..., uo(21))" = .

In this case ||on —un(0)|loo = 0 and the condition (23) is valid. We also observe that
if we take @; = ug(z;) +ih?, 0 <i < I then the condition (23) remains valid. The
advantage to choose this kind of initial data is that if for instance the initial data
ug of the continuous problem is nondecreasing, taking p; = ug(x;) +ih?, 0 <i <1,
we remark that ;41 > @;, 0 <1 < T —1. This is sometimes very important when
we want to treat certain problems.

Now, we are in a position to prove the main result of this section

Theorem 3.3. Suppose that the problem (1)-(3) has a solution u which blows up
in a finite time Ty, such that u € C*1([0,1] x [0,T})) and the initial condition at (8)
satisfies

lon — ur(0)]|o = 0(1) as h — 0.
Assume that there exists a constant A > 0 such that

it agl > Ap?, 0<i<I
Then the problem (6)-(8) has a solution Uy, which blows up in a finite time T}* and

. ho_

Proof. Letting € > 0, there exists a positive constant N such that

(32) L v <S<o for ze (N, 400).

A(g—1) — 2
Since u blows up at the time T}, there exists T7 such that |77 — Tp| < 5 and
lu(-,t)|oo = 2N for t € [T1,Tp]. Let Ty = %, then sup,cjor, [u(t)| <
oo. It follows from Theorem 3.2 that the problem (6)—(8) has a solution Uy(t)
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1Un(B)lloo = [lun()lloc = [Un(t) = un(t)]loc, which leads to ||Un(t)]lec > N for
t € [0,73]. From Theorem 3.1, Uy(t) blows up at the time 7;*. We deduce from
Remark 3.1 and (32) that

and supycpo 1) [Un(t) — un(t)lc < N. Applying the triangle inequality, we get

h € ]‘ ||[ h(12)||001 4
[ =T < Zh— |+ |1 =T < =+ —————2"2 ¢

and the proof is complete. O

4. ASYMPTOTIC BEHAVIOR

In this section, we show that for small initial data, the solution U of (6)—(8)
goes to zero as t — +oo and give its asymptotic behavior.

Theorem 4.1. Let Uy (t) be the solution of (6)-(8). There exists a constant C' > 0
such that if the initial condition defined in (8) satisfies ||onllco < C then Up(t) goes
to zero as t — 4+00. Moreover, the following relation holds

lim 77| Up (8)]|oe = Co,
t—oo

where Cy = (ﬁ)ﬁ

The proof of the above theorem is based on the lemmas below. Introduce the
function

p(x) = =A(Co +¢€) + b(Co +€),

where \ = - This function is crucial for the proof of the above theorem.
Let us state our first lemma which gives us an upper bound of the semidiscrete

solution.

Lemma 4.1. Let Uy be the solution of (6)-(8). There exists a positive constant C
such that if the initial condition defined in (8) satisfies ||¢nllce < C, then Uy, goes

to zero when t tends to infinity. In addition for any e > 0, there exist two positive
times T and T such that

Ut +7) < (Co+e)t+T) >+t +T) 1, 0<i<I,
where p; = —g(C’O +¢)9i%h2.

Proof. Since p(0) = 0 and p/(0) = 1, let n > 0 such that u(n) > 0. Define the
vector W}, such that

Wi(t) = (Co+n)t A+ it™*71, 0<i<I

Our idea is to show that the vector W}, is an upper solution of (6)-(8). A direct
calculation reveals that

aw;

dt

— Wit aWl! = —XNCo+mt ™" = (A+ 1)t 2y
+atTP(Co+m) + AP A2, 0SS T -1,
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dw 2b
WI - 62W1 + CLWIP - ZWIq = _)\(CO + n)t—/\—l _ ()\ + 1)t_/\_2901
+ at™P((Co+n) +ort ™) +
+ t_A_152g0]
20 —A—1 —1
- =t (CO+7’+§0It )qv

h
because A\g = A + 1. By the mean value theorem, we get
(Co+n+rt™H7 = (Co +n)? + xst~* where x(t) is a bounded function. We
deduce that

AW, e _
T Wit aWP = 7 () = (A D e
+  at™NPTMC) 4+ + 71 p)P),
dw, 2b o _
Wl—ézwj—kan—ﬁW}] = AN =Aun) — A+ Dt Ly

2b
+ at POy 4+t )P + ﬁxjt_ly

we observe that —Ap + A +1 = = < 0. Since p(n) > 0, there exists a time 7' > 0
such that

dw; _
o — Wi +aWl >0, 0<i<I—-1, t>T,
dw. 2b
— L _PW4aWP - Z=WE>0, t>T,
dt h
T-*C
Wi(T) > 9.

2

Suppose that U;(0) < Tﬁ;C" < W;(T). Let us introduce the vector Zj(t) such that
Zy(t) = Up(t — T). It is not hard to see that

dz; )

7 ~0°Zi+aZl =0, 0<i<I—1, t>T,
dZy 2b
E_52Z]+GZ?—ZZ}1:0, tZT,

Zi(T) =U;(0) <Wi(T), 0<i<I.
We deduce from Comparison Lemma 2.2 that Uy (t —T)) < Wy(¢) for t > T. Since
Wh(t) decays to zero when ¢ tends to infinity, we deduce that Uy (t) goes to zero
when t approaches infinity. Now introduce the vector V;(t) defined as follows
Vi(t) = (Co+e)t ™ +it™™7 1, 0<i<I
By an analogous argument as in the proof of the first part of the lemma, we obtain
dv;
dt

— Vit aV? = 7 (ule) - (A + Dty

+ atT MGy e+t p)P), 0<i < T -1,
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avy 2b

— &2V +aVy — EV,‘I = t A (=Au(e) — A+ Doy
2b
+ atm T Co e+t )P + ZXit_l)'
Since p(g) > 0 and —pA + A+ 1 < 0, there exists a positive time T such that
dV;
dt’ ~*Vi+aVP >0, 0<i<I-1, t>T,
dV; 2b
L= SVitaVf = Vi >0, £,
T2
Vi(T) > 9.

2
Since Uy (t) goes to zero as t approaches infinity, there exists a time 7 > T such
that U; (1) < T%% < Vi(T). Let the vector Zy(t) such that Z,(t) = Up(t+7—-T).
A routine computation reveals that

dz; .

7 ~0%Z;+aZl =0, 0<i<I-1, t>T,
dz; 2b
W—62ZI+aZ§’—ﬁZ}1:O, t>T,

Zi(T) = Vi(r) < Uy(T).

It follows from Comparison Lemma 2.2 that Uy (t —T') > Vi (t), t > T, which leads
us to the result. g

The following lemma establishes a lower bound of the solution Uy(t) of (6)—(8)

Lemma 4.2. For any € > 0 there exists a positive time T such that
Uit +1) > (Co—e)(t+ 1)+t +7)271 0<i<I,
where V; = Mzﬂhz.
Proof. Define the vector W}, such that
Wi(t) = (Co —e)t™ M+t 0<i<I.
As in the proof of Lemma 4.1, we find that
dW;

G T Wit aW! = A (=) — (A Dt
+ at PGy — e+t y)P), 0<i < T -1,
dw, 2b
o Wb aW] = W = (u(—e) — (A Dprt ™!

2b
+ at POy — e+t )P+ ﬁxffl),

where y;(t) is a bounded function. Since 1(0) = 0 and z (0) = 1, we observe that
pu(—e) < 0. Using the fact that —pA + A + 1 < 0, we deduce that there exists a
positive time 7 such that

aw;

7 — W +aWP <0, 0<i<I—1, t>r,
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AWy
dt

Since W (t) goes to zero when t approaches infinity, there exists a time T' > 7 such
that W, (T') < Ux(1). Introduce the vector Z(t) such that Zp(t) = Up(t — 7+ 1).
A straightforward computation gives

2b
—62W1+aW}’—ZWf <0, t>r,

dz; .

i —0%Zi+aZl =0, 0<i<I-—1, t>r,
dZ; 2b
E—(52Z[+CLZ})—%Z}1:O7 tZT,

Zi(r) = Ui(1) > Wi (T).
It follows from Comparison Lemma 2.2 that Uy, (t — 7 + 1)) > W (t), t > 7, which
leads us to the result. O

With the above lemmas, we are ready to prove the main result of this section.
Proof of Theorem 4.1. From Lemmas 4.1 and 4.2, we deduce that

L Ui . Ui (1)
(Co —e) < Jim inf(=5=) < lim sup(=3

) < (Co + 6),
for any € > 0 and we have the desired result. [J

5. NUMERICAL RESULTS

In this section, we give some numerical results. Firstly, we approximate the
solution w(z,t) of (1)—(3) by the solution U}(ln) = (Uon),Uln), . .,UI(n))T of the
following explicit scheme

U(n-‘rl) - U(n)

(33) N =8°U"™ +a(U™)P, 0<i<I-—1,
n n (n) (n)
Ut - 2 =201 26 gtk (n)
(34) Al = 72 - E(UI )7 U +a(U; )",
(35) U =¢; >0, 0<i<I,
where n > 0, At,, = min{h—Q hiz} Let us notice that the restriction on the

2 (n)p—1
1T, 118
time step At, < %2 guarantees the positivity of the discrete solution.
Secondly, we approximate the solution u(z,t) of (1)—(3) by the solution U,g") =
WM, U™, .. UI)T of the following implicit scheme

(36) s U™ =s2U"tY pa(U™yP, 0<i<I—1,
(37) 6tU}”) _ 62U}”+1) _ %(U;”))q—lUI(nJrl) I a(U}"))p,
(38) U =4, >0, 0<i<I,

where n >0, At} = HU,(I{L#

The above equations may be rewritten in the following form

A(n) U;(LTH_U _ CL(U}(LH) );D
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where A™ is a tridiagonal matrix defined as follows
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dy =280 0 0 0
e N TR . 0 0
0 == dy =0 0
A(n) _ : . . : ,

0 0 e FR d, =0
—At —At

0 0 0 e h2 . dl*l h2 -
0 0 0 0 =8 4

with
Aty ,
Atn 2b n —
dr=1+275" + %\U} 91 At,,.

We remark that the tridiagonal matrix A(™ satisfies the following properties

A >0, AE;?) <0, i#7],

AR>S 1A
i#]
These properties imply that U,(l") exists for all n and U, }(L") > 0 (See for instance
[6]).
We suppose that p = 3, ¢ =2, a =1, b = 1. In the following tables, in rows, we
present the numerical blow-up times or numerical times, the numbers of iterations,

CPU times and the orders of the approximations corresponding to meshes of 16,
32, 64, 128. The order(s) of the method is computed from

_ log((Tan — Ton)/(Ton — Th))
5= log(2)

5.1. Blow-up solutions. Here we take Ui(o) = 2% (hi)*. The numerical blow-up
time t,, = Z;:Ol At; is computed at the first time when At,, = |t,, —t,,—1] < 10716,

Table 1: Numerical blow-up times, numbers of iterations, CPU times (sec-
onds) and orders of the approximations obtained with the implicit Euler

method.
I AL n CPU; | s
16 | 0.0012719 | 3150 0.6 -
32 |0.0012669 | 11879 |3 -
64 | 0.0012657 | 44690 | 31.6 2.06
128 | 0.0012654 | 167504 | 839.7 | 2.01

Table 2: Numerical blow-up times, numbers of iterations, CPU times (sec-
onds) and orders of the approximations obtained with the explicit Euler
method.



SEMILINEAR PARABOLIC EQUATION 123

I ™ n CPU; | s
16 | 0.00126726 | 3138 1.40 -
32 |0.00126571 | 11868 | 6.9 -
64 | 0.00126545 | 44680 | 11.4 2.58
128 | 0.00126539 | 167490 | 256.2 | 2.12

5.2. Solutions which go to zero. Here we take Ui(o) = % * (hz)% The numeri-

1
cal time ¢,, = Z?’:—Ol At; is computed at the first time when ||~ Uhn) ~1f|oo < 1072,

(1]
2]

(3]

(4]

(5]

(6]

(8]

[9)

[10]

(11]

Table 3: Numerical times, numbers of iterations, CPU times (seconds), and
orders of the approximations obtained with the implicit Euler method.

I ™ n CPU; | s
16 | 0.655822 | 335 -
32 ] 0.654190 | 1339 | 0.5 -
64 | 0.654048 | 5358 | 3 3.53
128 | 0.653946 | 21431 | 55 0.47

Table 4: Numerical times, numbers of iterations, CPU times (seconds) and
orders of the approximations obtained with the explicit Euler method.

I A n CPU; | s
16 | 0.6564296 | 334 0.12 -
32 | 0.653808 | 1338 |1 -
64 | 0.653730 | 5356 | 11.4 2.65
128 | 0.653661 | 21429 | 179 0.17
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