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NUMERICAL BLOW-UP AND ASYMPTOTIC BEHAVIOR FOR
A SEMILINEAR PARABOLIC EQUATION WITH A NONLINEAR

BOUNDARY CONDITION

DIABATE NABONGO AND THÉODORE K. BONI

Abstract. This paper concerns the study of the numerical approximation for

the following initial-boundary value problem:

(P )

8<
:

ut(x, t) = uxx(x, t) + aup(x, t), 0 < x < 1, t > 0,

ux(0, t) = 0, ux(1, t) + buq(1, t) = 0, t > 0,

u(x, 0) = u0(x) > 0, 0 ≤ x ≤ 1,

where a > 0, b > 0 and p > q > 1. We show that under some conditions,

the solution of a semidiscrete form of (P ) either decays uniformly to zero or

blows up in a finite time. When the blow-up occurs, we estimate the semidis-
crete blow-up time and prove that under some assumptions, the semidiscrete

blow-up time converges to the real one when the mesh size goes to zero. When

the semidiscrete solution goes to zero as t goes to infinity, we give its asymp-
totic behavior. Finally, we give some numerical experiments to illustrate our

analysis.

1. Introduction

Consider the following initial-boundary value problem:

ut(x, t) = uxx(x, t) + aup(x, t), 0 < x < 1, t > 0,(1)

ux(0, t) = 0, ux(1, t) + buq(1, t) = 0, t > 0,(2)

u(x, 0) = u0(x) > 0, 0 ≤ x ≤ 1,(3)

where a > 0, b > 0, p > q > 1, u0 ∈ C2([0, 1]),

u
′′

0 (x) + aup
0(x) > 0 in [0, 1],(4)

u
′

0(0) = 0, u
′

0(1) + buq
0(1) = 0.(5)

The particularity of this kind of problem is that the solution u of (1)–(3) may
develop singularities in a finite time. In other words, under some assumptions, there
exists a finite time T such that ‖u(·, t)‖∞ < +∞ for t ∈ (0, T ) but limt→T ‖u(·, t)‖∞ =
+∞ where ‖u(·, t)‖∞ = supx∈[0,1] |u(x, t)|. In this case, we say that the solution u
blows up in a finite time and the time T is called the blow-up time of the solution u.
When T is infinite, we say that the solution u exists globally. The theoretical study
of blow-up and asymptotic behavior of solutions for semilinear parabolic equations
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with nonlinear boundary conditions has been the subject of investigation of many
authors (see [2]–[5], [7], [13], [14] and the references cited therein).
The fact that p > 1, q > 1 and the condition (5) ensure the local in time existence
and the uniqueness of the solution of (1)–(3) which is regular (see for instance [2],
[3], [7], [9], [13]).
Since a > 0, b > 0, p > q > 1, under the condition given in (4), it is also proved
that the solution u of (1)–(3) blows up in a finite time and we have an upper bound
of the blow-up time (see [2], [3], [7]).
Finally, it is shown that the solution u of (1)–(3) exists globally and decays uni-
formly to zero for small initial data (see [2], [4], [7]).

In this paper, we are interesting in the numerical study of (1)–(3). Let I be
a positive integer and define the grid xi = ih, 0 ≤ i ≤ I, where h = 1/I.
We approximate the solution u of the problem (1)–(3) by the solution Uh(t) =
(U0(t), U1(t), . . . , UI(t))T of the following semidiscrete equations

d

dt
Ui(t) = δ2Ui(t) + a(Ui(t))p, 0 ≤ i ≤ I − 1, t > 0,(6)

d

dt
UI(t) = δ2UI(t) + a(UI(t))p − 2b

h
(UI(t))q, t > 0,(7)

Ui(0) = ϕi > 0, 0 ≤ i ≤ I,(8)

where

δ2Ui(t) =
Ui+1(t)− 2Ui(t) + Ui−1(t)

h2
, 1 ≤ i ≤ I − 1,

δ2U0(t) =
2U1(t)− 2U0(t)

h2
, δ2UI(t) =

2UI−1(t)− 2UI(t)
h2

.

For the initial data ϕh = (ϕ0, ..., ϕI)T , one may take ϕi = u0(xi), 0 ≤ i ≤ I but
this is not necessary. In fact, we shall see later that if ϕh is close to u0(x), then
the semidiscrete solution Uh(t) approaches the continuous one (see Theorem 3.2
below).

We need the following definition.

Definition 1.1. We say that the solution Uh of (6)–(8) blows up in a finite time
if there exists a finite time Th such that

‖Uh(t)‖∞ < +∞ for t ∈ [0, Th) but limt→Th
‖Uh(t)‖∞ = +∞,

where ‖Uh(t)‖∞ = max0≤i≤I |Ui(t)|. The time Th is called the semidiscrete blow-up
time of the solution Uh(t).

In this paper, under some assumptions on the initial data, we show that the
solution Uh(t) of (6)–(8) either blows up in a finite time or exists globally and
decays uniformly to zero. In the case where the blow-up occurs, we show that the
semidiscrete blow-up time converges to the real one when the mesh size goes to
zero. When the solution decays uniformly to zero, we give its asymptotic behavior.

Our work was motived by the papers in [1], [6] and [11]. In [1] and [11], the
authors have studied numerical blow-up for semilinear parabolic equations with
Dirichlet boundary conditions. In this paper, the results obtained in the case of
blow-up solutions generalize those found in [1] and [11] but this is not a simple
generalization because of the nonlinearity of boundary conditions. Let us illustrate
this fact. In the case where the semidiscrete solution blows up in a finite time, for
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the convergence of the semidiscrete blow-up time, our proof is based on an idea of
Friedman and McLeod in [8] and on the construction of an upper solution. In [1],
an upper solution has been also used to prove the convergence of the semidiscrete
blow-up time but in the present paper, because of the nonlinearity of boundary
conditions, the upper solution constructed is not usual. Indeed, we construct a
continuous upper solution and show after a semidiscretization that the discrete
version of the above solution is a good candidate as an upper solution for the
semidiscrete problem. Let us also notice that in [11], the author has proved the
convergence of the discrete blow-up time for a solution which blows up in Lp norm
with 1 ≤ p < +∞. This condition is restrictive because in general, one deals
with solutions which blow up in L∞ norm. In [6], the phenomenon of extinction is
investigated using some semidiscrete and discrete schemes (we say that a solution
extincts in a finite time if it reaches the value zero in a finite time).

The rest of the paper is written in the following manner. In the next section, we
prove some lemmas about the discrete maximum principle. In the third section, we
show that under some assumptions, the solution Uh(t) of (6)–(8) blows up in a finite
time and estimate its semidiscrete blow-up time. We also prove that the blow-up
time of the semidiscrete problem converges to the one of the continuous problem
when the mesh size goes to zero. In the fourth section, we show that the solution
of the semidiscrete problem goes to zero for small initial data and determine its
asymptotic behavior. Finally in the last section, we construct two schemes and
give some numerical results.

2. Properties of the semidiscrete scheme

In this section, we give some lemmas which will be used later.
The following lemma is a semidiscrete form of the maximum principle.

Lemma 2.1. Let ah(t) ∈ C0([0, T ),RI+1) and let Vh(t) ∈ C1([0, T ),RI+1) such
that

d

dt
Vi(t)− δ2Vi(t) + ai(t)Vi(t) ≥ 0, 0 ≤ i ≤ I, t ∈ (0, T ),(9)

Vi(0) ≥ 0, 0 ≤ i ≤ I.(10)

Then we have Vi(t) ≥ 0 for 0 ≤ i ≤ I, t ∈ (0, T ).

Proof. Let T0 < T and introduce the vector Zh(t) = eλtVh(t) where λ is such that
ai(t) − λ > 0, 0 ≤ i ≤ I, t ∈ [0, T0]. Let m = min0≤i≤I,0≤t≤T0 Zi(t). Since for
i ∈ {0, ..., I}, Zi(t) is a continuous function, there exists t0 ∈ [0, T0] such that
m = Zi0(t0) for a certain i0 ∈ {0, ..., I}. It is not hard to see that

dZi0(t0)
dt

= lim
k→0

Zi0(t0)− Zi0(t0 − k)
k

≤ 0,(11)

δ2Zi0(t0) =
2Z1(t0)− 2Z0(t0)

h2
≥ 0 if i0 = 0,(12)

δ2Zi0(t0) =
Zi0+1(t0)− 2Zi0(t0) + Zi0−1(t0)

h2
≥ 0 if 1 ≤ i0 ≤ I − 1,(13)

δ2Zi0(t0) =
2ZI−1(t0)− 2ZI(t0)

h2
≥ 0 if i0 = I.(14)
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Using (9), a straightforward computation reveals that

dZi0(t0)
dt

− δ2Zi0(t0) + (ai0(t0)− λ)Zi0(t0) ≥ 0.(15)

According to (11)–(15), we arrive at (ai0(t) − λ)Zi0(t0) ≥ 0, which implies that
m = Zi0(t0) ≥ 0. Therefore, Vh(t) ≥ 0 for t ∈ [0, T0] and we have the desired
result. �

Another version of the maximum principle for semidiscrete equations is the fol-
lowing comparison lemma.

Lemma 2.2. Let Vh(t), Uh(t) ∈ C1([0,∞),RI+1) and f ∈ C0(R×R,R) such that
for t ∈ (0,∞)

dVi(t)
dt

− δ2Vi(t) + f(Vi(t), t) <
dUi(t)
dt

− δ2Ui(t) + f(Ui(t), t), 0 ≤ i ≤ I,(16)

Vi(0) < Ui(0), 0 ≤ i ≤ I.(17)

Then we have Vi(t) < Ui(t), 0 ≤ i ≤ I, t ∈ (0,∞).

Proof. Define the vector Zh(t) = Uh(t)− Vh(t). Let t0 be the first t > 0 such that
Zh(t) > 0 for t ∈ [0, t0) but Zi0(t0) = 0 for a certain i0 ∈ {0, ..., I}. We observe
that

dZi0(t0)
dt

= lim
k→0

Zi0(t0)− Zi0(t0 − k)
k

≤ 0,

δ2Zi0(t0) =
Zi0+1(t0)− 2Zi0(t0) + Zi0−1(t0)

h2
≥ 0 if 1 ≤ i0 ≤ I − 1,

δ2Zi0(t0) =
2Z1(t0)− 2Z0(t0)

h2
≥ 0 if i0 = 0,

δ2Zi0(t0) =
2ZI−1(t0)− 2ZI(t0)

h2
≥ 0 if i0 = I,

which implies that dZi0 (t0)

dt − δ2Zi0(t0)+ f(Ui0(t0), t0)− f(Vi0(t0), t0) ≤ 0. But this
inequality contradicts (16) and the proof is complete.

�

3. Blow-up solutions

In this section, under some assumptions, we show that the solution Uh of (6)–(8)
blows up in a finite time and estimate its semidiscrete blow-up time. In addition,
we prove that the semidiscrete blow-up time converges to the real one when the
mesh size goes to zero.
We need the following result.

Lemma 3.1. Let Uh ∈ RI+1 such that Uh ≥ 0. Then we have

δ2Uq
i ≥ qUq−1

i δ2Ui, 0 ≤ i ≤ I.

Proof. Apply Taylor’s expansion to obtain

δ2Uq
0 = qUq−1

0 δ2U0 + (U1 − U0)2
q(q + 1)
h2

θq−2
0 ,

δ2Uq
i = qUq−1

i δ2Ui + (Ui+1 − Ui)2
q(q + 1)

2h2
θq−2

i + (Ui−1 − Ui)2
q(q + 1)

2h2
ηq−2

i

if 1 ≤ i ≤ I − 1,
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δ2Uq
I = qUq−1

I δ2UI + (UI−1 − UI)2
q(q + 1)
h2

ηq−2
I ,

where θi is an intermediate value between Ui and Ui+1 and ηi the one between Ui−1

and Ui. Use the fact that Uh ≥ 0 to complete the proof.
�

Now let us state a result on blow-up.

Theorem 3.1. Let Uh be the solution of (6)–(8). Suppose that there exists a
positive constant A such that

δ2ϕi + aϕp
i ≥ Aϕq

i , 0 ≤ i ≤ I.(18)

Then the solution Uh of (6)–(8) blows up in a finite time Th
b with the following

estimation

Th
b ≤ 1

A

‖ϕh‖1−q
∞

(q − 1)
.(19)

Proof. Let (0, Th
b ) be the maximal time interval on which ‖Uh(t)‖∞ < +∞. Our

aim is to show that Th
b is finite and satisfies the above inequality. Introduce the

vector Jh(t) defined as follows

Ji =
d

dt
Ui −AUq

i , 0 ≤ i ≤ I.(20)

A direct calculation yields
d

dt
Ji − δ2Ji =

d

dt
(
d

dt
Ui − δ2Ui)−AqUq−1

i

d

dt
Ui +Aδ2Uq

i .

From Lemma 3.1 δ2Uq
i ≥ qUq−1

i δ2Ui which implies that

d

dt
Ji − δ2Ji ≥

d

dt
(
d

dt
Ui − δ2Ui)−AqUq−1

i (
d

dt
Ui − δ2Ui), 0 ≤ i ≤ I.

It follows from (6)–(7) that
d

dt
Ji − δ2Ji ≥ apUp−1

i Ji, 0 ≤ i ≤ I − 1,

d

dt
JI − δ2JI ≥ (−2qb

Uq−1
I

h
+ apUp−1

I )JI .

The relation (18), implies that Jh(0) ≥ 0. It follows from Lemma 2.1 that Jh(t) is
nonnegative, which implies d

dtUi ≥ AUq
i , 0 ≤ i ≤ I. We observe that

dUi

Uq
i

≥ Adt, 0 ≤ i ≤ I.(21)

Integrating these inequalities over (t, Th
b ), we arrive at

Th
b − t ≤ 1

A

(Ui(t))1−q

(q − 1)
, 0 ≤ i ≤ I.(22)

Let i0 such that ‖Uh(t)‖∞ = Ui0(t). If we replace i by i0 and the time t by 0 in the
above inequalities, we get the following estimation Th

b ≤ 1
A
‖Uh(0)‖1−q

∞
(q−1) . This implies

that the solution Uh(t) blows up in a finite time because the quantity on the right
hand side of the above inequality is finite. Use the fact that ‖Uh(0)‖∞ = ‖ϕh‖∞
to complete the rest of the proof. �
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Remark 3.1. The inequalities (22) imply that

Th
b − t0 ≤

1
A

‖Uh(t0)‖1−q
∞

(q − 1)
if 0 < t0 < Th

b .

Remark 3.2. Let us notice that the condition (18) is the discrete version of the
one given in (4) for the continuous solution.

In the following theorem, we show that for each fixed time interval [0, T ] where
u is defined, the solution Uh(t) of (6)–(8) approximates u when the mesh parameter
h goes to zero.

Theorem 3.2. Assume that (1)-(3) has a solution u ∈ C4,1([0, 1]× [0, T ]) and the
initial condition at (8) satisfies

‖ϕh − uh(0)‖∞ = o(1) as h→ 0,(23)

where uh(t) = (u(x0, t), ..., u(xI , t))T . Then, for h sufficiently small, the problem
(6)–(8) has a unique solution Uh ∈ C1([0, T ],RI+1) such that

max
0≤t≤T

‖Uh(t)− uh(t)‖∞ = O(‖ϕh − uh(0)‖∞ + h2) as h→ 0.(24)

Proof. The problem (6)–(8) has for each h, a unique solution Uh ∈ C1([0, Th
q ),RI+1).

Let t(h) the greatest value of t > 0 such that

‖Uh(t)− uh(t)‖∞ < 1 for t ∈ (0, t(h)).(25)

The relation (23) implies that t(h) > 0 for h sufficiently small. Let t∗(h) =
min{t(h), T}. By the triangle inequality, we obtain

‖Uh(t)‖∞ ≤ ‖u(·, t)‖∞ + ‖Uh(t)− uh(t)‖∞ for t ∈ (0, t∗(h)),

which implies that Uh(t) is bounded on the interval (0, t∗(h)). Let eh(t) = Uh(t)−
uh(x, t) be the error of discretization. Using Taylor’s expansion, we have for t ∈
(0, t∗(h)),

d

dt
ei(t)− δ2ei(t) =

h2

12
uxxxx(x̃i, t) + apξp−1

i ei(t),

d

dt
eI(t)− δ2eI(t) =

2
h
qθq−1

I eI +
2h2

3
uxxx(x̃I , t) +

h2

12
uxxxx(x̃I , t)− apξp−1

I eI(t),

where θI is an intermediate value between UI(t) and u(xI , t) and ξi the one between
Ui(t) and u(xi, t). Since Ui(t) is bounded and u ∈ C4,1, there exist two positive
constants K and L such that

d

dt
ei(t)− δ2ei(t) ≤ L|ei(t)|+Kh2, 0 ≤ i ≤ I − 1,(26)

deI(t)
dt

− δ2eI(t) ≤
L|eI(t)|

h
+ L|eI(t)|+Kh2.(27)

Consider the function z(x, t) = e((M+1)t+Cx2)(‖ϕh − uh(0)‖∞ +Qh2) where M , C,
Q are constants which will be determined later. A direct calculation yields

zt(x, t)− zxx(x, t) = (M + 1− 2C − 4C2x2)z(x, t),

zx(0, t) = 0, zx(1, t) = 2Cz(1, t),

z(x, 0) = eCx2
(‖ϕh − uh(0)‖∞ +Qh2).
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By a semidiscretization of the above problem, we may choose M , C, Q large enough
that

d

dt
z(xi, t)− δ2z(xi, t) > L|z(xi, t)|+Kh2, 0 ≤ i ≤ I − 1,(28)

d

dt
z(xI , t)− δ2z(xI , t) >

L

h
|z(xI , t)|+ L|z(xI , t)|+Kh2,(29)

z(xi, 0) > ei(0), 0 ≤ i ≤ I.(30)

It follows from Lemma 2.2 that z(xi, t) > ei(t) for t ∈ (0, t∗(h)), 0 ≤ i ≤ I. By the
same way, we also prove that z(xi, t) > −ei(t) for t ∈ (0, t∗(h)), 0 ≤ i ≤ I, which
implies that

‖Uh(t)− uh(t)‖∞ ≤ e(Mt+C)(‖ϕh − uh(0)‖∞ +Qh2), t ∈ (0, t∗(h)).

Let us show that t∗(h) = T . Suppose that T > t(h). From (25), we obtain

1 = ‖Uh(t(h))− uh(t(h))‖∞ ≤ e(MT+C)(‖ϕh − uh(0)‖∞ +Qh2).(31)

Since the term in the right hand side of the above inequality goes to zero as h goes
to zero, we deduce that 1 ≤ 0, which is impossible. Consequently t∗(h) = T , and
we obtain the desired result. �

Remark 3.3. Let us notice that if for the semidiscrete scheme in (6)–(8) we take
as initial data ϕi = u0(xi), 0 ≤ i ≤ I, then we easily see that

uh(0) = (u(x0, 0), ..., u(xI , 0))T = (u0(x0), ..., u0(xI))T = ϕh.

In this case ‖ϕh−uh(0)‖∞ = 0 and the condition (23) is valid. We also observe that
if we take ϕi = u0(xi) + ih2, 0 ≤ i ≤ I then the condition (23) remains valid. The
advantage to choose this kind of initial data is that if for instance the initial data
u0 of the continuous problem is nondecreasing, taking ϕi = u0(xi)+ ih2, 0 ≤ i ≤ I,
we remark that ϕi+1 > ϕi, 0 ≤ i ≤ I − 1. This is sometimes very important when
we want to treat certain problems.

Now, we are in a position to prove the main result of this section

Theorem 3.3. Suppose that the problem (1)–(3) has a solution u which blows up
in a finite time Tb such that u ∈ C4,1([0, 1]× [0, Tb)) and the initial condition at (8)
satisfies

‖ϕh − uh(0)‖∞ = o(1) as h→ 0.

Assume that there exists a constant A > 0 such that

δ2ϕi + aϕp
i ≥ Aϕq

i , 0 ≤ i ≤ I.

Then the problem (6)–(8) has a solution Uh which blows up in a finite time Th
b and

lim
h→0

Th
b = Tb.

Proof. Letting ε > 0, there exists a positive constant N such that

1
A

x1−q

(q − 1)
≤ ε

2
<∞ for x ∈ (N,+∞).(32)

Since u blows up at the time Tb, there exists T1 such that |T1 − Tb| ≤ ε
2 and

‖u(·, t)‖∞ ≥ 2N for t ∈ [T1, Tb]. Let T2 = T1+Tb

2 , then supt∈[0,T2] |u(·, t)| <
∞. It follows from Theorem 3.2 that the problem (6)–(8) has a solution Uh(t)
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and supt∈[0,T2] |Uh(t) − uh(t)|∞ ≤ N . Applying the triangle inequality, we get
‖Uh(t)‖∞ ≥ ‖uh(t)‖∞ − ‖Uh(t) − uh(t)‖∞, which leads to ‖Uh(t)‖∞ ≥ N for
t ∈ [0, T2]. From Theorem 3.1, Uh(t) blows up at the time Th

b . We deduce from
Remark 3.1 and (32) that

|Th
b − Tb| ≤ |Th

b − T2|+ |T2 − Tb| ≤
ε

2
+

1
A

‖Uh(T2)‖1−q
∞

(q − 1)
≤ ε,

and the proof is complete. �

4. Asymptotic behavior

In this section, we show that for small initial data, the solution Uh of (6)–(8)
goes to zero as t→ +∞ and give its asymptotic behavior.

Theorem 4.1. Let Uh(t) be the solution of (6)–(8). There exists a constant C > 0
such that if the initial condition defined in (8) satisfies ‖ϕh‖∞ ≤ C then Uh(t) goes
to zero as t→ +∞. Moreover, the following relation holds

lim
t→∞

t
1

q−1 ‖Uh(t)‖∞ = C0,

where C0 = ( 1
b(q−1) )

1
q−1 .

The proof of the above theorem is based on the lemmas below. Introduce the
function

µ(x) = −λ(C0 + ε) + b(C0 + ε)q,

where λ = 1
q−1 . This function is crucial for the proof of the above theorem.

Let us state our first lemma which gives us an upper bound of the semidiscrete
solution.

Lemma 4.1. Let Uh be the solution of (6)-(8). There exists a positive constant C
such that if the initial condition defined in (8) satisfies ‖ϕh‖∞ ≤ C, then Uh goes
to zero when t tends to infinity. In addition for any ε > 0, there exist two positive
times T and τ such that

Ui(t+ τ) ≤ (C0 + ε)(t+ T )−λ + ϕi(t+ T )−λ−1, 0 ≤ i ≤ I,

where ϕi = − b
2 (C0 + ε)qi2h2.

Proof. Since µ(0) = 0 and µ′(0) = 1, let η > 0 such that µ(η) > 0. Define the
vector Wh such that

Wi(t) = (C0 + η)t−λ + ϕit
−λ−1, 0 ≤ i ≤ I.

Our idea is to show that the vector Wh is an upper solution of (6)-(8). A direct
calculation reveals that

dWi

dt
− δ2Wi + aW p

i = −λ(C0 + η)t−λ−1 − (λ+ 1)t−λ−2ϕi

+ at−λp((C0 + η) + t−λ−1)p − t−λ−1δ2ϕi, 0 ≤ i ≤ I − 1,
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dWI

dt
− δ2WI + aWP

I − 2b
h
W q

I = −λ(C0 + η)t−λ−1 − (λ+ 1)t−λ−2ϕI

+ at−λp((C0 + η) + ϕIt
−1)p +

+ t−λ−1δ2ϕI

− 2b
h
t−λ−1(C0 + η + ϕIt

−1)q,

because λq = λ+ 1. By the mean value theorem, we get
(C0 + η + ϕIt

−1)q = (C0 + η)q + χIt
−1 where χI(t) is a bounded function. We

deduce that
dWi

dt
− δ2Wi + aW p

i = t−λ−1(µ(η)− (λ+ 1)t−1ϕi

+ at−λp+λ+1(C0 + η + t−1ϕi)p),

dWI

dt
− δ2WI + aW p

I −
2b
h
W q

I = t−λ−1(−λµ(η)− (λ+ 1)t−1ϕI

+ at−λp+λ+1(C0 + η + t−1ϕI)p +
2b
h
χIt

−1),

we observe that −λp+ λ+ 1 = q−p
q−1 < 0. Since µ(η) > 0, there exists a time T > 0

such that
dWi

dt
− δ2Wi + aW p

i > 0, 0 ≤ i ≤ I − 1, t ≥ T,

dWI

dt
− δ2WI + aW p

I −
2b
h
W q

I > 0, t ≥ T,

Wi(T ) >
T−λC0

2
.

Suppose that Ui(0) < T−1C0
2 < Wi(T ). Let us introduce the vector Zh(t) such that

Zh(t) = Uh(t− T ). It is not hard to see that

dZi

dt
− δ2Zi + aZp

i = 0, 0 ≤ i ≤ I − 1, t ≥ T,

dZI

dt
− δ2ZI + aZp

I −
2b
h
Zq

I = 0, t ≥ T,

Zi(T ) = Ui(0) < Wi(T ), 0 ≤ i ≤ I.

We deduce from Comparison Lemma 2.2 that Uh(t− T )) ≤Wh(t) for t ≥ T . Since
Wh(t) decays to zero when t tends to infinity, we deduce that Uh(t) goes to zero
when t approaches infinity. Now introduce the vector Vh(t) defined as follows

Vi(t) = (C0 + ε)t−λ + ϕit
−λ−1, 0 ≤ i ≤ I.

By an analogous argument as in the proof of the first part of the lemma, we obtain
dVi

dt
− δ2Vi + aV p

i = t−λ−1(µ(ε)− (λ+ 1)t−1ϕi

+ at−λp+λ+1(C0 + ε+ t−1ϕi)p), 0 ≤ i ≤ I − 1,
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dVI

dt
− δ2VI + aV p

I − 2b
h
V q

I = t−λ−1(−λµ(ε)− (λ+ 1)ϕI

+ at−λp+λ+1(C0 + ε+ t−1ϕi)p +
2b
h
χit

−1).

Since µ(ε) > 0 and −pλ+ λ+ 1 < 0, there exists a positive time T such that
dVi

dt
− δ2Vi + aV p

i > 0, 0 ≤ i ≤ I − 1, t ≥ T,

dVI

dt
− δ2VI + aV p

I − 2b
h
V q

I > 0, t ≥ T,

Vi(T ) >
T−λC0

2
.

Since Uh(t) goes to zero as t approaches infinity, there exists a time τ > T such
that Ui(τ) < T−1C0

2 < Vi(T ). Let the vector Zh(t) such that Zh(t) = Uh(t+ τ −T ).
A routine computation reveals that

dZi

dt
− δ2Zi + aZp

i = 0, 0 ≤ i ≤ I − 1, t ≥ T,

dZI

dt
− δ2ZI + aZp

I −
2b
h
Zq

I = 0, t ≥ T,

Zi(T ) = Vi(τ) < Ui(T ).

It follows from Comparison Lemma 2.2 that Uh(t− T ) ≥ Vh(t), t ≥ T , which leads
us to the result. �

The following lemma establishes a lower bound of the solution Uh(t) of (6)–(8)

Lemma 4.2. For any ε > 0 there exists a positive time τ such that

Ui(t+ 1) ≥ (C0 − ε)(t+ τ)−λ + ψi(t+ τ)−λ−1, 0 ≤ i ≤ I,

where ψi = −b(C0−ε)q

2 i2h2.

Proof. Define the vector Wh such that

Wi(t) = (C0 − ε)t−λ + ψit
−λ−1, 0 ≤ i ≤ I.

As in the proof of Lemma 4.1, we find that
dWi

dt
− δ2Wi + aW p

i = t−λ−1(µ(−ε)− (λ+ 1)t−1ψi

+ at−λp+λ+1(C0 − ε+ t−1ψi)p), 0 ≤ i ≤ I − 1,

dWI

dt
− δ2WI + aW p

I −
2b
h
W q

I = t−λ−1(µ(−ε)− (λ+ 1)ϕIt
−1

+ at−λp+λ+1(C0 − ε+ t−1ψI)p +
2b
h
χIt

−1),

where χI(t) is a bounded function. Since µ(0) = 0 and µ
′
(0) = 1, we observe that

µ(−ε) < 0. Using the fact that −pλ + λ + 1 < 0, we deduce that there exists a
positive time τ such that

dWi

dt
− δ2Wi + aW p

i < 0, 0 ≤ i ≤ I − 1, t ≥ τ,
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dWI

dt
− δ2WI + aW p

I −
2b
h
W q

I < 0, t ≥ τ,

Since Wh(t) goes to zero when t approaches infinity, there exists a time T ≥ τ such
that Wh(T ) < Uh(1). Introduce the vector Zh(t) such that Zh(t) = Uh(t− τ + 1).
A straightforward computation gives

dZi

dt
− δ2Zi + aZp

i = 0, 0 ≤ i ≤ I − 1, t ≥ τ,

dZI

dt
− δ2ZI + aZp

I −
2b
h
Zq

I = 0, t ≥ τ,

Zi(τ) = Ui(1) > Wh(T ).

It follows from Comparison Lemma 2.2 that Uh(t− τ + 1)) ≥ Wh(t), t ≥ τ , which
leads us to the result. �

With the above lemmas, we are ready to prove the main result of this section.
Proof of Theorem 4.1. From Lemmas 4.1 and 4.2, we deduce that

(C0 − ε) ≤ lim
t→∞

inf(
Ui(t)
tλ

) ≤ lim
t→∞

sup(
Ui(t)
tλ

) ≤ (C0 + ε),

for any ε > 0 and we have the desired result. �

5. Numerical results

In this section, we give some numerical results. Firstly, we approximate the
solution u(x, t) of (1)–(3) by the solution U

(n)
h = (U (n)

0 , U
(n)
1 , . . . , U

(n)
I )T of the

following explicit scheme

U
(n+1)
i − U

(n)
i

∆tn
= δ2U

(n)
i + a(U (n)

i )p, 0 ≤ i ≤ I − 1,(33)

U
(n+1)
I − U

(n)
I

∆tn
=

2U (n)
I−1 − 2U (n)

I

h2
− 2b
h

(U (n)
I )q−1U

(n+1)
I + a(U (n)

I )p,(34)

U
(0)
i = φi > 0, 0 ≤ i ≤ I,(35)

where n ≥ 0, ∆tn = min{h2

2 ,
h2

‖U(n)
h ‖p−1

∞
}. Let us notice that the restriction on the

time step ∆tn ≤ h2

2 guarantees the positivity of the discrete solution.
Secondly, we approximate the solution u(x, t) of (1)–(3) by the solution U

(n)
h =

(U (n)
0 , U

(n)
1 , . . . , U

(n)
I )T of the following implicit scheme

δtU
(n)
i = δ2U

(n+1)
i + a(U (n)

i )p, 0 ≤ i ≤ I − 1,(36)

δtU
(n)
I = δ2U

(n+1)
I − 2b

h
(U (n)

I )q−1U
(n+1)
I + a(U (n)

I )p,(37)

U
(0)
i = φi > 0, 0 ≤ i ≤ I,(38)

where n ≥ 0, ∆tin = h2

‖U(n)
h ‖p−1

∞
.

The above equations may be rewritten in the following form

A(n)U
(n+1)
h = a(U (n)

h )p
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where A(n) is a tridiagonal matrix defined as follows

A(n) =



d0
−2∆tn

h2 0 0 · · · 0 0
−∆tn

h2 d1
−∆tn

h2 0 · · · 0 0
0 −∆tn

h2 d2
−∆tn

h2 0 · · · 0
...

...
. . . . . . . . .

...
...

0 0 · · · −∆t
h2 dI−2

−∆tn

h2 0
0 0 0 · · · −∆tn

h2 dI−1
−∆tn

h2

0 0 0 · · · 0 −2∆tn

h2 dI


,

with

di = 1 + 2
∆tn
h2

, 0 ≤ i ≤ I − 1,

dI = 1 + 2
∆tn
h2

+
2b
h
|U (n)

I |q−1∆tn.

We remark that the tridiagonal matrix A(n) satisfies the following properties

A
(n)
ii > 0, A

(n)
ij < 0, i 6= j,

|A(n)
ii | >

∑
i 6=j

|A(n)
ij |.

These properties imply that U (n)
h exists for all n and U

(n)
h ≥ 0 (See for instance

[6]).
We suppose that p = 3, q = 2, a = 1, b = 1. In the following tables, in rows, we
present the numerical blow-up times or numerical times, the numbers of iterations,
CPU times and the orders of the approximations corresponding to meshes of 16,
32, 64, 128. The order(s) of the method is computed from

s =
log((T4h − T2h)/(T2h − Th))

log(2)
.

5.1. Blow-up solutions. Here we take U (0)
i = 2 ∗ (hi)4. The numerical blow-up

time tn =
∑n−1

j=0 ∆tj is computed at the first time when ∆tn = |tn− tn−1| ≤ 10−16.

Table 1: Numerical blow-up times, numbers of iterations, CPU times (sec-
onds) and orders of the approximations obtained with the implicit Euler
method.

I Tn n CPUt s
16 0.0012719 3150 0.6 -
32 0.0012669 11879 3 -
64 0.0012657 44690 31.6 2.06
128 0.0012654 167504 839.7 2.01

Table 2: Numerical blow-up times, numbers of iterations, CPU times (sec-
onds) and orders of the approximations obtained with the explicit Euler
method.
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I Tn n CPUt s
16 0.00126726 3138 1.40 -
32 0.00126571 11868 6.9 -
64 0.00126545 44680 11.4 2.58
128 0.00126539 167490 256.2 2.12

5.2. Solutions which go to zero. Here we take U (0)
i = 1

2 ∗ (hi)
1
4 . The numeri-

cal time tn =
∑n−1

j=0 ∆tj is computed at the first time when ‖t
1

q−1
n U

(n)
h −1‖∞ < 10−2.

Table 3: Numerical times, numbers of iterations, CPU times (seconds), and
orders of the approximations obtained with the implicit Euler method.

I Tn n CPUt s
16 0.655822 335 - -
32 0.654190 1339 0.5 -
64 0.654048 5358 3 3.53
128 0.653946 21431 55 0.47

Table 4: Numerical times, numbers of iterations, CPU times (seconds) and
orders of the approximations obtained with the explicit Euler method.

I Tn n CPUt s
16 0.654296 334 0.12 -
32 0.653808 1338 1 -
64 0.653730 5356 11.4 2.65
128 0.653661 21429 179 0.17
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