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BOUNDARY VALUE PROBLEMS FOR SECOND ORDER
CONVEX AND NONCONVEX DIFFERENTIAL INCLUSIONS

WITH INTEGRAL BOUNDARY CONDITIONS

MUSTAPHA LAKRIB

Abstract. We prove existence results for boundary value problems for sec-

ond order convex and nonconvex differential inclusions with integral boundary
conditions. The proofs use nonlinear alternatives of Leray-Schauder type and

a selection theorem due to Bressan and Colombo.

1. Introduction

This paper is concerned with the boundary value problem for a second order
ordinary differential inclusion with integral boundary conditions

x′′(t) ∈ F (t, x(t)), a.e. t ∈ J := [0, 1],(1.1)

x(0)− k1x
′(0) =

∫ 1

0

h1(x(s))ds, x(1) + k2x
′(1) =

∫ 1

0

h2(x(s))ds.(1.2)

In problem (1.1)-(1.2), F : J ×R → P(R) is a multivalued function with nonempty
compact values, P(R) is the class of all subsets of R and, for i = 1, 2, hi : R → R
are given functions and ki are nonnegative constants.

Boundary value problems with integral boundary conditions constitute an impor-
tant class of problems, because they include as special cases two, three, multi-point
and nonlocal boundary value problems. Such problems for second order differential
equations have been considered by many authors, for instance, see [3, 6, 8, 10, 12, 13]
and the references therein. As far as we know, there are few authors who study the
existence of solutions in the case of differential inclusions, among them we would
like to cite Brykalov [2] and Halidias and Papageorgiou [7]. In [2], existence results
for boundary value problems for differential inclusions with nonconvex right-hand
sides and monotone nonlinear (integral) boundary conditions was studied. The
technique of continuous selections of multivalued functions with decomposable val-
ues coupled with the method of monotone boundary conditions are used in these
investigations. In [7], the authors use the method of upper and lower solutions with
fixed point theorems to establish some existence results for second order differential
inclusions with Sturm-Liouville and periodic boundary conditions.

Recently, Rahmat in [12] have used the method of upper and lower solutions with
the method of generalized quasilinearization to study the existence of solutions of
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the boundary value problem for a second order differential equation with integral
boundary conditions of the form (1.2)

x′′(t) = f(t, x(t)), a.e. t ∈ J := [0, 1],(1.3)

x(0)− k1x
′(0) =

∫ 1

0

h1(x(s))ds, x(1) + k2x
′(1) =

∫ 1

0

h2(x(s))ds.(1.4)

Motivated by this work, we consider problem (1.1)-(1.2) which is the multivalued
form of problem (1.3)-(1.4). Our goal is to give some existence results for problem
(1.1)-(1.2). Our method of study is to convert problem (1.1)-(1.2) into a fixed point
problem. Then, we first apply the nonlinear alternative of Leray-Schauder type for
multivalued functions [11] to prove an existence result when F has convex values.
Next, we combine a continuous selection theorem [1] due to Bressan and Colombo
with the nonlinear alternative of Leray-Schauder type for single valued functions [4]
to prove the second existence result of this paper for F with nonconvex values. In
both cases, the conditions established on the multivalued function F are common
in the literature on differential equations and inclusions. In our main results, the
only condition we require on the functions hi, i = 1, 2, is continuity.

Let C(J,R) and L1(J,R) denote the Banach spaces of continuous and Lebesgue
integrable functions on J equipped with the normes ‖x‖ = max{|x(t)| : t ∈ J} and
‖x‖L1 =

∫ 1

0
|x(t)|dt, respectively. Consider AC1(J,R) the space of all continuous

functions whose first derivatives exist and are absolutely continuous on J .
By a solution of (1.1)-(1.2) we mean a function x ∈ AC1(J,R) whose second

derivative x′′ exists and is a member of L1(J,R), that is, there exists a function
v ∈ L1(J,R), v(t) ∈ F (t, x(t)) for almost every t ∈ J such that x′′(t) = v(t) almost
everywhere in J and x satisfies the conditions (1.2)

2. Preliminaries

In what follows we will enumerate some notions and results regarding single
valued and multivalued functions. Although many of these are available in a more
general framework, we will mention them only in the form we need in the present
paper.

We say that a subset A of L1(J,R) is decomposable if for all u, v ∈ A and
all I ⊂ J measurable, the function uχI + vχJ−I ∈ A, where χI stands for the
characteristic function of I.

For X a Banach space, P(X) is the class of all subsets of X.
LetX1 andX2 be Banach spaces andG : X1 → P(X2) be a multivalued function.

G is said to be closed (resp. convex and compact) valued if G(x) is closed (resp.
convex and compact) subset of X2 for each x ∈ X1. We say that G is lower semi-
continuous (in brief l.s.c.) if for every open subset A of X2, the set {x ∈ X1 :
G(x) ∩ A 6= ∅} is open. We say that G is upper semi-continuous (in brief u.s.c.) if
for every closed subset A of X2, the set {x ∈ X1 : G(x) ∩ A 6= ∅} is closed. G is
called continuous when it is l.s.c and u.s.c.

A multivalued function G : X1 → P(X2) (resp. A function G : X1 → X2) is said
to be completely continuous if G(A) is compact for all bounded subsets A of X1.
If X1 = X2, we say that G has a fixed point if there is x ∈ X1 such that x ∈ G(x)
(resp. x = G(x)).
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A multivalued function G : J → P(R) with nonempty compact convex values is
said to be measurable if for every y ∈ R, the function t→ d(y,G(t)) = inf{|y− x| :
x ∈ G(t)} is measurable.

A multivalued function G : J × R → P(R) (resp. A function G : J × R → R) is
said to satisfy Carathéodory’s conditions if

(i) t 7→ G(t, x) is measurable for each x ∈ R,
(ii) x 7→ G(t, x) is continuous almost everywhere in J .

Moreover, G is called L1-Carathéodory, if, in addition,
(iii) for each real number r > 0, there exists a function hr ∈ L1(J,R) such that

‖G(t, x)‖ = sup{|v| : v ∈ G(t, x)} ≤ hr(t) (resp. |G(t, x)| ≤ hr(t)) a.e. t ∈ J

for all x ∈ R with |x| ≤ r.

For each x ∈ C(J,R), define the set of selections of a multivalued function
G : J × R → P(R) that belong to L1(J,R) by

S1
G(x) = {v ∈ L1(J,R) : v(t) ∈ G(t, x(t)) a.e. t ∈ J}.(2.1)

Then we have the following lemma [9] due to Lasota and Opial.

Lemma 2.1. Let G : J × R → P(R) be an L1-Carathéodory multivalued function
with nonempty compact convex values. Then S1

G(x) 6= ∅ for each x ∈ R.

The following hypotheses on the multivalued function F : J × R → P(R) and
the functions hi, i = 1, 2, in problem (1.1)-(1.2) will be used throughout this work:

(C1) F is Carathéodory.
(C2) Each function hi : R → R, i = 1, 2, is continuous.
(C3) There exists an L1-Carathéodory function ψ : J × R+ → R+ such that

(i) |F (t, x)| ≤ ψ(t, |x|), for almost all t ∈ J and all x ∈ R,
(ii) ψ(t, x) is nondecreasing in x for almost all t ∈ J ,
as well as a constant M∗ > 0 such that
(iii) M∗ > sup

|u|≤M∗
|h1(u)|+ sup

|u|≤M∗
|h2(u)|+ C0‖ψ(·,M∗)‖L1 , where

C0 :=
(1 + k1)(1 + k2)

1 + k1 + k2
.

Remark 2.2. From conditions (C1) and (C3)-(i) we deduce that the multivalued
function F is L1-Carathéodory.

3. Main results

3.1. Convex case. In this section, we are concerned with the existence of solutions
for the problem (1.1)-(1.2) when the right hand side has convex values. So, we
suppose that F : J × R → P(R) in (1.1) is a multivalued function with nonempty
compact convex values.

We need the following result in the sequel.

Lemma 3.1. [9] Let F : J×R → P(R) be an L1-Carathéodory multivalued function
with nonempty compact convex values, and K : L1(J,R) → C(J,R) be a linear
continuous function. Then the operator, with nonempty compact convex values,
K ◦ S1

F : C(J,R) → P(C(J,R)) has a closed graph in C(J,R)× C(J,R).
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Our main existence theorem in this section (i.e. Theorem 3.3) is obtained via
the following nonlinear alternative of Leray-Schauder type for multivalued func-
tions [11].

Theorem 3.2. Let X be a Banach space, U an open and bounded subset of X with
0 ∈ U and Γ : U → P(X) a multivalued function. Suppose that

(i) Γx is nonempty, convex and closed for each x ∈ U ,
(ii) Γ has closed graph,
(iii) Γ is completely continuous.

Then, either
(A1) Γ has a fixed point in U , or
(A2) there exists x ∈ ∂U (the boundary of U) and λ ∈ (0, 1) with x ∈ λΓx.

Now, we are able to state and prove our main theorem.

Theorem 3.3. Suppose that conditions (C1)-(C3) are satisfied. Then problem
(1.1)-(1.2) has a solution on J .

Proof. To establish our result, we will apply Theorem 3.2 to the operator
Γ : C(J,R) → P(C(J,R)) defined, for any x ∈ C(J,R), by Γx the set of functions
y ∈ C(J,R) such that

y(t) = P (t) +
∫ 1

0

G(t, s)v(s)ds, t ∈ J, v ∈ SF (x),

where the function P : J → R is defined, for any t ∈ J , by

P (t) =
1

1 + k1 + k2

[
(1− t+ k2)

∫ 1

0

h1(x(s))ds+ (k1 + t)
∫ 1

0

h2(x(s))ds
]

(3.1)

and G : J × J → R, the Green function associated with problem (1.1)-(1.2), is
given by

G(t, s) =
−1

1 + k1 + k2

{
(k1 + t)(1− s+ k2), 0 ≤ t < s ≤ 1,
(k1 + s)(1− t+ k2), 0 ≤ s < t ≤ 1.

(3.2)

Note that |G(t, s)| ≤ C0 on J × J , where C0 is given in condition (C3)-(iii).
It is clear that Γ is well defined. By standard argument one can check that fixed

points of Γ are solutions to problem (1.1)-(1.2). It remains to show that Γ satisfies
all the conditions of Theorem 3.2.

Claim 1: Γx is nonempty and convex for each x ∈ C(J,R). This is an immediate
consequence of the fact that SF (x) is nonempty (see Lemma 2.1) and F (x) is convex,
respectively.

Claim 2: Γ has closed graph. So, let (xn)n be a sequence in C(J,R) and
x ∈ C(J,R) such that xn → x. Let yn ∈ Γxn such that yn → y. We will show that
y ∈ Γx.

Define the operator K : L1(J,R) → C(J,R) by

(Kv)(t) =
∫ 1

0

G(t, s)v(s)ds, v ∈ L1(J,R), t ∈ J.

We can easily see that K is well defined, linear and continuous. Let n ∈ N and
vn ∈ SF (xn) such that

yn(t) = Pn(t) +
∫ 1

0

G(t, s)vn(s)ds, t ∈ J.
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We have yn − Pn ∈ K ◦ SF (xn) and yn − Pn → y − P . By Lemma 3.1, K ◦ SF has
a closed graph, so that y − P ∈ K ◦ SF (x), that is,

y(t) = P (t) +
∫ 1

0

G(t, s)v(s)ds

for some v ∈ SF (x), which proves that y ∈ Γx.
Claim 3: Γx is closed for each x ∈ C(J,R). This assertion follows from Claim 2

by setting xn ≡ x.
Claim 4: Γ is completely continuous on C(J,R). To show this, we first show

that Γ maps bounded sets into bounded sets. Let B be a bounded subset of C(J,R).
Then there exists a constant r > 0 such that ‖x‖ ≤ r for all x ∈ B. Let x ∈ B,
y ∈ Γx and v ∈ SF (x) such that, for t ∈ J ,

y(t) = P (t) +
∫ 1

0

G(t, s)v(s)ds.

Conditions (C2) and (C3) yield

|y(t)| ≤ |P (t)|+ C0

∫ 1

0

|F (s, x(s))|ds

≤ sup
|u|≤r

|h1(u)|+ sup
|u|≤r

|h2(u)|+ C0‖ψ(·, r)‖L1 := η,

which implies that y is uniformly bounded with a uniform bound η. This finish to
prove that ΓB is bounded.

Next we show that Γ maps bounded sets into equicontinuous sets. Let B be a
bounded subset of C(J,R) as above. Let x ∈ B, y ∈ Γx and t, τ ∈ J . Then

|y(t)− y(τ)| ≤ |P (t)− P (τ)|+
∫ 1

0

|G(t, s)−G(τ, s)||F (s, x(s))|ds

≤ |P (t)− P (τ)|+
∫ 1

0

|G(t, s)−G(τ, s)|ψ(s, q)ds

≤ |P (t)− P (τ)|+ ‖G(t, ·)−G(τ, ·)‖L1‖ψ(·, q)‖L1 .

In view of the continuity of P and G, and by use of the Lebesgue’s convergence
theorem, the right hand side tends to zero as τ → t. So ΓB is equicontinuous.

The results above, together with the Arzelá-Ascoli Theorem, allow us to conclude
that, for any bounded subset B of C(J,R), ΓB is relatively compact. Hence, Γ is
completely continuous.

Now take M∗ as in condition (C3)-(iii), set

U = {x ∈ C(J,R) : ‖x‖ < M∗}

and consider the operator Γ : U → P(C(J,R)). From Theorem 3.2 it follows that
either the operator inclusion x ∈ Γx has a solution (i.e. problem (1.1)-(1.2) has a
solution) or there exists x ∈ ∂U and λ ∈ (0, 1) such that x ∈ λΓx.

Claim 5: The second alternative above does not occur. Let x be a solution of
x ∈ λΓx with λ ∈ (0, 1) and suppose that ‖x‖ = M∗. Then, for t ∈ J and some
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v ∈ SF (x),

|x(t)| =
∣∣∣∣λ(

P (t) +
∫ 1

0

G(t, s)v(s)ds
)∣∣∣∣

≤
∫ 1

0

|h1(x(s))|ds+
∫ 1

0

|h2(x(s))|ds+ C0

∫ 1

0

ψ(s, |x(s)|)ds

≤ sup
|u|≤M∗

|h1(u)|+ sup
|u|≤M∗

|h2(u)|+ C0‖ψ(·,M∗)‖L1 .

Consequently

M∗ ≤ sup
|u|≤M∗

|h1(u)|+ sup
|u|≤M∗

|h2(u)|+ C0‖ψ(·,M∗)‖L1 ,

which contradicts condition (C3)-(iii). The conclusion of our theorem is straight-
forward from Theorem 3.2. �

Hereafter, we discuss a special case to illustrate how condition (C3)-(iii) can be
satisfied.

Let us suppose that, for each i = 1, 2, the function hi is continuous and there
exist αi, βi, xi ≥ 0, with α1 + α2 < 1, such that |hi(x)| ≤ αix + βi, for all x ≥ xi.
Also, suppose that there exist a nondecreasing continuous eventually α3-sublinear
function ψ : R+ → R+, with α3 <

1−(α1+α2)
C0‖p‖L1

, and a function p ∈ L1(J,R+) such

that ψ(t, x) = p(t)ψ(x), for all x ≥ 0.
Let ε > 0 be such that

α3 <
1− (α1 + α2)− ε

C0‖p‖L1

and set
q(x) = β1 + β2 + (α1 + α2 − 1)x+ C0‖p‖L1ψ(x), x ≥ 0.

As ψ is eventually α3-sublinear, there exists x3 > 0 such that, for all x ≥ x3,
ψ(x) ≤ α3x and then

q(x) ≤ β1 + β2 + (α1 + α2 − 1)x+ C0‖p‖L1α3x

≤ β1 + β2 + (α1 + α2 − 1)x+ C0‖p‖L1
1− (α1 + α2)− ε

C0‖p‖L1
x

= β1 + β2 − εx.

Thus, for x > max{x3,
β1+β2

ε }, we see that q(x) < 0, i.e.

q(x) = β1 + β2 + (α1 + α2 − 1)x+ C0‖p‖L1ψ(x) < 0

or

x > β1 + β2 + (α1 + α2)x+ C0‖p‖L1ψ(x).

This implies that

x > sup
|u|≤x

|h1(u)|+ sup
|u|≤x

|h2(u)|+ C0‖ψ(·, x)‖L1 ,

whenever

x > max
{
x1, x2, x3,

β1 + β2

ε

}
.

Therefore, if hi, i = 1, 2 and ψ are as above, we can always find a constant M∗ > 0
satisfying condition (C3)-(iii). Hence, we have the following corollary.



CONVEX AND NONCONVEX DIFFERENTIAL INCLUSIONS 97

Corollary 3.4. Assume that (C1) holds. In addition, assume that the following
conditions (C2’) and (C3’) are satisfied.

(C2’) Each function hi : R → R, i = 1, 2, is continuous and there exist constants
αi, βi, xi ≥ 0, with α1+α2 < 1, such that |hi(x)| ≤ αix+βi, for all x ≥ xi.

(C3’) There exist a continuous nondecreasing function ψ : R+ → R+ which is
eventually α3-sublinear, with α3 <

1−(α1+α2)
C0‖p‖L1

, and a function p ∈ L1(J,R+)
such that

|F (t, x)| ≤ p(t)ψ(|x|), for almost all t ∈ J and all x ∈ R.
Then problem (1.1)-(1.2) has a solution on J .

3.2. Nonconvex case. Suppose that the multivalued function F : J ×R → P(R)
in (1.1) has nonempty compact (nonconvex) values. We assign to F the multivalued
operator F : C(J,R) → P(L1(J,R)) defined by F(x) = S1

F (x), where S1
F (x) is given

by (2.1). We say that F is of lower semi-continuous type (in brief l.s.c. type) if the
operator F has property (BC), that is,

1) F is l.s.c.,
2) F has nonempty closed and decomposable values.

The following selection result [1] due to Bressan and Colombo and Lemma 3.6
below are of great importance in the proof of Theorem 3.8.

Lemma 3.5. Let F : C(J,R) → P(L1(J,R)) be a multivalued operator which has
property (BC). Then F has a continuous selection, that is, there exists a continuous
function (single valued) f0 : C(J,R) → L1(J,R) such that f0(x) ∈ F(x) for all
x ∈ C(J,R).

Lemma 3.6. [5] Let F : J × R → P(R) be a multivalued function with nonempty
compact values. Assume (C1) and (C3)-(i) hold. Then F is of l.s.c. type.

For the proof of Theorem 3.8, we rely on the well-known Leray-Schauder non-
linear alternative for single valued functions [4].

Theorem 3.7. Let X be a Banach space and U an open and bounded subset of X
with 0 ∈ U . Suppose that Γ : U → X is a continuous and completely continuous
operator. Then, either

(i) Γ has a fixed point in U , or
(ii) there exists a x ∈ ∂U (the boundary of U) and a λ ∈ (0, 1) with x = λΓx.

Now, our main result of this section reads as follows.

Theorem 3.8. Assume that conditions (C1), (C2) and (C3) hold. Then problem
(1.1)-(1.2) has a solution on J .

Proof. By Lemma 3.6 together with Lemma 3.5, the multivalued operator F defined
above has a continuous selection f0 : C(J,R) → L1(J,R) such that f0(x) ∈ F(x)
for all x ∈ C(J,R). By analogy with the single valued case, we denote f(·, x(·)) =
f0(x)(·), for any x ∈ C(J,R).

Consider then the problem

x′′(t) = f(t, x(t)), a.e. t ∈ J,(3.3)

x(0)− k1x
′(0) =

∫ 1

0

h1(x(s))ds, x(1) + k2x
′(1) =

∫ 1

0

h2(x(s))ds.(3.4)



98 M. LAKRIB

It is clear that if x ∈ AC1(J,R) is a solution of (3.3)-(3.4), then x is a solution to
the problem (1.1)-(1.2).

Integrating (3.3) on [0, t] for t ∈ J , problem (3.3)-(3.4) becomes equivalent to
the integral equation x(t) = (Γx)(t) where the operator Γ : C(J,R) → C(J,R) is
given by

(Γx)(t) = P (t) +
∫ 1

0

G(t, s)f(s, x(s))ds, x ∈ C(J,R), t ∈ J,

where the functions P and G are as in (3.1) and (3.2), respectively.
We will prove that Γ fulfills the hypotheses of Theorem 3.7.
We first show that Γ is continuous. To this end, let {xn} with xn → x in C(J,R).

After some standard calculations we obtain, for t ∈ J ,

|(Γxn)(t)− (Γx)(t)| ≤ ‖h1(xn(·))− h1(x(·))‖L1 + ‖h2(xn(·))− h2(x(·))‖L1

+C0‖f(·, xn(·))− f(·, x(·))‖L1 .
(3.5)

Let B = {u ∈ C(J,R) : ‖u‖ ≤ r} for some r > 0 such that ‖xn‖, ‖x‖ ≤ r, for all
n ∈ N. Since, by (C3)-(i),

|f(s, xn(s))− f(s, x(s))| ≤ 2ψ(s, r), a.e. on J,

then by the continuity of h1, h2 and f in its second variable and the Lebesgue’s
convergence theorem, from (3.5) we deduce that Γxn → Γx; which completes the
proof that Γ is continuous.

Now, as the proofs that Γ is completely continuous and that the second alter-
native in Theorem 3.7 is deactivate follow the same lines as in the proof that the
operator Γ in the proof of Theorem 3.3 possesses the same property and that the
second alternative in Theorem 3.2 does not occur, they are omitted.

The conclusion of our theorem follows immediately by Theorem 3.7. �
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