INVERSE LIMITS OF H-CLOSED SPACES

IVAN LONČAR

ABSTRACT. The main purpose of this paper is to study the non-emptiness and H-closeness of inverse limits of H-closed spaces.

1. INTRODUCTION

An inverse system $\mathbf{X} = \{X_a, p_{ab}, A\}$ [4, p. 135] over a directed set A is a function which attaches to each $a \in A$ a space X_a and to each pair $a, b \in A$ such that $a \leq b$ a mapping $p_{ab} : X_b \to X_a$ such that

$$p_{aa} = \text{identity}, \quad a \in A,$$

 $p_{ab}p_{bc} = p_{ac}, \quad a \le b \le c.$

1

The *inverse limit* $\lim \mathbf{X}$ of the inverse system $\mathbf{X} = \{X_a, p_{ab}, A\}$ is the set of all points $\{x_a\}$ of the Cartesian product $\Pi\{X_a : a \in A\}$ satisfying $p_{ab}(x_b) = x_a$ for every $a \leq b$.

For each inverse system $\mathbf{X} = \{X_a, p_{ab}, A\}$ we define [4, Proposition 2.5.1, p.135]

$$X_{ab} = \{\{x_a\} \in \Pi\{X_a : a \in A\} : p_{ab}(x_b) = x_a, \ a \le b\}.$$

Proposition 1. [4, Proposition 2.5.1, p.135]. The limit of an inverse system $\mathbf{X} = \{X_a, p_{ab}, A\}$ of a Hausdorff spaces X_a is closed subset of the Cartesian product $\Pi\{X_a : a \in A\}$.

For each inverse system $\mathbf{X} = \{X_a, p_{ab}, A\}$ we define [4, Theorem 3.2.13, p.188]

 $Z_a = \{\{x_a\} \in \Pi\{X_a : a \in A\} : p_{ba}(x_a) = x_b, \ b \le a\}$

In [4, Theorem 3.2.13, p.188] it is used that Z_a is closed in $\Pi\{X_a : a \in A\}$. This is true if each X_a is Hausdorff.

Proposition 2. The family $\{Z_a : a \in A\}$ has the finite intersection property.

Proof. This follows from the fact that for each pair a, b there is a $c \in A$ such that $Z_c \subset Z_a \cap Z_b$ [4, The proof of Theorem 3.2.13, p. 188].

Let (X, τ) be an arbitrary topological space. According to [17], a point $x \in X$ is said to be a θ -cluster point of a set $A \subset X$ if and only if $\operatorname{Cl} V \cap A \neq \emptyset$ whenever Vis an open neighbourhood of x. Let $|A|_{\theta}$ denote the set of all θ -cluster points of A; A is said to be θ - closed if and only if $|A|_{\theta} = A$. The above concepts are generally used in the literature (see e.g. [14] and [2]).

©2008 AulonaPress (Albanian J. Math.)

¹⁹⁹¹ Mathematics Subject Classification. Primary 54F15, 54F50; Secondary 54B35.

Key words and phrases. Inverse limit, H-closed, θ -closed.

Proposition 3. [3, (2.3)]. A space X is Hausdorff if and only if for each $p \in X$, $|\{p\}|_{\theta} = \{p\}$.

Proposition 4. [3, (2.4)]. A space is regular if and only if for every $A \subset X$, $|A|_{\theta} = Cl A$.

In the sequel the following theorem frequently will be used.

Theorem 1.1. [6, Theorem 2]. In any topological space:

- (a): the empty set and the whole space are θ -closed,
- (b): arbitrary intersection and finite unions of θ -closed sets are θ -closed,
- (c): $Cl K \subset |K|_{\theta}$ for each subset K,
- (d): $a \theta$ -closed subset is closed.

A subset $A \subset X$ is said to be θ -open if $X \setminus A$ is θ -closed. A subset $A \subset X$ is said to be regular- open provided Int (Cl (A)) = A.

A Hausdorff space X is H-closed [1] if it is closed in any Hausdorff space in which it is embedded.

The following two characterizations are given in [1].

Proposition 5. [1, Theorem 1]. A Hausdorff space X is H-closed if and only if every family $\{U_{\mu} : U_{\mu} \text{ is open in } X, \mu \in \Omega\}$ with the finite intersection property has the property $\cap \{ Cl U_{\mu} : \mu \in \Omega\} \neq \emptyset$.

Proposition 6. [1, Theorem 2]. A Hausdorff space X is H-closed if for each open cover $\{U_{\mu} : \mu \in M\}$ of X there exists a finite subfamily $\{U_{\mu_1}, ..., U_{\mu_k}\}$ such that $\{Cl U_{\mu_1}, ..., Cl U_{\mu_k}\}$ is a cover of X.

Proposition 7. [6]. A Hausdorff space X is H-closed if and only if for every family $\{A_{\mu} : A_{\mu} \subset X, \mu \in \Omega\}$ with the finite intersection property there exists a point $x \in X$ such that $Cl \ V \cap A \neq \emptyset$ for every open set V containing x and every A_{μ} .

The point x is called θ -accumulation point. From this characterizations it follows the following lemma frequently used in the paper.

Lemma 1.2. If X is H-closed, then every family $\{A_{\mu}, \mu \in \Omega\}$ of θ -closed subsets of X with the finite intersection property has a non-empty intersection $\cap \{A_{\mu}, \mu \in \Omega\}$.

Proof. Let X be H-closed and let $\{A_{\mu}, \mu \in \Omega\}$ be a family of θ -closed subsets of X with the finite intersection property. By Proposition 7 we infer that there exists a θ -accumulation point x such that $\operatorname{Cl} V \cap A \neq \emptyset$ for every open set V containing x and every A_{μ} . This means that $x \in \cap \{A_{\mu} : , \mu \in \Omega\}$ since each A_{μ} is θ -closed. \Box

Theorem 1.3. [2, (2.4), p.410]. Disjoint θ -closed subsets of an H-closed space are contained in disjoint open subsets.

Lemma 1.4. If $f: X \to Y$ is a continuous mapping, then $f^{-1}(F)$ is θ -closed in X if F is θ -closed in Y.

Proof. If $x \in X \setminus f^{-1}(F)$, then $f(x) \notin F$. There exists an open set U such that $f(x) \in U$ and $\operatorname{Cl} U \cap F = \emptyset$ since F is θ -closed in Y. The open set $f^{-1}(U)$ contains x and $\operatorname{Cl} f^{-1}(U) \cap f^{-1}(F) = \emptyset$ since $f^{-1}(\operatorname{Cl} U) \cap f^{-1}(F) = \emptyset$. Hence, if $x \in X \setminus f^{-1}(F)$, then $x \in X \setminus |f^{-1}(F)|_{\theta}$, and, consequently, $f^{-1}(F)$ is θ -closed in X.

A net $\{x_{\mu} : \mu \in M\}$ is *eventually* in a set A if and only if there exists a $\mu \in M$ such that $x_{\nu} \in A$ for each $\nu \geq \mu$ [12, p. 65].

A net $\{x_{\mu} : \mu \in M\}$ is *frequently* in a set A if and only if for each $\mu \in M$ there is a $\nu \geq \mu$ such that $x_{\nu} \in A$.

A net in a topological space is said to θ -converge (θ -accumulate) [6, Definition 3] to a point x in the space if then net is eventually (frequently) in Cl (V) for each open set V about x.

The following two theorems are proved in [17, Lemmas 1, 2, 3]. See also [9].

Theorem 1.5. A point x in a topological space is in θ -closure of a subset K if and only if there is a net x_a in K which θ -converges to x $(x_a \xrightarrow{\theta} x)$.

Theorem 1.6. A Hausdorff space is H-closed if and only if each net in the space has a θ -convergent subnet.

In the sequel the following Proposition will be frequently used.

Proposition 8. [3, (2.7), p. 45]. A θ -closed subset of an H-closed space is H-closed.

2. Inverse limit of H-closed spaces and mappings with θ -closed graphs

In this Section we consider inverse limit of inverse systems $\mathbf{X} = \{X_a, p_{ab}, A\}$ of H-closed spaces X_a and bonding mappings p_{ab} with θ -closed graphs. Such bonding mappings p_{ab} are special case of multifunction considered in [11].

Let $f: X \to Y$ be a mapping. The graph G(f) of f is

$$G(f) = \{ (x, y) \in X \times Y : y = f(x) \}.$$

Theorem 2.1. [11, Theorem 2.3]. The following statements are equivalent for spaces X, Y, and multifunction $\Phi : X \to Y$:

- (a): The multifunction Φ has a θ -closed graph $G(\Phi)$,
- **(b):** For each $(x, y) \in (X \times Y) G(\Phi)$ there are sets $V \ni x$ in X and $W \ni y$ in Y with $\Phi(Cl(V)) \cap Cl(W) = \emptyset$.

Now we shall prove the following result concerning inverse limit of inverse systems $\mathbf{X} = \{X_a, p_{ab}, A\}$ of H-closed spaces X_a and bonding mappings p_{ab} with θ -closed graph.

Theorem 2.2. Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be an inverse system of non-empty *H*-closed spaces X_a and bonding mappings p_{ab} with θ -closed graphs. Then $X = \lim \mathbf{X}$ is non-empty, θ -closed in $\Pi\{X_a : a \in A\}$ and *H*-closed.

Proof. It is known that $\Pi\{X_a : a \in A\}$ is H-closed [4, Problem 3.12.5 (d), p. 283]. Let us prove that $Z_a = \{(x_b) \in \Pi X_a : p_{ab}(x_a) = x_b\}$ is θ -closed for each $a \in A$. To do this we shall prove that $\Pi\{X_a : a \in A\} \setminus Z_a$ is θ -open. Let $y = (y_a) \in \Pi\{X_a : a \in A\} \setminus Z_a$. There exists $b \leq a$ such that $p_{ab}(x_a) \neq x_b$. It follows from Theorem 2.1 that there exists a pair U, V of open sets such that $x_a \in U, x_b \in V$ and $p_{ba}(\operatorname{Cl} U) \cap \operatorname{Cl} V = \emptyset$ since p_{ba} has a θ -closed graph.

Now $Z = U \times V \times \Pi\{X_c : c \neq a, b\}$ is open set containing y with the property $\operatorname{Cl} Z \subset \Pi\{X_a : a \in A\} \setminus Z_a$. This means that $\Pi\{X_a : a \in A\} \setminus Z_a \theta$ -open, and, consequently, Z_a is θ -closed. In order to prove that $X = \lim \mathbf{X}$ is non-empty consider the family $\{Z_a : a \in A\}$ of θ -closed sets Z_a . This family has the finite intersection property (Proposition 2). By Lemma 1.2 we infer that $\cap\{Z_a : a \in A\}$ = $\lim \mathbf{X}$ is non-empty. Now, (b) of Theorem 1.1 implies that $\lim \mathbf{X}$ is θ -closed. Finally, from Proposition 8 it follows that $\lim \mathbf{X}$ is H-closed.

IVAN LONČAR

3. Inverse limit of H-closed spaces and strongly continuous bonding Mappings

A mapping $f: X \to Y$ is said to be *strongly continuous at* $x \in X$ [15] provided for each neighborhood U of f(x) there is a neighborhood V of x such that $f(\operatorname{Cl} V) \subset U$. A mapping $f: X \to Y$ is said to be *strongly continuous* provided f is strongly continuous at each point $x \in X$.

If Y is a regular space, then each continuous mapping $f: X \to Y$ is strongly continuous.

Proposition 9. Let Y be a Hausdorff space. Every strongly continuous mapping $f: X \to Y$ has a θ -closed graph.

Proof. Let $x \in X$ and $y \in Y$ such that $y \neq f(x)$. There are open disjoint sets U, V in Y such that $y \in U$ and $f(x) \in V$. It is clear that $\operatorname{Cl} U \cap V = \emptyset$. Moreover, there is an open set W containing x such that $p_{ab}(\operatorname{Cl} W) \subset V$ since f is strongly continuous. Now, for $(x, y) \in (X \times Y) - G\{f\}$ there are sets $W \ni x$ in X and $U \ni y$ in Y with $f(\operatorname{Cl}(W)) \cap \operatorname{Cl}(U) = \emptyset$. By Theorem 2.1 the proof is completed. \Box

Theorem 2.2 and Proposition 9 imply the following result.

Theorem 3.1. Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be an inverse system of non-empty H-closed spaces X_a and strongly continuous bonding mappings. Then $X = \lim \mathbf{X}$ is non-empty. Moreover, $X = \lim \mathbf{X}$ is θ -closed in $\Pi\{X_a : a \in A\}$ and H-closed.

4. Inverse limit of H-closed spaces and θ -closed bonding mappings

In this section we study the inverse systems $\mathbf{X} = \{X_a, p_{ab}, A\}$ with H-closed spaces X_a and θ -closed bonding mappings p_{ab} .

A mapping $f: X \to Y$ is said to be θ -closed if f(F) is θ -closed for each θ -closed subset $F \subset X$.

Remark 4.1. In [16, Definition 4.1, p. 490] is given the following definition. A function f is said to be θ -open if the image of every open set is θ -open. Similarly, a function f is said to be θ -closed if the image of every closed set is θ -closed.

Lemma 4.2. Let $f : X \to Y$ be a continuous mapping. The following conditions are equivalent:

- (a): $f \text{ is } \theta\text{-closed},$
- **(b):** for every $B \subset Y$ and each θ -open set $U \supseteq f^{-1}(B)$ there exists a θ -open set $V \supseteq B$ such that $f^{-1}(V) \subset U$.

Proof. The proof is similar to the proof of the corresponding theorem for closed mappings [4, p. 52]. \Box

Now we are ready to prove the following theorem.

Theorem 4.3. Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be an inverse system of non-empty H-closed spaces X_a and θ -closed bonding mappings p_{ab} . Then $X = \lim \mathbf{X}$ is non-empty and

$$p_a(X) = \cap \{p_{ab}(X_b) : b \ge a\}$$

where $p_a: X \to X_a, a \in A$, is a natural projection.

Proof. Let θ_a be a family of all non-empty θ -closed subsets of X_a and let \mathcal{Y} be a family of all collections $Y = \{Y_a : Y_a \in \theta_a, a \in A\}$ such that $p_{ab}(Y_b) \subset Y_a$. The family \mathcal{Y} is non-empty since $\mathbf{X} \in \mathcal{Y}$. For two collections $Y = \{Y_a : Y_a \in \theta_a, a \in A\}$ and $Z = \{Z_a : Z_a \in \theta_a, a \in A\}$ we shall write $Y \geq Z$ if $Y_a \subset Z_a$ for every $a \in A$. It is clear that (\mathcal{Y}, \geq) is a partially ordered set. The remaining part of the proof consists of several steps.

Step 1. There exists a maximal element in (\mathcal{Y}, \geq) . It suffices to prove that (\mathcal{Y}, \geq) is inductive, i.e., if $L = \{Y^{\lambda} : \lambda \in \Lambda\}$ is a strictly increasing chain in (\mathcal{Y}, \geq) , then there is an element $M \in (\mathcal{Y}, \geq)$ such that $M \geq Y^{\lambda}$ for every $\lambda \in \Lambda$. We define $M = \{M_a : M_a \in \theta_a, a \in A\}$ such that $M_a = \cap\{Y_a^{\lambda} : \lambda \in \Lambda\}$. From Lemma 1.2 and Theorem 1.1 it follows that the set M_a is non-empty θ -closed subset of X_a . Moreover, $p_{ab}(M_b) \subset M_a$.

Step 2. If $Y = \{Y_a : Y_a \in \theta_a, a \in A\}$ is a maximal element of (\mathcal{Y}, \geq) , then $Y_a = p_{ab}(Y_b)$ for every pair $a, b \in A$ such that $a \leq b$. Let $Z = \{Z_a : Z_a \in \theta_a, a \in A\}$ be a collection such that $Z_a = \cap\{p_{ab}(Y_b) : b \geq a\}$. Each $p_{ab}(Y_b)$ is θ -closed since p_{ab} is θ -closed and $Y_b \in \theta_b$. By Lemma 1.2 and Theorem 1.1 it follows that the set Z_a is non-empty θ -closed subset of X_a . In order to prove that $Z \in (\mathcal{Y}, \geq)$ it suffices to prove that $p_{ab}(M_b) \subset M_a$. If $a \leq b$ then $p_{ab}(Z_b) \subset \cap\{p_{ab}(p_{bc}(Y_c)) : b \leq c\} = \cap\{p_{ac}(Y_c) : c \geq b\}$. On the other hand, for every $d \geq a$ there is a $c \in A$ such that $c \geq b, d$. It follows that $p_{ac}(Y_c) \subset p_{ad}(Y_d)$. This means that

$$\cap \{p_{ac}(Y_c): c \ge b\} = \cap \{p_{ad}(Y_d): c \ge b\} = Z_a.$$

Finally, we have $Z \in (\mathcal{Y}, \geq)$. Moreover, $Z_a \subset Y_a$ for each $a \in A$. This means that Z = Y since Y is maximal.

Step 3. If $Y = \{Y_a : Y_a \in \theta_a, a \in A\}$ is a maximal element of (\mathcal{Y}, \geq) , then Y_a is one-point set for every $a \in A$. Let $x_a \in Y_a$. Define

$$Z_b = \begin{cases} Y_b \cap p_{ab}^{-1}(x_a) & \text{if } b \ge a, \\ Y_b & \text{if } b \nleq a. \end{cases}$$

Let us prove that $Z = \{Z_a : Z_a \in \theta_a, a \in A\}$. From Proposition 3 and Lemma 1.4 it follows that $p_{ab}^{-1}(x_a)$ is θ -closed. Then, by Theorem 1.1, we infer that each $Y_b \cap p_{ab}^{-1}(x_a)$ is θ -closed. It is easy to prove that $p_{ab}(Z_b) \subset Z_a$. Hence, $Z \in (\mathcal{Y}, \geq)$. Now, Z = Y since $Z \geq Y$ and Y is maximal. This means $Y_a = \{x_a\}$.

Step 4. lim **X** is non-empty. From Step 3 we have $Z = \{Z_a : Z_a \in \theta_a, a \in A\} = \{x_a : a \in A\}$ such that $p_{ab}(x_b) = x_a$ for every pair a, b such that $b \ge a$.

Step 5. Let us prove $p_a(X) = \cap \{p_{ab}(X_b) : b \ge a\}$. It is clear that $p_a(X) \subset \cap \{p_{ab}(X_b) : b \ge a\}$. Let us prove that $p_a(X) \supset \cap \{p_{ab}(X_b) : b \ge a\}$. Let $x_a \in \cap \{p_{ab}(X_b) : b \ge a\}$. This means that $Y_b = p_{ab}^{-1}(x_a)$ is non-empty for each $b \ge a$. Moreover, Y_b is θ -closed (Proposition 3 and Lemma 1.4). For each b non-comparable with a, let $Y_b = X_b$. Now, we have a collection $Y = \{Y_a : Y_a \in \theta_a, a \in A\}$ which is evidently in (\mathcal{Y}, \ge) . There exists a maximal element $Z = \{Z_a : Z_a \in \theta_a, a \in A\}$ in (\mathcal{Y}, \ge) such that $Z \ge Y$. It follows that each Y_a is some Z_a which is a point $z_a \in X_a$ (Step 3) since Z is maximal. The collections (z_a) is a point of lim \mathbf{X} . Hence, $p_a(X) = \cap \{p_{ab}(X_b) : b \ge a\}$.

QUESTION 1. Is it true that $X = \lim \mathbf{X}$ in Theorem 4.3 is H-closed? **QUESTION 2.** Is every projection $p_a : \lim \mathbf{X} \to \mathbf{X}_a \ \theta$ -closed?

At the end of this section we consider the special kinds of θ -closed mappings.

A mapping $f : X \to Y$ has the *inverse property* provided $f^{-1}(\operatorname{Cl} V) = \operatorname{Cl} f^{-1}(V)$ for every open set $V \subset Y$.

Lemma 4.4. If $f : X \to Y$ is a closed mapping with the inverse property and if X and Y are H-closed, then f is θ -closed.

Proof. Let *F* be a *θ*-closed subset of *X*. In order to prove that f(F) is *θ*-closed we shall prove that $Y \setminus f(F)$ is *θ*-open. Let $y \in Y \setminus f(F)$. Now, $f^{-1}(y)$ is *θ*-closed subset of *X* (Lemma 1.4). Using Theorem 1.3 we obtain disjoint open sets *U* and *V* such that $F \subset U$ and $f^{-1}(y) \subset V$. It follows that $\operatorname{Cl} V \cap U = \emptyset$. The closeness of *f* imply the existence of an open set *W* about *y* such that $f^{-1}(W) \subset V$. We infer that $\operatorname{Cl} f^{-1}(W) \subset \operatorname{Cl} V$. Moreover, $f^{-1}(\operatorname{Cl} W) \subset \operatorname{Cl} V$. It follows that $f^{-1}(V) \subset V$. We infer that $\operatorname{Cl} f^{-1}(W) \subset \operatorname{Cl} V$. Moreover, $f^{-1}(\operatorname{Cl} W) \subset \operatorname{Cl} V$. It follows that $f^{-1}(V) \subset V$. We infer that $\operatorname{Cl} f^{-1}(W) \subset \operatorname{Cl} V$. Moreover, $f^{-1}(V) \subset V$. It follows that $f^{-1}(V) \subset F = \emptyset$, i.e., $\operatorname{Cl} W \cap f(F) = \emptyset$. Hence, if $y \in Y \setminus f(F)$, then *y* has a neighborhood *W* such that $\operatorname{Cl} W \subset Y \setminus f(F)$, i.e., $Y \setminus f(F)$ is *θ*-open and f(F) is *θ*-closed.

Each open mapping has the inverse property [4, Exercise 1.4.C., p. 57]. Hence, we have the following corollary.

Corollary 4.5. If $f : X \to Y$ is a closed and open mapping and if X and Y are *H*-closed, then f is θ -closed.

Lemma 4.6. If X and Y are H-closed, then each strongly continuous mapping $f: X \to Y$ is θ -closed.

Proof. Let us recall that $f: X \to Y$ is said to be strongly continuous at $x \in X$ [15] provided for each neighborhood U of f(x) there is a neighborhood V of x such that $f(\operatorname{Cl} V) \subset U$. A mapping $f: X \to Y$ is said to be strongly continuous provided f is strongly continuous at each point $x \in X$. Now, let us prove Lemma.

Let F be a θ -closed subset of X. We have to prove that f(F) is a θ -closed subset of Y. Suppose that it is not θ -closed. There is a point $y \in |f(F)|_{\theta} \setminus f(F)$. By Theorem 1.5 we infer that there is a net $\{y_a : y_a \in f(F), a \in A\}$ which θ converges to y. Now there is a net $\{x_a : x_a \in F, f(x_a) = y_a\}$. By Theorem 1.6 we may assume that this net is θ -convergent to some point $x \in X$. From Theorem 1.5 it follows that $x \in F$ since F is θ -closed. It is clear that f(x) is θ -limit of $\{f(x_a) : x_a \in F\} = \{y_a : y_a \in f(F), a \in A\}$. We infer that f(x) = y since, in the opposite case, f(x) and y have disjoint neighborhoods U and V such that $f(x) \in U$ and there is a neighborhood W such that $f(C \cap W) \subset U$. This means that a net $\{y_a : y_a \in f(F), a \in A\}$ is not eventually in $C \cap V$. This is impossible. Hence, f(x) = y From $x \in F$ it follows that $f(x) \in f(F)$. Hence $y \in f(F)$ and f(F) is θ -closed. The proof is completed. \Box

Lemma 4.7. If Y is Urysohn and X H-closed, then each continuous mapping $f: X \to Y$ is θ -closed.

Proof. Let F be a θ -closed subset of X. We have to prove that f(F) is a θ -closed subset of Y. Suppose that it is not θ -closed. There is a point $y \in |f(F)|_{\theta} \setminus f(F)$. By Theorem 1.5 we infer that there is a net $\{y_a : y_a \in f(F), a \in A\}$ which θ -converges to y. Now there is a net $\{x_a : x_a \in F, f(x_a) = y_a\}$. By Theorem 1.6 we may assume that this net is θ -convergent to some point $x \in X$. From Theorem 1.5 it follows that $x \in F$ since F is θ -closed. It is clear that f(x) is θ -limit of $\{f(x_a) : x_a \in F\}$ = $\{y_a : y_a \in f(F), a \in A\}$. We infer that f(x) = y since in Urysohn space a net

52

has only one θ -limit. From $x \in F$ it follows that $f(x) \in f(F)$. Hence $y \in f(F)$ and f(F) is θ -closed. The proof is completed

A function $f : X \to Y$ is almost closed [2] if for any set $A \subset X$ we have $f(|A|_{\theta}) = |f(A)|_{\theta}$.

Now we shall prove the following theorem.

Theorem 4.8. Each almost closed function is θ -closed.

Proof. If A is θ -closed, then $A = |A|_{\theta}$. Now we have $f(|A|_{\theta}) = |f(A)|_{\theta}$ or $f(A) = |f(A)|_{\theta}$. This means that f(A) is θ -closed. Hence f is θ -closed. \Box

Corollary 4.9. Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be an inverse system of non-empty H-closed spaces X_a and closed bonding mappings p_{ab} with the inverse property. Then $X = \lim \mathbf{X}$ is non-empty and H-closed.

Proof. Lemma 4.4 and Theorem 4.3 imply the Corollary. H-closenes of $\lim \mathbf{X}$ it follows from Theorems 3.3 and 3.7 of [5].

5. Inverse systems of nearly-compact spaces

We say that a space X is an Urysohn space ([7], [10]) if for every pair $x, y, x \neq y$, of points of X there exist open sets V and W about x and y such that $\operatorname{Cl} V \cap \operatorname{Cl} W = \emptyset$.

A Hausdorff space is *nearly-compact* [8] if every open cover if every open cover $\{U_{\mu} : \mu \in M\}$ has a finite subcollection $\{U_{\mu_1}, ..., U_{\mu_n}\}$ such that Int Cl $U_{\mu_1} \cup ... \cup$ Int Cl $U_{\mu_n} = X$. Every nearly-compact space is H-closed.

Lemma 5.1. [8]. A space X is nearly-compact if and only if it is H-closed and Urysohn.

If $\mathbf{X} = \{X_a, p_{ab}, A\}$ is an inverse system of nearly-compact spaces, then θ closeness of bonding mappings p_{ab} in Theorem 4.3 follows from Lemma 4.7, but we shall give the alternate proof of the following theorem.

Theorem 5.2. Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be an inverse system of non-empty nearlycompact spaces X_a . Then $X = \lim \mathbf{X}$ is non-empty, θ -closed in $\Pi\{X_a : a \in A\}$ and nearly-compact.

Proof. Let us observe that $\Pi\{X_a : a \in A\}$ is H-closed [4, Problem 3.12.5 (d), p. 283]. Let us prove that $Y_a = \{(x_b) \in \Pi X_a : p_{ab}(x_a) = x_b\} \theta$ -closed for each $a \in A$. To do this we shall prove that $\Pi X_a \setminus Y_a \theta$ -open. Let $y = (y_a) \in \Pi X_a \setminus Y_a$. There exists $b \leq a$ such that $p_{ab}(x_a) \neq x_b$. It follows that there exists a pair U, V of open sets such that $x_b \in U$, $p_{ab}(x_a) \in V$ and $\operatorname{Cl} U \cap \operatorname{Cl} V = \emptyset$ since X_b is Urysohn. Moreover, there is an open set W containing x_a such that $p_{ab}(\operatorname{Cl} W) \subset \operatorname{Cl} V$. Now $Z = U \times W \times \Pi\{X_c : c \neq a, b\}$ is open set containing y with the property $\operatorname{Cl} Z \subset \Pi X_a \setminus Y_a$. This means that To $\Pi X_a \setminus Y_a \theta$ -open, and, consequently, Y_a is θ -closed sets Y_a . This family has the finite intersection property (Proposition 2). By Lemma 1.2 we infer that $\cap\{Y_a : a \in A\} = \lim \mathbf{X}$ is non-empty. It is θ -closed by Theorem 1.1 and H-closed by Proposition 8. Moreover, lim \mathbf{X} is Urysohn and, consequently, nearly-compact.

IVAN LONČAR

6. Inverse systems with semi-open bonding mappings

A mapping $f: X \to Y$ is said to be *semi-open* provided Int $f(U) \neq \emptyset$ for each non-empty open $U \subset X$.

Theorem 6.1. Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be an inverse system of non-empty H-closed spaces X_a and semi-open bonding mappings. Then $X = \lim \mathbf{X}$ is non-empty and H-closed.

Proof. The proof is broken into several steps.

Step 1. By virtue of [13, Theorem 2, p. 10] we can assume that A is cofinite, i.e., for each $a \in A$ the set of all predecessors of a is finite set.

Step 2. The sets

$$Z_a = \{ \{x_a\} \in \Pi X_a : p_{ab}(x_b) = x_a, \ a \le b \}$$

have non-empty interior. Let $a_1, ..., a_k$ be a set of all predecessors of a. If $U \subset X_a$ is open set, then Int $p_{a_1a}(U) \times ... \times$ Int $p_{a_ka}(U) \times U \times \Pi\{X_b : b \notin \{a_1, ..., a_k, a\}\}$ is an open set contained in Z_a . Hence, Int Z_a is non-empty for each $a \in A$.

Step 3. The family { Int $Z_a : a \in A$ } has the finite intersection property. This follows from the fact that for each pair a, b there is a $c \in A$ such that $Z_c \subset Z_a \cap Z_b$ and, consequently, Int $Z_c \subset$ Int $Z_a \cap$ Int Z_b .

Step 4. \cap { Cl Int $Z_a : a \in A$ } is non-empty. This follows from Proposition 5. **Step 5.** Now $\lim \mathbf{X} = \cap \{Z_a : a \in A\} \supset \cap \{$ Cl Int $Z_a : a \in A\}$. This means that $\lim \mathbf{X}$ is non-empty and the proof of non-emptiness is completed.

Step 6. $X = \lim \mathbf{X}$ is *H*-closed. Let $\mathcal{U} = \{U_{\mu} : \mu \in M\}$ be a maximal family of open sets of X with the finite intersection property. From the definition of topology on X it follows that there is an $a(\mu) \in A$ such that $\operatorname{Int} f_{a(\mu)}(U_{\mu})$ is non-empty. By virtue of the semi-openness of p_{ab} we infer that $\operatorname{Int} f_a(U_{\mu}) \neq \emptyset$ for every $a \in A$ and every $\mu \in M$. This means that a family $\{ \operatorname{Int} f_a(U_{\mu}) : \mu \in M \}$ is a family with the finite intersection property. Let us prove that this family is maximal. If U is an open set which intersects every set $\operatorname{Int} f_a(U_{\mu}), \mu \in M$, then $p_a^{-1}(U) \in \mathcal{U}$ since $p_a^{-1}(U)$ intersects every U_{μ} . This means that $U \in \{ \operatorname{Int} f_a(U_{\mu}) : \mu \in M \}$. Hence, $\{ \operatorname{Int} f_a(U_{\mu}) : \mu \in M \}$ is maximal. From the H-closeness of X_a and Proposition 5 it follows that there is a point $x_a = \cap \{ \operatorname{Cl} \operatorname{Int} f_a(U_{\mu}) : \mu \in M \}$. It is obvious that $p_{ab}(x_b) = x_a$ for every $b \geq a$.Now, $x = (x_a : a \in A)$ is a point of $\lim \mathbf{X}$ and $x \in \cap \{ \operatorname{Cl} U_{\mu}) : \mu \in M \}$. By Proposition 5 $\lim \mathbf{X}$ is H-closed and the proof is completed. \Box

We close this Section with some corollaries of Theorem 6.1.

Corollary 6.2. Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be an inverse system of non-empty H-closed spaces X_a and open bonding mappings. Then $X = \lim \mathbf{X}$ is non-empty and H-closed.

Remark 6.3. For another proof of this corollary see [18].

A mapping $f : X \to Y$ is an *irreducible mapping* if the set $f^{\#}(U) = \{y \in Y : f^{-1}(y) \subset U\}$ is non-empty for every non-empty open se $U \subset X$. If $f : X \to Y$ is a closed and irreducible mapping, then $f^{\#}(U)$ is open and non-empty. Hence, a closed and irreducible mapping is semi-open. Theorem 6.1 now gives the following corollary.

Corollary 6.4. Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be an inverse system of non-empty H-closed spaces X_a and closed irreducible bonding mappings. Then $X = \lim \mathbf{X}$ is non-empty and H-closed.

Acknowledgement. The author is very grateful to the referee for his/her help and valuable suggestions.

References

- P. S. Aleksandroff et P. S. Urysohn, Mémoire sur les espaces topologiques compacts, Verh. Akademie Amsterdam, Deel XIV, Nr. 1 (1929), 1-96.
- [2] R. F. Dickman, Jr. and J. R. Porter, θ -closed subsets of Hausdorff spaces, Pac. J. Math. 59 (1975), 407-415.
- [3] R. F. Dickman, Jr. and J. R. Porter, θ -perfect and θ-absolutely closed function, Illinois J. Math 21 (1977), 42-60.
- [4] R. Engelking, General Topology, PWN, Warszawa, 1977.
- [5] L. M. Friedler and D. H. Pettey, Inverse limits and mappings of minimal topological spaces, Pac. J. Math. 71 (1977), 429-448.
- [6] L. L. Herrington and P. E. Long, Characterizations of H-closed spaces, Proc. Amer. Math. Soc. 48 (1975), 469-475.
- [7] L. L. Herrington, Characterizations of Urysohn-closed spaces, Proc. Amer. Math. Soc. 55 (1976), 435-439.
- [8] L. L. Herrington, Properties of nearly-compact spaces, Proc. Amer. Math. Soc. 45 (1974), 431-436.
- [9] J. E. Joseph, On H-closed spaces, Proc. Amer. Math. Soc. 55 (1976), 223-226.
- [10] J. E. Joseph, On Urysohn-closed and minimal Urysohn spaces, Proc. Amer. Math. Soc. 68 (1978), 235-242.
- [11] J. E. Joseph, Multifunctions and graphs, Pacific J. Math, Vol. 79, 1978, 509-529.
- [12] J. L. Kelley, General topology, D. van Nostrand 1963.
- [13] S. Mardesic and J. Segal, Shape theory. The inverse system approach, North-Holland Publishing Company, (1982).
- [14] T. Noiri, Strongly θ -precontinuous functions, Acta Math. Hungar., 90 (2001), 307-316.
- [15] M. Saleh, On θ-Continuity And Strong θ-Continuity, Applied Mathematics E-Notes 3 (2003), 42-48.
- [16] M. Saleh, On θ-closed sets and some forms of continuity, Archivum Mathematicum (Brno), 40 (2004), 383-393.
- [17] N. V. Veličko, *H-closed topological spaces*, Mat. Sb., 70 (112) (1966), 98-112.
- [18] T. O. Vinson, Jr. and R. F. Dickman, Jr., Inverse limits and absolutes of H-closed spaces, Proc. Amer. Math. Soc. 66 (1977), 351-358.

FACULTY OF ORGANIZATIONS AND INFORMATICS VARAŽDIN, CROATIA E-mail address: ivan.loncar@foi.hr or ivan.loncar1@vz.htnet.hr