
ALBANIAN JOURNAL
OF MATHEMATICS
Volume 2, Number 2, Pages 47–55 
ISSN 1930-1235: (electronic version)

INVERSE LIMITS OF H-CLOSED SPACES

IVAN LONČAR

Abstract. The main purpose of this paper is to study the non-emptiness and

H-closeness of inverse limits of H-closed spaces.

1. Introduction

An inverse system X = {Xa, pab, A} [4, p. 135] over a directed set A is a function
which attaches to each a ∈ A a space Xa and to each pair a, b ∈ A such that a ≤ b
a mapping pab : Xb → Xa such that

paa = identity, a ∈ A,

pabpbc = pac, a ≤ b ≤ c.

The inverse limit limX of the inverse system X = {Xa, pab, A} is the set of all
points {xa} of the Cartesian product Π{Xa : a ∈ A} satisfying pab(xb) = xa for
every a ≤ b.

For each inverse system X = {Xa, pab, A} we define [4, Proposition 2.5.1, p.135]

Xab = {{xa} ∈ Π{Xa : a ∈ A} : pab(xb) = xa, a ≤ b} .

Proposition 1. [4, Proposition 2.5.1, p.135]. The limit of an inverse system X =
{Xa, pab, A} of a Hausdorff spaces Xa is closed subset of the Cartesian product
Π{Xa : a ∈ A}.

For each inverse system X = {Xa, pab, A} we define [4, Theorem 3.2.13, p.188]

Za = {{xa} ∈ Π{Xa : a ∈ A} : pba(xa) = xb, b ≤ a}
In [4, Theorem 3.2.13, p.188] it is used that Za is closed in Π{Xa : a ∈ A}. This

is true if each Xa is Hausdorff.

Proposition 2. The family {Za : a ∈ A} has the finite intersection property.

Proof. This follows from the fact that for each pair a, b there is a c ∈ A such that
Zc ⊂ Za ∩ Zb [4, The proof of Theorem 3.2.13, p. 188]. �

Let (X, τ) be an arbitrary topological space. According to [17], a point x ∈ X is
said to be a θ-cluster point of a set A ⊂ X if and only if Cl V ∩A 6= ∅ whenever V
is an open neighbourhood of x. Let |A|θ denote the set of all θ-cluster points of A;
A is said to be θ- closed if and only if |A|θ = A. The above concepts are generally
used in the literature (see e.g. [14] and [2]).
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Proposition 3. [3, (2.3)]. A space X is Hausdorff if and only if for each p ∈ X,
|{p}|θ = {p}.

Proposition 4. [3, (2.4)]. A space is regular if and only if for every A ⊂ X,
|A|θ = Cl A.

In the sequel the following theorem frequently will be used.

Theorem 1.1. [6, Theorem 2]. In any topological space:
(a): the empty set and the whole space are θ-closed,
(b): arbitrary intersection and finite unions of θ-closed sets are θ-closed,
(c): Cl K ⊂ |K|θ for each subset K,
(d): a θ-closed subset is closed.

A subset A ⊂ X is said to be θ-open if X�A is θ-closed.A subset A ⊂ X is said
to be regular - open provided Int ( Cl (A)) = A.

A Hausdorff space X is H-closed [1] if it is closed in any Hausdorff space in which
it is embedded.

The following two characterizations are given in [1].

Proposition 5. [1, Theorem 1]. A Hausdorff space X is H-closed if and only if
every family {Uµ : Uµ is open in X, µ ∈ Ω} with the finite intersection property
has the property ∩{ Cl Uµ : µ ∈ Ω} 6= ∅.

Proposition 6. [1, Theorem 2]. A Hausdorff space X is H-closed if for each open
cover {Uµ : µ ∈ M} of X there exists a finite subfamily {Uµ1 , ..., Uµk

} such that
{ Cl Uµ1 , ..., Cl Uµk

} is a cover of X.

Proposition 7. [6]. A Hausdorff space X is H-closed if and only if for every
family {Aµ : Aµ ⊂ X, µ ∈ Ω } with the finite intersection property there exists a
point x ∈ X such that Cl V ∩ A 6= ∅ for every open set V containing x and every
Aµ.

The point x is called θ-accumulation point. From this characterizations it follows
the following lemma frequently used in the paper.

Lemma 1.2. If X is H-closed, then every family {Aµ, µ ∈ Ω } of θ-closed subsets
of X with the finite intersection property has a non-empty intersection ∩{Aµ, µ ∈ Ω
}.

Proof. Let X be H-closed and let {Aµ, µ ∈ Ω } be a family of θ-closed subsets of X
with the finite intersection property. By Proposition 7 we infer that there exists a
θ-accumulation point x such that Cl V ∩A 6= ∅ for every open set V containing x
and every Aµ. This means that x ∈ ∩{Aµ :, µ ∈ Ω } since each Aµ is θ-closed. �

Theorem 1.3. [2, (2.4), p.410]. Disjoint θ-closed subsets of an H-closed space are
contained in disjoint open subsets.

Lemma 1.4. If f : X → Y is a continuous mapping, then f−1(F ) is θ-closed in
X if F is θ-closed in Y .

Proof. If x ∈ X�f−1(F ), then f(x) /∈ F . There exists an open set U such that
f(x) ∈ U and Cl U ∩ F = ∅ since F is θ-closed in Y . The open set f−1(U)
contains x and Cl f−1(U)∩ f−1(F ) = ∅ since f−1( Cl U)∩ f−1(F ) = ∅. Hence, if
x ∈ X�f−1(F ), then x ∈ X�

∣∣f−1(F )
∣∣
θ
, and, consequently, f−1(F ) is θ-closed in

X. �
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A net {xµ : µ ∈ M} is eventually in a set A if and only if there exists a µ ∈ M
such that xν ∈ A for each ν ≥ µ [12, p. 65].

A net {xµ : µ ∈ M} is frequently in a set A if and only if for each µ ∈ M there
is a ν ≥ µ such that xν ∈ A.

A net in a topological space is said to θ-converge (θ-accumulate) [6, Definition
3] to a point x in the space if then net is eventually (frequently) in Cl (V ) for each
open set V about x.

The following two theorems are proved in [17, Lemmas 1, 2, 3]. See also [9].

Theorem 1.5. A point x in a topological space is in θ-closure of a subset K if and
only if there is a net xa in K which θ-converges to x (x

a
−−→

θ
x).

Theorem 1.6. A Hausdorff space is H-closed if and only if each net in the space
has a θ-convergent subnet.

In the sequel the following Proposition will be frequently used.

Proposition 8. [3, (2.7), p. 45]. A θ-closed subset of an H-closed space is H-closed.

2. Inverse limit of H-closed spaces and mappings with θ-closed graphs

In this Section we consider inverse limit of inverse systems X = {Xa, pab, A} of
H-closed spaces Xa and bonding mappings pab with θ-closed graphs. Such bonding
mappings pab are special case of multifunction considered in [11].

Let f : X → Y be a mapping. The graph G(f) of f is

G(f) = {(x, y) ∈ X × Y : y = f(x)}.
Theorem 2.1. [11, Theorem 2.3].The following statements are equivalent for spaces
X, Y , and multifunction Φ : X → Y :

(a): The multifunction Φ has a θ-closed graph G(Φ),
(b): For each (x, y) ∈ (X × Y )−G(Φ) there are sets V 3 x in X and W 3 y

in Y with Φ( Cl (V )) ∩ Cl (W ) = ∅.
Now we shall prove the following result concerning inverse limit of inverse systems

X = {Xa, pab, A} of H-closed spaces Xa and bonding mappings pab with θ-closed
graph.

Theorem 2.2. Let X = {Xa, pab, A} be an inverse system of non-empty H-closed
spaces Xa and bonding mappings pab with θ-closed graphs. Then X = limX is
non-empty, θ-closed in Π{Xa : a ∈ A} and H-closed.

Proof. It is known that Π{Xa : a ∈ A} is H-closed [4, Problem 3.12.5 (d), p.
283]. Let us prove that Za = {(xb) ∈ ΠXa : pab(xa) = xb} is θ-closed for each
a ∈ A. To do this we shall prove that Π{Xa : a ∈ A}�Za is θ -open. Let
y = (ya) ∈ Π{Xa : a ∈ A}�Za. There exists b ≤ a such that pab(xa) 6= xb.
It follows from Theorem 2.1 that there exists a pair U, V of open sets such that
xa ∈ U , xb ∈ V and pba( Cl U) ∩ Cl V = ∅ since pba has a θ-closed graph.

Now Z = U × V × Π{Xc : c 6= a, b} is open set containing y with the property
Cl Z ⊂ Π{Xa : a ∈ A}�Za . This means that Π{Xa : a ∈ A}�Za θ-open, and,

consequently, Za is θ-closed. In order to prove that X = limX is non-empty
consider the family {Za : a ∈ A} of θ-closed sets Za. This family has the finite
intersection property (Proposition 2). By Lemma 1.2 we infer that ∩{Za : a ∈ A}
= limX is non-empty. Now, (b) of Theorem 1.1 implies that limX is θ-closed.
Finally, from Proposition 8 it follows that limX is H-closed. �
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3. Inverse limit of H-closed spaces and strongly continuous bonding
mappings

A mapping f : X → Y is said to be strongly continuous at x ∈ X [15] provided for
each neighborhood U of f(x) there is a neighborhood V of x such that f( Cl V ) ⊂
U . A mapping f : X → Y is said to be strongly continuous provided f is strongly
continuous at each point x ∈ X.

If Y is a regular space, then each continuous mapping f : X → Y is strongly
continuous.

Proposition 9. Let Y be a Hausdorff space. Every strongly continuous mapping
f : X → Y has a θ-closed graph.

Proof. Let x ∈ X and y ∈ Y such that y 6= f(x). There are open disjoint sets U, V
in Y such that y ∈ U and f(x) ∈ V. It is clear that Cl U ∩ V = ∅. Moreover,
there is an open set W containing x such that pab( Cl W ) ⊂ V since f is strongly
continuous. Now, for (x, y) ∈ (X×Y )−G{f) there are sets W 3 x in X and U 3 y
in Y with f( Cl (W )) ∩ Cl (U) = ∅. By Theorem 2.1 the proof is completed. �

Theorem 2.2 and Proposition 9 imply the following result.

Theorem 3.1. Let X = {Xa, pab, A} be an inverse system of non-empty H-closed
spaces Xa and strongly continuous bonding mappings. Then X = limX is non-
empty. Moreover, X = limX is θ-closed in Π{Xa : a ∈ A} and H-closed.

4. Inverse limit of H-closed spaces and θ-closed bonding mappings

In this section we study the inverse systems X = {Xa, pab, A} with H-closed
spaces Xa and θ-closed bonding mappings pab.

A mapping f : X → Y is said to be θ-closed if f(F ) is θ-closed for each θ-closed
subset F ⊂ X.

Remark 4.1. In [16, Definition 4.1, p. 490] is given the following definition. A
function f is said to be θ-open if the image of every open set is θ-open. Similarly,
a function f is said to be θ -closed if the image of every closed set is θ-closed.

Lemma 4.2. Let f : X → Y be a continuous mapping. The following conditions
are equivalent:

(a): f is θ-closed,
(b): for every B ⊂ Y and each θ-open set U ⊇ f−1(B) there exists a θ-open

set V ⊇ B such that f−1(V ) ⊂ U .

Proof. The proof is similar to the proof of the corresponding theorem for closed
mappings [4, p. 52]. �

Now we are ready to prove the following theorem.

Theorem 4.3. Let X = {Xa, pab, A} be an inverse system of non-empty H-closed
spaces Xa and θ-closed bonding mappings pab. Then X = limX is non-empty and

pa(X) = ∩{pab(Xb) : b ≥ a}

where pa : X → Xa, a ∈ A, is a natural projection.
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Proof. Let θa be a family of all non-empty θ-closed subsets of Xa and let Y be a
family of all collections Y = {Ya : Ya ∈ θa, a ∈ A} such that pab(Yb) ⊂ Ya. The
family Y is non-empty since X ∈ Y. For two collections Y = {Ya : Ya ∈ θa, a ∈ A}
and Z = {Za : Za ∈ θa, a ∈ A} we shall write Y ≥ Z if Ya ⊂ Za for every a ∈ A.
It is clear that (Y,≥) is a partially ordered set. The remaining part of the proof
consists of several steps.

Step 1. There exists a maximal element in (Y,≥). It suffices to prove that
(Y,≥) is inductive, i.e., if L = {Y λ : λ ∈ Λ} is a strictly increasing chain in (Y,≥),
then there is an element M ∈ (Y,≥) such that M ≥ Y λ for every λ ∈ Λ. We define
M = {Ma : Ma ∈ θa, a ∈ A} such that Ma = ∩{Y λ

a : λ ∈ Λ}. From Lemma 1.2
and Theorem 1.1 it follows that the set Ma is non-empty θ-closed subset of Xa.
Moreover, pab(Mb) ⊂ Ma.

Step 2. If Y = {Ya : Ya ∈ θa, a ∈ A} is a maximal element of (Y,≥), then
Ya = pab(Yb) for every pair a, b ∈ A such that a ≤ b. Let Z = {Za : Za ∈ θa, a ∈ A}
be a collection such that Za = ∩{pab(Yb) : b ≥ a}. Each pab(Yb) is θ-closed since
pab is θ-closed and Yb ∈ θb. By Lemma 1.2 and Theorem 1.1 it follows that the
set Za is non-empty θ-closed subset of Xa. In order to prove that Z ∈ (Y,≥) it
suffices to prove that pab(Mb) ⊂ Ma. If a ≤ b then pab(Zb) ⊂ ∩{pab(pbc(Yc)) : b ≤
c} = ∩{pac(Yc) : c ≥ b}. On the other hand, for every d ≥ a there is a c ∈ A such
that c ≥ b, d. It follows that pac(Yc) ⊂ pad(Yd). This means that

∩{pac(Yc) : c ≥ b} = ∩{pad(Yd) : c ≥ b} = Za.

Finally, we have Z ∈ (Y,≥). Moreover, Za ⊂ Ya for each a ∈ A. This means that
Z = Y since Y is maximal.

Step 3. If Y = {Ya : Ya ∈ θa, a ∈ A} is a maximal element of (Y,≥), then Ya

is one-point set for every a ∈ A. Let xa ∈ Ya. Define

Zb =
{

Yb ∩ p−1
ab (xa) if b ≥ a,

Yb if b � a.

Let us prove that Z = {Za : Za ∈ θa, a ∈ A}. From Proposition 3 and Lemma
1.4 it follows that p−1

ab (xa) is θ-closed. Then, by Theorem 1.1, we infer that each
Yb ∩ p−1

ab (xa) is θ-closed. It is easy to prove that pab(Zb) ⊂ Za. Hence, Z ∈ (Y,≥
). Now, Z = Y since Z ≥ Y and Y is maximal. This means Ya = {xa}.

Step 4. limX is non-empty. From Step 3 we have Z = {Za : Za ∈ θa, a ∈ A} =
{xa : a ∈ A} such that pab(xb) = xa for every pair a, b such that b ≥ a.

Step 5. Let us prove pa(X) = ∩{pab(Xb) : b ≥ a}. It is clear that pa(X) ⊂
∩{pab(Xb) : b ≥ a}. Let us prove that pa(X) ⊃ ∩{pab(Xb) : b ≥ a}. Let xa ∈
∩{pab(Xb) : b ≥ a}. This means that Yb = p−1

ab (xa) is non-empty for each b ≥ a.
Moreover, Yb is θ-closed (Proposition 3 and Lemma 1.4). For each b non-comparable
with a, let Yb = Xb. Now, we have a collection Y = {Ya : Ya ∈ θa, a ∈ A} which
is evidently in (Y,≥). There exists a maximal element Z = {Za : Za ∈ θa, a ∈ A}
in (Y,≥) such that Z ≥ Y . It follows that each Ya is some Za which is a point
za ∈ Xa (Step 3) since Z is maximal. The collections (za) is a point of limX.
Hence, pa(X) = ∩{pab(Xb) : b ≥ a}. �

QUESTION 1. Is it true that X = limX in Theorem 4.3 is H-closed?
QUESTION 2. Is every projection pa : limX → Xa θ-closed?
At the end of this section we consider the special kinds of θ-closed mappings.
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A mapping f : X → Y has the inverse property provided f−1( Cl V ) =
Cl f−1(V ) for every open set V ⊂ Y .

Lemma 4.4. If f : X → Y is a closed mapping with the inverse property and if X
and Y are H-closed, then f is θ-closed.

Proof. Let F be a θ-closed subset of X. In order to prove that f(F ) is θ-closed we
shall prove that Y �f(F ) is θ-open. Let y ∈ Y �f(F ). Now, f−1(y) is θ-closed
subset of X (Lemma 1.4). Using Theorem 1.3 we obtain disjoint open sets U and
V such that F ⊂ U and f−1(y) ⊂ V. It follows that Cl V ∩ U = ∅. The closeness
of f imply the existence of an open set W about y such that f−1(W ) ⊂ V . We
infer that Cl f−1(W ) ⊂ Cl V . Moreover, f−1( Cl W ) ⊂ Cl V . It follows that
f−1( Cl W ) ∩ F = ∅, i.e., Cl W ∩ f(F ) = ∅. Hence, if y ∈ Y �f(F ), then y has a
neighborhood W such that Cl W ⊂ Y �f(F ), i.e., Y �f(F ) is θ-open and f(F ) is
θ-closed. �

Each open mapping has the inverse property [4, Exercise 1.4.C., p. 57] . Hence,
we have the following corollary.

Corollary 4.5. If f : X → Y is a closed and open mapping and if X and Y are
H-closed, then f is θ-closed.

Lemma 4.6. If X and Y are H-closed, then each strongly continuous mapping
f : X → Y is θ-closed.

Proof. Let us recall that f : X → Y is said to be strongly continuous at x ∈ X [15]
provided for each neighborhood U of f(x) there is a neighborhood V of x such that
f( Cl V ) ⊂ U . A mapping f : X → Y is said to be strongly continuous provided f
is strongly continuous at each point x ∈ X. Now, let us prove Lemma.

Let F be a θ-closed subset of X. We have to prove that f(F ) is a θ-closed
subset of Y . Suppose that it is not θ-closed. There is a point y ∈ | f(F )|θ�f(F ).
By Theorem 1.5 we infer that there is a net {ya : ya ∈ f(F ), a ∈ A} which θ-
converges to y. Now there is a net {xa : xa ∈ F, f(xa) = ya}. By Theorem 1.6 we
may assume that this net is θ-convergent to some point x ∈ X. From Theorem
1.5 it follows that x ∈ F since F is θ-closed. It is clear that f(x) is θ-limit of
{f(xa) : xa ∈ F} = {ya : ya ∈ f(F ), a ∈ A}. We infer that f(x) = y since, in the
opposite case, f(x) and y have disjoint neighborhoods U and V such that f(x) ∈ U
and there is a neighborhood W such that f( Cl W ) ⊂ U . This means that a net
{ya : ya ∈ f(F ), a ∈ A} is not eventually in Cl V . This is impossible. Hence,
f(x) = y From x ∈ F it follows that f(x) ∈ f(F ). Hence y ∈ f(F ) and f(F ) is
θ-closed. The proof is completed. �

Lemma 4.7. If Y is Urysohn and X H-closed, then each continuous mapping
f : X → Y is θ-closed.

Proof. Let F be a θ-closed subset of X. We have to prove that f(F ) is a θ-closed
subset of Y . Suppose that it is not θ-closed. There is a point y ∈ |f(F )|θ�f(F ). By
Theorem 1.5 we infer that there is a net {ya : ya ∈ f(F ), a ∈ A} which θ-converges
to y. Now there is a net {xa : xa ∈ F, f(xa) = ya}. By Theorem 1.6 we may assume
that this net is θ-convergent to some point x ∈ X. From Theorem 1.5 it follows
that x ∈ F since F is θ-closed. It is clear that f(x) is θ-limit of {f(xa) : xa ∈ F}
= {ya : ya ∈ f(F ), a ∈ A}. We infer that f(x) = y since in Urysohn space a net
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has only one θ-limit. From x ∈ F it follows that f(x) ∈ f(F ). Hence y ∈ f(F ) and
f(F ) is θ-closed. The proof is completed �

A function f : X → Y is almost closed [2] if for any set A ⊂ X we have
f(|A|θ) = |f(A)|θ.

Now we shall prove the following theorem.

Theorem 4.8. Each almost closed function is θ-closed.

Proof. If A is θ-closed, then A = |A|θ. Now we have f(|A|θ) = |f(A)|θ or f(A) =
|f(A)|θ. This means that f(A) is θ-closed. Hence f is θ-closed. �

Corollary 4.9. Let X = {Xa, pab, A} be an inverse system of non-empty H-closed
spaces Xa and closed bonding mappings pab with the inverse property. Then X =
limX is non-empty and H-closed.

Proof. Lemma 4.4 and Theorem 4.3 imply the Corollary. H-closenes of limX it
follows from Theorems 3.3 and 3.7 of [5]. �

5. Inverse systems of nearly-compact spaces

We say that a space X is an Urysohn space ([7], [10]) if for every pair x, y, x 6= y,
of points of X there exist open sets V and W about x and y such that Cl V ∩
Cl W = ∅.

A Hausdorff space is nearly-compact [8] if every open cover if every open cover
{Uµ : µ ∈ M} has a finite subcollection {Uµ1 , ..., Uµn} such that Int Cl Uµ1 ∪ ...∪
Int Cl Uµn

= X. Every nearly-compact space is H-closed.

Lemma 5.1. [8]. A space X is nearly-compact if and only if it is H-closed and
Urysohn.

If X = {Xa, pab, A} is an inverse system of nearly-compact spaces, then θ-
closeness of bonding mappings pab in Theorem 4.3 follows from Lemma 4.7, but
we shall give the alternate proof of the following theorem.

Theorem 5.2. Let X = {Xa, pab, A} be an inverse system of non-empty nearly-
compact spaces Xa. Then X = limX is non-empty, θ-closed in Π{Xa : a ∈ A} and
nearly-compact.

Proof. Let us observe that Π{Xa : a ∈ A} is H-closed [4, Problem 3.12.5 (d), p.
283]. Let us prove that Ya = {(xb) ∈ ΠXa : pab(xa) = xb} θ-closed for each a ∈ A.
To do this we shall prove that ΠXa�Ya θ-open. Let y = (ya) ∈ ΠXa�Ya. There
exists b ≤ a such that pab(xa) 6= xb. It follows that there exists a pair U, V of open
sets such that xb ∈ U , pab(xa) ∈ V and Cl U ∩ Cl V = ∅ since Xb is Urysohn.
Moreover, there is an open set W containing xa such that pab( Cl W ) ⊂ Cl V.
Now Z = U × W × Π{Xc : c 6= a, b} is open set containing y with the property
Cl Z ⊂ ΠXa�Ya. This means that To ΠXa�Ya θ-open, and, consequently, Ya

is θ-closed. In order to prove that X = limX is non-empty consider the family
{Ya : a ∈ A} of θ-closed sets Ya. This family has the finite intersection property
(Proposition 2). By Lemma 1.2 we infer that ∩{Ya : a ∈ A} = limX is non-empty.
It is θ-closed by Theorem 1.1 and H-closed by Proposition 8. Moreover, limX is
Urysohn and, consequently, nearly-compact. �



54 IVAN LONČAR

6. Inverse systems with semi-open bonding mappings

A mapping f : X → Y is said to be semi-open provided Int f(U) 6= ∅ for each
non-empty open U ⊂ X.

Theorem 6.1. Let X = {Xa, pab, A} be an inverse system of non-empty H-closed
spaces Xa and semi-open bonding mappings. Then X = limX is non-empty and
H-closed.

Proof. The proof is broken into several steps.
Step 1. By virtue of [13, Theorem 2, p. 10] we can assume that A is cofinite,

i.e., for each a ∈ A the set of all predecessors of a is finite set.
Step 2. The sets

Za = {{xa} ∈ ΠXa : pab(xb) = xa, a ≤ b}

have non-empty interior. Let a1, ..., ak be a set of all predecessors of a. If U ⊂ Xa

is open set, then Int pa1a(U)× ...× Int paka(U)× U × Π{Xb : b /∈ {a1, ..., ak, a}}
is an open set contained in Za. Hence, Int Za is non-empty for each a ∈ A.

Step 3. The family { Int Za : a ∈ A} has the finite intersection property. This
follows from the fact that for each pair a, b there is a c ∈ A such that Zc ⊂ Za∩Zb

and, consequently, Int Zc ⊂ Int Za ∩ Int Zb.
Step 4. ∩{ Cl Int Za : a ∈ A} is non-empty. This follows from Proposition 5.
Step 5. Now limX = ∩ {Za : a ∈ A} ⊃ ∩{ Cl Int Za : a ∈ A}. This means

that limX is non-empty and the proof of non-emptiness is completed.
Step 6. X = limX is H-closed. Let U = {Uµ : µ ∈ M} be a maximal family of

open sets of X with the finite intersection property. From the definition of topology
on X it follows that there is an a(µ) ∈ A such that Int fa(µ)(Uµ) is non-empty.
By virtue of the semi-openness of pab we infer that Int fa(Uµ) 6= ∅ for every a ∈ A
and every µ ∈ M . This means that a family { Int fa(Uµ) : µ ∈ M} is a family with
the finite intersection property. Let us prove that this family is maximal. If U is
an open set which intersects every set Int fa(Uµ), µ ∈ M, then p−1

a (U) ∈ U since
p−1

a (U) intersects every Uµ. This means that U ∈ { Int fa(Uµ) : µ ∈ M}. Hence,
{ Int fa(Uµ) : µ ∈ M} is maximal. From the H-closeness of Xa and Proposition
5 it follows that there is a point xa = ∩{ Cl Int fa(Uµ) : µ ∈ M}. It is obvious
that pab(xb) = xa for every b ≥ a.Now, x = (xa : a ∈ A) is a point of limX and
x ∈ ∩{ Cl Uµ) : µ ∈ M}. By Proposition 5 limX is H-closed and the proof is
completed. �

We close this Section with some corollaries of Theorem 6.1.

Corollary 6.2. Let X = {Xa, pab, A} be an inverse system of non-empty H-closed
spaces Xa and open bonding mappings. Then X = limX is non-empty and H-
closed.

Remark 6.3. For another proof of this corollary see [18].

A mapping f : X → Y is an irreducible mapping if the set f#(U) = {y ∈ Y :
f−1(y) ⊂ U} is non-empty for every non-empty open se U ⊂ X. If f : X → Y
is a closed and irreducible mapping, then f#(U) is open and non-empty. Hence, a
closed and irreducible mapping is semi-open. Theorem 6.1 now gives the following
corollary.
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Corollary 6.4. Let X = {Xa, pab, A} be an inverse system of non-empty H-closed
spaces Xa and closed irreducible bonding mappings. Then X = limX is non-empty
and H-closed.
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