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THE NUMBER AND SUM OF NEAR m−EXTREMES

ENKELEJD HASHORVA AND JÜRG HÜSLER
ALLIANZ SUISSE & UNIVERSITY OF BERN

Abstract. Let {Xn, n ≥ 1} be a sequence of independent random variables
with common continuous distribution function F . In this article we discuss

distributional and asymptotical properties of the point process Nn,m(·) =∑n
i=1 1(Xn−m+1:n−Xi ∈ ·) driven by the mth upper order statistic Xn−m+1:n.

Further we derive some limiting results for related sums, which are of some

interest in insurance applications.

1. Introduction

Let {Xn, n ≥ 1} be a sequence of independent random variables with common
continuous distribution function F . By X1:n < · · · < Xn:n we denote the order
statistics of X1, . . . , Xn. Define the number of near m−extremes Kn(a,m), a >
0,m ∈ N by

Kn(a,m) :=
n∑
i=1

1(Xn−m+1:n − a < Xi ≤ Xn−m+1:n),

with 1(·) the indicator function. More generally, let

Nn,m(·) :=
n∑
i=1

1(Xn−m+1:n −Xi ∈ ·)(1)

denote the related point process defined on [0,∞) driven by the mth upper order
statistics. The marginal random variable Nn,m(T ) with T a Borel set of [0,∞) is
in other words the number of m−extremes falling into the Borel set T . Setting
T = [0, a) we have Nn,m(T ) = Kn(a,m).

The number of near m−extremes is dealt with in several papers. It was in-
troduced and carefully examined by Pakes and Steutel (1997) and Khmaladze et
al. (1997) (considering m = 1 only). Hashorva (2003, 2004) showed that studying
Kn(a,m) for dependent samples is of some relevance for insurance applications. Es-
timation of the tail coefficient based on the number of near m−extremes is further
discussed in Hashorva and Hüsler (2004). Recent papers on the topic are Balakr-
ishnan and Stepanov (2004, 2005), Dembinska et al. (2007), where new ideas and
results in connection with near extremes have been presented.

Point process approach was considered by Hashorva and Hüsler (2000) deriving
both distributional and asymptotical results for Nn,1(·).
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The main topic of this paper is the asymptotic behaviour of the near m−extreme
point process Nn,m(·). Special attention is given to Kn(a,m); we show weak con-
vergence of Kn(an,m), n ≥ 1 without supposing the iid assumption. Further we
discuss some asymptotic properties of sums of the near m−extremes (dealt with
initially in Pakes (2000)) defined by

Sn(a,m) :=
n∑
i=1

Xi1
(
Xi ∈ (Xn−m+1:n − a,Xn−m+1:n]

)
.(2)

It is well-known that asymptotic properties of the mth upper order statistic are
in some sense invariant to m. For example Xn−m+1:n converges almost surely for
any m > 1 to the upper endpoint of the distribution function F . We show in this
paper that similar invariance properties are demonstrated by the number of near
m−extremes.

Brief outline of the paper: We continue next with some preliminary results
followed by Section 3 where several asymptotical results for the iid setup are pre-
sented. In Section 4 we show that convergence in distribution for Kn(an,m) with
an → a ≥ 0 and m ∈ N holds under certain dependence assumptions on the random
sequence Xi, i ≥ 1.

2. Preliminaries

Write in the following lF , uF for the lower and the upper endpoint of the distri-
bution function F , respectively. We state now the following obvious lemma:

Lemma 1. Let {Xn, n ≥ 1} be independent random variables with common con-
tinuous distribution function F . The random variable Nn,m(T ) − 1(0 ∈ T ) with
T some Borel set of [0,∞) and n > m ≥ 1 has a mixed binomial distribution
B(n−m, p(T, x)) with mixing random variable Xn−m+1:n where

p(T, x) := P {x−W ∈ T |W ≤ x}, lF < x < uF ,

with W a random variable with distribution function F .

It is also easy to see that the joint conditional distribution of

Nn,m(T1)− 1(0 ∈ T1), . . . , Nn,m(Tk)− 1(0 ∈ Tk), k ≥ 2,

with T1, . . . , Tk Borel sets of [0,∞) given the mth upper order statistic is multino-
mial. This fact is crucial when dealing with both distributional and asymptotical
propertied of the point process Nn,m(·).

The law of the point process Nn,m(·) can be described via Markov kernels (see
Reiss (1993) for basic properties of Markov kernels). We have

L(Nn,m(·)− 1(0 ∈ ·)) =
∫

R
Gn(·, x) dL(Xn−m+1:n)(x),(3)

where Gn,m(·, x) d= B(n − m, p(·, x)), L(·) denotes the law of the corresponding

random element, and d= stands for equality of distribution functions. Referring to
Theorem 1.5.1 of Reiss (1989) the mth upper order statistic Xn−m+1:n possess the
F -density

n!Fn−m(x)(1− F (x))m−1

(n−m)!(m− 1)!
.(4)
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Application of Fubini’s Theorem for Markov kernels (see Reiss (1993)) yields further

E{Nn,m(T )} = 1(0 ∈ T ) +
∫

R

(∫
R
y dL(B(n−m, p(T, x)))(y)

)
dL(Xn−m+1:n)(x)

= 1(0 ∈ T ) + (n−m)E{p(T,Xn−m+1:n)}

= 1(0 ∈ T ) +
n!

(n−m− 1)!(m− 1)!

×
∫

R
P {x−X1 ∈ T |X1 ≤ x}Fn−m(x)(1− F (x))m−1 dF (x).(5)

Substituting we have

E{Kn(a,m)} = 1 +
n!

(n−m− 1)!(m− 1)!

×
∫

R
[F (x)− F (x− a)]Fn−m−1(x)(1− F (x))m−1 dF (x)(6)

for all n > m ≥ 1.
Alternatively, moments of the random variable Nn,m(T ), T ⊂ [0,∞) can be easily

derived from the expression of probability generating function (p.g.f) given below.

Lemma 2. Under the assumptions and the notation of Lemma 1 we have for any
integer m,n > m and s ∈ (0, 1)

E{sNn,m(T )−1(0∈T )} =
∫

R
[1− (1− s)p(T, x)]n−m dL(Xn−m+1:n)(x),(7)

where the distribution of the mth largest order statistic has F -density as in (4).

Certain assumptions on the tail asymptotic behaviour of the distribution function
F allow us to derive several limiting results. If F has upper endpoint uF =∞, and
the following limit

lim
x→∞

1− F (x+ a)
1− F (x)

= l(a) ∈ [0, 1](8)

exists for any a > 0, then as in Pakes and Steutel (1997) we call F a thin-tailed,
a thick-tailed, or a medium-tailed distribution whenever l(a), a > 0, is equal to 0,
1, or is strictly between 0 and 1 for all a > 0, respectively. Note in passing that
Balakrishnan and Stepanov (2005) mention that (8) holds for all a > 0 if and only
if (iff) it holds for two distinct constants a1, a2 such that a1/a2 is an irrational
number.

Examples of thin-tailed distribution functions are the half Normal law or the
Weibull one with parameter α > 1. Gamma family belongs to the medium-tailed
class, whereas Pareto distribution is a thick-tailed one.

The above tail asymptotic behaviour of F is related to the max-domain of at-
traction of F (see Pakes and Steutel (1997)).
It is well known (see e.g. Galambos (1987), Resnick (1987), Reiss (1989), Falk et
al. (2004), Kotz and Nadarajah (2005), de Haan and Ferreira (2006)) that the dis-
tribution function F belongs to the max-domain of attraction of an extreme value
distribution function H (write F ∈ MDA(H)) if

lim
t→∞

sup
x∈R

∣∣∣F t(q(t)x+ r(t))−H(x)
∣∣∣ = 0,(9)
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with q(t) > 0, r(t), t > 0, two measurable functions. The univariate distribution
functions H is either the Gumbel distribution Λ(x) = exp(− exp(−x)), x ∈ R, the
Weibull distribution Ψα(x) = exp(−|x|α), x < 0, α > 0, or the Fréchet distribution
Φα(x) = exp(−x−α), x > 0, α > 0.

3. Asymptotics in the IID-Setup

In this section we consider the iid-setup, i.e., Xi, i ≥ 1 are independent with
common continuous distribution function F . Convergence in distribution for both
Kn(a,m) and Sn(a,m) can be shown utilising the explicit expression in the right
hand side of (7), provided that F satisfies certain asymptotic conditions. For
instance Pakes and Steutel (1997), Li (1999), Balakrishnan and Stepanov (2004,
2005) make extensive use of (8).

We split this section in three parts beginning with some equivalent conditions
for (8). In the second part we discuss almost sure convergence and CLT for the
sum of near m−extremes Sn(a,m). In the last part we derive an approximation of
the point process for the interesting cases that F is in the Gumbel or the Weibull
max-domain of attraction.

3.1. Condition (8). We give next a general result which provides several equiv-
alent conditions to (8). Previous partial results can be found in Proposition 2.5.3
in Hashorva (1999), Theorem 1.1. of Li (1999), Theorem 2.1 in Balakrishnan and
Stepanov (2005).

Proposition 3. Let {Xn, n ≥ 1} be a sequence of iid random variables with con-
tinuous distribution function F with upper endpoint uF = ∞. Then the following
four statements are equivalent:
i) For any a > 0 the limit in (8) exists and l(a) ∈ (0, 1].
ii) For any a > 0 and any integer m, the discrete random variable Kn(a,m) con-
verges in distribution to some random variable K∗a,m, where K∗a,m−1 has a negative
binomial distribution with p.g.f

E{sK
∗
a,m−1} =

(
l(a)

1− s(1− l(a))

)m
, l(a) ∈ (0, 1].(10)

iii) For any a > 0 and any integer m

lim
n→∞

E{Kn(a,m)} = m[1− l(a)]/l(a) + 1, l(a) ∈ (0, 1](11)

holds.
iv) For any a > 0 we have

lim
n→∞

P {Kn(a, 1) = 1} = l(a) ∈ (0, 1].(12)

Moreover, for any a > 0 and any integer m we have Kn(a,m)
p→∞ iff l(a) = 0.

Proof. First note that

P {Kn(a, 1) = 1} = n

∫
R

Fn−1(x− a) dF (x), ∀a > 0, n > 1.
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Transforming the expression of the expectation in (5) we obtain

E{Kn(a,m)} − 1 = (n−m)E{[1− F (Xn−m+1:n − a)/F (Xn−m+1:n)]}
= n−m− (n−m)E{F (Xn−m+1:n − a)/F (Xn−m+1:n)}
= nE{[1− F (Xn−m:n−1 − a)]} −m
= nE{Fn−m:n−1(X1 + a)} −m.(13)

Statement i) implies that F is in the Gumbel max-domain of attraction. Further-
more, the scaling function q(t) can be choose to be constant in t. The proof follows
now using (7), the Gumbel max-domain of attraction of F , and applying Lemma 4
below with the function χ(·) constant and ρ = 1. �

The following lemma follows immediately form Lemma 2.5.1 in Hashorva (1999)
which is stated for multivariate distribution functions.

Lemma 4. Let F,G be two continuous univariate distribution functions with upper
endpoint∞, and let ρ ≥ 1, C ∈ [0,∞] be two given constants. If χ : [0,∞)→ [0,∞)
is a measurable function such that limx→0 χ(tx)/χ(x) = 1,∀t > 0, then the following
two statements are equivalent:
i) As n→∞ we have for any c ∈ [0,∞)

n

∫
R
Gn−c(x) dF (x) = (1 + o(1))

C

nρ−1
χ(1/n).(14)

ii) As x→∞
1− F (x)

(1−G(x))ρχ(1−G(x))
= (1 + o(1))

C

Γ(ρ+ 1)
.(15)

Remark 1. a) Imposing an additional technical condition on the distribution func-
tion F Balakrishnan and Stepanov (2005) show in Theorem 2.2 therein that the
almost sure convergence Kn(a,m)→ 1 is equivalent to l(a) = 1 for all a > 0. Note
that if l(a) = 1, then statement ii) in Proposition 3 means convergence in proba-
bility to 1.
b) Lemma 4 is motivated by Lemma 1.3 in Maller and Resnick (1984).

Our next result concerns the asymptotic approximation of the ratio of the number
and sum of near m−extremes. It subsumes Theorem 7.1 in Pakes (2000).

Proposition 5. Under the assumptions and the notation of Proposition 3

Sn(a,m)/Xn−m+1:n
d→ 1 +K∗a,m, n→∞(16)

holds for any a > 0 and any integer m, iff either of the statements i), ii), iii), iv)
in Proposition 3 hold.
Furthermore, for any a > 0 and any integer m the convergence in probability

Sn(a,m)/Xn−m+1:n
p→ ∞, n→∞(17)

is valid iff l(a) = 0, and

Sn(a,m)/Xn−m+1:n
p→ 1, n→∞(18)

holds iff l(a) = 1.
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Proof. For any positive a and any integer m

[Xn−m+1:n − a]Kn(a,m) ≤ Sn(a,m) ≤ Xn−m+1:nKn(a,m)

holds almost surely. Furthermore the almost sure convergence

Xn−m+1:n →∞, n→∞

implies
a/Xn−m+1:n → 0, n→∞,

thus the proof follows using Proposition 3. �

3.2. Almost Sure Convergence and CLT. Hashorva (1999) shows the conver-
gence in probability of

Kn(a,m)/n
p→ 1− F (uF − a), n→∞,

provided that the upper endpoint uF of F is finite. Since

lim
n→∞

E{Kn(a,m)/n} = 1− F (uF − a)

the convergence holds also in the rth (r > 0) mean. Almost sure convergence and
CLT for Kn(a,m) are stated in Hashorva and Hüsler (2004).
Next, we discuss some asymptotic properties for the sum of near m−extremes.

Proposition 6. Let {Xn, n ≥ 1} be a positive sequence of independent random
variables with continuous distribution function F . If both the lower and the upper
endpoint lF , uF of the distribution function F are finite, then for any a > 0 and
any integer m we have the almost sure convergence

S(a,m)/n a.s.→ E{X11(X1 > uF − a)}, n→∞.(19)

Proof. Since for any ε > 0

Xi1(uF −Xn−m+1:n > ε) ≤ uF1(uF −Xn−m+1:n > ε)→ 0, n→∞

almost surely, we have for all large n

S(a,m)/n ≤
n∑
i=1

Xi1(Xi > uF − a− ε)/n+ uF1(uF −Xn−m+1:n > ε)

and

S(a,m)/n ≥
n∑
i=1

Xi1(Xi > uF − a)/n− uF (m− 1)/n,

hence the proof follows by the Strong Law of Large Numbers. �

We show next the CLT for the sum of near m−extremes.

Proposition 7. Let {Xn, n ≥ 1} be as in Proposition 6 and suppose further that
the lower endpoint of F is non-negative and the upper endpoint uF is finite. Assume
that there exists a positive sequence {cn, n ≥ 1} such that

lim
n→∞

n lnF (uF − cn) = −∞,(20)

and for some positive constant a we have

lim
n→∞

√
n[F (uF − a)− F (uF − a− cn)] = 0,(21)
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with F (uF − a) ∈ (0, 1). If further σ2
a := Var(X11(uF − a ≤ X1 ≤ uF )) ∈ (0,∞),

then the convergence in distribution

[Sn(a,m)− nE{X11(X1 > uF − a)}]/
√
n

d→ W, n→∞(22)

holds with W a mean zero Gaussian random variable with variance σ2
a.

Proof. For any m ≥ 1, condition (20) implies
√
n1(Xn−m+1:n < uF − cn) = op(1)

as n→∞. Consequently (recall uF <∞)

Sn(a,m)/
√
n ≤

n∑
i=1

Xi1(uF −Xi < a+ cn)/
√
n+ op(1)

and

Sn(a,m)/
√
n ≥

n∑
i=1

Xi1(uF −Xi < a)/
√
n− uF (m− 1)/

√
n.

By (21)
n∑
i=1

Xi1(a ≤ uF −Xi < a+ cn)/
√
n = op(1), as n→∞,

thus the proof follows easily by applying the CLT for the random sequence Xi1(uF−
Xi < a), i ≥ 1 (see e.g. Kallenberg (1997)). �

3.3. Asymptotics for the point process. Finally we consider the asymptotic
behaviour of the point process Nn,m(·). Since this point process is driven by the
mth upper extreme order statistics, in order to deal with its asymptotic behaviour
we consider the case when F is in a max-domain of attraction of a univariate
distribution function H, assuming (9) holds with norming functions q(t), r(t).

We show first weak convergence of the scaled point process

N∗n,m(·) :=
n∑
i=1

1((Xn−m+1:n −Xi)/qn ∈ ·),

with qn := q(n) the norming constant from (9). The asymptotics for m = 1 is dealt
with in Hashorva (1999). As in that case, utilising the same arguments (see also
Theorem 1.2 in Hashorva and Hüsler (2000)) the scaled point process N∗n,m can be
approximated (n→∞) by a Cox process plus a point at 0. We have the following
result:

Proposition 8. Let {Xn, n ≥ 1} be a sequence of iid random variables with contin-
uous distribution function F satisfying condition (9). If the univariate distribution
function H is standard Gumbel or Weibull, then for all m ≥ 1

N∗n,m(·) d→ Nm(·) + 1(0 ∈ ·), n→∞,(23)

where Nm(·) is a Cox process with stochastic intensity

ν([a, b), X(m)
∗ ) = ln

(
H(X(m)

∗ − a)

H(X(m)
∗ − b)

)
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for 0 < a < b <∞. The mixing random variable X(m)
∗ has continuous distribution

function Hm given by

Hm(x) = H(x)
m−1∑
r=0

(− lnH(x))m

m!
, ∀x ∈ R.

The following corollary is immediate:

Corollary 9. Let {Xn, n ≥ 1} be a sequence of iid random variables with con-
tinuous distribution function F such that for all a > 0 condition (8) holds with
l(a) ∈ (0, 1). Then (9) holds with q(t) = q ∈ (0,∞), r(t), t > 0 and further for all
m ≥ 1

Nn,m(·) d→ Nm(·) + 1(0 ∈ ·), n→∞,(24)

where Nm(·) is a Cox process with stochastic intensity

ν([a, b), X(m)
∗ ) = ln

(
H(X(m)

∗ − a/c)
H(X(m)

∗ − b/c)

)
, 0 < a < b <∞

and the mixing random variable X(m)
∗ as in Proposition 8.

Note in passing that weak convergence of the unscaled point process Nn,m(·)
follows by the above result, since the scaling function is constant in Corollary 9.

4. Approximations in the case of dependence

Since we want to drop the iid assumption (which implies (7)), we follow here
a different approach which we motivate below. If the distribution function F sat-
isfies (9) with functions q(t) > 0, r(t), t ∈ R, we have the joint convergence in
distributions (n→∞)(

(Xn:n − rn)/qn, . . . , (Xn−l+1:n − rn)/qn
)

d→ (X(1)
∗ , . . . , X

(l)
∗ ),(25)

where qn = q(n) > 0, rn := r(n), n ≥ 1, and the random vector (X(1)
∗ , . . . , X

(l)
∗ ) has

the distribution function Hl with density function hl given by

hl(x) = H(xl)
l∏
i=1

H ′(xi)
H(xi)

, with xl < · · · < x2 < x1(26)

and x1, xl are such that H(x1), H(xl) ∈ (0, 1) (see e.g. Reiss (1989)). Hence for
0 < k ≤ n−m− 1, an = caqn(1 + o(1)), n ≥ 1, with ca > 0 some constant, we have

P {Kn(an,m) > k}
= P {Xn−m+1:n −Xn−m+1−k:n < an}
= P {(Xn−m+1:n − rn)/qn − (Xn−m+1−k:n − rn)/qn < ca(1 + o(1))}

[ since the convergence holds locally uniformly, we get ]

→ P {X(m)
∗ −X(m+k)

∗ ≤ ca} =: 1−H(m)(ca, k), n→∞.(27)

In deriving (27) we only needed (25), consequently at this point dropping the iid
assumption is possible. We need however to introduce mixing type conditions D
and D′ as in Leadbetter et al. (1983), see Corollary 3.2.
The next result generalises Theorem 2 and Theorem 3 of Li and Pakes (1998b). We
denote in the sequel by αH the lower endpoint of the distribution function H.
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Proposition 10. Assume that condition (25) holds for the sequence of random
variables {Xn, n ≥ 1} with continuous distribution function F , with constants qn >
0, rn and Hm as in (26). If an ∼ caqn, ca > 0, then for m, l ≥ 1 and any x ∈ R
such that H(x) ∈ (0, 1) we have

lim
n→∞

P {Kn(an,m) ≤ k, (Xn−l+1:n − rn)/qn ≤ x}

= P {X(m)
∗ −X(m+k)

∗ > ca, X
(l)
∗ ≤ x}

=: H(m)(ca, x, k, l), k ∈ N.(28)

The random sequence Kn(an,m) converges weakly to a positive non-degenerate ran-
dom variable K∗a,m with distribution function H(m)(ca, k) iff αH = −∞.
Further if for some j > m− 1

(Xj−m+1:n − rn)/qn
p→ x0, n→∞(29)

then we have

lim
n→∞

P {Kn(an,m) > n− j} = H(ca + x0)
m−1∑
r=0

(− lnH(ca + x0))r/r!.(30)

Proof. By the assumptions we have

lim
n→∞

P {Kn(an,m) ≤ k, (Xn−l+1:n − rn)/qn ≤ x}

= P {X(m)
∗ −X(m+k)

∗ > ca, X
(l)
∗ ≤ x},

hence the weak convergence of Kn(an,m) to a non-degenerated random variable
follows if we show further that

lim
k→∞

P {X(m)
∗ −X(m+k)

∗ > ca} = 1.

Since H is continuous, in light of (26) the limit distribution of the ith largest order
statistic is

P {X(i)
∗ ≤ x} = H(x)

i−1∑
r=0

(− lnH(x))r

r!
=: Hi(x), x : H(x) > 0,

hence we get for all x ∈ R such that H(x) > 0

lim
i→∞

P {X(i)
∗ ≤ x} = lim

i→∞
H(x)

i−1∑
r=0

(− lnH(x))r

r!
= H(x) exp(− lnH(x)) = 1.

Consequently, the monotonicity of the random sequence {X(i)
∗ , i ≥ 1} implies

X
(i)
∗

a.s.→ αH , as i→∞
and thus

lim
k→∞

P {X(m)
∗ −X(m+k)

∗ > ca} = 1− P {X(m)
∗ ≤ ca + αH} < 1

if and only if we have αH > −∞. Finally by (29) for any j fixed

P {Kn(an,m) > n− j}
= P {Xn−m+1:n −Xj−m+1:n < an}
= P {(Xn−m+1:n − rn)/qn − (Xj−m+1:n − rn)/qn < ca(1 + o(1))}

→ P {X(m)
∗ ≤ ca + x0}, n→∞,
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hence the proof is complete. �

In the above theorem we do not assume the independence of Xi, but only con-
dition (25). Next, we focus attention to stationary random sequences which sat-
isfy certain mixing type conditions. For the extreme value theory the distribu-
tional mixing conditions D3(un) for the long range dependence and D′(un) for
the local dependence are sufficient to assume (see Leadbetter et al. (1983)). Here
un = (uni) ∈ R3 with uni = qnxi + rn and any xi ∈ R, i ≤ 3, where qn and rn are
from (5). We mention these conditions which imply (25).

Condition D3(un): For any fixed p, q and integers 1 ≤ i1 < i2 < · · · < ip < j1 <
j2 < · · · < jq ≤ n with j1 − ip > `, and any kh, k

′
h′ ∈ {1, 2, 3} for h ≤ p, h′ ≤ q,

assume that∣∣∣P{Xih ≤ un,kh
, h ≤ p,Xjh′ ≤ un,k′h′ , h

′ ≤ q
}
− P

{
Xih ≤ un,kh

, h ≤ p
}

× P
{
Xjh′ ≤ un,k′h′ , h

′ ≤ q
}∣∣∣ ≤ αn,`,

where αn,` → 0 for some sequence ` = `(n) = o(n).

Condition D′(un): Assume that for k →∞

lim sup
n→∞

∑
1<i≤n/k

P{X1 > un, Xi > un} → 0.

Proposition 11. Let {Xn, n ≥ 1} be a stationary random sequence with distribu-
tion function F so that (9) holds. If also the conditions D3(un) and D′(un) are
satisfied for any x with H(x) ∈ (0, 1) and un = un(x) = qnx+ rn, then (28) holds.

Proof. The proof follows immediately from Theorem 5.5.1 of Leadbetter et al.
(1983). �
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