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ON THE INSTABILITY OF SOLUTIONS TO A CERTAIN CLASS
OF NON-AUTONOMOUS AND NON-LINEAR ORDINARY
VECTOR DIFFERENTIAL EQUATIONS OF SIXTH ORDER

CEMIL TUNÇ

Abstract. The aim of the present paper is to establish a new result, which
guarantees the instability of zero solution to a certain class of non-autonomous

ordinary differential equations of sixth order. Our result improves some known

results in the literature for non- autonomous case (see, [20,Theorem 4], [31,
Theorem 1]).

1. Introduction

Consider the non-autonomous and non-linear vector differential equation of sixth
order:

(1)
X(6)+AX(5) +BX(4) + C

...
X + Φ(t,X, Ẋ, Ẍ,

...
X,X(4), X(5))Ẍ

+Ψ(X)Ẋ +H(t,X, Ẋ, Ẍ,
...
X,X(4), X(5))X = 0,

in which t ∈ <+ , <+ = [0,∞) and X ∈ <n ; A , B and C are constant n × n
-real symmetric matrices; Φ , Ψ and H are continuous n × n -symmetric real
matrix functions depending, in each case, on the arguments shown in (1). Let
J (Ψ(X)X |X ) denote the linear operator from the matrix function Ψ(X) to the
matrix

J (Ψ(X)X |X ) =

(
∂

∂xj

n∑
k=1

ψikxk

)
= Ψ(X) +

(
n∑
k=1

∂ψik
∂xj

xk

)
,

where (x1, x2, ..., xn) and (ψik) are components of X and Ψ , respectively. It is
assumed that the matrix J (Ψ(X)X |X ) exists and is symmetric and continuous.
From the relevant literature, it can be followed that, so far, many problems about
the instability of solutions of various scalar and vector linear or nonlinear differen-
tial equations of third-, fourth-, fifth-, sixth-, seventh and eighth order have been
investigated by researchers. For some papers carried out on the topic, one can refer
to the book of Reissig et al [15] and the papers of Bereketoğlu [2], Ezeilo ([3], [4],
[5], [6], [7]), Liao and Lu [9], Li and Yu [10], Li and Duan [11], Lu and Liao [12],
Lu [13], Sadek ([16], [17]), Skrapek ([18], [19]), Tejumola [20], Tiryaki ([21], [22],
[23]), Tunç ([24], [25], [26], [27], [28], [29], [30], [31], [32]), C.Tunç and E. Tunç
([33], [34], [35], [36]), C. Tunç and H. Sevli [37], E. Tunç [38] and the references
listed therein. Throughout all the papers mentioned above the Lyapunov’s second
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(or direct) method [14] is used as a basic tool to prove the result established there,
and it will be also used to verify our result, which will be given hereafter. The
motivation for the present work has been inspired especially by the papers in [20],
[31] and the papers mentioned above. It should be noted that in [20], Tejumola
investigated the instability of the trivial solution of the following sixth order scalar
nonlinear differential equation of the type

x(6) + a1x
(5) + a2x

(4) + a3
...
x + ϕ4(x, ẋ, ẍ,

...
x , x(4), x(5))ẍ

+ϕ5(x)ẋ+ ϕ6(x, ẋ, ẍ,
...
x , x(4), x(5)) = 0.

He proved a result on the subject. Recently, in [31], Tunç investigated the instability
of the trivial solution of sixth order nonlinear vector differential equation of the form

X(6)+AX(5) +BX(4) + C
...
X + Φ(X, Ẋ, Ẍ,

...
X,X(4), X(5))Ẍ

+Ψ(X)Ẋ +H(X, Ẋ, Ẍ,
...
X,X(4), X(5))X = 0.

Clearly, (1) is a non-autonomous differential equation, that is, (1) is different from
the above equations and ones considered in the literature, see also the papers men-
tioned above.

Throughout this paper, the symbol 〈X,Y 〉 is used to denote the usual scalar

product in <n , that is, 〈X,Y 〉 =
n∑
i=1

xiyi , thus 〈X,X〉 = ‖X‖2 , and λi(A) ,

(i = 1, 2, ..., n) , are the eigenvalues of the n× n - matrix A .
We take into consideration, in place of (1), the equivalent differential system

(2)

Ẋ = Y, Ẏ = Z, Ż = S, Ṡ = T, Ṫ = U,

U̇ = −AU −BT − CS − Φ(t,X, Y, Z, S, T, U)Z

−Ψ(X)Y −H(t,X, Y, Z, S, T, U)X,

which was obtained as usual by setting Ẋ = Y , Ẍ = Z ,
...
X = S , X(4) = T ,

X(5) = U by (1).

2. Preliminaries

In order to reach our main result, we will give a basic theorem for the general
non-autonomous differential system and two well-known lemmas which play an
essential role in the proof of our main result. Consider the differential system

(3) ẋ = f(t, x), x(t0) = x0, t ≥ 0,

where f ∈ C[R+ × S(ρ), <n] and S(ρ) = [x ∈ <n : |x| < ρ] . Assume, for
convenience that a solution x(t) = x(t, t0, x0) of (3) exists and is unique for t ≥ t0
and f(t, 0) = 0 so that we have trivial solution x = 0 . Let K denote a class of
the functions as K = [σ ∈ C[[t0, ρ),<+]] such that σ(t) is strictly increasing and
σ(0) = 0 .

Now, we state the following fundamental instability theorem.
Theorem1. Assume that there exists a t0 ∈ <+ and an open set U ⊂ S(ρ) such

that
V ∈ C1[[t0,∞)× S(ρ), <+] for (t, x) from [t0,∞)× U ,
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(i) 0 < V (t, x) ≤ a (|x|) , a ∈ K ;
(ii) either V ′(t, x) ≥ b (|x|) , b ∈ K , K = [σ ∈ C[[t0, ρ),<+]] such that σ(t) is

strictly increasing and σ(0) = 0 or V ′(t, x) = CV (t, x) + ω(t, x) , where C > 0 and
ω ∈ C[[t0,∞)× U,<+] ;

(iii) V (t, x) = 0 on [t0,∞) × (∂U
⋂
S(ρ)) , ∂U denotes boundary of U and

0 ∈ ∂U .
Then the trivial solution x = 0 of system (3) is unstable.
Proof. See Lakshmikantham et al. [Theorem 1.1.9, 8].
Lemma 1. Let A be a real symmetric n× n -matrix and
a′ ≥ λi(A) ≥ a > 0 (i = 1, 2, ..., n) , where a′ , a are constants.
Then

a′ 〈X,X〉 ≥ 〈AX,X〉 ≥ a 〈X,X〉

and

a′2 〈X,X〉 ≥ 〈AX,AX〉 ≥ a2 〈X,X〉

Proof. See Bellman[1].
Lemma 2. Let Q , D be any two real n × n commuting symmetric matrices.

Then
(i) the eigenvalues λi(QD) , (i = 1, 2, ..., n) , of the product matrix QD are real

and satisfy
max

1≤j,k≤n
λj(Q)λk(D) ≥ λi(QD) ≥ min

1≤j,k≤n
λj(Q)λk(D) ;

(ii) the eigenvalues λi(Q + D) , (i = 1, 2, ..., n) , of the sum of matrices Q and
D are real and satisfy{

max
1≤j≤n

λj(Q) + max
1≤k≤n

λk(D)
}
≥ λi(Q+D) ≥

{
min

1≤j≤n
λj(Q) + min

1≤k≤n
λk(D)

}
,

where λj(Q) and λk(D) are, respectively, the eigenvalues of matrices Q and D .
Proof. See Bellman[1].

3. Main result

We establish the following theorem:
Theorem 2. In addition to the basic assumptions imposed on A , B , C , Φ ,

Ψ and H that appeared in (2), we assume that the following conditions hold:There
are constants a1 , a2 and a5 such that
λi(A) ≥ a1 > 0 , λi(B) ≤ a2 < 0 , |λi(Ψ(X)| ≤ a5 , ( a5 > 0 ),
and
λi(H(t,X, Y, Z, S, T, U)) < 1

4a2
[λi(Φ(t,X, Y, Z, S, T, U))]2 , (i = 1, 2, ..., n) ,

for all t ∈ <+ and X , Y , Z , S , T , U ∈ <n .
Then the zero solution of the system (2) is unstable.
Remark. It should be noted that there is no restriction on the eigenvalues of

the matrix C in the system (2).
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Proof. To prove Theorem 2, we construct a scalar differentiable Lyapunov
function V0 = V0(t,X, Y, Z, S, T, U) . This function, V0 , is defined as follows:

V0 = 〈X,U〉+ 〈X,AT 〉+ 〈X,BS〉+ 〈X,CZ〉

− 〈Y, T 〉 − 〈Y,AS〉 − 〈Y,BZ〉+ 〈Z, S〉 − 1
2 〈Y,CY 〉

+ 1
2 〈Z,AZ〉+

1∫
0

〈Ψ(σX)X,X〉 dσ.

Clearly, V0(t, 0, 0, 0, 0, 0, 0) = 0 on [t0,∞) . Now, subject to the assumptions of
Theorem 2, it is a straightforward calculation to see that

V0(t, 0, 0, ε, ε, 0, 0) = 1
2 〈ε,Aε〉+ 〈ε, ε〉

≥ 1
2 〈ε, a1ε〉+ 〈ε, ε〉

= ( 1
2a1 + 1) ‖ε‖2 > 0

for all arbitrary, ε 6= 0 , ε ∈ <n . In view of the function V0 = V0(t,X, Y, Z, S, T, U)
, the assumptions of Theorem 2, the properties of symmetric matrices, Lemma 1,
Lemma 2 and Cauchy-Schwarz inequality |〈X,Y 〉| ≤ ‖X‖ ‖Y ‖ , one can easily
obtain that there is a positive constant K1 such that

V0(t,X, Y, Z, S, T, U) ≤ K1

(
‖X‖2 + ‖Y ‖2 + ‖Z‖2 + ‖S‖2 + ‖T‖2 + ‖U‖2

)
.

These show that assumption (i) of Theorem 1 holds.
Now, let (X,Y, Z, S, T, U) = (X(t), Y (t), Z(t), S(t), T (t), U(t)) be an arbitrary

solution of system (2). By an elementary differentiation along the solution paths
of the system (2), it can be verified that

(4)

V̇0 = d
dtV0(t,X, Y, Z, S, T, U) = −〈Φ(t,X, Y, Z, S, T, U)Z,X〉

− 〈H(t,X, Y, Z, S, T, U)X,X〉

− 〈BZ,Z〉+ 〈S, S〉 − 〈Ψ(X)Y,X〉

+ d
dt

1∫
0

〈Ψ(σX)X,X〉 dσ.

Check that
(5)

d
dt

1∫
0

〈Ψ(σX)X,X〉 dσ =
1∫
0

〈Ψ(σX)X,Y 〉 dσ +
1∫
0

〈σJ (Ψ(σX)X |σX )Y,X〉 dσ

=
1∫
0

〈Ψ(σX)X,Y 〉 dσ +
1∫
0

σ 〈J (Ψ(σX)X |σX )X,Y 〉 dσ

=
1∫
0

〈Ψ(σX)X,Y 〉 dσ +
1∫
0

σ ∂
∂σ 〈Ψ(σX)X,Y 〉 dσ

= σ 〈Ψ(σX)X,Y 〉
∣∣1
0 = 〈Ψ(X)X,Y 〉 .
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Combining the estimate (5) with (4), we deduce that

V̇0 = −〈Φ(t,X, Y, Z, S, T, U)Z,X〉 − 〈H(t,X, Y, Z, S, T, U)X,X〉

− 〈BZ,Z〉+ 〈S, S〉
.

Hence, the assumptions of Theorem 2 and the fact 〈S, S〉 = ‖S‖2 imply that

V̇0 ≥ −〈Φ(t,X, Y, Z, S, T, U)Z,X〉 − 〈H(t,X, Y, Z, S, T, U)X,X〉 − a2 〈Z,Z〉

= −a2

∥∥∥Z + 1
2a2

Φ(t,X, Y, Z, S, T, U)X
∥∥∥2

− 〈H(t,X, Y, Z, S, T, U)X,X〉

+ 1
4a2
〈Φ(t,X, Y, Z, S, T, U)X, Φ(t,X, Y, Z, S, T, U)X〉

≥ − 〈H(t,X, Y, Z, S, T, U)X,X〉

+ 1
4a2
〈Φ(t,X, Y, Z, S, T, U)X,Φ(t,X, Y, Z, S, T, U)X〉 > 0.

Thus, the assumptions of the theorem imply that V̇0(t) ≥ K2 ‖X‖2 for all t ≥ 0
, where K2 is a positive constant, say infinite inferior limit of the function V̇0 .
Besides, V̇0 = 0 (t ≥ 0) necessarily implies that X = 0 for all t ≥ 0 , and therefore
also that Z = Ẏ = 0 , S = Ÿ = 0 , T =

...
Y = 0 , U = Y (4) = 0 for all t ≥ 0 . Hence

X = Y = Z = S = T = U = 0 for all ≥ 0.

Therefore, subject to the assumptions of the theorem the function V0 has the
entire the criteria of Theorem 1, Lakshmikantham et al. [Theorem 1.1.9, 8]. Thus,
the basic properties of the function V0(t,X, Y, Z, S, T, U) , which are proved just
above verify that the zero solution of the system (2) is unstable, see also Laksh-
mikantham et al. [Theorem 1.1.9, 8]. The system of equations (2) is equivalent to
differential equation (1) and the proof of Theorem 2 is now complete.
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