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Abstract. Let p be a prime integer and Hg be a collection of complex positive
definite symmetric g × g matrices τ . Denote by pτ the multiplication of τ by

p. In this note we describe an explicit process to obtain algebraic identities

between theta functions with integral characteristics evaluated at τ and pτ.
For g = 1 this produces modular equations between λ(τ), λ(pτ) where λ(τ)

is the invariant associated with elliptic curve generated by τ, described by

the equation: y2 = x(x − 1) (x− λ(τ1)) . Consequently, if g > 1 the algebraic
identities we obtain might serve as a higher dimensional generalization for the

one dimensional modular equations.

1. Introduction

Let τ1 be a complex number such that Im(τ1) > 0 and Zτ1 is the lattice generated
by {1, τ1} in C. Let C1 = C/Zτ1 , be the corresponding analytic elliptic curve. The
algebraic equation of this curve is

(1) y2 = x(x− 1) (x− λ(τ1)) .

and λ(τ1) is the invariant corresponding to τ1 in this equation.

Definition 1.1. Let p be a prime number. A modular equation of order p for λ,
is an algebraic equation between λ(τ1) and λ(pτ1).

These equations appeared naturally in the theory of elliptic integrals, because
they describe algebraically the analytical multiplication by p on the lattice Zτ1 . In
equivalent, but more contemporary terms, this equation describes the λ-invariant
of curves C2, where φ : C1 7→ C2 is an isogeny (finite homomorphism) of order p.
Equations of this type have an important role in Galois theory of complex multi-
plications, since if C1 is a curve with complex multiplication then λ(pτ1) generates
interesting field extension of Qab(τ1). Another application of one dimensional mod-
ular equations is algorithms for rapid calculation of π, [Bo].

In recent years, there are applications of modular equations to point counting
algorithms of elliptic curve above finite fields Fpi . Modular equations of order p are
used to compute explicit canonical lifting of elliptic curves above finite fields Fpi ,
of characteristics p to the corresponding p - adic field above it. Using the lifting we
calculate the trace of the Frobenius operator on the p- adic field. Applying fixed
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point formulas, we find the number of points of elliptic curves above finite fields
Fpi , [Ma] explains the general framework for this type of algorithms.

For p = 2 the modular equation of level 2 is the arithmetic geometric mean
(AGM) in disguise. If a0 = a, b0 = b are real numbers we define the AGM iteration
as:

(2) an =
an + bn

2

(3) bn =
√
anbn

This iteration has a strong link with the modular equations of order 2. These
sequences converge to a common limit denoted by AGM(a, b) see [Bo]. Mestre [Me]
used the AGM iteration to suggest an algorithm for point counting defined over F2i .
In [Me], Mestre uses a higher dimensional analogue of the AGM and produces an
algorithm to count the number of points of hyperelliptic curves above fields of
characteristics 2. In a recent work, Lubicz, Carls, and Kohel [CKL] generalized
Mestre’s method further in a different direction. They construct curves that have
good cryptographic properties using an iteration of order 3. In one dimensional case
their iteration seems to be closely related to modular equations of order 3. These
results motivate the question whether there exists a theory of modular equations
for τ an element of Hg. To suggest a possible generalization recall that λ(τ1) is a
quotient of theta functions that is:

λ(τ1) =
Θ4

[
0
1

]
(0, τ1)

Θ4

[
0
0

]
(0, τ1)

.

These are analytic functions that we define in the first section of the paper.
λ(pτ1) is the same quotient evaluated at pτ1. Hence, modular equations become
identities between theta functions evaluated at τ1 and those evaluated at pτ1. While
an elementary dimension argument shows that analogues of λ(τ1) do not exist for
general τ ∈ Hg theta functions do. Thus, the question of modular equations is
reduced to finding a way to produce certain identities between higher dimensional
theta functions evaluated at τ and pτ. In this note, we apply methods from [Ko] to
suggest such a procedure. The procedure constructs equations between

Θ
[
ηi

εi

]
(0, τ) and Θ

[
ηi

εi

]
(0, pτ) ,

for any p > 2 and ηi, εi are g integral characteristics. We stress that in addition to
applications similar to the one dimensional case and possibly in cryptography we
believe that an existence of such a procedure should lead to other applications that
are not present in the 1-dimensional case. For example such a procedure should
produce algebraic conditions that characterize Abelian varieties that are isogenous
to multiplication of elliptic curves. The problem treated in this note is addressed in
the literature with different approaches. Modular equations for hyperelliptic curves
through l-torsion subgroups of Jacobians were defined and treated in [GS]. [CKL]
treated the case for p = 3 and [CL] seem to treat the general p along the same lines.
Their work produces identities that use the theory of algebraic theta functions and
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Riemann’s theta formula. The relation of these identities to the current work is not
obvious and we plan to investigate it further in the future.

We review the structure of this note: The first section explains the process to
obtain identities between theta functions with integral characteristics at τ and pτ .
We apply these results in the second section to the one dimensional case and explain
how this leads to a proof of existence of modular equations to the λ function. This
serves as an alternative to the classical theory of modular polynomials that has no
analogue in the higher dimensional case. In the last section we produce modular
equations for p = 3 and 7.

Acknowledgements: We thank David Lubicz whose interest in these questions
prompted the initial motivation for this work. We also thank David Kohel and
Hershel Farkas for reading and providing valuable suggestions on an earlier version
for this note. We especially thank the referee for very constructive remarks that
substantially improved the presentation of this note. This work was partially done
while the author visited Oakland University and the author thanks the Department
of Mathematics and the algebra group for their support and hospitality.

2. Modular equations

We remind the reader the definition and main properties of theta functions:

Definition 2.1. Let τ be a complex g × g matrix such that:

• τ = τ t i.e. τ is symmetric
• Imτ is a positive definite quadratic form.

Then, τ ∈ Hg. Let
[
ε
ε′

]
be a real 2g vector. Theta function is a complex

analytic function on Cg ×Hg such that:

Θ
[
ε
ε′

]
(z, τ) =

∑
l∈Zg

exp2πi
{

1
2

(
l +

ε

2

)t

τ
(
l +

ε

2

)
+

(
l +

ε

2

)t
(
z +

ε′

2

)}
Note that the definition is the classical definition of theta function. The modern

authors omit the factor 1
2 . We list the main properties of theta functions:

• Θ
[
ε+ 2m
ε′ + 2e

]
(z, τ) = expπi {εte}Θ

[
ε
ε′

]
(z, τ) and m, e ∈ Zg

• Θ
[

ε
−ε′

]
(z, τ) = Θ

[
ε
ε′

]
(−z, τ)

• Θ
[
ε
ε′

]
(z+n+mtτ, τ) = exp 2πi

{
ntε−mtε′

2 −mtz −mtτm
}

Θ
[
ε
ε′

]
(z, τ)

For the proof of these properties that follow from a careful series manipulation
see [Mu], [RF] or [Ko]. We remind the reader the notion of integral (rational) theta
characteristics:

Definition 2.2. The functions

Θ
[
ε
ε′

]
(z, τ)
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are called theta functions with integral (rational) characteristics if
[
ε
ε′

]
∈

Z2g
(
Q2g

)
From property (2) we see that we can assume that

[
ε
ε′

]
∈ Z2g

2 Further

Θ
[
ε
ε′

]
(z, τ) will be even or odd if the scalar product ε′tε = 0, 1 respectively.

This motivates the following definition:

Definition 2.3. The integral characteristics
[
ε
ε′

]
is called even (odd) if ε′tε =

0, 1

Let us cite the duplication formula for higher dimensional theta functions that
will be important in the sequel:

Θ2

[
ε
ε1

]
(0, τ) =

∑
α′∈Zg

2

Θ
[
ε+ α′

2ε1

]
(0, 2τ)Θ

[
α′

0

]
(0, 2τ)

Here ε, ε1 ∈ Qg are any g rational characteristics. The proof is in [Mu] or [RF]. In
particular, replace τ with 2τ on both sides of the equation to obtain that:

(4) Θ2

[
ε
ε1

]
(0, 2τ) =

∑
α′∈Zg

2

Θ
[
ε+ α′

2ε1

]
(0, 4τ)Θ

[
α′

0

]
(0, 4τ)

Let us show the following lemma:

Lemma 2.4. Let δ ∈ Zg
2 then:

Θ
[

0
δ

]
(0, τ) =

∑
β∈Zg

2

exp
(
πiδ · βt

)
Θ

[
β
0

]
(0, 4τ)

Proof. We write by the definition of theta functions:

Θ
[

0
δ

]
(0, τ) =

∑
l∈Zg

exp2πi
{

1
2
lτ lt + lt

δ

2

}
.

Rewrite the right hand side of the last equation as:∑
m∈Zg,β∈Zg

2

exp2πi
{

1
2

(2m+ β) τ (2m+ β)t + (2m+ β)t δ

2

}
Since exp (2πimδ) = 1 this equals to∑

m∈Zg,β∈Zg
2

exp(πiδtβ)× exp 2πi

{
1
2

(
m+

β

2

)
4τ

(
m+

β

2

)t
}

then the last sum equals to∑
β∈Zg

2

exp
(
πiδ · βt

)
Θ

[
β
0

]
(0, 4τ),

by the definition of theta functions.
�
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Corollary 2.5. The following identity holds

Θ
[
β
0

]
(0, 4τ) =

1
2g

∑
δ∈Zg

2

exp
(
−πiδt · β

)
Θ

[
0
δ

]
(0, τ)

Proof. We can treat Θ
[
β
0

]
(0, 4τ) as unknowns in a system of linear equations

in which the elements of the 2g × 2g matrix A are exp(πδtβ). Multiply A by its
Hermitian transpose A∗. Then (AA∗)ii = 2g since the diagonal element equals∑

δ

exp(πiδtβ) exp(−πiδtβ) = 2g.

If i 6= j then (AA∗)ij = 0. This is because this element can be regarded as a sum
of a nontrivial character on the group Zg

2 .
�

We apply the formula to Eq. (4). If ε1 is an integer we rewrite the equation as:

(5)

Θ2

[
ε
ε1

]
(0, 2τ) =

∑
α′∈Zg

2

exp (πi(ε+ α′)ε1) Θ
[
ε+ α′

0

]
(0, 4τ)Θ

[
α′

0

]
(0, 4τ)

Applying Corollary 2.4 the last equation equals to

(6)
∑

α,γ,δ∈Zg
2

1
22g

cε,ε′,α,γ,δΘ
[

0
γ

]
(0, τ)Θ

[
0
δ

]
(0, τ)

and

cε,ε′,α′,γ,δ = exp
(
πi(ε+ α′)tε1

)
× exp

(
πi(ε′ + α′)tγ

)
× exp

(
πiα′tδ

)
Note that for fixed δ, γ the total coefficient of the product Θ

[
0
γ

]
(0, τ)Θ

[
0
δ

]
(0, τ)

is: ∑
α

exp
(
πi(ε+ α′)tε1

)
× exp

(
πi(ε′ + α′)tγ

)
× exp

(
πiα′tδ

)
which equals 0 unless ε1+γ+δ = 0. In the latter case the coefficient is 2g exp(πiεtδ).
Summarizing, we obtain the following corollary:

Corollary 2.6.

(7) Θ2

[
ε
ε1

]2

(0, 2τ) =
∑

δ∈Zg
2

exp
(
πiεtδ

)
Θ

[
0
δ

]
(0, τ)Θ

[
0

ε1 − δ

]
(0, τ)

We apply the last corollary to explain a procedure to obtain a higher dimensional
modular equations analogues for any prime p.

Definition 2.7. Let Dn be a set of vectors
[
ε
ε1

]
, such that

• ε ∈ Zg, εi = 0, 1.
• ε1 ∈ Qg, ε1i = l

2n , 0 ≤ l < 2n
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For each τ ∈ Hg let αn(τ) = Θ
[
ε
ε1

]
(0, τ) and

[
ε
ε1

]
∈ Dn. τ 7→ αn(τ)

induces a map from ψn(τ) : Hg 7→ CP l (l - number of vectors in Dn.)
Let Xn = ψn (Hg). Then X1 is the image in CP 22g−1 where ε, ε1 are inte-

gral characteristics. There is a map φn : Xn 7→ X1 which omits the non integer
characteristics in the definition of ψn(τ).

Lemma 2.8. The map φn is a finite map from Xn 7→ X1.

Proof. Because of the transformation formula for theta functions [RF] under the
action of Sp (g,Z), there exists a subgroup ∆n of finite index in Sp (g,Z) such that
ψn(τ) induces a map βn(τ), βn : Hg/∆n 7→ Xn ( Note: ∆n is not a congruence
subgroup of level n.) Hence, the map φn factors through a map

φ̄n : Hg/∆n 7→ Hg/∆1,

which is clearly finite since ∆n has a finite index inside Sp (g,Z) .
�

Before stating the theorem that describes the map φn more explicitly we state
the following definition:

Definition 2.9. Let H be a complex analytic domain and f1...fn : H 7→ C be
complex analytic functions. We call f constructible from f1...fn if

• f is algebraic above C(f1...fn)
• The Galois group of C(f) above f1...fn is solvable. equivalently f can be

expressed through radical expressions involving f1...fn.

Theorem 2.10. Let ε1 ∈ Qg, ε1i = l
2n and ε ∈ Zg

2 . Then, Θ
[
ε
ε1

]
(0, τ) is con-

structible from Θ
[
η
η1

]
(0, τ) and η, η1 are integral characteristics.

Proof. Assume inductively that the theorem is true for all characteristics Θ
[
δ
δ1

]
(0, τ)

such that δ ∈ Zg and δ1i = l
2n−1 . The duplication formula implies:

Θ2

[
ε
ε1

]
(0, τ) =

∑
α′∈Zg

2

Θ
[
ε+ α′

2ε1

]
(0, 2τ)Θ

[
α′

0

]
(0, 2τ)

But

Θ
[
ε+ α′

2ε1

]
(0, 2τ)

satisfies the induction hypothesis. So it is constructible from

Θ2

[
η
η1

]
(0, 2τ)

Apply the formulas from Corollary 2.6 to see that

Θ2

[
η
η1

]
(0, 2τ)

is constructible from Θ
[
η
η1

]
(0, τ). Hence, Θ

[
ε
ε1

]
(0, τ) is constructible. �
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Note that the proof gives slightly more i.e. a recursive process how to construct
the expressions

Θ
[
ε
ε1

]
(0, τ)

from

Θ
[
η
η1

]
(0, τ)

We reformulate it in the following corollary:

Corollary 2.11. Let P ∈ X1 and let Q ∈ φ−1
n (P ) then there exists a process that

produces an algebraic relationship between the coordinates of Q and coordinates of
P .

We rely on the last theorem and the methods developed in [Ko] to obtain process
to produce generalized modular equation in any dimension.

Definition 2.12. Let p be a prime. A modular equation of order p will be any

non trivial polynomial identity between Θ
[
η
η1

]
(0, τ) and Θ

[
η
η1

]
(0, pτ) η, η1

integral characteristics.

To introduce the theorem from [Ko] we need the notion of a function order k of

characteristics and characteristics
[

0...0
0...0

]
.

Definition 2.13. f : Cg ×Hg 7→ C is an analytic function of order k and charac-

teristics
[

0...0
0...0

]
if the following relation is satisfied:

f
(
z + n+mtτ, τ

)
= exp

{
2πi(−kmtz − kmtτm)

}
f (z, τ)

Let k = p1p2 and p1, p2 are even arbitrary numbers. We quote the following
theorem from [Ko].

Theorem 2.14. Let f be a function of characteristics
[

0...0
0...0

]
and even order k.

If
[
µ
µ′

]
is an integral odd characteristics then the following identity is valid :

∑
ν,ν′,0≤νi≤p1,0≤ν′i≤p2

(−1)µν−µ′ν′f

(
ν

p1
+ τ

ν′

p2

)
= 0

and µν =
∑

i µiνi.

To obtain a modular equation for an odd number p, Choose k = 2[log2(p)]+1, l =
k − p and examine the function

f = Θ
[

00...0
00...0

]l

(z, τ)Θ
[

00...0
00...0

]
(pz, pτ)

This function is of characteristics
[

00...0
00...0

]
and order k. Define p1 = 2[log2(p)], p2 =

2. Apply Theorem 2.14 to obtain the following:



278 KOPELIOVICH

Theorem 2.15. (Modular equation for p) For any
[
µ
µ′

]
odd integral character-

istics: ∑
ν,ν′,0≤ν′i≤p1,0≤νi≤1

(−1)µν−µ′ν′Θ

[
νi
2ν′i
p1

]l

(0, τ)Θ

[
νi
2ν′i
p1

]
(0, pτ) = 0

where p1 = 2[log2(p)]. The main theorem of the paper is given below:

Theorem 2.16. There exist explicit equation connecting

Θ
[
χi

χ′i

]l

(0, τ), and Θ
[
χi

χ′i

]l

(0, pτ)

χi, χ
′
i are g integral characteristics.

Proof. According to Theorem 2.15:

∑
ν,ν′,0≤ν′i≤p1,0≤νi≤1

(−1)µν−µ′ν′Θ

[
νi
2ν′i
p1

]l

(0, τ)Θ

[
νi
2ν′i
p1

]
(0, pτ) = 0

and
[
µ
µ′

]
is an odd characteristics.

Applying Theorem 2.9 we conclude that Θ

[
νi
2ν′i
p1

]l

(0, τ) is constructible from

Θ
[
η
η1

]
(0, τ) and η, η1 is an integral characteristics. Replace

Θ

[
νi
2ν′i
p1

]l

(0, τ),Θ

[
νi
2ν′i
p1

]l

(0, pτ)

with the corresponding radical expression involving Θ
[
η
η1

]
(0, τ) to conclude the

result.
�

3. The one dimensional case

In this section we explain the connection between the theory developed in the
last section and the usual one dimensional theory of modular equations.

Let E be an elliptic curve given in Legendre’s normal form y2 = x(x−1)(x−λ).
if τ denotes the period that is induced by E, we have the following expression for
λ as function of τ :

(8) λ(τ) =
Θ4

[
1
0

]
(0, τ)

Θ4

[
0
0

]
(0, τ)

Recall the identity
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(9) Θ4

[
0
0

]
(0, τ) = Θ4

[
1
0

]
(0, τ) + Θ4

[
0
1

]
(0, τ)

dividing both sides by Θ4

[
0
0

]
(0, τ) we see that

(10) 1− λ(τ) =
Θ4

[
0
1

]
(0, τ)

Θ4

[
0
0

]
(0, τ)

Now set Θ4

[
0
0

]
(0, τ) = θ0(τ),Θ4

[
0
1

]
(0, τ) = θ1(τ),Θ4

[
1
0

]
(0, τ) = θ2(τ)

We write:

(11) 4
√
λ(τ) =

θ1(τ)
θ0(τ)

,

and

(12) 4
√

1− λ(τ) =
θ2(τ)
θ0(τ)

.

The proof of the main theorem in the last section applied to the one dimensional
case produces a homogenous radical expression of the form:

(13) F (θi(τ)θj(pτ)) = 0.

Divide each term of the expression by θ0(τ)θ0(pτ). Using the definition of λ(τ)
replace its quotient by λ(τ) and λ(pτ) respectively. We obtain the following classical
theorem:

Theorem 3.1. There exists an algebraic relation between λ(τ) and λ(pτ).

Note that the proof of this theorem we obtain does not use the usual modular
group theory. The proof is constructive and provides an alternative way to construct
modular equations for any p.

As an example consider the case p = 3 then applying the algorithm we obtain:

(14) θ0(τ)θ0(3τ) = θ1(τ)θ1(3τ) + θ2(τ)θ2(3τ)

divide the two sides of the last equation by θ0(τ)θ(3τ) we obtain the classical
modular equation:

1 = 4
√
λ(τ)λ(3τ) + 4

√
(1− λ(τ)) (1− λ(3τ)).

More details can be found in [Bo].

4. Examples

We apply our theory to two cases as an example:
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4.1. p=3, g=2. In this section we outline the result of the method applied above
to p = 3 for g = 2. First we observe that for g = 2 we have 6 odd and 10 even
characteristics. We conclude immediately that overall we have 6 modular equations
for each p. Using the Theorem 2.7 we write for p = 3 :

Theorem 4.1. For any
[
µ
µ′

]
odd integral characteristics the following identities

are true: ∑
ν,ν′,0≤ν′i≤1,0≤νi≤1

(−1)µν−µ′ν′Θ
[
νi

ν′i

]l

(0, τ)Θ
[
νi

ν′i

]
(0, 3τ) = 0

To achieve a more compact set of identities we rely on the classification of iden-
tities of power 4 achieved in [AK].

Definition 4.2. Let

0 =
[

0
0

]
, 1 =

[
1
0

]
, 2 =

[
0
1

]
, 3 =

[
1
1

]
.

Using the last definition we can write any 2 dimensional characteristics using the
vectors above. For example:

03 =
[

01
01

]
We define matrix A the encodes even characteristics in the following way :

A =

 11 01 10
22 20 02
33 21 22

 ,
(

00
)

Then the following classification of 2 dimensional theta identities is given in [AK]

Theorem 4.3. There are two types of relations for theta functions in power 4:
• Type I - corresponds to generalized diagonals of matrix A on the one side

and the characteristics
(

00
)

on the other for example the following iden-
tity is true :

Θ4
00 = Θ4

11 + Θ4
20 + Θ4

12(B)

• Type II - Correspond to 2×2 sub matrices of A putting 2 not the same row
and not the same column entries on each side of the equation. For example:

Θ4
11 + Θ4

20 = Θ4
01 + Θ4

22

The identities of power 4 of theta constants were obtained applying the Gauss
elimination procedure to the matrix that defines the power 4 identities of theta
functions [AK]. Since the same matrix governs the identities involving terms of the
form Θ(0, τ)Θ(0, 3τ) an immediate corollary of the last theorem is the following
classification of identities involving prime p = 3:

Theorem 4.4. There are two types of relations for theta functions involving the
prime 3:

• Type I - corresponds to generalized diagonals of matrix A on the one side
and the characteristics

(
00

)
for example the following identity is true :

Θ00(0, τ)Θ00(0, 3τ) = Θ11(0, τ)Θ11(0, 3τ) + Θ20(0, τ)Θ20(0, 3τ) + Θ12(0, τ)Θ12(0, 3τ)
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• Type II - Correspond to 2 × 2 sub matrices of A putting 2 not the same
row and not the same column entries on each side of the equation. For
example:

Θ11(0, τ)Θ11(0, 3τ) + Θ20(0, τ)Θ20(0, 3τ) = Θ01(0, τ)Θ01(0, 3τ) + Θ22(0, τ)Θ22(0, 3τ)

This gives an algebraic way to evaluate Θij(0, 3τ) from Θij(0, τ). Compare with
[CKL].

4.2. p=7, g=2. Let us write the equations explicitly for p = 7. According to the
recipe outlined above we need to choose k = 8 and thus our basic function will be:

f = Θ
[

00
00

]
(z, τ)Θ

[
00
00

]
(7z, 7τ)

for p = 7 Now we use theorem 2.14 to obtain the 6 equations for each odd charac-
teristics. For example if the odd characteristics is[

10
10

]
The equation is:∑

0≤ν1,ν2≤1,0≤ν′1,ν′2≤2

(−1)ν1−ν′1 Θ
[
ν1ν2
ν′1
2

ν′2
2

]
(0, τ)Θ

[
ν1ν2
ν′1
2

ν′2
2

]
(0, 7τ) = 0

To translate the equation into equation involving integral characteristics we use
the duplication formulas. For example we write:

Θ2

[
11
1
2

1
2

]
(0, τ) = Θ

[
11
11

]
(0, 2τ)Θ

[
00
00

]
(0, τ)+Θ

[
00
11

]
(0, 2τ)Θ

[
11
00

]
(0, τ)

Since the other two theta functions with integral characteristics are equal to

0. Similar formulas hold for the other functions of the form : Θ
[
ν1ν2
ν′1
2

ν′2
2

]
(0, τ)

Substituting we obtain formulas involving integral characteristics at point τ, 2τ, 14τ.
To reduce to equations involving τ, 7τ we apply the formulas from corollary 2.5 to
functions

Θ
[
ν1ν2
ν′1ν

′
2

]
(0, 2τ)

and νi, ν
′
i are integral characteristics.
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