TORIC FIBRATIONS AND MIRROR SYMMETRY

ARTUR ELEZI

Abstract

The relation between the quantum \mathcal{D}-modules of a smooth variety X and a toric bundle is studied here. We describe the relation completely when X is a semi-ample complete intersection in a toric variety. In this case, we obtain all the relations in the small quantum cohomology ring of the bundle.

1. Introduction and Goals

For a smooth, projective variety Y we denote by $Y_{k, \beta}$ the moduli stack of rational stable maps of class $\beta \in H_{2}(Y, \mathbb{Z})$ with k-markings (Fulton et al [8]) and [$Y_{k, \beta}$] its virtual fundamental class (Behrend et al [3], Li et al [13]). Genus zero GromovWitten invariants are defined as appropriate integrals over $\left[Y_{k, \beta}\right]$. We let $e: Y_{1, \beta} \rightarrow$ Y be the evaluation map, ψ - the first chern class of the cotangent line bundle on $Y_{1, \beta}$ and $\mathrm{ft}: Y_{1, \beta} \rightarrow Y_{0, \beta}$ - the forgetful morphism.
The formal completion of an arbitrary ring \mathcal{R} along the semigroup $M Y$ of the rational curves of Y is defined to be

$$
\begin{equation*}
\mathcal{R}\left[\left[q^{\beta}\right]\right]:=\left\{\sum_{\beta \in \mathrm{MY}} a_{\beta} q^{\beta}, \quad a_{\beta} \in \mathcal{A}, \quad \beta-\text { effective }\right\} \tag{1}
\end{equation*}
$$

where $\beta \in H_{2}(Y, \mathbb{Z})$ is effective if it is a positive linear combination of rational curves. For each β, the set of α such that α and $\beta-\alpha$ are both effective is finite, hence $\mathcal{R}\left[\left[q^{\beta}\right]\right]$ behaves like a power series. Alternatively, we may define

$$
q^{\beta}:=q_{1}^{d_{1}} \cdot \ldots \cdot q_{k}^{d_{k}}=\exp \left(t_{1} d_{1}+\ldots+t_{k} d_{k}\right)
$$

where $\left\{d_{1}, d_{2}, \ldots, d_{k}\right\}$ are the coordinates of β relative to the dual of a nef basis $\left\{p_{1}, \ldots, p_{k}\right\}$ of $H^{2}(Y, \mathbb{Q})$..
Let $*$ denote the small quantum product of Y. The small quantum cohomology ring

$$
\left(Q H_{s}^{*} Y, *\right)
$$

is a deformation of the cohomology ring $\left(H^{*}\left(Y, \mathbb{Q}\left[q^{\beta}\right]\right), \cup\right)$. Its structural constants are three point Gromov-Witten invariants of genus zero. Let \hbar be a formal variable and

$$
J_{\beta}(Y):=e_{*}\left(\frac{\left[Y_{1, \beta}\right]}{\hbar(\hbar-\psi)}\right)=\sum_{k=0}^{\infty} \frac{1}{\hbar^{2+k}} e_{*}\left(\psi^{k} \cap\left[Y_{1, \beta}\right]\right)
$$

[^0]The sum is finite for dimension reasons. For $t=\left(t_{0}, t_{1}, \ldots, t_{k}\right)$, let

$$
t p:=t_{0}+\sum_{i=1}^{k} t_{i} p_{i}
$$

The \mathcal{D}-module for the quantum differential equation of Y

$$
1 \leq i \leq k, \hbar \partial / \partial t_{i}=p_{i} *
$$

is generated by (Givental [10])

$$
J(Y)=\exp \left(\frac{t p}{\hbar}\right) \sum_{\beta \in H_{2}(Y, \mathbb{Z})} q^{\beta} J_{\beta}(Y)
$$

where we use the convention $J_{0}=1$. The generator $J(Y)$ encodes all of the genus zero, one marking Gromov-Witten invariants and gravitational descendants of Y. The generator $J(Y)$ is an element of the completion $H^{*}(Y, \mathbb{Q})[t]\left[\left[q^{\beta}\right]\right]$ that may be used to produce relations in $Q H_{s}^{*} Y$ in the following way: let

$$
\mathcal{P}\left(\hbar, \hbar \partial / \partial t_{i}, q_{i}\right)
$$

be a polynomial differential operator where q_{i} and \hbar act via multiplication and $q_{i}=e^{t_{i}}$ are on the left of derivatives. If

$$
\mathcal{P}\left(\hbar, \hbar \partial / \partial t_{i}, q_{i}\right) J(Y)=0
$$

then

$$
\mathcal{P}\left(0, p_{i}, q_{i}\right)=0
$$

is a relation in the small quantum cohomology ring $Q H_{s}^{*} Y$.
If Y is a complete intersection in a toric variety, $J(Y)$ is related to an explicit hypergeometric series $I(Y)$ via a change of variables (Givental [8], Lian et al [12],[13]). Furthermore, if Y is Fano then the change of variables is trivial, i.e.

$$
J(Y)=I(Y)
$$

Since $I(Y)$ is known explicitly, this yields two immediate benefits.
(1) The one point Gromov-Witten invariants and gravitational descendants of Y are determined completely.
(2) Differential operators that annihilate $I(Y)$ are easy to find, hence producing relations in the small quantum cohomology ring of Y.

In this paper we seek to relativize these results for Fano toric bundles, hence extending the results of the papers Elezi [6],[7]

2. Toric Bundles and Mirror Theorems

Toric varieties and bundles. We follow the approach and the terminology of Oda [15]. Let $\mathbb{M} \simeq \mathbb{Z}^{m}$ be a free abelian group of $\operatorname{rank} m, \mathbb{N}=\operatorname{Hom}(\mathbb{M}, \mathbb{Z})$ its dual, and $<,>: \mathbb{M} \times \mathbb{N} \mapsto \mathbb{Z}$ the pairing between them. Let Y be an m-dimensional smooth, toric variety determined by a fan $\Sigma \subset \mathbb{N} \otimes \mathbb{R}$. Denote by

$$
\Sigma(1)=\left\{\rho_{1}, \ldots, \rho_{m}, \rho_{m+1}, \ldots, \rho_{r=m+k}\right\}
$$

the one dimensional cones of Σ and D_{1}, \ldots, D_{r} the corresponding toric divisors. Let $v_{i}=\left(v_{i 1}, \ldots, v_{i m}\right)$ be the first lattice point along the ray ρ_{i}. Let

$$
\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}
$$

with $a_{j}:=\left(a_{1 j}, a_{2 j}, \ldots, a_{m j}, a_{m+1 j}, \ldots, a_{r j}\right)$ be a basis of the lattice of relations Λ between v_{1}, \ldots, v_{r}. There is a short exact sequence

$$
\begin{equation*}
0 \rightarrow \Lambda \rightarrow \mathbb{Z}^{\Sigma(1)} \xrightarrow{h} \mathbb{N} \rightarrow 0 \tag{2}
\end{equation*}
$$

where $h\left(c_{1}, c_{2}, \ldots c_{r}\right)=c_{1} v_{1}+\ldots+c_{r} v_{r}$. The lattice Λ may be identified with $\operatorname{Hom}\left(A_{m-1}(Y), \mathbb{Z}\right) \simeq H_{2}(Y, \mathbb{Z})$. Under this isomorphism, $a_{i j}$ is the intersection of a_{j}, when interpreted as a two dimensional cycle, with the toric divisor D_{i}. We choose a_{j} so that $\left\{a_{1}, \ldots, a_{k}\right\}$ is a generating set for the Mori cone of classes of effective curves. Then $a_{i 1}, \ldots, a_{i k}$ are the coordinates of D_{i} with respect to the nef basis $\left\{p_{1}, \ldots, p_{k}\right\}$ dual to $\left\{a_{1}, \ldots, a_{k}\right\}$.
Assume that $\rho_{1}, \ldots, \rho_{m}$ generate a maximal dimensional cone in Σ. Since Y is smooth, $\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ forms a \mathbb{Z}-basis of \mathbb{N} and the absolute value of the matrix

$$
\left(a_{i j}\right) ; i=m+1, \ldots, r ; j=1,2, \ldots, k
$$

is 1 .
The cohomology ring $H^{*}(Y, \mathbb{Z})$ is generated by the divisors D_{1}, \ldots, D_{r} subject to the following two types of relations:
Type One: Whenever $\left\{\rho_{j_{1}}, \ldots, \rho_{j_{s}}\right\}$ do not generate a cone in Σ, the intersection

$$
\begin{equation*}
D_{j_{1}} \cdot \ldots \cdot D_{j_{s}}=0 \tag{3}
\end{equation*}
$$

Type Two: For each $1 \leq i \leq m$,

$$
\begin{equation*}
D_{i}=\sum_{j=1}^{k} a_{i j} p_{j} \tag{4}
\end{equation*}
$$

From the short exact sequence (2) we obtain

$$
\begin{equation*}
0 \rightarrow \mathbb{T}^{k} \xrightarrow{\alpha} \mathbb{T}^{r} \xrightarrow{\beta} \mathbb{T}^{m} \rightarrow 0 \tag{5}
\end{equation*}
$$

where the maps are defined as follows:

$$
\alpha\left(t_{1}, t_{2}, \ldots t_{k}\right)=\left(\prod_{i=1}^{k} t_{i}^{a_{1 i}}, \ldots, \prod_{i=1}^{k} t_{i}^{a_{r i}}\right), \beta\left(t_{1}, \ldots t_{r}\right)=\left(\prod_{i=1}^{r} t_{i}^{v_{i 1}}, \ldots, \prod_{i=1}^{r} t_{i}^{v_{i m}}\right)
$$

Let $Z(\Sigma) \subset \mathbb{C}^{r}$ be the variety whose ideal is generated by the products of those variables which do not generate a cone in Σ. The toric variety Y is the geometric quotient (Cox [5])

$$
\mathbb{C}^{r}-Z(\Sigma) / / \mathbb{T}^{k}
$$

where the torus acts as follows

$$
\begin{equation*}
t \cdot x=\left(\prod_{i=1}^{k} t_{i}^{a_{1 i}} x_{1}, \ldots, \prod_{i=1}^{k} t_{i}^{a_{r i}} x_{r}\right) \tag{6}
\end{equation*}
$$

The short exact sequence (5) yields an action of the quotient $\mathbb{T}:=\mathbb{T}^{m}$ on Y.
The first chern class of the tangent bundle to Y is equal to

$$
\sum_{i=1}^{r} D_{i}=\sum_{i=1}^{k} n_{i} p_{i}
$$

The toric variety Y is Fano iff $n_{i}>0$ for all i.

We relativize the previous construction as follows. Consider the principal \mathbb{T}-bundle

$$
\mathbb{E}:=\oplus_{i=1}^{m}\left(L_{i}-\{0\}\right) \rightarrow X
$$

where L_{i} are line bundles over a smooth, projective variety X. Let \mathbb{T} act fibrewisely on \mathbb{E} and the diagonally on the first m-homogeneous coordinates of Y. The quotient space

$$
Y(\mathbb{E}):=\mathbb{E} \times_{\mathbb{T}} Y
$$

is a toric bundles over X with fiber isomorphic to Y. The bundle $Y(\mathbb{E})$ inherits a T-action.
There is a projection map $\pi: Y(\mathbb{E}) \rightarrow Y$. The maximal cone generated by $\left\{\rho_{1}, \rho_{2}, \ldots, \rho_{m}\right\}$ determines a \mathbb{T} fixed point q in Y whose homogeneous coordinates are $(0,0, \ldots, 0,1,1, \ldots 1)$. In the relativized setting, the \mathbb{T}-equivariant inclusion

$$
q \hookrightarrow Y
$$

yields a map

$$
q(\mathbb{E}) \simeq X \stackrel{s}{\hookrightarrow} Y(\mathbb{E})
$$

which is a section of π. This is also a fixed point component for the action of \mathbb{T} on $Y(\mathbb{E})$. The other \mathbb{T}-fixed points of Y yield sections of π and these are all the fixed point components.
Toric divisors lift to divisors in $Y(\mathbb{E})$; these liftings will be denoted by the same letter in this paper. It was shown in Sankaran and Uma [17] that the two types of relations (3) and (4) lift in a natural way in $H^{*}(Y(\mathbb{E}), \mathbb{Z})$; namely

$$
D_{j_{1}} \cdot \ldots \cdot D_{j_{s}}=0
$$

whenever $\left\{\rho_{j_{1}}, \ldots, \rho_{j_{s}}\right\}$ do not generate a cone in Σ, and

$$
D_{i}=\sum_{j=1}^{k} a_{i j} p_{j}+c_{1}\left(L_{i}\right)
$$

for each $1 \leq i \leq m$, where as in the case of $H^{*}(Y, \mathbb{Z})$ the divisors

$$
p_{1}, \ldots, p_{k}
$$

generate freely $H^{*}(Y(\mathbb{E}), \mathbb{Z})$. In fact, there is a simple relation between the \mathbb{T} equivariant cohomology of Y and the cohomology of $Y(\mathbb{E})$ which will be used throughout this paper. Recall, that the rational cohomology of the classifying space $B \mathbb{T}$ is $\mathbb{Q}\left[\lambda_{1}, \ldots \lambda_{m}\right]$ where λ_{i} is the first chern class of the equivariant line bundle corresponding to the character

$$
\nu_{i}: \mathbb{T} \rightarrow \mathbb{C}^{*} \nu_{i}\left(t_{1}, \ldots, t_{m}\right)=t_{i}
$$

A relation in the equivariant cohomology ring of Y becomes a relation in $H^{*}(Y(\mathbb{E}))$ after substituting $c_{1}\left(L_{i}\right)$ for λ_{i}.

We may assume that $L_{i}=\mathcal{O}_{X}, i>m$ without loss of generality. This is due to the fact that $\rho_{1}, \ldots, \rho_{m}$ generate a maximal cone in Σ.

The quantum \mathcal{D}-module structure of a toric bundle. The generator J of a quantum \mathcal{D}-structure is weighted by the lattice points of the Mori cone. Hence we first study the relation between the Mori cones of Y and $Y(\mathbb{E})$.

Lemma 1. If L_{i}^{*} are generated by global sections, then the liftings of the nef divisors p_{1}, \ldots, p_{k} in $Y(\mathbb{E})$ are also nef. Furthermore, the Mori cone of $Y(\mathbb{E})$ is a direct sum of the Mori cone of X, embedded via the section s, and the Mori cone of the fiber Y.

Proof. In toric varieties, every nef divisor p is generated by global sections (Oda [14]). Let $x_{1}, x_{2}, \ldots, x_{r}$ be homogeneous coordinates in Y. The vector space of global sections $H^{0}(\mathcal{O}(p))$ has a monomial basis

$$
\prod_{i=1}^{r} x_{i}^{m_{i}}
$$

Let $\left\{\phi_{i j}\right\}$ be a collection of generating sections for the line bundles L_{i}^{*}. The "monomials"

$$
\prod_{i=1}^{r}\left(x_{i} \phi_{i j}\right)^{m_{i}}
$$

are generating sections the line bundle

$$
\prod_{i=1}^{r}\left(\mathcal{O}\left(D_{i}\right) \otimes\left(L_{i}^{*}\right)\right)^{m_{i}}
$$

which is isomorphic to $\mathcal{O}(p)$ in $Y(\mathbb{E})$. Thus p lifts to a nef divisor in $Y(\mathbb{E})$.
This shows that the addition of p_{1}, \ldots, p_{k} to a nef basis $\left\{p_{k+1}, \ldots, p_{l}\right\}$ of X yields a nef basis

$$
\left\{p_{1}, \ldots, p_{l}\right\}
$$

of $Y(\mathbb{E})$. Now for a curve $C \subset Y(\mathbb{E})$ we have

$$
\pi_{*}\left([C]-s_{*}\left(\pi_{*}([C])\right)\right)=0
$$

Notice that the restrictions of the divisors $p_{1}, p_{2}, \ldots, p_{k}$ in the section $q(\mathbb{E})$ are all zero since they may be written as \mathbb{Z}-linear combinations of D_{m+1}, \ldots, D_{m+k}. Hence $\forall i=1,2, \ldots, k, p_{i} \cdot\left([C]-s_{*}\left(\pi_{*}([C])\right)\right) \geq 0$ and we have a unique decomposition

$$
[C]=s_{*}\left(\pi_{*}([C])\right)+\left[C^{\prime}\right]
$$

where $\left[C^{\prime}\right]$ and $\pi_{*}([C])$ are curve classes respectively in the fiber of π and X.
We introduce a "mixed" $I(Y(\mathbb{E}))$ that admits contributions from both $J(X)$ and an \mathbb{E}-twisted $J(Y)$. Let (ν, d) denote a curve class in the Mori cone of $Y(\mathbb{E})$, with ν a curve class in the fiber of π and d a curve class in X.
Define

$$
I(Y(\mathbb{E})):=\exp \left(\frac{t p}{\hbar}\right) \sum_{(d, \nu)} q_{1}{ }^{\nu} q_{2}{ }^{d} \prod_{i=1}^{m} \frac{\prod_{m=0}^{\infty}\left(D_{i}+m \hbar\right)}{\prod_{m=0}^{D_{i}(\nu, d)}\left(D_{i}+m \hbar\right)} \pi^{*}\left(J_{d}(X)\right)
$$

If X is a point then $Y(\mathbb{E})=Y$. Furthermore, as mentioned in the introduction $J(Y)=I(Y)$ if Y is a Fano toric variety. In this paper we show that the same holds for the relativized $Y(\mathbb{E})$.

Proposition 1. If X is a semi-ample complete intersection in a toric variety, and both Y and $Y(\mathbb{E})$ are Fano, then $J(Y(\mathbb{E}))=I(Y(\mathbb{E}))$.

Proposition 1 will follow as a corollary of another statement which we now formulate and prove.
Let Z be a toric variety, $\tilde{L}_{i}, i=0,1, \ldots, n$ toric line bundles over Z and $\tilde{\mathbb{E}}=\oplus_{i=0}^{n} \tilde{L}_{i}$. The bundle

$$
\pi: Y(\tilde{\mathbb{E}}) \rightarrow Z
$$

is also a toric variety (Oda [15]). The edges of the fan for $Y(\tilde{\mathbb{E}})$ corresponds to the liftings B_{1}, \ldots, B_{r} to $Y(\mathbb{E})$ of the toric base divisors b_{1}, \ldots, b_{r} and the divisors D_{i} from Y.
Let $\mathcal{L}_{a}: a=1,2, \ldots, l$ be globally generated line bundles over Z and X the zero locus of a generic section s of

$$
V=\oplus_{a=1}^{l} \mathcal{L}_{a}
$$

Such an X will be called a semi-ample complete intersection. Denote by L_{i} and \mathbb{E} the restrictions of \tilde{L}_{i} and $\tilde{\mathbb{E}}$ to X. The total space of $Y(\mathbb{E})$ is easily seen to be the zero locus of the section $\pi^{*}(s)$ of the pull back bundle $\pi^{*}(V)$.

Assume that the line bundles \tilde{L}_{i}^{*} are globally generated and $-K_{Z}-\sum_{a=1}^{l} c_{1}\left(\mathcal{L}_{a}\right)+$ $\sum_{i=0}^{n} c_{1}\left(\tilde{L}_{i}\right)$ is ample. (This will ensure that the conditions of Proposition 1 for the bundle $Y(\mathbb{E})$ over X are satisfied.)

Let V_{d} be the bundle on $Z_{1, d}$ whose fiber over the moduli point $\left(C, x_{1}, f\right)$ is $\oplus_{a} H^{0}\left(f^{*}\left(\mathcal{L}_{a}\right)\right)$. Denote by s_{V} its canonical section induced by s, i.e.

$$
s_{V}\left(\left(C, x_{1}, f\right)\right)=f^{*}(s)
$$

The stack theoretic zero section of s_{V} is the disjoint union

$$
\begin{equation*}
Z\left(s_{V}\right)=\coprod_{i_{*}(\beta)=d} X_{1, \beta} \tag{7}
\end{equation*}
$$

The map $i_{*}: H_{2} X \rightarrow H_{2} Z$ is not injective in general, hence the zero locus $Z\left(s_{V}\right)$ may have more then one connected component. An example is the quadric surface in \mathbb{P}^{3}. The sum of the virtual fundamental classes $\left[X_{1, \beta}\right]$ is the refined top Chern class of V_{d} with respect to s_{V}.
Let $\tilde{V}_{\nu, d}$ and \tilde{s}_{V} be the pull backs of V_{d} and s_{V} via the stack morphism

$$
Y(\tilde{\mathbb{E}})_{1,(\nu, d)} \rightarrow Z_{1, d}
$$

The zero section of \tilde{s}_{V} is the disjoint union

$$
z\left(\tilde{s}_{V}\right)=\coprod_{i_{*}(\beta)=d} Y(\mathbb{E})_{1,(\nu, \beta)}
$$

It follows that

$$
\sum_{i_{*}(\beta)=d}\left[Y(\mathbb{E})_{1,(\nu, \beta)}\right]=c_{\text {top }}\left(\tilde{V}_{\nu, d}\right) \cap\left[Y(\tilde{\mathbb{E}})_{1,(\nu, d)}\right]
$$

Recall that the nef basis $\left\{p_{1}, p_{2}, \ldots, p_{k}, p_{k+1}, \ldots p_{l}\right\}$ of $Y(\mathbb{E})$ is obtained by completing a nef basis $\left\{p_{k+1}, \ldots, p_{l}\right\}$ of X. We will use $t p$ to denote both $\sum_{i=1}^{l} t_{i} p_{i}$ and $\sum_{i=k+1}^{l} t_{i} p_{i}$. The difference will be clear from the context.
Consider the following generating functions

$$
J^{V}(Y(\tilde{\mathbb{E}}))=\exp \left(\frac{t p}{\hbar}\right) \sum_{(\nu, d)} q_{1}^{\nu} q_{2}^{d} e_{*}\left(\frac{c_{\mathrm{top}}\left(\tilde{V}_{\nu, d}\right) \cap\left[Y(\tilde{\mathbb{E}})_{1,(\nu, d)}\right]}{\hbar(\hbar-c)}\right)
$$

and

$$
\tilde{I}^{V}(Y(\tilde{\mathbb{E}}))=\exp \left(\frac{t p}{\hbar}\right) \sum_{(\nu, d)} q_{1}^{\nu} q_{2}^{d} \Omega_{\nu, d} \pi^{*} e_{*}\left(\frac{c_{\mathrm{top}}\left(V_{d}\right) \cap\left[Z_{1, d}\right]}{\hbar(\hbar-c)}\right)
$$

where

$$
\Omega_{\nu, d}=\prod_{i=1}^{m} \frac{\prod_{m=0}^{\infty}\left(D_{i}+m \hbar\right)}{\prod_{m=0}^{D_{i}(\nu, d)}\left(D_{i}+m \hbar\right)}
$$

Proposition 2. If $-K_{Y}-\sum_{a=1}^{l} c_{1}\left(\mathcal{L}_{a}\right)-\sum_{i=0}^{n} c_{1}\left(\tilde{L}_{i}\right)$ is ample then

$$
J^{V}((\tilde{\mathbb{E}}))=\tilde{I}^{V}(Y(\tilde{\mathbb{E}}))
$$

Proof. Let

$$
I_{d}^{V}(Z)=\prod_{a} \frac{\prod_{m=-\infty}^{\mathcal{L}_{a}(d)}\left(\mathcal{L}_{a}+m \hbar\right)}{\prod_{m=-\infty}^{0}\left(\mathcal{L}_{a}+m \hbar\right)} \prod_{i} \frac{\prod_{m=-\infty}^{0}\left(B_{i}+m \hbar\right)}{\prod_{m=-\infty}^{B_{i}(d)}\left(B_{i}+m \hbar\right)}
$$

From Givental [9], Lian et al [12], Lian et al [13] we know that $J^{V}(Y(\tilde{E}))$ is related via a mirror transformation to

$$
I^{V}(Y(\tilde{\mathbb{E}}))=\exp \left(\frac{t p}{\hbar}\right) \cdot \sum q_{1}^{\nu} q_{2}^{d} \Omega_{\nu, d} I_{d}^{V}(Z)
$$

Likewise

$$
J^{V}(Z)=\exp \left(\frac{t p}{\hbar}\right) \sum q_{2}^{d} e_{*}\left(\frac{c_{\mathrm{top}}\left(V_{d}\right) \cap\left[Z_{1, d}\right]}{\hbar(\hbar-c)}\right)
$$

is related to

$$
I^{V}(Z)=\exp \left(\frac{t p}{\hbar}\right) \sum q_{2}^{d} I_{d}^{V}(Z)
$$

Since $-K_{Y(\tilde{E})}-\sum_{a} c_{1}\left(\mathcal{L}_{a}\right)$ and $-K_{Z}-\sum_{a} c_{1}\left(\mathcal{L}_{a}\right)$ are ample, the mirror transformations are particularly simple. Indeed, both series can be written as power series of \hbar^{-1} as follows:

$$
I^{V}(Y(\tilde{E}))=1+\frac{P_{1}\left(q_{1}, q_{2}\right)}{\hbar}+o\left(\hbar^{-1}\right), I^{V}(Z)=1+\frac{P_{2}\left(q_{2}\right)}{\hbar}+o\left(\hbar^{-1}\right)
$$

where $P_{1}\left(q_{1}, q_{2}\right), P_{2}\left(q_{2}\right)$ are both polynomials supported respectively in

$$
\Lambda_{1}:=\left\{(\nu, d) \mid\left(-K_{Y(\tilde{E})}-\sum c_{1}\left(\mathcal{L}_{a}\right)\right)=1 ; D_{j} \geq 0, \forall j ; \quad B_{i} \geq 0, \forall i\right\}
$$

and

$$
\Lambda_{2}:=\left\{d \mid\left(-K_{Z}-\sum c_{1}\left(\mathcal{L}_{a}\right)\right)=1 ; B_{i} \geq 0 \forall i\right\}
$$

Then

$$
J^{V}(Y(\tilde{E}))=\exp \left(\frac{-P_{1}\left(q_{1}, q_{2}\right)}{\hbar}\right) I^{V}(Y(\tilde{E}))
$$

and

$$
J^{V}(Z)=\exp \left(\frac{-P_{2}\left(q_{2}\right)}{\hbar}\right) I^{V}(Z)
$$

Simple algebraic manipulations show that

- $c_{1}\left(\tilde{L}_{j}\right) \cdot d=0, \forall d \in \Lambda_{2}, \forall j=1,2, \ldots, n$
- $\Lambda_{1}=\left\{(0, d) \mid d \in \Lambda_{2}\right\}$.

It follows that $\Omega_{0, d}=1, \forall d \in \Lambda_{2}$ hence $P_{1}\left(q_{1}, q_{2}\right)=P_{2}\left(q_{2}\right)$. Notice also that if we expand

$$
\exp \left(\frac{-P_{2}\left(q_{2}\right)}{\hbar}\right)=\sum_{\alpha} c_{\alpha} q_{2}^{\alpha}
$$

then

$$
c_{1}\left(\tilde{L}_{j}\right) \cdot \alpha=0, \forall j=1,2, \ldots, n
$$

Hence for each $(\nu, d) \in M \mathbb{P}(\tilde{V})$ we have $\Omega_{\nu, d}=\Omega_{\nu, d+\alpha}$. Now the proposition follows easily.

Proof. of Proposition 1. We know return to the proof of Proposition 1. Recall that the map

$$
\begin{equation*}
i_{*}: H_{2}(X) \rightarrow H_{2}(Z) \tag{8}
\end{equation*}
$$

is not necessarily injective in general. If it is, then

$$
\left[X_{1, \beta}\right]=c_{\mathrm{top}}\left(V_{i_{*}(\beta)}\right) \cap\left[Y_{1, i_{*}(\beta)}\right]
$$

and

$$
\left[Y(\mathbb{E})_{1,(\nu, \beta)}\right]=c_{\text {top }}\left(\tilde{V}_{\nu, i_{*}(\beta)}\right) \cap\left[Y(\tilde{\mathbb{E}})_{1,\left(\nu, i_{*}(\beta)\right)}\right]
$$

In this case one can easily show that

$$
i_{*}\left(J_{\nu, \beta}(Y(\mathbb{E}))\right)=J_{\nu, i_{*}(\beta)}^{V}(Y(\tilde{\mathbb{E}}))
$$

and

$$
i_{*}\left(I_{\nu, \beta}(Y(\mathbb{E}))\right)=\tilde{I}_{\nu, i_{*}(\beta)}^{V}(Y(\tilde{\mathbb{E}}))
$$

Proposition 2 shows that Proposition 1 holds for complete intersection in toric varieties for which the map (8) is injective.

3. Lifting the Quantum Cohomology Structure

In this section we use Proposition 1 to study small quantum cohomology ring of $Y(\mathbb{E})$. As explained in the introduction, some of the relations in the small quantum cohomology ring come from differential operators.

Proposition 3. Whenever Proposition 1 holds, quantum differential operators of X may be lifted in $Y(\mathbb{E})$, while the quantum differential operators of the fiber Y may be extended to $Y(\mathbb{E})$. Both types of operators produce relations in the quantum cohomology $Q H_{s}^{*} Y(\mathbb{E})$.

Proof. Recall that $D_{i}=\sum a_{i j} p_{j}$. Let

$$
c_{1}\left(L_{i}\right)=\sum_{j=k+1}^{l} c_{i j} p_{j}, i=0,1, \ldots, n .
$$

Recall that the nef basis $\left\{p_{1}, p_{2}, \ldots, p_{k}, p_{k+1}, \ldots p_{l}\right\}$ of $H^{2}(Y(\mathbb{E}), \mathbb{Z})$ is obtained by completing a nef basis $\left\{p_{k+1}, \ldots, p_{l}\right\}$ of X. Let

$$
\mathcal{P}\left(\hbar, \hbar \partial / \partial t_{k+1}, \ldots, \hbar \partial / \partial t_{l}, q_{2}\right)=\sum_{\alpha \in \Lambda} q_{2}^{\alpha} \mathcal{P}_{\alpha}
$$

be a polynomial differential operator with Λ a finite subset of the Mori cone of X. Suppose that

$$
\begin{gathered}
0=\mathcal{P} J(X)=\sum_{\alpha \in \Lambda} q_{2}^{\alpha} \sum_{\beta} \mathcal{P}_{\alpha}\left(\exp \left(\frac{p t}{\hbar}\right) q_{2}^{\beta}\right) J_{\beta}(X) \\
=\sum_{\alpha \in \Lambda} q_{2}^{\alpha} \sum_{\beta} c_{\alpha, \beta} \exp \left(\frac{p t}{\hbar}\right) q_{2}^{\beta} J_{\beta}(X)=\exp \left(\frac{p t}{\hbar}\right) \sum_{\alpha \in \Lambda, \beta} q_{2}^{\alpha+\beta} c_{\alpha, \beta} J_{\beta}(X) .
\end{gathered}
$$

Let

$$
\delta_{\alpha}=\prod_{i=1}^{n} \prod_{r_{i}=0}^{-L_{i} \cdot \alpha-1}\left(\sum_{j=1}^{k} a_{i j} \hbar \frac{\partial}{\partial t_{j}}+\sum_{j=k+1}^{l} c_{i j} \hbar \frac{\partial}{\partial t_{j}}-r_{i} \hbar\right), \tilde{\mathcal{P}}=\sum_{\alpha \in \Lambda} q_{2}^{\alpha} \delta_{\alpha} \mathcal{P}_{\alpha}
$$

with the convention that if

$$
L_{i}(\alpha)=0
$$

the factors of δ_{α} corresponding to L_{i} are missing. Notice that

$$
L_{n+1}(\alpha)=\ldots=L_{m}(\alpha)=0
$$

since we have chosen L_{i} to be trivial for $i>n$. We compute

$$
\begin{gathered}
\tilde{\mathcal{P}} J(Y(\mathbb{E}))=\sum_{\alpha \in \Lambda} q_{2}^{\alpha} \delta_{\alpha} \sum_{\nu, \beta} \mathcal{P}_{\alpha}\left(q_{2}^{\beta} \exp \left(\frac{p t}{\hbar}\right)\right) q_{1}^{\nu} \Omega_{\nu, \beta} J_{\beta}= \\
\sum_{\alpha \in \Lambda} q_{2}^{\alpha} \delta_{\alpha} \sum_{\nu, \beta} c_{\alpha, \beta} \exp \left(\frac{p t}{\hbar}\right) q_{1}^{\nu} q_{2}^{\beta} \Omega_{\nu, \beta} J_{\beta}
\end{gathered}
$$

One can easily show that

$$
\delta_{\alpha}\left(\exp \left(\frac{p t}{\hbar}\right) q_{1}^{\nu} q_{2}^{\beta} \Omega_{\nu, \beta}\right)=\exp \left(\frac{p t}{\hbar}\right) q_{1}^{\nu} q_{2}^{\beta} \Omega_{\nu, \alpha+\beta}
$$

It follows that

$$
\tilde{\mathcal{P}} J(Y(\mathbb{E}))=\exp \left(\frac{p t}{\hbar}\right) \sum_{\nu} q_{1}^{\nu} \sum_{\alpha \in \Lambda, \beta} c_{\alpha, \beta} q_{2}^{\alpha+\beta} \Omega_{\nu, \alpha+\beta} J_{\beta}(X)=0
$$

Hence the relation $\mathcal{P}\left(0, p_{k+1}, \ldots, p_{l}, q_{2}\right)=0$ in $Q H_{s}^{*} X$ lifts into the relation

$$
\mathcal{P}\left(0, p_{k+1}, \ldots, p_{l}, q_{2} \prod_{i=1}^{n} D_{i}\right)=0
$$

in $Q H_{s}^{*} Y(\mathbb{E})$, where

$$
\left(\prod_{i=1}^{n} D_{i}\right)^{\alpha}:=\prod_{i=1}^{n} D_{i}^{-L_{i}(\alpha)}, \forall \alpha \in M X .
$$

For a curve class ν in the fiber of π, consider the following differential operator

$$
\begin{gathered}
\Delta_{\nu}\left(\hbar \frac{\partial}{\partial t_{1}}, \ldots, \hbar \frac{\partial}{\partial t_{l}}, q_{j}\right):=\prod_{i: D_{i}(\nu)>0} \prod_{m=0}^{D_{i}(\nu)-1}\left(\sum_{j=1}^{k} a_{i j} \hbar \frac{\partial}{\partial t_{j}}-\sum_{j=k+1}^{l} c_{i j} \hbar \frac{\partial}{\partial t_{j}}+m \hbar\right) \\
-q^{\nu} \prod_{i: D_{i}(\nu)<0} \prod_{m=0}^{-D_{i}(\nu)-1}\left(\sum_{j=1}^{k} a_{i j} \hbar \frac{\partial}{\partial t_{j}}-\sum_{j=k+1}^{l} c_{i j} \hbar \frac{\partial}{\partial t_{j}}+m \hbar\right) .
\end{gathered}
$$

It is easy to show that it satisfies

$$
\Delta_{\nu} J(Y(\mathbb{E}))=0
$$

It follows that

$$
\Delta_{\nu}\left(p_{1}, \ldots, p_{l}, q_{j}\right)=0
$$

in $Q H_{s}^{*} Y(\mathbb{E})$, i.e.

$$
\prod_{i=1}^{r} D_{i}^{D_{i}(\nu)}=q^{\nu}
$$

These are precisely the extensions to $Y(\mathbb{E})$ of the small quantum cohomolgy relations of the fiber Y.

Sometimes all the relations in $Q H_{s}^{*} X$ come from quantum differential operators, hence $Q H_{s}^{*} X$ pulls back to $Q H_{s}^{*} Y(\mathbb{E})$. This is the case when X is a Fano toric variety. The results of this section yield a complete description of $Q H^{*} Y(E)$ which generalizes previous results of Costa et al [4] and Qin et al [15] and Givental [9].

4. The General (Nontoric) Case

We believe that Proposition 1 holds for any X. On one end, the equality of the $d=0$ terms in $J(Y(\mathbb{E}))=I(Y(\mathbb{E}))$ is easy to establish. Indeed, the relative GromovWitten theory of the Y-bundle over $B \mathbb{T}$ associated with the universal bundle $E \mathbb{T} \mapsto$ $B \mathbb{T}$ is precisely the \mathbb{T}-equivariant GW theory of Y (Astashkevich and Sadov [1]). The latter pulls back under the classifying map $X \mapsto B \mathbb{T}$ to the relative GW theory of $Y(\mathbb{E})$ over X. It follows that the restriction of $J(Y(\mathbb{E}))$ to $\nu=0$ is obtained by substituting $c_{1}\left(L_{i}\right)$ for λ_{i} in $J^{\mathbb{T}}(Y)$. Since Y is assumed to be Fano, the generator $J^{\mathbb{T}}(Y)$ is known (see for example [8]) and the substitution $c_{1}\left(L_{i}\right) \mapsto \lambda_{i}$ is easily seen to yield the desired equality. At the other end, the $\nu=0$ equality follows as an application of the equivariant quantum Lefshetz principle for the action of a torus on the fibers of $Y(\mathbb{E})$. The fixed point component relevant for the equivariant and localization considerations ([12]) consists of the maps that land in the section $s(X)$. The top chern class of the virtual normal bundle for this component is that of the \mathbb{H}^{1}-bundle for $\oplus_{i=1}^{m} L_{i}$. Calculations are easy to carry out (see for example Elezi [7]).

References

[1] A. Astashkevich and V. Sadov, Quantum Cohomology of Partial Flag manifolds, Comm. Math. Phys. 170 (1995) no 3, 503-528.
[2] M. Atiyah and R. Bott, The moment map and equivariant cohomology, Topology 23, 1-28.
[3] K. Behrend and B. Fantechi, The intrinsic normal cone, Invent. Math. 128(1): 45-88, 1997.
[4] L. Costa and R. M. Mir-Roig, Quantum cohomology of projective bundles over $\mathbb{P}^{n_{1}} \times \cdots \times \mathbb{P}^{n_{s}}$, Internat. J. Math. 11 (2000), 6, 761-797.
[5] D. Cox, Homogeneous Coordinate Ring of a Toric Variety, J. Algebraic Geom. 4 1995, 17-50.
[6] A. Elezi, A Mirror Conjecture for Projective Bundles, Internat. Math. Res. Notices 55 2005, 3445-3458.
[7] A. Elezi, Mirror Symmetry and Quantum Cohomology for Projective Bundles, Int. J. Pure Appl. Math. (2007) 36, no. 1, 75-86.
[8] W. Fulton and R. Pandharipande, Notes on stable maps and quantum cohomology, in Proceedings of symposia in pure mathematics: Algebraic geometry Santa Cruz 1995, 62 Part 2, 45-96.
[9] A. Givental, A mirror theorem for toric complete intersections, in Topological field theory, primitive forms and related topics (Kyoto, 1996), Progr. Math., 160, Birkha̋user, 1998 141175.
[10] A. Givental, Equivariant Gromov-Witten invariants, Int. Math. Res. Notices 13 (1996), 613663.
[11] A. Givental, Homological Geometry and Mirror Symmetry, in Proceedings of the ICM, Zürich 1994, Birkhäuser, 1995, v.1, 472-480.
[12] B. Lian, K. Liu, and S.-T.Yau, Mirror principle II, Asian J. Math 3 (1999), no. 1, 109-146.
[13] B. Lian, K. Liu, and S.-T.Yau, Mirror principle III, Asian J. Math, 3 (1999), no. 4, 771-800.
[14] J. Li and G. Tian, Virtual moduli cycles and Gromov-Witten invariants of algebraic varieties, Jour. AMS 11 (1998), no 1, 119-174.
[15] T. Oda, Convex Bodies and Algebraic Geometry, Springer-Verlag, Berlin, 1998.
[16] Zh. Qin and Y. Ruan, Quantum cohomology of projective bundles over \mathbf{P}^{n}, Trans. Amer. Math. Soc. 350 (1998), no. 9, 3615-3638.
[17] P. Sankaran and V. Uma, Cohomology of toric bundles, Comm. Math. Helv. 78, (2003), 540-554.

A. Elezi

Department of Mathematics and Statistics, American University, 4400 Massachusetts Ave NW, Washington DC 20016, USA
Email: aelezi@american.edu

[^0]: 2000 Mathematics Subject Classification. Primary 14N35, 53D45. Secondary: 14F05, 14J45, 14M25.

 Key words and phrases. Gromov-Witten Theory, Quantum Cohomology, D-module Structure, Mirror Theorems, Toric Bundle.

