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HYPERELLIPTIC CURVES WITH a-NUMBER 1 IN SMALL
CHARACTERISTIC

ARSEN ELKIN AND RACHEL PRIES

Abstract. For every g ≥ 3, we show there exists a hyperelliptic curve of

genus g with p-rank g − 3 and a-number 1 in characteristic p when p = 3 or
p = 5. The method of proof is to show that a generic point of the moduli space

of hyperelliptic curves of genus 3 and p-rank 0 has a-number 1. When p = 3,

we also show that this moduli space is irreducible.

1. Introduction

Suppose X is a curve of genus g defined over an algebraically closed field k
of characteristic p. The p-torsion of the Jacobian Jac(X) can be studied using
invariants such as the p-rank σX and a-number aX . In Section 2, we define these
invariants. Briefly, the p-rank of X is σX = dimFp Hom(µp, Jac(X)) where the
group scheme µp is the kernel of Frobenius on Gm. The a-number of X is aX =
dimk Hom(αp, Jac(X)) where the group scheme αp is the kernel of Frobenius on
Ga. It is well known that σX , aX are non-negative integers with 0 ≤ σX + aX ≤ g.

There are many open problems about the p-rank and a-number of curves. In
some sense this is surprising, since there are algorithms to compute the p-rank
and the a-number of X for a given prime p and a given curve X. However, these
algorithms are not well-suited for proving existence results for curves of arbitrary
genus in arbitrary characteristic. For this reason, many of the existence results on
this topic are non-constructive and rely on deep theorems from arithmetic geometry,
e.g., [2, Thm. 2.3].

A result from [8] is that, for every prime p and every g ≥ 3, there exists a k-curve
X of genus g with p-rank g − 3 and a-number 1. The author also gives a strategy
for extending this result to the case of hyperelliptic curves and explains some of
the difficulties involved with this strategy. In this paper, we carry out this strategy
when p = 3 and p = 5, which yields the following result (found in Section 4).

Corollary 1.1. Suppose g ≥ 3. Let p = 3 or p = 5. Then there exists a hyperelliptic
curve of genus g in characteristic p with p-rank g − 3 and a-number 1.

For the proof, we consider the moduli space H3 ∩ V3,0 whose points correspond
to hyperelliptic curves of genus 3 with p-rank 0. When p = 3 and p = 5, we give
an explicit proof that every generic point of this moduli space has a-number 1 in
Section 3. This provides the base case of an inductive process found in [8]. Using
induction on g, we conclude that the locus of curves having a-number 1 is an open
and dense subspace of the moduli space of hyperelliptic curves of genus g and p-rank
g − 3 (Theorem 4.2).
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We also show that H3 ∩ V3,0 is irreducible when p = 3 (Proposition 3.5). It
is an open question whether H3 ∩ V0 is irreducible when p > 3. We describe the
computational complexity of this problem in Section 3.4.

The second author was partially supported by NSF grant DMS-07-01303. We
thank J. Achter for his comments on drafts of this paper.

2. Invariants of the p-torsion of Jacobians

2.1. The p-rank and a-number. Throughout the paper, we work over an alge-
braically closed field k of characteristic p. The group scheme µp is the kernel of
Frobenius on Gm and the group scheme αp is the kernel of Frobenius on Ga. As
schemes, µp ' Spec(k[x]/(x − 1)p) and αp ' Spec(k[x]/xp). See [4, A.3] for more
details about these group schemes.

Suppose X is a smooth projective k-curve of genus g with Jacobian Jac(X).
The p-rank of X is σX = dimFp

Hom(µp, Jac(X)) and the a-number of X is aX =
dimk Hom(αp, Jac(X)). The p-rank is the integer σX such that the number of
p-torsion points of Jac(X) is pσX . It is well-known that 0 ≤ σX + aX ≤ g.

2.2. Moduli spaces of curves with given invariants. LetMg denote the mod-
uli space of smooth projective curves of genus g defined over k. LetHg ⊂Mg denote
the sublocus consisting of hyperelliptic curves. The dimension of Hg is 2g− 1. Let
Vg,σ ⊂ Mg denote the closed sublocus consisting of curves of genus g with p-rank
at most σ. Every irreducible component of Hg ∩ Vg,σ has dimension g − 1 + σ by
[3, Thm. 1].

Let Tg,2 ⊂ Mg denote the closed sublocus of curves with a-number at least 2.
Recall that Tg,2 ⊂ Vg,g−2. If g ≥ 2 and σ = g − 2, the generic point of every
irreducible component of Hg ∩Vg,g−2 has a-number 1, [8, Thm. 4.1]. It follows that
dim(Hg ∩ Tg,2) ≤ 2g − 4. In particular, dim(H3 ∩ T3,2) ≤ 2.

Remark 2.1. When p = 2, every hyperelliptic cover is wildly ramified. As a result,
the computation of the p-rank or a-number of a hyperelliptic curve differs signifi-
cantly when p = 2 from the case when p is odd. For example, every hyperelliptic
curve of genus 3 and p-rank 0 has a-number 2 [2, 3.2]. For every finite field F of
characteristic 2, and for 0 ≤ σ ≤ 3, there is a formula for the number of isomor-
phism classes of hyperelliptic curves defined over F with genus 3 and p-rank σ [5,
Table 3].

2.3. Computing the p-rank and a-number. Suppose that p ≥ 3 and that X is
hyperelliptic. There is a Z/2-Galois cover φ : X → P1

k with 2g + 2 distinct branch
points. Without loss of generality, we suppose φ is branched at ∞ and choose an
affine equation for φ of the form y2 = f(x), where f(x) ∈ k[x] is a polynomial of
degree 2g + 1.

Let cs denote the coefficient of xs in the expansion of f(x)(p−1)/2. For 0 ≤ ` ≤
g − 1, let A` be the g × g matrix whose ijth entry is (cip−j)p

`

. The matrix A0 is
the Hasse-Witt matrix of X. The Cartier-Manin matrix is M = (

∏g−1
`=0 A`).

Lemma 2.2. Suppose X is a hyperelliptic curve of genus g with equation y2 = f(x)
as above.

(1) The a-number of X is aX = g − r where r is the rank of A0.
(2) The p-rank of X is σX = rank(M).
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Proof. The Hasse-Witt matrix of X is the matrix for the action of Frobenius on
H1(X,OX). By duality, one can consider the matrix of the Cartier operator on
H0(X,Ω1

X) instead. The result then follows from [11]. �

Remark 2.3. It is a general phenomenon that aX = 0 occurs only when σX = g
[6, p.416]. Lemma 2.2 illustrates this for hyperelliptic curves: if aX = 0 then A0 is
invertible, and thus M is invertible, which implies that σX = g.

3. Hyperelliptic curves of genus 3

3.1. Parametrization of hyperelliptic curves of genus 3. Let Y be a smooth
hyperelliptic curve of genus 3. Then Y has an affine equation y2 = f(x) where
f(x) ∈ k[x] has distinct roots and is of degree 7. We say that the equation y2 = f(x)
is in standard form if f(x) = x7 + ax6 + bx5 + cx4 + dx3 + ex2 + x for some
a, b, c, d, e ∈ k.

Lemma 3.1. Every smooth hyperelliptic curve Y of genus 3 has an affine equation
y2 = f(x) in standard form. There are only finitely many choices of f(x) so that
y2 = f(x) is an affine equation in standard form for Y .

Proof. If Y is hyperelliptic then there is a morphism φ : Y → P1
k of degree 2. If Y

has genus 3 then the Riemann-Hurwitz formula implies that the branch locus B of
φ contains exactly 8 points. After a change of coordinates on P1

k, we can suppose
0,∞ ∈ B. Then φ is given by an affine equation of the form y2 = f(x) for some
f(x) ∈ k[x] with deg(f(x)) = 7 and f(0) = 0. Write f(x) =

∑7
i=1 aix

i where ai ∈ k
and a1a7 6= 0.

Consider a change of coordinates T (y) = αy and T (x) = βx with α, β ∈ k
and αβ 6= 0. Let fT (x) = (a7β

7/α2)x7 + · · · + (a1β/α
2)x. Then y2 = fT (x) is

another affine equation for Y . Let α, β ∈ k∗ be solutions to α = (a7
1/a7)1/12 and

β = (a1/a7)1/6. Then the equation y2 = fT (x) is in standard form.
Suppose y2 = f1(x) and y2 = f2(x) are two equations for Y in standard form.

Then there is a change of coordinates T : k[x, y]/(y2 − f1(x)) → k[x, y]/(y2 −
f2(x)). Since the hyperelliptic involution is in the center of Aut(Y ), the change
of coordinates descends to an automorphism T of P1

k. Also T stabilizes {0,∞}.
After possibly composing T with an inversion x 7→ 1/x, we can suppose T fixes
0 and ∞. It follows that T (x) = βx and T (y) = αy for some α, β ∈ k∗. Then
β7/α2 = β/α2 = 1. Thus β6 = 1 so there are at most 6 choices for β and for each
of these there are at most 2 choices for α. �

3.2. Irreducibility of H3 ∩ V3,0 when p = 3. In this section, suppose p = 3.
The main result of the section is that H3 ∩ V3,0 is irreducible. In the next lemma,
we first show that all smooth hyperelliptic curves Y of genus 3 have a-number at
most 1. The lemma is a special case of [1, Thm. 1], but we include a proof for
the convenience of the reader. See [10] for similar results for curves that are not
hyperelliptic.

Lemma 3.2. If p = 3, then H3 ∩ T3,2 = ∅. In other words, there are no smooth
hyperelliptic curves of genus 3 with a-number at least 2.

Proof. Suppose Y is a smooth hyperelliptic curve of genus 3. By Lemma 3.1, Y
has an affine equation y2 = f(x) where f(x) = x7 +ax6 + bx5 + cx4 +dx3 +ex2 +x.
If p = 3, the entries of A0 are given by the coefficients of f(x):



248 ARSEN ELKIN AND RACHEL PRIES

A0 =

 e 1 0
b c d
0 1 a

 .

If aY ≥ 2, then rank(A0) ≤ 1 by Lemma 2.2(1). This implies e = b = d = a = 0.
Then f(x) = x(x2 + c1/3x+ 1)3 does not have distinct roots which contradicts the
hypothesis that Y is smooth. Thus aY ≤ 1. �

By Lemma 3.2, every point of the two-dimensional spaceH3∩V3,0 has a-number 1
when p = 3. In fact, we can say more about the geometry of H3 ∩V3,0 when p = 3.
The next result gives necessary and sufficient conditions on the five parameters
a, . . . , e for Y to have p-rank 0.

Lemma 3.3. Suppose Y is a smooth hyperelliptic curve with affine equation y2 =
f(x) where f(x) = x7 + ax6 + bx5 + cx4 + dx3 + ex2 + x. Then Y has p-rank 0 in
exactly the following cases:

(1) d = 0, a = b+ c4 = e+ c3 = 0;
(2) d 6= 0, b3+c12+c9a+d3+a4 = d6e+d6c3+a9 = d9c3+d9a+d3a9+a13 = 0.

Proof. By Lemma 2.2(2), Y has p-rank 0 exactly when M = A0A1A2 is the zero
matrix. One computes that the matrix M has entries mij where:

m11 = e13 + b3e9 + b9e+ b9c3;

m12 = e4 + b3 + c9e+ c12 + d3;

m13 = d9e+ d9c3 + d3a9;

m21 = e12b+ e9cb3 + b10 + b9c4 + b9d;

m22 = be3 + cb3 + c9b+ c13 + c9d+ cd3 + da3;

m23 = d9b+ d9c4 + d10 + a9cd3 + a12d;

m31 = b3e9 + b9c3 + b9a;

m32 = b3 + c12 + c9a+ d3 + a4;

m33 = d9c3 + d9a+ d3a9 + a13.

Let I ⊂ k[a, b, c, d, e] be the ideal I = (mij | 1 ≤ i, j ≤ 3). Consider a point
w = (a, b, c, d, e) ∈ A5

k. Let V (I) ⊂ A5
k be the variety of I. Then Y has p-rank 0 if

and only if w ∈ V (I).
(1) Suppose w ∈ V (I) and d = 0. Then equation m33 implies a = 0. Then

equation m32 implies b+ c4 = 0. If e = 0, then equation m11 implies c = 0
and so e+ c3 = 0. (Note that y2 = x7 + x is not smooth, so the case e = 0
can be disregarded anyway.) If e 6= 0, then equation m12 implies e+c3 = 0.
Conversely, if d = a = b + c4 = e + c3 = 0, then a computer calculation
shows that w ∈ V (I).

(2) Suppose w ∈ V (I) and d 6= 0, then equation m13 implies d6e+d6c3+a9 = 0.
Also equation m32 implies b3 + c12 + c9a+ d3 + a4 = 0. Then equation m33

implies d9c3 + d9a+ d3a9 + a13 = 0. Conversely, after solving for e, b, and
then c, and substituting them into mij , a computer calculation shows that
w ∈ V (I).

�
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Lemma 3.4. Let I ⊂ k[a, b, c, d, e] be the ideal I = (mij | 1 ≤ i, j ≤ 3) as above.
Then V (I) is irreducible with dimension two.

Proof. Suppose that (a, b, c, d, e) ∈ V (I) with d 6= 0. Using the equations from
Lemma 3.3(2), one can solve for b and e in terms of a1/3, c, d, and then one can
solve for c in terms of a1/3 and d. Namely, e = 2c3 +2a9/d6 and b = 2c4 +2c3a1/3 +
2d+2a4/3. Also c = 2a1/3 +2a3/d2 +2a13/3/d3. Thus there are formulae b(a1/3, d),
c(a1/3, d), e(a1/3, d) for b, c, e in terms of a1/3, d.

Let S = Spec(k[a1/3, d, d−1]). Note that S is irreducible with dimension 2.
Let C ⊂ A5

k be the closed subspace of points (a, b, c, d, e) with d = 0. Let U =
A5 − C. The morphism G((a1/3, d)) = (a, b(a1/3, d), c(a1/3, d), d, e(a1/3, d)) yields
an isomorphism G : S → V (I) ∩ U . Thus V (I) ∩ U is irreducible with dimension
two.

It remains to show that V (I) ∩ C is in the boundary of V (I) ∩ U . Let W ⊂
V (I) ∩ U be the closed locus where d2 + a2 = 0. Recall that if w ∈ V (I) then
d6e + d6c3 + a9 = 0 and (b + c4)3 + c9a + d3 + a4 = 0. If also w ∈ W , then
e + c3 + a3 = 0. When a = d = 0, these relations imply that e + c3 = b + c4 = 0.
Thus every point of V (I) ∩ C is in the boundary of V (I) ∩ U . �

Proposition 3.5. When p = 3, the moduli space H3 ∩ V3,0 is irreducible.

Proof. Let ∆ ⊂ A5
k be the closed subset of all (a, b, c, d, e) so that f(x) has multiple

roots. Let U ′ = A5
k−∆. There is a morphism τ : U ′ → H3 which is surjective (and

finite-to-one) by Lemma 3.1. Then τ−1(H3 ∩ V3,0) = V (I) ∩ U ′. By Lemma 3.4,
V (I) is irreducible. Thus H3 ∩ V3,0 is irreducible when p = 3. �

3.3. The case when p = 5. In this section, suppose p = 5. The computations of
the previous section become more elaborate. We show that H3 ∩ T3,2 has exactly
one irreducible component of dimension two and that its generic point has p-rank
1. Using this, we show that the generic point of every irreducible component of
H3 ∩ V3,0 has a-number 1.

Lemma 3.6. If p = 5, then H3 ∩ T3,2 contains exactly one irreducible component
of dimension 2 and the generic point of this component has a-number 2 and p-rank
1.

Proof. If p = 5, the entries of A0 are given by some of the coefficients of f(x)2:

A0 =

 2d+ e2 2e 1
2e+ 2ad+ 2bc 2 + 2ae+ c2 + 2bd 2cd+ 2a+ 2be
1 2a 2b+ a2

 .

If Y has a-number at least 2, then the rank of A0 is at most 1. Thus the first
two rows of A0 are a non-zero scalar multiple of the third row. This implies that
(a, b, c, d, e) ∈ V (J) where J ⊂ k[a, b, c, d, e] is the ideal (t1, t2, t3, t4) where:

t1 = 4ad+ 2ae2 + 3e;

t2 = 4bd+ 2be2 + 2a2d+ a2e2 + 4;

t3 = 2ae+ 4a2d+ 4abc+ 3 + 4c2 + 3bd;

t4 = 2be+ 4bad+ 4b2c+ 2a2e+ 2a3d+ 2a2bc+ 3cd+ 3a.
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By equation t1, if a = 0 then e = 0. Then bd = −1 and c = 0. Similarly, if
e = 0, then ad = 0 and bd = −1, which gives a = c = 0. In either case, this yields
a component of V (J) of dimension 1.

Suppose ae 6= 0. Then equation t1 implies that d = 2e2 + 3e/a. After making
this substitution, equation t2 implies that b = 2a2 + 3a/e. After making this
substitution, equations t3 and t4 simplify as follows:

t′3 = 3a3ce+ 2a2c+ 4c2e;

t′4 = 4ca4e+ ca3 + ce2a+ 4ce3.
If c 6= 0, then one can show that c = 3a3 + 2a2/e. Also c 6= 0 implies ae 6= 1.

Another computation then shows that there is a relation between a and e, namely
a3 = e3. Thus the intersection V (J) ∩ {c 6= 0} has dimension one, which yields a
subset of H3 ∩ T3,2 having dimension one.

Otherwise, if c = 0, then t′3 = t′4 = 0. In other words,

V (J) ∩ {ae 6= 0, c = 0} = {(a, b, 0, d, e) | b = 2a2 + 3a/e, d = 2e2 + 3e/a}.
Thus there is a unique irreducible component of V (J) having dimension two. As in
the proof of Proposition 3.5, there is a surjective finite-to-one morphism τ : U ′ →
H3. Then τ−1(H3 ∩T3,2) = V (J)∩U ′. This yields a unique irreducible component
η of H3 ∩ T3,2 having dimension two.

We now find a point w ∈ V (J) with ae 6= 0 and c = 0 so that the corresponding
curve Yw is a smooth hyperelliptic curve of genus 3 with a-number 2 and p-rank 1.
Let γ ∈ F25 be a root of x2−2. Consider the point w = (γ, 4+3γ, 0, 2+4γ, 1) ∈ V (J).
One can compute that the discriminant of f(x) = x7 + γx6 + (4 + 3γ)x5 + (2 +
4γ)x3 +x2 +x is 4 and so f(x) has distinct roots. Thus Yw is a smooth hyperelliptic
curve of genus 3. Also Yw has a-number 2 since w ∈ V (J). One can compute that

A0(w) =

 3γ 2 1
4γ + 3 1 + γ 3 + 3γ
1 2γ γ

 .

Thus M = A0A1A2 simplifies to:

M(w) =

 2γ 3 4
γ + 2 4γ + 4 2γ + 2
4 3γ 4γ

 .

Then Yw ∈ η has p-rank 1 since rank(M(w)) = 1. The p-rank can only decrease
under specialization. Thus the generic point of η has p-rank 1 and a-number 2. �

3.4. Complexity Analysis. As the characteristic increases, the sort of analysis
on the a-number and p-rank performed in previous sections becomes prohibitively
complicated. To see this, let f(x) = a7x

7+a6x
6+a5x

5+a4x
4+a3x

3+a2x
2+a1x+a0.

Then every coefficient of g(x) = f(x)(p−1)/2 is homogeneous of degree (p−1)/2 when
considered as a polynomial in k[a0, . . . , a7].

The coefficient of xp−1 in g(x) contains a monomial a(p−1)/2
2 . The degree in a2

of any other coefficient of g(x) is strictly less than (p − 1)/2. Thus the entry a11

of A0 = (aij) contains a monomial a(p−1)/2
2 , and all other entries of this matrix

have smaller degree as polynomials in a2. The non-homogeneous version of this
statement is that the highest power of e appearing in the Cartier-Manin matrix
for the curve y2 = x7 + ax6 + bx5 + cx4 + dx3 + ex2 + x appears in the monomial
e(p−1)/2 in the entry a11.
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This, in turn, implies that ap11 contains a monomial ep(p−1)/2, and this is the
highest degree to which e appears in the entries of the matrix A1 = (apij). Similarly,

ap
2

11 contains ep
2(p−1)/2, and the degree of e is smaller in all the other entries of

A2 = (ap
2

ij ). Therefore, e(1+p+p
2)(p−1)/2 = e(p

3−1)/2 is a monomial in the entry m11

of the product (mij) := A0A1A2. A similar analysis can be performed for a4 (or c)
in the entry m2,2 and for a6 (or a) in the entry m3,3 .

This discussion demonstrates that the entries of the matrix A0, whose rank is
analyzed in connection with the a-number, contain monomials of degree (p− 1)/2
in a, c, and e. The entries of the matrix A0A1A2, examined for p-rank, have the
same variables appearing with degrees (p3−1)/2. In particular, the locus H3∩V3,0

corresponds to the vanishing of nine equations in five variables, at least three of
which have degree (p3 − 1)/2 in some variable. The difficulty of analyzing these
two invariants grows accordingly.

4. Application: hyperelliptic curves with p-rank g − 3 and a-number 1

Let g ≥ 3. Suppose X is a curve of genus g with p-rank g − 3. By Remark 2.3,
there are three possibilities for the a-number of X, namely aX ∈ {1, 2, 3}.

Remark 4.1. If X has genus g and p-rank g−3, there are four possibilities for the
isomorphism class of the group scheme Jac(X)[p]. Of these, there is a unique group
scheme with p-rank g − 3 and a-number 1. It is of the form (Z/p ⊕ µp)g−3 ⊕ I3,1
where I3,1 is the unique group scheme of rank 6, p-rank 0, and a-number 1. The
covariant Dieudonné module for I3,1 is E/E(F 3 − V 3) where E = k[F, V ] is a
non-commutative ring generated by Frobenius and Verschiebung [9, Lemma 3.1].

Theorem 4.2. Suppose g ≥ 3. Let p = 3 or p = 5. Then the generic point of
every irreducible component of Hg ∩ Vg,g−3 has a-number 1.

Proof. The proof is by induction on g with base case g = 3. For p = 3, H3∩T3,2 = ∅
by Lemma 3.2. Thus every point of H3 ∩ V3,0 has a-number 1. For p = 5, there
is a unique irreducible component η of H3 ∩ T3,2 with dimension 2 and its generic
point has p-rank 1 by Lemma 3.6. Every irreducible component ξ of H3 ∩ V3,0 has
dimension 2 and has generic point with p-rank 0. Thus ξ ( T3,2. So the generic
point of every irreducible component of H3 ∩ V3,0 has a-number 1.

For g ≥ 4, the result follows immediately from [8, Prop. 3.6]. Here is the basic
idea of the inductive proof. The compactification Mg of Mg contains a boundary
component ∆0 whose generic point is a singular curve Z which self-intersects in
an ordinary double point. The normalization Z̃ of Z is a smooth curve of genus
g − 1. The p-rank of Z̃ is σZ̃ = σZ − 1. One proves that the closure in Mg of
each component of Hg ∩Vg,g−3 intersects ∆0. Then the proof relies on a dimension
count for components of ∆0 that satisfy certain conditions on the p-rank and a-
number. �

Corollary 4.3. Suppose g ≥ 3. Let p = 3 or p = 5. There is a family of dimension
2g − 4 consisting of smooth hyperelliptic curves of genus g with p-rank g − 3 and
a-number 1.

Proof. By Theorem 4.2, the locus of smooth hyperelliptic curves of genus g with
p-rank g− 3 and a-number 1 is open (and dense) in Hg ∩Vg,g−3. The result follows
since dim(Hg ∩ Vg,g−3) = 2g − 4 by [3, Thm. 1]. �
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Remark 4.4. Here are two strategies for extending Theorem 4.2 to larger charac-
teristic.

(1) By [7, 5.12(4)], for all p ≥ 3, there exists a hyperelliptic curve of genus 3
with a-number 1. The first strategy would be to see ifH3∩V3,0 is irreducible
for all p ≥ 3. If so, the generic point of H3 ∩ V3,0 would have a-number 1
and the result would follow from [8, Prop. 3.6].

(2) By [3, Cor. 4], for all p ≥ 5, there exists a hyperelliptic curve of genus 3
with a-number 2 and p-rank 1. The second strategy would be to prove that
every irreducible component of H3∩Tg,2 of dimension two contains a point
with p-rank 1. Then the generic point of every irreducible component of
H3 ∩ V3,0 would have a-number 1 and the result would again follow from
[8, Prop. 3.6].
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