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HYPERELLIPTIC CURVES WITH «-NUMBER 1 IN SMALL
CHARACTERISTIC

ARSEN ELKIN AND RACHEL PRIES

ABSTRACT. For every g > 3, we show there exists a hyperelliptic curve of
genus g with p-rank g — 3 and a-number 1 in characteristic p when p = 3 or
p = 5. The method of proof is to show that a generic point of the moduli space
of hyperelliptic curves of genus 3 and p-rank 0 has a-number 1. When p = 3,
we also show that this moduli space is irreducible.

1. INTRODUCTION

Suppose X is a curve of genus g defined over an algebraically closed field k
of characteristic p. The p-torsion of the Jacobian Jac(X) can be studied using
invariants such as the p-rank ox and a-number ax. In Section 2, we define these
invariants. Briefly, the p-rank of X is ox = dimp, Hom(p,, Jac(X)) where the
group scheme i, is the kernel of Frobenius on G,,. The a-number of X is ax =
dimy Hom(ap, Jac(X)) where the group scheme «, is the kernel of Frobenius on
Gg. Tt is well known that ox,ax are non-negative integers with 0 < ox +ax < g.

There are many open problems about the p-rank and a-number of curves. In
some sense this is surprising, since there are algorithms to compute the p-rank
and the a-number of X for a given prime p and a given curve X. However, these
algorithms are not well-suited for proving existence results for curves of arbitrary
genus in arbitrary characteristic. For this reason, many of the existence results on
this topic are non-constructive and rely on deep theorems from arithmetic geometry,
e.g., [2, Thm. 2.3].

A result from [8] is that, for every prime p and every g > 3, there exists a k-curve
X of genus g with p-rank g — 3 and a-number 1. The author also gives a strategy
for extending this result to the case of hyperelliptic curves and explains some of
the difficulties involved with this strategy. In this paper, we carry out this strategy
when p = 3 and p = 5, which yields the following result (found in Section 4).

Corollary 1.1. Supposeg > 3. Letp =3 orp =>5. Then there exists a hyperelliptic
curve of genus g in characteristic p with p-rank g — 3 and a-number 1.

For the proof, we consider the moduli space Hs3 N V3 ¢ whose points correspond
to hyperelliptic curves of genus 3 with p-rank 0. When p = 3 and p = 5, we give
an explicit proof that every generic point of this moduli space has a-number 1 in
Section 3. This provides the base case of an inductive process found in [8]. Using
induction on g, we conclude that the locus of curves having a-number 1 is an open
and dense subspace of the moduli space of hyperelliptic curves of genus g and p-rank
g — 3 (Theorem 4.2).
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We also show that Hs N Vs is irreducible when p = 3 (Proposition 3.5). It
is an open question whether H3 N Vj is irreducible when p > 3. We describe the
computational complexity of this problem in Section 3.4.

The second author was partially supported by NSF grant DMS-07-01303. We
thank J. Achter for his comments on drafts of this paper.

2. INVARIANTS OF THE p-TORSION OF JACOBIANS

2.1. The p-rank and a-number. Throughout the paper, we work over an alge-
braically closed field k of characteristic p. The group scheme p, is the kernel of
Frobenius on G,, and the group scheme «, is the kernel of Frobenius on G,. As
schemes, p, ~ Spec(k[z]/(z — 1)?) and o, ~ Spec(k[z]/xP). See [4, A.3] for more
details about these group schemes.

Suppose X is a smooth projective k-curve of genus g with Jacobian Jac(X).
The p-rank of X is ox = dimg, Hom(u,, Jac(X)) and the a-number of X is ax =
dimy Hom(ep, Jac(X)). The p-rank is the integer ox such that the number of
p-torsion points of Jac(X) is p°%. It is well-known that 0 < ox +ax < g.

2.2. Moduli spaces of curves with given invariants. Let M, denote the mod-
uli space of smooth projective curves of genus g defined over k. Let H, C M, denote
the sublocus consisting of hyperelliptic curves. The dimension of H, is 2g — 1. Let
Vg, C M, denote the closed sublocus consisting of curves of genus g with p-rank
at most o. Every irreducible component of H, NV, , has dimension g — 1 + o by
[3, Thm. 1].

Let T, 2 C M, denote the closed sublocus of curves with a-number at least 2.
Recall that Ty o C Vg 4—2. If ¢ > 2 and 0 = g — 2, the generic point of every
irreducible component of H, NV, 4_2 has a-number 1, [8, Thm. 4.1]. It follows that
dim(H, NTy2) < 2g — 4. In particular, dim(Hz N T32) < 2.

Remark 2.1. When p = 2, every hyperelliptic cover is wildly ramified. As a result,
the computation of the p-rank or a-number of a hyperelliptic curve differs signifi-
cantly when p = 2 from the case when p is odd. For example, every hyperelliptic
curve of genus 3 and p-rank 0 has a-number 2 [2, 3.2]. For every finite field F of
characteristic 2, and for 0 < o < 3, there is a formula for the number of isomor-
phism classes of hyperelliptic curves defined over F with genus 3 and p-rank o [5,
Table 3].

2.3. Computing the p-rank and a¢-number. Suppose that p > 3 and that X is
hyperelliptic. There is a Z/2-Galois cover ¢ : X — P} with 2g + 2 distinct branch
points. Without loss of generality, we suppose ¢ is branched at co and choose an
affine equation for ¢ of the form y? = f(z), where f(z) € k[x] is a polynomial of
degree 2g + 1.

Let ¢ denote the coefficient of z° in the expansion of f(ac)(p_l)/Q. For0</<
g — 1, let A; be the g X g matrix whose ijth entry is (cip_j)”e. The matrix Ag is
the Hasse-Witt matrix of X. The Cartier-Manin matrix is M = ( g;(} Ay).
Lemma 2.2. Suppose X is a hyperelliptic curve of genus g with equation y> = f(x)
as above.

(1) The a-number of X is ax = g —r where r is the rank of Ayp.
(2) The p-rank of X is ox = rank(M).



HYPERELLIPTIC CURVES WITH o-NUMBER 1 IN SMALL CHARACTERISTIC 247

Proof. The Hasse-Witt matrix of X is the matrix for the action of Frobenius on
HY(X,0x). By duality, one can consider the matrix of the Cartier operator on
HY(X, QL) instead. The result then follows from [11]. O

Remark 2.3. It is a general phenomenon that ax = 0 occurs only when ox = g
[6, p.416]. Lemma 2.2 illustrates this for hyperelliptic curves: if ax = 0 then Ay is
invertible, and thus M is invertible, which implies that ox = g.

3. HYPERELLIPTIC CURVES OF GENUS 3

3.1. Parametrization of hyperelliptic curves of genus 3. Let Y be a smooth
hyperelliptic curve of genus 3. Then Y has an affine equation y?> = f(x) where
f(x) € k[z] has distinct roots and is of degree 7. We say that the equation y? = f(x)
is in standard form if f(x) = 27 + ax® + ba® + ca* + da® + ex® + x for some
a,b,c,d,e € k.

Lemma 3.1. Every smooth hyperelliptic curve Y of genus 3 has an affine equation
y? = f(x) in standard form. There are only finitely many choices of f(z) so that
y? = f(x) is an affine equation in standard form for'Y.

Proof. If Y is hyperelliptic then there is a morphism ¢ : Y — P}, of degree 2. If Y
has genus 3 then the Riemann-Hurwitz formula implies that the branch locus B of
¢ contains exactly 8 points. After a change of coordinates on ]P’,lf, we can suppose
0,00 € B. Then ¢ is given by an affine equation of the form y? = f(z) for some
f(z) € k[z] with deg(f(z)) = 7 and f(0) = 0. Write f(z) = ZZ:1 a;z* where a; € k
and aijay # 0.

Consider a change of coordinates T(y) = ay and T(z) = Bz with o, 8 € k
and aff # 0. Let fr(z) = (a787/a®)z” + - + (a18/a?®)z. Then y? = fr(z) is
another affine equation for Y. Let a, 3 € k* be solutions to a = (a]/a7)'/*? and
B = (a1/a7)*/5. Then the equation y? = fr(z) is in standard form.

Suppose y? = fi(z) and y?> = fo(x) are two equations for Y in standard form.
Then there is a change of coordinates T : k[z,y]/(v? — f1(x)) — k[z,y]/(y? —
f2(x)). Since the hyperelliptic involution is in the center of Aut(Y’), the change
of coordinates descends to an automorphism 7' of P}. Also T stabilizes {0, cc}.
After possibly composing T with an inversion z — 1/x, we can suppose T fixes
0 and oco. It follows that T(x) = Bz and T(y) = ay for some «, 3 € k*. Then
B7/a? = B/a? = 1. Thus 3% = 1 so there are at most 6 choices for 3 and for each
of these there are at most 2 choices for a. O

3.2. Irreducibility of Hz N V3o when p = 3. In this section, suppose p = 3.
The main result of the section is that Hs N V3 is irreducible. In the next lemma,
we first show that all smooth hyperelliptic curves Y of genus 3 have a-number at
most 1. The lemma is a special case of [1, Thm. 1], but we include a proof for
the convenience of the reader. See [10] for similar results for curves that are not
hyperelliptic.

Lemma 3.2. If p = 3, then H3 N T35 = 0. In other words, there are no smooth
hyperelliptic curves of genus 3 with a-number at least 2.

Proof. Suppose Y is a smooth hyperelliptic curve of genus 3. By Lemma 3.1, Y
has an affine equation y? = f(x) where f(x) = 27 + ax® + bx® + cx* + dx® + ex?® + z.
If p = 3, the entries of Ag are given by the coefficients of f(x):
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e 1 0
Ay = b ¢ d
01 a

If ay > 2, then rank(Agp) < 1 by Lemma 2.2(1). This impliese =b=d =a = 0.
Then f(z) = (2 + ¢*/32 + 1) does not have distinct roots which contradicts the
hypothesis that Y is smooth. Thus ay < 1. [

By Lemma 3.2, every point of the two-dimensional space H3NV3 o has a-number 1
when p = 3. In fact, we can say more about the geometry of Hs N V5 when p = 3.
The next result gives necessary and sufficient conditions on the five parameters
a,...,e for Y to have p-rank 0.

Lemma 3.3. Suppose Y is a smooth hyperelliptic curve with affine equation y? =
f(z) where f(x) =27 + ax® + ba® + ca* + da® + ex® + x. Then Y has p-rank 0 in
exactly the following cases:

(1) d=0,a=b+ct=ec+c=0;

(2) d#0, B3+ +fa+d®+at = dfe+dSc3+a® = A +d%a+d3a®+al? = 0.
Proof. By Lemma 2.2(2), Y has p-rank 0 exactly when M = AyA; Ay is the zero
matrix. One computes that the matrix M has entries m;; where:

mi = e + % + b + bgc3;

mis = et + b3 + e + 2 —|—d3;

mig = d’e + d°¢ + d®a®;

mor = e2b+ e%eb® + b0 + v2¢t +b7d;

Moo = be® + cb® + b+ ¢ + Pd + ¢d® + da3;
masg = d2b + d°c* + d'° + a%cd® + aud;

mz = b + b7 4+ ba;

mae = b + 2 + Pa+ d° +a4;

mas = d° + d%a + d®a® + a'3.

Let I C kla,b,c,d, €] be the ideal I = (m;; | 1 < 4,j < 3). Consider a point
w = (a,b,c,d,e) € A}. Let V(I) C A} be the variety of I. Then Y has p-rank 0 if
and only if w € V(I).

(1) Suppose w € V(I) and d = 0. Then equation mgs implies a = 0. Then
equation mgs implies b+ ¢* = 0. If e = 0, then equation mq; implies ¢ =0
and so e + ¢ = 0. (Note that y? = 27 + x is not smooth, so the case e =0
can be disregarded anyway.) If e # 0, then equation m1 implies e+¢3 = 0.
Conversely, if d = a = b+ c* = e + ¢ = 0, then a computer calculation
shows that w € V(I).

(2) Suppose w € V(I) and d # 0, then equation m13 implies d®e+dSc®+a® = 0.
Also equation mgs implies b3 + ¢'2 + c®a + d® + a* = 0. Then equation mss
implies d?c3 + d°a + d3a® + a'?® = 0. Conversely, after solving for e, b, and
then ¢, and substituting them into m;;, a computer calculation shows that
w e V(I).

O
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Lemma 3.4. Let I C kla,b,c,d, €] be the ideal I = (m;; | 1 <1, < 3) as above.
Then V(I) is irreducible with dimension two.

Proof. Suppose that (a,b,c,d,e) € V(I) with d # 0. Using the equations from
Lemma 3.3(2), one can solve for b and e in terms of a'/3,¢,d, and then one can
solve for ¢ in terms of a'/3 and d. Namely, e = 2¢* +2a°/d® and b = 2¢* +2c%a'/3 +
2d+2a*. Also ¢ = 2a'/? +2a3/d? +2a3/3 /d®. Thus there are formulae b(a'/?, d),
c(a'’3,d), e(a'/3,d) for b, c, e in terms of a'/3,d.

Let S = Spec(k[a'/3,d,d™']). Note that S is irreducible with dimension 2.
Let C C A} be the closed subspace of points (a,b,c,d,e) with d = 0. Let U =
A5 — C. The morphism G((a'/?,d)) = (a,b(a'/?,d),c(a'/?,d),d,e(a'/?,d)) yields
an isomorphism G : S — V(I)NU. Thus V(I) N U is irreducible with dimension
two.

It remains to show that V(I) N C is in the boundary of V(I) NU. Let W C
V(I) NU be the closed locus where d? + a? = 0. Recall that if w € V(I) then
dSe + d®c® +a° = 0and (b4 c*)? + Pa +d® +a* = 0. If also w € W, then
e+ c®+a® =0. When a = d = 0, these relations imply that e +¢3 = b+ ¢* = 0.
Thus every point of V(I) N C is in the boundary of V(I) N U. O

Proposition 3.5. When p = 3, the moduli space Hs N V3 o is irreducible.

Proof. Let A C A? be the closed subset of all (a,b,c,d, e) so that f(x) has multiple
roots. Let U’ = A} — A. There is a morphism 7 : U’ — H3 which is surjective (and
finite-to-one) by Lemma 3.1. Then 7=}(H3 N V) = V(I) N U’. By Lemma 3.4,
V(I) is irreducible. Thus Hg N V3¢ is irreducible when p = 3. ([l

3.3. The case when p = 5. In this section, suppose p = 5. The computations of
the previous section become more elaborate. We show that Hs3 N 752 has exactly
one irreducible component of dimension two and that its generic point has p-rank
1. Using this, we show that the generic point of every irreducible component of
Hsz N V30 has a-number 1.

Lemma 3.6. If p =5, then Hz NT3 2 contains exactly one irreducible component
of dimension 2 and the generic point of this component has a-number 2 and p-rank
1.

Proof. If p = 5, the entries of Ay are given by some of the coefficients of f(z)%:

2d + €2 2e 1
Ay = 2e + 2ad + 2bc 2+ 2ae + ¢ +2bd  2cd + 2a + 2be
1 2a 2b + a?

If Y has a-number at least 2, then the rank of Ag is at most 1. Thus the first
two rows of Ag are a non-zero scalar multiple of the third row. This implies that
(a,b,c,d,e) € V(J) where J C k[a,b, c,d,e] is the ideal (t1,t2,t3,t4) where:

t1 = 4ad + 2ae® + 3e;

ty = 4bd + 2be? + 2a%d + a*e? + 4;

ts = 2ae + 4a®d + 4abc + 3 + 4¢% + 3bd;

ty = 2be + 4bad + 4b%c + 2a%e + 2a>d + 2abe + 3ed + 3a.
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By equation ¢y, if a = 0 then e = 0. Then bd = —1 and ¢ = 0. Similarly, if
e = 0, then ad = 0 and bd = —1, which gives a = ¢ = 0. In either case, this yields
a component of V' (J) of dimension 1.

Suppose ae # 0. Then equation t; implies that d = 2e% + 3e/a. After making
this substitution, equation ¢y implies that b = 2a? + 3a/e. After making this
substitution, equations t3 and t4 simplify as follows:

th = 3a*ce + 2a’c + 4c’e;
th = 4ca'e + ca® + ce®a + 4ce.

If ¢ # 0, then one can show that ¢ = 3a® + 2a?/e. Also ¢ # 0 implies ae # 1.
Another computation then shows that there is a relation between a and e, namely
a® = e*. Thus the intersection V(J) N {c # 0} has dimension one, which yields a

subset of H3 N T35 2 having dimension one.
Otherwise, if ¢ = 0, then t§ =t} = 0. In other words,

V(J)Nn{ae #0, c=0} = {(a,b,0,d,e) | b= 2a> + 3a/e, d=2¢*+ 3e/a}.

Thus there is a unique irreducible component of V' (J) having dimension two. As in
the proof of Proposition 3.5, there is a surjective finite-to-one morphism 7 : U’ —
Hs. Then 771 (H3NT52) = V(J)NU’. This yields a unique irreducible component
n of H3 N T3 2 having dimension two.

We now find a point w € V(J) with ae # 0 and ¢ = 0 so that the corresponding
curve Y,, is a smooth hyperelliptic curve of genus 3 with a-number 2 and p-rank 1.
Let v € Fa5 be aroot of #2—2. Consider the point w = (v, 4+37,0,2+4~v,1) € V(J).
One can compute that the discriminant of f(z) = 27 + va% + (4 + 3y)a® + (2 +
4y)z3 + 2%+ is 4 and so f(x) has distinct roots. Thus Y, is a smooth hyperelliptic
curve of genus 3. Also Y,, has a-number 2 since w € V(J). One can compute that

3y 2 1
Ao(w)=| 4v+3 14+~ 3+3y
1 2y ¥
Thus M = AgA; Ay simplifies to:
2y 3 4
Mw)=[ v+2 4v+4 2v+2
4 3y 4y

Then Y, € n has p-rank 1 since rank(M (w)) = 1. The p-rank can only decrease
under specialization. Thus the generic point of 1 has p-rank 1 and a-number 2. [

3.4. Complexity Analysis. As the characteristic increases, the sort of analysis
on the a-number and p-rank performed in previous sections becomes prohibitively
complicated. To see this, let f(z) = arz”+agrb+asx®+aszt+azr®+az2® +ayz+a.
Then every coefficient of g(z) = f(z)®~1/2 is homogeneous of degree (p—1)/2 when
considered as a polynomial in k[ag, ..., a7].

The coefficient of 2P~! in g() contains a monomial agp_l)m. The degree in ag
of any other coefficient of g(x) is strictly less than (p — 1)/2. Thus the entry aq;
of Ag = (a;j) contains a monomial aép —n/ ?. and all other entries of this matrix
have smaller degree as polynomials in as. The non-homogeneous version of this
statement is that the highest power of e appearing in the Cartier-Manin matrix
for the curve y? = 27 + ax® + ba® + ca* 4 da® + ex® + = appears in the monomial

e(P=1/2 in the entry ai:.
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This, in turn, implies that o, contains a monomial eP(®~1/2 and this is the
highest degree to which e appears in the entries of the matrix A, = (a? j). Similarly,
a’l’j contains e?”(P=1/2 and the degree of e is smaller in all the other entries of
Ay = (af;). Therefore, e(1TP+P*)(p=1)/2 — ¢(r*~1)/2 j5 3 monomial in the entry m1;
of the product (m;;) := AgA1As. A similar analysis can be performed for a4 (or c)
in the entry mg o and for ag (or a) in the entry mss .

This discussion demonstrates that the entries of the matrix Ay, whose rank is
analyzed in connection with the a-number, contain monomials of degree (p —1)/2
in a, ¢, and e. The entries of the matrix AgA;As, examined for p-rank, have the
same variables appearing with degrees (p* —1)/2. In particular, the locus Hz N V3 o
corresponds to the vanishing of nine equations in five variables, at least three of
which have degree (p* — 1)/2 in some variable. The difficulty of analyzing these
two invariants grows accordingly.

4. APPLICATION: HYPERELLIPTIC CURVES WITH p-RANK g — 3 AND a-NUMBER 1

Let g > 3. Suppose X is a curve of genus g with p-rank g — 3. By Remark 2.3,
there are three possibilities for the a-number of X, namely ax € {1, 2, 3}.

Remark 4.1. If X has genus g and p-rank g — 3, there are four possibilities for the
isomorphism class of the group scheme Jac(X)[p]. Of these, there is a unique group
scheme with p-rank g — 3 and a-number 1. It is of the form (Z/p @ )93 @ I3
where I3 is the unique group scheme of rank 6, p-rank 0, and a-number 1. The
covariant Dieudonné module for I3 is E/E(F? — V3) where E = k[F,V] is a
non-commutative ring generated by Frobenius and Verschiebung [9, Lemma 3.1].

Theorem 4.2. Suppose g > 3. Let p = 3 or p = 5. Then the generic point of
every irreducible component of Hg NV g—3 has a-number 1.

Proof. The proof is by induction on g with base case g = 3. For p = 3, H3NT32 =0
by Lemma 3.2. Thus every point of H3 N V3¢ has a-number 1. For p = 5, there
is a unique irreducible component 7 of H3 N 75 2 with dimension 2 and its generic
point has p-rank 1 by Lemma 3.6. Every irreducible component & of Hz N V3¢ has
dimension 2 and has generic point with p-rank 0. Thus £ C 752. So the generic
point of every irreducible component of Hz N V3 ¢ has a-number 1.

For g > 4, the result follows immediately from [8, Prop. 3.6]. Here is the basic
idea of the inductive proof. The compactification ﬂg of M, contains a boundary
component Ay whose generic point is a singular curve Z which self-intersects in
an ordinary double point. The normalization Z of Z is a smooth curve of genus
g — 1. The p-rank of Z is 05 = 0z — 1. One proves that the closure in M, of
each component of H, NV, 4_3 intersects Ag. Then the proof relies on a dimension
count for components of Ay that satisfy certain conditions on the p-rank and a-
number. O

Corollary 4.3. Suppose g > 3. Let p =3 orp=1>5. There is a family of dimension
2g — 4 consisting of smooth hyperelliptic curves of genus g with p-rank g — 3 and
a-number 1.

Proof. By Theorem 4.2, the locus of smooth hyperelliptic curves of genus g with
p-rank g — 3 and a-number 1 is open (and dense) in H, NV, 4_3. The result follows
since dim(H, NV, 4—3) = 2¢g — 4 by [3, Thm. 1]. O
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Remark 4.4. Here are two strategies for extending Theorem 4.2 to larger charac-
teristic.

(1]
2]
(3]

(4]

(10]

(11]

(1) By [7, 5.12(4)], for all p > 3, there exists a hyperelliptic curve of genus 3
with a-number 1. The first strategy would be to see if H3MV3 ¢ is irreducible
for all p > 3. If so, the generic point of H3 N V3¢ would have a-number 1
and the result would follow from [8, Prop. 3.6].

(2) By [3, Cor. 4], for all p > 5, there exists a hyperelliptic curve of genus 3
with a-number 2 and p-rank 1. The second strategy would be to prove that
every irreducible component of H3 N T, 2 of dimension two contains a point
with p-rank 1. Then the generic point of every irreducible component of
Hz N V3,0 would have a-number 1 and the result would again follow from
[8, Prop. 3.6].
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