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EXTENDING TOPOLOGICAL GROUP ACTIONS TO
CONFORMAL GROUP ACTIONS

A. WOOTTON

ABSTRACT. A consequence of the resolution of the Nielsen Realization Prob-
lem is that if G is any finite topological group of automorphisms of a compact
oriented surface S, then there exists a complex structure on S so that the
action of GG extends to a conformal action on S. We show that this complex
structure is unique if and only if G is a triangle group, and for all other groups,
there are infinitely many such actions.

1. INTRODUCTION

Suppose that G is a group of homeomorphisms of a compact, connected, oriented
surface S of genus g > 2. A consequence of the resolution of the Nielsen Realization
Problem (NRP), see [8], is that there exists a group of homeomorphisms of S which
is topologically equivalent to G (which by abuse of notation we call G) and some
complex structure on S so that the action of G extends to a conformal action on S.
It is natural to ask for a given finite group of homeomorphisms G of .S, how many
such complex stuctures exist which extend the action of G to a conformal action,
and are there any groups for which the struture is unique? In most circumstances,
the complex structure is not unique, and in fact there are infinitely many different
complex structures which can be imposed on S so that G acts conformally (see
Lemma 3.3). However, in the special case that G is a triangle group, there are
only finitely many conformal structures which can be imposed on S so that G acts
conformally (see Lemma 3.2). We shall strengthen this result and show that if G is
a triangle group, then there is a unique structure which can be imposed on S so that
G extends to a conformal action (see Theorem 3.6). A consequence of our results is
an enumeration method for the number of different topological group actions of a
triangle group G on a surface S in terms of surface kernel epimorphisms (for which
we may utilize techniques developed such as those in [6] or [13]).

Following the NRP, there has been tremendous progress in the study of topo-
logical equivalence classes of group actions on surfaces due to the interactions with
conformal group actions, see for example [3], [11], [12]. For details on this, see
Section 2, or [3] for a more thorough exposition. One of the motivational reasons
for this is that there is a one-one correspondence between finite subgroups of the
mapping class group M, of a surface of genus o and the topological equivalence
classes of finite groups of homeomorphisms which can act on a surface of genus
o. In general, the problem of enumerating conjugacy classes of subgroups of M,
for arbitrary o is highly computational and depends very much upon how a group
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G acts on a surface S as well as the general structure of G. For triangle groups
however, we have much more control over how G may act on S, and so a general
enumeration formula is much more realistic (see Proposition 4.4). Another impor-
tant fact about triangle groups is that many such groups will be maximal as finite
subgroups of M,, and for those which are not, there are computational methods
to determine precisely which ones are not maximal, see for example [5] or [9]. Thus
an enumeration method for the number of different topological group actions which
are triangle groups can be used to provide a lower bound on the number of maximal
finite subgroups of M., thus providing insight into the general structure of M,.

Our paper is structured as follows. In Secion 2 we develop the necessary pre-
liminary results regarding topological group actions summarizing the results from
[3]. We shall also outline the preliminaries for counting the conformal equivalence
classes of complex structures which can be imposed on a surface of genus g. Follow-
ing this, we shall prove the main result in Section 3. Though on initial consideration,
it may seem to be a highly computational result, the proof is suprisingly straight
forward with the combination of some classical results and more recent techniques.
In Section 4, we use some more recent results to determine an enumeration method
to count the number of such groups. We finish by presenting some explicit exam-
ples. We note that throughout the paper, by surface we mean a compact, oriented,
2-manifold.

2. PRELIMINARIES ON TOPOLOGICAL AND CONFORMAL GROUP ACTIONS

Let G be a finite group. The group G is said to act topologically (in an orientation
preserving manner) on surface a S of genus o > 2 if there is an injection

¢ : G — Homeo™ (S)

into the group of orientation preserving homeomorphisms (we shall identify G with
its image under ). Two actions £1, €5 are said to be topologically equivalent if there
is a homeomorphism A of S and an automorphism w of G such that

e2(w(g)) = hoei(g)oh™t.

This is equivalent to saying that the images 1(G) and e3(G) are conjugate in
Homeo™ (S).

For ¢ > 2, due to the NRP, Fuchsian groups provide us with a way to examine
topological group actions. Specifically, a surface S of genus o > 2 is topologically
equivalent to a quotient of the upper half plane H/A where A is any torsion free
Fuchsian group isomorphic to the fundamental group of S called a surface group for
S. A finite group G acts on S if and only if G is topologically equivalent to I'/A for
some Fuchsian group I' containing such a A as a normal subgroup of index |G|. The
structure of I' is completely determined by the ramification data of the quotient
map 7g: S — S/G which must satisfy the Riemann-Hurwitz formula. Specifically,
if the quotient map mg branches over r points with ramification indices m; for
1 <4 < r and the quotient space S/G has genus g, then a presentation for I is:

T

g
(1) I'=(a1,b1,...,ag,bg,C1,...,crlc]"" ... e, HCZ' H[aj,bj]>
i=1  j=1
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where
v+ 9y (- 1)

Such a group is described by the tuple (g; m1, ..., m,) called the signature of " (we
also say that G has signature (g;m1,...,m;)). In the special case that g = 0 and
r =3, we call G and I" triangle groups. Such group actions are usually described
through the use of surface kernel epimorphisms, so we interpret our observations
accordingly.

Theorem 2.1. A finite group G acts on a surface S of genus o > 2 with sig-
nature (g;ma,...,m,) if and only if there exists a Fuchsian group with signature
(g;my1,...,m;) and an epimorphism o: T' — G preserving the orders of the elements
of finite order (called a surface kernel epimorphism) such that

o —1+|Gl(g |G|Z<1—)

A useful way to describe surface kernel epimorphisms is through the use of gen-
erating vectors defined as follows (see [3]).

Definition 2.2. A vector of group elements (v, 81, . .., g, Bg, M1, - - ., 7y) in a finite
group G is called a (g;myq,...,m,)-generating vector for G if all of the following
hold:

(Z) G = <a17ﬂ17'"aagvﬁg7n17"'7777’>
(i) TI_[ay, Bi] - T_ym; = 1 (where [,] denotes the commutator).
(ii1) O(ci) = m; (where O(.) denotes group order).

Clearly any (g;mai,..., m,)-generating vector V for G defines a unique surface
kernel epimorphism from a fixed T' with signature (g;m1,...,m,) onto G, called
the surface kernel epimorphism of V. Conversely, any surface kernel epimorphism
o: I' — G uniquely defines a generating vector called the generating vector of p.
Thus topological group actions can be described through the utilization of gener-
ating vectors of finite groups. The exact correspondence is given in the following.

Theorem 2.3. Two equivalence classes of (g; my, . . ., m,.)-generating vectors of the
finite group G define the same topological equivalence class of G-actions if and only
if the generating vectors lie in the same Aut (G) x Aut (I')-class where the action
of Aut (G) x Aut (T') on a generating vector V is defined by the action on a surface
kernel epimorphism o with generating vector V given by (a,y) 0= o ooy~ for
a € Aut (G), v € Aut ().

Proof. See Proposition 2.2 of [3]. O

Thus given a generating vector V for a group G, it defines a topological action,
namely the action of I'/A on S = H/A where A is the kernel of the surface ker-
nel epimorphism of V where I' is a Fuchsian group with signature (g;ms,...,m,.)
(note that I' can be any subgroup of PSL (2, R) with signature (g;mq,...,m;)).
Conversely, given a group acting topologically on S with signature (g;mq,...,m,),
it defines a (g;mq, ..., m,)-generating vector up to Aut (G) x Aut (I') equivalence.
Specifically, it defines the class containing the generating vector of o: I' — G where
o is the surface kernel epimorphism from I'" with signature (g;mq,...,m,) and
kernel A such that S is topologically equivalent to H/A and G is topologically
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equivalent to I'/A. We call any generating vector from this Aut (G) x Aut (T) class
a generating vector of G.

Now observe that given a surface kernel epimorphism p: I' — G with kernel A,
there exists a complex structure which can be imposed on S = H/A so that the
group G acts conformally on S - namely the natural structure inherited from the
complex structure on H. This motivates the following definition.

Definition 2.4. Suppose G is a finite group of homeomorphisms of a surface S
and G is topologically equivalent to I'/A where I" and A are Fuchsian groups with A
isomorphic to the fundamental group of S so S is topologicially equivalent to H/A.
Then we say the complex structure which can be imposed on S inherited from the
complex structure on H extends the action of G to a conformal action on S.

Unlike toplogical actions, this structure depends upon a choice for I'. Specifically,
we have the following.

Theorem 2.5. Two surfaces S1 = H/Ay and So = H/As are conformally equiva-
lent if and only if A1 and Ay are conjugate in PSL (2, R).

In particular, given a topological group action G on S, there may exist multiple
inequivalent structures on S so that the action of G extends to a conformal action
on S. Indeed, our observations imply the following.

Theorem 2.6. Suppose G is a group acting on a surface S of genus o > 2 with
generating vector V. Then the number of conformal structures which can be im-
posed on S so that the action of G extends to a conformal action is equal to the
number of PSL (2,R)-conjugacy classes of kernels of surface kernel epimorphism
whose generating vector is V.

Thus in order to determine the number of structures which can be imposed
on S so that G with generating vector V' extends to a conformal action on .S,
we need to count PSL (2, R)-classes of surface subgroups which are normal in all
Fuchsian groups with signature given by the generating vector V. It is a well known
fact that the set of conjugacy classes of groups with signature (g;ms,...,m,) is
homeomorphic to R6=6+2" (see [1]). This fact coupled with Theorem 2.6 suggests
that for a given a group G with generating vector V acting on S, unless G is a
triangle group, there will be an infinite number of structures which can be imposed
on S so that GG extends to a conformal action, and in the special case that G is a
triangle group, there are finitely many such structures. This leads to the following
questions which are the central focus of our work .

Question 2.7. Suppose G is a group acting on a surface S of genus o > 2 with
generating vector V. How many conformal structures do there exist which can be
imposed on S so that G extends to a conformal action on S? In addition, are there
any groups actions for which there exists a unique conformal structure extending
the action of G to a conformal action?

3. THE MAIN RESULT

We shall prove our main result through a series of Lemmas. Henceforth, assume
that G is a group acting on S with generating vector V and, where relevant, that
G is topologically T'/A for Fuchsian groups I' and A where A is isomorphic to
the fundamental group of S. We need the following important result regarding
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PSL (2, R)-conjugacy classes of Fuchsian groups and the existence of overgroups
(see [1] and [10]).
Theorem 3.1. Suppose that I is a Fuchsian group with signature S.

(i) If G is a triangle group, there is a unique PSL (2, R)-conjugacy class of
Fuchsian groups with signature S.

(i) If G is not a triangle group, there exist infinitely many PSL (2, R)-conjugacy
classes of Fuchsian groups with signature S. Moreover, we have the fol-
lowing additional information about the existence of overgroups:

(a) If the signature of ' does not appear in Singermans list, [10], there
are infinitely many PSL (2, R)-conjugacy classes of finitely mazimal
Fuchsian groups with signature S (T is finitely mazimal if there is no
Fuchsian group A withT < A and [A:T] < 00).

(b) If the signature of T' does appear in Singermans list, [10], there is a
list of signatures L such that given any group I' with signature S and
any signature Sn € L, there is a Fuchsian group A with signature
Sa with T’ < A and [A : T] < 0o. Moreover, there exist infinitely
many PSL (2, R)-conjugacy classes of subgroups with signature S such
that if T' is any such given group with signature S, the only possible

signatures for a group A with T < A and [A : T] < oo are those from
L.

We can use this result to show that the only possible candidates are triangle
groups.

Lemma 3.2. If G is a triangle group with generating vector V acting on S, then
there are finitely many structures which can be imposed on S extending the action
of G to a conformal action.

Proof. Suppose that G is a triangle group. We shall show that there exists only
finitely many structures extending the action of G to a conformal action indepen-
dent of the generating vector for G and hence there can only be finitely many once
a generating vector has been specified.

If G has signature (0; my,ma, m3), let T be a fixed Fuchsian group with signature
(0;m1,ma,m3). We first observe that since all triangle groups are conjugate in
PSL (2,R), given any surface kernel A; such that I';/A = G where I'y also has
signature (0;m1,me, m3), there exists a surface kernel A < T" with I'/A 2 G which
is PSL (2,R)-conjugate to A;. It follows that the number of PSL (2, R)-conjugacy
classes of surface subgroups of Fuchsian groups with signature (0;my, ma, m3) and
quotient group G is bounded above by the number of surface kernels of the fixed
Fuchsian group I' with quotient group G. Since G is finite, there are only finitely
many surface kernel epimorphisms from I" to GG, so only finitely many surface kernels
with quotient group G and hence only finitely many conformal structures which can
be imposed on S so that G acts conformally.

|

Lemma 3.3. If a group G with generating vector V acting on S is not a triangle
group, then there exist infinitely many different structures which can be imposed on
S so that the action of G extends to a conformal action on S.

Proof. Suppose that G with signature (g;m1, ..., m,) and generating vector V act-
ing on S is not a triangle group. If the signature of G does not appear in Singermans
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list, Theorem 3.1 implies there exist infinitely many PSL (2, R)-conjugacy classes of
finitely maximal subgroups of PSL (2, R) with signature (g;my,...,m,). For such
al',let p: ' - G denote a surface kernel epimorphism with generating vector
V. Since automorphism groups of compact Riemann surfaces of genus g > 2 are
finite, it follows that I' is the normalizer of Ker (g) in PSL (2,R). It follows that
if two finitely maximal groups I'y and T'y with signature (g;my,...,m,) are not
PSL (2, R)-conjugate, and g1: I'y — G and g2: I's — G are surface kernel epimor-
phisms with generating vector V, then the kernels Ker (9;) and Ker (g2) are not
PSL (2, R)-conjugate (since normalizers of conjugate subgroups of a group are con-
jugate). Since there are infinitely many different PSL (2, R)-conjugacy classes of
finitely maximal subgroups of PSL (2, R) with signature (g;mi,...,m,), Theorem
2.6 implies there are infinitely many different structures which can be imposed on
G such that the action of G extends to a conformal action.

Now suppose that the signature of G appears in Singermans list and let £ be
the list of signatures such that given any I" with signature (g; mq,...,m,), for each
signature S € L, there always exists an overgroup A of I' with signature S and
[A : T] < co. Now for a fixed epimorphism ¢: I' — G, Theorem 5.1 of [5] gives
complete conditions for Ker (g) to be normal in A > T" with signature from £. In
particular, these conditions are dependent only on ¢ and either hold true for all
possible T' with signature (g;my,...,m,) or none. Let Sa denote the signature of
the largest Fuchsian group with signature from £ in which any Ker () is normal
(this is well defined by our remarks). Observe that since signature determines a
group up to isomorphism, if A is a group with signature Sa, there always exists a
subgroup I' with signature (g;mq,...,m,) and a normal surface subgroup A with
A < T such that n: I' — I'/A =2 G is Aut(G) (and hence Aut (G) x Aut (I))
equivalent to ¢ as specified above. To finish, we note that since any group with
signature from £ is not a triangle group (since I is not a triangle group), Theorem
3.1 implies there exist infinitely many PSL (2, R)-classes of subgroups with signature
SA which can only be subgroups of Fuchsian groups with signature from £. In
particular, if A is a group with signature Sa from one of these classes and T" and
A are as specified above, then A = N(A), so we can apply an identical argument
to the previous case and the result follows.

O

This result means that the only possible candidates for which there exists a
unique structure extending the action of G are triangle groups. Since we are looking
for Aut (G) x Aut (T")-classes of generating vectors, we need to examine the group
Aut (T") in more detail when T is a triangle group.

Theorem 3.4. Suppose that T' has signature (0;my, ma, m3).
(i) If all the m; are distinct, then Aut (I') = Inn(T).
(ii) If precisely two of the m; are equal, then [Aut (T") : Inn(T")] = 2.
(#) If all of the m; are equal, then [Aut (') : Inn(T")] = 6.

Proof. A consequence of [4] is that if F' is the free group on two generators, then
[Aut (F) : Inn(F)] = 6. Since the automorphisms of I" will be the same as the
automorphisms of F' which preserve orders of elements, the result follows. Alter-
natively, we could construct the Aut (I') explicitly using the generators of general
mapping class groups given in [2]. O
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Lemma 3.5. Suppose I' is a Fuchsian triangle group. Then there exists another
Fuchsian group A containing I' as a normal subgroup and an isomorphism ®: A —
Aut (T') induced by the action of conjugation of A on T

Proof. Suppose that I" has signature (0; mq, ma, ms) and let A be a Fuchsian group
with T' << A. We shall first show that the map ®: A — Aut (T") induced by the
action of conjugation of the elements of A on I' is injective. To see this, suppose
that conjugation by v € A and § € A induce the same automorphism. Then it
follows that for all ¢ € T', yey ™! = ded 1, or equivalently 6!y commutes with every
element in I'. However, two non-identity elements in a Fuchsian group I' commute
if and only if they have the same fixed point set (see for example Theorem 5.2.4 of
[7]). If 6~ 14 is non-trivial, it follows that all the elements of I have the same fixed
point set and hence I' is commutative which is not true. Hence §~'v is trivial so
& = 7, so the map & is injective.

To finish the proof, we observe that under the map ® induced by conjugation,
®(I") = Inn(T") (the inner automorphism group of I'). The result then follows
through observation of the different possible overgroups of I' given in Singermans
list, [10]. Specifically if all the m; are distinct, then Aut (T') = Inn(T") so the result
trivially holds. If precisely two of the m; equal, there exists a Fuchsian group A
with ' < A and [A : Tl = 2, and if all the m;’s are equal, then there exists a
Fuchsian group A with I' < A and [A : T'] = 6.

O

We are now ready to prove our main result.

Theorem 3.6. There exists a unique conformal structure extending the action of
a topological group of automorphisms G to a conformal action if and only if G is a
triangle group. For all other groups, there exist infinitely many different structurse
extending the action of G to a conformal action.

Proof. If G is not a triangle group, Lemma 3.3 proves the result. Therefore, sup-
pose G is a triangle group with signature S acting on a surface S of genus o > 2
with generating vector V. By Theorem 2.6, we need to show that there is just
one PSL (2, R)-conjugacy class of kernels of surface kernel epimorphism whose gen-
erating vector Aut (G) x Aut (I')-equivalent to V. To prove this, we shall first
show that for a fixed triangle group I' with signature S, all kernels of surface ker-
nel epimorphisms with generating vector Aut (G) x Aut (T')-equivalent to V are
PSL (2, R)-conjugate. We shall then show that if T'; is any other triangle group
with signature S, any kernel of a surface kernel epimorphism from I'; to G with
generating vector Aut (G) x Aut (I')-equivalent to V is PSL (2, R)-conjugate to one
of the surface kernels in T'.

Suppose that I" is some fixed triangle group with signature S and let K denote
the set of all kernels of surface kernel epimorphisms from I' to G with generating
vector Aut (G) x Aut (T')-equivalent to V. If A1, Ay € K, let g1, 02: T' — G denote
corresponding surface kernel epimorphisms. Since the generating vectors of o1, g2
are Aut (G) x Aut (I')-equivalent to V, they are Aut (G) x Aut (I')-equivalent to
each other and so g1 = a0 gy 0y~! for some o € Aut (G) and v € Aut (). It
follows that Ker (91) = Ker (02 0y~ 1), or equivalently v(Ay) = Ker (A;). However,
by Lemma 3.5, every element of Aut (T") is induced by the action of conjugation
by some overgroup A of I in PSL (2,R), and in particular, it follows that A; and
Ay are PSL (2,R)-conjugate. Thus for a fixed triangle group I', any two surface
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kernel epimorphisms with Aut (G) x Aut (T')-equivalent generating vectors have
PSL (2, R)-conjugate kernels.

Now suppose I'1 # T' is a triangle group with signature S and suppose that
n: Iy — G is a surface kernel epimorphism with generating vector Aut (G) x
Aut (T')-equivalent to V. To finish the proof, we need to show that Ker(n) is
PSL (2, R)-conjugate to a group in the set . Since I'y and T are triangle groups,
there exists T' € PSL (2,R) such that TI'y7~! = I'. Now T induces a conformal
map between the quotient spaces (see for example Theorem 5.9.3 of [7])

T:H/Ker (n) — H/(T Ker (n)T ")

and with this map, we have T(I';/Ker (n))T~! = I'/(T Ker (n)T~1). Since T is
conformal, it is a homeomorphism, and so it follows that the groups I'1/ Ker (n)
and T'/(T Ker (n)T~!) are topologically equivalent. In particular, the generating
vector of the map o: I' — G with kernel T'Ker ()T~ will be Aut (G) x Aut (T)-
equivalent to V and so T Ker (7)T~! € K, hence the result.

O

4. ENUMERATION OF TOPOLOGICAL EQUIVALENCE CLASSES OF TRIANGLE
GROUP ACTIONS

Our results in the previous section imply the following result relating the num-
ber of topological equivalence classes of group actions of triangle groups and the
PSL (2, R)-conjugacy classes of subgroups of triangle groups.

Proposition 4.1. The number of topological equivalence classes of group actions
of a group G with signature (0;my, ma, mg) on S of genus o > 2 is equal to the
number of N (I')-conjugacy classes of surface subgroups of a fized Fuchsian triangle
group I' with quotient group G.

Thus in order to determine the number of topological equivalence classes of group
actions of a triangle group G with signature (0; mq, mo, ms), we just need to count
the number of surface kernels in a Fuchsian group I' with signature (0;m1,ma, m3)
up to conjugation in the normalizer of T in PSL (2, R). The next result provides a
way to determine N(A) N N(T') dependent on the maps defined below.

Definition 4.2. Suppose (z,y,z) is a generating vector for a triangle group G.
Then we define the following identifications:

X Y, Y T, 2 yzy L

ig: x>y ey y 2,z -y

isix— z,y—ayr Lz

JIT oYY = 2,2

Theorem 4.3. Suppose that A is a surface kernel subgroup of a triangle group T’
and ' < A. Let 9: T' — G =T'/A be the corresponding surface kernel epimorphism
and suppose (x,y, z) is the generating vector of o.
(i) If T has signature (0;mq,m1,ms), then A is normal in A with signature
(0;2,m1,2ms) if and only if the identification i, extends to an automor-
phism of G.
(i) If T has signature (0;m,m,m), then A is normal in a group A with sig-
nature (0;2,m,2m) and is normal in no larger group if and only if only
precisely one of the identifications i1, i2, or iz extends to an automorphism

of G
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(ii1) IfT has signature (0;m, m,m), then A is normal in a group A with signa-
ture (0;3,3,m) and is normal in no larger group if and only if the identi-
fication j extends to an automorphism of G but the identification i1 does
not.

(i) If T has signature (0;m,m,m), then A is normal in a group A with sig-
nature (0;2,3,2m) if and only if the identifications i1 and j extend to
automorphisms of G.

Proof. This is a consequence of the results developed in [5].

Putting our results together, we get the following.

Proposition 4.4. The number of topologically inequivalent topological G-actions
T with signature (0;m1, ma, ms3) on a surface S can be calculated as follows.

(i) If all the m; are distinct,
_ Vgl
| Aut (G)]
where Vg denotes the set of all generating vectors for surface kernel epi-

morphisms from I' to G.
(i) IfT has signature (0;my, my, ma) with ma # mq, then

__Wel | Vel

~ 2|Aut (G) | Aut (G)]
where Vg denotes the set of generating vectors of surface kernel epimor-
phisms from T to G for which the identification i1 does not extend to an
automorphism of G and Vg, denotes the set of generating vectors for
which the map i1 does extend to an automorphism of G.

(ii1) IfT has signature (0;m,m,m), then the number of topological equivalence
classes of group actions of G on a surface S with signature (0;m,m, m) is
equal to

I 1] Vel Ve, Ve.ij

© 6lAut (G)]  3]Aut(G)|  2|Aut(G)] | Aut(G)|

where Vg denotes the set of generating vectors of surface kernel epimor-
phisms from I' to G for which none of the transformations i1,12,i3 or j
extend to automorphisms of G, Vg,; denotes the set of generating vectors
for which just one of i1,i2 or i3 extends to an automorphism of G, Vg ;
denotes the set of generating vectors for which j extends to an automor-
phism, but i1 does not, and Vg ; ; denotes the set of generating vectors for
which i1 and j extend to automorphisms of G.

Proof. For a given I', the proof is a simple enumeration of the size of the orbits of
surface kernels under the action of conjugation by subgroups of N(T).
O

We finish with some examples.

Example 4.5. Suppose G is cyclic of order 7 generated by x and I' has signature
(0;7,7,7). Then any surface kernel epimorphism from T with signature (0;7,7,7)
has corresponding generating vector of the form (2%, 2% 2777%), so there are 30

epimorphisms in total. For each of these generating vectors, we need to determine
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which identifications given in Definition 4.2 extend to automorphisms of G. Observe
that if (x,y, z) is any generating vector with a repeated entry, then switching the
two repeated entries induces an automorphism of G' (namely the identity), so either
i1, i2 Or i3 extends to an automorphism of G. Now note that since there can be at
most repeated entry, if (z,y, z) is a generating vector with a repeated entry, then
the identification j does not extend to an automorphism of G. Since there are 18
such generating vectors, we have |Vg ;| = 18.

If a generating vector (z,y,z) has three distinct entries, we can use a similar
argument to show that the identification j always extends to an automorphism of
G but the identification i; does not. Since there are 12 such generating vectors, we
have |V,|,| = 18. There are no other generating vectors, so applying Proposition
4.4, we get

Ve, | Va.jl 18 12

= + = =
3 Aut (G)]  2[Aw(G)] 18 12

Therefore there are two distinct topological group actions of the cyclic group of

order 7 with signature (0;7,7,7) on a surface of genus 3.

As we briefly mentioned in the introduction, there are numerous computational
methods developed to help calculate the size of the sets of generating vectors (see
for example [6] or [13]). We illustrate with an example.

Example 4.6. Suppose that G = Ci3 x Cs (the non-trivial semidirect product).
Then G acts on a surface S of genus 6 with signature (0; 3, 3,13). Applying Theorem
3 of [6], we get at most 156 different generating vectors for G, but since the smallest
group containing an element of order 3 and order 13 is 39, it follows that all these
generating vectors are generating vectors for G. Since | Aut (G)| = 78, it follows that
there are 2 different surface kernels in I' with signature (0;3,3,13) with quotient
G. Since there are no groups which act on a surface S of genus 6 with signature
(0;2,3,26), it follows that these two surface kernels are conjugate by an element in
the Fuchsian A > T with signature (0;2, 3,26). Hence there is just one PSL (2, R)-
class of surface kernels and thus a unique topological action of G on S with signature
(0;3,3,13).
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