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ON THE MODULI SPACE OF FLAT SYMPLECTIC
SURFACE BUNDLES
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Abstract

In this paper, we prove homological stability of symplectomor-
phisms and extended hamiltonians of surfaces made discrete. Sim-
ilar to discrete surface diffeomorphisms [Nar17b], we construct an
isomorphism from the stable homology group of symplectomor-
phisms and extended Hamiltonians of surfaces to the homology
of certain infinite loop spaces. We use these infinite loop spaces
to study characteristic classes of surface bundles whose holonomy
groups are area preserving, in particular we give a homotopy the-
oretic proof of the main theorem in [KM07].

1. Introduction and statement of the main results

The Madsen-Weiss theorem ([MW07]) was not only so successful in
describing the “stable” invariants of the surface bundles, but also it laid
out a method that could be generalized to higher dimensional manifold
bundles (see [GRW14]). Kotschick and Morita in series of papers (see
[KM07], [KM05] and [KM09]) studied the invariants of surface bun-
dles whose holonomy groups lie in the symplectomorphisms of surfaces.
Their calculations heavily relies on the theory of surfaces. The purpose
of this paper which is a continuation of the work in [Nar17b, Nar17a]
is to do Madsen-Weiss theory for surface bundles with certain geomet-
ric restrictions on the holonomy groups. In this approach the theory of
surfaces will be hidden in the homological stability results (see Theo-
rem 1.1 and Theorem 1.2). And as we shall see, not only this homo-
topy theoretic approach in the case of surface bundles whose holonomy
groups are area preserving recovers the main theorems in [KM07] and
[KM05] but also it translates the problems posed in [KM07] to a con-
crete problem related to the homotopy type of the Haefliger classifying
space of the groupoids of germs of volume preserving diffeomorphisms
(see Definition 1.3).

1.1. Homological stability. Let Σ be a surface with or without
boundary and let ωΣ be an area form on Σ whose total volume is nor-
malized to be the negative of the Euler number. Let Diff(Σ, ∂) and
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Symp(Σ, ∂) denote respectively the group of orientation preserving dif-
feomorphisms and ωΣ-preserving diffeomorphisms of Σ whose supports
are away from the boundary. We denote the same groups with discrete
topology by Diffδ(Σ, ∂) and Sympδ(Σ, ∂) respectively. The first main
theorem

Theorem 1.1. The homology groups H∗(Sympδ(Σ, ∂);Z) is inde-
pendent of the genus g(Σ) and the number of boundary components if
∗ ≤ (2g(Σ)− 2)/3.

Let Symp0(Σ, ∂) denote the identity component of Symp(Σ, ∂). It
is a consequence of a theorem of Moser [Mos65] that Symp0(Σ, ∂) is
homotopy equivalent to Diff0(Σ, ∂) which is known (see [EE69, ES70])
to be contractible for g ≥ 2. Recall that the flux homomorphism

Flux : Symp0(Σ, ∂)→ H1(Σ, ∂;R),

is a surjective homomorphism that is roughly described as follows. For
an element φ ∈ Symp0(Σ, ∂), choose a path φt to the identity. Let α be
1-cycle in Σ, then Flux(φ)(α) is given by integrating ωΣ on the 2-chain
(s, t) → φt(α(s)). In this case, since Symp0(Σ, ∂) is simply connected,
the definition of Flux does not depend on the path φt. The group of
Hamiltonians is defined to be the kernel of Flux, hence they sit in a
short exact sequence

1→ Ham(Σ, ∂)→ Symp0(Σ, ∂)
Flux−−−→ H1(Σ, ∂;R)→ 1.

Morita and Kotschick proved in [KM05] that the flux homomorphism
can be extended to a crossed homomorphism

F̃lux : Symp(Σ, ∂)→ H1(Σ, ∂;R),

which is a map that instead of being homomorphism satisfies the identity

F̃lux(fg) = F̃lux(g) + g∗F̃lux(f),

where g∗ denotes the action of g on H1(Σ, ∂;R). Although F̃lux is
not a group homomorphism, its kernel is a subgroup of Symp(Σ, ∂).
This kernel is called extended Hamiltonians and we shall denote it by

H̃am(Σ, ∂). The group of extended Hamiltonians is an enlargement of
Ham(Σ, ∂) that intersects all the connected components of Symp(Σ, ∂)
and sits in a short exact sequence

1→ Ham(Σ, ∂)→ H̃am(Σ, ∂)→ MCG(Σ, ∂)→ 1,

where MCG(Σ, ∂) denotes the mapping class group of the surface Σ.
Kotschick and Morita in [KM07, Theorem 6] proved that the group
homology of the Hamiltonians is highly nontrivial and it is not stable
with respect to the genus. We prove, however, that the group homology

of H̃am
δ
(Σ, ∂) is stable.
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Theorem 1.2. Let Σ be a surface with at least one boundary com-

ponent, then the homology groups H∗(H̃am
δ
(Σ, ∂);Z) is independent

of the genus g(Σ) and the number of boundary components if ∗ ≤
(2g(Σ)− 2)/3.

1.2. The stable homology. To identify the stable homology groups

of H̃am
δ
(Σ, ∂) and Sympδ(Σ, ∂), we first recall the definition of the

classifying space of codimension 2 foliations with a transverse volume
form.

Definition 1.3. Let Γvol
2 denote the topological Haefliger groupoid

whose objects are R2 with the usual topology and the space of mor-
phisms are local symplectomorphisms of R2 with respect to the standard
symplectic form (see [Hae71] for more details on how this groupoid is
topologized). We shall write BΓvol

2 to denote its classifying space.

There is a map

θ : BΓvol
2 → BSL2(R),

which is induced by the functor Γvol
2 → SL2(R) that sends a local dif-

feomorphism to its derivative at its source. We denote the homotopy

fiber of θ by BΓvol
2 . Let v ∈ H2(BΓvol

2 ;R) be the standard transverse
volume form for the universal Γvol

2 -structure on BΓvol
2 (cf. [McD83b]).

Let e ∈ H2(BΓvol
2 ;R) denote the Euler class of the normal bundle of the

codimension 2 Haefliger structure on BΓvol
2 which is the pullback of the

generator of H2(BSL2(R);R) via the map θ. The class e+ v induces a
map

e+ v : BΓvol
2 → K(R, 2).

Let B̃Γvol
2 denote the homotopy fiber of the above map. Thus, there is

a homotopy commutative diagram

(1.4)

B̃Γvol
2

BΓvol
2 K(R, 2)

BSL2(R),

e+ v

θ
β

where β is the composition of the inclusion of the homotopy fiber and

the map θ. We denote the homotopy fiber of β by BΓvol
2 . Let γ be the

tautological 2-plane bundle over BSL2(R). Let MTθ and MTβ denote
the Thom spectrum of the virtual bundles θ∗(−γ) and β∗(−γ) respec-
tively. Let Ω∞• MTθ and Ω∞• MTβ denote the base component of the
infinite loop spaces associated to the Thom spectrum MTθ and MTβ
respectively.
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Theorem 1.5. There is a homotopy commutative diagram

BH̃am
δ
(Σ, ∂)

BSympδ(Σ, ∂)

Ω∞• MTβ

Ω∞• MTθ,

where the horizontal maps are homology isomorphisms in the stable
range as Theorem 1.1.

1.3. Capping off the last boundary component. As we shall see
in Section 2.3, for symplectomorphisms capping off the last boundary
component of a surface also induces homology isomorphisms up to the
same range as Theorem 1.1. In other words for an embedding of a
closed 2-disk D2 into a closed surface Σ, let Sympδ(Σ, rel D2) denote
those symplectomorphisms whose supports are away from the embedded
disk.

Theorem 1.6. The inclusion Sympδ(Σ, rel D2) → Sympδ(Σ) in-
duces the map

H∗(BSympδ(Σ, rel D2);Z)→ H∗(BSympδ(Σ);Z),

which is an isomorphism in the same range as Theorem 1.1.

However, for extended Hamiltonians, we show that

H∗(BH̃am
δ
(Σ, rel D2);Z)→ H∗(BH̃am

δ
(Σ);Z),

cannot be an isomorphism in any range, in fact we show that the groups

H̃am
δ
(Σ, rel D2) and H̃am

δ
(Σ) have different H1 and H2.

Nonetheless, for a closed surface Σ, we shall describe below the dif-

ference between the homology groups of BH̃am
δ
(Σ) and the homology

groups of BH̃am
δ
(Σ, rel D2) in the same range as Theorem 1.1. It is well

known that the classifying space of an abelian group inherits the struc-
ture of a topological abelian group. In particular BRδ is a topological
group and we shall show that it acts on MTβ and the homotopy quo-

tient of this action BRδ\\Ω∞MTβ describes the homology of BH̃am
δ
(Σ)

in a range.

Theorem 1.7. For a closed surface Σ, there is a homotopy commu-
tative diagram

BH̃am
δ
(Σ, rel D2))

BH̃am
δ
(Σ)

Ω∞MTβ

BRδ\\Ω∞MTβ,
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where the horizontal maps in the same range as Theorem 1.1 induce
homology isomorphisms onto the connected components that they hit
(see Theorem 1.15 for a geometric meaning of this theorem).

Corollary 1.8. The map induced by capping off the last boundary
component

H∗(BH̃am
δ
(Σ, rel D2);Fp)→ H∗(BH̃am

δ
(Σ);Fp),

is an isomorphism on homology with finite coefficients in the stable
range.

Note that for closed surfaces Σ and Σ′, there is no comparison map

from BH̃am
δ
(Σ) to BH̃am

δ
(Σ′), but using Corollary 1.8, one can find

a zig-zag of isomorphisms between Fp-homology groups of BH̃am
δ
(Σ)

and BH̃am
δ
(Σ′) in the stable range of the surface with lower genus.

For homology with Q-coefficients, however, we use a different zig-zag
of isomorphisms to show that

Theorem 1.9. The groups H∗(BH̃am
δ
(Σ);Q) and H∗(BH̃am

δ
(Σ′);

Q) are isomorphic for ∗ ≤ min((2g(Σ)− 2)/3, (2g(Σ′)− 2)/3).

Remark 1.10. The isomorphism is given by a zig-zag of maps and
in fact it induces an isomorphism in the same range for any coefficient
subring of Q in which the Euler numbers χ(Σ) and χ(Σ′) are invert-
ible.

1.4. Characteristic classes of flat symplectic bundles. Recall that
MCG(Σ, ∂) denote the mapping class group of the surface Σ fixing the
boundary pointwise. As a result of Moser’s theorem ([Mos65]), the
topological groups Diff(Σ, ∂) and Symp(Σ, ∂) have the same group of
connected components, thus we have the following short exact sequences
of groups

1→ Sympδ0(Σ, ∂)→ Sympδ(Σ, ∂)→ MCG(Σ, ∂)→ 1,

1→ Hamδ(Σ, ∂)→ H̃am
δ
(Σ, ∂)→ MCG(Σ, ∂)→ 1.

Remark 1.11. In fact, there are uncountably different ways to ex-
tend the mapping class group by the Hamiltonian group for a surface
with boundary (see [Bow11, Theorem 7.2]). But for a closed surface

Σ the extension H̃am
δ
(Σ) is unique. We consider the restriction of this

unique extension to obtain the extended Hamiltonian group for surfaces
with boundary.

Morita showed that the Mumford-Morita-Miller-classes κi ∈
H2i(MCG(Σ, ∂);Z) which are characteristic classes for surface bundles
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(see Section 3 for a definition of these classes) are nonzero in the stable
range ([Mor87]) and even more the natural map

Z[κ1, κ2, · · · ]→ H∗(MCG(Σ, ∂);Z),

is injective in the same stable range as Theorem 1.1. We prove the same
holds for flat symplectic surface bundles.

Theorem 1.12. The natural map induced by pulling back the MMM-
classes to BSympδ(Σ, ∂)

Z[κ1, κ2, · · · ]→ H∗(BSympδ(Σ, ∂);Z),

is injective in the stable range.

The situation is quite different with rational coefficients. The Bott
vanishing theorem implies that κi vanishes in H∗(Sympδ(Σ, ∂);Q) for all
i > 2. On the other hand, Kotschick and Morita in [KM05] proved that
powers of κ1 are nonzero in H∗(Sympδ(Σ, ∂);Q). The (non)vanishing of
κ2 in the rational cohomology of Sympδ(Σ, ∂) is not yet known. How-

ever, we prove all MMM-classes vanish in the cohomology of H̃am
δ
(Σ, ∂)

with real coefficients.

Theorem 1.13. The natural map

R[κ1, κ2, · · · ]→ H∗(BH̃am
δ
(Σ, ∂);R),

is a zero map.

To give Theorem 1.7 a geometric meaning, for a closed surface Σ, let

Σ Σ//H̃am
δ
(Σ)

BH̃am
δ
(Σ),

π

denote the universal Σ-bundle whose holonomy lies in H̃am
δ
(Σ). It is

not hard to use the perfectness of Hamδ(Σ) (see [Ban97]) to show that

the first MMM-class κ1 is nonzero in H2(BH̃am
δ
(Σ);Z). Consider the

following map induced by the first MMM-class

(1.14)
κ1

4− 4g(Σ)
: BH̃am

δ
(Σ)→ K(R, 2).

Theorem 1.15. There is a map

BH̃am
δ
(Σ, rel D2)→ hofib(

κ1

4− 4g(Σ)
),

that induces a homology isomorphism in the stable range.
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In order to find new invariants of flat symplectic surface bundles,
we use Theorem 1.5 and existence of nontrivial cohomology classes
in H∗(BΓvol

2 ;Z) to prove that H∗(Sympδ(Σ, ∂);Z) is highly nontrivial.

Note that any class in H2(Sympδ(Σ, ∂);Z) can be represented by a map

f : Σ′ → BSympδ(Σ, ∂),

where Σ′ is a surface. The map f induces a flat symplectic bundle E →
Σ′ whose fibers are diffeomorphic to Σ. Since E admits a codimension 2
foliation with a transverse volume form, invariant under the holonomy,
this foliation induces a well-defined map up to homotopy

g : E → BΓvol
2 .

Hence, one can easily see that this assignment defines a well-defined
map from H2(BSympδ(Σ, ∂);Z) to H4(BΓvol

2 ;Z).

Theorem 1.16. The natural map

H2(BSympδ(Σ, ∂);Z[
1

6
])→ H4(BΓvol

2 ;Z[
1

6
]),

is an isomorphism for g(Σ) ≥ 4 and epimorphism for g(Σ) ≥ 3.

Kotschick and Morita used the extended flux homomorphism to con-
struct a surjection map

H2(BSympδ(Σ, ∂);Z) Z⊕ S2
QR,

where S2
QR is the second symmetric power of R as a Q-vector space.

They asked in [KM07, Problem 23] if this map is an isomorphism. One
can use Theorem 1.16 to partially answer their problem, as we shall
briefly explain here (see corollary 3.12 for more precise statement).

Theorem 1.17. There exists a certain homomorphism

d : R⊕ (R⊗ R)→ H4(BΓvol
2 ;Q),

so that for a surface Σ with g(Σ) ≥ 4, we have a short exact sequence

0→ Coker(d)→ H2(BSympδ(Σ, ∂);Q)→ Q⊕ S2
QR→ 0.

Remark 1.18. Hence, Kotschick-Morita’s problem for a surface of
genus larger than 4 is equivalent to showing Coker(d) = 0. Given our
state of knowledge about foliations with transverse volume form, proving
that d is surjective seems to be very hard!

Given Theorem 1.17, we obtain that there is a surjective map

H2(Ω∞• MTθ;Q) Q⊕ S2
QR.
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Since H∗(Ω
∞
• MTθ;Q) is a simply connected Hopf algebra over rationals,

we deduce that

H2k(Ω
∞
• MTθ;Q) Sk(Q⊕ S2

QR).

Hence, we obtain a different proof of the main theorem of Kotschick and
Morita in [KM07]:

Corollary 1.19. There is a surjective map

H2k(BSympδ(Σ, ∂);Q) Sk(Q⊕ S2
QR),

for g(Σ) ≥ 3k.

Outline. The paper is organized as follows: In Section 2, we use Mc-
Duff’s work on the volume preserving diffeomorphisms and Randal-
Williams’ work on homological stability for tangential structures to de-

scribe the group homology of Sympδ(Σ, ∂) and H̃am
δ
(Σ, ∂) in a range

depending on the genus. In Section 3, we study characteristic classes
of surface bundles whose holonomy groups are area preserving which
in particular leads us to give a homotopy theoretic proof of Kotschick-
Morita’s theorem [KM07, Theorem 4] and partially answers their prob-
lem in [KM07, Problem 23].

Acknowledgment. I would like to thank Søren Galatius and Oscar
Randal-Williams for many helpful discussions regarding this project. In
the first formulation of Theorem 1.15, there was a different description
of the map 1.14. I am grateful to Shigeyuki Morita who simplified my
description as a multiple of the first MMM-class. I am also thankful
for the hospitality of the topology group in the Mathematical Institute
of Universität Münster during the period that this project was done.
I would like to thank the referees for their comments that helped me
to improve the presentation of my arguments. The author is partially
supported by NSF DMS-1810644.

2. Homological stability

In this section, we use the work of McDuff on volume preserving
diffeomorphisms ([McD83a, McD82]) and Randal-Williams’ work on
homological stability of moduli spaces ([RW16]) to prove Theorem 1.1
and Theorem 1.2.

Let (Σ, ω) be a pair consisting of a surface Σ with a nowhere zero 2-
form ω on Σ. Let Sympω(Σ, ∂) denote the group of compactly supported
ω-preserving diffeomorphisms of the interior of Σ. Let (Σ′, ω′) be a pair
where Σ ⊂ Σ′ is a subsurface and ω = ω′|Σ is the restriction of the
volume form to Σ. There is a natural group homomorphism

s(Σ,Σ′) : Sympδω(Σ, ∂)→ Sympδω′(Σ
′, ∂)
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which is given by extending ω-preserving diffeomorphisms of Σ by the
identity over Σ′\Σ. Theorem 1.1 can be reformulated as follows

Theorem. The map

H∗(BSympδω(Σ, ∂);Z)→ H∗(BSympδω′(Σ
′, ∂);Z)

induced by s(Σ,Σ′) is an isomorphism for ∗ ≤ (2g(Σ) − 2)/3 and epi-
morphism for ∗ ≤ 2g(Σ)/3.

Let Σ be a surface with boundary. We treat the case where Σ is
a closed surface separately in Section 2.3. Given the observation of
Kotschick and Morita in [KM05, Section 2.1], that the group Sympδω(Σ,
∂) is perfect for g(Σ) ≥ 3, we can consider the Quillen plus construction
of BSympδω(Σ, ∂) for g(Σ) ≥ 3. As we shall see there exists a model for
the plus construction of BSympδω(Σ, ∂) to which the general homological
stability theorem in [RW16, Theorem 7.1] can be applied. To describe
this model, we first need to recall a theorem due to McDuff.

2.1. Recollection from McDuff’s work on volume preserving
diffeomorphisms. Let BSympω(Σ, ∂) denote the homotopy fiber of the
map

BSympδω(Σ, ∂)→ BSympω(Σ, ∂)

induced by the identity homomorphism.

Remark 2.1. In fact, in this case we can describe the homotopy
fiber more concretely. Recall from the introduction that Sympω(Σ, ∂) '
MCG(Σ, ∂). Hence, we have the following fiber sequence

BSympδ0,ω(Σ, ∂)→ BSympδω(Σ, ∂)→ BMCG(Σ, ∂),

where Symp0,ω(Σ, ∂) is the identity component of the topological group
Sympω(Σ, ∂). We obtain a map

BSympω(Σ, ∂)→ BSympδ0,ω(Σ, ∂)

which is a homotopy equivalence.

The action of Sympδω(Σ, ∂) on Σ gives the following surface bundle

Σ Σ//Sympδω(Σ, ∂)

BSympδω(Σ, ∂),

π

whose holonomy group is Sympδω(Σ, ∂). Therefore it is a foliated (flat)
Σ-bundle whose holonomy preserves the volume form of the fibers. The
normal bundle to the foliation is the vertical tangent bundle of π. By the
general theory of Haefliger ([Hae71]), the foliation on the total space
induces a map well defined up to homotopy

Σ//Sympδω(Σ, ∂)→ BΓvol
2 .
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If we pull back this foliated bundle to BSympω(Σ, ∂), we obtain the
product bundle

BSympω(Σ, ∂)× Σ Σ//Sympδω(Σ, ∂)

BSympω(Σ, ∂) BSympδω(Σ, ∂),

with a foliation F transverse to the fibers {x} × Σ (see [McD83a,
McD82] for more details). Since this bundle is trivial, the normal
bundle to the foliation F is induced by the pull back of the tangent
bundle TΣ via the projection BSympω(Σ, ∂)×Σ→ Σ. Hence, we have
the following homotopy commutative diagram

(2.2)

BSympω(Σ, ∂)× Σ BΓvol
2

Σ BSL2(R).
τ

F

θ

For the point-set model of the diagram 2.2 see [McD79] and [Nar17a,
Section 5.1]. Let Sect(Σ) be the space of sections of τ∗(θ), the pullback
of BΓvol

2 over Σ. After choosing a base section s0 for Sect(Σ), one can
define Sect(Σ, ∂) to be those sections that are equal to s0 in the germ of
the boundary (In fact in the point-set model, there is a canonical base
section s0 defined by the foliation by points on the surface). For any

x ∈ BSympω(Σ, ∂), the map F |x×Σ is a lifting of the map τ to BΓvol
2 ,

hence we obtain a map

fΣ : BSympω(Σ, ∂)→ Sect(Σ, ∂).

The section space Sect(Σ, ∂) is not connected and in fact π0(Sect(Σ,
∂)) = R which is given by the integration of ω over the surface. Let
Sect0(Σ, ∂) denote the base component.

Theorem 2.3 (McDuff [McD82]). The map

fΣ : BSympω(Σ, ∂)→ Sect0(Σ, ∂)

induces a homology isomorphism.

Using obstruction theory, one can show that π1(Sect0(Σ, ∂)) is a
nilpotent group and sits in a short exact sequence

0→ R→ π1(Sect0(Σ, ∂))→ H1(Σ, ∂;R)→ 0.

Hence we have a map

h : Sect0(Σ, ∂)→ BH1(Σ, ∂;R).

Let ˜Sect0(Σ, ∂) be the homotopy fiber of h. In fact, McDuff obtained
Theorem 2.3 as a corollary of the following
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Theorem 2.4. There is a map

f̃Σ : BHamδ
ω(Σ, ∂)→ ˜Sect0(Σ, ∂)

that induces a homology isomorphism.

2.2. The tangential θ-structures. To describe a point-set model for
the section space on which Sympω(Σ, ∂) acts, we shall recall the space
of tangential structures. Let B be any topological space. For a map
α : B → BSL2(R) that is a fibration, let Bun∂(TΣ, α∗γ) denote the
space of all bundle maps TΣ → α∗γ from the tangent bundle of Σ to
α∗(γ) that are standard on a germ of the boundary and equipped with
the compact-open topology (See [RW16, Section 1.1] for what it means
to be standard near the boundary). The whole diffeomorphism group
Diff(Σ, ∂) acts on bundle maps by precomposing a bundle map with the
differential of a diffeomorphism and we shall restrict this action to the
volume preserving diffeomorphisms.

Definition 2.5. The moduli space of α-tangential structureMα(Σ, ∂)
is defined to be

Bun∂(TΣ, α∗γ)//Sympω(Σ, ∂).

Now consider the tangential structure θ : BΓvol
2 → BSL2(R). Recall

γ is the tautological 2-plane bundle over BSL2(R). One can define a
map between Sect(Σ, ∂) and Bun∂(TΣ, θ∗γ) as follows. First fix an
isomorphism between TΣ and τ∗γ. Every section s ∈ Sect(Σ, ∂) gives
a map s : Σ → BΓvol

2 such that θ ◦ s = τ . Hence, we obtain a bundle
map s∗ : TΣ→ θ∗γ. It is easy to prove that the map that associates a
bundle map to a section

Sect(Σ, ∂)→ Bun∂(TΣ, θ∗γ),

is a weak homotopy equivalence (see [RW13, Section 3.2]). The advan-
tage of the section space model is that it is easier to study its homotopy
type in this model. On the other hand, a priori there is no natural ac-
tion of Sympω(Σ, ∂) on the space of sections. But as we discussed above,
there is a natural action of Sympω(Σ, ∂) on the bundle maps. Because
we want to keep track of actions, we use the bundle maps model and
when we want to calculate its homotopy groups, we use the section space
model.

For a volume preserving embedding (Σ, ω) ↪→ (Σ′, ω′), the canonical
base section s′0 ∈ Sect(Σ′, ∂) restricts to the base section s0 ∈ Sect(Σ, ∂),
thus we have a map

Bun∂(TΣ, θ∗γ)→ Bun∂(TΣ′, θ∗γ),

that is equivariant with respect to the inclusion Sympω(Σ, ∂) →
Sympω′(Σ

′, ∂). Hence, we obtain a stabilization map

Mθ(Σ, ∂)→Mθ(Σ′, ∂),
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by extending over Σ′\Σ via the base section.
To prove Theorem 1.1, we relate the plus construction of BSympδω(Σ,

∂) toMθ(Σ, ∂) and then use the main theorem in [RW16, Theorem 7.1].

Proof of Theorem 1.1. Let BSympω(Σ, ∂) be the homotopy fiber of the
map

ι : BSympδω(Σ, ∂)→ BSympω(Σ, ∂).

A model for this homotopy fiber on which the group Sympω(Σ, ∂) acts,
is the pullback of the universal Sympω(Σ, ∂)-bundle

ESympω(Σ, ∂)→ BSympω(Σ, ∂),

via the map ι. This pullback is a principal Sympω(Σ, ∂)- bundle over
the base space BSympδω(Σ, ∂), hence the group Sympω(Σ, ∂) acts on it.
Note that given that this action is free, the homotopy quotient of this
action

BSympδω(Σ, ∂)//Sympω(Σ, ∂),

is homotopy equivalent to the quotient of the action which is homeo-
morphic to the base space where in this case is homotopy equivalent
to BSympδω(Σ, ∂). As explained in [Nar17a, Section 5.1] or [Nar17b,
Section 1.2.2], there is a point-set model for the map in Theorem 2.3

fΣ : BSympω(Σ, ∂)→ Bun∂(TΣ, θ∗γ),

that is Sympω(Σ, ∂)-equivariant. Hence, we obtain a map

BSympω(Σ, ∂)//Sympω(Σ, ∂)→Mθ(Σ, ∂).

Recall that Bun∂(TΣ, θ∗γ) is not connected but the action of Sympω(Σ,
∂) preserves the connected components. LetMθ

0(Σ, ∂) be the base com-
ponent. Thus, McDuff’s theorem implies that there is a zig-zag of maps

BSympδω(Σ, ∂)← BSympδω(Σ, ∂)//Sympω(Σ, ∂)→Mθ
0(Σ, ∂),

that are homology isomorphisms. By naturality of our constructions, it
is easy to see that the above homology isomorphisms commute with the
stabilization maps.

To prove that Mθ
0(Σ, ∂) exhibits homological stability, we show that

π0(Mθ(Σ, ∂)) is stable as the genus increases and Mθ(Σ, ∂) is also ho-
mologically stable. Randal-Williams’ theorem ([RW16, Theorem 7.1]),
however, implies thatMθ(Σ, ∂) exhibits homological stability if the con-
nected components π0(Mθ(Σ, ∂)) stabilize with respect to the genus.
Therefore, we only need to show that π0(Mθ(Σ, ∂)) is stable. To do so,
consider the fibration

Bun∂(TΣ, θ∗γ)→Mθ(Σ, ∂)→ BSympω(Σ, ∂).
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The relevant part of the long exact sequence of the homotopy groups is

π1(BSympω(Σ, ∂))→ π0(Bun∂(TΣ, θ∗γ))→ π0(Mθ(Σ, ∂))→ π0(BSympω(Σ, ∂)).

Since Σ has a boundary, the tangent bundle can be trivialized. There-
fore, in the section space model for the bundle maps Bun∂(TΣ, θ∗γ) the
map τ is null-homotopic. Hence, Sect(Σ, ∂) is in fact homotopy equiva-

lent to the mapping space Map∂(Σ,BΓvol
2 ) where BΓvol

2 is the homotopy

fiber of the map θ. Given that Σ is 2 dimensional and BΓvol
2 is simply

connected ([McD81]), we have

π0(Bun∂(TΣ, θ∗γ)) = π0(Map∂(Σ,BΓvol
2 )) = H2(BΓvol

2 ;Z).

The volume form induces a map

v̄ : BΓvol
2 → K(R, 2),

which is known from [McD81] to be 3-connected. Therefore, we have

H2(BΓvol
2 ;Z) ∼= R. More concretely, let f1 and f2 be bundle maps

in Bun∂(TΣ, θ∗γ). We consider them as lifts of the tangent bundle
to BΓvol

2 . They are in the same component of Bun∂(TΣ, θ∗γ) if the
volumes of surface Σ given by the two forms f∗i (v̄) are equal. Given
that the every of the mapping class group MCG(Σ, ∂) can be realized
as a volume preserving diffeomorphism, the action of the mapping class
group MCG(Σ, ∂) on the set of components is trivial. Therefore we
have

π0(Mθ(Σ, ∂)) = π0(Bun∂(TΣ, θ∗γ)) = H2(BΓvol
2 ;Z) = R.

Thus, the connected components of Mθ(Σ) stabilize and the stabiliza-
tion map or gluing surfaces along the boundary components corresponds

to the addition of classes in H2(BΓvol
2 ).

To find a stability range, Randal-Williams defined a notion of k-
triviality [RW16, Definition 6.2] and proved that if a θ-structure sta-
bilizes at genus h, then it would be (2h + 1)-trivial. Since θ-structure
stabilizes at genus 0, by [RW16, Theorem 7.1] the stability range for
stabilization maps is the same as the stability range for the orientation
structure BSO(2) → BO(2). Therefore, the groups Sympδω(Σ, ∂) have
the same stability range as the mapping class groups. q.e.d.

Proof of Theorem 1.2. To recall the setup, let (Σ, ω) ↪→ (Σ′, ω′) be a
volume preserving embedding such that the volumes of Σ and Σ′ are
normalized to be the negative of the Euler numbers respectively. This
volume preserving embedding induces a stabilization map

H∗(BH̃am
δ

ω(Σ, ∂);Z)→ H∗(BH̃am
δ

ω′(Σ
′, ∂);Z),
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which we want to prove is an isomorphism for ∗ ≤ (2g(Σ) − 2)/3 and
epimorphism for ∗ ≤ 2g(Σ)/3. To do so, similar to the proof of Theo-

rem 1.1, we show that BH̃am
δ

ω(Σ, ∂) is homology equivalent to a moduli
space of a tangential structure whose π0 stabilizes with respect to the

genus. Recall that the extended Hamiltonian group H̃amω(Σ, ∂) hits all
the connected components of Sympω(Σ, ∂) and similar to Sympω(Σ, ∂),
has contractible connected components. Note that the group exten-
sion

1→ Hamδ(Σ, ∂)→ H̃am
δ
(Σ, ∂)→ MCG(Σ, ∂)→ 1,

induces the fibration sequence

BHamδ(Σ, ∂)→ BH̃am
δ
(Σ, ∂)→ BMCG(Σ, ∂) ' BSympω(Σ, ∂).

Therefore, the space BHamδ
ω(Σ, ∂) is the homotopy fiber of the map

BH̃am
δ

ω(Σ, ∂)→ BSympω(Σ, ∂),

which is induced by the identity homomorphism H̃am
δ

ω(Σ, ∂)→ H̃am(Σ,
∂) and then including into Sympω(Σ, ∂). Hence, similar to the proof
of Theorem 1.1, there is a point-set model for BHamδ(Σ, ∂) on which
Sympω(Σ, ∂) acts and the induced map from the homotopy quotient of
this action to the quotient space

(2.6) BHamδ
ω(Σ, ∂)//Sympω(Σ, ∂)

'−→ BH̃am
δ

ω(Σ, ∂),

is a homotopy equivalence.
On the other hand by Theorem 2.4, we have a homotopy commutative

diagram

(2.7)

BHamδ
ω(Σ, ∂)

˜Sect0(Σ, ∂)

BSympδ0,ω(Σ, ∂)

Sect0(Σ, ∂)

BH1(Σ, ∂;R)

BH1(Σ, ∂;R).

f̃Σ fΣ

BFlux

∼=

h

The Flux map is Sympω(Σ, ∂)-equivariant (see [KM05, Lemma 6]).
Given the appropriate point-set model for the section space Sect0(Σ, ∂)
as the bundle maps, the maps fΣ and h are also Sympω(Σ, ∂)-equi-
variant. In the claim below, we shall prove that there is a point-set

model for ˜Sect0(Σ, ∂) given by certain bundle maps. Thus, using the
same constructions as in [Nar17a, Section 5.1] or [Nar17b, Section

1.2.2], one obtains a Sympω(Σ, ∂)-equivariant model for the map f̃Σ.
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Hence, we have

BH̃am
δ

ω(Σ, ∂)
'←− BHamδ

ω(Σ, ∂)//Sympω(Σ, ∂)→ ˜Sect0(Σ, ∂)//Sympω(Σ, ∂),

where the second arrow induces only a homology isomorphism. Hence

to prove the theorem, the idea is to show that the space ˜Sect0(Σ, ∂) is
in fact the space of bundle maps of a certain tangential structure over
the surface Σ.

Recall from the diagram 1.4 in the introduction that B̃Γvol
2 is the

homotopy fiber of the map e + v : BΓvol
2 → K(R, 2) and there is a

tangential structure β : B̃Γvol
2 → BSL2(R).

Claim. There is a map

˜Sect0(Σ, ∂)→ Bun∂(TΣ, β∗γ),

which is a weak homotopy equivalence.

Proof of the claim. Let Bun∂,0(TΣ, θ∗γ) denote the base point compo-
nent of Bun∂(TΣ, θ∗γ). We write Map∂(Σ,K(R, 2)) to denote the con-
tinuous mappings that send the germs of the boundary to the base point
of K(R, 2) and the base point of the space of maps is the constant map
whose value is the base point of K(R, 2). Let Map∂,0(Σ,K(R, 2)) denote

its base point component. For brevity, we denote H1(Σ, ∂;R) by H1
R

which is also the fundamental group of the space Map∂,0(Σ,K(R, 2)).
Recall that Thom’s theorem ([Tho57]) says the space of maps from

a topological space X to the Eilenberg MacLane space K(G,m) is ho-
motopically equivalent to the products of Eilenberg-MacLane spaces∏m
i=0K(Hm−i(X;G), i). Now for the mapping space Map∂,0(Σ,K(R,

2)), since we are considering the base point component, we are omit-
ting the factor K(H2(Σ, ∂;R), 0) in the Thom theorem. And since we
are considering the subspace of maps that send the boundary to the
base point of K(R, 2), we are omitting the factor K(H0(Σ, ∂;R), 2) in
the splitting in Thom’s theorem. Therefore, the natural map from the
mapping space to the classifying space of its fundamental group

Map∂,0(Σ,K(R, 2))
'−→ BH1

R
δ
,

is a homotopy equivalence. Note that the fibration sequence

B̃Γvol
2 → BΓvol

2
e+v−−→ K(R, 2),

induces the following fibration

(2.8) Bun∂(TΣ, β∗γ)→ Bun∂,0(TΣ, θ∗γ)→ Map∂,0(Σ,K(R, 2)).

For a surface with boundary, the above sequence is a fibration of map-
pings spaces, but we write bundle maps to keep track of the action of the
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group Sympω(Σ, ∂) on spaces in the above fibration. Recall from Sec-
tion 2.2 that the map Sect0(Σ, ∂) → Bun∂,0(TΣ, θ∗γ) is a weak equiv-
alence and that was how in the first place we defined the action of
Sympω(Σ, ∂) on the section spaces. Hence, to prove the claim, it is
enough to show the following diagram is homotopy commutative

(2.9)

BSympδ0,ω(Σ, ∂)

Sect0(Σ, ∂)

BH1
R
δ

Map∂,0(Σ,K(R, 2)).

fΣ

BFlux

'

− ◦ (e+ v)

To do so, let us recall how the map fΣ is defined. Consider the Borel con-
struction Σ//Sympδ0,ω(Σ, ∂) as a foliated surface bundle with a transverse

volume form over BSympδ0(Σ, ∂). Note that topologically this surface
bundle is the trivial bundle BSympδ0,ω(Σ, ∂)× Σ, because topologically
it is classified by a map to BSymp0,ω(Σ, ∂) which is contractible. Hence,
by the general theory of foliations, we have a homotopy commutative
diagram

(2.10)

BSympδ0,ω(Σ, ∂)× Σ BΓvol
2

Σ BSL2(R).

K(R, 2)

τ

F

proj θ

− ◦ (e+ v)

Since the space Map∂,0(Σ,K(R, 2)) ' BH1
R
δ

is an Eilenberg-MacLane
space, to prove that the diagram 2.9 is homotopy commutative, we need
to show that the two maps BFlux and fΣ ◦ (− ◦ (e + v)) represent the
same cohomology class in H1(BSympδ0,ω(Σ, ∂);H1

R).

Using the Kunneth theorem, H2(BSympδ0,ω(Σ, ∂) × Σ;R) is isomor-
phic to
(2.11)

H2(BSympδ0,ω(Σ, ∂);R)⊕H1
R ⊗H1(BSympδ0,ω(Σ, ∂);R)⊕H2(Σ, ∂;R).

Note that the class represented by fΣ ◦ (− ◦ (e + v)) is the same class
obtained by projecting the class

F ∗(e+ v) ∈ H2(BSympδ0,ω(Σ, ∂)× Σ;R),

to the summand H1
R ⊗ H1(BSympδ0,ω(Σ, ∂);R) in the decomposition

(2.11). Since the volume form is normalized, the restriction of F ∗(e+v)
to each fiber is zero, therefore the projection of F ∗(e+v) to H2(Σ, ∂;R)
is zero. Given that the foliation on BSympδ0,ω(Σ, ∂) × Σ is trivial near
the boundary of the fibers, the map F is constant near the boundary of
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the fibers, hence the projection of F ∗(e+ v) to H2(BSympδ0,ω(Σ, ∂);R)
is also zero (this fact can be observed geometrically as the combination
of [KM07, Proposition 8] and [KM07, Corollary 15]). Finally, by the
calculation in [KM07, Proposition 8] and [KM05, Lemma 8], the pro-
jection of F ∗(e+ v) to H1

R⊗H1(BSympδ0,ω(Σ, ∂);R) is indeed the Flux.
This finishes the proof of the claim. q.e.d.

Now we can use the homological stability theorem for moduli space
of tangential structures ([RW16, Theorem 7.1]) to finish the proof of
the theorem. The moduli space of β-structures Mβ(Σ, ∂) is defined to

be Bun∂(TΣ, β∗γ)//Sympω(Σ, ∂). Given that BH̃am
δ

ω(Σ, ∂) is homol-
ogy equivalent to Mβ(Σ, ∂), the moduli space Mβ(Σ, ∂) is connected.
Therefore we have stability on π0(Mβ(Σ, ∂)), hence similar to the ar-
gument in the proof of Theorem 1.1, Randal-Williams’ theorem applies

and we deduce that the groups H̃am
δ

ω(Σ, ∂) have the same stability
range as the mapping class group. q.e.d.

2.3. Closing the last boundary component. Let ι : (D2, ω|D2) ↪→
(Σ, ω) be a volume preserving embedding of a disk into a closed surface.
This embedding induces group homomorphism

s(ι) : Sympω(Σ, rel D2)→ Sympω(Σ),

where Diffω(Σ, rel D2) denotes those volume preserving diffeomorphisms
that are the identity in a neighborhood of the embedded disk. We shall
prove below that s(ι) induces homology isomorphism in a range.

Remark 2.12. Similarly the volume preserving embedding induce a
homomorphism

h(ι) : H̃am
δ

ω(Σ, rel D2)→ H̃am
δ

ω(Σ).

But the map h(ι) fails to induce an isomorphism even in the low homo-
logical degrees. To see why, consider the fibration

1→ Hamδ
ω(Σ)→ H̃am

δ

ω(Σ)→ MCG(Σ)→ 1.

The Serre spectral sequence implies that there is a short exact sequence

H1(Hamδ
ω(Σ);Q)MCG(Σ) → H2(MCG(Σ);Q)→ H2(H̃am

δ

ω(Σ);Q).

Now Hamδ
ω(Σ) is a perfect group by an unpublished result of Thurston

(see [Ban97]). But for g(Σ) ≥ 3 the group H2(MCG(Σ);Z) is generated
by the first MMM-class κ1 (see [Har83]). Thus the class κ1 is also

nonzero in H2(H̃am
δ

ω′(Σ
′);Q). But Ham(Σ, rel D2) is not perfect and

Bowden observed in [Bow11, Theorem 7.2] that for this reason κ1 in

H2(H̃am
δ

ω(Σ, rel D2);Q) has to vanish.
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To prove that s(ι) induces a homology isomorphism in the same range
as Theorem 1.1, we use a modification of the disk resolution technique
([RW16, Section 11.2]).

Definition 2.13. Let [p] denote the set {0, 1, ..., p}. We shall write
Embω(

∐
[p]D

2,Σ) to denote the space of smooth volume preserving em-

beddings of union of p disjoint closed 2-disks with the standard volume
form into the surface Σ. We say two volume preserving embeddings g1

and g2 in Emb(
∐

[p]D
2,Σ) have the same germ if there exists an open

neighborhood U ⊂ D2 around the origin so that g1|∐
[p] U

= g2|∐
[p] U

.

Let
Ep(Σ) := Embg,δω (

∐
[p]

D2,Σ)

be the space of germs of volume preserving embeddings with the discrete
topology

Note that E•(Σ) is a semisimplicial set whose face maps are given by
forgetting the disks (see [RW16, Section 2] for preliminaries on semisim-
plicial spaces). Using isotopy extension theorem for volume preserving
diffeomorphisms (see [Kry71, Theorem 2]), one can see that the group

Diffδω(Σ) in fact acts transitively on Ep(Σ).
Let us fix ep ∈ Ep(Σ) for each p so that it has a representative whose

image does not intersect our fixed embedded disk ι : D2 ↪→ Σ. We use
the same notation for this representative of the germ of embeddings ep.
Let Σ(p) denote the punctured surface obtained by removing the centers
of the disks in ep. Let Σ\ep denote the surface obtained by removing
the interior of the image of ep from Σ.

The action of Sympδω(Σ) on ep defines a map

(2.14) π : Sympδω(Σ)→ Ep(Σ).

The fiber of the map π over ep is Sympδc,ω(Σ(p)) which is compactly
supported volume preserving diffeomorphisms of Σ(p).

Definition 2.15. The disk resolution for BSympδω(Σ) is defined to
be the augmented semisimplicial space

ε : X•(Σ) := E•(Σ)//Sympδω(Σ)→ BSympδω(Σ),

whose face maps are induced by that of E•(Σ).

Consider the map

|ε| : |X•(Σ)| −→ BSympδω(Σ),

induced by ε. By [RW16, Lemma 2.1], the homotopy fiber of this map
is the realization |E•(Σ)|. But as we show below |E•(Σ)| is contractible.
Therefore |ε| is a weak homotopy equivalence.

Lemma 2.16. The realization |E•(Σ)| is weakly contractible.
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Proof. Let f : Sk → |E•(Σ)| represents an element in the k-th ho-
motopy group of |E•(Σ)|. Since |E•(Σ)| is a CW-complex and Sk is
compact, the map f hits finitely many simplices of |E•(Σ)|. Hence,
there exists a point p in Σ and an embedded disk e(D2) around it such
that as an element of E0(Σ) is disjoint from the centers of the germs
of embedded disks in the image of f . Therefore, we have f(Sk) ⊂
|E•(Σ\e(D2))|. Adding the germ of e at p to the list of germs of em-
beddings of disks in Σ\e(D2) gives a semisimplicial null-homotopy for
the inclusion E•(Σ\e(D2)) ↪→ E•(Σ). Hence, f(Sk) can be coned off
inside |E•(Σ)|. q.e.d.

Given that |ε| induces a weak homotopy equivalence, the spectral se-
quence associated to the skeleton filtration of the realization |X•(Σ)|
takes the form

E1
p,q(Σ) = Hq(Xp(Σ);Z) =⇒ Hp+q(BSympδω(Σ);Z).

Proof of Theorem 1.6. We can similarly define a disk resolution X•(Σ,
rel D2) for the open surface Σ\D2. The stabilization map induce a
semisimplicial map between augmented semisimplicial spaces

X•(Σ, rel D2)→ X•(Σ).

Hence we obtain a comparison map between the associated spectral
sequences

Hq(Xp(Σ, rel D2)) Hq(Xp(Σ))

Hp+q(|X•(Σ, rel D2)|) Hp+q(|X•(Σ)|)

Hp+q(BSympδω(Σ, rel D2)) Hp+q(BSympδω(Σ)).

∼= ∼=

ι∗

The action in Definition 2.15, yields a sequence of fibrations

Sympδc,ω(Σ(p))→ Sympδω(Σ)→ Ep(Σ)→ Xp(Σ)→ BSympδω(Σ).

Now by Shapiro’s lemma (which says that for a subgroup H < G, the
homotopy quotient (G/H)//G is weakly equivalent to BH), we have

Xp(Σ) ' BSympδc,ω(Σ(p)),

Xp(Σ, rel D2) ' BSympδc,ω(Σ(p)\D2).

Now note that similar to [Nar17a, Corollary 2.3], the inclusion

Sympδω(Σ\ep, ∂) ↪→ Sympδc,ω(Σ(p)),
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induces a homology isomorphism where Σ\ep has p+ 1 boundary com-
ponents. Therefore, in the commutative diagram

E1
p,q(Σ, rel D2) = Hq(BSympδc,ω(Σ(p)\D2)) Hq(BSympδc,ω(Σ(p))) = E1

p,q(Σ)

Hq(BSympδω(Σ\ep ∪D2, ∂)) Hq(BSympδω(Σ\ep, ∂)),

∼=∼=

the bottom map is an isomorphism for q ≤ (2g(Σ)−2)/3 by Theorem 1.1
for surfaces with boundary. Therefore the top horizontal map between
E1-pages is an isomorphism in the same range which implies that the
map

Hp+q(BSympδω(Σ, rel D2))→ Hp+q(BSympδω(Σ))

is an isomorphism in the same range. q.e.d.

2.4. The stable homology. From now on, for brevity, we shall drop
the symplectic form ω from the subscripts. As we saw in Remark 2.12,
the extended Hamiltonian groups do not exhibit homological stability
when we cap off the last boundary component. Nonetheless one can

describe the group homology of H̃am
δ
(Σ) for a closed surface Σ as in

Theorem 1.7. Before proving Theorem 1.7 which is the main goal of this
section, let us recall from Section 2.2 that BSympδ(Σ, ∂) is homology
isomorphic to the base point component of Mθ(Σ, ∂) and similarly we

showed that BH̃am
δ
(Σ, ∂) is homology isomorphic to Mβ(Σ, ∂).

Therefore similar to [Nar17b, Theorem 2.2], Theorem 1.5 is implied
by the homological stability forMθ(Σ, ∂) andMβ(Σ, ∂), and the main
theorem of Galatius-Madsen-Tillmann-Weiss in [GMTW09]. Hence
by a standard argument, one obtains maps arising from the Pontryagin-
Thom construction

BSympδ(Σ, ∂)→ Ω∞• MTθ,

BH̃am
δ
(Σ, ∂)→ Ω∞• MTβ,

that induce isomorphisms on homology in degrees less than or equal to
(2g(Σ)− 2)/3 and surjections in degrees less than (2g(Σ) + 1)/3. If the
surface Σ is closed, the stable homology of BSympδ(Σ) also coincides

with that of Ω∞• MTθ, but the situation is different for BH̃am
δ
(Σ). One

should note that the moduli space of β-structures exhibit homological
stability even when one caps off the last boundary component. But as
we shall explain below the map

BH̃am
δ
(Σ)→Mβ(Σ),
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is no longer a homology isomorphism even in the stable range. We
need to mod out Mβ(Σ) by a certain subgroup of the homotopy auto-
morphism group of the tangential structure β. Let us first recall the
definition of the homotopy automorphism group of a map.

Definition 2.17. Let π : E → B be a fibration. The topological
monoid hAut(π) is the space of maps f : E → E which are weak
homotopy equivalences and satisfy π ◦ f = f . The monoid structure is
induced by the composition.

We are interested in hAut(β) for the tangential structure β : B̃Γvol
2 →

BSL2(R). Note that hAut(β) acts onMβ(Σ) and on the spectrum MTβ.
To prove Theorem 1.7, we first describe an action of the topological
abelian group BRδ on the spectrum MTβ by realizing it as a submonoid
of hAut(β).

Let E(BRδ) denote the universal BRδ-principal bundle overK(R, 2)'
B(BRδ). Consider the model for B̃Γvol

2 obtained by the homotopy pull-
back diagram

(2.18)

B̃Γvol
2

BΓvol
2

BSL2(R)× E(BRδ) BSL2(R)

BSL2(R)× B(BRδ),

'

(θ,− ◦ (e+ v))

where the composition of the top horizontal maps is β. Using this model

B̃Γvol
2 admits an action of BRδ as the principal BRδ-bundle over BΓvol

2 .
Hence, from the diagram 2.18, we obtain that this BRδ-action fixes the
map β. Therefore, BRδ is a submonoid of hAut(β). So it also acts on
the Thom spectrum MTβ. We want to prove that for a closed surface
Σ, there is a map

BH̃am
δ
(Σ)→ BRδ\\Ω∞MTβ,

that induces homology isomorphism in the stable range onto the con-
nected component that it hits.

Proof of Theorem 1.7. Recall from (2.8) that we have the fibration se-
quence

Bun(TΣ, β∗γ)
g−→ Bun0(TΣ, θ∗γ)

−◦(e+v)−−−−−→ Map0(Σ,K(R, 2)).

Since the group BRδ is a subgroup of hAut(β), it also acts on Bun(TΣ,

β∗γ). Given the model for B̃Γvol
2 in the diagram 2.18, the map g factors
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through the homotopy quotient of this action

Bun(TΣ, β∗γ)

BRδ\\Bun(TΣ, β∗γ).

Bun0(TΣ, θ∗γ).
g

On the other hand, unlike the case of surfaces with nonempty bound-

ary, the map from the mapping space Map0(Σ,K(R, 2)) to BH1
R
δ

is no
longer a weak equivalence. In fact, we have the fibration sequence

K(R, 2)→ Map0(Σ,K(R, 2))
p−→ BH1

R
δ
.

Let X denote the homotopy fiber of the map p ◦ (− ◦ (e + v)), then X
fits into the following diagram

(2.19)

Bun(TΣ, β∗γ) X B(BRδ)

Bun(TΣ, β∗γ) Bun0(TΣ, θ∗γ) Map0(Σ,K(R, 2))

∗ BH1
R
δ

BH1
R
δ
,

∼=
− ◦ (e+ v)

∼=
p

where every horizontal and vertical line is a fibration. Recall that for a
group G and a topological space Y , the group G acts on a model for the
homotopy fiber of a map f : Y → BG. And the total space Y is homo-
topy equivalent to the homotopy quotient G\\hofib(f). Given that BRδ
acts on the space Bun(TΣ, β∗γ) via homotopy automorphisms, from the
top horizontal fibration, we deduce that X ' BRδ\\Bun(TΣ, β∗γ).

McDuff’s theorem 2.4 for a closed surface Σ implies that the map f̃Σ

in the diagram

(2.20)

BHamδ(Σ)

X

BSympδ0(Σ)

Bun0(TΣ, θ∗γ)

BH1
R
δ

BH1
R
δ
,

f̃Σ fΣ

BFlux

∼=
p ◦ (− ◦ (e+ v))

induces a homology isomorphism. As we discussed in the proof of Theo-
rem 1.2, the group Symp(Σ) acts on a model for BHamδ(Σ). Also recall
that Symp(Σ) acts on Bun(TΣ, β∗γ) by acting on the tangent bundle
TΣ and the topological group BRδ acts on Bun(TΣ, β∗γ) via homotopy
automorphisms of β. Therefore, the action of BRδ and the action of
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Symp(Σ) on Bun(TΣ, β∗γ) commute which implies that Symp(Σ) acts
on BRδ\\Bun(TΣ, β∗γ) as a model for X still by acting on TΣ. Hence,

the construction for f̃Σ as in [Nar17a, Section 5.1] makes it Symp(Σ)-
equivariant. So we have a map

BH̃am
δ
(Σ) ' BHamδ(Σ)//Symp(Σ) −→ BRδ\\Bun(TΣ, β∗γ)//Symp(Σ),

that induces a homology isomorphism. Now from [GMTW09], we
know that the stable homology of Mβ(Σ) = Bun(TΣ, β∗γ)//Symp(Σ)
coincides with that of a connected component of Ω∞MTβ. Hence, we
obtain a map

BH̃am
δ
(Σ)→ BRδ\\Ω∞MTβ,

that induces a homology isomorphism in the stable range onto the con-
nected component that it hits. q.e.d.

Proof of Corollary 1.8. Recall that we want to show that for every prime
p, the map induced by capping off the last boundary component

H∗(BH̃am
δ
(Σ, ∂);Fp)→ H∗(BH̃am

δ
(Σ);Fp),

is an isomorphism on homology in the stable range. It is enough to
show the map

Ω∞MTβ → BRδ\\Ω∞MTβ,

induces homology isomorphism with Fp-coefficients. Using a Q-basis for
R and the Kunneth formula, one can show that

(2.21) Hk(K(R, 2);Z) =


Z k = 0

SrQ(R) k = 2r

0 otherwise,

where SrQ(R) is the r-th symmetric power of R as a Q-vector space.

Since SrQ(R) is a uniquely divisible abelian group, the universal coeffi-

cient theorem implies that K(R, 2) has the Fp-homology of the point.
Therefore, the Serre spectral sequence for the fibration

Ω∞MTβ → BRδ\\Ω∞MTβ → K(R, 2),

degenerates and we obtain the desired isomorphism

H∗(Ω
∞MTβ;Fp)

∼=−→ H∗(BRδ\\Ω∞MTβ;Fp).
q.e.d.

The above proof shows that although capping off the last boundary com-

ponent for H̃am
δ
(Σ) does not exhibit homological stability with rational

coefficients, it does with finite coefficients. Thus for closed surfaces Σ
and Σ′, one can use Corollary 1.8 to find a zig-zag of isomorphisms be-

tween H∗(BH̃am
δ
(Σ);Fp) and H∗(BH̃am

δ
(Σ′);Fp) in the stable range,

even if there is no direct map between H̃am
δ
(Σ) and H̃am

δ
(Σ′).
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Moreover, we show below that the rational group homology of

H̃am
δ
(Σ) and H̃am

δ
(Σ′) are isomorphic in the stable range via a dif-

ferent zig-zag of maps.

Proof of Theorem 1.9. First note that although different connected
components of Ω∞MTβ have the same homotopy type, there is no
reason for different connected components of BRδ\\Ω∞MTβ to be ho-
motopy equivalent. Recall that the group of connected components of

Ω∞MTβ maps to the index 2 subgroup of H2(B̃Γvol
2 ;Z) as follows

H0(Ω∞MTβ;Z) = π0(MTβ;Z)→ H2(B̃Γvol
2 ;Z)

∼=−→ Z,

where the last isomorphism is given by the Euler class of the tangential

structure β : B̃Γvol
2 → BSL2(R). Therefore the group of connected

components of Ω∞MTβ is isomorphic to Z by half of the Euler class.
Let Ω∞n MTβ denote the connected component corresponding to n in
the above isomorphism. Therefore, for a surface F , similar to [MT01,
Section 2.4] we have a map

BH̃am
δ
(F, ∂)→ Ω∞MTβ,

that hits the χ(F )
2 -th connected component. Given that the action of

BRδ preserves the connected components, by Theorem 1.7 we have maps

BH̃am
δ
(Σ)→ BRδ\\Ω∞χ(Σ)/2MTβ,

BH̃am
δ
(Σ′)→ BRδ\\Ω∞χ(Σ′)/2MTβ,

that induce homology isomorphisms in the stable range.
Claim: For every n and k, there exists a map

φk : Ω∞n MTβ → Ω∞knMTβ,

that commutes with the action of BRδ and induces an isomorphism on
homology with rational coefficients.

To construct the map φk, write the infinite loop space Ω∞MTβ as
a loop space ΩY . Recall that π0(ΩY ) = Z. By traversing each loop k
times, one obtains a map

φk : ΩY → ΩY,

that induces multiplication by k on π0(ΩY ). This map obviously com-
mutes with the action of BRδ and is invertible after rationalization.
Therefore it induces an isomorphism on homology with rational coeffi-
cients.

Let us explain how to use the claim to finish the proof. We assume
that neither χ(Σ) nor χ(Σ′) is zero. Consider the following diagram of



ON THE MODULI SPACE OF FLAT SYMPLECTIC SURFACE BUNDLES 373

spaces

(2.22)

Ω∞χ(Σ)/2MTβ

Ω∞χ(Σ)χ(Σ′)/4MTβ

Ω∞χ(Σ′)/2MTβ

Ω∞χ(Σ)χ(Σ′)/4MTβ.

φχ(Σ′)/2 φχ(Σ′)/2

=

The vertical maps are isomorphisms on rational homology. Hence after
taking homotopy quotient by BRδ, we obtain the desired zig-zag of maps
that induce isomorphisms on rational homology. q.e.d.

3. Characteristic classes of symplectic flat surface bundles

In this section, we show how one can use Theorem 1.5 to prove non-
triviality or vanishing of characteristic classes for flat surface bundles
whose holonomy groups are area preserving. We call such surface bun-
dles symplectic flat surface bundles. For a surface Σ, the invariants of a
flat Σ-bundle with a transverse volume form live in H∗(BSympδ(Σ);Z).
If the holonomy has vanishing extended flux, then the invariants come

from classes in H∗(BH̃am
δ
(Σ);Z). To construct characteristic classes,

we consider the universal symplectic flat surface bundle

Σ Σ//Sympδ(Σ)

BSympδ(Σ).

π

Here are certain characteristic classes that one can define for such sym-
plectic flat surface bundle:

• MMM-classes. Let Tπ be the vertical tangent bundle which is
2-plane bundle on the total space, tangent to the fibers. Let e(Tπ)
be the Euler class of this bundle. The MMM-classes are defined
to be

κi = π!(e(Tπ)i+1) ∈ H2i(BSympδ(Σ);Z).

In other words, one can forget that the bundle is foliated and just
consider its invariants as a surface bundle. Such classes come from
the cohomology of the mapping class group of Σ.
• Characteristic classes of foliations. There are certain char-

acteristic classes associated to foliations with transverse volume
forms that in our case live in H∗(BΓvol

2 ;R) (see [Hur83] and
[GKF72] for different constructions of such classes). A symplectic
flat surface bundle, in particular provides a codimension 2 foliation
with a transverse volume form on the total space. The pushfor-
ward of such classes live in H∗(BSympδ(Σ);R).
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• Kotschick-Morita classes. Kotschick and Morita used the ex-
tended flux as a twisted class to build interesting invariants of
symplectic flat surface bundles (see [KM07] for details). Their
classes live in the cohomology group H∗(BSympδ(Σ);SkQ(S2R)).

One of the consequence of Theorem 1.5, as we shall see below, is in
fact Kotschick-Morita’s classes are induced from characteristic classes
of foliations.

For every n, let us denote the following composition by en

(3.1) en : Hn(BSympδ(Σ);Z)→ Hn(Ω∞MTθ;Z)→ Hn+2(BΓvol
2 ;Z),

where the first map is induced by a Pontryagin-Thom construction (see
[Nar17b, Section 2.2] for a description of such a map) and the second
map is given by the Thom isomorphism. For homology with rational
coefficients, one can geometrically describe this map as follows. Recall
that from a theorem of Thom, every class in c ∈ Hn(BSympδ(Σ);Q)
can be represented by Σ → Ec → Mc which is a symplectic flat Σ-
bundle over an n-manifold Mc. By definition, this bundle gives rise to a
codimension 2 foliation on Ec with a transverse volume form. One can
easily check that the map that associates the class [Ec] ∈ Hn+2(BΓvol

2 ,Q)
to the class c gives a well-defined map

Hn(BSympδ(Σ);Q)→ Hn+2(BΓvol
2 ,Q).

Let Σ be a surface with boundary, we can define a similar map for

BSympδ(Σ, ∂) and BH̃am
δ
(Σ, ∂) and in the case of extended Hamilto-

nians, we obtain a map

hn : Hn(BH̃am
δ
(Σ, ∂);Z)→ Hn+2(B̃Γvol

2 ,Z).

Proposition 3.2. For a surface Σ with boundary, the maps en and
hn are rationally surjective for 0 < n ≤ 2g(Σ)/3.

Proof. We prove surjectivity for en and the proof for hn is similar.
From Theorem 1.5, we know that for n ≤ 2g(Σ)/3, there is a surjective
map

Hn(BSympδ(Σ, ∂);Q) Hn(Ω∞• MTθ;Q),

where Ω∞• MTθ means the base point component of Ω∞MTθ. The map
induced by the suspension map Ω∞MTθ → MTθ followed by Thom
isomorphism gives the map

Hn(Ω∞• MTθ;Q)→ Hn(MTθ;Q)
∼=−→ Hn+2(BΓvol

2 ;Q).



ON THE MODULI SPACE OF FLAT SYMPLECTIC SURFACE BUNDLES 375

Hence, it is enough to prove the above map is surjective. Consider the
commutative diagram

πn(Ω∞• MTθ)⊗Q πn(MTθ)⊗Q

Hn(Ω∞• MTθ;Q) Hn(MTθ;Q),

where the horizontal maps are induced by the suspension map and the
vertical maps are induced by the Hurewicz map. The top horizontal
map is an isomorphism by the definition of the homotopy groups of a
spectra and the right vertical map is also an isomorphism because of
the rational Hurewicz theorem. Therefore, the bottom horizontal map,
is surjective. q.e.d.

Hence, nontrivial classes in H∗(BΓvol
2 ;Q) and H∗(B̃Γvol

2 ;Q) give rise

to nontrivial classes in H∗(BSympδ(Σ, ∂);Q) and H∗(BH̃am
δ
(Σ, ∂);Q)

respectively. We investigate these two cases separately.

3.1. Characteristic classes of flat surface bundles whose holo-
nomy groups lie in extended Hamiltonian. Recall from the intro-
duction that we have a short exact sequence

(3.3) 1→ Ham(Σ, ∂)→ H̃am(Σ, ∂)→ MCG(Σ, ∂)→ 1.

There is a surjective homomorphism called Calabi homomorphism

Cal : Hamδ(Σ, ∂)→ R.

Banyaga [Ban78] proved that the kernel of this homomorphism is per-
fect. Therefore, we have H1(Hamδ(Σ, ∂);Z) ∼= R.

As Bowden observed Cal lives in H1(Hamδ(Σ, ∂);R)MCG(Σ,∂). He in
[Bow11, Theorem 7.2] proved that in the cohomology Hochschild-Serre
spectral sequence for the short exact sequence 3.3, the differential

E0,1
2 = H1(Hamδ(Σ, ∂);R)MCG(Σ,∂) d2−→ E2,0

2 = H2(MCG(Σ, ∂);R) ∼= R,

is nontrivial by showing that d2(Cal) is nonzero. Hence, dually in the
homology Hochschild-Serre spectral sequence with rational coefficients,
we obtain a map

E2
2,0 = H2(MCG(Σ, ∂);Q) ∼= Q d2−→ E2

0,1 = H1(Hamδ(Σ, ∂);Q) ∼= R,

that is injective. Since the mapping class group MCG(Σ, ∂) is perfect
([Pow78] proves that the first homology of the mapping class group
of a closed surface of genus larger than two is trivial and the Harer
homological stability [Har85] implies that the first homology is stable
as we cap off the boundary components if the genus is larger than two)
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for g(Σ) ≥ 3, from the homology Hochschild-Serre spectral sequence,
we deduce

H1(BH̃am
δ
(Σ, ∂);Q) ∼= R/Q

if the genus is larger than 2.

Proposition 3.4. For k ≤ 2g(Σ)/3 and g ≥ 3, there is a surjective
map

Hk(BH̃am
δ
(Σ, ∂);Q)

∧k
Q(R/Q).

Proof. Again by Theorem 1.2, we know that in the same range, there
is a surjective map

Hk(BH̃am
δ
(Σ, ∂);Q) Hk(Ω

∞
• MTβ;Q),

where Ω∞• MTβ denotes the base point component of Ω∞MTβ. On
the other hand, H∗(Ω

∞
• MTβ;Q) is a Hopf algebra over Q and since

H1(Ω∞• MTβ;Q) ∼= R/Q consists of primitive elements, we have a sur-
jective map

Hk(Ω
∞
• MTβ;Q)

∧k
Q(R/Q),

where
∧k

Q(R/Q) is the k-th exterior power of R/Q as a vector space
over Q. q.e.d.

Remark 3.5. For a closed surface, the situation is different because
Banyaga’s theorem in this case implies that Hamδ(Σ) is perfect. There-

fore for g(Σ) ≥ 3, the group H̃am
δ
(Σ) is also perfect.

Proof of Theorem 1.13. We want to show that in the stable range, all

the MMM-classes κi ∈ H2i(BH̃am
δ
(Σ, ∂);R) vanish. By Theorem 1.2, it

is enough to show that κi ∈ H2i(Ω∞• MTβ;R) vanishes. Let us first recall
how the class κi is defined as a class in H2i(Ω∞• MTβ). The tangential
structure β is a map

β : B̃Γvol
2 → BSL2(R).

Let e ∈ H2(BSL2(R);R) be the Euler class. The class κi is given by the
composition of the following maps

H2i(Ω
∞
• MTβ;R)

σ∗−→H2i(MTβ;R)
Thom iso−−−−−−→H2i+2(B̃Γvol

2 ;R)
β∗(ei+1)−−−−−→R,

where the first map is induced by the suspension map. Hence, to prove

the theorem it is enough to show that β∗(ei+1) vanishes in H2i+2(B̃Γvol
2 ;R)
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for i > 0. Recall we have commutative diagram of tangential structures

B̃Γvol
2

BΓvol
2

BSL2(R).

α

β
θ

With abuse of notation, we already denoted the pullback of the Euler

class θ∗(e) ∈ H2(BΓvol
2 ;R) by e. Since, B̃Γvol

2 is the homotopy fiber of
the map

BΓvol
2

e+v−−→ K(R, 2),

the class β∗(e) is equal to −α∗(v) in H2(B̃Γvol
2 ;R). Note that since v is

the universal transverse volume form, we have v2 = 0 in H2(BΓvol
2 ;R).

Therefore β∗(e2) = 0 in H4(B̃Γvol
2 ;R) which concludes the proof. q.e.d.

Remark 3.6. For a closed surface Σ, Bowden in his thesis ([Bow10])
observed that the Bott vanishing theorem for foliations with transverse
volume form which in this case says e2v = 0 ∈ H6(BΓvol

2 ;R), implies

κi for i > 1 and κ2
1 vanish in H∗(BH̃am

δ
(Σ);R). It is an immediate

consequence of the perfectness of Hamδ(Σ) that κ1 in fact is nonzero in

H2(BH̃am
δ
(Σ);R).

3.2. Non-vanishing results for classes in H∗(BSympδ(Σ, ∂);Z).
Let us first recall what we know about MMM-classes for symplectic
flat surface bundles. Morita observed in [Mor87] that the Bott vanish-

ing theorem implies that κi for i > 2 vanishes in H2i(BDiffδ(Σ, ∂);Q).
Hence it also vanishes in H2i(BSympδ(Σ, ∂);Q). Kotschick and Morita
in [KM05] however proved that κ1 ∈ H2(BSympδ(Σ, ∂);Q) is nonzero.
One can also use Theorem 1.5 to prove their result about κ1 (see Corol-
lary 3.12 below).

With integer coefficients, however, the author proved in [Nar17b,
Corollary 2.6] that all the MMM-classes in the stable range are nonzero

in H∗(BDiffδ(Σ, ∂);Z). Exactly the same idea works to show that stable
MMM-classes are also nonzero in H∗(BSympδ(Σ, ∂);Z). Here, we give
a sketch of the argument and refer the reader to [Nar17b, Theorem
2.4] for further details.

Proof sketch of Theorem 1.12. It is enough to prove that the quotient
map

ι : Sympδ(Σ, ∂)→ MCG(Σ, ∂),

induces an injective map on cohomology with integer coefficients

ι∗ : H∗(BMCG(Σ, ∂);Z) ↪→ H∗(BSympδ(Σ, ∂);Z),



378 S. NARIMAN

in the stable range. Since the homology of the mapping class group
is finitely generated in the stable range by the Madsen-Weiss theorem,
Corollary 1 in [Mil83] implies that the injection of ι∗ is equivalent to
showing that for every prime p, the map

H∗(BMCG(Σ, ∂);Fp) ↪→ H∗(BSympδ(Σ, ∂);Fp),
is injective in the stable range. Therefore, by the Madsen-Weiss theorem
and Theorem 1.5, it is enough to show the map

H∗(Ω∞• MTSO(2);Fp)→ H∗(Ω∞• MTθ;Fp),
is injective, where MTSO(2) is the Madsen-Tillmann spectrum
([MT01]). To recall a definition of this spectrum, let γ denote the
tautological 2-plane bundle over BSL2(R). The Madsen-Tillmann spec-
trum can be described as the Thom spectrum of −γ.

Note that the rotation matrices is a subgroup of the group of endo-
morphisms of the origin in the groupoid Γvol

2 . Since endomorphisms of
each object in Γvol

2 is a discrete group, we obtain the following maps

BS1δ η−→ BΓvol
2

θ−→ BSL2(R).

Using [Mil83, Lemma 3], one can see that θ ◦ η induces homology
isomorphisms with Fp-coefficients. The map θ ◦ η induces a tangential
structure and let MT(θ ◦ η) denote the Thom spectrum of (θ ◦ η)∗(−γ).
Thus the map θ◦η induces a spectrum map from MT(θ◦η) to MTSO(2).
Given that θ ◦ η induces Fp-cohomology isomorphisms, the composition
map

H∗(Ω∞• MTSO(2);Fp)→ H∗(Ω∞• MTθ;Fp)→ H∗(Ω∞• MT(θ ◦ η);Fp),
is an isomorphism. Hence, the map

H∗(Ω∞• MTSO(2);Fp)→ H∗(Ω∞• MTθ;Fp),
is injective. q.e.d.

To study cohomology classes in H∗(BSympδ(Σ, ∂);Z) other than MMM-
classes, we need to find nontrivial classes in H∗(BΓvol

2 ;Z) other than
powers of the Euler class. Unfortunately, we still do not know if any of
the exotic classes (e.g. Godbillon-Vey classes or Gelfand-Kalinin-Fuks
classes [GKF72]) for foliations with transverse volume form are nontriv-
ial. Hurder in [Hur83] proved that for such foliations with the codimen-
sion larger than 2 some of the exotic classes are nontrivial. Nonetheless,
as we shall see below, the fact that the volume form v ∈ H2(BΓvol

2 ;R)
is nontrivial provides us with a plethora of nontrivial invariants for the
symplectic flat surface bundles.

Recall that the maps en in 3.1 are defined integrally. We write ep2
for the map induced on homology with Z(p)-coefficients i.e. integers
localized at the prime p. The statement of Theorem 1.16 is implied by
the first part of the following theorem.
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Theorem 3.7. (a) For p > 3, the map ep2 is an isomorphism if
g(Σ) ≥ 4 and epimorphism if g(Σ) ≥ 3. (b) The map e3 is an isomor-
phism with rational coefficients if g(Σ) ≥ 6.

Proof. (a) Given the Thom isomorphism H∗(MTθ;Z) ∼= H∗+2(BΓvol
2 ;

Z) and Theorem 1.5, it is enough to show that the map induced by the
suspension map

H2(Ω∞• MTθ;Z(p))→ H2(MTθ;Z(p)),

is an isomorphism for p > 3. Since Sympδ(Σ, ∂) is perfect ([KM05, Sec-
tion 2.1]) for g(Σ) ≥ 3, the first homology of Ω∞• MTθ is zero. Therefore
by the Hurewicz theorem, we have the isomorphism

π2(Ω∞• MTθ)
∼=−→ H2(Ω∞• MTθ;Z).

Recall that we have the following commutative diagram

π2(Ω∞• MTθ)(p) π2(MTθ)(p)

H2(Ω∞• MTθ;Z(p)) H2(MTθ;Z(p)).

∼=

∼= h

Hence, to show that the bottom horizontal map is an isomorphism,
it suffices to prove that the right vertical map h which is a Hurewicz
map is an isomorphism. Note that h is induced by the unit map from
the localized sphere spectrum S(p) to the Eilenberg-Maclane spectrum
HZ(p). We shall write this unit map as

e : S(p) → HZ(p).

Let F(p) denote the homotopy fiber of e. It is well-known (see e.g.
[Hat04, Theorem 5.29]) that the first nontrivial cohomology of HZ(p)

in positive degrees appears in degree 2p−1 and it is a p-torsion. Hence,
the spectral sequence implies the first nontrivial cohomology group of
F(p) in positive degrees appears in degree 2p − 2 and is a p-torsion.
Therefore, by universal coefficient theorem the first nontrivial homology
group of F(p) in positive degrees appears in degree 2p − 3. Thus, the
map e is (2p− 4)-connected. Hence, for 2p− 4 > 2, the map h

h : π2(MTθ)(p) → H2(MTθ;Z(p)),

induces an isomorphism.
(b) To prove that the map

e3 : H3(BSympδ(Σ, ∂);Q)→ H5(BΓvol
2 ;Q),

is an isomorphism for g(Σ) ≥ 6, recall it suffices to show that the sus-
pension map

H3(Ω∞• MTθ;Q)→ H3(MTθ;Q),
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is an isomorphism. To do so, consider the commutative diagram

π3(Ω∞• MTθ)⊗Q π3(MTθ)⊗Q

H3(Ω∞• MTθ;Q) H3(MTθ;Q).

∼=

∼=

The left vertical map is surjective by the rational Hurewicz theorem
because

H1(Ω∞• MTθ;Z) = 0.

The top horizontal map is an isomorphism by definition and the right
vertical map is an isomorphism again by the rational Hurewicz theorem.
Hence, the bottom horizontal map has to be an isomorphism. q.e.d.

Remark 3.8. It seems possible to use the Adams spectral sequence
to analyze what happens in part (a) at the primes 2 and 3, but we have
not pursued this point.

In particular the part (a) of the theorem implies that

H2(BSympδ(Σ, ∂);Q) ∼= H4(BΓvol
2 ;Q),

for g(Σ) ≥ 4. To find new nontrivial invariants of flat symplectic surface
bundles, we shall prove H4(BΓvol

2 ;Q) is highly nontrivial as a Q-vector
space.

We define three classes in the cohomology of BΓvol
2 with different

coefficients. The first is induced by the class e2 as a cohomology class
in H4(BΓvol

2 ;Q) which gives rise to the first MMM-class. The second
class is ev as a real cohomogy class in H4(BΓvol

2 ;R). And the third is a
secondary class induced by the vanishing of v2 = 0 in H4(BΓvol

2 ;R) as
follows. Consider the map v : BΓvol

2 → K(R, 2). The class v induces a
map

ṽ2 : H4(BΓvol
2 ;Q)→ H4(K(R, 2);Q) ∼= S2

QR.
The class v2 ∈ H4(BΓvol

2 ;R) can be described as follows

m ◦ ṽ2 : H4(BΓvol
2 ;Q)→ S2

QR
m−→ R,

where m is the natural map given by multiplication. Therefore, ṽ2 maps
H4(BΓvol

2 ;Q) onto Ker(m).

Theorem 3.9. The map

(e2, ev, ṽ2) : H4(BΓvol
2 ;Q) Q⊕ R⊕Ker(m) ∼= Q⊕ S2

QR,

is surjective.

Proof. Consider the map

θ × v : BΓvol
2 → BSL2(R)×K(R, 2),
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and let BΓvol
2 denote the homotopy fiber of the map θ × v. We want to

determine the image of the map induced by θ×v on the fourth homology

groups. McDuff proved (see [McD87, Theorem 6.1]) that BΓvol
2 is 2-

connected and as she observed in [McD82, Corollary 1.3], the result of
Banyaga in [Ban78] implies that

(3.10) π3(BΓvol
2 ) ∼= R.

The geometric meaning of the space BΓvol
2 , by the general theory of

Haefliger structures in [Hae71], is that it classifies foliated trivialized
2-plane bundle with a transverse volume form whose volume form is
exact.

Let x ∈ H2(K(R, 2);R) = Hom(R,R) be the fundamental class given
by the identity. Using the calculation in 2.21, one can see that x2 ∈
H4(K(R, 2);R) = Hom(S2

QR,R) corresponds to the natural map

m : S2
QR→ R.

On the other hand the pullback of x to BΓvol
2 is the volume form v,

hence v2 = 0. Since the map θ × v is 3-connected ([McD87, Theorem
6.1]), the space BΓvol

2 is simply connected. Therefore, in the cohomology
Serre spectral sequence for the fibration

(3.11) BΓvol
2 → BΓvol

2 → BSL2(R)×K(R, 2),

the class x2 is not hit by d2 and d3. Hence, there should be a class in

a ∈ H3(BΓvol
2 ;R) = Hom(R,R) that transgresses to x2 i.e. d4(a) = x2.

In fact a in [McD82, Lemma 4] is constructed by differential forms on
foliated trivialized 2-plane bundle with a transverse volume form whose
volume form is exact. Therefore a is an R-linear map in Hom(R,R) and
by scaling the isomorphism 3.10, we can assume that a corresponds to
the identity in Hom(R,R).

Now the homology Serre spectral sequence for the fibration 3.11 looks
like Figure 1. Since the transgression d4 in the cohomology spectral
sequence is induced by the differential d4 in the homology spectral se-
quence, we deduce that

d4 : Q⊕ R⊕ S2
QR

proj−−→ S2
QR

m−→ R,

where the first map is the projection to the third factor. Hence, the
kernel of d4 is

Ker(d4) = Q⊕ R⊕Ker(m) ∼= Q⊕ S2
QR.
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Q
0

0
1

Q⊕ R
2

0
3

Q⊕ R⊕ S2
QR

4
0
5 p

01

0

02

R3

H4(BΓvol
2 )4

5

q

0 0 0 0 0

0 R⊕ (R⊗ R)

0

0 0 0 0 0

d4

d2

Figure 1. Second page of the homology spectral sequence.

Therefore, we have

H2(BΓvol
2 ;Q) ∼= Q⊕ R,

H3(BΓvol
2 ;Q) ∼= 0,

0→ Coker(d2)→ H4(BΓvol
2 ;Q)→ Q⊕ S2

QR→ 0.

q.e.d.

Corollary 3.12. For g(Σ) ≥ 3, there is a surjective map

H2(BSympδ(Σ, ∂);Q) Q⊕ S2
QR,

and for g(Σ) ≥ 4, we have a short exact sequence

0→ Coker(d2)→ H2(BSympδ(Σ, ∂);Q)→ Q⊕ S2
QR→ 0.

Hence as a corollary, similar to Proposition 3.4 we obtain the main
theorem of Kotschick and Morita in [KM07]:

Corollary 3.13. There is a surjective map

H2k(BSympδ(Σ, ∂);Q) Q⊕ S2
QR⊕ · · · ⊕ Sk(S2

QR),

for g(Σ) ≥ 3k.

Remark 3.14. Note that the above invariants can be defined on
H2k(BSympδ(Σ);Q) when the surface Σ is a closed surface. Therefore
Corollary 3.13 also holds for closed surfaces.
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3.3. Relation to the Kotschick-Morita classes. Note that all the
nontrivial invariants constructed in Corollary 3.13, are induced from the
map

H2(BSympδ(Σ);Q)→ Q⊕ S2
QR.

Recall that the first Q summand is induced by κ1. There are two ways
to describe the map to the second factor. One way is what Kotschick
and Morita did in [KM07, Section 1] which is roughly as follows. The
extended flux homomorphism gives rise to a twisted cohomology class

[F̃lux] ∈ H1(BSympδ(Σg);H
1(Σg;R)).

Then the square of this class lives in

[F̃lux]2 ∈ H2(BSympδ(Σg);H
1(Σg;R)⊗H1(Σg;R)).

Now one can use the intersection from ι : H1
R ⊗ H1

R → R to obtain a
class

(3.15) α ∈ H2(Sympδ(Σg);R).

As explained in [KM07, Definition 1], one can refine the intersection
form ι by the discontinuous cup product ι̃ so that

ι : H1
R ⊗H1

R
ι̃−→ S2

QR
m−→ R.

Therefore, the class α is induced from a class α̃∈H2(BSympδ(Σg);S
2
QR).

The class α̃ induces a map

α̃ : H2(BSympδ(Σ);Q)→ S2
QR.

The way we would like to think about these S2
QR-valued characteristic

classes is to describe their evaluation on a class in a ∈ H2(BSympδ(Σ);
Q). Recall that we can represent the class a as the image of a map
Σ′ → BSympδ(Σ) for some surface Σ′. Therefore the class a gives rise
to a symplectic flat surface bundle Σ→ E → Σ′. By the general theory
of Haefliger spaces, the foliation on the total space E gives rise to a
map f : E → BΓvol

2 that is well-defined up to homotopy. Consider the
diagram

Σ E

Σ′.

BΓvol
2 K(R, 2) K(R, 4)

π

f e+ v Sq2

To obtain a number associated to the fundamental class of E, we take
the induced map on homology by (e+ v)2 ◦ f :

H4(E;Q)
f∗−→ H4(BΓvol

2 ;Q)
(e+v)∗−−−−→ S2

QR
m−→ R.
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Hence, we can associate to a the number ((e+v)2◦f)∗([E]) ∈ R. We can
also refine this class by assigning to a the element ((e+ v) ◦ f)∗([E]) ∈
S2
QR.
One can see that these two ways of constructing invariants of sym-

plectic flat surface bundles agree up to sign using an observation due to
Kawazumi ([KM07, Section 7]). He noted that the contraction formula
([KM, Theorem 6.2]) implies

π!((e+ v)2) = −α.

Therefore we have ((e+ v)2 ◦ f)∗([E]) = −α(a). In fact one can use the
contraction formula with more care to show that

((e+ v) ◦ f)∗([E]) = −α̃ ∈ S2
QR.

So in order to relate the class α̃ to our calculation in Theorem 3.9,
we need to relate the map

(e+ v)∗ : H4(BΓvol
2 ;Q)→ S2

QR,

to the map we obtained in the spectral sequence in Figure 1

H4(BΓvol
2 ;Q)→ E4,0

∞ = Ker(d4) ∼= Q⊕ R⊕Ker(m : S2
QR→ R).

Recall that this map in the spectral sequence is induced by the map

BΓvol
2

(e,v)−−−→ K(Q, 2)×K(R, 2).

Therefore, by factoring the map (e+ v) as follows

BΓvol
2

(e,v)−−−→ K(Q, 2)×K(R, 2)
sum−−→ K(R, 2),

we deduce that (e+ v)∗ is given by the composition

H4(BΓvol
2 ;Q)→ E4,0

∞ → R⊕Ker(m : S2
QR→ R) ∼= S2

QR.

Now given the relation between these two points of view, we prove
Theorem 1.15.

Proof of Theorem 1.15. Recall from the proof of Theorem 1.7, we can
consider the following composition of maps

BH̃am
δ
(Σ) ' BHamδ(Σ)//Symp(Σ) −→ BRδ\\Bun(TΣ, β∗γ)//Symp(Σ)→ BBRδ ' K(R, 2),

which gives rise to a cohomology class a ∈ H2(BH̃am
δ
(Σ);R). There-

fore, we have a homotopy commutative diagram

(3.16)

BH̃am
δ
(Σ, rel D2)

Ω∞MTβ

BH̃am
δ
(Σ)

BRδ\\Ω∞MTβ

K(R, 2)

K(R, 2),

a

=
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where the two first vertical maps are homology isomorphisms in the
stable range. Since the bottom row is a fibration sequence, the class

a ∈ H2(BH̃am
δ
(Σ, rel D2);R) vanishes for g(Σ) ≥ 3. Therefore, there

exists a map

BH̃am
δ
(Σ, rel D2)→ hofib(a),

that induces a homology isomorphism in the stable range. Hence, we
need to show that a = κ1

4−4g(Σ) .

Consider the universal Σ-bundle

(3.17)

Σ Σ//H̃am
δ
(Σ)

BH̃am
δ
(Σ),

π

whose holonomy lies in H̃am
δ
(Σ). With abuse of notation, let the

class e + v ∈ H2(Σ//H̃am
δ
(Σ);R) also denote the sum of the Euler

class of the vertical tangent bundle and the transverse volume form.
Note that the Serre spectral sequence calculating the cohomology of

H∗(Σ//H̃am
δ
(Σ);R) collapses (see [Mor87, Proposition 3.1]). There-

fore we have

H2(Σ//H̃am
δ
(Σ);R) ∼= E2,0

2 ⊕ E1,1
2 ⊕ E0,2

2 .

The projection of e+v to E0,2
2 is zero since the volume is normalized and

the restriction of e+ v to each fiber is an exact form. The projection of
e+ v to E1,1

2 is the extended Flux by [KM05, Lemma 8] and therefore
by definition of the extended Hamiltonians, the projection of e + v to
E1,1

2 is zero. As we shall show in the claim below, we have π∗(a) =

e + v. Hence, a is the unique cohomology class in H2(BH̃am
δ
(Σ);R)

that π∗(a) = e+ v.

Claim. The class π∗(a) is equal to e+ v ∈ H2(Σ//H̃am
δ
(Σ);R).

Proof of the claim. Since on the total space Σ//H̃am
δ
(Σ) there exists a

codimension 2 Haefliger structure with a transverse volume form, we
obtain a bundle map

Tπ

Σ//H̃am
δ
(Σ) BΓvol

2 ,

θ∗(γ)

where Tπ is the vertical tangent bundle for the surface bundle (3.17).
Hence to prove the claim, it is enough to show that the following diagram
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is homotopy commutative

Σ//H̃am
δ
(Σ)

BH̃am
δ
(Σ) K(R, 2).

BΓvol
2

π

a

e+ v

To do so, we first give a different description of the map Σ//H̃am
δ
(Σ)→

K(R, 2) induced by e + v. Recall from (2.6), that our point-set model

for BH̃am
δ
(Σ) is BHamδ(Σ)//Symp(Σ). Also recall from the diagram

2.20 that there is a Symp(Σ)-equivariant map from BHamδ(Σ) to X
which is a homology isomorphism. Hence, we have a map between the
Σ-bundles

Σ//H̃am
δ
(Σ)

BH̃am
δ
(Σ) X//Symp(Σ),

(X × Σ)//Symp(Σ)

π π′

where the horizontal maps induce homology isomorphisms. Thus, it is
enough to prove the claim for the Σ-bundle π′. From (2.9), we have a
homotopy commutative diagram with Symp(Σ)-equivariant maps

X K(R, 2)

Bun0(TΣ, θ∗γ) Map0(Σ,K(R, 2)).

g

− ◦ (e+ v)

Therefore, the Symp(Σ)-equivariant map induced by e + v from X
to Map0(Σ,K(R, 2)) factors through constant maps that are identified
with K(R, 2). Hence, we have a commutative diagram with Symp(Σ)-
equivariant maps

X × Σ Map0(Σ,K(R, 2))× Σ

X K(R, 2),

g ◦ (e+ v)× id

where the left vertical map is projection and the right vertical map is
the evaluation map. Since the action of Symp(Σ) on K(R, 2) is trivial,
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we obtain the homotopy commutative diagram

(X × Σ)//Symp(Σ) (Map0(Σ,K(R, 2))× Σ)//Symp(Σ)

X//Symp(Σ) K(R, 2).

g ◦ (e+ v)× id

π′

a

So the π′ ∗(a) is the same as the class induced by e+v on the total space
of the surface bundle π′. q.e.d.

Therefore, we have

π!(e(e+ v)) = π!(eπ
∗(a)),

κ1 + π!(ev) = (2− 2g)a.

From Kawazumi’s argument ([KM07, Section 7]) we have π!(ev) =
−(κ1 + α)/2 where α is the class defined in (3.15). By definition of

the class α, it is zero in H2(BH̃am
δ
(Σ);R) because it is defined by the

square of the extended flux which vanishes on the extended Hamiltonian
group. Therefore, we obtain

a =
κ1 + π!(ev)

2− 2g(Σ)
=

κ1

4− 4g(Σ)
.

q.e.d.

3.4. Discussion about higher dimensions. Since the method of
Kotschick and Morita heavily relies on the theory of surfaces, it is not
obvious how to generalize their calculations to higher dimensions. One
possible generalization though of our method is to consider the volume
preserving diffeomorphisms of high dimensional analogue of surfaces.
So let (Wg,1, ω) denote a pair of a manifold diffeomorphic to #gS

n ×
Sn\intD2n and a volume form ω. Let Diffδω(Wg,1, ∂) denote the discrete
ω-preserving compactly supported diffeomorphisms of Wg,1\∂Wg,1.

To introduce the relevant tangential structure in this case, let
BSL2n(R)〈n〉 and BΓvol

2n 〈n〉 be the n-connected covers of BSL2n(R) and
BΓvol

2n respectively. Given that θ is a 2n-connected map [Hae71], we
have the following homotopy pullback diagram

BΓvol
2n

BSL2n(R).

BΓvol
2n 〈n〉

BSL2n(R)〈n〉

θ〈n〉 θ

ν

ν〈n〉

Definition 3.18. Let γ be the tautological bundle over BSL2n(R).
Let MTθ〈n〉 denote the Thom spectrum of (θ ◦ ν)∗(−γ).
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Using the same idea as Section 2 and [GRW17, Theorem 1.4], one

can show that H∗(BDiffδω(Wg,1, ∂);Z) is independent of g as long as
∗ ≤ (g − 3)/2. Moreover, there is a map

BDiffδω(Wg,1, ∂)→ Ω∞MTθ〈n〉,

that induces a homology isomorphism in the stable range onto the con-
nected component that it hits. Similar to Proposition 3.2, we obtain a
surjective map

H∗(BDiffδω(Wg,1, ∂);Q) H∗+2n(BΓvol
2n 〈n〉;Q),

for ∗ ≤ (g − 3)/2.
In order to detect nontrivial classes in H∗(BΓvol

2n 〈n〉;Q) we can use a

fiber sequence similar to 3.11. Let BΓvol
2n denote the homotopy fiber of

BΓvol
2n

(θ,v)−−−→ BSL2n(R)×K(R, 2n).

McDuff showed that BΓvol
2n is 2n-connected. Hence, we have a fiber

sequence

(3.19) BΓvol
2n → BΓvol

2n 〈n〉 → BSL2n(R)〈n〉 ×K(R, 2n).

Similar to [McD82, Lemma 4], there is a differential form

a ∈ H4n−1(BΓvol
2n ;R),

that transgresses to x2 where x ∈ H2n(K(R, 2n);R) is the fundamental
class. Therefore, in the homology spectral sequence for the fibration
3.19, we have a map

S2
QR ↪→ E4n,0

4n
d4n−−→ H4n−1(BΓvol

2n ;Q),

so that the map

S2
QR→ H4n−1(BΓvol

2n ;Q)
a−→ R,

is the multiplication map m : S2
QR→ R, but it is not clear to the author

whether Ker(m) ⊂ Ker(d4n).

Problem 3.20. Prove or disprove that the map

H2n(BDiffδω(Wg,1, ∂);Q)→ Ker(m : S2
QR→ R),

is surjective for n ≤ (g − 3)/4.
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volume 16, pages 529–540. Société mathématique de France, 1983.
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