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LIMITING BEHAVIOR OF SEQUENCES OF PROPERLY
EMBEDDED MINIMAL DISKS

David Hoffman & Brian White

Abstract

We develop a theory of “minimal θ-graphs” and characterize
the behavior of limit laminations of such surfaces, including an
understanding of their limit leaves and their curvature blow-up
sets. We use this to prove that it is possible to realize families of
catenoids in euclidean space as limit leaves of sequences of embed-
ded minimal disks, even when there is no curvature blow-up. Our
methods work in a more general Riemannian setting, including
hyperbolic space. This allows us to establish the existence of a
complete, simply connected, minimal surface in hyperbolic space
that is not properly embedded.

1. Introduction

Let Dn be a sequence of properly embedded minimal disks in an open
subset W of a Riemannian 3-manifold. Then there is a subsequence
Dn(i) such that the curvatures of the Dn(i) blow up at the points of
closed subsetK ⊂W (possibly empty), and such that theDn(i) converge
smoothly away from K to a minimal lamination L of W \K. One would
like to know what closed sets K and what laminations L can arise in
this way. Colding and Minicozzi proved very strong theorems about
such K and L. In particular, they showed (under mild hypotheses on
the ambient metric) that K is contained in a rectifiable curve, and that
for each point p in K, there is a unique leaf L of the lamination such
that p ∈ L and such that L ∪ {p} is smooth. (See [6, Section I.1]. See
also [6, Theorem 0.1] for a closely related result.) Later it was shown
that K is contained in a C1 curve, and that L∪{p} is perpendicular to
that curve. See [17] and [24].

In this paper, we give a more detailed description of the lamination
and of the singular set for a certain rich class of minimal disks. In
particular, we prove
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Theorem 1.1. Let B ⊂ R3 be the unit ball and let Z ⊂ R3 be the
vertical coordinate axis. Suppose Dn is a sequence of properly embedded
minimal disks in the ball B with the property that each disk D = Dn

satisfies

B ∩ Z ⊂ D, and the images of D \ Z under rotations about Z(1)

foliate B \ Z.

Then there is a subsequence Dn(i), a relatively closed subset K of B∩Z,
and a minimal lamination L of B \K such that

1. The curvatures of the Dn(i) blow-up precisely at the points of K.
2. The Dn(i) converge smoothly away from K to the lamination L.
3. The limit leaves of L are catenoids and rotationally invariant

disks.
4. The curvature blow-up set K is precisely the set of centers of the

disks in statement 3.
5. If L is a non-limit leaf of L, then L \ Z and its rotations around
Z foliate an open subset of B \ Z. In fact, each component of
the complement of the limit leaves of L in B \Z is foliated by the
rotations of such a non-limit leaf.

It is not hard to produce examples of disks Dn satisfying condition (1)
of Theorem 1.1. In particular, let Cn ⊂ ∂B be a smooth, simple closed
curve that intersects each horizontal circle in ∂B in exactly two diamet-
rically opposite points. Then there is unique embedded minimal disk
Dn such that ∂Dn = Cn and such that Z ∩B ⊂ Dn. Furthermore, it is
easy to show that the disk satisfies condition (1) of Theorem 1.1. See
Section 3 below.

By choosing suitable curves Cn and taking the corresponding disks
Dn, we can produce interesting examples of blow-up sets K and limit
laminations L. For example, letM be the lamination of B consisting of
all the area-minimizing catenoids in B with axis Z that are symmetric
about the xy-plane, together with all horizontal disks that are disjoint
from those catenoids (See Figure 1.) We show that there is a sequence
Dn of properly embedded minimal disks in B with a limit lamination L
(from Theorem 1.1) whose rotationally invariant leaves are precisely the
surfaces in M and that has exactly one leaf that is not rotationally in-
variant. (That additional leaf contains a segment of Z.) More generally,
if M∗ is essentially any symmetric sublamination of M, we show that
there is a sequence Dn such that the rotationally invariant leaves of the
limit lamination are precisely the surfaces in M∗. (See Theorem 6.3.)
Of course by Statement 4 of Theorem 1.1, the curvatures of the Dn(i)

blow-up precisely at the centers of the disks in M∗.
The results stated above remain true if the Euclidean metric on B is

replaced by any suitable rotationally symmetric Riemannian metric. In
particular, they remain true for the Poincaré metric on B. We show that
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Figure 1. Limit Leaves M in the unit ball B. De-
picted here in cross section is the lamination M of B
consisting of all area-minimizing catenoids with axis Z
and symmetry plane {z = 0}, together with all horizon-
tal disks that are disjoint from the catenoids. Essentially
any symmetric sublamination M∗ of M can be realized
as the set of limit leaves of a limit lamination of a se-
quence of properly embedded minimal disks in B. This
is proved in Theorem 6.3.

many kinds of limit laminations and blow-up sets occur for sequences of
disks that are properly embedded in all of hyperbolic space. This is in
very sharp contrast to the situation in R3. Consider a sequence B1 ⊂
B2 ⊂ . . . of balls that exhaust R3 and properly embedded minimal
disks Dn ⊂ Bn. By work of Colding and Minicozzi [5], with extensions
by Meeks-Rosenberg [18] and Meeks [17], there are only three possible
behaviors (after passing to a subsequence):

• The Dn converge smoothly to a helicoid.
• The Dn converge smoothly to a lamination of R3 by parallel planes.
• The curvature blow-up set K is a straight line, and disks Dn converge

smoothly in R3 \ K to the foliation consisting of all planes perpen-
dicular to K.

Note that if Dn is the portion in the ball B of a helicoid with axis
Z and if the curvatures of the Dn tend to infinity, then the curvature
blow-up set is Z∩B. Colding and Minicozzi [3] constructed an example
in which the blow-up set is Z− ∩ B (where Z− is the set of points
(0, 0, z) with z ≤ 0.) Khan [13] then showed that K can be any finite
subset of Z ∩B. The authors of this paper proved that K can be any
relatively closed subset of Z∩B [12]. In particular, sets with non-integral
Hausdorff dimension can arise as blow-up sets. (Subsequently, Kleene
[14] gave another proof of this theorem.) In all of those examples, the
limit leaves of the limit lamination are precisely the horizontal disks
centered at points of K. (Indeed, in all of those examples, the disks
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Dn satisfy condition (1) of Theorem 1.1, and they have an additional
property: the tangent plane to Dn is not vertical except at points on
Z.) In Section 2 we will develop the theory of embedded minimal disks,
satisfying condition (1).

1.2. The mathematical advances in this paper.

1. We prove that it is possible to realize families of catenoids (as well
as horizontal disks) as limit leaves of a limit lamination of embed-
ded minimal disks, even when there is no curvature blow-up. This
result raises the question of whether it is possible to produce limit
leaves (of a limit lamination of a sequence of embedded minimal
disks) that are neither disks nor annuli. Under the assumption
that W is mean convex and contains no closed minimal surfaces,
Bernstein and Tinaglia [2] have recently proved that the answer is
no.

2. The constructions to produce these examples work for more gen-
eral Riemannian metrics (such as the Poincaré metric) on B.

3. Colding and Minicozzi [4] proved a general Calabi-Yau conjecture
for complete embedded minimal surfaces in R3 of finite topology:
such a surface must be properly embedded. We use our limit lam-
ination theory to prove that such a theorem fails in hyperbolic
three-space, even for simply connected minimal surfaces. This
was originally proved by Baris Coskunuzer [8] by entirely different
methods. (More recently, Coskunuzer, Meeks, and Tinaglia [9]
proved existence of complete, non-proper examples with constant
mean curvature h for all h ∈ [0, 1).) Our approach yields a min-
imal example on either side of any area-minimizing catenoid in
hyperbolic space. See Theorem 9.3.

1.3. An outline of the sections of this paper. In Section 2, minimal
θ-graphs are introduced and their limiting behavior is analyzed. They
are essentially the surfaces satisfying condition (1) of Theorem 1.1, but
in a more general Riemannian setting.

In Section 3 we prove the existence of minimal θ-graphs with pre-
scribed boundary. In Section 4, we prove (under suitable hypotheses)
smooth convergence at the boundary for sequences of minimal θ-graphs.
In Section 5 we use a standard calibration-type argument to establish
a necessary area-minimization property for laminations consisting of
planes and catenoids to appear as the limit leaves of a limit lamination
of minimal θ-graphs. We conjecture that it is a sufficient condition.

In Section 6, we use this existence results of the previous two sections
to show that we can, under certain conditions, specify the limit leaves
of a limit laminations coming from a sequence of minimal θ-disks. In
particular, we construct sequences of embedded minimal disks whose
limit laminations have prescribed limit-leaf sublaminations containing
catenoids.
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In Sections 7-9, we extend the results of Sections 3-6 to hyperbolic
three-space. Handling the infinite-area minimal surfaces that arise there
requires an additional argument. That argument (in Section 8) was
inspired by the work of Collin and Rosenberg [7] on minimal graphs
in H2 × R. In Section 9, we prove (Theorem 9.3) that there exists a
complete and simply connected embedded minimal surface in hyperbolic
space that is not properly embedded.

2. θ-graphs

In this section we will denote by W a connected open set in R3 that
is rotationally symmetric about the x3-axis Z.

Definition 2.1. (θ-graph, spanning θ-graph) Let M be a smooth
surface in W \Z. Then M is a θ-graph if it can be written in the form

(2) {(r cos θ(r, z), r sin θ(r, z), z) : (r, z) ∈ V },

where θ(r, z) : V → R is a smooth, real-valued function, and V is an
open subset of

{(r, z) : r > 0, (r, 0, z) ∈W}.

A θ-graph M ⊂W \Z intersects each rotationally invariant circle at
most once. We say that M is a spanning θ-graph if it intersects every
rotationally invariant circle in W \ Z exactly once. This is equivalent
to the assertion that the domain of definition of θ(r, z) equals {(r, z) :
r > 0, (r, 0, z) ∈ W}, and also equivalent to the requirement that M
and its rotated images foliate W \ Z.

Remark 2.2 (Simple examples of θ-graphs). Let W = R3 and V =
{(r, z) : r > 0}. If we let θ(r, z) = c in (2), then the surface is a vertical
halfplane with boundary Z. If we let θ(r, z) = z/α, for any α 6= 0, then
the surface is a half-helicoid with pitch 2πα and axis Z.

Lemma 2.3. Let W ⊂ R3 be a rotationally invariant domain. Sup-
pose M is a smooth embedded surface in W \Z. Then the following two
conditions are equivalent:

1. a) Given any rotationally invariant circle S, either M is disjoint
from S or intersects S precisely once, and the intersection is
transverse.

b) Any closed curve in M has winding number 0 about Z.
2. M is a θ-graph.

Proof. Statement 1(a) is equivalent to a weakened form of State-
ment 2, produced by replacing the function θ : V → R in Definition 2.1
by a smooth function taking values in R modulo 2π. The function
θ lifts to a single-valued function into R if and only if assertion 1(b)
holds. q.e.d.
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2.4. The relationship between spanning θ-graphs and the sur-
faces of Theorem 1.1. We are interested in properly embedded min-
imal surfaces M ⊂ W with ∂M ⊂ ∂W that satisfy the following prop-
erty:

(3) W ∩ Z ⊂M , and the rotations of M \ Z foliate W \ Z.

This is condition (1) of Theorem 1.1 stated for the domain W . As
indicated in the introduction, all the existence theorems for sequences
of minimal disks are proved by producing surfaces of this kind. Their
intimate relationship with spanning θ-graphs is given by the following
lemma.

Lemma 2.5. Let W ⊂ R3 be a simply connected domain that is
rotationally symmetric around Z. Let M be a smooth, properly embedded
surface in W . Then M satisfies (3) if and only if M \Z consists of two
components, each of which is a spanning θ-graph, and the components
are related by ρZ , 180◦ rotation about Z by π.

Proof. The lemma follows immediately from the definitions. q.e.d.

We will focus on spanning θ-graphs in this paper, mindful that
Lemma 2.5 provides the link between these graphs and their doubles,
the surfaces of Theorem 1.1 and its generalization, Theorem 2.10 below.

2.6. θ-graphs considered as graphs in the simply connected
covering of W \ Z. We will have occasion in Section 4 and in the
Appendix to view θ-graphs as surfaces lying in the simply connected
covering of W \ Z. Suppose we have a domain

(4) V ⊂ {(r, z) : r > 0, (r, 0, z) ∈W}.

For p = (r, z) ∈ V , and θ ∈ R, let π : V × R → W \ Z be the
mapping π(p, θ) = (r cos θ, r sin θ, z). Note that a rotation around Z in
W corresponds to a vertical translation in V ×R. In this setting, the
definition of a θ-graph M (Definition 2.1) is equivalent to the following:

The surface M can be lifted to V × R as a graph of a smooth
function θ : V → R.

Suppose now that W is endowed with a rotationally invariant metric
g. Pulling back g to V ×R produces a metric g∗ on V ×R in which
vertical translations are isometries (corresponding to rotations in W ).
Note that the metric g∗ on V ×R is not the product metric. A surface
M is g-minimal in W \Z if and only if its lift M∗ is g∗-minimal in V ×R.

The simple examples in Remark 2.2 with W = R3 and V = {(r, z) :
r > 0, } are minimal surfaces. They lift to minimal surfaces V × R:
The vertical halfplane in R3 bounded by Z lifts to a horizontal planar
slice θ(r, z) = c; the half-helicoid in R3 with axis Z lifts to the graph of
θ(r, z) = z/α, α 6= 0, a halfplane that is neither vertical nor horizontal.
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Theorem 2.7 (Boundary regularity theorem for minimal θ-graphs).
Suppose that M ⊂ W \ Z is a spanning θ-graph that is minimal for a
smooth, rotationally invariant metric on W . Then M∪(W∩Z) = M∩W
is a smooth manifold-with-boundary, the boundary being Z ∩W .

Now suppose that W is bounded and simply connected and that the
metric extends smoothly to W . Let Γ = M∩∂W . If Γ∪ρZΓ is a smooth,
simple closed curve, then M ∪ ρZM is a smooth, embedded manifold-
with-boundary.

The first assertion is local, so it suffices to consider the case when
W is a simply connected, which implies that M is a disk. (Otherwise,
replace W and M by B(p, r) ⊂W and M ∩B(p, r), where p ∈ Z ∩W .)

Thus Theorem 2.7 is an immediate consequence of the following more
general boundary regularity theorem:

Theorem 2.8. [27]. Suppose that U is an open subset of a smooth
Riemannian 3-manifold, that C is a smooth, properly embedded curve
in U , that D is a properly embedded minimal surface in U \C, and that
D ∪C is topologically a manifold with boundary, the boundary being C.
Then D ∪ C is a smooth manifold-with-boundary.

2.9. Properties of limit laminations of sequences of minimal
spanning θ-graphs. We now state and prove the main theorem of this
section.

Theorem 2.10. Suppose that the open unit ball B in R3 is endowed
with a smooth Riemannian metric that is rotationally invariant around
Z. Suppose that Dn is a sequence of minimal spanning θ-graphs in
B \ Z. Then, after passing to a subsequence, the Dn converge smoothly
on compact subsets of B \ Z to a minimal lamination L of B with the
following properties:

1. Each leaf of L is either rotationally symmetric about Z or is a
θ-graph.

2. Each rotationally invariant circle in B either is contained in a
rotationally invariant leaf of L or else intersects L transversely
in a single point.

3. The limit leaves of L are precisely the leaves that are rotationally
invariant about Z.

Let L′ be the set of rotationally invariant leaves in L, and let K be the
set of points in B ∩ Z ∩ ∪L′.

4. Each connected component O of B \ ∪L′ contains a unique leaf
L of L. That leaf is a spanning θ-graph in O, and O contains
no other points of L. Furthermore, L∩O is a smooth manifold-
with-boundary (the boundary being Z∩O), and Dn∩O converges
to L ∩ O smoothly on compact subsets of O.
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5. Each component I of (B ∩ Z) \ K lies on the boundary of a
non-limit leaf L ∈ L. The leaf L can be extended smoothly by
Schwarz reflection across Z, and no point in I lies in the closure
of L \ L.

6. The lamination L′ extends smoothly to a lamination of B. If
p ∈ K, then there is a unique leaf L(p) ∈ L′ whose closure
contains p, and L(p) ∪ {p} is a smooth surface that meets Z
orthogonally.

7. The curvature blowup of the Dn occurs precisely at the points of
K.

In the following corollary (and throughout the paper), ρZ denotes
180◦ rotation about Z.

Corollary 2.11. The doubled disks Dn ∪ (B ∩ Z) ∪ ρZDn converge
smoothly in B \K to the lamination L∗ obtained from L as follows: for
each connected component O of B\∪L′, we replace the leaf L in O (see
Statement 4) by L ∪ ρZL ∩ O. In particular, L and L∗ have the same
rotationally invariant leaves.

Proof of theorem. The rotational Killing field ∂/∂θ defines a Jacobi
field Jn on each Dn. Note that Dn is stable because Jn never vanishes.
(In fact Dn has a certain area-minimizing property: see Corollary 3.2.)
Thus the curvature is uniformly bounded on compact subsets of B \Z,
so a subsequence converges smoothly to a lamination L. In particular,
there is no curvature blowup in B \ Z. By relabeling, we may assume
that the subsequence is the original sequence.

Let L be a leaf of L. As above, there is a Jacobi field J on L, defined
by the rotational vector field ∂/∂θ. This Jacobi field does not change
sign on L since Jn does not vanish on Dn. Thus by the maximum
principle, it either vanishes nowhere on L or it vanishes everywhere on
L. In the first case, L is transverse to every circle S that is rotationally
invariant about Z. In the second case, L is rotationally invariant about
Z.

Let S be a rotationally invariant circle in B. Since S is compact and
since it intersects each Dn, it must also intersect L. Using the previous
paragraph, we conclude that S either intersects L transversally, or it lies
entirely in a rotationally invariant leaf of L. If the circle S intersects L
transversely, then it intersects L in a single point since it intersects each
Dn in a single point. Thus the leaf L through that point is not a limit
leaf. Let U be the union of L and its rotated images. The convergence of
Dn∩U to L∩U is smooth and single-sheeted, so any closed curve α ⊂ L
is a limit of closed curves αn in Dn. By Lemma 2.3 (Statement 1(b)),
the winding number of αn about Z is 0. Thus the winding number of
α about Z is also 0. By Lemma 2.3, L is a θ-graph.
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We have proved Statements 1 and 2, and we have established that
limit leaves are rotationally invariant. To prove Statement 3, we must
establish that rotationally invariant leaves of L are limit leaves. Suppose
that L is a rotationally invariant leaf of L, and let pn be a sequence
of points in B \ (Z ∪ L) converging to a point in L. The rotationally
invariant circle though pn contains a point qn of the lamination L. Since
pn is not in L, neither is qn. By passing to subsequence, we may assume
that the qn converge to a point q ∈ L. We have shown that L contains
a point q that is a limit of points qn in L \ L. Thus L is a limit leaf.

To prove Statement 4, let O be a connected component of B \ ∪L′.
By Statements 1, 2, and 3, for each point (x, z) in

U := {(x, z) : x > 0, (x, 0, z) ∈ O},

the rotationally invariant circle through (x, 0, z) intersects the lamina-
tion in a single point F (x, z), and F defines a smooth embedding of U
into O. Since O is connected, U is connected, and therefore L = F (U)
is connected. In particular, L is a leaf of L rather than a union of leaves.
By Statement 1, L is a θ-graph. We have already seen that it intersects
each rotationally invariant circle in O. Thus L is a spanning θ-graph
in O. By Theorem 2.7, Dn ∩ O and L ∩ O are smooth manifolds-with-
boundary, the boundary being Z ∩O. This proves Statement 4, except
for the assertion about smooth convergence.

We already know smooth convergence away from Z, so to prove the
smooth convergence in Statement 4, it suffices to consider the case when
B∩Z is nonempty. In that case, the smooth convergence is an immediate
consequence of the following general theorem (which is true in arbitrary
dimensions and codimensions):

Theorem 2.12 ([26, Theorem 6.1]). Suppose that M is a smooth,
connected manifold-with-boundary properly embedded in an open sub-
set O of a smooth Riemannian manifold, and suppose that O ∩ ∂M is
nonempty. Suppose that Mn is a sequence of smooth minimal manifolds-
with-boundary that are properly embedded in O and suppose that O ∩
∂Mn converges smoothly to O ∩ ∂M . Suppose also that

(5) {p ∈ O : lim inf dist(p,Mn) = 0} ⊂M.

Then Mn converges smoothly to M on compact subsets of O.

To apply Theorem 2.12, we let M := L ∩ O and Mn := Dn ∩ O.
Then ∂M = ∂Mn = Z ∩ O, and (5) holds because (in our situation)
Mn converges smoothly to M on compact subsets of O \ Z. Thus the
smooth convergence asserted by Theorem 2.12 holds. This completes
the proof of Statement 4.

Statement 5 follows immediately from Statement 4 by letting O be
the connected component of B \ ∪L′ containing the interval I.
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We now prove Statement 6. Let p ∈ K. By definition of K, there is a
sequence pn ∈ ∪L′ converging to p. Let αn be the angle that the tangent
plane to L′ at pn makes with the horizontal. To prove Statement 6, it
suffices to show that αn → 0. Let qn be the point in Z nearest to pn.
Translate the limit leaf through pn by−qn and dilate by 1/|pn−qn| to get
a surface Σn. Note that Σn is rotationally invariant and stable. Since
it is stable, the norm of the second fundamental form times distance to
Z is uniformly bounded. Thus (after passing to a subsequence) the Σn

converge smoothly on compact subsets of R3\Z to a stable, rotationally
invariant minimal surface Σ. The only rotationally invariant minimal
surfaces in R3 are catenoids and horizontal planes. Since catenoids are
unstable, Σ must be a horizontal plane—in fact, the plane z = 0. Since
this limit is independent of choice of subsequence, in fact the sequence
Σn converges to the plane z = 0. Hence α(pn)→ 0, proving Statement 6,
except for uniqueness.

If uniqueness failed, we would have two rotationally invariant disks
tangent to each other at a point p on Z. The intersection set would con-
sist of p together with a collection of rotationally invariant circles. But
near a common point of two distinct minimal surfaces in a 3-manifold,
the intersection set consists of two or more curves that meet at the
point. This proves uniqueness.

Remark 2.13. The proof of Statement 6 shows that if L ⊂ B is a
stable, rotationally invariant, embedded minimal surface that contains
p ∈ B ∩ Z in its closure, then L ∪ {p} is a smooth minimal surface.

We now prove Statement 7. By the smooth convergence Dn → L
in B \ Z and by Statement 4, we already know that the curvatures of
the Dn are uniformly bounded on compact subsets of B \K. Thus we
need only show if p ∈ K, then the curvatures of the Dn blow up at p.
Suppose not. Then (by passing to a subsequence) we can assume that
the curvatures of the Di are uniformly bounded in some neighborhood
of p. Since the tangent plane to Di at p is vertical, it follows that for a
sufficiently small ball B(p, r) ⊂ B, the slopes of the tangent planes to
the surfaces Di∩B(p, r) are all ≥ 1. Hence if L is leaf of L, then the slope
of the tangent planes to L ∩ B(p, r) are all ≥ 1. But by Statement 6,
since p ∈ K, there is a rotationally invariant leaf L(p) such that L(p)∪p
is a smooth manifold. In particular, the tangent plane at p is horizontal,
so L(p) contains points arbitrarily close to p with slopes arbitrarily close
to 0. The contradiction proves Statement 7, and thereby completes the
proof of the Theorem 2.10. q.e.d.

Proposition 2.14. Each leaf of L lifts to a properly embedded surface
in the universal cover U of B \ Z.
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Proof. Let V = {(r, z) : (r, 0, z) ∈ B}. Then we can regard U = V×R
as the universal cover of B \ Z, the covering map being

π : V ×R→ B \ Z,
π(r, z, θ) = (r cos θ, r sin θ, z).

Let L be a leaf of L and let p ∈ L. Let pn ∈ Dn converge to p. Let D̃n

be a lift of Dn to the universal cover of B \ Z, and let p̃n be the point

in D̃n that projects to pn. By making suitable vertical translations, we
can assume that the points p̃n converge to a point p̃ that projects to p.

Since D̃n is a minimal graph, it satisfies the following bound: if C is
any compact region with smooth boundary in U , then

(6) area(D̃n ∩ C) ≤ 1

2
area(∂C).

Since the D̃n are stable minimal surfaces, a subsequence converges
smoothly to a limit D̃. By (6), the limit D̃ is properly embedded.

Note that D̃ is a lift of L. q.e.d.

Corollary 2.15. If Σ is a rotationally invariant leaf of L, then Σ is
properly embedded in B \ Z.

Proof. Let

σ = {((x2 + y2)1/2, z) : (x, y, z) ∈ Σ}.

Then σ ×R is the lift of Σ to the universal cover.
Since σ × R is a properly embedded surface in V × R (by Propo-

sition 2.14), σ is a properly embedded curve in V . The result follows
immediately. q.e.d.

Next we prove that each rotationally invariant leaf in Theorem 2.10
is either a punctured disk or an annulus, and that the corresponding
disk or annulus is properly embedded in B. The reader may wish to
skip the proof, since the theorem is obviously true in the cases we are
most interested in (namely, when the Riemannian metric on B is the
Euclidean metric or the Poincaré metric).

Proposition 2.16. Let Σ be a rotationally invariant leaf in the lam-
ination L. Then either Σ is a punctured disk such that Σ ∩B properly
embedded in B, or Σ is an annulus that is properly embedded in B.

Now suppose that B is compact with smooth boundary, that the metric
extends smoothly to B, and that B is strictly mean convex with respect
to the metric. Then Σ is smooth at the boundary: Σ is either a smoothly
embedded closed disk or a smoothly embedded closed annulus.

Proof. Let D be the planar domain

D = {(r, 0, z) ∈ B : r > 0}
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and let σ be the curve in D given by

σ = Σ ∩ D.

Thus Σ is the surface of revolution obtained by rotating σ around Z.
In Corollary 5.2, we show that

(7) Σ cannot be a smooth closed surface in B.

Thus σ is not a closed curve, so it has two ends.
If one end of σ contained a point p of Z ∩ B and if the other end

contained a point q of Z ∩ B in its closure, then Σ ∪ {p, q} would be
a smooth embedded surface in B (by Statement 6 of Theorem 2.10),
contradicting (7) above.

Thus either σ contains no points of Z ∩ B in its closure, or exactly
one end of σ contains a point p of Z ∩ B in its closure. In the first
case, Σ is a properly embedded annulus in B. In the second case,
Σ ∩ B = Σ ∪ {p} is a properly embedded disk in B. (The properness
follows from Corollary 2.15 above.)

Now suppose that ∂B is smooth and that the metric extends smoothly
to B. If σ contained an endpoint p of Z ∩B in its closure, then Σ∪{p}
would be a smooth minimal surface (by Remark 2.13), contradicting the
mean convexity of ∂B at p. Thus σ cannot contain an endpoint of Z∩B
in its closure. It follows that at least one end of σ contains a point q
of (∂D) \ Z in its closure. By the strict mean convexity, that end of σ
must converge to q. Thus the union of Σ and the circle corresponding
to q is a smooth manifold with boundary. The two ends of σ cannot
converge to the same point in (∂D) \Z, since then Σ would be a closed
surface in B, which is impossible by Corollary 5.3.

We have shown that either σ has one endpoint in (∂D) \ Z and the
other endpoint in Z ∩ B, in which case Σ is a disk, or Σ has both
endpoints in (∂D) \ Z, in which case Σ is an annulus. q.e.d.

3. Existence of minimal θ-graphs with prescribed boundary

In this section, we prove existence and uniqueness of spanning mini-
mal θ-graphs for a large family of prescribed boundary curves.

Theorem 3.1. Let B be the open unit ball in R3, and suppose that
B is mean convex with respect to a smooth Riemannian metric g that is
rotationally invariant about Z.

Let γ be a smooth curve in ∂B joining p+ = (0, 0, 1) to p− = (0, 0,−1)
such that γ intersects each horizontal circle in ∂B exactly once, and such
that the curve γ ∪ ρZγ is smooth. Let Γ be the union of γ with Z ∩B.
Then among all oriented surfaces (of arbitrary genus) with boundary Γ,
there is a unique surface D of least area. The surface D is a θ-graph,
and D ∪ ρZD is a smoothly embedded disk with boundary γ ∪ ρZγ.
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Furthermore, if M ⊂ B is any oriented, embedded minimal surface
with finite area, finite genus, and with boundary Γ, then M = D.

Concerning the hypothesis that γ∪ρZγ is smooth, note that smooth-
ness of γ implies smoothness of γ∪ρZγ except possibly at the endpoints
of γ. For γ ∪ ρZγ to be smooth at an endpoint of γ, the necessary
and sufficient condition is the vanishing of curvature and all even order
derivatives of curvature at that endpoint.

Corollary 3.2. Suppose that D is a spanning θ-graph in B that is
minimal with respect to a smooth, rotationally invariant Riemannian
metric on B.

If B′ ⊂ B is rotationally invariant about Z, mean convex, and
smoothly diffeomorphic to a closed ball, then D∩B′ is the unique least-
area integral current among all integral currents in B′ having boundary
∂(D ∩B′).

If B can be exhausted by such subdomains B′n, then D is an area-
minimizing integral current.

Proof of corollary. Apply the theorem to D ∩ U . q.e.d.

Proof of Theorem 3.1. Let D be an oriented area-minimizing surface
(i.e., integral current) in B bounded by Γ. (To be precise, we letD be the
set of points in B\Z in the support of that integral current.) Note we are
not restricting the genus of D. By the Hardt-Simon boundary regularity
theorem [11], D is a smooth, embedded manifold-with-boundary except
at the corners p+ and p− of Γ. Let C be a tangent cone to D at p−.
Then C lies in the upper halfspace {x3 ≥ 0}, and the boundary of C
consists of the positive x3-axis together with a horizontal ray, both with
multiplicity 1. The only such cone is the corresponding quarter-plane
with multiplicity one. NowD ∪ ρZD is a minimal surface with boundary
γ ∪ ρZγ, and it is smoothly immersed everywhere except possibly at p+

and at p−. We have just shown that the tangent cone to D ∪ ρZD at p−

is a halfplane with multiplicity one. By Allard’s Boundary Regularity
Theorem [1], D ∪ ρZD is a smoothly embedded manifold-with-boundary
near p−. Likewise, it is a smoothly embedded manifold-with-boundary
near p+.

Let σ be a closed curve in D. By pushing σ slightly in the direction of
the unit normal to D, we get a closed curve σ′ that is homotopic to σ in
W \ Z. Note that σ′ is disjoint from D. Thus its algebraic intersection
number with D is 0. By elementary topology, the winding number about
Z of a closed curve in W \Z is equal to its linking number with Γ, which
is equal to its intersection number with D. Thus the winding number
of σ′ about Z is 0. Since σ and σ′ are homotopic in W \Z, the same is
true of σ.

We have shown: every closed curve in D has winding number 0 about
Z. Thus D lifts to the universal cover of W \ Z. Equivalently, there is
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an angle function θD : D \ Z → R such that

p = (r(p) cos θD(p), r(p) sin θD(p), z)

for all p = (x, y, z) ∈ D \ Z, where r(p) =
√
x2 + y2. The smoothness

of D ∪ ρZD implies that θD(·) extends continuously to D.
Now define

ω : D → R

by letting ω(p) be the maximum of θD(q)− θD(p) among all q ∈ D such
that q and p lie on the same rotationally invariant circle. Note that ω
is upper semicontinuous and that ω = 0 on ∂D = Γ (by the smoothness
of D at the boundary). Thus if ω did not vanish everywhere, it would
attain its maximum at some interior point p ∈ D. But at that point,
the strong maximum principle would be violated. (Note that the surface
D and the surface obtained by rotating D through angle −ω(p) would
touch each other at p.) Thus ω(·) ≡ 0, which implies that D is a θ-
graph. Every rotationally invariant circle in W links Γ and therefore
must intersect D. Thus D is a spanning θ-graph.

To prove the uniqueness assertion, suppose that M is a finite-genus,
finite-area, orientable, embedded minimal surface in W with boundary
Γ. By classical boundary regularity theory, M ∪ ρZM is a minimal
immersed surface, possibly with branch points. Since the boundary of
M ∪ ρZM lies on ∂W , it cannot have any boundary branch points. Also,
it cannot have interior branch points in W \ Z since M is embedded.
Finally, it cannot have a branch point on Z, since then M would have
a boundary branch point on Z, which implies that M is not embedded
near that point, a contradiction. We have shown that M ∪ ρZM is a
smoothly immersed surface-with-boundary.

Just as for D, it follows that there is a continuous angle function

θM : M → R

such that

(8) p = (r(p) cos θM (p), r(p) sin θM (p), z)

for p = (x, y, z) ∈M , where r(p) =
√
x2 + y2.

Note that on Γ ∩ ∂W , θM and θD differ by a constant multiple of
2π. Note also that adding a multiple of 2π to θM (·) does not affect (8).
Thus we can assume that θD ≡ θM on Γ ∩ ∂W .

Now define a continuous function

φ : M → R,

φ(p) = θD(q)− θM (p),

where q is the unique point of intersection of D with the rotationally
invariant circle containing p. (Here we allow circles of radius 0, so if
that p ∈ Z, then q(p) = p.)
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Now φ ≡ 0 on M ∩ ∂W , so if it were not everywhere 0, then |φ(·)|
would attain a strictly positive maximum at some point p ∈ M ∩W .
But that would violate the strong maximum principle (if p ∈M) or the
strong boundary maximum principle (if p ∈ Z).

(If this is not clear, consider M and the surface obtained by rotat-
ing D by angle −φ(p). The two surfaces are tangent at p, and there
is a neighborhood of p in which the two surfaces have no transverse
intersections.) q.e.d.

4. Smooth convergence at the boundary

In this section, we will assume that

(i) Dn is a sequence of spanning minimal θ-graphs in B \ Z with
boundaries of the form

∂Dn = γn ∪ I,

where I = B ∩ Z and γn is an embedded curve in ∂B connecting
the endpoints p+ = (0, 0, 1) and p− = (0, 0,−1) of I.

(ii) the Riemannian metric on B extends smoothly to B, and B is
strictly mean convex.

In Theorem 2.10 of Section 2, we proved that, away from a closed subset
K ⊂ I, a subsequence of the Dn converge smoothly to a limit lamina-
tion L. The set K is precisely the set on which the curvature of the
surfaces Dn blow up. In this section we provide conditions under which
the convergence is smooth up to the boundary in ∂B \ {p+, p−}. This
involves establishing uniform curvature estimates in a neighborhood of
points on the boundary of B.

In Theorem B.2 in Appendix B, we prove the following curvature
estimate.

Theorem 4.1. Suppose in addition to (i) and (ii) that the curvature
and the first derivative of curvature of γn are bounded independently of
n. Then the curvatures B(Dn, ·) are uniformly bounded away from I.

This uniform curvature estimate is enough to conclude that the
boundaries of the leaves of a limit lamination L are regular at the points
of their boundary in ∂B\{p+, p−}. We already know from Theorem 2.10
that they are regular at the points of I ⊂ ∂Dn that are not in the cur-
vature blowup set K.

Theorem B.2 of Appendix B is stated in terms of minimal graphs
in V × R, where V = {(x, 0, z) : x > 0, (x, 0, z) ∈ B}. As explained
in that Appendix and in Section 2.6, this is equivalent to the situation
considered in Theorem 4.1 above.

Note that if the curves γn converge smoothly to a lamination of
∂B \ {p+, p−}, then (away from I) we have uniform bounds on the
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curvature of γn and the first derivative of curvature. Therefore we can
use Theorem 4.1 to conclude smooth convergence up to the boundary:

Theorem 4.2. Suppose, in addition to (i) and (ii), that the Dn con-
verge smoothly in B \ Z to a lamination L, and that the curves γn
converge smoothly to a lamination G of ∂B \ {p+, p−}. Then the con-
vergence Dn → L is smooth up to ∂B \ {p+, p−}.

In particular, if L is a leaf of L, and if L∗ is a lift of it to the universal
cover U of B \ Z, then the closure L∗ of L∗ in U is a smooth embedded
manifold-with-boundary, and each component of ∂L∗ projects to a leaf γ
of G. Furthermore, every leaf γ of G arises in this way: if γ ∈ G, there
is a lift L∗ of a leaf of L and a component of ∂L∗ that projects to γ.

Corollary 4.3. If γ is a rotationally invariant leaf of G, then L
contains a rotationally invariant leaf with γ as one of its boundary com-
ponents.

Proof. Let L be a leaf of L associated to γ as in Theorem 4.2. (That is,
suppose L and γ have lifts L∗ and γ∗ to the universal cover of B\Z such
that L∗ ∪ γ∗ is a smooth manifold-with-boundary.) If L is rotationally
invariant, we are done. If not, L and its images under rotations about Z
foliate a rotationally invariant region Ω in B. Note that Ω is bounded
by rotationally invariant leaves of L. Two of those leaves must each
have γ as a boundary component. q.e.d.

5. Necessary conditions for a lamination to appear as the
limit leaves of the limit lamination of a sequence of

minimal θ-graphs

As in Theorem 2.10, let Dn be a sequence of oriented spanning min-
imal θ-graphs in B that converge smoothly in B \ Z to a lamination
L of B \ Z. Let Rn be the oriented foliation of B \ Z consisting of
Dn and its rotated images. Let νn be the unit normal vectorfield to
Dn compatible with the orientation. Note that Rn will converge to an
oriented rotationally invariant foliation R of B \ Z. In particular, the
vectorfields νn converge uniformly on compact subsets of B \ Z to the
unit normal vectorfield ν to R compatible with the orientation of R.

The rotationally invariant leaves of R are precisely the rotationally
invariant leaves of L, that is the leaves of L′.

In this section, we will prove some additional properties of the col-
lection of rotationally invariant leaves L′.

Proposition 5.1. Suppose that R is an oriented, minimal foliation
of an open subset of a Riemannian manifold. Then

Div ν = 0,

where ν is the unit normal vectorfield to R given by the orientation.
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Proof. Let ∇ denote covariant differentiation with respect to the met-
ric, and let div denote the divergence operator on a fixed leaf of R. We
have for any vectorfield X:

DivX = divX +∇νX · ν,
so

Div ν = div ν +∇νν · ν = H +
1

2
ν(ν · ν),

where H is the mean curvature of the fixed leaf of R. Since all leaves
of R are minimal and since ν has unit length, Div ν = 0. q.e.d.

Corollary 5.2. Suppose that R is an oriented foliation of B \ Z by
surfaces that are minimal with respect to a smooth Riemannian metric
on B, where B is the open unit ball in R3.

If Σ is a closed, connected, embedded surface in B, then Σ\Z cannot
be a leaf of R.

Proof. Let U be the region in B bounded by Σ. Now ν is not defined
on Z, but Z is a closed set with 2-dimensional Hausdorff measure 0, so
even if U ∩ Z is not empty, we can apply the Divergence Theorem A.1
on U to get:

(*)

∫
Σ
ν · ndA =

∫
U

Div ν = 0,

where n is the unit normal to Σ that points out of U . If Σ were a leaf
of L, then either n = ν on Σ or n = −ν on Σ, so that the left side of (*)
would be equal to plus or minus the area of Σ, and thus the area of Σ
would be 0, which is impossible. q.e.d.

Corollary 5.3. Suppose that the Riemannian metric in Corollary 5.2
extends smoothly to B. Let Σ be an annulus in B such that the two
boundary components of Σ are the same smooth, simple closed curve in
∂B. Then Σ cannot be a leaf of L.

The proof is almost identical to the proof of Corollary 5.2.

Theorem 5.4. Let R be an oriented, minimal foliation of B\Z that
is rotationally invariant about Z (with respect to a smooth, rotation-
ally invariant metric on B), and let ν be the associated unit normal
vectorfield compatible with the orientation. Let L′ be the sublamination
consisting of the rotationally invariant leaves of R. Let U be a regular
open subset of B such that M := (∂U) ∩ B consists of leaves of L′ on
which the normal ν points out of U . Then M is area minimizing.

Furthermore, if the metric extends smoothly to B and if M ′ is another
area-minimizing surface with ∂M = ∂M ′ (as oriented surfaces in B),
then M ′ is also made up of oriented leaves of L′.

Recall that a regular open set is an open set U such that U =
interior(U).
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Proof. Case 1: Assume that the metric extends smoothly to B, and
that M is a smooth, embedded manifold with boundary in B.

Let M ′ be a smoothly embedded, oriented surface in B with ∂M ′ =
∂M . By elementary topology, M ′ = (∂U ′) ∩ B for some regular open
set U ′ of B with

(9) U ′ ∩ ∂B = U ∩ ∂B.

Let

Σ = U ′ ∩ ∂B = U ∩ ∂B.

Let n and n′ be the outward-pointing unit normal vectorfields on
∂U = M ∪ Σ and on ∂U ′ = M ′ ∪ Σ, respectively. Note that n = n′ on
Σ. Note also that n|M = ν|M is the unit normal vectorfield compatible
with the orientation of M , and that n′|M ′ is compatible with orientation
of M ′.

Now ν is not defined on Z. However, Z is a closed set with 2-
dimensional Hausdorff measure 0, so we can apply the divergence theo-
rem (see Theorem A.1) to ν on U to get

(10)

0 =

∫
Ũ

Div ν dV

=

∫
M
ν · ndA+

∫
Σ
ν · ndA.

Likewise, applying the divergence theorem to ν on Ũ ′ gives

(11) 0 =

∫
M ′
ν · n′ dA+

∫
Σ
ν · n′ dA.

Since n = n′ on Σ, combining (10) and (11) gives:∫
M
ν · ndA =

∫
M ′
ν · n′ dA.

The left side equals the area of M since, by hypothesis, ν ≡ n on M .
Thus

(12) area(M) =

∫
M ′
ν · n′ dA ≤ area(M ′),

with equality if and only if ν ≡ n′, i.e., if and only if M ′ is also a leaf of
L′. This proves that M is area-minimizing, and it also proves the last
assertion (“furthermore. . . ”) of the theorem.

Case 2: The general case. Let B1 ⊂ B2 ⊂ . . . be an exhaustion
of B by open balls centered at the origin such that for each i, ∂Bi is
transverse to M . Then (by Case 1), M ∩ Bi is area minimizing in Bi

(i.e., it has area less than or equal to the area of any other surface in Bi

with the same boundary.) Thus (by definition), M is area minimizing
in B. q.e.d.
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We give two simple applications of Theorem 5.4 that will be used
in the next section. For these corollaries, we assume that the metric
extends smoothly to B.

Corollary 5.5. Suppose L′ contains two disks D and D′ such that
either ν points out of the region Ω between D and D′ on D ∪D′, or it
points into that region on D∪D′. Then the two disks are area minimizing
as an integral current. If there is an area-minimizing annulus with the
same boundary as the disks, then it must also be a leaf of L′.

Proof. If ν on D ∪D′ points out of Ω, let U = Ω. If it points into Ω,
let U = B \ Ω. Now apply Theorem 5.4. q.e.d.

Corollary 5.6. Suppose that L′ contains an annulus M . Then M
is area minimizing as an integral current. If ∂M bounds another area-
minimizing surface, then it must also be a leaf or union of leaves of
L′.

Proof. Note that M divides B into two components: we let U be
the component that such that ν on M points out of U . Now apply
Theorem 5.4. q.e.d.

Remark 5.7. We conjecture the following partial converse to The-
orem 5.4. Suppose that one has a finite collection of area-minimizing,
rotationally invariant minimal surfaces. Let M be the augmentation
of this collection to include all area-minimizing, rotationally invariant
minimal surfaces with the same boundary. Then M can be realized
as the rotationally invariant leaves L′ of a lamination L that is a limit
lamination of a sequence of spanning minimal θ-graphs in B \ Z.

6. Specifying the rotationally invariant leaves of a limit
lamination

In this section, we work with the open unit ball B in R3 and with a
smooth Riemannian metric g on B such that

• the mean curvature of ∂B is nonzero and points into B.
• The metric is rotationally invariant about Z, and also invariant

under µ(x, y, z) = (x, y,−z).

Definition 6.1. For 0 < a < 1, let

c(a) = c+(a) ∪ c−(a),

where c±(a) are the circles (∂B) ∩ {z = ±a}. We orient c−(a) by dθ
and c+(a) by −dθ. Let

M(a)

be the set of rotationally invariant area-minimizing surfaces bounded
by c(a).
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The hypotheses imply that M(a) is nonempty for every a ∈ (0, 1).
Each surface in M(a) (indeed, any rotationally invariant surface
bounded by c(a)) is either a pair of disks or an annulus.

If M ∈M(a), then the area of M is less than the area of the annular
component of ∂B \ c(a). It follows that if a ∈ (0, 1) is close to 0, then
M is an annulus. (By the strict mean convexity of B, M \ ∂M ⊂ B.)

Likewise, the area of a surface M ∈ M(a) is less than the area of
the union of the two simply connected components of ∂B \ c(a). In
particular, if a ∈ (0, 1) is close to 1, then the area of M is nearly 0. It
follows that if a is close to 1, then M is a pair of disks. (For if a is close
to 1, then any minimal annulus bounded by c(a) would contain points
from far c(a), and thus by monotonicity would have area bounded away
from 0.)

By a standard cut-and-paste argument, the surfaces in M(a) are
disjoint from each other, except at their common boundary. By similar
reasoning, if a 6= a′, the surfaces in M(a) are disjoint from the surfaces
in M(a′). Thus the collection of surfaces M(a), 0 < a < 1, forms
a minimal lamination of B. Figure 1 shows that lamination for the
Euclidean metric.

Note that if 0 < a < b < 1 and if M(b) contains an annulus, then
M(a) contains only annuli. For otherwise M(a) would contain a pair
of disks, and those disks would intersect the annulus in M(b), which is
impossible.

Consequently, there is an acrit ∈ (0, 1) such that

1) if acrit < a < 1, thenM(a) contains at least one pair of disks, but
no annuli.

2) if 0 < a < acrit, then M(a) contains at least one annulus, but no
pairs of disks.

3) M(acrit) contains at least one pair of disks, and it contains at least
one annulus.

(Note that (3) follows from (1) and (2), since the limit of area-minimizing
annuli is also an area-minimizing annulus, and similarly for pairs of
disks.)

For the Euclidean metric, for each a ≤ acrit, M(a) contains exactly
one minimal annulus, and for each a ≥ acrit,M(a) contains exactly one
pair of minimal disks. But for general metrics, a given M(a) might
contain multiple minimal annuli and/or multiple pairs of disks.

Definition 6.2. If T is a relatively closed subset of (0, 1), let c(T )
be the collection of circles in ∂B given by

c(T ) =
⋃
a∈T

c(a),
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and let M(T ) be the lamination of B given by

M(T ) =
⋃
a∈T
M(a).

We let

M =M(0, 1).

Theorem 6.3. Consider a smooth Riemannian metric on B such
that

1) the mean curvature of ∂B is nonzero and points into B.
2) the metric is invariant under (x, y, z) 7→ (x, y,−z) and under ro-

tations about Z.

Let T be a relatively closed subset of (0, 1). Then there exists a se-
quence of spanning minimal θ-graphs in B \ Z that converge to a limit
lamination L whose rotationally invariant leaves are given by M(T ).

Remark 6.4. More precisely, the rotationally invariant leaves of L
are the annuli in M(T ) together with the disks in M(T ) with their
centers removed.

Proof. First suppose that 0 /∈ T . Consider the collection G of θ-graphs
γ in ∂B with the following properties:

• γ is invariant under the reflection µ(x, y, z) = (x, y,−z).
• dθ

dz is positive on γ∩{z < 0} (and therefore negative on γ∩{z > 0}).
Then there is a sequence of curves γi, i = 1, 2, . . . , in G converging
smoothly to a lamination C of ∂B\Z such that the rotationally invariant
leaves are precisely the circles in c(T ).

By Theorem 3.1 (applicable because we are assuming that B is mean
convex), for each γi there exists a unique, smooth, embedded minimal
θ-graph Di with boundary γi ∪ (Z ∩ B). Because this boundary is µ-
invariant, uniqueness implies that Di is also µ-invariant. By passing
to a subsequence, we can assume that the Di converge smoothly to a
lamination L of B \ Z. Of course L must be µ-invariant.

To prove the theorem, we must prove that every rotationally invari-
ant leaf of L is in M(T ), and, conversely, that each surface in M(T ) is
a leaf of L.

Step 1: Proof that every rotationally invariant leaf of L is
in M(T ). Suppose that L is a rotationally invariant leaf of L. Then L
must be a punctured disk or an annulus.

Case 1: L is a punctured disk. By Theorem 4.2, the boundary circle
of L must be a leaf of C, so it must be one of the two circles in c(a) for
some a ∈ T . By symmetry, µ(L) is also a leaf of L. The two boundary
circles of L∪µ(L) are c(a). By Corollary 5.5, L∪µ(L) is area minimizing.
Thus L ∪ µ(L) ∈M(a).
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Case 2: L is an annulus. By Theorem 4.2, the two boundary circles
of L must both be circles in the family c(T ). Note the circles must be
oppositely oriented. Therefore one boundary circle is c+(a) for some
a ∈ T , and the other is c−(b) for some b ∈ T .

We claim that a = b. For otherwise, L and µ(L) would be two leaves
of L that intersect along a circle at height 0, which is impossible. Thus
∂L = c(a) for some a ∈ T . By Corollary 5.6, L is area-minimizing.
Therefore L ∈M(a).

This completes the proof that each rotationally invariant leaf in L is
in M(a) for some a ∈ T .

Step 2: Proof that every surface in M(T ) is a rotationally
invariant leaf in L. Suppose that a ∈ T . By Corollary 4.3, there is
some rotationally invariant leaf L of L such that c+(a) is a component
of ∂L. If L is an annulus, then (as we have proved above), ∂L = c(a);
in this case, let Σ = L. If L is a disk, then µ(L) is also in L (by
µ-symmetry); In this case, we let Σ = L ∪ µ(L).

We have shown: if a ∈ T , then c(a) bounds a rotationally invariant
surface Σ consisting of one leaf (an annulus) or two leaves (both disks)
in L. By Corollaries 5.5 and 5.6, Σ is area minimizing, so Σ ∈ M(a).
If M(a) contains another surface Σ′, then Σ together with Σ′ bound a
region Ω. By Theorem 5.4, since Σ is a rotationally invariant leaf (or
pair of leaves) in L, Σ′ must also be in L. Thus every surface Σ′ in
M(a) belongs to L. This completes the proof assuming that 0 /∈ T .

Now suppose that 0 ∈ T . In this case, no sequence γi ∈ G can
converge smoothly to a lamination that includes the circles c(T ). For if
γi in G converges smoothly to a lamination C of ∂B \ {p+, p−}, then C
contains a leaf that crosses the equator perpendicularly, which implies
that C cannot contain circles arbitrarily near the equator.

However, even if 0 ∈ T , we can find a sequence of curves γi in G that
converge smoothly in

(*) ∂B \ ({p+, p−} ∪ {z = 0})

to a lamination of (*) whose rotationally invariant leaves are precisely
the circles in c(T ). The rest of the proof is almost exactly the same as
the proof when 0 /∈ T . q.e.d.

Remark 6.5. Let W be the open cylinder {(x, y, z) : x2 + y2 < 1}
with the Euclidean metric. In [12], the authors prove that given any
closed subset T of Z, there is a sequence of spanning θ-graphs in W \Z
that converge to a limit lamination whose rotationally invariant leaves
are precisely the disks W ∩ {z = c}, c ∈ T .



SEQUENCES OF PROPERLY EMBEDDED MINIMAL DISKS 303

7. The hyperbolic case I. Existence of θ-graphs with
prescribed boundary at infinity: Theorem 3.1 in the

hyperbolic case

We will extend the existence result, Theorem 3.1 of Section 3 (and
Theorem 2 of [12]), to hyperbolic space H3. In this section, B will denote
the open unit ball centered at the origin in R3. We will be interested
in surfaces in B that are hyperbolically minimal, i.e. minimal with
respect to the hyperbolic (Poincaré) metric

ds2 =
4(dx2

1 + dx2
2 + dx2

3)

(1− |x|2)2

on B. This metric is clearly rotationally symmetric around any axis of
the ball, in particular the x3-axis Z. Note that Theorem 3.1 does not
directly apply here because the metric does not extend smoothly to B,
and the boundary (the unit sphere—at infinite distance from any point
of B) is not mean convex in the ordinary sense.

In what follows, for any subset S of B, the sets S and ∂S will continue
to denote the closure of S and the boundary of S in B with respect the
Euclidean metric. We will refer to ∂S ∩ ∂B as the ideal boundary of
S. We will write I = Z ∩B and observe that the ideal boundary of I is
equal to Z ∩ ∂B = {(0, 0,±1)}.

Theorem 7.1. Let γ be a smooth curve in ∂B joining p− to p+ such
that γ intersects each rotationally invariant curve in ∂B exactly once,
and such that the curve C := γ ∪ ρZγ is smooth. Let Γ be the union of
γ with Z. Then Γ bounds a spanning hyperbolically minimal θ-graph D
such that D ∪ ρZD is a smoothly embedded disk with boundary C.

Proof. Let Bn be a sequence of nested open balls centered at the
origin such that Bn ⊂ B and such that

⋃
n Bn = B. Let Γn be the

image of Γ under the Euclidean homothety that takes B to Bn.
By Theorem 3.1, the curve Γn bounds a unique spanning θ-graph Dn

that is minimal with respect to the Poincaré metric. Its rotated images
about Z foliate Bn \ Z.

By Theorem 2.10, we can assume (by passing to a subsequence) that
the Dn converge smoothly on compact subsets of B \ Z to a minimal
lamination L of B\Z. (Theorem 2.10 assumes that all the Dn lie in the
same domain B\Z. Here we have expanding domains Bn\Z. The proof
is the same, requiring only the choice of subsequences at each stage.)

Let ∂L = L \ L. Note that ∂L is a subset of (∂B) ∪ I.

Claim 1. ∂L is contained in Γ.

Proof. Every point in p ∈ (∂B) \Γ is contained in an open Euclidean
ball U that is disjoint from Γ and that meets ∂B orthogonally. Note
that U is disjoint from each Γn. Note also that U ∩ B can be foliated
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by nested totally geodesic surfaces (the boundaries of smaller balls)
that meet ∂B orthogonally and converge in the Euclidean metric to
p. By the maximum principle, U is disjoint from Dn. This proves the
claim. q.e.d.

Because Γ contains no circles it follows from Claim 1 that L contains
no leaves that are rotationally invariant. We now use the properties of
L that were proved in Theorem 2.10:

• By Property (3), L contains no limit leaves;
• By Property (7), there is no curvature blowup in B \ I and, by

Property (6), there is no curvature blowup on I;
• Consequently, by Property (5), there is a single leaf D of L that

contains I in its closure, and that leaf is a spanning θ-graph.

It follows from Property (4) that D is the only leaf of L.
Because there is no curvature blowup on I, the local boundedness of

the curvatures of the Dn implies that D ∪ I is a smooth manifold with
boundary.

Claim 2. Let B(D, p) denote the norm of the second fundamental form
of D with respect to the hyperbolic metric. Then B(D, ·) is bounded
above on D.

Proof of Claim 2. If Claim 2 is false, then there is a sequence of points
pn ∈ D such that B(D, pn)→∞. By passing to a subsequence, we can
assume that pn converges (in the Euclidean sense) to a point p ∈ B.
Since D ∪ I is a smooth manifold with boundary, p ∈ ∂B. Since the
RθD foliate B\Z, D is stable, and stability yields the following estimate:

(13) B(D, pn) min{1,dist(pn, ∂D)} ≤ c,

where c is a constant independent of n, and dist denotes distance in
the hyperbolic metric. (See [21].) Since the ideal boundary ∂B of B is
infinitely far from pn (in hyperbolic distance),

dist(pn, ∂D) = dist(pn, (∂D) ∩B) = dist(pn, I),

so (13) becomes

B(D, pn) min{1, dist(pn, I)} ≤ c.

Since we are assuming that B(D, pn) → ∞, this implies that
dist(pn, I) → 0. Hence p is one of the points of I. However, we have
established that D∪I is a smooth manifold with boundary, so p must lie
in ∂I. That is, p = (0, 0, 1) or p = (0, 0,−1). Passing to a subsequence,
we may assume without loss of generality that p = (0, 0, 1), the North
Pole, and pn → p.

Let fn : B→ B be a Mobius transformation (i.e., a hyperbolic isom-
etry) with the property that p′n := fn(pn) lies on the plane z = 0 and
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that fn(Z) = Z. Let Dn and γn be the images of D and γ, respectively,
under fn. Since

dist(p′n, Z) = dist(fn(pn), fn(Z)) = dist(pn, Z),

and p′n lies on the plane {z = 0} the p′n converge to the origin O =
(0, 0, 0). Note that γn converges smoothly (except at the South Pole)
to a great semicircle S joining the North and South Poles.

By passing to a subsequence, we may assume that the Dn converge
to a minimal lamination L′ of B \ Z. As before, the ideal boundary
of the lamination is contained in S and therefore does not contain any
horizontal circles. Thus L′ does not contain any rotationally symmetric
leaves. That is, there are no limit leaves. Thus the curvatures of the
Dn are uniformly bounded on compact subsets of B, contradicting the
fact that B(Dn, p

′
n) → ∞ and that p′n → O. This completes the proof

the claim. q.e.d.

We now complete the proof of Theorem 7.1. Let

D = D ∪ ρZD ∪ I.

Then D is an embedded minimal disk whose ideal boundary is the
smooth, simple closed curve γ ∪ ρZ(γ), and whose principal curvatures
are uniformly bounded. It follows from the work of Hardt and Lin
[10] that D is a C1-manifold with boundary and must meet the ideal
boundary orthogonally. Based on this work, Tonegawa [22] was able to
prove that in fact D is a smooth manifold with boundary. (This asser-
tion requires some explanation. First, Hardt and Lin assume that D
is a hyperbolic-area-minimizing rectifiable current. Their proof works
equally well if instead one assumes that D is a smooth minimal surface
whose principal curvatures are bounded, and we have established these
bounds in Claim 2. Such boundedness easily implies Lemma 2.1 of [10],
which establishes the essential property of surfaces necessary for their
proof of their result. Second, the main theorem of [10] states that near
the boundary, D is a union of sheets, each of which is a smooth manifold
with boundary. But in our case there is clearly only one sheet since D
intersects each horizontal circle centered on Z exactly once.) q.e.d.

Proposition 7.2. Let D be a spanning hyperbolically minimal θ-
graph as in Theorem 7.1. Let M be a hyperbolically minimal surface
embedded in B \ Z such that ∂M = ∂D and such that M ∪ ρZM is a
C1 manifold with boundary. Then M = D.

The proof of Proposition 7.2 is exactly the same as the proof of the
uniqueness assertion in Theorem 3.1.
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8. The Hyperbolic case II. Necessary Conditions for a
lamination to appear as limit leaves of a limit lamination:

Section 5 in the hyperbolic case

The statements and proofs in Section 5 involved comparing areas
of rotationally invariant surfaces in B with boundaries in ∂B. If we
endow B with the Poincaré metric, then the areas of such surfaces are
infinite, so comparing them becomes problematic. We get around this
problem by working with suitable compact exhaustions of the surfaces.
Let Cyl(s) denote the points in B that are at (hyperbolic) distance
at most s from Z ∩ B. Inspired by [7], where horocycles are used to
cut off ends of divergent geodesics in order to define a Jenkins-Serrin-
like condition for minimal graphs in H2 × R with infinite boundary
values, we will make regions and surfaces finite by clipping them with
the cylinders Cyl(s).

We will use the following fact about catenoids in hyperbolic space.

Theorem 8.2. Let C be a half-catenoid with axis Z, and let D be
another half-catenoid or a totally geodesic disk such that C and D have
the same ideal boundary circle. For s large, let Σ(s) be the portion of
∂ Cyl(s) between C and D. Then

lim
s→∞

area(Σ(s)) = 0.

(A half catenoid is, by definition, one of the two components obtained
from a catenoid by removing its waist, i.e., its unique closed geodesic.)
See Appendix C, specifically Corollary C.2 and Remark C.3 for a proof
of Theorem 8.2.

Theorem 8.3. Consider the open unit ball B ⊂ R3 with the Poincaré
metric. Let R be an oriented, minimal foliation of B \ Z that is rota-
tionally invariant about Z, and let ν(·) be the associated unit normal
vectorfield compatible with the orientation. Let L′ be the sublamination
consisting of rotationally invariant leaves of R.

Let U be a regular open subset of B such that M := (∂U)∩B consists
of leaves of L′ on which the normal ν points out of U . Then M is
area-minimizing.

Furthermore, if M consists of finitely many leaves, and if M ′ is an-
other rotationally invariant, area-minimizing surface with ∂M = ∂M ′

(as oriented surfaces in B), then M ′ is also made up of oriented leaves
of L′.

Of course M has infinite area. Recall that such a surface is said
to be area-minimizing provided every compact portion of it is area-
minimizing.



SEQUENCES OF PROPERLY EMBEDDED MINIMAL DISKS 307

Proof. Let Br = B(0, r) be the ball of Euclidean radius r centered at
0. Thus the hyperbolic radius of Br tends to ∞ as r → 1. Note that

Rr := {L ∩Br : L ∈ R}
is a rotationally invariant foliation of Br \Z. Applying Theorem 5.4 to
Rr, M ∩Br, and U ∩Br, we see that M ∩Br is area minimizing. Since
this is true for each r < 1, the surface M is area minimizing.

To prove the “furthermore” assertion, let M ′ be a rotationally invari-
ant area-minimizing surface with ∂M ′ = ∂M . By elementary topology,
there is regular open set U ′ such that M ′ = (∂U ′) ∩ B and such that
U ′ ∩ ∂B = U ∩ ∂B.

Note that M ′∩Cyl(s) has the same boundary as the surface consisting
of M ∩ Cyl(s), (U \ U ′) ∩ ∂ Cyl(s), and (U ′ \ U) ∩ ∂ Cyl(s) (provided
the latter two surfaces are oriented suitably). Thus, since M ′ is area-
minimizing,

(14) area(M ′∩Cyl(s)) ≤ area(M ∩Cyl(s))+area((U∆U ′)∩∂ Cyl(s)),

where U∆U ′ = (U \ U ′) ∪ (U ′ \ U) denotes the symmetric difference of
U and U ′. By Theorem 8.2,

(15) area((U∆U ′) ∩ ∂ Cyl(s))→ 0

as s→∞, so by (14),

(16) area(M ′ ∩ Cyl(s)) ≤ area(M ∩ Cyl(s)) + o(1),

where o(1) denotes any quantity that tends to 0 as s→∞.
Note that M and M ′, and therefore also U \U ′ and U ′ \U , lie within

a bounded hyperbolic distance d of B ∩ {z = 0}. Fix an h > d. Let
Cyl(s, h) denote the set of points in Cyl(s) that are at hyperbolic dis-
tance less than h from B ∩ {z = 0}. Let U(s, h) = U ∩ Cyl(s, h). Now
apply the divergence theorem to ν on U(s, h):

(17)

0 =

∫
U(s,h)

Div ν dv

=

∫
M∩Cyl(s,h)

ν · ndA+

∫
U∩∂Cyl(s,h)

ν · nCyl(s,h) dA.

Similarly, applying the divergence theorem to ν on U ′(s, h) = U ′ ∩
Cyl(s, h) gives

(18) 0 =

∫
M ′∩Cyl(s,h)

ν · n′ dA+

∫
U ′∩∂Cyl(s,h)

ν · nCyl(s,h) dA.

Combining (17) and (18) gives∫
M∩Cyl(s,h)

ν · ndA+

∫
(U\U ′)∩∂Cyl(s,h)

ν · nCyl(s,h) dA

=

∫
M ′∩Cyl(s,h)

ν · n′ dA+

∫
(U ′\U)∩∂ Cyl(s,h)

ν · nCyl(s,h) dA.
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By choice of h, none of these terms is changed if we replace Cyl(s, h) by
Cyl(s): ∫

M∩Cyl(s)
ν · ndA+

∫
(U\U ′)∩∂ Cyl(s)

ν · nCyl(s) dA

=

∫
M ′∩Cyl(s)

ν · n′ dA+

∫
(U ′\U)∩∂ Cyl(s)

ν · nCyl(s) dA.

Since ν ≡ n on M , using (15), we have

area(M ∩ Cyl(s))

= area(M ′ ∩ Cyl(s)) +

∫
M ′∩Cyl(s)

(ν · n′ − 1) dA+ o(1)

≤ area(M ∩ Cyl(s)) +

∫
M ′∩Cyl(s)

(ν · n′ − 1) dA+ o(1)

by (16).
Subtracting area(M∩Cyl(s)) from both sides and then letting s→∞

gives

0 ≤
∫
M ′

(ν · n′ − 1) dA

which implies that ν ≡ n′ on M ′. This implies that M ′ consists of
rotationally invariant leaves of R. q.e.d.

9. The Hyperbolic case III. Specifying the rotationally
invariant leaves of a limit lamination: Section 6 in the

hyperbolic case

For a relatively closed subset T ⊂ (0, 1), we defined in Section 6.1 a
lamination C(T ) of ∂B \ {p+, p−} and a lamination M(T ) of B \ Z.

Theorem 9.1. Let B be the open unit ball with the Poincaré metric.
Let T be a relatively closed subset of (0, 1). There exists a sequence of
spanning minimal θ-graphs in B \Z that converge to a limit lamination
L whose rotationally invariant leaves are precisely M(T ).

This is the hyperbolic version of Theorem 6.3. That theorem is for
Riemannian metrics on B that extend smoothly to B, something that
is not true for the Poincaré metric. Nevertheless, we can use the results
of the previous sections to prove this result.

Proof. We follow the proof of Theorem 6.3. Start with a sequence
γi ⊂ ∂B of θ-graphs with the bulleted properties that define G. Choose
them so that they that converge to a lamination C of ∂B \ Z whose
rotationally invariant leaves are precisely the circles in c(T ), where the
convergence is smooth except possibly where z = 0. By Theorem 7.1,
we may assert the existence of a smooth, embedded, minimal θ-graph
Di with boundary γi ∪ (Z ∩ B). Since this boundary is µ-invariant it
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follows from Proposition 7.2 that Di is also µ-invariant. Passing to a
subsequence, we may assume that these θ-graphs converge smoothly
to a lamination L of B \ Z. This limit lamination is also µ-invariant.
We must show that the limit leaves of L are precisely the rotationally
invariant surfaces in M(T ).

The limit leaves of L′ ⊂ L together with the rotations about Z of
the non-limit leaves of L form an oriented minimal foliation R of B \Z
that is rotationally invariant about Z. Therefore, we may use Theo-
rem 8.3. This theorem can be easily used to show that Corollaries 5.5
and 5.6 hold in hyperbolic space. The arguments in Steps 1 and 2 of
the proof of Theorem 6.3 are now directly applicable to our situation,
using Theorem 8.3 where Theorem 5.4 is invoked. q.e.d.

Remark 9.2. To be precise, the limit leaves are the annuli, if any,
in M(T ) together with the disks in M(T ), if any, with their centers
removed. By not removing the centers, we may consider M(T ) as a
lamination of B.

As a application of Theorem 9.1, let a be small enough so thatM(a)
consists of one or more catenoids. (See (2) of Section 6.) Theorem 9.1
above tells us we may realizeM(a) as the limit leaves of a limit lamina-
tion of B \ Z. Doubling the nonlimit leaves of the limit lamination by
reflection in Z produces a lamination of B with the same limit leaves
M(a), one nonlimit leaf in the component of B \ ∪M(a) that contains
B∩Z, and two congruent leaves in every other component of B\∪M(a).
Consequently:

Theorem 9.3. There exist complete, embedded, simply connected
minimal surfaces in hyperbolic space that are not properly embedded.
In particular for every area-minimizing catenoid C in hyperbolic space,
there exist two complete, noncongruent, simply connected, embedded
minimal surfaces (one on either side of C) that have C in their clo-
sure.

Appendix A. The divergence theorem

Theorem A.1 (Generalized Divergence Theorem). Suppose that Ω
is a domain with compact closure and with piecewise smooth boundary
in a Riemannian (m+1)-manifold. Suppose that K is a compact subset
of Ω with Hausdorff m-dimensional measure 0, and that ν is a bounded
C1 vectorfield on Ω \K such that

∫
|Div ν| dV <∞. Then∫

Ω
Div ν dV =

∫
∂Ω
ν · ndA,

where n is the unit normal to ∂Ω that points out of Ω.
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Here dV and dA indicate integration with respect to (m+ 1)-dimen-
sional volume and m-dimensional area (i.e., with respect to Hausdorff
measure of those dimensions.)

Proof. Let εn be a sequence of positive numbers converging to 0. Note
that for each n, we can cover K by open balls such that the sum of the
areas of the boundaries of the balls is less than εn. Since K is compact,
we can cover it by a finite collection of such balls. Let W (n) be the
union of those balls. Note that for each n, the balls may be chosen to
have arbitrarily small radii. In particular, we can choose the balls at
stage n so that W (n) ⊂ W (n− 1). Note that ∩nW (n) = K. Applying
the divergence theorem to Ω \W (n) gives∫

Ω\W (n)
Div ν dV =

∫
∂(Ω\W (n))

ν · ndA

=

∫
(∂Ω)\W (n)

ν · ndA+

∫
Ω∩∂W (n)

ν · ndA.

This last integral is bounded in absolute value by the supremum of |ν|
times the area of ∂W (n); that area is bounded by εn by choice of W (n).
Thus ∫

Ω\W (n)
Div ν dV =

∫
(∂Ω)\W (n)

ν · ndA+O(εn).

Now use the dominated convergence theorem to take the limit as n →
∞. (Recall that the W (n) are nested and that ∩nW (n) = K.) q.e.d.

Appendix B. Minimal graphs

Let N be a smooth 2-manifold with boundary. Let g be a smooth
Riemannian metric (not necessarily complete) on N×R that is invariant
under vertical translations. Suppose also that N ×R is strictly mean
convex, i.e. the mean curvature vector of ∂(N×R) is a positive multiple
of the inward-pointing unit normal. We will assume when necessary that
N has been isometrically embedded in some Euclidean space Rk, so that
N ×R lies in Rk+1. Thus translation and dilation make sense.

We are interested in graphs over N : Let

f : N \ ∂N → R

be a smooth function whose graph is a g-minimal surface M . We will
assume throughout this Appendix that M is such a graph, and that M
is a smoothly embedded manifold-with-boundary, where the boundary is
Γ := M ∩ ∂N . We will also assume that the curvature of Γ and its
derivative with respect to arclength are bounded above by some κ <∞.

Letting N be a convex domain in R2 gives the simplest example of
this setting. Here, the metric g on N × R is the product metric, and
it is the standard Euclidean metric. In this paper we are considering
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rotationally symmetric (around the z-axis Z) domainsW ⊂ R3 endowed
with Riemannian metrics that are also rotationally symmetric. The
simply connected covering space of W \ Z can be written in the form
N ×R, where

N = {(x, z) : x > 0, (x, 0, z) ∈W}.
Vertical translations in N ×R correspond to rotations in W \ Z. The
metric g on N×R lifted from the metric on W \Z is translation invariant
but it is not the product metric.

Proposition B.1. Suppose that K is any compact region in (N \
∂N)×R with piecewise-smooth, mean convex boundary. Then

1. The surface M ∩ K has less area than any other surface in K
having the same boundary.

2. Furthermore,

area(M ∩K) ≤ 1

2
area(∂K).

Theorem B.2. If U is an open subset of N with compact closure
and if U = U ×R, then

B(M,p) dist(p,Uc) < C,

for some constant C = C(N, g,U , κ) <∞.

Proof of Proposition B.1. To prove Statement 1, define

F : N ×R→ R,

F (x, z) = z − f(x).

Note that the level sets of F are vertical translates of M , that these level
sets foliate N ×R, and that M is the level set F = 0. Now let S be the
least-area surface (flat chain mod 2) in K having the same boundary as
M∩K. Then S is smooth except possibly at its boundary. Assume that
S is not M ∩K. Then F is nonzero, say positive, at some point of S.
Let q be the point in S at which F is a maximum. Since F = 0 on ∂S,
q is an interior point. Thus S lies below the minimal surface F = F (q)
but touches it at q. By the maximum principle, the entire connected
component S′ of S that contains q must lie in the level set F = F (q).
Note that S′ must have boundary points, since otherwise S \ S′ would
have the same boundary as S but less area. However, F = 0 on ∂S, a
contradiction. This completes the proof of Statement 1.

To prove Statement 2, note that (∂K)∩{F < 0} and (∂K)∩{F ≥ 0}
both have the same boundary as M ∩ K, and their areas add up to
area(∂K). Thus

area(M ∩K) ≤ min{area((∂K) ∩ {F < 0}), area((∂K) ∩ {F ≥ 0})}

≤ 1

2
area(∂K). q.e.d.
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Proof of Theorem B.2. Suppose that the theorem is false. Then there
is a sequence of examples Mn satisfying the hypotheses of the theorem
such that

(19) sup
p∈Mn∩ U

B(Mn, p) dist(p,Uc)→∞.

Since Mn ∩ U is compact (it is the graph of a smooth function over U),
the supremum in (19) is attained at some point pn ∈Mn ∩ U . Thus:

(20) B(Mn, p) dist(p,Uc) ≤ B(Mn, pn) dist(pn,Uc)→∞

for any p ∈ Mn ∩ U . By vertically translating each Mn, we may as-
sume that the height of pn is 0. The assumption about bounds on the
curvature of Γn = ∂Mn imply that we can assume, by passing to a sub-
sequence, that the Γn converge in C2,α to an embedded curve Γ. (If ∂N
is connected, then of course each Γn is connected. But Γ need not be
connected because portions of Γn may go off to infinity.)

Now translate Mn, U , and N ×R by −pn and dilate by B(Mn, pn)
to get M ′n, U ′n, and N ′ ×R. Note that

(21) B(M ′n, 0) = 1

and, using (21), the scale invariance of the product B(Mn, p) dist(p,Uc),
and (20),

dist(0, (U ′n)c) = B(M ′n, 0) dist(0, (U ′n)c)

= B(Mn, pn) dist(pn, (Un)c)

→∞.

In particular,

(22) dist(0, (U ′n)c)→∞.

Choose R < dist(0, ∂U ′n), and let p be a point in M ′n satisfying
dist(p, 0) < R. (Here we are using the rescaled metric associated at
the nth stage.) For such a choice of p we have from (20), scale invari-
ance and (21) and the triangle inequality:

B(M ′n, p) ≤ B(M ′n, 0)
dist(0, (U ′n)c)

dist(p, (U ′n)c)

=
dist(0, (U ′n)c)

dist(p, (U ′n)c)

≤ dist(0, (U ′n)c)

dist(0, (U ′n)c)− dist(p, 0)
.

Now choose any fixed R > 0. By (22), we have R < dist(0, ∂U ′n) for
n large enough. Choose p so that dist(p, ∂U ′n) < R. Then from the
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estimate above

B(M ′n, p) ≤
(

1− dist(p, 0)

dist(0, (U ′n)c)

)−1

≤
(

1− R

dist(0, (U ′n)c)

)−1

.

This estimate is valid for any R > 0 and n sufficiently large. It follows
that

(23) lim sup
n→∞

(sup{B(M ′n, p) : p ∈M ′n, dist(p, 0) < R}) ≤ 1.

Note that the dilation factors B(Mn, pn) are diverging. Hence the
metrics B(Mn, pn)g are becoming the flat metric. The curvature esti-
mate (23) implies that (after passing to a subsequence) the M ′n converge
smoothly to an area-minimizing surface M ′ in a flat Euclidean space E.
Whether E is all of R3 or not depends on what happens as n → ∞ to
∂N ′n ×R. If dist(0, ∂Nn ×R) → ∞, then E is Euclidean three-space.
If these distances are bounded, then E is a flat halfspace bounded by a
plane corresponding to the limit (after passing to a further subsequence)
of the boundaries N ′n×R. In the latter case, ∂M ′ is a straight line lying
in the plane ∂E. In either case, from (23) and (21), we can assert that

(24) supB(M ′, ·) = B(M ′, 0) = 1.

Claim. E is a halfspace, and M ′ ⊂ E is a properly embedded, simply
connected area-minimizing minimal surface with quadratic area growth,
whose boundary ∂M ′ is a line in the plane ∂E.

Proof of Claim. Each M ′n is a graph. Hence M ′ is simply connected
and properly embedded in E. Recall that Mn is stable in N×R. Hence
M ′n is stable in N ′n ×R. Stability gives us the estimate

B(M ′n, 0) dist(0,Γ′n ∪ (U ′n)c) < c0

for some constant c0 independent of n. Therefore,

dist(0,Γ′n ∪ (U ′n)c) < c0

since B(M ′n, 0) = 1. Thus by (22),

lim sup
n→∞

dist(0,Γ′n) < c.

It follows that (after passing to a subsequence) the Γ′n converge smoothly
to a straight line Γ′ and that ∂N ′n × R converges smoothly to a limit
E that is isometric to a closed halfspace of R3. The boundary of E
contains the line Γ′.

Observe that if q ∈ ∂E, then it follows from Statement 2 of Proposi-
tion B.1 that

area(M ′ ∩B(q, r)) ≤ 1

2
area(∂(B(q, r) ∩ E)) = 3πr2.
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Thus M ′ has quadratic area growth. It follows from Statement 1 of that
same proposition that M ′ is area minimizing. This completes the proof
of the claim. q.e.d.

We now show that M ′ must be a halfplane, contradicting the fact that
B(M ′, 0) = 1 (see (24)). This will complete the proof of Theorem B.2.

A properly embedded, area-minimizing minimal surface with qua-
dratic area growth must be a halfplane or half of Enneper’s surface.
This was conjectured by one of us [23] and proved by Pérez [20]. (Here,
area-minimizing is used in the classical sense. That is, the allowed com-
parison surfaces are obtained by compactly supported deformations that
vanish on the boundary.) According to the claim above, M ′ satisfies all
the hypotheses, so it must be either a halfplane or half of Enneper’s
surface. But M ′ lies in a halfspace, and half of Enneper’s surface does
not. So M ′ is a halfplane.

Here is another way to see that M ′ is a halfplane. Double M ′ by
Schwartz reflection about its boundary line to produce a complete, sim-
ply connected, embedded, minimal surface. As established in the Claim
above, M ′, has quadratic area growth in R3, so the same is true for its
double. But finite topology together with quadratic area growth was
shown by P. Li [15] (see Proposition 32 in [25]) to imply finite total cur-
vature, and it is well known that the only complete, simply connected,
embedded minimal surface of finite total curvature is the plane. q.e.d.

Appendix C. Hyperbolic catenoids

Consider the hyperbolic metric on the upper halfspace:

dx2 + dy2 + dz2

z2
.

Let r =
√
x2 + y2 and R =

√
x2 + y2 + z2. Let θ be the angle that the

vector (x, y, z) makes with the horizontal:

θ = arcsin
z

R
∈ [0, π/2].

The hemispheres {R = constant} are totally geodesic surfaces of rev-
olution about Z = {x = y = 0} = {θ = π/2}. For α ∈ (0, π/2), the
surfaces

(25) cone(α) := {θ = α}

are surfaces of revolution about Z orthogonal to the hemispheres.
The hyperbolic distance s from Z of a point (x, y, z) ∈ cone(α) to Z

is given by the following, where R2 = x2 + y2 + z2:

(26) s =

∫ π/2

α

Rdθ

z
=

∫ π/2

α

dθ

sin θ
= | ln tan(α/2)|.
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From this, we see that cone(α) is the set of points at constant hyperbolic
distance s from Z.

If we define Cyl(s) to be the points at hyperbolic distance equal to
or less than s from Z, then

(27)
Cyl(s) = {(x, y, z) : π/2 > θ(x, y, z) ≥ α},

∂ Cyl(s) = cone(α),

where α and s are related by (26).
In general, consider a surface Σ of revolution about Z. It can be

expressed as

R = R(τ), θ = θ(τ), τ ∈ I,
where I ⊂ R is some interval. Since the Euclidean distance to Z is
R sin θ, the Euclidean area of an infinitesimal ribbon of Σ is given by

2πR cos θ
√
dR2 +R2 dθ2.

Therefore the hyperbolic area of that ribbon is

2πR cos θ
√
dR2 +R2 dθ2

z2
=

2πR2 cos θ

z2

√
(dR/R)2 + dθ2

=
2π cos θ

sin2 θ

√
dt2 + dθ2,

where t = logR (so R = et). Here we have used z = R sin θ.
Consequently, we see that a surface rotationally invariant about Z is

a minimal surface if and only if the corresponding curve in

{(θ, t) ∈ (0, π/2]×R}
is a geodesic with respect to the metric

(28)
2π cos θ

sin2 θ

√
dt2 + dθ2.

Now suppose we have a geodesic given by

t = t(θ), θ ∈ I,
where I ⊂ (0, π/2] is an interval. Then the length is∫

θ∈I

2π cos θ

sin2 θ

√
dt2 + dθ2 =

∫
θ∈I

2π cos θ

sin2 θ

√
t′(θ)2 + 1 dθ.

Since the integrand does not depend on t, the Euler-Lagrange equation
for this functional (i.e., the equation for a geodesic) is

d

dθ

(
2π cos θ

sin2 θ

t′(θ)√
t′(θ)2 + 1

)
= 0

or

(29)
2π cos θ

sin2 θ

t′(θ)√
t′(θ)2 + 1

= c
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for some constant c.
From (29) we have the following result:

Theorem C.1. For θ near 0,

(30) t′(θ) = O(θ2)

and therefore

(31) t(θ)− t(0) = O(θ3).

Corollary C.2. Consider two geodesics in (0, π/2] × R converging
to the same ideal boundary point. The vertical distance between them
tends to 0 as θ → 0. That is, if t1(·) and t2(·) are two solutions of the
Euler-Lagrange equation with t1(0) = t2(0), and if I(θ) is the vertical
segment joining (θ, t1(θ)) and (θ, t2(θ)), then the length of I(θ) (with
respect to the metric (28)) is O(θ) as θ → 0.

Proof. We can let t1(·) be any solution t(·), and we may as well take
t2(θ) to be the horizontal geodesic t2(θ) ≡ t(0). Now

length(I(θ)) =
2π cos θ

sin2 θ
lengtheucl I(θ)

=
2π cos θ

sin2 θ
|t(θ)− t(0)|

=
2π cos θ

sin2 θ
O(θ3),

which is clearly O(θ). q.e.d.

Remark C.3. The length of I(θ) equals the area of the ribbon on
cone(θ) between the rotational minimal surfaces that correspond to the
two geodesics converging to the same ideal-boundary point. By (27),
cone(θ) = ∂ Cyl(s), and by (26), s→∞ if and only if θ → 0. Therefore,
Theorem 8.2 follows from Corollary C.2.

We now compute the curvature of the Riemannian metric (28).

Lemma C.4. Let λ = λ(θ, t) = 2π cos θ/ sin2 θ. The Gauss curvature

K of the metric λ
√
dθ2 + dt2 on the strip (θ, t) ∈ (0, π/2)×R is given

by

K = K(θ) =
1

4π2
tan2 θ

(
tan2 θ − 2

)
.

In particular, K ≥ 0 if and only if θ ≥ α0 := arctan
√

2.

Proof. We use the following formula for the Gauss curvature of a
surface with a conformal metric λ

√
dθ2 + dt2:

(32) K =
−∆ lnλ

λ2
.
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We compute

(lnλ)′ = − tan θ + 2 cot θ,

(lnλ)′′ = − 1

cos2 θ
+

2

sin2 θ
.

Thus

K =
sin4 θ

4π2 cos2 θ

(
1

cos2 θ
− 2

sin2 θ

)
=

1

4π2
tan2 θ

(
tan2 θ − 2

)
.

q.e.d.

Proposition C.5. Let C and C ′ be minimal annuli of rotation with
a common axis Z in hyperbolic thee-space. Suppose that both of these
annuli lie outside the cylinder Cyl(ln tan(α0/2)), as defined in (27).
Then C and C ′ can intersect in at most one circle. In particular, no
two such annuli have the same boundary.

Here, α0 = arctan
√

2 as in Lemma C.4 above. The proposition
follows immediately from Lemma C.4 and the observation that on a
surface of negative curvature, two distinct geodesics cannot cross more
than once, a simple consequence of the Gauss-Bonnet formula. (By
construction, geodesics in the strip (0, π/2)×R correspond to minimal
annuli of rotation in hyperbolic three-space.)
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