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RANK 2 AFFINE MANIFOLDS IN GENUS 3

David Aulicino∗ & Duc-Manh Nguyen

Abstract

We complete the classification of rank two affine manifolds in
the moduli space of translation surfaces in genus three. Combined
with a recent result of Mirzakhani and Wright, this completes the
classification of higher rank affine manifolds in genus three.
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1. Introduction

A translation surface is a Riemann surface with a flat geometry given
by a holomorphic 1-form on the surface. It is natural to consider the
moduli space of translation surfaces, which is the moduli space of Rie-
mann surfaces carrying the bundle of holomorphic 1-forms, also called
Abelian differentials. This moduli space admits an action by SL2(R).
The works of [EM18, EMM15, Fil16] prove that SL2(R) orbit closures
are affine submanifolds admitting a finite ergodic SL2(R)-invariant mea-
sure, and are also quasi-projective subvarieties of the moduli space of
Abelian differentials. However, a complete classification of all quasi-
projective subvarieties of moduli space that are SL2(R)-invariant is
beyond the scope of current techniques. Nevertheless, such a classi-
fication was obtained in genus two prior to the aforementioned results
[McM07].

The purpose of this paper is to contribute to the classification of
the orbit closures in higher genus. Specifically, we complete the clas-
sification of rank two affine submanifolds in genus three (see below for
a brief introduction to the notion of cylinder rank). Combined with
the recent result [MW18, Th. 1.1], a consequence of our result is the
following

Theorem A. Let M = (X,ω) be a translation surface in a stratum
H(κ) in genus three. Then either the closure of the GL+(2,R)-orbit of
M is one of the following: the component of H(κ) that contains M ,
the intersection of this component with the hyperelliptic locus, with the
Prym locus, or with the intersection of these two loci, or M is completely
periodic in the sense of Calta, and the ratio of the circumferences of any
pair of parallel cylinders belongs to a finite set.

The (cylinder) rank of an orbit closure was introduced in [Wri15],
and it counts half the degrees of freedom in absolute periods of points
(or translation surfaces) in the orbit closure. By definition, the cylinder
rank of an orbit closure of surfaces in genus g cannot be greater than g.
Any stratum of translation surfaces in genus g is of rank g. On the other
hand, closed SL2(R)-orbits are examples of rank one affine submanifolds
as well as the Prym eigenform loci discovered by [McM06]. Following a
result of [Wri15], every surface in a rank one orbit closure is completely
periodic (in the sense of Calta), meaning that if the surface has a regular
closed geodesic in some direction, then any other trajectory in the same
direction is either a saddle connection or a closed (regular) geodesic.
Orbit closures of rank at least two are said to be of higher rank.
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The works of [NW14, ANW16, AN16] established the classification
of rank two orbit closures in strata in genus three with at most two zeros.
This paper exclusively concerns rank two orbit closures in H(2, 1, 1) and
H(1, 1, 1, 1).

All of the previous works heavily relied on “cylinder proportions” to
establish the symmetry required to prove that a translation surface ad-
mitted an involution. However, this approach seems to be unrealistic for
the last two strata because of the large number of cylinder diagrams that
must be analyzed. (There are 190 3-cylinder diagrams, 92 4-cylinder di-
agrams, and 26 5-cylinder diagrams to consider.1 ) On the other hand,
for translation surfaces satisfying most cylinder diagrams in a stratum
with several zeros, it is possible to deform the surface by collapsing some
cylinders to get a translation surface in a lower stratum. We developed
new tools based on this observation that rely on [MW17].

While it will be necessary to compute a few cylinder proportions,
it is degeneration techniques that will take center stage in the proofs
in this paper. A posteriori, all rank two affine manifolds in these two
strata contain rank two affine manifolds in lower strata of genus three in
their boundary. Eventually, we will show that every surface in any rank
two affine manifold in genus three admits a Prym involution (see the
definitions below). Some affine manifolds consist exclusively of hyper-
elliptic Riemann surfaces, that is, they have a hyperelliptic involution
in addition to the Prym involution. The existence of those involutions
will be established by observing that they exist on the surfaces in the
boundary, and with the appropriate assumptions, they can be extended
to surfaces in the interior of the affine manifold (see Proposition 2.10).
Combined with a dimension count, this allows us to get the complete
list of all rank two affine manifolds in the remaining strata.

Another key ingredient is Proposition 2.15, which may be interesting
in its own right. This proposition generalizes the results of Masur and
Kontsevich-Zorich on the density of the set of Jenkins-Strebel differen-
tials with a single cylinder in any stratum of translation surfaces (see
also [Lan08] for related results in the space of quadratic differentials).
The essential observation in its proof is the flat surface implication of
the result of [EMM15] that the upper triangular orbit closure is equal
to the SL2(R) orbit closure.

Mirzakhani conjectured that if the rank is at least two, then the or-
bit closure covers a stratum of Abelian or quadratic differentials. The
result of this paper thus confirms the conjecture in genus three. It is
also verified in other contexts. In [MW18], Mirzakhani and Wright
prove that the only orbit closures of maximal rank are hyperelliptic

1Computed in Sage using the surface dynamics package. The results in this paper
do not rely on any Sage computations.



208 D. AULICINO & D.-M. NGUYEN

loci and connected components of the moduli spaces of translation sur-
faces with specified orders of zeros, known as strata. In [Api18], it
is proven that all higher rank orbit closures in hyperelliptic connected
components of strata arise from covering constructions. Though this
conjecture is not true in full generality by [MMW17] and forthcoming
work of Eskin, McMullen, Mukamel, and Wright, the exceptions appear
to be extremely rare.

Together with the result of [MW18], our results complete the classi-
fication of higher rank orbit closures in genus three. We hope that this
classification facilitates results in genus three concerning higher rank
affine manifolds, e.g. [Aul15, Thm. 2.8] follows easily from the main
result of this paper and the Forni Geometric Criterion [For11]. Fur-
thermore, we hope that it inspires ideas that lead to classifications in
higher genus.

Finally, we remark that we believe that a classification of rank three
affine manifolds in genus three should be relatively easy to accomplish
using our techniques. However, given the general nature of the result
announced in [MW17], we refrain from attempting such a classification
with our methods.

1.1. Statement of the main result. Let M = (X,ω) be a translation
surface in genus three. Throughout this paper, by a Prym involution of
M , we will mean an automorphism τ of the Riemann surface X such
that

a) τ2 = idX ,
b) τ∗ω = −ω,
c) τ has exactly four fixed points in X.

Remark that condition b) means that τ is isometric for the flat metric
structure whose derivative is given by −id at regular points.

Let Y := X/〈τ〉 be the quotient of X by the action of a Prym involu-
tion τ . By definition, there exists a double cover π : X → Y ramified at
four points (the fixed points of τ). It follows from the Riemann-Hurwitz
formula that Y is a Riemann surface of genus one. Condition b) implies
that there exists a meromorphic quadratic differential η on Y such that
π∗η = ω2.

We will call the subset of H3 = ΩM3 consisting of surfaces admitting
a Prym involution the Prym locus and denote it by P. As usual, the
subset of H3 consisting of pairs (X,ω) where X is a hyperelliptic surface
is called the hyperelliptic locus, and we denote it by L.

Naturally, the intersection of P with each connected componentH∗(κ)
of a stratum H(κ) (here ∗ is either “hyp” or “odd”) consists of standard
double covers of quadratic differentials in some stratum in genus one.

It follows from Lemma 2.16 below that the intersection P ∩ L ⊂ H3

consists of unramified double covers of translation surfaces in genus two.
Actually, it is not difficult to show that any unramified double cover of
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a surface in H2 must be contained in P ∩ L. Our main result can be
stated as follows

Theorem 1.1. Let M be a rank two affine submanifold of a con-
nected component of a stratum H(κ) in genus three. Then either M is
a component of P∩H∗(κ), orM is a component ofM = P∩L∩H∗(κ).
In the latter case M is a locus consisting of unramified double covers of
surfaces in a stratum of H2.

Theorem 1.1 was proved for strata H(κ) such that |κ| ≤ 2 by our pre-
vious classifications (see [NW14, ANW16, AN16]). Namely, in H(4)
we have two components Hodd(4) and Hhyp(4), the Prym locus does not

intersect Hhyp(4), and P ∩ Hodd(4) = Q̃(3,−13). The stratum H(3, 1)
does not intersect P, hence there are no rank two affine submanifolds
in H(3, 1). The stratum H(2, 2) has two components Hodd(2, 2) and
Hhyp(2, 2) ⊂ L. We have

P ∩Hhyp(2, 2) = H̃hyp
(2,2)(2) = Q̃(12,−12),

P ∩Hodd(2, 2) = Q̃(4,−14),

P ∩ L ∩Hodd(2, 2) = H̃odd
(2,2)(2).

Remark 1.2. Let M be a surface in H(2, 2)∩P. If M ∈ Hodd(2, 2),
then the Prym involution exchanges the zeros (cone points) of M , but
if M ∈ Hhyp(2, 2), then the Prym involution fixes each of the zeros of
M .

Let M = (X,ω) be a translation surface that admits a Prym involu-
tion τ . Let M ∈ H(2, 12). Since τ∗ω = −ω, the double zero of ω must be
fixed, and the two simple zeros must be exchanged by τ . By assumption,
τ has three regular fixed points. Therefore, P ∩H(2, 12) = Q̃(2, 1,−13).
If M ∈ H(14), then τ must exchange two pairs of simple zeros and has

four regular fixed points. Therefore, P ∩H(14) = Q̃(22,−14).
Assume in addition that M admits a hyperelliptic involution. Then

M is an unramified double cover of a translation surface in genus two by
Lemma 2.16. It follows in particular that M 6∈ H(2, 12). If M ∈ H(14),
then M is an unramified double cover of a surface in H(1, 1). Denote

the locus of such surfaces by H̃(1, 1). Then, P∩L∩H(14) = H̃(1, 1). By
Proposition 2.17, this locus is a connected affine submanifold of H(14).

Note that the loci Q̃(2, 1,−13) and Q̃(22,−14) are connected by a
result of Lanneau [Lan08, Th. 1.2]. From the observations above, to
prove Theorem 1.1, it suffices to show

Theorem 1.3. Let M be a rank two affine submanifold in H3 =
ΩM3.

• If M⊂ H(2, 12), then M = Q̃(2, 1,−13),

• If M⊂ H(14), then either M = Q̃(22,−14), or M = H̃(1, 1).
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Figure 1 gives the list of all rank two affine manifolds in genus three
and the relations between them.

Q̃(22,−14)

Q̃(2, 1,−13) Q̃(4,−14)

Q̃(3,−13)

H̃(1, 1)

H̃hyp
(2,2)(2) = Q̃(12,−12) H̃odd

(2,2)(2)⊃

∪

Figure 1. Rank two affine submanifolds of H3: X → Y
means that X ⊂ ∂Y , and X has codimension 1 in Y .

We close this section by indicating how Theorem 1.1 and [MW18,
Th. 1.1] imply Theorem A. Let M be the closure of GL+(2,R) ·M in
H(κ). IfM is of rank three (that is of full rank), then by [MW18, Th.
1.1], M is a component of H(κ) or a component of H(κ) ∩ L. If M is
of rank two, then by Theorem 1.1, M is a component of H(κ) ∩ P or
a component of H(κ) ∩ P ∩ L. Finally, if M is of rank one, then M
must be completely periodic by [Wri15, Th. 1.5], and the ratio of the
circumferences of any pair of parallel cylinders belongs to a finite set
by [MW17, Th. 1.4].

1.2. Outline. The paper is organized as follows: in Section 2 we recall
essential definitions and important results needed for our proofs. Our
strategy is to degenerate surfaces in a given rank two affine manifold
M ⊂ H(2, 12) ∪ H(14) by collapsing a family of M-parallel cylinders,
to get surfaces in another rank two affine manifold M′ contained in
some lower stratum. The key point is that in some situations, we have
dimM = dimM′ + 1 (see Propositions 2.8 and 2.9). Moreover, we can
derive some important properties of surfaces inM, namely the existence
of involutory automorphisms, from the properties of surfaces inM′ (see
Proposition 2.10). We will also prove that the intersection P ∩L in H3

is precisely the locus of unramified double covers of translation surfaces
of genus two (see Lemma 2.16). In [AN16], we showed that H(2) gives

rise to two loci of unramified double covers in H3, namely H̃odd
(2,2)(2) and

H̃hyp
(2,2)(2). Interestingly, we will show that the locus of unramified double

covers of surfaces in H(1, 1) is connected (see Proposition 2.17). This
follows from the fact that the mapping class group acts transitively on
the set of non-zero cohomologies with coefficients in Z/(2Z).
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Section 3 implements our strategy in a special situation, where M
contains a horizontally periodic surface with three horizontal cylinders,
whose core curves span a Lagrangian in homology.

In Section 4, we show that M must contain a horizontally periodic
surface with at least four cylinders. For this, we improve some technical
lemmas in [AN16] and use the results of [NW14, ANW16, AN16].

Section 5 addresses the case in which M contains a horizontally pe-
riodic surface with four cylinders. This case turns out to be the most
involved in our analysis due to the various situations that may occur.
Our main result in this section is Proposition 5.2. For the proof, we
split this case into four subcases following the topological type of the
cylinder decomposition (see Lemma 5.1), and each subcase is handled
differently. In order to keep the focus on the main ideas of the proofs,
we defer some technical lemmas to the appendix.

In Section 6, we address the case in whichM contains a horizontally
periodic surface with five cylinders. Employing essentially the strategy
of collapsing, we come to the conclusion that if M ⊂ H(2, 12), then

M = Q̃(2, 1,−13), and if M ⊂ H(14), then either M = Q̃(22,−14),
or M contains a horizontally periodic surface with six cylinders (see
Propositions 6.2, 6.6, 6.11). This allows us to conclude the first part of
Theorem 1.3.

Finally, in Section 7 we consider the case in which M contains a
horizontally periodic surface with six cylinders. NecessarilyM⊂ H(14).
By some elementary combinatorial arguments, we see that in this case
there are only four possible cylinder diagrams (see Proposition 7.1).
Each cylinder diagram will be handled independently to show that either
M = Q̃(22,−14) or M = H̃(1, 1). This allows us to complete the proof
of Theorem 1.3.

Acknowledgements. The authors warmly thank Alex Wright for help-
ful discussions and for suggesting the formulation of Theorem A. They
are also grateful to the Centre International de Rencontres Mathémat-
iques in Marseille for its hospitality and to Vincent Delecroix for pro-
viding the list of cylinder diagrams that inspired this work.

2. Preliminaries

We give a brief summary of the essential definitions and important
results needed for this paper. Since this paper is very much a sequel to
[AN16], all of the notation is consistent between the two papers, and
we encourage the reader to refer to [AN16, Sect. 2] for more detailed
definitions and background.

Strata and Their Structure: A translation surface M = (X,ω) is a
pair of a Riemann surface of genus g ≥ 2 carrying a non-zero Abelian
differential ω. The set H(κ) is the moduli space of translations surface
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where κ specifies the orders of the zeros of the differential. Strata admit
an action by GL2(R) given by multiplying the real and imaginary folia-
tions of ω by elements of the group. There is a natural local system of
coordinates on H(κ) given by integrating ω over a basis of H1(X,Σ,Z),
where Σ ⊂ X is the set of zeros of ω. These are called period coordinates.

Orbit Closures and Their Structure: It was proven in [EMM15],
that the GL2(R) orbit closure of a translation surface is an (immersed)
affine manifold M (after passing to a suitable finite cover) and that
locallyM is a linear subspace of H1(X,Σ,C) in period coordinates. The
field of (affine) definition, denoted by k(M), is the smallest subfield of
R containing the coefficients of the linear equations defining M. It is
shown in [Wri14] that this field is of degree at most g over Q, where g
is the genus of a surface in M.

The rank of an affine manifold M is half the dimension of M after
applying the projection H1(X,Σ) → H1(X). We denote this invariant
by rk(M).

Theorem 2.1 ([Wri14]). We have

rk(M) degQk(M) ≤ g.
In particular, ifM is a rank two affine submanifold in H3, then k(M) =
Q.

Remark 2.2. If k(M) = Q, then the subset of square-tiled surfaces
is dense in M.

Flat Structure: A cylinder on a translation surface is a maximal set
of closed trajectories on M that are pairwise homotopic and do not
pass through singularities. A saddle connection is a flat trajectory that
emanates from a zero and terminates at a not necessarily distinct zero.
A cylinder is simple if each of its boundaries consist of exactly one
saddle connection, and it is semi-simple if at least one of its boundaries
consists of exactly one saddle connection.

Cylinder Decompositions: We say that a translation surface M is
periodic in a direction θ ∈ RP1, if every geodesic in this direction is
either periodic, or a saddle connection. Equivalently, M decomposes
into a union of open cylinders and saddle connections in this direction.
Therefore, we also say that M admits a cylinder decomposition in di-
rection θ. It follows from a result of Smillie-Weiss [SW04] that every
GL+

2 (R)-orbit closure contains a horizontally periodic surface.

Cylinder Deformations: If two parallel cylinders on M remain par-
allel on all translation surfaces in a local neighborhood of M ∈M, then
we say that they are M-parallel. A cylinder is called free if it does not
share this property with any other cylinder on M . The relation of being
M-parallel is an equivalence relation.
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Let C = {C1, . . . , Ck} be a family of horizontal cylinders on a surface
M ∈ M. For any t, s ∈ R, let as = ( 1 0

0 es ), and ut := ( 1 t
0 1 ). We denote

by aCs (M) (resp. uCt (M)) the surface obtained by applying as (resp. ut)
to every cylinder in C, while the rest of M remains unchanged. Applying
aCs is called stretching, and applying uCt is called shearing the cylinders
in C.

Theorem 2.3 ([Wri15], Thm. 5.1). LetM be an affine manifold. If
C is an equivalence class of M-parallel horizontal cylinders on M ∈M,
then for all s, t ∈ R, aCs (uCt (M)) ∈M.

Twist and Preserving Space: LetM be a horizontally periodic trans-
lation surface in an affine manifold M. The cylinder preserving space
Pres(M,M) is the largest subspace of the real tangent space to M at
M whose elements evaluate to zero on all core curves of the horizontal
cylinders of M . The twist space Twist(M,M) ⊆ Pres(M,M) consists
of all elements that evaluate to zero on all horizontal saddle connec-
tions of M . The following definition is motivated by the lemma below.
In the case of rank one affine manifolds it aligns with the definition of
M-stably periodic from [LNW17]. See [LNW17, Rmk. 2.8].

Definition 2.4. Given a horizontally periodic translation surface
M ∈ M, we say M is M-cylindrically stable if Twist(M,M) =
Pres(M,M).

Lemma 2.5 ([Wri15], Lem. 8.6). Let M be a horizontally peri-
odic translation surface in an affine manifold M. If M is not M-
cylindrically stable, then there exists a horizontally periodic translation
surface in M with more horizontal cylinders than M .

Cylinder Proportions: Let C be an equivalence class of M-parallel
cylinders on a translation surface M ∈M. Let X ⊂M be any cylinder
in another direction on M . The cylinder proportion of C in C is given
by

P (X, C) =
Area(X ∩ (∪C∈CC))

Area(X)
.

Proposition 2.6 (Cylinder Proportion Lemma [NW14]). Let X and
Y be M-parallel cylinders on a translation surface M ∈ M. Let C be
an equivalence class of M-parallel cylinders on M . Then P (X, C) =
P (Y, C).

Cylinder collapsing: We recall that by “collapsing” a cylinder we
mean deforming the translation surface by decreasing the height of the
cylinder to zero while keeping the rest of the surface unchanged. For
a more precise description of this operation, we refer to [AN16, Sect.
2.4]. We first notice
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Lemma 2.7 ([Aul15], Lem. 5.4). Let C be a simple cylinder on a
translation surface M . If the zeros (of the holomorphic 1-form) con-
tained in the boundary of C are simple, then they must be distinct.

The following proposition can be proven without too much effort
using the results from [AN16], and in particular, Proposition 2.16 con-
tained therein. However, it is much quicker to use the more general
and developed machinery of [MW17]. Since all degenerations in this
paper will occur over a compact subset of the moduli space of Riemann
surfaces of fixed genus, the results will not rely on the multicomponent
EMM conjecture.

Proposition 2.8. Let M be an affine manifold, and let M ∈ M.
Suppose that M has a free simple cylinder C with two distinct zeros on
its boundary components. Let M ′ be the surface obtained by collapsing
C so that the two zeros collide, and let H(κ′) where |κ′| = |κ| − 1 be
the stratum of M ′. Then M ′ is contained in an affine submanifold
M′ ⊂ H(κ′) such that rk(M′) = rk(M) and dimM′ = dimM− 1.

Moreover, let U be a neighborhood of M in M such that for any
surface in U , C persists and remains simple. Let ϕ : U → H(κ′) be the
map consisting of collapsing C such that the two zeros in its boundary
are identified. Then ϕ(U) is a neighborhood of M ′ in M′.

Proof. Let σ be the saddle connection in C that is reduced to a point
in M ′, and V = C · σ ⊂ H1(X,Σ,C). By [MW17, Thm. 2.7], the
tangent space TM ′(M′) is isomorphic to TM (M) ∩ Ann(V ), where
Ann(V ) = {ξ ∈ H1(X,Σ,C) | ξ(σ) = 0}. By assumption, there is a
single saddle connection that vanishes at the boundary, so Ann(V ) has
codimension one in TM (M). It follows that dimM′ = dimM− 1. The
claim about the equality of the ranks follows from [AN16, Prop. 2.16].

For the final claim, it is enough to remark that in some appropriate
period coordinates of H(κ) and H(κ′), ϕ is just the projection from
TM (M) onto TM (M) ∩Ann(V ). q.e.d.

Similar cylinders: Let C1 and C2 be two simple cylinders in M .
Recall that Ci, i = 1, 2, is the quotient of an infinite horizontal strip
C̃i := R× [0, hi] by a Z-action generated by (x, y) 7→ (x+`i, y), where hi
and `i are respectively the height and the circumference of Ci. Note that
the lines R×{0} and R×{hi} are mapped to the boundary components
of Ci. We can always assume that (0, 0) is mapped to the zero in a
boundary component of Ci. The inverse image of the zero in the other
component is given by (ai, hi) + Z(`i, 0).

We will call a parallelogram in C̃i whose set of vertices is {(0, 0), (`i, 0),
(ai + m`i, hi), (ai + (m + 1)`i, hi)}, m ∈ Z, a normalized fundamental
domain of Ci. We will say that C1 and C2 are similar or proportional,
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if there exist two normalized fundamental domains P1, P2 of C1, C2 re-
spectively such that P2 is the image of P1 by a homothety z 7→ λz, with
λ > 0. In particular, if λ = 1, then C1 and C2 are said to be isometric.
This agrees with the definition of isometric in [ANW16, AN16].

Since C1 and C2 are simple, they persist and remain simple on every
surface in a sufficiently small neighborhood of M in its stratum. The
cylinders C1 and C2 are said to be M-similar, if they are M-parallel
and remain similar on every surface in a neighborhood of M ∈M. Note
that in this case, there exists a constant λ and normalized fundamental
domains such that for any surface M ′ in a neighborhood of M inM, we
have PM

′
1 = λPM

′
2 , where PM

′
i is a normalized fundamental domain of

the cylinder corresponding to Ci in M ′. By a slight abuse of notation,
we will write C1 = λC2.

Proposition 2.9. Assume that {C1, C2} is an equivalence class of
M-similar simple cylinders on M . Assume that the boundary of C1

(resp. C2) contains two distinct zeros, and the pairs of zeros contained
in ∂C1 and ∂C2 are not the same. Let M ′ be the surface obtained by
twisting and collapsing C1, C2 simultaneously such that the zeros in the
boundary of C1 (resp. C2) collide. Then M ′ is contained in an affine
submanifold M′ of a stratum H(κ′), where |κ′| = |κ| − 2, such that
dimM′ = dimM− 1, and rk(M′) = rk(M).

Moreover, let U be a neighborhood of M ∈ M such that for any
surface in U , C1 and C2 persist and remain simple. Let ϕ : U →
H(κ′) be the map consisting of collapsing C1 and C2 such that the two
zeros in the boundary of each cylinder are identified. Then ϕ(U) is a
neighborhood of M ′ in M′.

Proof. For i = 1, 2, let σi be the unique saddle connection in Ci that
is collapsed to a point under the degeneration in the assumption of the
proposition, and V := C · σ1 ⊕ C · σ2 ⊂ H1(X,Σ,C). By [MW17], we
have TM ′(M′) ' TM (M) ∩Ann(V ). By definition,

TM (M) ∩Ann(V ) = {ξ ∈ TM (M) | ξ(σ1) = ξ(σ2) = 0}.

But by the similarity assumption, there exists a constant λ ∈ R>0 such
that for every ξ ∈ TM (M), ξ(σ1) = λξ(σ2). Thus TM (M) ∩ Ann(V ) =
{ξ ∈ TM (M) | ξ(σ1) = 0}. It follows that dimTM ′(M′) = dimTM (M)−
1. The final claim follows as in Proposition 2.8. q.e.d.

The following proposition shows that under some assumptions, an
involution on the surface obtained from a cylinder collapsing does extend
to an involution on the original surface with the same number of fixed
points.

Proposition 2.10. Let M be a translation surface and C =
{C1, . . . , Ck} a family of pairwise M-similar simple cylinders on M
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in the horizontal direction. We assume that in each Ci there exists a
vertical saddle connection δi joining the singularities in its boundary,

and the graph G :=
⋃k
i=1 δi contains no loops (that is G is a disjoint

union of topological trees).
Collapse the cylinders in C simultaneously so that the saddle connec-

tions δi are all reduced to points, and let M ′ be the resulting surface.
Let Π be the union of distinguished saddle connections resulting from
the degeneration of C on M ′. If M ′ admits an involution whose deriv-
ative is −id that preserves Π, then this involution of M ′ extends to an
involution of M which has the same number of fixed points.

In particular, if M ′ is contained in the Prym locus or in the hyperel-
liptic locus of H3, then so is M .

Proof. We first notice that M ′ is a surface of the same genus as M .
To see this, remark that the collapsing of a simple cylinder with distinct
zeros (singularities) in its boundary does not change the topology of the
surface. Using the assumption that G contains no loops, by induction,
we derive that M ′ has the same genus as M .

Let τ ′ be the involution of M ′. Consider the case k = 1, that is
C consists of a single simple cylinder C. In this case Π is a saddle
connection σ joining a zero x′0 of M ′ to itself where x′0 is the collision
of two zeros in M .

By assumption τ ′ preserves σ, hence σ contains two fixed points of τ ′,
one of which is x′0 the other one is the midpoint of σ. By construction,
M ′ \ σ is identified with M \ C. Since τ ′ maps M ′ \ σ to itself, we can
consider τ ′ as an involution of M \ C. Note that every simple cylinder
admits an involution that exchanges its boundary components and fixes
two points in its interior. Therefore, the involution τ ′ extends to an
involution τ of M which fixes the cylinder C. Clearly, τ ′ and τ have the
same number of fixed points.

For the general case, let σi denote the degeneration of Ci on M ′.
Since Π is preserved by τ ′, each σi is either invariant or permuted with
another σj . Let I ⊂ {1, . . . , k} be the subset of indices defined by the
condition: i ∈ I if and only if σi is invariant by τ ′.

Let M̃ ′ be the surface obtained by reinserting the family of cylinders
{Ci, |i ∈ I} to M ′. By the argument of the previous case, we conclude

that τ ′ extends to an involution τ̃ ′ of M̃ ′ with the same number of fixed
points. By construction, the family {σi, |i ∈ Ic} persists on M̃ ′, and any
saddle connection in this family is exchanged with another one by τ̃ ′.
Since τ̃ ′ is an isometry for the flat metric, if σi and σj are exchanged,
then they have the same length. By the assumption of similarity, this
means that Ci and Cj are isometric. Thus τ̃ ′ extends to an involution τ
of M that exchanges Ci and Cj . Clearly, Ci and Cj do not contain any
fixed point of τ in their interior. Thus τ and τ̃ ′ have the same number
of fixed points as do τ and τ ′. q.e.d.
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Remark 2.11. If M is a genus three Riemann surface, an involution
of M is hyperelliptic if and only if it has 8 fixed points.

Topological type of cylinder decompositions: Let M be horizon-
tally periodic, and let C be the family of all horizontal cylinders of M .
By topological type of the cylinder decomposition of M , we will mean
the topological surface underlying the stable holomorphic 1-form that
is the limit aCt (M) as t → +∞. Equivalently, this is also the surface
one obtains after “pinching” all of the core curves of the horizontal
cylinders. Note that all of the topological types of cylinder decomposi-
tions with three or four cylinders of surfaces in genus three are given in
[AN16, Lem. 3.1] and [AN16, Lem. 6.1]. The topological types of the
5-cylinder diagrams are given in Lemma 6.1.

Proposition 2.12. Let M be one of the following loci

{Q̃(3,−13), Q̃(12,−12), Q̃(4,−14), H̃odd
(2,2)(2), Q̃(2, 1,−13)}.

(a) IfM = Q̃(3,−13), then there exists a surface admitting a cylinder
decomposition with three cylinders of topological type given by Case
3.I).

(b1) If M ∈ {Q(12,−12) ' H̃hyp
(2,2)(2)}, then there exists a surface ad-

mitting a cylinder decomposition with four cylinders of topological
type given by Case 4.I).

(b2) If M ∈ {H̃odd
(2,2)(2), Q̃(4,−14)}, then there exists a surface admit-

ting a cylinder decomposition with four cylinders of topological type
given by Case 4.II).

(c) IfM = Q̃(2, 1,−13), then there exists a surface admitting a cylin-
der decomposition with five cylinders of topological type given by
Case 5.I).

Proof. Claims (a), (b1), and (b2) follow from [ANW16, Fig. 7.1],
[AN16, Fig. 18], and [AN16, Fig. 21], respectively. For Claim (c), see
Figure 14. q.e.d.

We now show

Lemma 2.13. Let M be a surface in a rank k affine manifold M
such that M contains a free simple cylinder C with distinct zeros on its
boundary. Let M ′ be the surface obtained from M by collapsing C so that
the two zeros in its boundary collide. Then M ′ is contained in an affine
manifold M′ in the same genus such that rank(M′) = rank(M) = k,
and dimM′ = dimM− 1. Moreover, if M′ contains a dense subset S
such that every surface in S admits a cylinder decomposition of the same
topological type, then M also contains a surface admitting a cylinder
decomposition of this topological type.
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Proof. The first claims concerning the rank and dimension follow from
[MW17, Thm. 2.7] or [AN16, Prop. 2.16].

Next, we claim that there is an open neighborhood W of M ′ ∈ M′
such that every surface in W is obtained from a surface in M by col-
lapsing a free simple cylinder. To see this we observe that the tangent
space TM ′(M′) is isomorphic to Ann(V ) ∩ TM (M) by [MW17], where
V is the vanishing space, which in this case is generated by the saddle
connection σ ⊂ C that collapses to a point. Since each deformation of
M that fixes C corresponds to a deformation of M ′ and vice versa, we
see that W has positive measure in M′.

Let M ′1 ∈ S ∩W . Let c1 be the saddle connection on M ′1 that is the
degeneration of a simple cylinder in a surface M1 ∈ M. Observe c1 is
a saddle connection from a zero to itself. By assumption, M ′1 admits a
cylinder decomposition of the given topological type in some direction
θ. We split the remainder of the argument into two cases.

First, assume that c1 does not lie in direction θ. Cut M ′1 along the
saddle connection c1, and insert a simple cylinder C. Since every saddle
connection between the two zeros in the boundaries of C differs by a
Dehn twist, it suffices to choose a shortest and denote it by σ. The
foliation of M ′1 in direction θ naturally extends into a neighborhood of
the boundary of C. If necessary, twist C so that σ lies in direction
θ. This can be accomplished because the directions of σ and c1 are
transverse. We claim that this surface, which we call M1 ∈ M has
the same topological type as M ′1. First we observe that M1 is periodic
in direction θ by construction. Indeed, this construction added a line
segment of length equal to that of σ to every leaf of the foliation passing
through c1. Secondly, if we consider the homotopy classes of the core
curves of the cylinders in direction θ, then these are preserved on M .
This follows from the observation that there is no leaf of the foliation in
direction θ that passes through one zero on the boundary of σ without
passing through the zero on the other boundary of σ.2

Second, assume that c1 does lie in direction θ. In this case, we once
again cut M ′1 along c1, glue in a simple cylinder C, twist C if necessary
so that it does not admit a vertical saddle connection, and collapse the
cylinder. The resulting surface will have the same topological type as
M ′1 for the same reason as above. q.e.d.

Definition 2.14. Let c be a cylinder diagram. We say that an affine
manifoldM admits a cylinder diagram c if there exists a periodic trans-
lation surface M ∈M such that M has cylinder diagram c.

2We remark that the intersection of the homology class of any closed leaf of the
foliation in direction θ on M1 with the relative homology class represented by σ is
zero. This is a defining property of the construction we used to add a simple cylinder
to M ′1.
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Proposition 2.15. If an affine manifold M admits a cylinder dia-
gram c, then there exists a dense subset S ⊂ M of periodic translation
surfaces admitting c.

Proof. Let M ′ ∈ M admit cylinder diagram c, and without loss of
generality, assume that M ′ admits c in the horizontal direction. Let
P denote the subgroup of upper triangular matrices in SL2(R). By

[EMM15, Thm. 2.1], P ·M ′ = SL2(R) ·M ′. Observe that every trans-
lation surface in P ·M ′ is horizontally periodic admitting cylinder di-
agram c. Hence, it suffices to produce M ∈ M such that M admits
cylinder diagram c and SL2(R) ·M =M.

To produce such an M , consider TR
M ′(M). All deformations in this

space preserve all horizontal saddle connections, whence they preserve
c. Since there are at most countably many affine manifolds inM, there
exists a real tangent vector v ∈ TR

M ′(M) such that SL2(R) · (M ′ + v) =
M. Let M = M ′ + v. q.e.d.

2.1. Unramified double covers.

Lemma 2.16. Let M = (X,ω) be a translation surface in genus
three. The surface M admits a Prym involution and a hyperelliptic
involution if and only if there exists a translation surface M ′ = (X ′, ω′)
in genus two, and an unramified double cover p : X → X ′ such that
p∗ω′ = ω.

Proof. First assume X admits a Prym involution τ and a hyperelliptic
involution ι. Since ι commutes with all automorphisms of X, ρ = τ ◦ ι
is also an involution of X which satisfies ρ∗ω = ω. Let X ′ := X/〈ρ〉 be
the quotient of X by ρ.

For any involution f of X, let

Ω+(X, f) := {ξ ∈ Ω(X)|f∗ξ = ξ}, and

Ω−(X, f) := {ξ ∈ Ω(X)|f∗ξ = −ξ}.

By definition, dim Ω(X ′) = dim Ω+(X, ρ). Since ι acts by −id on Ω(X),
we have dim Ω+(X, ρ) = dim Ω−(X, τ) = 2. Thus X ′ is a surface of
genus two. The Riemann-Hurwitz formula then implies that the double
cover p : X → X ′ is unramified. Since ω ∈ Ω+(X, ρ), there exists a
holomorphic 1-form ω′ on X ′ such that ω = p∗ω′.

Conversely, if there exists an unramified double cover of translation
surface p : M → M ′, then M ′ must be a surface of genus two, and M
admits an automorphism ρ such that p ◦ ρ = p and ρ2 = id. The auto-
morphism ρ is induced by any element of π1(M

′) that is not contained
in p∗π1(M). Since M ′ is of genus two, it has a hyperelliptic involution
which lifts to a hyperelliptic involution ι of M . The composition ι ◦ ρ is
then a Prym involution. The details are left to the reader. q.e.d.
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The following proposition shows that the locus of unramified double
covers of translation surfaces of genus two in H(14) is connected, thus
it consists of a single rank two affine submanifold of H(14). Note that
this locus is also the intersection P ∩ L ∩H(14) by Lemma 2.16.

Proposition 2.17. The locus H̃(1, 1) of pairs (X,ω) ∈ H(14) such
that there exist a pair (X ′, ω′) ∈ H(1, 1) and an unramified double cover
π : X → X ′ satisfying π∗ω′ = ω is connected.

Proof. Let Mg be the moduli space of Riemann surfaces of genus g.

Let M̃2 ⊂M3 denote the locus of Riemann surfaces of genus three that
are unramified double covers of some surface of genus two. We first

show that M̃2 is connected.
Let us fix a topological closed surface of genus two S. Assume that

we have a topological covering of degree two p : Ŝ → S. We then have
χ(Ŝ) = 2χ(S) = −4, hence Ŝ must be a surface of genus three.

By definition p∗(π1Ŝ) is a subgroup of index two of π1S. Thus there

exists a group homomorphism ε : π1S → Z/(2Z) such that p∗(π1Ŝ) =
ker ε. Since Z/(2Z) is abelian, ε can be written as h ◦ p, where p :
π1S → H1(S,Z) is the natural projection, and h : H1(S,Z) → Z/(2Z)
is a homomorphism of abelian groups. Note that we can consider h as
an element of H1(S,Z/(2Z)) \ {0}.

Conversely, given an element h ∈ H1(S,Z/(2Z)) \ {0}, then Γ =

p−1(kerh) is a (normal) subgroup of index two in π1S. Thus p : S̃/Γ→
S is a (topological) double cover, where S̃ is the universal cover of S. In

particular, S̃/Γ is a closed surface of genus three. From classical results

on covering spaces, we know that if p1 : Ŝ1 → S and p2 : Ŝ2 → S are two
double covers which correspond to the same element of H1(S,Z/(2Z)),
then p1 and p2 are isomorphic, that is there exists a homeomorphism
f : Ŝ1 → Ŝ2 such that p1 = p2 ◦ f . Thus we have shown the follow-
ing

Claim 1: There is a bijection between the set of topological double cov-
ers of S up to isomorphism and the set H1(X,Z/(2Z)) \ {0}.

Let us now fix a topological double covering p : Ŝ → S and denote
by h the element of H1(X,Z/(2Z)) associated to p. Let r0 : X0 →
X ′0 and r1 : X1 → X ′1 be two unramified double covers of (compact)
Riemann surfaces, where Xi is of genus three and X ′i is of genus two.

Our goal is to show that there is a path in M̃2 from X0 to X1. We first
show

Claim 2: There are two homeomorphisms φi : S → X ′i, i = 0, 1, such

that the topological covering φ−1i ◦ ri is isomorphic to p.

Proof. It is enough to show the existence of φ0. Let f0 : S → X ′0 be

any homeomorphism and consider the double cover p0 = f−10 ◦r0 : X0 →
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S. Let h0 be the element of H1(S,Z/(2Z)) associated to p0. Since the
action of the Mapping Class Group MCG(S) on H1(S,Z/(2Z)) \ {0} is
transitive (see [FM12, Chap. 6]), there exists a homeomorphism ϕ0 :
S → S such that (ϕ−10 )∗h0 = h. Setting φ0 := f0 ◦ ϕ0 : S → X ′0, from

Claim 1, we see that the covers p and φ−10 ◦ r0 are isomorphic. q.e.d.

Since p and φ−1i ◦ ri are isomorphic, there exists a homeomorphism

φ̃i : Ŝ → Xi that satisfies p = (φ−1i ◦ri)◦φ̃i, or equivalently φi◦p = ri◦φ̃i.
Remark that if we equip S with the conformal structure of X ′i via φi, we

then get an induced conformal structure on Ŝ and φ̃i : Ŝ → Xi becomes
an isomorphism of Riemann surfaces.

Ŝ Xi

S X ′i

φ̃i

p
φi

ri

We now notice that the pairs (X ′i, φi), i = 0, 1, represent two points
in the Teichmüller space T2. Since T2 is connected, there exists a path
[X ′t, φt], t ∈ [0, 1] connecting those two points (here X ′t is a Riemann
surface of genus two, φi : S → Xt is a homeomorphism, and [X ′t, φt]

is the equivalence class of (X ′t, φt)). Since φt ◦ p : Ŝ → X ′t is a double
cover, the conformal structure of X ′t induces a conformal structure on

Ŝ. Let Xt denote the corresponding Riemann surface. By construction

Xt is an unramified double cover of X ′t, which means that Xt ∈ M̃2.

Thus we have found a path in M̃2 from X0 to X1, which shows that M̃2

is connected.

Recall that the stratum H(1, 1) is a subset of the Abelian differential
bundle ΩM2 over M2. Each fiber of ΩM2 is the space of holomorphic
1-forms on a Riemann surface X of genus two, thus can be identified
with C2. The intersection of this fiber with H(1, 1) is the set of holomor-
phic 1-forms on X with two simple zeros. Remark that the double zero
of a holomorphic 1-form on X must be a Weierstrass point, and every
genus two Riemann surface has exactly 6 Weierstrass points. Therefore,
H(1, 1)∩Ω(X) can be identified with C2 minus 6 complex lines. Hence
we can realize H(1, 1) as a bundle over M2 whose fibers are C2 minus
6 complex lines.

H̃(1, 1) H(1, 1)

M̃2 M2
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By definition, H̃(1, 1) is the pullback of this bundle to M̃2. Since M̃2

is connected and the fibers of this bundle are connected, we conclude
that H̃(1, 1) is connected. q.e.d.

3. A special case of cylinder collapsing

Throughout this section, M will be a rank two affine submanifold of
either H(2, 12) or H(14). Using the tools provided in Section 2 and the
classification of rank two affine submanifolds in the strata H(κ) ⊂ H3

where |κ| ≤ 2, we will show that in a special case one can get immedi-
ately the desired conclusions about M. Recall that a cylinder decom-
position in Case 3.I) means that the cylinder decomposition consists of
three cylinders such that the three core curves span a Lagrangian in
homology.

Proposition 3.1. Assume that M contains a horizontally periodic
surface M satisfying Case 3.I) such that two of the cylinders are simple
and there are at least two equivalence classes of cylinders. Then

(a) If M⊂ H(2, 12), then M = Q̃(2, 1,−13).

(b) If M⊂ H(14), then M = H̃(1, 1) or M = Q̃(22,−14).

Remark 3.2. It can be shown that if M is a horizontally periodic
satisfying Case 3.I) in a rank two affine manifold, then the horizontal
cylinders must fall into two equivalence classes.

Proof. Let C1, C2, C3 denote the horizontal cylinders of M , where
C1, C2 are simple. By [AN16, Lem. 2.11], we know that none of C1, C2

is M-parallel to C3. By [AN16, Lem. 2.15], C1, C2, C3 cannot all be
free. Therefore, we can conclude that C1, C2 are M-parallel, and C3 is
free. The arguments in [AN16, Lem. 5.3] allow us to conclude that
C1 and C2 are actually isometric. Moreover, after twisting C3, we can
assume that any vertical ray exiting Ci, i = 1, 2, from its top border
reenters Ci through the bottom border after crossing the core curves of
C3 once.

Let σi, σ
′
i be respectively the top and bottom borders of Ci, then the

condition above means that there is a pair of homologous vertical saddle
connections δi, δ

′
i contained in C3 joining the left endpoint (resp. right

endpoint) of σi to the left endpoint (reps. right endpoint) of σ′i. Let Mi

denote the subsurface of M cut out by δi, δ
′
i that contains Ci. Remark

that Mi is a slit torus, and M1,M2 are isometric.

Case M⊂ H(2, 12). Let x0 denote the unique double zero of M , and
x1, x2 the simple ones.

Claim: The boundary of Ci, i = 1, 2, must contain two distinct zeros.

Proof. Without loss of generality, let us suppose on the contrary that
the boundary of C1 contains only one zero. By Lemma 2.7, this zero
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must be x0. A simple computation shows that the total angle at x0
inside M1 is 4π. Therefore, the angle at x0 outside of M1 is 2π. If
we remove M1 from M and glue δ1, δ

′
1 together such that the points

corresponding to x0 in δ1 and δ′1 are identified, we will obtain a surface
M ′1 in the stratum H(1, 1) which admits a cylinder decomposition with
two cylinders in the horizontal direction.

Note that x0 gives rise to a regular point in M ′1, and C2 can be consid-
ered as a (simple) cylinder in M ′1. The pair {δ1, δ′1} now corresponds to
a vertical simple closed geodesic on M ′1. Remark that there is a unique
diagram for 2-cylinder decompositions of surfaces in H(1, 1) such that
one of the cylinders is simple. We then observe that the condition that
the larger cylinder contains vertical simple closed geodesic, and a pair of
vertical saddle connections that cut out a slit torus cannot be satisfied.
Therefore we get a contradiction. q.e.d.

It is also easy to see that a simple zero cannot occur in the boundaries
of both C1 and C2 by an angle count. Therefore, we can assume that the
boundary of C1 contains x0 and x1, and the boundary of C2 contains x0
and x2. As a consequence collapsing simultaneously C1 and C2 so that
all the zeros collide yields a surface M ′ in H(4). From Proposition 2.9,
we know that M ′ is contained in a rank two affine submanifold M′ of
H(4) which satisfies

dimM′ = dimM− 1.

From the results of [ANW16] and [NW14], we must have M′ =

Q̃(3,−13). By construction, M ′ is horizontally periodic with a unique

horizontal cylinder C. Since M ∈ Q̃(3,−13), M ′ admits a Prym invo-
lution τ .

Let σ̃1 (resp. σ̃2) denote the horizontal saddle connection in M ′

that is the degeneration of C1 (resp. of C2). We claim that σ̃1 and
σ̃2 are exchanged by τ . If they are not exchanged by τ , then in any
neighborhood of M ′ in Q̃(3,−13) we can find a surface on which σ̃1 and
σ̃2 remain but the corresponding holonomy vectors are not equal. Since
such a surface is obtained from a surface in M by collapsing {C1, C2},
this contradicts the condition that C1 and C2 are isometric.

Since τ exchanges σ̃1 and σ̃2, by Proposition 2.10, we see that τ
extends to a Prym involution on M . As a consequence, M ∈ H(2, 1, 1)∩
P = Q̃(2, 1,−13). Since the same is true for all surfaces in M close to

M (see Proposition 2.9), we draw that M ⊂ Q̃(2, 1,−13). Notice that
we have

dimM = dim Q̃(3,−13) + 1 = dim Q̃(2, 1,−13) = 5.

Using the ergodicity of the action of SL(2,R) on M, we conclude that

M = Q̃(2, 1,−13).
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Case M⊂ H(14). By Lemma 2.7, we know that the boundary of Ci, i =
1, 2, must contain two distinct zeros. By computing the angles at the
zeros, it is also easy to check that a simple zero cannot be contained in
the boundaries of both C1 and C2. Therefore, we can conclude that the
boundaries of C1 and C2 contain two different pairs of simple zero. Thus
collapsing simultaneously C1, C2 so that the zeros in each pair collide,
we obtain a surface M ′ inH(2, 2). Let σ̃1 and σ̃2 be the horizontal saddle
connections in M ′ that are the degenerations of C1 and C2 respectively.

By Proposition 2.9, we know that M ′ is contained in some rank two
affine submanifold M′ of H(2, 2) such that dimM = dimM′ + 1. By
the results of [AN16], we must have

M′ ∈ {H̃hyp
(2,2)(2), H̃odd

(2,2)(2), Q̃(4,−14)}.

In all cases, let τ be the Prym involution of M ′.

1) Assume thatM′ = H̃hyp
(2,2)(2). In this case, τ fixes each of the zeros

of M ′, and there is a hyperelliptic involution ι which exchanges
the two zeros of M ′. By definition, ι has 8 fixed points. Note that
two fixed points of ι are contained in the interior of C3 (which is
the unique horizontal cylinder in M ′).

The hyperelliptic involution ι induces a permutation on the set
of horizontal saddle connections of M ′. Since ι permutes the zeros
of M ′, a saddle connection fixed by ι must join one zero to the
other one. In particular, each saddle connection fixed by ι con-
tains exactly one fixed point. We now remark that each σ̃i is a
saddle connection joining a zero of M ′ to itself (this zero is the col-
lision of two simple zeros in M). In particular, σ̃i is not invariant
by ι. Since M ′ has 6 horizontal saddle connections, this implies
that ι has at most 4 fixed points in the union of the horizontal
saddle connections. Thus ι has at most 6 fixed points, which is a

contradiction, and we can conclude that M′ 6= H̃hyp
(2,2)(2).

2) Assume now that M′ = H̃odd
(2,2)(2). In this case, τ exchanges the

zeros of M ′, and there is a hyperelliptic involution ι that fixes each
of the zeros of M ′. It follows that ι has 6 regular fixed points in
M ′. Recall that two fixed points of ι are contained in the interior
of C3. Hence, ι has 4 regular fixed points in the union of the
horizontal saddle connections. Remark that each fixed point must
be contained in a saddle connection which joins a zero of M ′ to
itself. Since there are 6 horizontal saddle connections, and at least
two of them have distinct endpoints, it follows that every saddle
connection that joins a zero of M ′ to itself is invariant by ι. In
particular, each of σ̃1, σ̃2 is invariant by ι.



RANK 2 AFFINE MANIFOLDS IN GENUS 3 225

We claim that τ exchanges σ̃1 and σ̃2. This is because otherwise
we can deform M ′ slightly in H̃odd

(2,2)(2) such that the holonomy vec-

tors associated to σ̃1 and σ̃2 are not equal, which would contradict
the condition that C1 and C2 are isometric.

Now, the observations above mean that the set σ̃1 ∪ σ̃2 is pre-
served by both τ and ι. We can now use Proposition 2.10 to
conclude that ι and τ extend to two involutions ι̂ and τ̂ of M with
the same number of fixed points respectively. In particular, ι̂ must
be a (the) hyperelliptic involution, and τ̂ a Prym involution of M .

We thus have M ∈ H(14)∩P∩L = H̃(1, 1). Since the same is true
for any surface inM close enough to M (see Proposition 2.9), we

derive that M⊆ H̃(1, 1). Since we have

dimM = dim H̃odd
(2,2)(2) + 1 = 5 = dim H̃(1, 1),

it follows that M = H̃(1, 1).

3) Consider finally the caseM′ = Q̃(4,−14). By the same argument
as the previous case, we see that τ must permute σ̃1 and σ̃2. Thus,
τ gives rise to a Prym involution of M by Proposition 2.10, which
means that M ∈ Q̃(22,−14). Since the same is true for any surface

inM close enough to M , we derive thatM⊆ Q̃(22,−14). Finally,
since we have

dimM = dim Q̃(4,−14) + 1 = 6 = dim Q̃(22,−14),

it follows that M = Q̃(22,−14). q.e.d.

4. Getting four cylinders

The goal of this section is to prove that every rank two affine manifold
in the strata H(2, 1, 1) and H(14) contain a translation surface with at
least four cylinders. However, this cannot be done all at once. Due to
our argument below, we can only prove this result for H(2, 1, 1). Once
the classification of rank two affine manifolds in H(2, 1, 1) is established,
the desired result for the principal stratum will follow automatically. We
state the main result of the section here.

Proposition 4.1. Let M be a rank two affine manifold in genus
three.

(1) IfM⊂ H(2, 1, 1), thenM contains a horizontally periodic surface
with at least four horizontal cylinders.

(2) Assume that Q̃(2, 1,−13) is the only rank two affine manifold in
H(2, 1, 1). If M ⊂ H(14), M contains a horizontally periodic
surface with at least four horizontal cylinders.

By [AN16, Lem. 3.2], we know that M always contains a horizon-
tally periodic surface with at least three cylinders. The following lemma
is a generalization of [AN16, Lem. 3.3].
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Lemma 4.2. LetM be a rank two affine manifold in genus three in a
stratum with k ≥ 2 zeros. Assume that every rank two affine manifold in
genus three with at most k−1 zeros admits an involution with four fixed
points whose derivative is −id.3 If M contains a horizontally periodic
translation surface with two cylinders, one of which is simple, then M
contains a horizontally periodic surface with at least three cylinders,
one of which is simple and not free.

Proof. Let M ∈ M be a horizontally periodic surface with two hor-
izontal cylinders C1 and C2, where C1 is simple. If C1 and C2 are
M-parallel, then we are done by [AN16, Lem. 2.14]. Thus let us sup-
pose that C1 is free. We claim that given any two zeros in M , there
always exists a path between them consisting of horizontal saddle con-
nections. This is because if we cut M along a core curve of C1 and a
core curve of C2, then the resulting surface is connected. Otherwise, C1

and C2 are homologous, thus they cannot be free.
Note that each boundary component of C1 contains a single zero ofM .

Let x1 be a zero of highest order in M . Observe that there must exist a
horizontal saddle connection σ connecting x1 to another zero x2. Since
σ is not one of the boundary components of C1, it must be contained
in both sides of C2, thus we have a simple cylinder D contained in C2

whose boundary contains x1 and x2. We consider the following cases:

• x1 is of order ≥ 2: We claim that D is not free. Indeed, if this is
the case, then we can collapse D to get a surface M ′ in a stratum
with k−1 zeros, one of the zeros of M ′ is of order at least 3. Thus
M ′ belongs to H(3, 1) or H(4). Since there is no rank two affine
submanifold in H(3, 1), we only need to consider the case M ′ ∈
H(4). In this case we must have M ′ ∈ Q̃(3,−13). In particular,
M ′ has an involution τ with four fixed points whose derivative is
−id. Note that the unique zero of M must be a fixed point of
τ . By construction, M ′ has two horizontal cylinders, one of which
is simple, the other one is not. Thus, they are both fixed by τ .
But a cylinder fixed by τ must contain two fixed points of τ in its
interior. Therefore, τ must have at least 5 fixed points, which is a
contradiction.

SinceM is defined over Q, we can assume that D is vertical and
M is a square-tiled surface. Since D is not free, it is M-parallel
to another vertical cylinder D′, which must be entirely contained
in the closure of C2. In particular, D and D′ do not fill M . Thus
there exists at least another vertical cylinder, which means that
we have at least 3 vertical cylinders, one of which is simple and
not free.

3For example, this is true of all surfaces in the Prym locus.
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• x1 is a simple zero, i.e. M ∈ H(14): if D is free, then we can
collapse it to get a surface M ′ ∈ H(2, 12). Since the involution
of M ′ must fix the double zero, by the same argument as above
we get a contradiction. Thus D is not free, and we also get the
desired conclusion. q.e.d.

Recall that in [AN16, Lem. 4.1], we have divided 3-cylinder diagrams
in genus three into three Cases 3.I), 3.II), 3.III). The following is a slight
generalization of [AN16, Prop. 5.5].

Proposition 4.3. Let M be a rank two affine manifold in genus
three with at least two zeros. If M ∈M is a horizontally periodic trans-
lation surface satisfying Case 3.I) and two of the horizontal cylinders
are simple, then there is a horizontally periodic surface in M with at
least four cylinders.

Proof. By [AN16, Lem. 5.3], the two simple cylinders in M are M-
parallel and isometric. Furthermore, they can be twisted so that there
is a vertical trajectory passing exactly once through each. This yields
either Case (A) or (B) in Figure 2. Next, consider the vertical direction
after perturbing to a nearby square-tiled surface, we see that each of
the simple cylinders must be contained in (the closure of) a vertical
cylinder. Therefore, there must exist at least three vertical cylinders.

If there are four or more cylinders, then we are done. Otherwise, there
is a vertical cylinder D which is contained in the closure C3. Since no
cylinder parallel to D is entirely contained in C3, D is free by [NW14,
Prop. 3.3(b)]. After rotating the surface M by π/2 and redrawing, we
get the horizontally periodic surfaces in Figure 3. In both cases, we
twist the horizontal cylinder D so that saddle connection c lies where it
does in both figures. By applying [AN16, Lem. 2.14] or [SW04, Cor.
6] to the vertical direction yields a translation surface with four or more
parallel cylinders. q.e.d.

a

a′

a

b

b′

b
(A)

a

a′

a

b′

b

b′

(B)

Figure 2. 3-cylinder diagrams with two simple cylinders.

Let M be a horizontally periodic surface in H(2, 12) ∪ H(14). Let
G be the graph which is the union of all horizontal saddle connections
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a

a

b

b

c

c

(A)

a

a

b

b

c

c

(B)

Figure 3. 3-cylinder diagrams with at least four vertical cylinders.

in M . This graph is called the separatrix diagram in the literature and
has a ribbon structure (see [KZ03, Sec. 4]). If M ∈ H(2, 1, 1), then G
has 3 vertices and 7 edges. If M ∈ H(14), then G has 4 vertices and 8
edges. Note that the valency of a simple zero is 4 and of a double zero
is 6. Since each edge of G is a horizontal saddle connection in M , we
can equip it with the orientation from the left to the right.

Let U be a neighborhood of G in M consisting of the points whose
distance to G is at most ε, with ε > 0 small enough. Each component
of ∂U is a core curve of a horizontal cylinder, and also homotopic to a
cycle of edges of G. We say that two boundary components are adjacent
if the corresponding cycles have a common edge.

We color a component of ∂U red if its orientation (which is induced by
the orientation of U) agrees with the orientation of the corresponding
cycle in G, otherwise we color it blue. A red boundary component
corresponds to the upper side of a cylinder, while a blue one corresponds
to the lower side of a cylinder. Clearly, we have a pairing between the
set of red boundary components and the set of blue ones, two boundary
components are paired if they belong to the same cylinder. Note that
two adjacent boundary components must have different colors because
a saddle connection cannot be contained in the tops (resp. bottoms) of
two different cylinders.

Proposition 4.4. Let M ∈ H(2, 12) ∪ H(14) be a horizontally peri-
odic translation surface satisfying Case 3.I). Then at least one of the
following occurs

(a) One of the cylinders is semi-simple,
(b) There is a horizontal saddle connection contained in both the top

and bottom of the same cylinder.

Proof. Consider the separatrix diagram G and its neighborhood U
described above. The hypothesis implies that G is connected and U is
homeomorphic to a sphere with six open discs removed. As a conse-
quence, G is a planar graph.



RANK 2 AFFINE MANIFOLDS IN GENUS 3 229

A loop in G is an edge that joins a vertex to itself. If there is a
component of ∂U that is homotopic to a loop in G, then one of the
cylinders is semi-simple. Since G is planar, and using the hypothesis on
the number of edges and vertices of G, one can easily check that if there
are some loops in G, then there must exist a loop which bounds a disc.
Hence, in this case we have a semi-simple cylinder.

Figure 4. Admissible configurations for the graph of
saddle connections with no loops in Case 3.I).

Assume from now on that there are no loops in G. There are three
admissible configurations for G, which are shown in Figure 4, one for
H(2, 12) and two for H(14). Observe that in all cases, the outer bound-
ary component of U is adjacent to three other boundary components.
Therefore, the outer component must be paired with one of the adja-
cent ones. This implies immediately that there is an edge of G that is
contained in both the top and the bottom sides of the corresponding
cylinder. The proposition is then proved. q.e.d.

Proof of Proposition 4.1.

Proof. By [AN16, Lem. 3.2], there exists a horizontally periodic
surface M ∈ M with at least three cylinders. By [AN16, Lem. 4.1],
M satisfies one of three possible cases.

(a) If M satisfies Case 3.II), then by the assumption and [AN16, Lem.
4.3], M is M-cylindrically unstable. Thus there exists M ′ ∈ M
that is horizontally periodic with at least four horizontal cylinders.

(b) If M satisfies Case 3.III), then denote the homologous cylinders
by C1, C2, and the remaining one by C3. If we cut M along a core
curve in each of C1, C2, then glue the boundary components of
the new surface after exchanging the pairings, we will obtain two
translation surfaces of genus two, both of which are horizontally
periodic. One of the new surfaces has two horizontal cylinders one
of which is C3. We denote this surface M1, and the other one M2.
Note that since M1 is a genus two translation surface, C3 is either
simple or contains a horizontal saddle connection in both of its
sides.

We have several possibilities. Assume that C3 contains a simple
cylinder C. If the boundary of C contains only simple zeros, then
the simple zeros are distinct by Lemma 2.7. It is easy to check
that there is no cylinder parallel to C that is entirely contained
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in C3. Hence, C is free and can be collapsed. Note that in this
case M degenerates to a surface M ′ in H(2, 2) or H(2, 12). By
Proposition 2.8, M is contained in a rank two affine submanifold
M′ in H(2, 2) or in H(2, 12) such that dimM′ = dimM− 1. By
the results of [AN16] and the hypothesis of the proposition, M′
is one of the following loci

{H̃hyp
(2,2)(2), H̃odd

(2,2)(2), Q̃(4,−14), Q̃(2, 1,−13)}.

By Proposition 2.12, there exists M ′ ∈ M′ admitting a cylin-
der decomposition with four or more cylinders. We conclude by
Proposition 2.15 and Lemma 2.13.

If the boundary of C3 contains a double zero, then the two zeros
in its boundary are the same, and we have a cylinder diagram
similar to [AN16, Lem. 4.8]. But in this case it is easy to check
that the proof of [AN16, Prop. 4.8] goes through without any
challenge even though the top of C1 and the bottom of C2 contain
four saddle connections instead of three.

Finally, if C3 is itself a simple cylinder, we apply [AN16, Lem.
4.7] to reduce to the previous cases.

(c) If M satisfies Case 3.I), by Proposition 4.4, we know that either
one of the horizontal cylinders is semi-simple or contains a sim-
ple cylinder. If the latter occurs, since we can always suppose
that the simple cylinder is vertical and M is a square-tiled sur-
face, it follows that M contains a vertically periodic surface with
one simple vertical cylinder. Using Lemma 4.2, we derive that
M contains a horizontally periodic surface with at least 3 cylin-
ders one of which is simple. If the cylinder diagram of this sur-
face satisfies Case 3.II or Case 3.III, then we conclude as above.
Thus, we are left to consider the case M is horizontally periodic
satisfying Case 3.I, and one of the horizontal cylinders is semi-
simple.

We only need to consider the case M isM-cylindrically stable.
Since the horizontal cylinders of M cannot be all free (see [AN16,
Lem. 2.15]), they must fall into two equivalence classes. Let us
denote these cylinders by C1, C2, C3, where C1 and C2 are M-
parallel, while C3 is free. Let us first consider the case one of the
horizontal cylinders is simple. By Proposition 4.3, we can assume
that only one of C1, C2, C3 is simple. If one of C1 and C2 is sim-
ple, then the other one is not, and we conclude by [AN16, Prop.
5.6]. If C3 is simple, then we conclude by [AN16, Prop. 5.9], and
Proposition 4.3. Finally, in the case where none of C1, C2, C3 is
simple, and one of them is strictly semi-simple, we conclude by
[AN16, Prop. 5.14] and Proposition 4.3. q.e.d.
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5. Four cylinders

We recall [AN16, Lem 6.1] that enumerates all topological types of
4-cylinder decompositions in genus three.

Lemma 5.1. [AN16] If a translation surface M in genus three de-
composes into four cylinders, then pinching the core curves of those
cylinders degenerates the surface to one of four possible surfaces:

• 4.I) Two spheres joined by four pairs of simple poles.
• 4.II) Two spheres joined by two pairs of simple poles such that

each sphere has a pair of simple poles.
• 4.III) Two spheres joined by three pairs of simple poles such that

one sphere carries an additional pair of simple poles.
• 4.IV) Two spheres and a torus such that the spheres have three

simple poles and the torus has two simple poles.

In what follows we will individually consider each of those topological
types of 4-cylinder decomposition. The final result is the following.

Proposition 5.2. Let M be a rank two affine submanifold of either
H(2, 12) or H(14). Assume that M contains a horizontally periodic
surface with 4 horizontal cylinders.

(a) If M ⊂ H(2, 12), then either M contains a horizontally periodic

surface with 5 horizontal cylinders or M = Q̃(2, 1,−13).

(b) If H ⊂ H(12), and assume that Q̃(2, 1,−13) is the unique rank
two affine submanifold in H(2, 12), then either M contains a hor-
izontally periodic surface with at least 5 horizontal cylinders or
M∈ {H̃(1, 1), Q̃(22,−14)}.

Proof. This proposition is the consequence of Corollary 5.4 and the
Propositions 5.7, 5.10, 5.11, 5.13, 5.15, 5.20, and 5.30. q.e.d.

The proofs of the results mentioned above use several technical lem-
mas, that are essential but somewhat tedious as the ideas involved al-
ready appeared in the previous work [NW14, ANW16, AN16]. For
this reason, we defer some of their proofs to the appendix in order to
keep the focus on the novelties.

5.1. Case 4.IV). In this case the core curves of the cylinders cut the
surface into two three-holed spheres, and a two-holed torus.

The following lemma follows from the proof of [Aul15, Lem. 5.6].
The two possible conclusions correspond to the possibility that M isM-
cylindrically stable, which was assumed in the proof of [Aul15, Lem.
5.6], or to the possibility that M is M-cylindrically unstable, in which
case we can produce more cylinders.

Lemma 5.3. Let M be a rank two affine manifold in genus three.
If M ∈M is a horizontally periodic translation surface satisfying Case
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4.IV), then either M has a free simple cylinder with distinct zeros at
each end, or there exists M ′ ∈ M admitting a cylinder decomposition
with at least five cylinders.

Corollary 5.4. Let M be a rank two affine manifold in H(2, 12) or
H(14). If M ⊂ H(14), then we add the additional assumption that the

only rank two affine submanifold of H(2, 12) is Q̃(2, 1,−13). If M ∈M
is a horizontally periodic translation surface satisfying Case 4.IV), then
either M contains a horizontally periodic surface in Case 4.I) or 4.II),
or there exists M ′ ∈M horizontally periodic with at least five cylinders.

Proof. By Lemma 5.3, we only need to consider the case M has a free
simple cylinder C with different zeros on its boundary. Collapsing C
results in a translation surface M ′ which is contained in a rank two affine
submanifoldM′ of a lower stratum of genus three. Since there is no rank
two affine submanifold in H(3, 1), we derive that either M′ ⊂ H(2, 2)
or M′ ⊂ H(2, 12). From Proposition 2.12 we know that either M′
contains a surface admitting a cylinder decomposition satisfying either
Case 4.I), 4.II), or 5.I). We can then conclude by Proposition 2.15 and
Lemma 2.13. q.e.d.

5.2. Case 4.III). In this case, the core curves of the cylinders cut M
into a three-holed sphere and a five-holed sphere, the former contains a
simple zero, while the latter contains the other zeros of M . Let us denote
by x0 the simple zero contained in the three-holed sphere. This zero is
contained in the boundary of three cylinders, denoted by C1, C2, C3. We
number them so that `(C3) = `(C1) + `(C2). The remaining cylinder is
denoted by C4. Let ci be a core curve of Ci.

1

1

2

2

3

3

4

4

C1 C2

C3

C4

Figure 5. Case 4.III) in H(2, 12): cylinder labels, the
white vertex is x0.

Remark that all of the horizontal saddle connections starting from x0
end at x0. The other horizontal saddle connections form a connected
planar graph G with 2 or 3 vertices, such that a neighborhood of G is
homeomorphic to a five-holed sphere. We start by
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Lemma 5.5. Let M be a rank two affine manifold in a stratum in
genus three with at least three zeros. If M contains a horizontally pe-
riodic surface M with four cylinders satisfying Case 4.III) such that M
is M-cylindrically stable, then the equivalence classes are {C1, C2, C3}
and {C4}.

Proof. Since M is of rank two, the horizontal cylinders belong to at
least two equivalence classes. Either C4 is free, or it is not. If C4 is
free, then the relation c1 + c2 = c3 implies that either all three cylinders
C1, C2, C3 are free, or they belong to the same equivalence class. In the
former case, all four cylinders are free and we have a contradiction with
the rank two assumption. Hence, if C4 is free, then we are done.

If C4 is not free, then it is M-parallel to another cylinder say C1.
Since there are at least two equivalence classes, no other cylinder can
be M-parallel to C4. Hence, C2 and C3 must be free. Let ξi denote
the vector in H1(M,Σ,R) which is tangent to the path defined by the
shearing of Ci. Since C2 and C3 are free, it follows that ξ2 and ξ3
are contained in TR

MM. The condition that C1 and C4 are M-parallel

implies that ξ1 + ξ4 ∈ TR
MM.

Note that one can identify H1(M,Σ,R) and H1(M,R) with H1(M \
Σ,R) andH1(M,R) respectively by using Poincaré duality (see [MW17,
§4.1] for details). Moreover, in this setting, the natural projection
p : H1(M,Σ,R) → H1(M,R) can be identified with the projection
p′ : H1(M \ Σ,R) → H1(M,R). Using this identification, up to a non-
zero constant ξi is equal to [ci] ∈ H1(M \ Σ,R), and p(ξi) is equal
to p′([ci]) = [ci] ∈ H1(M,R) (see [Wri15, Rem. 2.5]). As a conse-
quence, we see that there exist a, b ∈ R>0 such that the vectors a[c1] +
b[c4], [c2], [c3] all belong to p(TR

MM). But those vectors span a three
dimensional isotropic subspace of H1(M,R) which contradicts the fact
that p(TR

MM) is symplectic and the assumption that dim p(TR
MM) = 4.

Therefore, C4 must be free and the lemma follows. q.e.d.

Lemma 5.6. Let M be a rank two affine submanifold in a stratum
with at least three zeros. Assume that M ∈M admits a cylinder decom-
position satisfying Case 4.III) in the horizontal direction. Then either
C4 is semi-simple or C4 contains a free simple cylinder with two distinct
zeros in its boundary.

Proof. See Appendix A. q.e.d.

We can now show

Proposition 5.7. Let M be a rank two affine manifold in a stratum
in genus three with at least three zeros. If M⊂ H(14), then we add the

assumption that Q̃(2, 1,−13) is the unique rank two affine submanifold
in H(2, 12). If M ∈ M is horizontally periodic with four cylinders and
M is M-cylindrically stable, then M does not satisfy Case 4.III).
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Proof. By Lemma 5.6 we have to consider two cases

• C4 contains a free simple cylinder D with two distinct zeros in its
boundary. Collapsing D, we get a surface M ′ in a rank two affine
manifoldM′ which is contained in eitherH(3, 1) orH(2, 1, 1). The
former case is ruled out since H(3, 1) contains no rank two affine
submanifolds. For the latter case, by the hypothesis, we must have
M′ = Q̃(2, 1,−13), hence M ′ admits a Prym involution τ . This
involution must send x0 to another simple zero x1, hence the saddle
connections containing x0 are mapped to those that contain x1.
Since all the horizontal saddle connections starting from x0 join x0
to itself, the same is true for the saddle connections starting from
x1. But by assumption, x1 is contained in the same component
as the double zero after the pinching of the core curves of Ci, i =
1, . . . , 4, which means that there is a horizontal saddle connection
joining x1 and the double zero. Thus we have a contradiction
which rules out this case.
• C4 is semi-simple. By Lemma A.1, we know that C4 is not simple.

Using the fact that each saddle connection in the boundary of
C4 must be contained in the boundary of another cylinder, by an
angle count, it is not difficult to check that the boundary of C4

contains at least two distinct zeros. We can twist then collapse
C4 such that there is a unique (vertical) saddle connection joining
two different zeros that is shrunk to a point. The resulting surface
must be contained in a rank two affine submanifold of H(3, 1)
or H(2, 1, 1). The remainder of the proof follows from the same
arguments as the previous case. q.e.d.

5.3. Case 4.II). Let M be a horizontally periodic surface in M with
four cylinders satisfying Case 4.II). We will denote the homologous cylin-
ders by C1 and C2, and the remaining cylinders by C3 and C4. In
particular, C1 and C2 are M-parallel.

Note that if we cut M along a core curve of C1 and a core curve of
C2 and exchange the gluings, we will obtain two genus two translation
surfaces containing C3 and C4, respectively. Thus we have

Lemma 5.8. Either C3 (resp. C4) is a simple cylinder, or there exist
some saddle connections that are contained in both top and bottom of
C3 (resp. C4).

For i = 3, 4, let ki be the number of saddle connections that are
contained in both top and bottom of Ci. Lemma 5.8 implies that ki = 0
if and only if Ci is a simple cylinder. We will need the following

Lemma 5.9. Let M be a horizontally periodic translation surface
satisfying Case 4.II) in a rank two affine manifold M ⊂ H(2, 12) ∪
H(14). Assume that M is M-cylindrically stable. Then C3 and C4 are
M-parallel, and k3 = k4.
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Proof. See Appendix B. q.e.d.

Proposition 5.10. Let M ∈ H(2, 12) be a horizontally periodic trans-
lation surface in a rank two affine manifoldM. If M isM-cylindrically
stable, then M does not satisfy Case 4.II).

Proof. Set k = k3 = k4. If k = 0, then both C3 and C4 are simple.
Twist and perform an extended cylinder collapse (see [AN16, Lem.
4.7]) to get a new translation surface such that both C3 and C4 contain
simple cylinders. Therefore, we can assume that k > 0, which means
that C3 and C4 contain some simple cylinders.

Without loss of generality, let C3 be the cylinder with the double
zero in its boundary, and C4 be the cylinder with two simple zeros in
its boundary. Since C3 can be realized as a cylinder in some surface
in H(2), there is a unique saddle connection, denoted by σ3, which is
contained in both top and bottom of C3. By Lemma 5.9, there is also a
unique saddle connection σ4 which is contained in both top and bottom
of C4.

Let D be a simple cylinder in C3 consisting of closed geodesics cross-
ing σ3 once. Let D′ be the cylinder in the equivalence class of D which
is contained in C4. Note that D′ is also a simple cylinder (but its core
curves may cross σ4 more than once), and its complement in C4 is a
rectangle that we will denote by R4.

D

D′

E

C1

C3

C2

R4

Figure 6. Case 4.II) for surfaces in H(2, 1, 1): C3, C4

not simple.

Using the arguments of [AN16, Lem. 6.17], we see that {C1, C2}
can be twisted simultaneously so that there is a vertical cylinder E
contained in the union of C1, C2, C3 crossing each of those cylinders
once (see Figure 6). Since C4 isM-parallel to C3, it must be crossed by
some cylinders in the equivalence class of E. Consider a cylinder E′ in
the equivalence class of E which crosses C4. Let γ be a core curve of E′.
Let ni, i = 1, 2, 3, be the number of intersections of γ with a core curve
of Ci, and n4 be its number of intersections with the top side of R4 (n4
is not necessarily the number of intersections of γ with a core curve of
C4). Observe that we must have n1 = · · · = n4. Let hi denote the height
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of Ci, i = 1, 2, 3, and h4 the height of the rectangle R4 (which is also
the circumference of D′). Denote by C the equivalence class {C3, C4}.
By the Cylinder Proportion Lemma, we must have P (E, C) = P (E′, C)
which implies

h3
h1 + h2 + h3

=
h3 + h4

h1 + h2 + h3 + h4
⇔ h1 + h2

h3
=
h1 + h2
h3 + h4

.

The last equation holds if and only if h4 = 0 or h1 + h2 = 0. In either
case, we have a contradiction which proves the proposition. q.e.d.

Proposition 5.11. LetM be a rank two affine submanifold of H(14).
If M contains a horizontally periodic surface M satisfying Case 4.II)

such that M is M-cylindrically stable, then either M = H̃(1, 1) or

M = Q̃(22,−14).

Proof. Recall that by Lemma 5.9, we have k3 = k4 = k. If C3 is a
simple cylinder, then C4 is as well. In this case, by twisting so that
neither cylinder contains a vertical saddle connection and performing
an extended cylinder collapse as in [AN16, Pf. of Lem. 4.7], we get
a translation surface satisfying Case 4.II) such that in the new surface
each of C3 and C4 contains at least one cylinder. Therefore we only
need to consider the case k ∈ {1, 2}.

Case k = 1. Let σ3 (resp. σ4) be the unique saddle connection contained
in both top and bottom of C3 (resp. C4). There is simple cylinder D in
C3 that contains σ3. We can assume that M is square-tiled, and D is
vertical. Let D′ be the cylinder in C4 which is M-parallel to D. Note
that D′ is also a simple cylinder.

We claim that D and D′ are similar (proportional). If D and D′

are not similar, then we can twist them so that one of them contains
a horizontal saddle connection but the other does not. As D and D′

are collapsed simultaneously only one saddle connection is contracted
to a point. Thus the resulting surface belongs to an rank two affine
submanifold in H(2, 12). By construction, this new surface also admits
a cylinder decomposition in Case 4.II) in the horizontal direction, but
this contradicts Proposition 5.10.

Since D and D′ are proportional, we can collapse them simultane-
ously so that two saddle connections joining distinct simple zeros are
contracted. The resulting surface, denoted by M ′, belongs to a rank
two affine submanifold M′ in H(2, 2). By Proposition 2.9, we have
dimM = dimM′+1. Note that the cylinders in M ′ that correspond to
C3 and C4 are simple. By a slight abuse of notation, we will also denote
them by C3 and C4, respectively.

SinceM ′ admits a cylinder decomposition in Case 4.II), we derive that
M ′ ∈ Hodd(2, 2) (see [AN16, Sec. 6.3]). By the main result of [AN16],

we know thatM′ ∈ {H̃odd
(2,2)(2), Q̃(4,−14)}. In both cases C3 and C4 are
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exchanged by the Prym involution of M ′, thus they are isometric. It
follows that the circumferences of D and D′ are equal. Since D and D′

are similar, they are actually isometric. By Proposition 2.10, the Prym
involution of M ′ extends to an involution of M , that also exchanges C3

and C4. In particular, we see that M ∈ Q̃(22,−14). Since the same
arguments apply to the surfaces in a neighborhood of M in M, we
conclude that M⊂ Q̃(22,−14).

IfM′ = Q̃(4,−14), then dimM = dim Q̃(4,−14)+1 = 6 by Proposi-

tion 2.9. Since dim Q̃(22,−14) = 6, we conclude that M = Q̃(22,−14).

If M′ = H̃odd
(2,2)(2), then M ′ has a hyperelliptic involution ι that fixes

C3 and C4. It is easy to check that ι preserves the saddle connection
in C3 (resp. in C4) which is the degeneration of D (resp. of D′) in M ′.
Thus ι extends to a hyperelliptic involution on M (see Proposition 2.10).

Hence, M ∈ H̃(1, 1) by Lemma 2.16 and M ⊂ H̃(1, 1) by Proposi-

tion 2.9. Note that in this case we have dimM = dim H̃odd
(2,2)(2) + 1 =

5 = dim H̃(1, 1). Thus M must be the locus H̃(1, 1).

Case k = 2. Consider a simple cylinder D ⊂ C3 that crosses the core
curves of C3 once. Let D denote the equivalence class of D. Since C4 is
M-parallel to C3, it must be crossed by a cylinder D′ ∈ D. Since D is
disjoint from C1 and C2, so is D′, which means that D′ is contained in
C4.

We can assume that M is square-tiled and D and D′ are vertical.
Since C3 can be realized as a cylinder in a two-cylinder decomposition
of a surface in the stratum H(1, 1), C3 contains at most one vertical
cylinder. This implies that D is the unique cylinder in D that crosses
C3, because any other vertical cylinder that crosses C3 would also cross
C1 or C2 while D does not.

We now claim that D′ is simple. To see this, we first remark that
C4 can be realized as a cylinder in a surface in H(1, 1). Thus D′ can
be viewed as a cylinder in a translation surface of genus two as well.
Assume that D′ is not simple, then its closure contains a simple cylinder
E′. There must exist a cylinder E which isM-parallel to E′ and crosses
D (and hence C3). Since D is simple, E cannot be contained in D.
Now, since D is the unique cylinder in D that crosses C3, we have
P (E,D) < 1. But by assumption, we have P (E′,D) = 1, therefore we
get a contradiction to the Cylinder Proportion Lemma 2.6 which proves
the claim.

The remainder of the proof follows the same lines as the previous
case. q.e.d.

5.4. Case 4.I). In this case the core curves of the cylinders cut the
surface into two four-holed spheres. Denote the horizontal cylinders of
M by C1, . . . , C4. For i = 1, . . . , 4, let hi and `i denote respectively the
height and the circumference of Ci, and γi be a core curve of Ci. By
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assumption, the following homological relation holds:

γ1 + ε2γ2 + ε3γ3 + ε4γ4 = 0,

where εi = ±1. After possibly relabeling the cylinders and multiplying
εi by −1, there are two distinct equations that are possible:

• Case 4.I.a) γ1 − γ2 − γ3 − γ4 = 0, or
• Case 4.I.b) γ1 + γ2 − γ3 − γ4 = 0.

We will analyze the cylinder diagrams according to the equation they
satisfy.

Let G be the embedded graph in M whose vertices are the zeros
and edges are the horizontal saddle connections. By assumption, G has
two connected components denoted by G1 and G2. Cutting M along
γ1, . . . , γ4, we obtain two four-holed spheres, which can be considered
as regular neighborhoods of G1 and G2. It follows in particular that
G1 and G2 are planar graphs. Observe also that any closed curve in M
cannot intersect γ1 ∪ · · · ∪ γ4 only once. Therefore, none of C1, . . . , C4

contains a saddle connection in both its top and bottom.
Using the fact that G1 and G2 are planar, one can easily produce

the list of admissible configurations for G1 and G2 together with the
corresponding homological relation satisfied by γ1, . . . , γ4 (see Figure 7).

Gi in Case 4.I.a

one double zero

two simple zeros

Gi in Case 4.I.b

one double zero

two simple zeros

Figure 7. Configurations of Gi, i = 1, 2, in Case 4.I.

5.4.1. Case 4.I.a). In this case, we can assume without loss of general-
ity that the top of C1 is equal to the union of the bottoms of C2, C3, C4.

Lemma 5.12. Assume that M is a horizontally periodic surface in
M satisfying Case 4.I.a) such that M is M-cylindrically stable. Then
for i = 2, 3, 4, if Ci is semi-simple, then Ci is not M-parallel to C1.

Proof. Since M is of rank two, the horizontal cylinders fall into at
least two equivalence classes. Let C denote the equivalence class of
C1. Observe that {C2, C3, C4} cannot be an equivalence class by the
homological relation.
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By contradiction, assume that C2 is semi-simple and M-parallel to
C1. Since we have at least two equivalence classes of cylinders, neither
C3 nor C4 is M-parallel to C1, which means that C = {C1, C2}. Since
C2 is semi-simple, we can assume that the bottom of C2 consists of
one saddle connection σ. Let σ′ be a saddle connection in the top
of C2. Note that σ and σ′ are contained in the top and bottom of C1

respectively. We can twist C1 and C2 such that any vertical ray entering
C1 through σ′ crosses σ. There exists in this case a transverse cylinder
D1, not necessarily vertical, contained in C1 ∪ C2 whose core curves
cross each of γ1, γ2 once. Twisting {C1, C2} again, we can assume that
D1 is vertical. Let D denote the equivalence class of D1, and assume
that D = {D1, . . . , Ds}.

We claim that Dj is contained in C1 ∪ C2 for all j = 1, . . . , s. This
is a consequence of the Cylinder Proportion Lemma and the fact that
P (D1, C) = 1. It follows that each Dj crosses γ1 and γ2 the same number
of times nj . Let h′j be the height of Dj , and `i be the circumference

of Ci. Applying the Cylinder Proportion Lemma, we have P (C1,D) =
P (C2,D), which is equivalent to

n1h
′
1 + · · ·+ nsh

′
s

`1
=
n1h

′
1 + · · ·+ nsh

′
s

`2
⇔ `1 = `2.

However, this is impossible because `1 = `2 + `3 + `4. q.e.d.

Proposition 5.13. IfM is a rank two affine submanifold of H(2, 12),
thenM does not contain anM-cylindrically stable horizontally periodic
surface satisfying Case 4.I.a).

Proof. Assume to the contrary that M is an M-cylindrically stable
horizontally periodic surface in M satisfying Case 4.I.a). In H(2, 12),
by inspection of the admissible configurations of the graphs G1,G2, we
see that each of {C2, C3, C4} is semi-simple. Lemma 5.12 establishes the
existence of a free semi-simple cylinder in this case. However, M cannot
have a free semi-simple cylinder because it could be twisted to contain
a single vertical saddle connection between a double zero and a simple
one, and hence could be collapsed to a translation surface in H(3, 1).
But this contradicts the non-existence of a rank two affine manifold in
that stratum. q.e.d.

The following lemma follows from an inspection of the admissible
configurations of the graphs G1,G2.

Lemma 5.14. In the principal stratum in genus three, there are ex-
actly two cylinder diagrams satisfying Case 4.I.a). They are depicted in
Figure 8.

Proposition 5.15. LetM be a rank two affine submanifold of H(14).

Assume that Q̃(2, 1,−13) is the only rank two affine manifold in H(2,12).
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1 2 3

4

5

4

3 1 5 2

(A)

1 2 3

4

5

4

3 5 2 1

(B)

Figure 8. The Two Cylinder Diagrams Satisfying Case
4.I.a) in H(14).

IfM contains anM-cylindrically stable horizontally periodic surface M
satisfying Case 4.I.a), then either M = H̃(1, 1) or M = Q̃(22,−14).

Proof. By Lemma 5.14, there are two cases to consider.

Case (A): Denote the simple cylinders by C3 and C4. By Lemma 5.12,
neither of them is M-parallel to C1. Therefore, either one of them,
say C4 is free, or they are M-parallel. Suppose to a contradiction that
C4 is free. Collapse it so that two zeros in its boundary collide. The
resulting surface M ′ belongs to a rank two affine submanifold M′ of
H(2, 12). By assumption, M′ = Q̃(2, 1,−13). In particular, M ′ admits
an involution τ with four fixed points whose derivative is −id. Note
that M ′ has three horizontal cylinders. It is easy to see that none of
them can be permuted with another one by τ . Thus all three cylinders
are invariant by τ , which implies that τ has at least six fixed points in
the interior of the cylinders. This contradiction means that C3 and C4

must be M-parallel.
We claim that C3 and C4 are M-similar. Indeed, if they are not,

then twist and collapse them such that only one pair of simple zeros
in their boundaries collide. The resulting surface M ′ belongs to a rank
two affine submanifold of H(2, 12). By assumption, M ′ ∈ Q̃(2, 1,−13),
thus M ′ has an involution τ with four fixed points. Remark that M ′ is
horizontally periodic with two horizontal cylinders that we keep denot-
ing by C1 and C2. Observe that τ must fix each of C1 and C2, hence
τ has at least four fixed points in the interiors of C1 and C2. But the
double zero of M ′ must also be a fixed point of τ . Thus, τ has at least
five fixed points, and we have a contradiction which implies that C3 and
C4 are M-similar.

Twist and collapse C3 and C4 simultaneously such that the pairs of
zeros in their boundaries collide, we get a surface M ′ which is contained
in a rank two affine submanifold M′ of H(2, 2) (by Proposition 2.9).
For i = 3, 4, let σi denote saddle connection which the degeneration of
Ci on M ′.

By the results of [AN16], M ′ admits a Prym involution τ with four
fixed points. Since M ′ has two horizontal cylinders which cannot be
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exchanged by an involution, τ must fix each of these cylinders. Con-
sequently, τ has four fixed points in the interiors of the cylinders. It
follows that the zeros of M ′ are exchanged by τ , which means that
M ′ ∈ Hodd(2, 2), and hence M′ ∈ {H̃odd

(2,2)(2), Q̃(4,−14)}.
Observe also that τ must exchange σ3 and σ4, otherwise τ would have

more than four fixed points. Thus, τ extends to a Prym involution on
M by Proposition 2.10. Therefore, M ∈ Q̃(22,−14). It follows from

Proposition 2.9 that Q̃(22,−14) contains a neighborhood of M in M,

hence M⊆ Q̃(22,−14).

If M′ = Q̃(4,−14), then dimM = dim Q̃(4,−14) + 1 =

dim Q̃(22,−14) = 6. Thus, M = Q̃(22,−14).

If M′ = H̃odd
(2,2)(2), then M ′ has a hyperelliptic involution ι. One can

check that ι fixes each of σ3 and σ4, thus extends to a hyperelliptic
involution of M . Therefore M ∈ H(14)∩P ∩L = H̃(1, 1). Since in this

case dimM = dim H̃(1, 1) = 5, we must have M = H̃(1, 1).

Case (B): Let C4 be the unique simple cylinder. Since in this case all of
the cylinders C2, C3, C4 are semi-simple, none of them is M-parallel to
C1 by Lemma 5.12. Since they cannot belong to the same equivalence
class either, at least one of them is free.

If C2 or C3 is free, then collapse it to obtain a surface M ′ in H(2, 12).
By [AN16, Prop. 2.16], M ′ belongs to a rank two affine submanifold

M′ of H(2, 12). By assumption, M = Q̃(2, 1,−13), which means that
M ′ admits a Prym involution τ with four fixed points. But such an
involution must fix all three cylinders, which means that τ has at least
six fixed points and we get a contradiction.

It remains to consider the case C4 is free. Collapsing it, we ob-
tain a surface M ′ ∈ Q̃(2, 1,−13). Note that in this case the Prym
involution τ of M ′ fixes C1, and permutes C2 and C3. In particular,
τ leaves invariant the saddle connection which is the degeneration of
C4. By Proposition 2.10, τ extends to an involution of M with four
fixed points. Thus we have M ⊂ Q̃(22,−14). Since we have dimM =

dim Q̃(2, 1,−13) + 1 = 6 = dim Q̃(22,−14), it follows M = Q̃(22,−14).
The proof of the proposition is now complete. q.e.d.

5.4.2. Case 4.I.b). Recall that in this case we number the horizontal
cylinders such that

(1) `1 + `2 = `3 + `4.

We first observe

Lemma 5.16. Let M be a rank two affine manifold in genus three
and M ∈M an M-cylindrically stable horizontally periodic translation
surface satisfying Case 4.I.b). Then up to a renumbering of the cylinders
respecting (1) one of the following occurs:
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• The equivalence classes are {C1, C2}, {C3}, {C4},
• The equivalence classes are {C1, C3}, {C2}, {C4},
• The equivalence classes are {C1, C3}, {C2, C4} and `1 = `3 and
`2 = `4.

Proof. We first notice that the four cylinders cannot all be free since
this would contradict the rank two hypothesis. By the homological re-
lation, there cannot be three cylinders in the same equivalence class
because it would imply that all of the cylinders are M-parallel. Simi-
larly, if C1 and C2 areM-parallel, then the homological relation implies
that each of C3 and C4 is free.

Finally, assume that the equivalence classes are {C1, C3} and {C2,C4}.
Then there exist non-zero real numbers µ and λ such that γ1 = µγ3 and
γ2 = λγ4. Combining this with the homological relation yields

µγ3 + λγ4 = γ3 + γ4.

This implies that unless µ = λ = 1, there is only one equivalence class of
cylinders, which would contradictM-cylindrical stability. Furthermore,
the relation µ = λ = 1 implies that there are two pairs of cylinders with
equal circumferences. q.e.d.

The following lemma improves Lemma 4.2. Despite its rather tech-
nical statement, it will be useful for us in the sequel.

Lemma 5.17. LetM be a rank two affine manifold in genus three in
a stratum with k ≥ 3 zeros. Assume that every rank two affine manifold
in genus three with at most k − 1 zeros admits an involution with four
fixed points whose derivative is −id. If M contains a horizontally peri-
odic surface such that one of the horizontal cylinders is simple and not
free, then M contains an M-cylindrically stable horizontally periodic
surface M satisfying one of the following:

(i) There are three horizontal cylinders, two of which are simple and
M-parallel to each other, and the cylinder decomposition satisfies
Case 3.I),

(ii) There are at least four horizontal cylinders three of which are M-
parallel to one another,

(iii) There are at least four horizontal cylinders, one of which is simple
and not free.

Proof. Let M be a horizontally periodic surface inM with a non-free
simple cylinder C1. By [AN16, Lem. 2.14], we can suppose that M is
a square-tiled surface and M-cylindrically stable. Since M has at least
two equivalence classes of horizontal cylinders, and C1 is not free, we
draw that M has at least three horizontal cylinders. If M has four or
more horizontal cylinders then we get the last assertion. Assume from
now on that M contains exactly three horizontal cylinders.
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We first remark that the cylinder decomposition of M does not satisfy
Case 3.II) since in this case all three cylinders are free. It does not
satisfy Case 3.III) either by [AN16, Lem. 4.6]. Thus we have a cylinder
decomposition in Case 3.I).

Let C2 be M-parallel to C1. If C2 is also simple, by [AN16, Lem.
2.11] and [AN16, Lem. 2.15], we know that C1 and C2 are M-parallel
and the remaining cylinder is free. Therefore, we get the first assertion.

Assume that C2 is not simple. Let C3 denote the remaining horizontal
cylinder. Following the arguments in the proof of [AN16, Prop. 5.6]
we get two possibilities:

• If C1 is only adjacent to C3, then the conclusion is that we get an
equivalence class D, with at least three vertical cylinders which do
not fill M . Thus we have the second assertion.
• If C1 is adjacent to both C2 and C3, then we have a contradiction.

The proof of the lemma is then complete. q.e.d.

We also need the following

Lemma 5.18. Let M be an M-cylindrically stable horizontally pe-
riodic surface in M. If one of the horizontal cylinders of M is simple
and not free, then the cylinder decomposition of M does not belong to
Case 4.IV).

Proof. Assume that the cylinder decomposition of M satisfies Case
4.IV). We label the horizontal cylinders by C1, . . . , C4, and let γi be a
(geodesic) core curve of Ci. Recall that in this case the family
{γ1, . . . , γ4} cuts M into two three-holed spheres and a two-holed torus.
We choose the numbering such that γ3 ∪ γ4 is the boundary of the two-
holed torus. Observe that the following homological relations hold

γ1 + γ2 = γ3 = γ4.

By cutting M along γ3 and γ4, then exchanging the gluings, we get
two translation surfaces of genus two, both of which are horizontally
periodic. Observe that one of the two surfaces has a single horizontal
cylinder, which is formed by one half of C3 and one half of C4. This
observation allows us to conclude that neither C3 nor C4 is simple.

By assumption, either C1 or C2 is simple and not free. But from the
homological relation, it can be easily seen that in either case, all four
cylinders belong to the same equivalence class, which contradicts the
M-cylindrical stability of M . q.e.d.

5.4.3. Case 4.I.b): the stratum H(2, 1, 1). The following lemma fol-
lows from an inspection of admissible configurations of G1 and G2.

Lemma 5.19. There are exactly three cylinder diagrams up to sym-
metry satisfying Case 4.I.b) in H(2, 12) and they are depicted in Fig-
ure 9.
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1 2 3 4

1 3 2 4

C4 C3

C2 C1

(A)

1 2 3 4

2 3 4 1

C4 C3

C1 C2

(B)

1 2 3 4

3 4 1 2

C4 C3

C2 C1

(C)

Figure 9. The three cylinder diagrams satisfying Case
4.I.b) in H(2, 1, 1).

We will show

Proposition 5.20. Let M be a rank two affine submanifold of
H(2, 12). If M contains a horizontally periodic surface M satisfying
Case 4.I.b), then either M contains a horizontally periodic surface with

five cylinders, or M = Q̃(2, 1,−13).

We first prove

Lemma 5.21. If M is a rank two affine manifold in H(2, 12) and
M ∈M is horizontally periodic satisfying Case 4.I.b), then M does not
have a free semi-simple cylinder.

Proof. By contradiction, if M has a free semi-simple cylinder C, then
one boundary of C contains a double zero and the other must contain
one or more simple zeros. Twist C so that it admits a vertical saddle
connection, which by necessity connects a double zero to a simple zero.
Collapsing C results in a translation surface in a rank two affine manifold
in H(3, 1). Since no such affine manifold exists by [AN16], we achieved
the desired contradiction. q.e.d.

Lemma 5.22. Let M be a rank two affine manifold in H(2, 12).
If M ∈ M is an M-cylindrically stable horizontally periodic satisfy-
ing Case 4.I.b), then neither {C1, C2} nor {C3, C4} can be equivalence
classes.

Proof. By contradiction, if either of them is an equivalence class, then
Lemma 5.21 implies that the other one must be an equivalence class
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because each of {C1, C2} and {C3, C4} contains a semi-simple cylinder.
But this contradicts Lemma 5.16. q.e.d.

Lemma 5.23. Let M be a rank two affine submanifold of H(2, 12).
Then M does not contain an M-cylindrically stable horizontally peri-
odic surface M satisfying Case 4.I.b) with cylinder diagram (C).

Proof. Assume to a contradiction thatM contains anM-cylindrically
stable horizontally periodic surface satisfying Case 4.I.b) with cylinder
diagram (C). We claim that one of C1, C3, C4 is free. Assume that none
of them is free, by Lemma 5.22, C1 must be M-parallel to either C3 or
C4 and either `1 = `3 or `1 = `4 by Lemma 5.16. But clearly, in this
case we always have `1 < `3 and `1 < `4. If one of C1, C3, C4 is free, then
we get a contradiction to Lemma 5.21, and the lemma follows. q.e.d.

Lemma 5.24. Let M be a rank two affine submanifold of H(2, 12).
IfM contains anM-cylindrically stable horizontally periodic surface M
satisfying Case 4.I.b) with cylinder diagram (B), thenM = Q̃(2, 1,−13).

Proof. We number the cylinders so that C1 and C3 are the simple
ones. By Lemma 5.21, neither C1 nor C3 are free. From Lemma 5.16,
either C1 isM-parallel to C3 and `1 = `3, or C1 isM-parallel to C4 and
`1 = `4. Since the latter cannot happen because `1 < `4, we conclude
that the equivalence classes of horizontal cylinders are {C1, C3} and
{C2, C4}, and `1 = `3 and `2 = `4.

We next claim that C1 and C3 are similar. If they are not, then after
twisting, we can assume that there is a vertical saddle connection in C1,
but C3 contains no vertical saddle connections. Collapsing simultane-
ously C1 and C3 yields a surface in H(3, 1). Since there are no rank two
affine submanifolds in H(3, 1), we get a contradiction.

The previous claim implies that C3 = λC1, where λ > 0. Since `1 =
`3, it follows that λ = 1. Hence, C1 and C3 are isometric. Collapse C1

and C3 simultaneously to get a surface M ′ ∈ H(4). By Proposition 2.9,
M ′ is contained in a rank two affine submanifold M′ of H(4) such that
dimM = dimM′ + 1.

By the result of [ANW16], M′ = Q̃(3,−13). Hence, M ′ admits a
Prym involution τ . It is easy to check that this involution permutes the
two horizontal cylinders of M ′, and exchanges the saddle connections
which are the degenerations of C1 and C3. By Proposition 2.10, τ gives
rise to an involution of M with four fixed points, which implies that
M ∈ Q̃(2, 1,−13). Remark that this also holds for all of the surfaces in

M close to M , thereforeM⊂ Q̃(2, 1,−13). Finally, from the dimension
count

dimM = dim Q̃(3,−13) + 1 = 5 = dim Q̃(2, 1,−13),

we conclude that M = Q̃(2, 1,−13). q.e.d.
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Lemma 5.25. Let M be a rank two affine submanifold of H(2, 12).
Assume that M contains a horizontally periodic surface M satisfying
Case 4.I.b) with cylinder diagram (A), then either M = Q̃(2, 1,−13) or
M contains a horizontally periodic surface with five cylinders.

Proof. IfM is notM-cylindrically stable, then we conclude that there
is a horizontally periodic surface inM with at least five cylinders. Oth-
erwise, assume M is M-cylindrically stable. By Lemma 5.21, neither
C1 nor C4 is free. From Lemma 5.16, we must have two equivalence
classes {C1, C4} and {C2, C3} such that `1 = `4 and `2 = `3. Observe
that there is a saddle connection in the bottom of C1 and the top of C3,
and there is another saddle connection in the top of C1 and the bottom
of C3. Since C1 and C3 are notM-parallel, after some twisting, we can
assume that there is a vertical simple cylinder D contained in C1 ∪C3,
which crosses each of γ1 and γ3 once. Note that D must be M-parallel
to another vertical cylinder crossing C2 and C4.

Applying Lemma 5.17, we derive thatM contains a horizontally peri-
odic surface M1 that isM-cylindrically stable, and one of the following
occurs

(i) The cylinder decomposition of M1 in the horizontal direction sat-
isfies Case 3.I), and two of the cylinders are simple. In this case,

we use Proposition 3.1 to conclude that M = Q̃(2, 1,−13).
(ii) M1 has at least four horizontal cylinders and three of which are
M-parallel. Assume that M1 has exactly four horizontal cylin-
ders. If the cylinder decomposition satisfies Case 4.I) or Case
4.IV), then we only have one equivalence class, which contradicts
the M-cylindrically stable hypothesis. Case 4.II) is ruled out by
Proposition 5.10, and Case 4.III) is also ruled out by Proposi-
tion 5.7. Thus in this case M1 has at least five horizontal cylinders.

(iii) M1 has at least four horizontal cylinders, one of which is sim-
ple and not free. We only need to consider the case where M1

has exactly four horizontal cylinders. Again Case 4.II) and Case
4.III) are ruled out by Proposition 5.10 and Proposition 5.7. Case
4.IV) is ruled out by Lemma 5.18. In Case 4.I.a), we conclude by
Proposition 5.13. Finally, in Case 4.I.b), since one of the cylinders
is simple, we must have Diagram (B) or (C). Thus by Lemma 5.24

or Lemma 5.23, we can conclude that M = Q̃(2, 1,−13). q.e.d.

Proof of Proposition 5.20.

Proof. Proposition 5.20 is a direct consequence of Lemmas 5.19, 5.23,
5.24, and 5.25. q.e.d.

5.4.4. Case 4.I.b): the principal stratum H(1, 1, 1, 1). The follow-
ing lemma is obtained from a careful inspection of admissible configu-
rations for the graphs G1 and G2.
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Lemma 5.26. There are four diagrams for cylinder decompositions
in Case 4.I.b) in the stratum H(14). They are shown in Figure 10.
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Figure 10. Cylinder Diagrams Satisfying Case 4.I.b) in H(1, 1, 1, 1).

Lemma 5.27. Assume that M contains an M-cylindrically stable
horizontally periodic surface M satisfying Case 4.I.b) with cylinder di-

agram (A). Then M = Q̃(22,−14).

Proof. We number the cylinders so that C1 is the simple one, and C3

and C4 are the semi-simple ones. Recall that the relation (1) always
holds. We claim that neither C3 nor C4 is free. Suppose that C3 is free.
Since it is semi-simple, we can collapse it to get a surface M ′ ∈ H(2, 12).

By assumption, M ′ must belong to Q̃(2, 1,−13), hence it admits a Prym
involution τ with four fixed points. Observe thatM ′ has three horizontal
cylinders, and none of them can be permuted with another one by τ .
Thus τ must fix all three cylinders, hence it must have at least six fixed
points and we get a contradiction. The same arguments apply if C4 is
free.

Using Lemma 5.16, we derive that C1 must be free and {C3, C4} is
an equivalence class. Collapsing C1 so that the two zeros in its bound-
ary collide, we obtain a surface M ′ ∈ Q̃(2, 1,−13). In particular, M ′

admits a Prym involution τ . Since τ has four fixed points, it must
fix C2 and exchange C3 and C4. In particular, it fixes the saddle con-
nection which is the degeneration of C1. Therefore, τ extends to a
Prym involution of M that fixes C1 by Proposition 2.10. It follows that
M ∈ Q̃(22,−14), and M ⊂ Q̃(22,−14) by Proposition 2.8. Since we
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have dimM = dim Q̃(2, 1,−13) + 1 = 6 = dim Q̃(22,−14), it follows

that M = Q̃(22,−14). q.e.d.

Lemma 5.28. Assume that M contains an M-cylindrically stable
horizontally periodic surface M satisfying Case 4.I.b) with cylinder di-

agram (B). Then M∈ {H̃(1, 1), Q̃(22,−14)}.

Proof. We number the cylinders so that C1 and C3 are the simple
ones, and C1 is adjacent to C2. Assume that C1 is free. We can collapse
it to get a surface M ′ ∈ Q̃(2, 1,−13) with three horizontal cylinders.
Remark that C1 degenerates to a saddle connection contained in both
top and bottom of C2.

Since C3 is the unique horizontal simple cylinder in M ′, it must be
fixed by τ . Recall that τ has four fixed points, hence it must exchange
C2 and C4. But this is impossible since there are no saddle connections
that are contained in both top and bottom of C4. The same arguments
apply for the case C3 is free. Thus we can conclude that neither C1 nor
C3 is free.

By Lemma 5.16, we derive that C1 and C3 are M-parallel. Let C
denote the equivalence class {C1, C3}.

We now claim that C2 and C4 are not free. Assume that C2 is free
which means that C4 is also free. Observe that we can twist C and C2

such that there is a vertical cylinder D contained in C1 ∪ C2. Since
any other vertical cylinder crossing C2 must cross C4, we derive that D
is free. But this contradicts the Cylinder Proportion Lemma, since we
have P (C1, {D}) = 1 but P (C3, {D}) = 0. Therefore, we can conclude
that C2 and C4 areM-parallel. Using again Lemma 5.16, we draw that
`1 = `3 and `2 = `4.

We next claim that C1 and C3 are similar. If they are not, then
we can twist them so that C1 contains a vertical saddle connection,
but C3 does not. Collapsing simultaneously C1 and C3 we get a surface
M ′ ∈ Q̃(2, 1−13) with two horizontal cylinders. By counting the number
of saddle connections on the borders of these two cylinders, we see that
they cannot be exchanged by the Prym involution τ ′ of M ′. Thus, they
are both fixed by τ ′, which implies that τ ′ has four regular fixed points
in M ′. Since the double zero of M ′ must be a fixed point of τ ′, we derive
that τ ′ has at least 5 fixed points which is a contradiction.

Since C1 and C2 are similar and `1 = `3, we conclude that C1 and
C3 are isometric. Collapsing C1 and C3 simultaneously yields a surface
M ′ ∈ H(2, 2), which is contained in a rank two affine submanifold M′.
Again, let τ ′ be the Prym involution of M ′, and let σ1 and σ3 be respec-
tively the saddle connections which are the degenerations of C1 and C3

in M ′. Note that σ1 (resp. σ3) is contained in both top and bottom of
C2 (resp. C4).
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We claim that τ ′ exchanges C2 and C4. If τ ′ fixes C2, then it also fixes
C4, therefore it has four regular fixed points in M ′. Moreover, since σ1
is the unique saddle connection contained in both top and bottom of
C2, it must be invariant by τ ′. But σ1 connects a zero of M ′ to itself,
therefore τ ′ fixes a zero of M ′. This contradicts the condition that τ ′

has exactly four fixed points.
Since τ ′ exchanges C2 and C4, it must exchange σ1 and σ3 and per-

mute the zeros of M ′. We derive in particular that M ′ ∈ Hodd(2, 2).

Thus M′ = H̃odd
(2,2)(2) or M′ = Q̃(4,−14). It follows from Proposi-

tion 2.10 that τ ′ extends to a Prym involution of M . Thus M ∈
Q̃(22,−14) and M ⊆ Q̃(22,−14). If M′ = H̃odd

(2,2)(2), then M ′ also

admits a hyperelliptic involution, which also extends to M . Hence in
this case, we have M⊆ H̃(1, 1).

By Proposition 2.9, we know that dimM = dimM′ + 1. Using this
dimension relation, we conclude that if M′ = H̃odd

(2,2)(2), then M =

H̃(1, 1), and if M′ = Q̃(4,−14), then M = Q̃(22,−14). q.e.d.

Lemma 5.29. Assume that M contains a horizontally periodic sur-
face M satisfying Case 4.I.b) with cylinder diagram (C) or (D). Then

either M ∈ {H̃(1, 1), Q̃(22,−14)}, or M contains a horizontally peri-
odic surface with at least five horizontal cylinders.

Proof. It suffices to assume that M is M-cylindrically stable, other-
wise, we conclude that M contains a horizontally periodic surface with
at least five cylinders. Using Lemma 5.16, one can check that there
always exists a pair of cylinders Ci and Cj which are not M-parallel
such that

• There is a saddle connection σ in the bottom of Ci and in the top
of Cj ,
• There is a saddle connection σ′ in the top of Ci and in the bottom

of Cj ,
• Ci is M-parallel to another cylinder.

Since Ci and Cj are not M-parallel, we can twist them so that there

is a vertical simple cylinder D contained in Ci ∪ Cj which crosses only
σ and σ′. Since Ci is M-parallel to another cylinder, D is not free.
Applying Lemma 5.17, we get a horizontally periodic M-cylindrically
stable surface M1 ∈M, and one of the following occurs:

(i) There are three horizontal cylinders, two of which are simple, and
the cylinder diagram satisfies Case 3.I). In this case we conclude
by Proposition 3.1.

(ii) There are at least four cylinders, and one of the equivalence classes
consists of at least three cylinders. If M1 has five horizontal cylin-
ders or more, we are done. Assume that M1 has exactly 4 cylin-
ders. By the homological relations and M-cylindrical stability,
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Case 4.IV) and Case 4.I) are ruled out. If the cylinder decom-
position satisfies Case 4.II) or Case 4.III), then we conclude by
Proposition 5.11 or Proposition 5.7, respectively.

(iii) There are at least four horizontal cylinders, one of which is sim-
ple and not free. Obviously, we only need to consider the case
M1 has exactly 4 cylinders. Case 4.IV) is then ruled out by
Lemma 5.18. In Case 4.II) and 4.III), we conclude by Propo-
sition 5.11 and Proposition 5.7, respectively. In Case 4.I.a), we
conclude by Proposition 5.15. Finally, in Case 4.I.b), since there
exists a simple cylinder, we must have diagrams (A) or (B), and
we can use Lemma 5.27 or Lemma 5.28 to conclude. q.e.d.

As a direct consequence of Lemmas 5.26, 5.27, 5.28, and 5.29, we get

Proposition 5.30. Suppose that Q̃(2, 1,−13) is the unique rank two
affine submanifold in H(2, 12). Let M be a rank two affine submanifold
of H(14). Assume that M contains a horizontally periodic surface M
satisfying Case 4.I.b). Then either M contains a horizontally periodic

surface with at least five cylinders, or M∈ {H̃(1, 1), Q̃(22,−14)}.

6. Five cylinders

Lemma 6.1. If a horizontally periodic genus three translation surface
M decomposes into exactly five cylinders, then pinching the core curves
of those cylinders degenerates the surface to one of two possible surfaces:

• 5.I) Three spheres where two spheres have a pair of simple poles
between them and the third sphere has two pairs of simple poles
joined to each of the other two spheres.
• 5.II) Three spheres where two spheres have three simple poles and

the third sphere carries a pair of simple poles.

Proof. Let X ′ denote the degenerate Riemann surface. We use the
classical terminology part to mean a connected component of a degener-
ate Riemann surface from which the nodes have been removed. Observe
that a degenerate Riemann surface with p parts imposes p−1 homologi-
cal relations on the core curves of parallel cylinders. In particular, there
are no homological relations among the core curves of parallel cylinders
on a degenerate Riemann surface with one part. Thus, if X ′ has one
part and M consisted of five cylinders, M would have to have genus at
least five. Likewise, if X ′ has two parts and M has five cylinders, then
M would have to have genus at least four.

In genus three the degenerate surface X ′ can never have more than
four parts, which is given by the general upper bound 2(g − 1).

If X ′ has four parts and at least one part has positive genus, then
the original surface would have genus at least four. This can be seen
by replacing the part with positive genus with a sphere with a corre-
sponding number of poles and observing that it arises from a surface
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with at least six cylinders and such a configuration can never occur in
genus three. Thus, if X ′ has four parts, then all four parts have genus
zero. However, every sphere must carry a meromorphic differential with
at least three simple poles, and this would require at least six cylinders.
Hence, X ′ has exactly three parts.

Finally, if X ′ has three parts, we claim that no part has positive genus
because again each part of genus g′ can be replaced by a sphere with g′

pairs of simple poles. Since each pair of poles corresponds to a pinched
cylinder and every six cylinder surface in genus three degenerates to a
punctured Riemann surface consisting of exactly four spheres, all three
parts of X ′ must be spheres. Recalling that every sphere must carry
a differential with at least three simple poles, we leave the reader to
deduce that there are exactly two possibilities. q.e.d.

As usual, we denote by C1, . . . , C5 the horizontal cylinders of M , and
for i = 1, . . . , 5, γi is a core curve of Ci. We choose the orientation of γi
to be from the left to the right.

6.1. Case 5.I). In Case 5.I) there is a unique cylinder between the
spheres with three simple poles. Throughout this subsection we call
that cylinder C1. We choose a numbering of the cylinders such that the
following homological relations hold

(2) γ1 = ε2γ2 + ε3γ3 = ε4γ4 + ε5γ5,

where εi ∈ {±1}.
Let us denote by x1 and x2 the two simple zeros in the spheres with

three simple poles. If M ∈ H(2, 12), we denote by x0 the double zero,
and if M ∈ H(14) we denote the two simple zeros on the sphere with
four simple poles by x′0 and x′′0. For i = 1, 2, we denote by Gi the
graph which is the union of horizontal saddle connections containing xi.
We denote by G0 the graph consisting of horizontal saddle connections
in the sphere with four simple poles. Note that by assumption, the
graphs Gi, i = 0, 1, 2, are planar. The admissible configurations of Gi

are shown in Figure 11.
Recall that in the literature the union G := t2i=0Gi is called the

separatrix diagram of M , and in particular has a ribbon structure (see
[KZ03, Sec. 4]). Let Ui be a regular neighborhood of Gi in the plane.
We fix the orientation of every edge of Gi to be from left to right. Each
component of ∂Ui is a core curve of a horizontal cylinder which is freely
homotopic to a union of edges of Gi.

A component of ∂Ui is said to be simple if it is (freely) homotopic
to a single edge of Gi, which must be loop. By definition, the cylinders
that contain a simple component of ∂Ui are semi-simple.

6.1.1. The stratum H(2, 1, 1). No horizontally periodic translation
surface in H(2, 12) can have more than five cylinders, so throughout
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Gi, i = 1, 2
RG.2.a RG.2.b

G0 for H(2, 1, 1)

RG.11.a RG.11.b RG.11.c

G0 for H(1, 1, 1, 1)

Figure 11. Case 5.I): admissible configurations of
Gi, i = 0, 1, 2.

C1
C2

C3

C4

C5

1

1

2

2

3

3

M ∈ H(2, 1, 1)

C1
C2

C3

C4

C5

1

1

2

2

3

3

4

4

M ∈ H(1, 1, 1, 1)

Figure 12. Some cylinder diagrams in Case 5.I).

this subsection, M is always M-cylindrically stable. We will prove the
following proposition.

Proposition 6.2. If M ⊂ H(2, 12) is a rank two affine manifold
and M ∈M admits a cylinder decomposition satisfying Case 5.I), then

M = Q̃(2, 1,−13).

Lemma 6.3. Let M be a translation surface satisfying Case 5.I) in
a rank two affine manifold M⊂ H(2, 12). Then C1 is free.

Proof. By contradiction, assume that C1 is not free. Let C be the
equivalence class of C1. From the relation (2), we derive that if C2 ∈ C,
then C3 ∈ C and vice versa. The same is true for the pair {C4, C5}.
By assumption, the cylinders must split into two or three equivalence
classes. Thus, without loss of generality we can assume that C =
{C1, C2, C3} and C4 and C5 are free.

We now claim that at least one of C4 or C5 is semi-simple. To see
this, we observe that the boundaries of C4 and C5 contain the same
simple zero. We can assume that this simple zero is x1. Since the graph



RANK 2 AFFINE MANIFOLDS IN GENUS 3 253

G1 is planar, we see that among three cylinders {C1, C4, C5}, there are
two that are semi-simple. Thus at least one of C4 and C5 is semi-simple.

Collapsing the free semi-simple cylinder yields a translation surface
which is contained in a rank two affine submanifold M′ of H(3, 1) by
[AN16, Prop. 2.16]. But such a submanifold does not exist by [AN16].
Hence, we get a contradiction. q.e.d.

Lemma 6.4. Let M be a translation surface in M which admits a
cylinder decomposition in the horizontal direction satisfying Case 5.I).
Then up to a renumbering of the cylinders, the equivalence classes are
{C1}, {C2, C4}, {C3, C5}.

Proof. By Lemma 6.3, we know that one of the equivalence classes is
{C1}. If C2 and C3 are M-parallel, then their equivalence class would
contain C1, and we have a contradiction. The argument of Lemma 6.3
actually shows that C2 and C3 cannot both be free. Let us assume that
C2 is free and C3 is M-parallel to C5. Since C4 cannot be M-parallel
to C5 (otherwise it would be M-parallel to C1), C4 must be free. But
in this case, we would have three free cylinders C1, C2, C4 whose core
curves span a Lagrangian subspace of H1(M,R), which contradicts the
hypothesis that M is of rank two. Thus the only possibility remaining
is that C2 is M-parallel to C4, and C3 is M-parallel to C5. q.e.d.

Lemma 6.5. Following the convention of Lemma 6.4, one of the
equivalence classes {C2, C4} and {C3, C5} consists of two simple cylin-
ders.

Proof. We first consider the case C1 is simple. Up to a renumbering
of the cylinders, we have

γ1 = γ2 − γ3 = ±(γ4 − γ5)⇒ γ2 − γ3 + ε(γ4 − γ5) = 0 ∈ H1(M,Z),

where ε ∈ {±1}. By Lemma 6.4, there exist constants λ, µ ∈ R>0 such
that γ4 = λγ2 and γ5 = µγ3 as elements of (TMM)∗. It follows

(1 + ελ)γ2 − (1 + εµ)γ3 = 0 ∈ (TMM)∗.

If one of {1+ελ, 1+εµ} does not vanish, then C2 and C3 areM-parallel,
and we have a contradiction. Thus we must have ε = −1 and λ = µ = 1.
It follows that

(3) |γ2| = |γ4|, |γ3| = |γ5|, and γ1 = γ2 − γ3 = γ4 − γ5 ∈ H1(M,Z).

Note that the relation (3) implies

(4) γ2 − γ3 − γ4 + γ5 = 0 ∈ H1(M,Z)

and it follows that γ2 − γ3 − γ4 + γ5 is homologous to ∂U0. Therefore
the configuration of G0 is given by RG.2.b (see Figure 11).

We now claim that C3 is a simple cylinder. Without loss of generality,
we can assume that the top of C3 is contained in G0, while its bottom is
contained in G1. From (3), we draw that |γ3| < |γ2| and the bottom of
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C3 contains a single saddle connection. If C3 is not simple then its top
must contain exactly two saddle connections since it is homotopic to a
component of ∂U0. Note that the relation (4) implies that the top of C4

is also contained in G0. Since a saddle connection cannot be contained
in the top of two cylinders, it follows that the top of C4 consists of a
single saddle connection. But this saddle connection is contained in the
bottom of C2 or C5. Thus we must have either |γ4| < |γ2|, or |γ4| < |γ5|.
In either case we have a contradiction to (3). Therefore, the top of C3

must contain a single saddle connection, which means that C3 is simple.
By similar arguments, C5 is also simple, and the lemma is proved for

this case.

Let us consider the case C1 is semi-simple (but not simple). In this
case, we have

γ1 = γ2 − γ3 = γ4 + γ5 ⇒ γ2 − γ3 − γ4 − γ5 = 0 ∈ H1(M,Z).

It follows that the configuration of G0 is given by RG.2.a (see Figure 11).
Let λ, µ be the constants above, we have

(1− λ)γ2 = (1 + µ)γ3 ∈ (TMM)∗.

Thus C2 and C3 are M-parallel, which contradicts Lemma 6.4. There-
fore, this case does not occur.

Finally, consider the case C1 is not semi-simple. In this case, the
relation (2) gives

(5) γ1 = γ2 + γ3 = γ4 + γ5, and γ2 + γ3 − γ4 − γ5 = 0 ∈ H1(M,Z).

Hence the configuration of G0 is given by RG.2.b. In particular ∂U0 has
two simple components. Since these two simple components are paired
with some simple components of ∂U1t∂U2, the corresponding cylinders
are simple. We will show that they must beM-parallel. Let λ, µ be the
constants above. We have

(1− λ)γ2 + (1− µ)γ3 = 0 ∈ (TMM)∗.

If one of {1−λ, 1−µ} does not vanish, then C2 and C3 are parallel which
contradicts Lemma 6.4. Thus we must have |γ2| = |γ4|, and |γ3| = |γ5|.
Without loss of generality we can assume that the top of C2 is contained
in G0. The relation (5) implies that G0 contains the top of C3 and the
bottoms of C4 and C5. Let σ0, σ1, and σ2 be the saddle connections
in G0. We are done unless, without loss of generality, the top of C2 is
σ0 ∪ σ1 and the bottom of C5 is σ1 ∪ σ2. It follows that the top of C3

is σ2 and the bottom of C4 is σ0. However, the relations above imply
|σ0|+ |σ1| = |σ0| and |σ2| = |σ1|+ |σ2|, which is impossible. q.e.d.

Proof of Proposition 6.2. By Lemma 6.5, we can assume that C2 and
C4 are twoM-parallel simple cylinders. We claim that they are similar.
If they are not, twist them so that there is a vertical saddle connection
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in C2, but there are no vertical saddle connections in C4. Collapsing
the equivalence class {C2, C4} yields a surface M ′ which is contained
in a rank two submanifold of H(3, 1) by [AN16, Prop. 2.16]. But
there are no affine submanifolds of rank two in H(3, 1), and we have a
contradiction.

Since the pairs of zeros in the boundaries of C2 and C4 are not the
same, collapsing them simultaneously so that all of the zeros collide
yields a surface M ′ ∈ H(4). By Proposition 2.9, M ′ is contained in a
rank two affine submanifoldM′ ⊂ H(4) such that dimM′ = dimM−1.

By the results of [NW14, ANW16], we haveM′ = Q̃(3,−13). Hence,
M ′ admits a Prym involution τ ′.

Note that C2 and C4 degenerate to two horizontal saddle connections
σ′2 and σ′4 in M ′. We claim that σ′2 and σ′4 are permuted by τ ′. If they

are not, then there is a surface M ′1 ∈ Q̃(3,−13) close to M ′ in which they
are not parallel. But from Proposition 2.9, these saddle connections are
the degenerations of two parallel cylinders in a surface M1 ∈ M close
to M , hence must be parallel. Thus we get a contradiction.

Since σ′2 and σ′4 are permuted by τ ′, they must have the same length,
which implies that C2 and C4 are isometric. By Proposition 2.10, τ ′

extends to an involution with four fixed points on M . The same holds
for any surface in a neighborhood of M ∈ M. It follows that M ⊆
P ∩H(2, 1, 1) = Q̃(2, 1,−13). Finally, since

dimM = dim Q̃(3,−13) + 1 = 5 = dim Q̃(2, 1,−13),

we can conclude that M = Q̃(2, 1,−13). q.e.d.

6.1.2. The principal stratum H(1, 1, 1, 1). The key to this section is
studying the cylinder C1. The main result of this section is

Proposition 6.6. LetM⊂ H(14) be a rank two affine manifold. As-

sume that Q̃(2, 1,−13) is the only rank two affine manifold in H(2, 12).
If M contains a horizontally periodic surface M satisfying Case 5.I),
then either there exists M ′ ∈M horizontally periodic with six cylinders
or M = Q̃(22,−14).

We first prove the following lemmas

Lemma 6.7. Following the notation and assumption of Proposi-
tion 6.6, either M contains a horizontally periodic surface with six
cylinders or the cylinder C1 is free.

Proof. If M is not M-cylindrically stable, then we can get a hor-
izontally periodic surface with more cylinders, so in this case we are
done. Assume that M is M-cylindrically stable. If C1 is not free,
then by the same arguments as Lemma 6.3, we see that there are two
free cylinders among {C2, . . . , C5}, and that one of them is semi-simple.
Collapsing the free semi-simple cylinder, yields a surface M ′ ∈ H(2, 12)
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which is contained in a rank two affine submanifoldM′. By assumption,
M′ = Q̃(2, 1,−13), hence M ′ admits a Prym involution which fixes the
double zero and permutes the simple ones. But in this case, one of the
simple zeros is joined to the double zero by a horizontal saddle con-
nection whereas the other one is not. Therefore we get a contradiction
which proves the lemma. q.e.d.

Lemma 6.8. Either the equivalence classes of horizontal cylinders in
M are {C1}, {C2, C3}, {C4, C5} or M contains a horizontally periodic
surface with six cylinders.

Proof. We only need to consider the case when M isM-cylindrically
stable, which implies that the cylinders of M fall into at least two equiv-
alence classes. By Lemma 6.7, one of the equivalence classes is {C1}. It
follows that C2 and C3 are not M-parallel. If both C2 and C3 are free,
then we can conclude by the arguments of Lemma 6.7. Consider the case
where C2 is free but C3 is not. We can assume that C3 is M-parallel
to C5. It follows that C4 is free. But the core curves of C1, C2, C4 span
a Lagrangian subspace of dimension 3 in H1(M,Z), which contradicts
the hypothesis thatM is of rank two. We can then conclude that C2 is
M-parallel to C4, and C3 is M-parallel to C5 up to a renumbering of
the cylinders. q.e.d.

Lemma 6.9. Assume that M is M-cylindrically stable. Then C1 is
not strictly semi-simple.

Proof. If C1 is strictly semi-simple, then up to a renumbering of the
cylinders, we have

γ1 = γ2 − γ3 = γ4 + γ5 ⇒ γ2 − γ3 − γ4 − γ5 = 0 ∈ H1(M,Z).

From Lemma 6.8, there exist constants λ, µ ∈ R>0, such that

γ4 = λγ2, γ5 = µγ3 ∈ (TMM)∗.

Consequently

(1− λ)γ2 = (1 + µ)γ3 ∈ (TMM)∗.

Since 1 + µ > 0, this means that C2 and C3 are M-parallel, which
contradicts Lemma 6.4. Therefore, C1 cannot be semi-simple. q.e.d.

Lemma 6.10. There are two cylinder diagrams in which C1 is not
semi-simple which are shown in Figure 13.

Proof. If C1 is not semi-simple, then each of C2, . . . , C5 are semi-
simple because the identifications between each of the cylinders at C1 is
completely determined. The remaining identifications can be deduced
from Lemma 5.26. q.e.d.
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0 1 2 3

1 2 3 0

C1

Case 5.I.a)

0 1 2 3

3 0 2 1

C1

Case 5.I.b)

Figure 13. The two cylinder diagrams in H(14) satis-
fying Case 5.I) where C1 is not semi-simple.

Proof of Proposition 6.6.

Proof. It suffices to assume that M is M-cylindrically stable, other-
wise we are done. By Lemma 6.7, we know that C1 is free, and from
Lemma 6.9, we only need to consider two cases:

C1 is simple. Collapsing C1 so that the two zeros in its boundary col-

lide yields a surface M ′ ∈ H(2, 12) which is contained in a rank two
affine submanifold M′ by [AN16, Prop. 2.16]. By assumption, M′ =

Q̃(2, 1,−13), thus M ′ admits a Prym involution τ ′.
Let x′0 be the double zero ofM ′. Observe that all the horizontal saddle

connections starting from x′0 end at x′0. Let us denote those saddle
connections by σ0, σ1, σ2, where σ0 is the degeneration of C1. Since C1

is not M-parallel to any other cylinder, we can choose M such that
|σ0| 6= |σ1| and |σ0| 6= |σ2|. Since τ ′ fixes x′0, it induces a permutation of
{σ0, σ1, σ2}. We claim that σ0 is invariant by τ ′, since otherwise we have
either |σ0| = |σ1| or |σ0| = |σ2| contradicting our assumption. We can

now use Proposition 2.10 to conclude that M ∈ P∩H(14) = Q̃(22,−14),

and hence M⊆ Q̃(22,−14). Since we have

dimM = dim Q̃(2, 1,−13) + 1 = dim Q̃(22,−14) = 6,

it follows that M = Q̃(22,−14).

C1 is not semi-simple. There are two cylinder diagrams to consider by
Lemma 6.10. In this case, each saddle connection in the boundary
of C1 is one component of the boundary of a cylinder in the family
{C2, . . . , C5}. Let us denote those saddle connections by σ2, . . . , σ5 such
that σi is one boundary component of Ci. Since C2 is not M-parallel
to C5 by Lemma 6.8, M can be chosen such that |σ2| 6= |σ5|. It follows
that C1 can be twisted such that it contains only one vertical saddle
connection joining two distinct zeros in its boundary. Collapsing C1

yields a surface M ′ ∈ H(2, 12) which is contained in a rank two affine
submanifold by [AN16, Prop. 2.16]. By assumption, this submanifold

must be Q̃(2, 1,−13). ThusM ′ admits a Prym involution. By inspecting
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the cylinder diagram of M ′, we see that this Prym involution extends to
a Prym involution of M that fixes C1. In particular, M ∈ P ∩H(14) =

Q̃(22,−14).

We now claim that M ⊆ Q̃(22,−14). To see this choose a small
positive real number ε such that, for any v ∈ TR

MM⊂ H1(M,Σ,R) such
that ||v|| < ε, we have Mv := M + v ∈M and the condition |σ2| 6= |σ5|
still holds. Here, we identify M with an element of H1(X,Σ,R + ıR).
Remark that since v is purely real, all the horizontal saddle connections
of M remain horizontal in Mv, which means that Mv is also horizontally
periodic with the same cylinder diagram as M . By the same argument
as above, we have Mv ∈ Q̃(22,−14). Therefore, we have

TR
MM⊆ TR

M Q̃(22,−14),

which implies that M ⊆ Q̃(22,−14). In particular, we have dimM ≤
dim Q̃(22,−14) = 6. We now notice that by [AN16, Prop. 2.16], we
must have

dimM > dim Q̃(2, 1,−13) = 5.

Thus, it follows dimM = dim Q̃(22,−14) = 6 and M = Q̃(22,−14).
The proof of Proposition 6.6 is now complete. q.e.d.

6.2. Case 5.II). We label the cylinders so that C1 and C2 are the
homologous cylinders, and C5 is the unique cylinder which degenerates
to a pair of simple poles in the same component of the limit surface
(which is obtained as one pinches all of the horizontal cylinders).

Cutting M along the core curves of C1 and C2, then permuting the
gluings, we get two translation surfaces of genus two. Let us denote
by M1 the surface that contains C3 and C4, and by M2 the surface
that contains C5. In particular, C3, C4, C5 can be realized as cylinders
in a translation surface of genus two. Therefore, the cylinder diagrams
in this case can be constructed by considering the unique 3-cylinder
diagram in H(1, 1), and the 2-cylinder diagrams in H(2) and H(1, 1).

Let γi denote the core curve of Ci oriented from left to right. We
have either γ1 + γ3 = γ4, or γ3 + γ4 = γ1. Our goal in this section is to
show

Proposition 6.11. LetM be rank two affine submanifold of rank two
in H(2, 12) ∪ H(14). Assume that M contains a horizontally periodic
surface M satisfying Case 5.II), then

(i) If M⊂ H(2, 12), then M = Q̃(2, 1,−13).

(ii) IfM⊂ H(14) and Q̃(2, 1,−13) is the unique rank two submanifold
in H(2, 12), then eitherM contains a horizontally periodic surface

with six cylinders, or M = Q̃(22,−14).

Let us start by proving some conditions that the cylinders in M must
satisfy.
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Lemma 6.12. Let M ∈ M be a horizontally periodic surface satis-
fying Case 5.II). If M is M-cylindrically stable, then C5 is free.

Proof. For i = 1, . . . , 5, let us denote by ξi the vector inH1(M,Σ,R)'
TR
MM tangent to the path defined by the twisting of Ci. By Poincaré

duality, up to a non-zero constant, ξi can be identified with γi, where
γi is an element of H1(M \ Σ,R) (see [MW17, Sect. 4.1]). Since
the projection p : H1(M,Σ,R) → H1(M,R) is dual to the map p′ :
H1(M \Σ,R)→ H1(M,R), we see that p(ξi) is dual to λiγi ∈ H1(M,R),
with λi ∈ R \ {0}.

The assumption of Case 5.II) means that we have the following ho-
mological relations

γ1 = γ2 = γ3 + γ4,

and {γ3, γ4, γ5} span a Lagrangian in H1(M,R).
By assumption we have at least two equivalence classes of horizontal

cylinders. Assume that C5 is not free. If C5 is M-parallel to {C1, C2},
then C3 and C4 must be free because otherwise we only have one equiva-
lence class. It follows that TR

MM contains the vectors {ξ1+ξ2+ξ5, ξ3, ξ4}.
Thus p(TR

MM) contains the duals of {λ1γ1 + λ2γ2 + λ5γ5, γ3, γ4}. But
as this family spans a Lagrangian (of dimension 3) in H1(M,R) '
H1(M,R), we get a contradiction to the hypothesis that M is of rank
two. Thus this case cannot occur.

Assume now that C5 isM-parallel to either C3 or C4. By the homo-
logical relations, it follows that one of C3 and C4 is free, and {C1, C2}
is an equivalence class. We can suppose that {C4, C5} is an equivalence
class and C3 is free. By the same argument as above, p(TR

MM) contains
the duals of the vectors γ1, γ3, λ4γ4+λ5γ5 ∈ H1(M,R). Since {γ1, γ3, γ5}
spans a Lagrangian in H1(M,R), and γ4 = γ1−γ3, we see that the fam-
ily {γ1, γ3, λ4γ4 + λ5γ5} also spans a Lagrangian in H1(M,R). Hence
we also have contradiction in this case, which shows that C5 must be
free. q.e.d.

Lemma 6.13. The equivalence classes of cylinders on M are
{C1, C2, C3, C4} and {C5}.

Proof. Lemma 6.12 proves that one of the equivalence classes is {C5}.
It remains to show that C3 and C4 areM-parallel to C1 and C2. If one
of them is M-parallel to {C1, C2}, then so is the other. Thus we only
need to rule out the case when they are both free. But this follows
already from the arguments of Lemma 6.12. q.e.d.

Lemma 6.14. The cylinders C3 and C4 are simple.

Proof. Recall that C3 and C4 are two cylinders in a 3-cylinder de-
composition of a surface in H(1, 1). Thus at least one of them, say
C3, must be simple. If C4 is not simple, then the boundary of C3 is
contained in the boundary of C4. But since C3 and C4 are M-parallel,
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this contradicts [AN16, Lem. 2.11]. Therefore, both C3, C4 must be
simple. q.e.d.

There are two admissible cylinder diagrams for Case 5.II) in H(2, 12),
which are shown in Figure 14.

C1

C2

C3

C4

C5

1

1

2

2

3

3

C5 is simple

C1

C2

C3

C4

C5

1

1

2

2

3

3

C5 is not simple

Figure 14. Case 5.II) in H(2, 1, 1): Admissible cylinder diagrams.

6.2.1. Proof of Proposition 6.11: case M⊂ H(2, 12).

Proof. Note that in this case M1 ∈ H(1, 1) and M2 ∈ H(2). In par-
ticular, either C5 is a simple cylinder, or there exists a saddle connection
which is contained in both its top and bottom. Let x0 denote the double
zero of M , and x1, x2 denote the simple ones. For i ∈ {1, . . . , 5}, let
hi and `i denote respectively the height, and the circumference of Ci.
Without loss of generality, let h1 ≤ h2.

Case C5 is simple. We will perform an extended cylinder deformation
to show that in fact, h1 = h2 and that C1 and C2 must simultaneously
admit vertical saddle connections. Then we will collapse to H(4) to
conclude.

Let σ5 and σ′5 denote respectively the top and bottom borders of C5.
We can assume that σ5 is contained in the bottom of C1. Remark that
the top of C1 contains a unique zero of M , which can be supposed to
be x1. Twist the cylinders in the equivalence class {C1, . . . , C4} such
that none of the descending vertical rays from the copies of x1 in the
top of C1 hits a copy of x0 in the bottom of C1 before exiting C1, and
one of those rays intersects the interior of σ5. We can then twist C5

such that this ray hits x0 after crossing C5. We then have a vertical
saddle connection δ from x0 to x1 crossing C5 and C1. Note that we
have |δ| = h5 + h1.

Consider now the deformations of M by stretching C5. These de-
formations define a path in M whose tangent vector ξ ∈ H1(M,Σ; ıR)
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satisfies ξ(c) = ı〈γ5, c〉 for any c ∈ H1(M,Σ;Z), where 〈, 〉 is the inter-
section form (see [Wri15, Lem. 2.4]).

The path inM corresponding to this family of deformations isM+Iξ,
where I is an interval of R, and M is identified with an element of
H1(M,Σ;R + ıR). Recall that M is locally identified with an open
subset of a linear subspace V of H1(M,Σ;R + ıR). Since M ∈ V and
ξ ∈ V , we have M+ tξ ∈ V . Hence as long as Mt := M+ tξ corresponds
to a surface in H(2, 1, 1), this surface must belong to M.

Observe now that when t = −h5, the cylinder C5 degenerates to
the union of two horizontal saddle connections. Consider now Mt for
t ∈ (−(h1 + h5),−h5). We first observe that for those values of t, C3

and C4 are not affected by the deformations, Mt remains horizontally
periodic and always satisfies Case 5.II). The cylinders C1 and C2 give
rise to two homologous cylinders on Mt, which will be denoted by C ′1
and C ′2 respectively, and there is an additional horizontal cylinder that
we denote by C ′5 (see Figure 15). The bottom of C ′1 (resp. the top of
C ′2) consists of a single saddle connection, and the new C ′5 is not simple.
The heights of C ′1, C

′
2, and C ′5 are given by h1 + h5 + t, h2 + h5 + t, and

h5 − t respectively. Such Mt are called extended cylinder deformations
of M and are described in [AN16, Sec. 4.2].

C1

C2

C5
3

3

δ C1

C2

δ

1
1

2
2

t = −h5

C′
1

C′
2

C′
5

C′
5

δ

1
1

2
2

−(h1 + h5) < t < −h5

Figure 15. Extended Cylinder Deformation for Case
5.II) in H(2, 1, 1), C5 is simple.

By construction the saddle connection δ remains vertical in Mt, and
its length is given by h1 + h5 + t. As t tends to −(h1 + h5), δ shrinks
to a point, which means that x0 and x1 collide. If h2 > h1 then no
other collision of zeros occurs, and the resulting surface, denoted by
M ′, belongs to H(3, 1) (which can easily be checked by hand). One
can now use the arguments of [AN16, Prop. 2.16] to conclude that
M ′ must be contained in a rank two affine submanifold of H(3, 1). But
since such a submanifold does not exist by the results of [AN16], we
get a contradiction.

Assume from now on that h1 = h2. Consider again the limit surface
M ′ as t tends to−(h1+h5). One can easily check thatM ′ is a translation
surface of genus three. If there is no vertical saddle connection in C ′2,
then M ′ ∈ H(3, 1) and we get again a contradiction. If C ′2 contains a
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vertical saddle connection, then this one is unique, and in the limit the
three zeros of M collide, and the resulting surface M ′ belongs to H(4).

By [MW17, Cor. 1.2], M ′ is contained in an affine manifold M′ of
rank at most two. Observe that since the cylinder C ′5 on Mt is free,
it must also be free on M ′ with respect to M′. Thus M′ must be an
affine manifold of rank two. By the results of [ANW16, NW14], M ′

must belong to the Prym locus Q̃(3,−13). In particular, M ′ admits a
Prym involution. Observe that this involution exchanges C3 and C4,
which means that C3 and C4 are isometric. It is now easy to check that
the Prym involution of M ′ extends to a Prym involution on Mt, for any
t ∈ (−(h1 + h5),−h5). Therefore we have Mt ∈ Q̃(2, 1,−13).

Choose t ∈ (−(h1 +h5),−h5) and consider the surface Mt + v, where
v ∈ TR

Mt
M is a vector in a neighborhood of 0. By the same argu-

ments as above, we see that Mt + v ∈ Q̃(2, 1,−13) (remark that if

Mt ∈ Q̃(2, 1,−13), then twisting simultaneously the equivalence class

of C ′1 also gives a surface in Q̃(2, 1,−13)). It follows that TR
Mt
M ⊆

TR
Mt
Q̃(2, 1,−13), hence M⊆ Q̃(2, 1,−13). Since we also have

dimM > dim Q̃(3,−13)⇒

dimM≥ dim Q̃(3,−13) + 1 = dim Q̃(2, 1,−13),

we conclude that M = Q̃(2, 1,−13).

C1

C2

C5 D

σ

σ

δ C1

C2

δ

η
η

σ
σ

t = −h5

C′
1

C′
2

C′
5

δ

η η
σ

σ

−(h1 + h5) < t < −h5

Figure 16. Extended Cylinder Deformations for Case
5.II) in H(2, 1, 1), C5 is not simple.

Case C5 is not simple. In this case C1 and C2 are semi-simple, and there
is a saddle connection σ which is contained in both the top and bottom
of C5. Let D be a simple cylinder in the closure of C5 that contains
σ. Since C5 is free, so is D. By stretching D, we can assume that the
length of σ is smaller than the length of any other horizontal saddle
connection. Twist C1 such that all of the descending vertical rays from
the singularities in its top (there are two such rays) do not hit the
singularity in its bottom. Twist C5 so that one of those rays hits x0
after crossing C5, but the other one does not (see Figure 16).

Consider the extended cylinder deformations along the vector corre-
sponding to the stretching of C5. It is straightforward to verify that
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the same arguments as the previous case allow us to conclude that
M = Q̃(2, 1,−13). q.e.d.

6.2.2. Proof of Proposition 6.11: case M⊂ H(1, 1, 1, 1).

Proof.
Case C5 is simple. By Lemma 2.7, the zeros of M in the top and bot-
tom of C5 are distinct. Since C5 is free by Lemma 6.12, collapse it
so that these two zeros collide to yield a surface M ′ ∈ H(2, 1, 1). By
Proposition 2.8, M ′ is contained in a rank two affine submanifold M′
of H(2, 1, 1) such that dimM = dimM′ + 1. By assumption, we have

M′ = Q̃(2, 1,−13), and in particular M ′ admits a Prym involution τ ′.
Since the degeneration of C5 on M ′ is a saddle connection which is fixed
by τ ′, by Proposition 2.10, this Prym involution extends to a Prym in-
volution of M . Thus we have M ∈ Q̃(22,−14). Since the same holds for

any surface inM close enough to M , we conclude thatM⊆ Q̃(22,−14).
Finally, by a dimension count

dimM = dim Q̃(2, 1,−13) + 1 = dim Q̃(22,−14),

we conclude that M = Q̃(22,−14).

Case C5 is not simple. In this case, the closure of C5 contains a simple
cylinder whose core curve crosses C5 once. Let D be such a simple
cylinder. By twisting C5, we can assume that D is vertical. It is not
difficult to check that D is free because any other vertical cylinder D′

which crosses C5 must cross either C1 or C2, which would contradict
Lemma 6.12. The remainder of the proof follows from the same lines as
the previous case. q.e.d.

6.3. Proof of Theorem 1.3: Part I.

Proof. LetM be a rank two affine manifold inH(2, 1, 1). By Proposi-
tion 4.1 Part (1), there exists a horizontally periodic surface with at least
four cylinders. By Proposition 5.2(a) we reduce to the case of horizon-
tally periodic surfaces with five cylinders. Let M ∈M be a horizontally
periodic surface with five cylinders. By Lemma 6.1, M satisfies Case 5.I)
or Case 5.II). In either case, Proposition 6.2 or Proposition 6.11 allows

us to conclude thatM = Q̃(2, 1,−13). The first part of Theorem 1.3 is
then proved. q.e.d.

7. Six cylinders

This section obviously only concerns the principal stratum in genus
three. We remark that there is no longer a need to assume that
Q̃(2, 1,−13) is the only rank two affine manifold in H(2, 1, 1) because
this fact has been established in Section 6.3. Furthermore, since no hori-
zontally periodic surface in genus three can have more than six cylinders,
M is M-cylindrically stable throughout this section.
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Proposition 7.1. There are four 6-cylinder diagrams in genus three,
they are shown in Figure 17.

Proof. See Appendix C. q.e.d.
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Case 6.a)
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Case 6.b)

1

2 3

1 2

3

C6

C4 C5

C3

C1 C2

Case 6.c)

1

2 3

2 3

1

C6

C4 C5

C3

C1 C2

Case 6.d)

Figure 17. The Four 6-Cylinder Diagrams.

Throughout this section γi denotes the homology class of the core
curve of the cylinder Ci oriented from left to right, for i = 1, . . . , 6.

Lemma 7.2 (Case 6.a). Let M be a rank two affine manifold in
H(14). If M contains a horizontally periodic surface M satisfying Case

6.a) (see Figure 17), then M = Q̃(22,−14).

Proof. Observe that the following homological equations hold:

γ1 + γ2 = γ3

γ2 + γ6 = γ5

γ1 + γ5 = γ4

γ3 + γ6 = γ4.

If C1 is free, then we can collapse it to get a surface M ′ ∈ H(2, 1, 1)

which must be contained in Q̃(2, 1,−13). In particular, M ′ has a Prym
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involution. Observe that this involution must exchange C2 and C6 and
fix C4. Since C6 is adjacent to C4 while C2 is not, such an involution
cannot exist, and we have a contradiction. The same argument also
yields a contradiction if C6 is free.

If C1 is M-parallel to C2 or C3, then {C1, C2, C3} is an equivalence
class. From the homological relations and fact thatM isM-cylindrically
stable, all of the other cylinders are free. But the possibility that C6 is
free has been excluded by the argument above. If C1 isM-parallel to C4

or C5, then {C1, C4, C5} is an equivalence class and all of the remaining
cylinders are free. Thus we also get a contradiction.

Finally, consider the case where C1 is M-parallel to C6. We can
twist {C1, C6} so that there is a vertical saddle connection in C1, then
collapse this equivalence class simultaneously. If there is no vertical
saddle connection in C6, the collapsing yields a surface M ′ ∈ H(2, 1, 1)

which must be contained in Q̃(2, 1,−13). But it is easy to see that
M ′ cannot admit a Prym involution since the cylinders corresponding
to C3 and C5 on M ′ are strictly semi-simple cylinders that contain
different numbers of saddle connections in their boundaries. We thus
get a contradiction, which means that C1 contains a vertical saddle
connection if and only if C6 does, which means that C1 and C6 are
similar.

By Proposition 2.9, collapsing {C1, C6} simultaneously yields a sur-
face which is contained in a rank two affine submanifold M′ in H(2, 2)
such that dimM = dimM′ + 1. We now remark that the cylinder
diagram of M ′ satisfies Case 4.I.OB) (see [AN16, Sec. 6.4]), thus

M ′ ∈ Hodd(2, 2) and M′ = Q̃(4,−14) by [AN16, Lem. 6.16]. Since
C1 and C6 degenerate to two saddle connections that are exchanged by
the Prym involution of M ′, it follows from Proposition 2.10 that M also
admits a Prym involution and so does any surface in M close enough
to M . We thus have M⊆ Q̃(22,−14). From the dimension count

dimM = dim Q̃(4,−14) + 1 = dim Q̃(22,−14) = 6,

we conclude that M = Q̃(22,−14). q.e.d.

Lemma 7.3 (Case 6.b). Let M be a rank two affine manifold in
H(14). If M contains a horizontally periodic surface M satisfying Case

6.b) in Figure 17, then M = Q̃(22,−14).

Proof. Observe that the homological equations hold:

γ1 + γ6 = γ3 = γ5,

γ2 + γ3 = γ4.

If C2 is free, we can collapse it and conclude by Theorem 1.3 Part I,
and Proposition 2.10.

If C2 is M-parallel to either C3, C4, or C5, {C2, C3, C4, C5} is an
equivalence class, and C1, C6 are free. Hence, C1 can be collapsed to
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a saddle connection σ on a translation surface M ′ in Q̃(2, 1,−13) ⊂
H(2, 1, 1) satisfying Case 5.II). The Prym involution τ ′ onM ′ necessarily
fixes C2 and C4, which implies that τ ′ has at least 4 regular fixed points.
But the double zero of M ′ must also be fixed points. Therefore τ ′ has
at least 5 fixed points and we have a contradiction.

If C2 is M-parallel to C1, then the homological relations imply that
{C1, C2} is an equivalence class of cylinders because otherwise all cylin-
ders would be in the same equivalence class. For the same reason
{C3, C5} is an equivalence class, and C4 and C6 are each free. Col-

lapsing C6 results in a surface M ′ satisfying Case 5.II) in Q̃(2, 1,−13).
As above, we also get a contradiction. Finally, if C2 is M-parallel to
C6, then the same argument holds with C1 playing the role of C6 in the
preceding argument. Thus the lemma follows. q.e.d.

Lemma 7.4 (Case 6.c). Let M be a rank two affine manifold in
H(14). If M contains a horizontally periodic surface M satisfying Case

6.c) in Figure 17, then M∈ {H̃(1, 1), Q̃(22,−14)}.

Proof. Observe that the homological equations hold:

γ1 + γ2 = γ3,

γ4 + γ5 = γ6,

γ1 + γ2 = γ5 + γ2 ⇔ γ1 = γ5.

We claim that C2 is not free. If C2 is free, then collapse it to obtain
a surface M ′ satisfying Case 5.II) in Q̃(2, 1,−13) ⊂ H(2, 1, 1). Observe
that the Prym involution τ ′ of M ′ must fix C3 and a simple cylinder.
Thus τ ′ has at least 4 regular fixed points. Since the double zero of M ′

must also be a fixed point of τ ′, we get a contradiction.
If C2 were M-parallel to C1, C3, or C5, then the homological equa-

tions would imply that C4 is free, and we could collapse it to get the
same contradiction as above.

If C2 were M-parallel to C6, then {C2, C6} would be an equivalence
class of cylinders as would {C1, C5} by the homological equations. How-
ever, if C3 wereM-parallel to C4, then all cylinders would be in the same
equivalence class because

γ2 + γ6 = γ3 + γ4.

Hence, C4 is free and we achieve the same contradiction as above.
Finally, consider the case where C2 isM-parallel to C4. Then {C2,C4}

is an equivalence class. We can twist and collapse this equivalence
class so that the two zeros in the boundary of C2 collide. If the two
zeros in the boundary of C4 do not collide, we obtain a surface in
Q̃(2, 1,−13) ⊂ H(2, 1, 1). But it is easy to check that this surface does
not admit a Prym involution and we get a contradiction. Therefore
C2 contains a vertical saddle connection if and only if C4 does, which
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means that C2 and C4 are similar. Collapsing C2 and C4 simultaneously
yields a surface M ′ in H(2, 2) with a cylinder diagram satisfying Case
4.II.OB). It follows in particular that M ′ ∈ Hodd(2, 2) (cf. [AN16, Sec.
6.4]).

By Proposition 2.9, M ′ is contained in a rank two affine submanifold
M′ ⊂ Hodd(2, 2) such that dimM = dimM′ + 1. By the main results

of [AN16], we have M′ ∈ {Q̃(4,−14), H̃odd
(2,2)(2)}. In both cases, M ′

admits a Prym involution τ ′. Observe that the degenerations of C2 and
C4 on M ′ are two saddle connections that are exchanged by τ ′. Thus
by Proposition 2.10, τ ′ extends to a Prym involution of M , and the
same is true for any surface in M close enough to M . Thus we have
M⊆ Q̃(22,−14).

If M′ = Q̃(4,−14), then by the dimension count, we have

dimM = dim Q̃(4,−14) + 1 = dim Q̃(22,−14) = 6,

which implies that M = Q̃(22,−14).

If M′ = H̃odd
(2,2)(2), then M ′ also admits a hyperelliptic involution ι′.

We now observe that the saddle connections which are the degenerations
of C2 and C4 are both invariant by ι′. Again, by Proposition 2.10
we see that ι′ extends to a hyperelliptic involution of M . Thus M ∈
H(14) ∩ P ∩ L = H̃(1, 1). Since the same is true for any surface in M
close enough to M , we have M⊆ H̃(1, 1). Finally, since we have

dimM = dim H̃odd
(2,2)(2) + 1 = dim H̃(1, 1) = 5,

M must be H̃(1, 1). The proof of the lemma is now complete. q.e.d.

Lemma 7.5 (Case 6.d). Let M be a rank two affine submanifold in
H(14). If M contains a horizontally periodic surface M satisfying Case

6.d) in Figure 17, then M∈ {H̃(1, 1), Q̃(22,−14)}.

Proof. Observe that the homological equations hold:

γ1 + γ2 = γ3 = γ6,

γ4 + γ5 = γ3.

If C1 is free, then it can be collapsed and we conclude by Theorem 1.3,
Part I, and Proposition 2.10 that M = Q̃(22,−14).

By contradiction, if C1 is M-parallel to C2, C3, or C6, then the
homological equations imply that C4 is free (otherwise, all six cylinders
would lie in the same equivalence class). Collapsing C4 to get a surface

in H(2, 1, 1) allows us to conclude that M = Q̃(22,−14) by the same
argument above.

If C1 isM-parallel to C4, then the homological equations imply that
{C1, C4} is an equivalence class. By twisting and collapsing C1 and C4,
we reach a surface M ′ in a lower stratum: H(2, 1, 1) or H(2, 2). If M ′ ∈
H(2, 1, 1) then from Theorem 1.3, Part I, we have M ′ ∈ Q̃(2, 1,−13).
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Observe that if C1 and C4 are not similar, then one of C1 and C4 de-
generates to a single saddle connection, while the other one degenerates
to the union of two saddle connections. Hence, we can suppose that in
M ′, the top of C3 contains two saddle connections, and the top of C6

contains three saddle connections.
If M ′ admits an involution whose derivative is −id, then this invo-

lution must exchange C3 and C6, and fix C2 and C5. However, such
an involution has at least 5 fixed points (4 regular ones in the interiors
of C2 and C5, and the double zero of M ′). Thus it cannot be a Prym
involution. This contradiction shows that C1 contains a vertical saddle
connection if and only if C4 does, which implies that C1 and C4 are
similar. The remainder of the proof then follows from the same lines as
Lemma 7.4. q.e.d.

7.1. Proof of Theorem 1.3: Part II. We now have all the necessary
materials to complete the proof of Theorem 1.3.

Proof. From Theorem 1.3: Part I, we know that Q̃(2, 1,−13) is the
only rank two affine manifold contained in H(2, 1, 1). By Proposi-

tion 2.17, H̃(1, 1) is connected, and Q̃(22,−14) is connected by the
results of [Lan08].

Let M be a rank two affine manifold in H(14). By Proposition 4.1
Part (2), there exists a horizontally periodic surface M ∈ M with at
least four cylinders. By Proposition 5.2, we can reduce the case of
surface with at least five cylinders.

Assume now that M has five horizontal cylinders. Then M must
satisfy Case 5.I) or Case 5.II) by Lemma 6.1. In both cases, either
M contains a horizontally periodic surface with six cylinders, or M =
Q̃(22,−14) by Propositions 6.6 and 6.11: Part 2.

Finally, consider the case where M has six horizontal cylinders. Note
that in this case the hypothesis that M isM-cylindrically stable is auto-
matically satisfied. The cylinder diagram of M must satisfy one of four
cylinder diagrams by Proposition 7.1, and we conclude by Lemmas 7.2,
7.3, 7.4, and 7.5. Having addressed all possible cases, the proof of the
theorem is complete. q.e.d.

Appendix A. Proof of Lemma 5.6

We first need the following two lemmas. In what follows we will use
the same notation and conventions as in Section 5.2.

Lemma A.1. If M is M-cylindrically stable and M satisfies Case
4.III), then there are at least two saddle connections in the top of C4.

Proof. Suppose that the top C4 contains only one saddle connection
denoted by σ0. Let x1 denote the unique zero contained in the top of C4.
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We first claim that if C4 is simple, then the zero in the bottom of C4

is not x1. If M ∈ M(14), then this follows from Lemma 2.7. Assume
that M ∈ H(2, 12), then x1 must be the double zero. Let σ1 be the
unique saddle connection in the bottom of C4 and assume that σ1 also
joins x1 to itself. Note that σ1 must be contained in the top of C1 or
C2. Without loss of generality, let σ1 be contained in the top of C2.
Clearly, the top C2 must contain other saddle connections.

If the top of C2 contains exactly two saddle connections, then we
have another horizontal saddle connection σ2 joining x1 to itself. Since
we have found three horizontal saddle connections joining x1 to itself,
there is no saddle connection from x1 to the remaining zero of M , which
contradicts the condition that the graph G is connected. Thus the top of
C2 contains at least three saddle connections. Since the total number of
horizontal saddle connections is 7, we derive that the top of C1 contains
only one saddle connection, which must be contained in the bottom of
C3. But this contradicts [AN16, Lem. 2.11], thus we can conclude that
the zero in the bottom of C4 is not x1.

If the bottom of C4 contains more than one saddle connection, by
similar arguments, one can easily show that it must contain a zero x2
different from x1.

Now, since C4 is free, we can collapse it so that x1 and x2 collide, the
resulting surface M ′ is contained in some rank two affine submanifold
M′ of a stratum with 2 or 3 zeros in genus three. Note that x0 remains
in M ′, hence M ′ has at least a simple zero. Since there are no rank
two affine submanifolds in H(3, 1), we only have to consider the case
M ′ ∈ H(2, 12) which means that M ∈ H(14), and the collision of x1 and
x2 gives rise to the double zero x of M ′.

Let x′0 be the other simple zero of M ′. By assumption, M =

Q̃(2, 1,−13), thus M admits a Prym involution τ . Note that τ must
fix x and exchange x0 and x′0. By the hypothesis, there are no hor-
izontal saddle connections joining x0 to x, but there are some saddle
connections (in the boundary of C4) that connect x to x′0. Therefore,
we have a contradiction and the lemma follows. q.e.d.

Lemma A.2. With the same assumption as Lemma A.1, there is a
saddle connection contained in the top of C1 and the bottom of C3 if
and only if there is a saddle connection contained in the top of C2 and
the bottom of C3.

Proof. Assume that there is a saddle connection σ in the top of C1

and the bottom of C3, then one can twist C3 (and simultaneously C1

and C2) such that C3 is represented by a rectangle in the plane, and σ is
the first saddle connection from the left in its bottom. Note that σ also
occurs in the top of C1. It is not difficult to see that there always exists
a simple closed geodesic crossing only C1 and C3 that intersects σ at
one point. Let D denote the cylinder associated to this geodesic. Since
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C2 is M-parallel to C1, there must exist another cylinder D′ which is
M-parallel to D. Since D is contained in the closure of C1 ∪ C3, D

′

can only cross C1, C2, C3. In particular, as a core curve of D′ exits C2

through the top, it must enter C3, which implies that there is a saddle
connection in the top of C2 and the bottom of C3.

Since the arguments are completely symmetric, conversely, if there
exists a saddle connection in the top of C2 and the bottom of C3, then
there must exist a saddle connection in the top of C1 and the bottom
of C3. q.e.d.

Proof of Lemma 5.6. Assume that there exists a surface M ∈ M hori-
zontally periodic satisfying Case 4.III) such that M is M-cylindrically
stable. Let k be the total number of horizontal saddle connections of
M . Note that if M ∈ H(2, 12), then k = 7, and if M ∈ H(14), then
k = 8. Let ki be the number of saddle connections contained in the top
of Ci. By assumption, we have k3 = 2, and by Lemma A.1, we have
k4 ≥ 2, therefore 2 ≤ k1 + k2 ≤ 4.

Recall that we need to show that either the closure of C4 contains a
free simple cylinder with two distinct zeros in its boundary, or C4 is a
semi-simple cylinder.

• Case k1 + k2 = 2. Note that we must have k1 = k2 = 1. If the saddle
connection in the top of C1 is contained in the bottom of C3, then so is
the saddle connection in the top of C2 by Lemma A.1. But this would
imply that the bottom of C3 only contains those two saddle connections
(by comparing the lengths of the two boundary components of C3),
which is impossible since we have four cylinders. By Lemma A.2, we
deduce that the tops of both C1 and C2 are contained in the bottom of
C4. It follows that the bottom of C3 is contained in the top of C4.

Assume that M ∈ H(2, 12) then k4 = 3. If the bottom of C3 contains
three saddle connections, then it equals the top of C4, which means that
C3 and C4 are homologous, but this is excluded by the hypothesis of
Case 4.III). By inspection, we also see that the bottom of C3 cannot
contain exactly two saddle connections. Therefore, we are left with the
case where the bottom of C3 contains only one saddle connection. It
follows that there are two saddle connections which are contained in
both the top and bottom of C4. Since M ∈ H(2, 12), there must exist
a saddle connection in the top of C4 connecting the double zero to a
simple one. Let D be a simple cylinder in C4 consisting of simple closed
geodesics crossing this saddle connection (see Figure 18 left). It is not
difficult to see that D is free and the lemma is proved for this case.

Let us now consider the case k4 = 4, which means that M ∈ H(14).
Again, by a careful inspection, one can show that the bottom of C3

contains only one saddle connection. The unique cylinder diagram cor-
responding to this case is shown in Figure 18 right. We can also easily
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Figure 18. Case 4.III): C1 and C2 are simple inH(2, 12)
(left) and H(14) (right).

show that there is a free simple cylinder D contained in C4, whose
boundary contains two distinct zeros.

• Case k1 + k2 = 3. Up to a renumbering, we can assume that k1 = 1
and k2 = 2. We first notice that the top of C1 cannot be contained in
the bottom of C3 otherwise we have a contradiction to [AN16, Lem.
2.11]. Thus the top of C1 must be contained in the bottom of C4. It
follows from Lemma A.2 that both saddle connections in the top of C2

are contained in the bottom of C4. Consequently, the bottom of C3

must be contained in the top of C4.
If k4 = 2, that is M ∈ H(2, 12), then the bottom of C3 contains a

single saddle connection. The unique corresponding cylinder diagram
corresponding to this is shown in Figure 19 (left). Observe that there is
a free simple cylinder D contained in C4. Remark that the boundary of
D contains only the double zero of M . Twisting C4 and simultaneously
{C1, C2, C3} and using the fact that square-tiled surfaces are dense in
M, we can assume that M is square-tiled and there is a vertical cylinder
D1 crossing only C1, C3, C4. Note that D1 fills C1 and is disjoint from
D and C2. There must exist vertical cylinders D2, . . . , Ds, M-parallel
to D1 that fill C2. But it is easy to see that one of the cylinders in the
family {D2, . . . , Ds} must intersect D. Since D1 does not intersect D,
this is a contradiction which means that this case cannot occur.

If k4 = 3, that is M ∈ H(14), then by a careful inspection, we also
have that the bottom of C3 only contains one saddle connection. Hence,
there are two saddle connections contained in both the top and bottom
of C4. Let D be the simple cylinder in C4 as shown Figure 19 (right),
then one can easily show that D is free and we are done.

• Case k1 + k2 = 4. We have k4 ∈ {1, 2}. By Lemma A.1, we know that

k4 = 2 and M ∈ H(14). If there is a saddle connection that is contained
in both top and bottom of C4, then we have a free simple cylinder D in
C4 whose boundary contains two distinct zeros and the lemma follows.



272 D. AULICINO & D.-M. NGUYEN

C1 C2

C3

C4 D

1

1

2

2

3

34

4

C1 C2

C3

C4 D

1

1

2

2

3

34

4 5

5

Figure 19. Case 4.III): C1 is simple and C2 is semi-simple.

Assume from now on that there is no saddle connection that is contained
in both top and bottom of C4.

Claim 1: The top of either C1 or C2 cannot be entirely contained in
the bottom of C4.

Proof. If the top of either C1 or C2 is contained in the bottom of C4,
then by the proof of Lemma A.2 the tops of both C1 and C2 are con-
tained in the bottom of C4. In this case, the bottom of C4 must contain
a saddle connection not in the tops of C1 and C2 since otherwise we
would have C3 and C4 homologous. Such a saddle connection must be
also contained in the top of C4 which contradicts our hypothesis. q.e.d.

Claim 2: We have k1 = k2 = 2.

Proof. Assume that k1 = 1 which means that C1 is a simple cylinder.
By [AN16, Lem. 2.11], the top of C1 is not contained in the bottom
of C3, thus it is contained in the bottom of C4. But this is already
excluded by the previous claim. q.e.d.

Claim 3: The bottom of C4 contains at most two saddle connections.

Proof. The hypothesis that no saddle connection in the top of C4 is
also contained in its bottom implies that the top of C4 is contained in
the bottom of C3. Claim 1 implies that at least one saddle connection
in the top of C1 (resp. C2) is contained in the bottom of C3. Thus
the bottom of C3 contains at least four saddle connections (the top of
C4 and at least two other saddle connections). Recall that we have
8 saddle connections, and the bottom of C1 (resp. C2) contains one
saddle connection. Hence the bottom of C4 contains at most two saddle
connections. q.e.d.

Claim 4: The top of Ci, i ∈ {1, 2, 4}, consists of two saddle connec-
tions between two distinct simple zeros.

Proof. If the top of either C1, C2, or C4 contains a single zero, then
we have two horizontal saddle connections joining this zero to itself.
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Since all the zeros are simple, there are no saddle connections from this
zero to another one. But this contradicts the condition that the graph
G consisting of the horizontal saddle connections that do not contain
x0 is connected. q.e.d.

Assume that the bottom of C4 consists of two saddle connections. Since
the top of either C1 or C2 cannot be contained in the bottom of C4, one
saddle connection in the bottom of C4 is contained in the top of C1 and
the other one is contained in the top of C2. From the same argument
as above, we see that there are two distinct zeros in the bottom of
C4. Therefore, there must be a zero that is contained in both top and
bottom of C4. Note that this zero is contained in the tops of C1, C2, and
in the bottom of C3. By an angle count, one can easily see that the total
angle at this zero is at least 5π, which is a contradiction since all of the
zeros are simple. We can then conclude that the bottom of C4 consists
of a single saddle connection, which means that C4 is semi-simple. The
proof of the lemma is now complete. q.e.d.

Appendix B. Proof of Lemma 5.9

Lemma B.1. Let M be a horizontally periodic translation surface
satisfying Case 4.II) in a rank two affine manifold M ⊂ H(2, 12) ∪
H(14). Assume that M is M-cylindrically stable. Then C3 and C4 are
M-parallel.

Proof. Since M has rank two, both C3 and C4 cannot be free oth-
erwise we would have a Lagrangian subspace of dimension three in
p(TR

MM). Hence, it suffices to consider the possibility that one of C3 or
C4 is free. Without loss of generality, assume by contradiction that C3

is free and C4 is M-parallel to {C1, C2}.
Let us first consider the case C3 contains a simple cylinder D. Recall

that C3 can be viewed as one cylinder in a 2-cylinder decomposition of
a genus two translation surface. Hence, there are at most two saddle
connections that are contained in both top and bottom borders of C3.
From this observation, it is not difficult to see that D is free.

Assume that the boundary of D contains two simple zeros, then we
can collapse D to get a surface M ′ which is contained in a rank two affine
submanifold M′ of either H(2, 2) or H(2, 12). Note that M ′ also has a
cylinder decomposition satisfying Case 4.II) in the horizontal direction.

By assumption, we know that M ′ has an involution τ with four fixed
points. By inspection, we see that if M ′ ∈ H(2, 12), then τ must fix
C3 and C4 and exchange C1 and C2. But this would imply that τ has
at least five fixed points since the double zero must be fixed by τ and
we have 4 regular fixed points in the interiors of C3 and C4. So we
have a contradiction in this case. If M ′ ∈ H(2, 2), then we have two
possibilities, either τ fixes C1, C2 and exchanges C3, C4, or τ fixes C3, C4
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and exchanges C1 and C2. In either case, we see that C4 is not M′-
parallel to C1, C2. Thus in any neighborhood of M ′ in M′, we can find
a surface M ′1 on which C4 is not parallel to C1, C2. By the isomorphism
from [MW17] of the tangent space ofM′ with a subspace of the tangent
space of M, we see that there exists in any neighborhood of M in M
a surface M1 on which C4 is not parallel to {C1, C2}, which means that
C4 is not M-parallel to {C1, C2}.

Suppose now that the boundary of D contains a double zero, which
means that M ∈ H(2, 12). The assumption means that C3 is contained
in a translation surface in the stratum H(2). Since there is only one
cylinder diagram for 2-cylinder decompositions of surfaces in H(2), we
see that one side of C1 (resp. C2) contains only one saddle connection,
which means that C1 and C2 are semi-simple. Note also that in this
case any vertical ray that crosses C1 or C2 must intersect C3.

Consider now C4. If C4 contains a simple cylinder, then we have a
contradiction by [AN16, Lem. 2.12]. Thus in this case C4 must be
simple. Note that there is only one 4-cylinder diagram satisfying all of
these conditions which is shown in Figure 20. By a similar argument as
in [AN16, Lem. 6.17], we can twist {C1, C2, C4} and C3 independently
so that D is vertical, and there exists a vertical cylinder E crossing each
of C1, C2, C3 once. Since C4 is M-parallel to C1 and C2, there must
exists a vertical cylinder E′ in the equivalence class of E that crosses C4.
Let hi be the height of Ci and ni be the number of times that a core curve
of E′ crosses Ci. Note that we have n1 = n2 = n3 = n, and 0 < n4 ≤ n.
By the Cylinder Proportion Lemma we have P (E,C3) = P (E′, C3),
which implies

h3
h1 + h2 + h3

=
nh3

n(h1 + h2 + h3) + n4h4
⇔ n4h4 = 0.

But this is clearly impossible. Thus we also have a contradiction.

DE

C1

C3

C2

C4

Figure 20. Cylinder decomposition in Case 4.II), M ∈
H(2, 1, 1), C4 is simple.

It remains to consider the case C3 is simple. One can twist C3 so
that it contains no vertical saddle connections and perform an extended
cylinder collapse from [AN16, Proof. of Lem. 4.7] to get a new cylinder,
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which we call C3 by abuse of notation. This new cylinder contains a
simple cylinder, so we are back to the previous case. The proof of the
lemma is then complete. q.e.d.

Lemma B.2. The cylinder C3 contains a simple cylinder if and only
if C4 contains a simple cylinder.4

Proof. Recall that C3 (resp. C4) either is simple, or contains a simple
cylinder. Since C3 (resp. C4) is only adjacent to C1 and C2, this lemma
is an easy consequence of the Cylinder Proportion Lemma. q.e.d.

Lemma B.3. Let k3 (resp. k4) be the number of saddle connections
contained in both top and bottom of C3 (resp. C4). Then k3 = k4.

Proof. Note that we have 0 ≤ ki ≤ 2, i = 3, 4, since C3 (resp. C4) can
be viewed as a cylinder in a 2-cylinder decomposition of a translation
surface of genus two. If k3 = 0, then C3 is simple, and by Lemma B.2, we
know that C4 is simple, hence k4 = 0. Thus we can assume that k3 and
k4 are both non-zero. Since the roles of C3 and C4 can be exchanged,
we only need to consider the case k3 = 1 and k4 = 2.

Let us denote by σ3 the unique saddle connection which is contained
in both the top and bottom of C3. The two saddle connections contained
in both the top and bottom of C4 are denoted by σ4 and σ′4. We can
twist C4 (and simultaneously C3) such that there is a subdomain R of
C4 isometric to a rectangle whose top and bottom sides are the union
of σ4 and σ′4. Since M is defined over Q, we can assume that M is a
square-tiled surface, which means that the vertical direction is periodic.
There is a vertical cylinder D whose closure equals the closure of R. In
particular, D is contained in C4.

Since C3 and C4 areM-parallel, it follows that the closure of C3 must
contain a vertical cylinder D′ which is M-parallel to D. Note that D′

must be a simple cylinder and σ3 is entirely contained in D′.
We now remark that the equivalence class of D must be {D,D′}, since

any other vertical cylinder must cross C1 or C2. We can “stretch” simul-
taneously D and D′ so that their heights are very small with respect to
the lengths of the horizontal saddle connections outside of D∪D′. Note
that as the heights of D and D′ tend to zero, the lengths of σ3, σ4, σ

′
4

also decrease to zero.
Observe that we have a simple cylinder E that is contained in the

closure of R consisting of simple closed geodesics crossing σ4 once. As
the height of D decreases to zero, the direction of E converges to the
vertical direction. There must exist a cylinder E′ that is M-parallel to
E which crosses C3. But as the direction of E is close to vertical, such a
cylinder cannot be contained in the closure of C3. Hence, it must cross
C1 or C2 from which we get a contradiction. q.e.d.

4The simple cylinders in this lemma need not be parallel, but a posteriori we will
see that they are.
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Proof of Lemma 5.9.

Proof. Lemma 5.9 follows from Lemmas B.1 and B.3. q.e.d.

Appendix C. 6-cylinder diagrams in genus three

In this section, we give the proof of Proposition 7.1.
The following lemma is well known to most of people in the field, we

provide here a proof for the sake of completeness.

Lemma C.1. Let M be a horizontally periodic translation surface
in a stratum H(κ) of genus g, where |κ| = n. Denote by C1, . . . , Ck
the horizontal cylinders of M , and let γi be a core curve of Ci for i =
1, . . . , k. Then we have

(a) k ≤ g + n− 1,
(b) If k = g + n − 1 then complement of the curves {γ1, . . . , γk} is

the disjoint union of n punctured spheres, each of which contains
a unique singularity of M . In particular, if κ = (1, . . . , 1), and
k = 3g− 3, then each of those components is the interior of a pair
of pants (or a thrice-punctured sphere).

Proof. Cut M along the curves γ1, . . . , γk, we get m compact surfaces
with boundary denoted by M̃1, . . . , M̃m. Since each M̃j must contain
a singularity of M , we have m ≤ n. Let gi and ri be respectively the
genus and the number of boundary components of M̃j . Since we have

χ(M) = χ(M̃1) + · · ·+ χ(M̃m),

it follows

2−2g =
m∑
j=1

(2−2gj−rj) ≤
m∑
j=1

(2−rj) = 2m−
m∑
j=1

rj = 2m−2k ≤ 2n−2k.

Thus we have

k ≤ g + n− 1.

The equality occurs if and only if m = n, and gj = 0, for j = 1, . . . ,m,

which means that each M̃j is a sphere with some discs removed and

contains a unique singularity of M . If κ = (1, . . . , 1), each M̃j contains
a cone point of angle 4π. The Gauss-Bonnet Theorem then implies that
we must have χ(M̃j) = −1. q.e.d.

Proof of Proposition 7.1. Let Ci, i = 1, . . . , 6, denote the horizontal
cylinders of M , and let γi be a core curve of Ci. By Lemma C.1, the
family {γ1, . . . , γ6} cuts M into 4 pairs of pants denoted by M̃1, . . . , M̃4.

Let xj be the unique singularity of M that is contained in M̃j .
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Figure 21. A component M̃j .

Here below, we record some properties of the cylinders C1, . . . , C6.

(a) Each boundary component of Ci has at most 2 saddle connections,
and contains a unique zero of M .

(b) Each zero is contained in the boundary of 3 cylinders.
(c) Each cylinder contains two distinct zeros in its boundary.

For i = 1, . . . , 6, let δi be a saddle connection in Ci connecting the
pair of zeros in its boundary. The union ∪6i=1δi is an embedded graph
Γ in M . This graph is also the dual graph of the nodal curve obtained
from M by pinching γ1, . . . , γ6. By definition, Γ has 4 vertices and 6
edges. There are 2 admissible configurations for Γ that are shown in
Figure 22. In Case 1, any pair of vertices are connected by only one
edge, in Case 2 there are two pairs of vertices such that there are two
edges between the vertices in each pair. We will derive the possible
cylinder diagrams from the configurations of Γ.

x1

x4

x2 x3

Case 1

x1 x2

x3 x4

Case 2

Figure 22. Configurations of the graph Γ.

Case 1: Let `i be the circumference of Ci, and assume that `1 =
max{`1, . . . , `6}. We claim that each boundary component of C1 con-
tains two saddle connections. This is because otherwise C1 is a semi-
simple cylinder, and there would be another cylinder Ci such that
`i > `1.

We can assume that the zeros of M in the top and bottom borders
of C1 are respectively x1 and x2. We now remark that each saddle
connection in the top border of C1 is the bottom border of another
cylinder. We can assume that the cylinders whose bottom border is
contained in the top of C1 are C2 and C3. Similarly, there are two
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cylinders Ci, Cj whose top border is contained in the bottom border of
C1. We claim that {i, j}∩ {2, 3} = ∅ because otherwise there would be
two edges in Γ between x1 and x2. Thus we can assume that {i, j} =
{4, 5}.

Note that by the same argument we see that the top borders of C2

and C3 contain two distinct zeros, which are neither x1 nor x2. The
same is true for the bottom borders of C4 and C5. Thus we can assume
that the top of C2 and the bottom of C4 contain the same zero x3.
Consequently, the top of C3 and the bottom of C5 contain x4. Without
loss of generality, we can suppose that `2 < `4, which means that C2

is a simple cylinder, while C4 is strictly semi-simple, and the bottom
border of C4 contains two saddle connections. Since we have `2 + `3 =
`4 + `5 = `1, it follows that `3 > `5. Hence C5 is a simple cylinder, and
the top of C3 contains two saddle connections. From this we deduce
that the cylinder C6 must be simple, with top border contained in the
bottom border of C4, and bottom border contained in the top border of
C3. In conclusion, there is a unique cylinder diagram corresponding to
this configuration of Γ. This cylinder diagram is depicted in Case 6.a
of Figure 17 with a different labeling of the cylinders.

Case 2: We can assume that there are two edges between x1 and x2 and
between x3 and x4. Observe that in this case, there are two cylinder
core curves that separate {x1, x2} from {x3, x4}. In particular, they are
homologous. Cutting M along those curves and permuting the gluings,
we obtain two translation surfaces in H(1, 1), each of which admits a
3-cylinder decomposition in the horizontal direction. Therefore, one can
recover the cylinder diagram of M from the unique 3-cylinder diagram
for H(1, 1) and a choice of regluing. The possible diagrams are depicted
by Cases 6.b, 6.c, and 6.d of Figure 17. q.e.d.
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