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Abstract

We prove a sharp area estimate for catenoids that allows us
to rule out the phenomenon of multiplicity in min-max theory in
several settings. We apply it to prove that i) the width of a three-
manifold with positive Ricci curvature is realized by an orientable
minimal surface ii) minimal genus Heegaard surfaces in such man-
ifolds can be isotoped to be minimal and iii) the “doublings” of the
Clifford torus by Kapouleas-Yang can be constructed variationally
by an equivariant min-max procedure. In higher dimensions we
also prove that the width of manifolds with positive Ricci curva-
ture is achieved by an index 1 orientable minimal hypersurface.

1. Introduction

A central difficulty in min-max theory is the phenomenon of multi-
plicity. Namely, it may happen that the min-max limit associated to
one homotopy class in the space of surfaces is simply an integer multiple
of another. Thus even as one might find distinct homotopy classes in
the space of surfaces, one might not be producing geometrically distinct
critical points of the area functional. This issue is already present in
the problem of finding closed geodesics.

In this paper we use a sharp area estimate for catenoids that allows us
to exclude multiplicity in several cases. The “catenoid estimate” asserts
that the area of the unstable catenoid joining two parallel circles in R3

exceeds the area of the two flat disks subquadratically in the separation
between the circles. This enables us in arbitrary three-manifolds to sym-
metrically foliate a neighborhood around an unstable minimal surface
by surfaces with areas strictly less than twice the central minimal sur-
face. The idea is to take the boundary of a tubular neighborhood of the
minimal surface with a small neck attached, which we then “open up.”
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Indeed, for a closed embedded unstable minimal surface Σ embedded
in a three-manifold, denote by TεΣ the ε-tubular neighborhood about
Σ. As long as ε is sufficiently small, ∂(TεΣ) is diffeomorphic to two
disjoint copies of Σ if Σ is orientable. If the ambient manifold has
positive Ricci curvature, say, then the area of the surfaces comprising
∂(TεΣ) is of order ε2 below 2|Σ|. By adding a neck to ∂(TεΣ) and
“opening it up,” the point is that we add area at most on the order
ε2/(− log ε) before areas start to go down, and thus the areas in our
family of surfaces sweeping out TεΣ have areas strictly below 2|Σ|. If
the ambient manifold does not have positive Ricci curvature, we can
instead use the first eigenfunction of the Jacobi operator to produce our
parallel surfaces, and the same result applies. The existence of such
explicit sweepouts is what allows us to rule out multiplicity in several
cases.

In higher dimensions analogous results hold but the catenoid is not
needed in the construction. Indeed, if Σn is an n-dimensional minimal
hypersurface in Mn+1, then ∂(TεΣ) has n-dimensional area of order
ε2 below 2Hn(Σn). But by gluing in a small cylinder around a point
p ∈ Σn connecting the two components of ∂(TεΣ

n) and removing the
two n-balls from ∂(TεΣ

n), one only needs to add area of order εn before
the areas start to go down. Since εn is of smaller order than ε2, when
“opening up the hole” one can make a sweepout with all areas strictly
less than 2Hn(Σn). Dimension two is the “critical dimension” when
more is needed than the standard area comparison argument.

One basic application of the catenoid estimate is that we can rule out
one-parameter min-max sequences from collapsing with multiplicity 2
to a non-orientable minimal surface:

Theorem 1.1. If M is a three-manifold with positive Ricci curvature,
and Γ a Heegaard surface realizing the Heegaard genus of M , then Γ is
isotopic to an embedded minimal surface Σ of index 1. Moreover, Σ
is the min-max limit obtained via Heegaard sweepouts of M determined
by Γ.

Remark 1.2. Theorem 1.1 was proved in [MN] (Theorem 3.4) under
the additional assumption that M contains no non-orientable embedded
minimal surfaces.

In particular, we obtain:

Corollary 1.3. RP3 endowed with a metric of positive Ricci curva-
ture admits a minimal embedded index 1 torus.

Remark 1.4. Some curvature assumption is necessary in Theorem
1.1. Ritoré-Ros [RR] have shown that there are flat three-tori not ad-
mitting index 1 minimal surfaces of genus three. The min-max minimal
surface coming from a genus three Heegaard splitting must then degen-
erate to a union of tori in such manifolds. In other words, a 3-manifold
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need not contain a minimal Heegaard surface realizing its Heegaard
genus.

Similarly, we have:

Theorem 1.5. For 3 ≤ (n+1) ≤ 7, the Almgren-Pitts width (with Z
or Z2 coefficients) of an orientable (n+ 1)-manifold with positive Ricci
curvature is achieved by an orientable index 1 minimal hypersurface with
multiplicity 1.

The catenoid estimate is needed when n = 2.

Remark 1.6. Zhou [Z] had proved that the width is achieved by
either an orientable index 1 minimal hypersurface of multiplicity one or a
double cover of a non-orientable minimal hypersurface with multiplicity
two (see also Mazet-Rosenberg [MR] for an analysis of the least area
minimal hypersurface). Theorem 1.5 rules the second possibility out.

The classical one-parameter setting for min-max theory is that of
sweepouts {Σt}t∈[0,1] such that Σ0 = Σ1 = 0. If one considers the
Almgren-Pitts theory with Z2 coefficients and allows periodic sweepouts,
then the analogous statement to Theorem 1.5 is false. In round RP3,
for instance, by rotating an RP2 one can produce a non-trivial cycle
comprised of minimal projective planes of area 2π, each realizing the Z2

Almgren-Pitts width for that kind of sweepout.
The catenoid estimate and the equivariant min-max theory of [Ke2]

allow one also to give a min-max construction of “doublings” of minimal
surfaces. We give a new construction and variational interpretation of
the Kapouleas-Yang [KY] doublings of the Clifford torus in the round
three-sphere that was first proposed in 1988 by Pitts-Rubinstein [PR1].
Pitts-Rubinstein also noted (see Remark 4 in [PR1]) that results anal-
ogous to our catenoid estimate would be necessary to carry out the
construction. Indeed, the main issue is that when running an equi-
variant min-max procedure one must rule out the min-max sequence
from collapsing with multiplicity two to the Clifford torus. The explicit
sweepout produced by the catenoid estimate stays below in area twice
the Clifford torus and thus we can obtain:

Theorem 1.7. For each g ≥ 2, there exists a closed embedded min-
imal surface Σg resembling a doubled Clifford torus in S3. The area
of Σg is strictly less than 4π2 (twice the area of the Clifford torus C).
Moreover, Σg → 2C in the sense of varifolds as g → ∞ and the genus
of Σg also approaches infinity. The surfaces Σg arise as min-max limits
for a suitable equivariant saturation of sweepouts of S3.

Remark 1.8. In fact, for g large enough, one can show that the
genus of Σg is g2 + 1 and the surfaces consist of two tori parallel to the
Clifford torus joined by g2 necks placed symmetrically along a grid. See
[Ke2] for more details.
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Remark 1.9. The catenoid estimate suggests heuristically that un-
stable minimal surfaces should not arise with multiplicity in the min-
max theory. This has been explicitly conjectured for generic metrics by
the second and third named authors in [MN4], where they have con-
firmed it in the Almgren-Pitts setting when the number of parameters
is one. We know of no instance where an unstable component occurs
with multiplicity except in the case of geodesics (see [A]).

The organization of this paper is as follows. In Section 2 we prove
the catenoid estimate, first in R3, then in an arbitrary three-manifold.
In Section 3 we give the applications. In Section 4 we prove Theorem
1.5 in higher dimensions.

2. Catenoid estimate

2.1. Catenoid estimate in R3. First we explain the catenoid estimate
in R3. We will not need the results of this section for the generalization
to arbitrary three-manifolds or in the rest of the paper, but we include
it since it is the motivating heuristic.

Consider the two parallel circles in R3:

C1(r, h) := {(h, y, z) | y2 + z2 = r2},(2.1)

C2(r, h) := {(−h, y, z) | y2 + z2 = r2}.(2.2)

As long as h is small compared to r, there are two stable minimal sur-
faces with boundary C1(r, h)∪C2(r, h). The first is the surface S1(r, h)
consisting of the union of two stable flat disks, with area 2πr2. The
second minimal surface S2(r, h) is the stable catenoid. As h tends to
zero, the area of S2(r, h) converges to 0.

By analogy with Morse theory, given the two stable minimal surfaces
with the same boundary, one expects to find an unstable minimal surface
between them. One can consider sweepouts by annuli of the region
between the stable catenoid and two disks (degenerating to two disks
at one side). Running a min-max procedure, one finds the unstable
catenoid U(r, h) as the surface realizing the width for this family. The
catenoid estimate concerns the area of U(r, h) when h is small. Here
and throughout this paper, if Σ is a set in R3 or in a 3-manifold, |Σ|
denotes the 2-dimensional Hausdorff measure of Σ.

Proposition 2.1 (Catenoid estimate in R3). For r > 0 there exists
h(r) > 0 so that if h < h(r) then

(2.3) |U(r, h)| ≤ 2πr2 +
4πh2

(− log h)
.

Remark 2.2. For any δ > 0, by taking h(r) even smaller one can
replace 4π on the RHS of (2.3) by 2π(1 + δ).
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Remark 2.3. One can construct by hand a sweepout {Σt}rt=0 of
annuli foliating the region between the stable catenoid and two disks
by simply cutting out at time t a disk of radius t from each component
S1(r, h) and gluing in a cylinder. The maximum area of a surface in
this sweepout is of order h2 above the area of the two disks. The point
of the catenoid estimate (2.3) is that this sweepout is far from efficient
– using an optimal sweepout the maximal area is of order h2/(− log h)
above the area of the two disks.

Proof. The unstable catenoid with boundary C1(r, h) ∪ C2(r, h) is
obtained by rotating the function f(x) = c cosh(x/c) about the x axis.
The constant c = c(r, h) is the smaller solution to

(2.4) r = c cosh(h/c).

Using the identities for hyperbolic trigonometric functions, one can ob-
tain a formula for the area of U(r, h):

|U(r, h)| =
∫ h

−h
2πf(x)

√
1 + (f ′(x)2)dx

=

∫ h

−h
2πc cosh2(x/c)dx

= πc2 sinh(2h/c) + 2πhc

= 2πc2 cosh(h/c) sinh(h/c) + 2πhc

= 2πr
√
r2 − c2 + 2πhc , using (2.4)

≤ 2πr2 + 2πhc.(2.5)

It remains to determine how c(r, h) depends on h when h is small.
Since c is defined as the smaller solution to (2.4), it follows that

(2.6) lim
h→0

h/c =∞.

To see (2.6), it is convenient to change variables in (2.4) to x := h/c and
λ := r/h. Then (2.6) is equivalent to the claim that the larger solution
of

(2.7) λx = cosh(x),

tends to infinity as λ → ∞. At the smaller solution to (2.7) near
0, the derivative of cosh(x) is smaller than that of λx. The second
larger solution to (2.7) must occur at an x larger than the x0 at which
the derivatives of λx and cosh(x) are equal, i.e., at the x0 satisfying
λ = sinh(x0). But x0 approaches infinity as λ → ∞. Thus (2.6) is
established.

There exists a function g(x) defined for x > 0 so that:

(2.8) log(cosh(x)) = x− log 2 + g(x) where lim
x→∞

g(x) = 0.
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Taking the logarithm of (2.4) and applying (2.8) we obtain

(2.9) log r − log c = h/c− log 2 + g(h/c).

Rearranging (2.9) we conclude

(2.10) log 2r + log(h/c)− log h = h/c+ g(h/c).

Dividing (2.10) by h/c we obtain,

(2.11) log 2r/(h/c) + log(h/c)/(h/c)− c(log h)/h = 1 + (c/h)g(h/c).

Using (2.6) we then conclude from (2.11)

(2.12) lim
h→0

c(− log h)

h
= 1,

from which we see that if h is small enough,

(2.13) c(h, r) ≤ 2h

(− log h)
.

Plugging (2.13) into (2.5) we obtain (2.3). q.e.d.

2.2. Catenoid estimate in a 3-manifold. The catenoid estimate in
a 3-manifold asserts that we can construct a sweepout interpolating
between the boundary of a tubular neighborhood about an unstable
minimal surface and a graph on the minimal surface where each surface
in the sweepout has area less than twice that of the central minimal
surface. We will not explicitly need to use catenoids to construct our
sweepout; instead we use logarithmically cut off parallel surfaces that
turn out to have areas of the correct order predicted by the catenoid
estimate. The catenoid estimate can thus be interpreted as yet another
instance of the “logarithmic cutoff trick.”

One technical difficulty that makes our arguments slightly more in-
volved than those used in the standard log cutoff trick is that we are
considering a one-parameter family of normal graphs whose gradients
are becoming singular at a point and we need all estimates uniform in
this family.

Let us first introduce the notion of a continuous sweepout that we
will use in this paper. Set In = [0, 1]n and let {Σt}t∈In be a family of
closed subsets of M and B ⊂ ∂In. We call the family {Σt} a (genus-g)
sweepout if

1) H2(Σt) is a continuous function of t ∈ In.
2) Σt converges to Σt0 in the Hausdorff topology as t→ t0.
3) For t0 ∈ In \B, Σt0 is a smooth embedded closed surface of genus

g and Σt varies smoothly for t near t0.
4) For t ∈ B, Σt consists of the union of a 1-complex together (pos-

sibly) with a smooth surface.
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Loosely speaking, a sweepout consists of genus g surfaces varying
smoothly, that could degenerate to 1-d graphs or pieces of graphs to-
gether with smooth surfaces at the boundary of the parameter space.

For a closed embedded two-sided surface Σ ⊂ M , φ > 0 a smooth
function defined on Σ and ε > 0, set the φ-adapted tubular neighbor-
hood about Σ to be:

(2.14) Tεφ(Σ) := {expp(sφ(p)N(p)) : s ∈ [−ε, ε], p ∈ Σ},

where N is a choice of unit normal on Σ.
Given distinct points p1, ..., pk ∈ Σ and 1-d graph G ⊂ Σ, let us say

that Σ \ {p1, ...pk} retracts onto G if for any ε > 0 small enough there
exists a smooth deformation retraction {Rt}1t=0 of Σ \ ∪ki=1Bε(pi) onto
G such that

(2.15) Rt : Σ \ ∪ki=1Bε(pi)→ Σ \ ∪ki=1Bε(pi).

We further require that Rt is one-to-one for t 6= 1.
For any surface Σ of genus g and p ∈ Σ, for instance, there always

exists a retraction from Σ\{p} onto a wedge of 2g circles. If Σ is a two-
sphere and p1, p2 ∈ Σ are distinct, then there is similarly a retraction
from Σ \ {p1, p2} onto a closed circle.

With these definitions we can now state the catenoid estimate in a
general three-manifold:

Theorem 2.4 (Catenoid estimate). Let M be a 3-manifold and let
Σ be a closed orientable unstable embedded minimal surface of genus g
in M . Denote by φ the lowest eigenfunction of the Jacobi operator on Σ
normalized so that ‖φ‖L2 = 1 and let N be a choice of unit normal on
Σ. Fix p1, p2...pk ∈ Σ and a graph G in Σ so that Σ \ {p1, ...pk} retracts
onto G. Then there exists ε0 > 0 and τ > 0 so that whenever ε ≤ ε0
there exists a sweepout {Λt}1t=0 of Tεφ(Σ) so that:

1) Λt is a smooth surface of genus 2g + k − 1 (i.e. two copies of Σ
joined by k necks) for t ∈ (0, 1).

2) Λ0 = ∂(Tεφ(Σ)) ∪
⋃k
i=1{exppi(sφ(pi)N(pi)) : s ∈ [−ε, ε]}.

3) Λ1 = G.
4) For all t ∈ [0, 1], |Λt| ≤ 2|Σ| − τε2.

If M has positive Ricci curvature, we can set in the above φ = 1 even
though it might not be an eigenfunction.

In order to facilitate computations for areas of normal graphs, we will
use Fermi coordinates, which are essentially normal coordinates adapted
to the tubular neighborhood of a submanifold. We follow the exposition
in Section 4 of [PS].

2.3. Fermi coordinates. Denote by Λ a smooth closed embedded (not
necessarily minimal) hypersurface in a Riemannian (n+1)-manifold M .



8 D. KETOVER, F. C. MARQUES & A. NEVES

For z small we can consider the parallel hypersurfaces:

(2.16) Λz = {expp(zN(p)) : p ∈ Λ},
where N is a choice of unit normal vector field on Λ. The map

(2.17) F (p, z) := expp(zN(p))

is a diffeomorphism (for ε small enough) from a neighborhood of (p, 0) ⊂
Λ× R into a neighborhood of p in Tε(Λ) ⊂M .

Denote by gz the induced metric on the surface Λz. By Gauss’ lemma,
the metric g on M has a product expansion in Fermi coordinates:

(2.18) g = gz + dz2.

Let φ be a smooth function defined on Λ0 = Λ. We can then consider
surfaces that are normal graphs over Λ:

(2.19) Λφ = {expp(φ(p)N(p)) : p ∈ Λ}.
By (2.18), the induced metric on Λφ is given by

(2.20) gΛφ = gφ + dφ⊗ dφ.
One can then compute the area of the surfaces Λφ:

(2.21) |Λφ| =
∫

Λ

√
1 + |∇gφφ|2gφdvgφ .

In the remainder of this section, we will apply (2.21) to the function
hφ to obtain an expansion in h (for h small) for the area of the normal
graph determined by hφ in terms of quantities defined on Λ. We prove
the following:

Proposition 2.5. If Λ is an open set contained in a minimal hyper-
surface, and φ a smooth function defined on Λ, then there exists h0 > 0
so that for h ≤ h0 we have the expansion
(2.22)

|Λhφ| ≤ |Λ|+
h2

2

∫
Λ

(|∇φ|2−φ2(|A|2 + Ric(N,N))) +Ch3

∫
Λ

(1 + |∇φ|2),

where h0 and C depend only on Λ and ‖φ‖L∞.

Remark 2.6. The estimate (2.22) is sharp. Indeed, it is well known
that if Λ is a minimal surface, then from the Taylor expansion of the
area functional we always have:

(2.23) |Λhφ| ≤ |Λ| −
h2

2

∫
Λ
φLφ+O(h3),

where L denotes the Jacobi operator on a minimal surface,

(2.24) L = ∆ + |A|2 + Ric(N,N).

The reason (2.23) by itself is not sufficient for our purposes is that we
will be considering families of functions φt whose gradients are blowing



THE CATENOID ESTIMATE AND ITS GEOMETRIC APPLICATIONS 9

up at a point as t → 0 and we need to ensure that the O(h3) term in
(2.23) is bounded independently of t. For the family of functions we
will consider, the L2 norm of the gradients will be uniformly bounded
as well as their L∞ norms, and thus from (2.22) we will in fact obtain
(2.23).

In order to expand (2.21), we will need the expansion for the metrics
gz on Λz in terms of g0, the induced metric on Λ0 = Λ. Such an
expansion is derived in Pacard-Sun [PS]:

Lemma 2.7 (Proposition 5.1 in [PS]).

(2.25) gz = g0 − 2zA+ z2T +O(z3),

where A denotes the second fundamental form on Λ and the tensor T is
defined by

(2.26) T = A⊗A+ g(R(N, .)N, .),

where (A⊗A)(v1, v2) = g0(∇v1N,∇v2N) for v1 and v2 in TΛ.

Proof of Proposition 2.5. We need to expand both the integrand and
volume element in (2.21). We will first handle the integrand. Recall the
Neumann formula for matrix inversion of perturbations: If g̃ is a square
matrix with expansion:

(2.27) g̃ = g + εX + ε2Y +O(ε3),

then the inverse of g̃ can be expressed as:

(2.28) g̃−1 = g−1− ε(g−1Xg−1) + ε2((g−1X)2g−1− g−1Y g−1) +O(ε3).

Using the expansion (2.25) in (2.28) (setting X = −2A, Y = T and
ε = hφ) we can express the inverse of ghφ by

(ghφ)−1 = g−1
0 + 2hφ(g−1

0 Ag−1
0 ) + h2φ2(4(g−1

0 A)2g−1
0 − g

−1
0 Tg−1

0 )

+O(h3φ3).(2.29)

Thus we can expand |∇(hφ)|2ghφ = h2((ghφ)−1)ijφiφj (where there is

summation in i and j):

(2.30) |∇(hφ)|2ghφ = h2|∇φ|2g0 + 2h3φA(∇φ,∇φ) +O(h4φ2|∇φ|2g0).

In other words we obtain

(2.31)
√
|∇(hφ)|2ghφ + 1 ≤

√
1 + h2|∇φ|2g0(1 + Ch),

where the expansion (2.31) holds for h sufficiently small (depending only
on ‖φ‖L∞) and where C also depends only on ‖φ‖L∞ and Λ. This gives
a bound for the integrand that we need to estimate in (2.21).

We must also compute the expansion for the volume element dvghφ .
Recall that if

(2.32) g̃ = g + εX + ε2Y +O(ε3),
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then one has the following expansion for det(g̃):
(2.33)

det(g̃) = det(g)(1 + εtr(g−1X) + ε2(tr(g−1Y ) + tr2(g−1X))) +O(ε3),

where tr denotes trace, and tr2(M) = 1
2(tr(M)2− tr(M2)) (i.e. the sum

over all products of two different eigenvalues).
Plugging our expansion (2.25) into (2.33), using also that tr(g−1A) =

0 by the minimality of Λ, that tr(g−1T ) = |A|2−Ric(N,N) (by (2.26))
and that tr2(g−1A) = −1

2 |A|
2 (again by minimality), we conclude that

(2.34) det ghφ = (det g0)(1− (hφ)2(|A|2 + Ric(N,N)) +O(φ3h3)).

Substituting (2.34) and (2.31) into the formula for the area of a graph
(2.21) in Fermi coordinates, we obtain

|Λhφ|

(2.35)

≤
∫

Λ

√
1 + h2(|∇φ|2g0 − φ2|A|2 − φ2Ric(N,N)) + Ch3(1 + |∇φ|2g0)dvΛ.

Using the inequality
√

1 + x ≤ 1 + x/2, for x ≥ −1 to estimate the
integrand, we then obtain (2.22). q.e.d.

2.4. Proof of catenoid estimate (Theorem 2.4). In the following,
C will denote a constant potentially increasing from line to line but
only depending on the geometry of Σ and ‖φ‖L∞ . All balls Br(x) will
be ambient metric balls.

Proof. Let us assume that k = 1 and set p := p1 so that Σ \ {p}
retracts onto the given graph G. The general case will then follow with
trivial modifications.

Choose R > 0 sufficiently small so that Σ ∩ Bt(p) is a disk for all
t ∈ (0, R] and so that there exists D > 0 such that for any t ≤ R there
holds

(2.36) |Σ ∩ ∂Bt(p)| ≤ Dt.
For any x ∈ M , set r(x) := distM (x, p). Let −λ < 0 be the low-

est negative eigenvalue of the Jacobi operator (2.24) corresponding to
the eigenfunction φ (so that Lφ = λφ). We define for t ∈ [0, R], the
logarithmically cut-off functions:

ηt(x) =


1 r(x) ≥ t,
(1/ log(t))(log t2 − log r(x)) t2 ≤ r(x) ≤ t,
0 r(x) ≤ t2.

Then set φt(x) = φ(x)ηt(x). For each t ≥ 0, we consider the parallel
surfaces

(2.37) Λ′h,±t = {expx(±hφt(x)N) : x ∈ Σ},
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where N is a choice of unit normal vector on Σ. The surfaces that will
make up our foliation, Λh,t, (for 0 ≤ t ≤ R) are then defined to be:

(2.38) Λh,t := (Λ′h,t \Bt2) ∪ (Λ′h,−t \Bt2),

where by Bt2 we mean Bt2(p) ∩ Σ and where h and R will be fixed
later to be suitably small. Note that the surfaces Λh,t converge (in the
varifold sense) to ∂(ThΣ) as t→ 0. Because φ > 0, the surfaces Λh,t are
(piecewise smooth) embedded surfaces.

By applying (2.22) to φt and on the set Σ \Bt we obtain

|{expx(hφt(x)N(x)) : x ∈ Σ \Bt}|

≤ |Σ| − |Bt|+
h2

2

∫
Σ\Bt

(|∇φt|2 − φ2
t (|A|2 + Ric(N,N)))

+ Ch3

∫
Σ\Bt

(1 + |∇φt|2),(2.39)

where C only depends on ‖φ‖L∞ and the geometry of Σ. For R suf-
ficiently small, since φ is an eigenfunction for L with ‖φ‖L2 = 1 and
φ = φt on Σ \Bt, we have for all t ∈ [0, R], that

(2.40)

∫
Σ\Bt

(|∇φt|2 − φ2
t (|A|2 + Ric(N,N))) ≤ −λ

2
.

Also since the gradients of φt are uniformly bounded on Σ \Bt in t, we
obtain that the h3 error terms in (2.39) are also bounded independently
of t. In total we obtain

(2.41) |{expx(hφt(x)N(x)) : x ∈ Σ \Bt}| ≤ |Σ| − |Bt| −
λ

4
h2 + Ch3,

where C depends on φ (and not t). Then by shrinking h to absorb the
h3 term we obtain for t ∈ [0, R] and for h sufficiently small,

(2.42) |{expx(hφt(x)N(x)) : x ∈ Σ \Bt}| ≤ |Σ| − |Bt| −
λ

8
h2.

Let us now apply (2.22) to estimate the area

(2.43) |{expx(hφt(x)N(x)) : x ∈ Bt \Bt2}|,

i.e. the part of the normal graph where the logarithmic cutoff function is
present and where the gradient terms are unbounded in t. By potentially
shrinking h to absorb the h3 terms and shrinking R to bound the terms
|
∫
Bt\Bt2

φ2
t (|A|2 + Ric(N,N))| ≤ λ

32 uniformly in t we obtain,

|{expp(hφt(x)N(x)) : x ∈ Bt \Bt2}| ≤ |Bt| − |Bt2 |+
λ

16
h2

+ h2

∫
Bt\Bt2

|∇φt|2.(2.44)
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By adding together (2.42) with (2.44), we get for t ∈ [0, R] and h
small enough:

(2.45) |Λ′h,t| ≤ |Σ| −
λ

16
h2 + h2

∫
Bt\B2

t

|∇φt|2.

We can now apply the logarithmic cutoff trick (see for instance [CS])
to estimate the gradient term

∫
Bt\B2

t
|∇φt|2 in (2.45).

By Cauchy-Schwartz we obtain∫
Bt\B2

t

|∇φt|2 ≤ 2

∫
Bt\B2

t

(φ2|∇ηt|2 + η2
t |∇φ|2)

≤ 2(supφ)2

∫
Bt\B2

t

|∇ηt|2 + 2

∫
Bt\B2

t

|∇φ|2.(2.46)

Note that on Bt \B2
t ,

(2.47) |∇ηt|2 =
1

(log t)2

|∇r|2

r2
.

Thus by the co-area formula we obtain

(2.48)

∫
Bt\B2

t

|∇ηt|2 =
1

(log t)2

∫ t

t2

1

λ2

∫
r=λ
|∇r|.

Since |∇r| ≤ 1, the inner integral in (2.48) can then be estimated using
(2.36)

(2.49)

∫
r=λ
|∇r| ≤ |Σ ∩ ∂Bλ| ≤ Dλ.

Plugging (2.49) into (2.48) we obtain:

(2.50)

∫
Bt\B2

t

|∇ηt|2 ≤
D

(log t)2

∫ t

t2

1

λ
dλ ≤ D

− log t
.

Thus we obtain combining (2.46) and (2.50) and setting A :=
2D(supφ)2

(2.51)

∫
Bt\B2

t

|∇φt|2 ≤
A

(− log t)
+ 2

∫
Bt\B2

t

|∇φ|2.

By further shrinking of R, we can guarantee that for all t ≤ R,

(2.52)

∫
Bt\B2

t

|∇φ|2 ≤
∫
BR

|∇φ|2 ≤ λ

64
.

Plugging (2.51) and (2.52) back into (2.45) we obtain for all t ≤ R,

(2.53) |Λ′h,t| ≤ |Σ| −
λ

32
h2 +

A

(− log t)
h2.
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Thus adding together contributions from the two components of Λh,t we
have

(2.54) |Λh,t| ≤ 2|Σ| − λ

16
h2 − 2|Bt2 |+

A

(− log t)
2h2.

Note that for t sufficiently small we see from (2.54) that |Λh,t| < 2|Σ|
(since 1/(− log t) → 0 as t → 0), which is what we needed. However,
as t increases up to R, the two terms in (2.54) of order h2 become
comparable and thus we need to further shrink R so that

(2.55)
2A

− logR
<

λ

32
,

to ensure that

(2.56) |Λh,t| ≤ 2|Σ| − λ

32
h2 − 2|Bt2 | < 2|Σ| − λ

32
h2,

for all t ∈ [0, R].
The parameter R will now be fixed. From (2.56) we also obtain that

(2.57) |Λh,R| < 2|Σ| − 2|BR2 |.

The estimate (2.57) guarantees that “opening the hole” up to t = R
drops area by a definite amount (depending on R and not h).

As varifolds, Λh,R converges to Σ \BR2 with multiplicity 2 as h→ 0.
Thus we have

(2.58) 2|Σ \BR2 | ≤ |Λh,R|+ ε(h),

where ε(h)→ 0 as h→ 0. By assumption Σ \BR2 retracts to the graph
G so that all surfaces along the retraction have areas no greater than
Σ \BR2 . Thus by continuity, the surfaces Λh,R can also be retracted to
G. The area may increase slightly along the way but only by an amount
depending on h and which can be made arbitrarily small by shrinking h.
In light of (2.57) (since 2|Σ| exceeds |Λh,R| by a fixed amount indepen-

dent of h), by potentially shrinking h further, the sweepout {Λh,t}Rt=0

can be extended to obtain the desired sweepout of Thφ(Σ). Let us give
more details.

For s ∈ [0, 1] define the following surfaces

Λh(s),R,s = {expRs(x)(±h(s)φR(x)) : x ∈ Σ \BR2}(2.59)

= {expu(±h(s)φR(R−1
s (u))) : u ∈ Rs(Σ \BR2)},(2.60)

where h : [0, 1] → [0, h] is a non-negative function satisfying h(0) = h
and h(1) = 0 and decreasing so fast so that for all s ∈ [0, 1] and some
C > 0,

(2.61) ‖h(s)∇(φR ◦R−1
s )‖L∞(Rs(Σ\BR2 )) ≤ Ch‖∇φR‖L∞(Σ\BR2 ).
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Combining (2.61) with (2.22) we obtain for s ∈ [0, 1]

|Λh(s),R,s| ≤ 2|Rs(Σ \BR2)|+ C ′h2‖∇φR‖2L∞(Σ\BR2 ) + C ′h2(2.62)

≤ 2|Σ \BR2 |+ C ′h2‖∇φR‖2L∞(Σ\BR2 ) + C ′h2(2.63)

≤ |Λh,R|+ ε(h) + C ′h2‖∇φR‖2L∞(Σ\BR2 ) + C ′h2,(2.64)

where C ′ only depends on Σ and ‖φ‖L∞ . In the last line we have used
(2.58). In the second line we used (2.15). Shrinking h yet again so that

(2.65) ε(h) + C ′h2‖∇φR‖2L∞(Σ\BR2 ) + C ′h2 ≤ 2|BR2 |,

we obtain by combining (2.64), (2.65), with (2.56) that for all s ∈ [0, 1],

(2.66) |Λh(s),R,s| ≤ 2|Σ| − λ

32
h2.

Thus we can define the claimed sweepout via concatenation:

Λs =

{
Λh,2sR 0 ≤ s ≤ 1/2,

Λh(2s−1),R,2s−1 1/2 ≤ s ≤ 1.

Item (4) holds with τ := λ
32 and where ε0 is the final shrunken value of

h. Items (1), (2) and (3) follow by the construction.
Finally, to verify the last claim, if we assume in addition that M has

positive Ricci curvature, set φ = 1. While the function φ may not be an
eigenfunction of the Jacobi operator, it still gives a direction to decrease
area. Indeed, we have∫

Σ
1L1 =

∫
Σ
|A|2 + Ric(N,N) = γ,

for some γ > 0. Thus we still obtain (2.40) with λ = γ. The rest of the
argument then follows verbatim. q.e.d.

3. Applications of the catenoid estimate

In the following we will consider closed 3-manifolds and various canon-
ical sweepouts arising in different geometric situations. In each case the
main issue is to rule out multiplicity. The catenoid estimate will enable
us to foliate a neighborhood of an unstable minimal surface Σ symmet-
rically about Σ so that all areas are strictly less than twice the area of
the minimal surface. Since one can construct sweepouts with all areas
below 2Σ, one can avoid 2Σ (and higher multiples) as a min-max limit.

Let us first introduce the min-max notions we will need in the appli-
cations. Beginning with a genus g sweepout {Σt} (as defined in Section
2.2) we need to construct comparison sweepouts which agree with {Σt}
on ∂In. We call a collection of sweepouts Π saturated if it satisfies the
following condition: for any map ψ ∈ C∞(In ×M,M) such that for
all t ∈ In, ψ(t, .) ∈ Diff0(M) and ψ(t, .) = id if t ∈ ∂In, and a sweep-
out {Λt}t∈In ∈ Π we have {ψ(t,Λt)}t∈In ∈ Π. Given a sweepout {Σt},
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denote by Π = Π{Σt} the smallest saturated collection of sweepouts con-
taining {Σt}. We will call two sweepouts homotopic if they are in the
same saturated family. We define the width of Π to be

(3.1) W (Π,M) = inf
{Λt}∈Π

sup
t∈In
|Λt|.

A minimizing sequence is a sequence of sweepouts {Σt}i ∈ Π such that

(3.2) lim
i→∞

sup
t∈In
|Σi
t| = W (Π,M).

A min-max sequence is then a sequence of slices Σi
ti , ti ∈ I

n taken from

a minimizing sequence so that |Σi
ti | → W (Π,M). The main point of

the Min-Max Theory of Simon-Smith [SS] (adapting the more general
setting of Almgren-Pitts [P] to smooth sweepouts) is that if the width is
greater than the maximum of the areas of the boundary surfaces, then
some min-max sequence converges to a minimal surface in M :

Theorem 3.1 (Min-Max Theorem). Given a sweepout {Σt}t∈In of
genus g surfaces, if

(3.3) W (Π,M) > sup
t∈∂In

|Σt|,

then there exists a min-max sequence Σi := Σi
ti such that

(3.4) Σi →
k∑
i=1

niΓi as varifolds,

where Γi are smooth closed embedded minimal surfaces and ni are posi-
tive integers. Moreover, after performing finitely many compressions on
Σi and discarding some components, each connected component of Σi is
isotopic to one of the Γi or to a double cover of one of the Γi, implying
the following genus bounds:

(3.5)
∑
i∈O

nig(Γi) +
1

2

∑
i∈N

ni(g(Γi)− 1) ≤ g.

Here O denotes the subcollection of Γi that are orientable and N denotes
those Γi that are non-orientable, and where g(Γi) denotes the genus of
Γi if it is orientable, and the number of crosscaps that one attaches to
a sphere to obtain a homeomorphic surface if Γi is non-orientable.

The existence and regularity for smooth sweepouts were proven by
Simon-Smith [SS] (see [CD] for a survey). Some genus bounds were
proven by De Lellis-Pellandini [DP] and improved to the inequality
above by the first named author [Ke1]. The details of the multiparam-
eter case of Simon-Smith theory can be found in the appendix of [CGK].

We will also need the following equivariant version of Theorem 3.1
from [Ke2] (as announced by Pitts-Rubinstein [PR1] [PR2]). Let G
be a finite group acting on M so that M/G is an orientable orbifold
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without boundary (i.e., we exclude reflections). A set Σ ⊂ M is called
G-equivariant if g(Σ) = Σ for all g ∈ G. Denote by S the set of points
in M where gx = x for some g not equal to the identity in G. For
x ∈ S, the isotropy subgroup Gx is the set of all g so that gx = x.
Suppose {Σt}1t=0 is a one parameter genus g sweepout of M by G-
equivariant surfaces so that each surface with positive area intersects S
transversally. Consider the saturation ΠG

Σt
of the family {Σt} obtained

by applying G-equivariant isotopies to the family {Σt}. Then we have
the following

Theorem 3.2 ([Ke2]). If W (ΠG
Σt

) > 0, then some min-max se-
quence converges to a G-equivariant minimal surface in M . The genus
bound (3.5) also holds and, furthermore, any compression must be G-
equivariant. Moreover, a component of the min-max limit can only con-
tain a segment of S that has Z2 isotropy. In this case, such a component
has even multiplicity.

3.1. Min-max minimal surfaces arising from Heegaard split-
tings. Let M be a closed orientable 3-manifold. Recall that a Heegaard
surface is an orientable closed embedded surface Σ ⊂M so that M \Σ
consists of two open handlebodies. The Heegaard genus of M is the
smalllest genus g realized by a Heegaard splitting. A one-sided Hee-
gaard surface is an embedded non-orientable surface Σ ⊂ M so that
M \ Σ consists of a single handlebody.

If M has positive Ricci curvature and does not admit non-orientable
surfaces, then [MN] prove (Theorem 3.4) that a surface realizing the
Heegaard genus can be isotoped to be minimal and have index 1. If
M contains embedded non-orientable surfaces, however, one could not
rule out that the min-max sequence converges with multiplicity two to
a one-sided Heegaard splitting surface. Using the catenoid estimate, we
can rule out this possibility and thus obtain:

Theorem 3.3. Let M be a closed 3-manifold with positive Ricci cur-
vature and Γ a Heegaard surface realizing the Heegaard genus of M .
Then Γ is isotopic to an index 1 minimal surface Σ. Moreover, Σ re-
alizes the min-max width obtained from considering saturations by Hee-
gaard sweepouts relative to Γ.

Remark 3.4. As a simple example of Theorem 3.3, consider RP3

with its round metric. The projection of the Clifford torus in S3 is a
minimal torus of Morse index 1 and area π2 (by Theorem 3 in [DRR]
it is in fact the unique embedded index 1 minimal surface). The area
of RP2 ⊂ RP3 is 2π. The projected Clifford torus has smaller area than
twice the area of the projective plane and when one runs a min-max
procedure using Heegaard tori as sweepouts, one obtains the Heegaard
torus and not the projective plane with multiplicity two.



THE CATENOID ESTIMATE AND ITS GEOMETRIC APPLICATIONS 17

Proof. Assume without loss of generality that M is not diffeomorphic
to the three-sphere (as this case is handled in Theorem 3.4 in [MN]).
Denote by Σ the support of the min-max limit arising from sweepouts in
the saturation of a Heegaard foliation of M by surfaces isotopic to Γ. By
Frankel [F], Σ is connected. Let us assume toward a contradiction that
Σ is a non-orientable minimal surface. We will construct a Heegaard
sweepout of M by surfaces isotopic to the original Heegaard surface with
all areas strictly less than 2|Σ|, contradicting the definition of width.

The following claim is a consequence of the surgery process of [Ke1]
together with topological arguments that use the fact that Γ is strongly
irreducible. This is based on Lemma 1.6 in [S].

Claim. For ε small enough, Γ is isotopic to ∂Tε(Σ) with a verticle
handle attached.

If Σ = RP2, then by Frankel’s theorem [F], M = RP3. But the unique
genus 1 Heegaard splitting of RP3 is obtained by attaching a verticle
handle to ∂Tε(Σ), so the claim is established in this case.

Since M has positive Ricci curvature, it contains no incompressible
two-sided minimal surfaces. Thus by Casson-Gordon [CG], since Γ is
a lowest genus Heegaard surface, it must be a strongly irreducible Hee-
gaard splitting. From Theorem 1.9 in [Ke1] we know that after surgeries
the min-max sequence is isotopic to ∪ki=1∂Tεi(Σ) for some increasing set
of numbers ε1, ..., εk. Because Γ is strongly irreducible, surgeries along
essential curves have to be performed in the same side of Γ. Surgeries
along non-essential curves can occur on both sides and split off spheres.

If Σ 6= RP2, then no ∂Tεi(Σ), i = 1, . . . , k is a sphere and so they had
to be obtained from surgeries performed in the same side of Γ, which
means they all bound handlebodies H1, ...,Hk with disjoint supports.
But if k > 1 then since the component of M \ ∪ki=1∂Tεi(Σ) containing
Σ is not a handlebody (as it is an interval bundle over a non-orientable
surface), it follows that the region between ∂Tε1(Σ) and ∂Tε2(Σ) is a
handlebody, which is false as the region is homeomorphic to the product
of an orientable surface with an interval. Thus k = 1.

By irreducibility, Γ is obtained from ∂Tε1(Σ) by adding a single ver-
ticle handle through Σ (see [H]).

Thus the claim is established.
We now will construct a Heegaard sweepout of M by surfaces isotopic

to Γ with all areas less than 2|Σ|.
There is a double cover of M , M̃ (also with positive Ricci curvature)

so that the projection map π : M̃ → M is a local isometry and so
that Σ̃ := π−1(Σ) is an orientable Heegaard surface in M̃ . Moreover,

M = M̃/{1, τ}, where τ : M̃ → M̃ is an involution switching the two

handlebodies determined by Σ̃. Since M̃ has positive Ricci curvature, Σ̃
is also unstable. Hence by [MN] (Lemma 3.5), we can find an optimal
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sweepout {Σt}1/2t=0 of one of the handlebodies H1 in M̃ bounded by Σ̃

by surfaces isotopic to Σ̃ in the sense that:

1) |Σt| < |Σ̃| for all t ∈ [0, 1/2],

2) for t near 1/2, Σt coincides with {expp((1/2−t)N(p)) : p ∈ Σ̃} (i.e.

parallel surfaces to Σ̃, where N is the unit normal on Σ̃ pointing
into H1).

Fix a point p ∈ Σ̃ and also consider image q := τ(p) ∈ Σ̃. For
each t ∈ [0, 1/2] let us choose two distinct points pt, qt in H1 (varying
smoothly in t) so that

1) pt and qt are both contained in Σt for t ∈ [0, 1/2],
2) for t close to 1/2, pt = expp((1/2− t)N(p)),
3) for t close to 1/2, qt = expq((1/2− t)N(q)).

Also for t ∈ [0, 1/2], choose arcs αt := ∪s∈[t,1/2]ps and βt := ∪s∈[t,1/2]qs
in H1 so that

1) αt begins at pt and ends at p and βt similarly joins qt to q,
2) αt ∩ Σs = pt and βt ∩ Σs = qt for all s ∈ [t, 1/2],
3) for t close to 1/2, αt (resp. βt) consists of the normal geodesic to

Σ̃ from p (resp. q) to Σt,
4) for t = 1/2, αt = p and βt = q.

For any ε > 0, let us set D1
t,ε := Tε(αt) ∩ Σt and D2

t,ε := Tε(βt) ∩ Σt.

There exists ε0 so that whenever ε < ε0 we have that for all t, D1
t,ε and

D2
t,ε are both disks.

Finally we can make a new sweepout {Γt}1/2t=0 by gluing in tubes and
removing the appropriate disks:

(3.6) Γt = Σt ∪ ∂(Tη(t)(αt)) ∪ Tη(t)(βt) \ (D1
t,η(t) ∪D

2
t,η(t)),

where η(t) : [0, 1/2]→ [0, ε0] and satisfies

1) η(0) = 0,
2) η(t) > 0 for t ∈ (0, 1/2− δ),
3) η(t) = 0 for t ∈ [1/2− δ, 1/2].

The parameter δ will be chosen later. Then we can consider the
sweepout for t ∈ [0, 1/2] given by

(3.7) Γ̃t = Γt ∪ τ(Γt).

We can now apply the Catenoid Estimate (Theorem 2.4) to replace

the sweepout {Γ̃}1/2t=0 since it coincides with parallel surfaces to Σ̃ for t
near 1/2. To that end we set p1 = p and p2 = q and let G be a graph onto

which Σ̃ \ (p ∪ q) retracts τ -equivariantly. We can then choose δ to be
smaller than the ε0 provided by the Catenoid Estimate. The sweepout
{Γ′′t }t∈[0,1/2] we obtain is smooth for all t ∈ (0, 1/2) \ 1/2 − δ and by
item (4) in the Catenoid Estimate, each surface in the sweepout has area
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strictly less than 2|Σ|−Cδ2 for some C > 0. By small perturbation, we
obtain a smooth family {Γ′t}t∈[0,1/2] with all areas less than 2|Σ| − C

2 δ
2.

In this way we obtain a τ -equivariant sweepout Γ′t of M̃ so that

|Γ′t| < 2|Σ̃| for all t ∈ [0, 1/2]. The surfaces Γ′t projected down to M
then give rise to a Heegaard foliation of M (isotopic to Γ) with all areas
strictly less than 2|Σ|. This contradicts the definition of min-max width.
Thus Σ cannot be non-orientable.

It remains to rule out that other degeneration has occurred, i.e., that
g(Σ) < g(Γ). In this case, however, Σ would be a Heegaard splitting of
smaller genus than Γ, contradicting the assumption that Γ realized the
Heegaard genus of M . Thus Σ and Γ are isotopic. The index bound
follows from Lemma 3.5 in [MN]. q.e.d.

Adapting these ideas to the setting of Almgren-Pitts, we obtain:

Theorem 3.5. The Almgren-Pitts width (with Z or Z2 coefficients)
of an orientable 3-manifold M with positive Ricci curvature is achieved
by an index 1 orientable minimal surface.

Proof. If the theorem failed, then by [Z] Theorem 1.1 (see also [MR])
the width of M must be realized by a non-orientable minimal surface Σ
with multiplicity two. Again we can lift Σ to Σ̃ in a double cover of M ,
M̃ , so thatM = M̃/{1, τ}. Since M̃ has positive Ricci curvature, Σ̃ is an
unstable Heegaard splitting. Thus again by Lemma 3.4 in [MN] we can

extend Σ̃ to a sweepout {Σ̃t}10 of M̃ where Σ̃ = Σ̃1/2 and with |Σ̃t| < 2|Σ|
for all t 6= 1/2. Moreover, for t close to 1/2 the surfaces {Σ̃t} are a

foliation of a neighborhood Tε(Σ̃) of Σ̃ by parallel hypersurfaces (for
suitably small ε). For ε small enough, we can then apply the catenoid

estimate to Tε(Σ̃) where necks are added at some p ∈ Σ̃ and τ(p) ∈ Σ̃.

We thus obtain from {Σ̃t}10 a τ -equivariant sweepout of M̃ continuous
in the flat topology with all areas strictly less than 2Σ. Such a family is
continuous in the F-metric and thus admissible in the sense of Almgren-
Pitts (see [MN4]). The projected sweepout to M consist of surfaces
with all areas strictly below 2|Σ|, contradicting the assumption that 2Σ
realized the width of M . q.e.d.

3.2. Doubling constructions. We will give a min-max construction
of the doubled Clifford torus due to Kapouleas-Yang [KY].

We first identify S3 with a subset of C2 ≡ R4:

S3 = {(z, w) ∈ C2 | |z|2 + |w|2 = 1}.

Consider the group Hm = Zm × Zm acting on S3 as follows. For any
([k], [l]) ∈ Zm × Zm and (z, w) ∈ S3, we define the action to be

(3.8) ([k], [l]).(z, w) = (e2πki/mz, e2πil/mw).
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Let Gm be the group of order 2m2 generated by both Hm and the
involution τ : S3 → S3 given by

(3.9) τ(z, w) = (w, z).

Fix an integer m ≥ 2. We can then consider Gm-equivariant sweep-
outs of S3 of genus m2 + 1. The surfaces in our sweepout consist of two
tori, one on each side of the Clifford torus, joined by m2 tubes. Pre-
cisely, we can start with the foliation of S3 by constant mean curvature
surfaces {Γt}1t=0

(3.10) Γt = {(z, w) ∈ S3 : |z|2 = t}.

Then consider the Gm-equivariant family {Γ′t}
1/2
t=0

(3.11) Γ′t = Γt ∪ τ(Γt).

Note that Γ′0 consists of the two circles {w = 0} and {z = 0} and
Γ′1/2 consists of the Clifford torus counted with multiplicity two. We

now must connect the two components of Γ′t by m2 Gm-equivariant
necks to obtain a sweepout of S3 by surfaces of genus m2 + 1. This is
straightforward but we include the details.

Let us parameterize the Clifford torus C as (z, w) = ( 1√
2
eiθ, 1√

2
eiφ)

for θ ∈ [0, 2π] and φ ∈ [0, 2π]. In this way the Clifford torus C = Γ1/2

can be thought of as a square grid [0, 2π]× [0, 2π] in (θ, φ)-coordinates,
where the obvious identifications on the boundary of [0, 2π] × [0, 2π]
result in a torus.

Let us define φk for k ∈ {1, 2, ..m} to be the line in the torus given
by φ = 2kπi

m . Similarly we set θj for j ∈ {1, 2, ..m} to be the line

θ = 2jπi
m . Consider the m2-squares {Si}m

2

i=1 into which the lines {θi}mi=1
and {φj}mj=1 divide [0, 2π]×[0, 2π]. The action Gm restricted to C has as

fundamental domain half of a square, i.e. a triangle Ti in Si (cut through
either diagonal). Indeed, the action of Hm on C has any square Si as
fundamental domain, but since Gm includes the involution that maps
the lines θ∗ to φ∗, and vice versa, a fundamental domain for the action
of Gm is cut in half. Thus a fundamental domain for the action of Gm
on S3 is a polyhedron over the square Si (containing one triangle of Si).

The necks will be added at the centers Ci of the m2 squares {Si}m
2

i=1
in the grid.

Let us set

(3.12) G =
m⋃
i=1

φi ∪
m⋃
j=1

θj .

Note that C \ {Ci}m
2

i=1 retracts onto G and the retraction can be
performed Gm-equivariantly.
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Let us define for t ∈ [0, 1/2] the path

(3.13) α(t) = (
√

1− teπi/m,
√
teπi/m).

The curve α(t) connects the point (eπi/m, 0) ∈ S3 in the circle {w = 0}
to the point ( 1√

2
eπi/m, 1√

2
eπi/m) in C (i.e. one of the center points Ci).

For ε > 0 denote by Tε(α(t)) the tubular neighborhood about α(t). Note
that

(3.14) |∂(Tε(α([0, 1/2])))| → 0 as ε→ 0.

Denote the disk (for ε small enough, depending on t):

(3.15) Dt,ε = Tε(α([0, 1/2])) ∩ Γt.

Choose a smooth function η : [0, 1/2] → [0, ε], so that η(t) = 0 for
t ≥ 1/2− δ and η(0) = 0 (where ε > 0 and δ > 0 will be chosen later).
The function η will determine the thickness of the tubes added.

We can now finally define our amended sweepouts, where tubes have
been added and their attaching disks removed:

(3.16) Γ′′t = Γ′t ∪
⋃

g∈Gm

g(∂Tη(t)(α(t))) \
⋃

g∈Gm

g(Dt,η(t)).

In light of (3.14) and the Catenoid Estimate (applied with Σ = C,
the graph G and points the union of the Ci), it is clear that for ε and
δ chosen appropriately, by adjusting Γ′′t near the Clifford torus we can
obtain a new family Γ′′′t , satisfying

(3.17) sup
t∈[0,1/2]

|Γ′′′t | < 2|C| = 4π2.

Except for one value of t ∈ (0, 1), Γ′′′t is a genus m2 + 1 piecewise
smooth surface. By small perturbation, we can then obtain an Gm-
equivariant smooth sweepout of S3 by genus m2 + 1 surfaces with all
areas still less than 2|C|.

Considering all sweepouts in the equivariant saturation ΠGm of our
canonical family Γ′′′t , we can then define the equivariant min-max width:

(3.18) ωGm1 = inf
Λ(t)∈ΠGm

sup
t∈[0,1]

|Λ(t)|.

Theorem 3.2 then asserts the existence of a smooth embedded con-
nected Gm-equivariant minimal surface in S3. We obtain

Theorem 3.6. For any integer m ≥ 2, the min-max limit Σm in the
saturation ΠGm is an embedded Gm-equivariant minimal surface. The
genus of Σm approaches infinity as m→∞. Moreover, |Σm| < 4π2 and
Σm → 2C in the sense of varifolds as m→∞.

Remark 3.7. In fact one can classify the possible compressions and
show that the genus of Σm is m2 + 1 when m is large. See [Ke2] for
more details.
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Proof. Note that Σm must occur with multiplicity 1. Indeed, if the
multiplicity were k > 1, then by (3.17) we have k|Σm| < 2|C|, where
|C| = 2π2, the area of the Clifford torus. Thus |Σm| < |C|. By the
resolution of the Willmore conjecture [MN2], in this case Σm can only
be a round equator, which is not Gm-equivariant. Thus the multiplicity
of Σm must be one.

It remains to show that Σm → 2C. Indeed suppose some subsequence
(not relabeled) of Σm converges to a stationary varifold V different from
2C. By the monotonicity formula, V cannot be equal to 0. Moreover,
the support of V is invariant under the limiting groups H∞ = S1 × S1

and the involution τ . Thus any point in the support of V not on the
Clifford torus forces an entire cmc torus parallel to C to be contained in
the support of V . None of these tori are stationary except the Clifford
torus. It follows that the support of V is contained on the Clifford torus
C. By the Constancy Theorem, V = kC for some integer k. By the
strict upper bound of 4π2 on the equivariant widths, k is equal to either
1 or 2. If k = 1, it follows that Σm → C smoothly. This implies Σm

is a rotated Clifford torus for every large m. But C is the unique such
Clifford torus invariant under Gm when m is large. Thus Σm = C for
large m. On the other hand, by Theorem 3.2, Σm is never equal to the
Clifford torus C with multiplicity 1 since in this case it would contain
a segment of the Z2-isotropy singular set and yet have odd multiplicity.
Thus V = 2C. It follows that Σm → 2C. By the compactness theorem
of Choi-Schoen [CS] it follows that the genus of Σm approaches infinity
as m→∞. q.e.d.

4. Higher dimensional case

In this section, we prove Theorem 1.5 when 4 ≤ n+ 1 ≤ 7, which we
restate:

Theorem 4.1. For 4 ≤ (n+1) ≤ 7, the Almgren-Pitts width (with Z
or Z2 coefficients) of an orientable (n+ 1)-manifold Mn+1 with positive
Ricci curvature is achieved by an orientable index 1 minimal hypersur-
face with multiplicity 1.

Proof. By Theorem 1.1 in [Z], if it failed, the width of Mn+1 is
achieved by a closed embedded non-orientable minimal hypersurface
Γn with multiplicity 2. Similarly to the two-dimensional case, for some
finite set P ⊂ Γn, there exists a retraction Rt from Γn \ P to the lower
dimensional skeleton of Γn. Let us assume that the cardinality of P is
1 as the general case follows analogously.

We can find a double cover τ : M̃ → M so that τ−1(Γn) is an ori-

entable embedded minimal hypersurface, say Σn of M̃ and so that both
components H1 and H2 of M̃ \ Σn are diffeomorphic to M \ Γn (see
Proposition 3.7 in [Z]). By Proposition 3.6 in [Z], for some ε > 0 and
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some δ > 0, we can construct a sweepout {Σt}10 of H1 so that Σ0 = Σn

with supt∈[δ,1]Hn(Σn
t ) ≤ Hn(Σn)−ε and so that for t ∈ [0, δ], the sweep-

out {Σt} consists of surfaces parallel (via the exponential map) to Σn,
i.e. Σt = {expp(tN(p)) : p ∈ Σ}.

We now will amend the sweepout {Σt} to produce a new sweepout
{Λt} that for some δ′ ≤ δ agrees with {Σt} for t ∈ [δ′, 1] but in the
interval [0, δ′] it “opens up via cylinders” at the points τ−1(P). More-
over, Λ0 will consist of lower dimensional skeleta of Σn (which have zero
n-dimensional Hausdorff measure).

The key point, of course, is that in addition {Λt} will satisfy

(4.1) sup
t∈[0,1]

Hn(Λt) < Hn(Σn).

The projected sweepout τ(Λt) then gives rise to a sweepout of Mn+1 all
of whose slices have areas strictly less than that of 2Γn, contradicting the
definition of width. This will complete the proof of Theorem 1.5. Let us
now construct the desired sweepout {Λt} when t ∈ [0, δ]. It will consist
of {Σt}1t=0 where a cylinder has been added and the corresponding disk
from Σt removed.

Because on a small enough scale, Σn is roughly Euclidean, we have
the following Euclidean volume comparisons. Namely, there exists an
R > 0 so that for any p ∈ Σn and t ≤ R there holds:

ctn ≤ Hn(Σn ∩Bt(p)) ≤ Ctn,(4.2)

ctn−1 ≤ Hn−1(Σn ∩ ∂Bt(p)) ≤ Ctn−1.(4.3)

Moreover, there exists h0 > 0 so that whenever h ≤ h0 one has Euclid-
ean-type area bounds for the small cylinders

Ct,h(p) := {expx(tN(x) : x ∈ Σn ∩ ∂Bt(p)), t ∈ [0, h]}

diffeomorphic to Sn−1 × [0, h] based at Σn. That is, there holds

(4.4) chtn−1 ≤ Hn(Ct,h(p)) ≤ Chtn−1.

Also for h ≤ h0 we have volume bounds for small balls pushed via the
exponential map. Setting Bh,t(p) := {expx(hN(x)) : x ∈ Bt(p) ∩ Σn},
we have

(4.5) ctn ≤ Hn(Bh,t(p)) ≤ Ctn.

Since Σn is minimal, it follows from (2.23) that we have for h ∈ [0, δ]

(4.6) Hn(Σh) ≤ Hn(Σn)−Ah2.

Fix p ∈ P. For t ∈ [0, R], let us denote the amended surfaces

(4.7) Λh,t := Σh ∪ Ct,h(p) ∪ Ct,h(τ(p)) \ (Bt,h(p) ∪Bt,h(τ(p))).
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It follows from (4.4), (4.5) and (4.6) that we can then estimate

(4.8) Hn(Λh,t) ≤ Hn(Σn) + 2Chtn−1 − 2ctn −Ah2.

The maximum value of the function 2Chtn−1 − 2ctn occurs at

(4.9) t =
C(n− 1)h

cn
.

Plugging (4.9) into (4.8) it follows that for some B > 0 (independent
of t)

(4.10) Hn(Λh,t) ≤ Hn(Σn) +Bhn −Ah2.

Shrinking h0 yet again we have that for all h ≤ h0 and t ≤ R,

(4.11) Hn(Λh,t) ≤ Hn(Σn)− A

2
h2.

Moreover, when t = R we obtain

(4.12) Hn(Λh,R) ≤ Hn(Σn)− 2cRn + 2CRn−1h−Ah2.

Shrinking h0 again so that h0 ≤ c
2C , we obtain for h ≤ h0,

(4.13) Hn(Λh,R) ≤ 2Hn(Σn)− cRn −Ah2.

Thus by “opening the hole” up to time t = R we decrease area by
a definite amount depending on R and not on h. Using (4.11), (4.13)
along with the retraction Rt we can now argue identically as in the proof
of the Catenoid Estimate to extend the sweepout {Λt,h}Rt=0 to {Λt,h}1t=0

foliating the entire (positive) tubular neighborhood of Σn with all areas
strictly less than Hn(Σn). Set δ′ = h. Then since Λ0,δ′ agrees with
Σδ′ , by concatenating {Λt,δ′}1t=0 with {Σt}1t=δ′ we obtain the desired
sweepout. q.e.d.

References

[A] N. Aiex, The width of ellipsoids, Commun. Anal. Geom. 27, no. 2 (2019)
251–285, Zbl 07098079.

[CS] H. Choi and R. Schoen, The space of minimal embeddings of a surface into a
three-dimensional manifold of positive Ricci curvature, Invent. Math. 81, no.
3 (1985) 387–394, MR0807063, Zbl 0577.53044.

[CD] T. H. Colding and C. De Lellis, The min-max construction of minimal sur-
faces, Surveys in Differential Geometry 8 (2003) 75–107, MR2039986, Zbl
1051.53052.

[CG] A. J. Casson and C. M. Gordon, Reducing Heegaard splittings, Topology Appl.
27 (1987) 275–283, MR0918537, Zbl 0632.57010.

[CGK] T. H. Colding, D. Gabai and D. Ketover, On the classification of Heegaard
splittings, Duke Math. J. 167, no. 15 (2018) 2833–2856, MR3865653, Zbl
1403.57013.

[DP] C. De Lellis and F. Pellandini, Genus bounds for minimal surfaces aris-
ing from min-max constructions, J. Reine Angew. Math. 644 (2010) 47–99,
MR2671775, Zbl 1201.53009.



THE CATENOID ESTIMATE AND ITS GEOMETRIC APPLICATIONS 25
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