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ON THE ENTROPY OF CLOSED HYPERSURFACES
AND SINGULAR SELF-SHRINKERS

Jonathan J. Zhu

Abstract

Self-shrinkers are the special solutions of mean curvature flow
in Rn+1 that evolve by shrinking homothetically; they serve as
singularity models for the flow. The entropy of a hypersurface
introduced by Colding–Minicozzi is a Lyapunov functional for the
mean curvature flow, and is fundamental to their theory of generic
mean curvature flow.

In this paper we prove that a conjecture of Colding–Ilmanen–
Minicozzi–White, namely that any closed hypersurface in Rn+1

has entropy at least that of the round sphere, holds in any dimen-
sion n. This result had previously been established for the cases
n ≤ 6 by Bernstein–Wang using a carefully constructed weak flow.

The main technical result of this paper is an extension of
Colding–Minicozzi’s classification of entropy-stable self-shrinkers
to the singular setting. In particular, we show that any entropy-
stable self-shrinker whose singular set satisfies Wickramasekera’s
α-structural hypothesis must be a round cylinder Sk(

√
2k)×Rn−k.

1. Introduction

Let Σn denote a hypersurface in Rn+1. In [CM12], Colding and
Minicozzi introduced the entropy functional for such hypersurfaces, de-
fined by

(1.1) Λ(Σ) = sup
x0∈Rn+1

t0>0

F (t−1
0 (Σ− x0)),

where the F -functional is the Gaussian area

(1.2) F (Σ) = (4π)−
n
2

∫
Σ

e−
|x|2

4 .

A family of hypersurfaces is said to flow by mean curvature if

(1.3) ∂tx = ~H,

where x is the position vector and ~H is the mean curvature vector.
A consequence of Huisken’s monotonicity formula [Hui90] is that the

tangent flow at any singular point of a mean curvature flow is modelled
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by a critical point of the F -functional; these critical points are referred
to as self-shrinkers, and they are also critical points of the entropy func-
tional. Because they model the singularities in this blow-up sense, the
study of self-shrinkers is essential to understanding the mean curvature
flow. A further consequence of the monotonicity formula is that entropy
is non-increasing under mean curvature flow; as such, the entropy may
be interpreted as a useful measure of the complexity of a hypersurface.

Indeed, the Colding–Minicozzi entropy forms a fundamental compo-
nent of their theory of generic mean curvature flow: In [CM12] they
showed that the only complete, smoothly embedded, entropy-stable self-
shrinkers are the generalised cylinders Sk(

√
2k) × Rn−k, so that un-

der suitable conditions other such singularities may be perturbed away.
Here Sk(r) denotes the round k-sphere of radius r, and we say that a self-
shrinker Σ is entropy-stable if it is a local minimum for the entropy func-
tional amongst C2 graphs over Σ. The entropy functional has recently
been studied by various other authors; see, for instance, [ALW14],
[BW17], [BW18], [BW16], [CIMW13], [KZ15] and [Liu16]. It has
also been adapted to other geometric flows; see, for example, [Zha12]
and [KS16].

In [CIMW13], Colding, Ilmanen, Minicozzi and White conjectured
that the entropy of any closed hypersurface should be at least that of
the round sphere (see also [CMP15]). In this paper we confirm this
conjecture for every dimension n; specifically we prove the following:

Theorem 1.1. Let Σn be a smooth, closed, embedded hypersurface
in Rn+1. Then we have Λ(Σ) ≥ Λ(Sn), with equality if and only if Σ is
a round sphere.

Note that for n = 1 the result follows immediately from the theorems
of Gage–Hamilton [GH86] and Grayson [Gra87], which imply that any
smooth closed embedded curve shrinks to a round point. Previously
Theorem 1.1 had been established in the cases 2 ≤ n ≤ 6 by Bernstein
and Wang [BW16], using a cleverly constructed weak flow that ensured
the extinction time singularity was of a special type. Ketover and Zhou
[KZ15] also gave an independent proof for the n = 2, non-toric case
using min-max theory for the F -functional. Our proof of Theorem 1.1
results from combining the insightful work of Bernstein–Wang together
with our classification of entropy-stable singular self-shrinkers, which
we now describe.

As critical points of the F -functional, self-shrinkers may equivalently
be defined by the elliptic equation

(1.4) ~H = −1

2
x⊥,

or as minimal hypersurfaces for the conformal metric e−
|x|2
2n δij on Rn+1.

The simplest examples are the generalised cylinders Sk(
√

2k) × Rn−k
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mentioned above. From the self-shrinker equation (1.4) one can see
that any minimal cone in Rn+1 (with vertex at the origin) is also a
self-shrinker, albeit with a nonempty singular set. The precise notion
of singular submanifold we will use in this paper is that of an integer
rectifiable (integral) varifold; the definitions of the F -functional and
entropy functional extend in the natural manner to this setting.

The main theorem of this paper is the following extension of Colding–
Minicozzi’s classification of entropy-stable self-shrinkers [CM12] to the
singular setting:

Theorem 1.2. Let V be an F -stationary integral n-varifold in Rn+1,
which has orientable regular part and finite entropy, and satisfies the α-
structural hypothesis for some α ∈ (0, 1

2). Suppose that V is not a

generalised cylinder Sk(
√

2k)×Rn−k. Then V is entropy-unstable.
Furthermore, if V also does not split off a line and is not a cone,

the unstable variation may be taken to have compact support away from
sing V . If V is a stationary cone, the unstable variation may be taken
to be a homogenous variation induced by variation of the link away from
its singular set.

For precise definitions the reader is referred to Section 2.1; see also
Remark 9.8 regarding multiplicities. The α-structural hypothesis here
allows us to use the regularity theory of Wickramasekera [Wic14] to
control the singular set; it is automatically satisfied, for instance, if the
singular set has vanishing codimension 1 Hausdorff measure. One may
recall that in [CM12, Theorem 0.14], Colding–Minicozzi also consid-
ered the varifold setting, but only in dimensions n ≤ 6 and with the
stronger assumption that the singular set has locally finite codimension
2 measure. Under these conditions the regularity theory ensured that
the self-shrinker was smooth (or a regular minimal cone), whereas in our
general setting we must handle a more significant singular set. Conjec-
turally, the singular set of any self-shrinker arising from a smooth mean
curvature flow has a singular set of codimension at least 3 (see [Ilm95]
or [CMP15]).

Theorem 1.1 will follow from the special case of Theorem 1.2 clas-
sifying compact entropy-stable self-shrinkers. Similarly, we extend the
gap theorem of Bernstein–Wang [BW16] for the entropy of compact
singular self-shrinkers to all dimensions n ≥ 2, which itself generalised
the main theorem of Colding–Ilmanen–Minicozzi–White [CIMW13] to
the singular setting for 2 ≤ n ≤ 6. We also extend the result in [BW16]
on so-called partially collapsed self-shrinkers to all n ≥ 3.

Our approach to Theorem 1.2 mirrors the approach of Colding and
Minicozzi [CM12], but with several key distinctions. To describe these,
recall that their proof consists of three main parts, stated broadly as
follows:
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1) Entropy-stability implies F -stability;
2) F -stability implies mean convexity;
3) Mean convexity implies cylindricality.

A self-shrinker is F -stable if it is stable (under compactly supported
variations) for the F -functional after “modding out” by translations
and dilations, which turn out to be linearly unstable directions for the
F -functional on every self-shrinker.

Point (1) above holds for self-shrinkers that are not invariant under
one of these elementary symmetries, that is, for self-shrinkers that do
not split off a line and are not cones. Of course, a smooth self-shrinker
cannot be a cone, but in the singular case one must account for minimal
cones, which are always F -unstable yet always entropy-stable under
compactly supported variations. To deal with this issue, we introduce
the concept of homogenous F -stability for minimal cones in terms of
the corresponding functional on the links; this concept, indeed, turns
out to be equivalent to entropy-stability under homogenous variations.

We further show that any non-flat minimal cone, which satisfies the α-
structural hypothesis, is, in fact, homogenously F -unstable and, hence,
entropy-unstable. To do so we need to establish variation formulae for
the Gaussian area as functionals on the link. Given these, the key
observation is that the link, as a (singular) minimal hypersurface in Sn,
is quite unstable in the sense that the first eigenvalue κ1 of the Jacobi
operator is very negative. We have proven such an estimate in [Zhu16],
which we restate as follows for convenience:

Theorem 1.3 ([Zhu16]). Let W be a stationary integral (n − 1)-
varifold in Sn which has orientable regular part and satisfies the α-
structural hypothesis for some α ∈ (0, 1

2). Further suppose that W is
not totally geodesic in Sn. Then κ1(W ) ≤ −2(n − 1), with equality if

and only if sptW is a Clifford hypersurface Sk
(√

k
n−1

)
× Sl

(√
l

n−1

)
,

where k + l = n− 1.

Note that in the smooth setting the above estimate is a classical result
of J. Simons [Sim68].

The most difficult is point (2), for which we show that F -stability
implies mean convexity on the regular part. As in [CM12], the key ob-
servation is that, on any self-shrinker, the mean curvature H is an eigen-
function of the stability operator L for the F -functional, with eigenvalue
−1. Thus, the goal will be to construct F -unstable variations when the
first eigenvalue of L is less than −1, but the singular set causes techni-
cal difficulties in the analysis. The main technical obstacle is to obtain
effective L2 estimates close to the singular set for the gradient ∇ log u,
where u is a positive eigenfunction of L on a subdomain of the regular
part, as well as for the second fundamental form A. These estimates can
be accomplished using a good choice of cutoff functions so long as the



ENTROPY OF CLOSED SURFACES AND SINGULAR SHRINKERS 555

singular set has vanishing codimension 4 measure (see Lemma 7.4). This
L2 control then allows us to quantify the almost-orthogonality between
H and the first eigenfunction u when the subdomain is large enough,
which leads to the desired F -instability (see Proposition 7.11).

To complete the classification of singular entropy-stable self-shrinkers,
we then extend point (3), the classification of mean convex self-shrinkers,
to the singular setting as follows:

Theorem 1.4. Let V be an F -stationary integral n-varifold in Rn+1,
with orientable regular part and finite entropy. Further suppose that
Hn−1(sing V ) = 0. If H ≥ 0 on reg V then either V is a stationary

cone, or sptV is a generalised cylinder Sk(
√

2k)×Rn−k.

As in [CM12], the essential observation for classifying mean convex
self-shrinkers is that both A and H are eigentensors of the stability
operator, and the key point is to obtain L4 control on |A| in order to
justify its use as a test function. To resolve this issue we adapt the
Schoen–Simon–Yau [SSY75] technique to upgrade the L2 estimates for
|A| to the desired L4 bound.

Let us now briefly outline the structure of this paper. Section 2 con-
tains precise definitions as well as background related to entropy and
self-shrinkers. Before proving the classification of entropy-stable singu-
lar self-shrinkers, we present its applications in Section 3. In particular,
we describe the proof of Theorem 1.1 assuming Theorem 1.2.

We then quickly review the Colding–Minicozzi theory in Section 4,
including the relation between F -stability and entropy-stability, and
the regularity for stable self-shrinkers. We analyse the Gaussian areas
of a cone in Section 5, treating them as functionals on the link, and
(homogenous) F -stability of the cone to the stability spectrum of the
link.

We fix certain cutoff functions in Section 6 which will be used in the
remainder of the paper to handle integration around the singular set. In
Section 7, we show that F -stability implies mean convexity, by charac-
terising the bottom of the stability spectrum for singular self-shrinkers
and constructing F -unstable variations when the first stability eigen-
value λ1 is less than −1. Then, in Section 8, we prove the classification
Theorem 1.4 of mean convex singular self-shrinkers.

Finally, in Section 9, we combine our results in order to classify
F -stable self-shrinkers, homogenously F -stable stationary cones and
entropy-stable self-shrinkers, in the singular setting. In particular, that
section contains the proof of Theorem 1.2.
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2. Preliminaries

2.1. Notation and background.

2.1.1. Hypersurfaces. In this paper a hypersurface will always mean
a C2 embedded codimension 1 submanifold Σ in a smooth Riemannian
manifold N . We write ∇ for the ambient connection, reserving ∇ for
the tangential component and D for the Euclidean connection. Our
convention for the Laplacian is

(2.1) ∆Σf = divΣ(∇Σf).

A hypersurface Σ is said to be minimal if its mean curvature vector
in N is zero, and Σn ⊂ Rn+1 is said to be a self-shrinker if its mean
curvature vector satisfies

(2.2) ~H = −1

2
x⊥,

where x is the position vector. We typically write yT for the tangen-
tial projection of a vector y ∈ Rn+1 and y⊥ = y − yT for its normal
projection.

If Σ is two-sided, there is a well-defined unit normal field ν and we
denote by A the second fundamental form of Σ along ν. We take the
mean curvature on Σ to be

(2.3) H = divΣ ν.

Note that if the ambient space is orientable, then the hypersurface Σ
is two-sided if and only if it is orientable (see, for instance, [Hir76,
Chapter 4]).

We will typically use Σn for a hypersurface in Rn+1 and Mn−1 for a
hypersurface in Sn, where Sn denotes the round unit sphere in Rn+1.
We also denote by Sn(r) the round sphere of radius r. For clarity we
will use tildes to distinguish geometric quantities on M from those on

Σ, for instance, Ã, H̃, etc.
We say that a hypersurface Σn ⊂ Rn+1 has Euclidean volume growth

if there exists a constant CV > 0 so that Vol(Σ ∩ Br(x)) ≤ CV r
n for

any r > 0 and any x ∈ Rn+1. Here, and, henceforth, Br(x) denotes the
open Euclidean ball of radius r in Rn+1 centred at x. For convenience
we set Br = Br(0).

2.1.2. Varifolds. In this paper a varifold will always mean an integer
rectifiable (integral) varifold V in a Riemannian manifold Nn+1. We
write Hk for the k-dimensional Hausdorff measure in N . The reader is
directed to [Sim83] for the basic definitions for varifolds. An integral
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varifold V is determined by its mass measure, which we denote µV .
We will always assume that the support sptV := sptµV is connected.
We define the regular part reg V to be the set of points x ∈ sptV
around which sptV is locally a C2 hypersurface; the singular set is then
sing V = sptV \ reg V .

An integer rectifiable k-varifold V has an approximate tangent plane
TxV at µV -almost every x in sptV . We may, thus, define the divergence
almost everywhere by

(2.4) (divV X)(x) = divTxV X(x) =

k∑
i=1

〈Ei,∇EiX〉(x),

where Ei is an orthonormal basis for TxV and ∇ is the ambient connec-
tion. The varifold V is then said to have generalised mean curvature

vector ~H, if ~H is locally integrable and the first variation is given by

(2.5)

∫
divV X dµV = −

∫
〈X, ~H〉dµV ,

for any ambient C1 vector field X with compact support.
For convenience will say that a varifold V is orientable if and only if

reg V is orientable.
For most of our results we will need some control on the singular

set, although we do not assume any such control for now. The weakest
condition we will use is the α-structural hypothesis of Wickramasekera
([Wic14], see also [CM12, Section 12]): An integral varifold V satisfies
the α-structural hypothesis for some α ∈ (0, 1), if no point of sing V has
a neighbourhood in which sptV corresponds to the union of at least
three embedded C1,α hypersurfaces with boundary that meet only along
their common C1,α boundary. Note that the α-structural hypothesis is
automatically satisfied if, for instance, sing V has vanishing codimension
1 Hausdorff measure.

Note that any hypersurface Σn with locally bounded n-dimensional
Hausdorff measure defines an integral varifold that we denote by [Σ].

We say that a k-varifold V in Rn+1 has Euclidean volume growth if
there exists a constant CV > 0 so that µV (Br(x)) ≤ CV rk for any r > 0
and any x ∈ Rn+1.

We will typically use V to denote an integral n-varifold in Rn+1 and
W to denote an integral (n− 1)-varifold in Sn ⊂ Rn+1.

We will say that V splits off a line if it is invariant under translations
in some direction; if this is the case then, up to a rotation of Rn+1,
we may write µV = µR × µṼ as the product of a multiplicity one line

with an integer rectifiable (n − 1)-varifold Ṽ in Rn. We say that an
integral varifold V is a cone if it is invariant under dilations about the
origin; if this is the case then the link W = V Sn is, indeed, an integer
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rectifiable (n − 1)-varifold in Sn and we write V = C(W ). Of course,
C(W ) is orientable if and only if W is orientable.

2.1.3. Gaussian area and entropy. We denote

(2.6) ρx0,t0(x) = (4πt0)−n/2 e
− |x−x0|

2

4t0 .

The Gaussian area of V centred at x0 ∈ Rn+1 with scale t0 > 0 is then
given by

(2.7) Fx0,t0(V ) =

∫
ρx0,t0 dµV .

The normalisation is so that any multiplicity 1 hyperplane has Gaussian
area Fx0,t0(Rn) = 1. For convenience we set ρ = ρ0,1 and F = F0,1. The
entropy introduced by Colding–Minicozzi [CM12] may be defined as the
supremum over all centres and scales,

(2.8) Λ(V ) = sup
x0∈Rn+1

t0>0

Fx0,t0(V ).

Note that finite entropy implies Euclidean volume growth:

Lemma 2.1. Let V be an integral n-varifold in Rn+1 with finite
entropy Λ(V ) <∞. Then for any x0 and any r > 0, we have

(2.9) µV (Br(x0)) ≤ e
1
4 (4π)

n
2 Λ(V )rn.

Proof. As e−
|x−x0|

2

4r2 ≥ e−
1
4 for any x ∈ Br(x0), we have

(2.10) µV (Br(x0)) ≤ e
1
4

∫
e−
|x−x0|

2

4r2 dµV (x).

The result follows by definition of the entropy Λ(V ). q.e.d.

2.1.4. Stationary and F -stationary varifolds. We say that an n-
varifold V in Rn+1 is stationary (for area) if it has zero generalised mean

curvature ~H = 0. In particular, the regular part must be minimal in
Rn+1. It is straightforward to see that a cone V = C(W ) is stationary
if and only if the link W is stationary in Sn. Here an integral (n − 1)-
varifold W in Sn ⊂ Rn+1 is stationary if its generalised mean curvature

in Rn+1 is given by ~H(p) = −(n− 1)p. In particular, its regular part is
minimal in Sn.

We say that V is F -stationary if it is instead stationary for the F -
functional defined above, or alternatively with respect to the conformal

metric e−
|x|2
2n δij on Rn+1. Equivalently, its generalised mean curvature

is given as before by

(2.11) ~H = −1

2
x⊥.
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In particular, the regular part must be a self-shrinking hypersurface.
Also, it follows that a cone V = C(W ) is F -stationary if and only if it
is stationary in Rn+1.

A consequence of Brakke’s regularity theorem is that any self-shrinker
with entropy close enough to 1 must be a hyperplane [CIMW13].

Note that the constancy theorem implies that any stationary (or F -
stationary) varifold has locally constant multiplicity on its regular part.

2.1.5. Connectedness. It will be useful to record a connectedness
lemma that follows from the varifold maximum principle of Wickra-
masekera [Wic14, Theorem 19.1] together with the work of Ilmanen in
[Ilm96], who proved the same result but with a stronger hypothesis on
the singular set.

Lemma 2.2. Let V be a stationary integral n-varifold in a smooth
Riemannian manifold Nn+1, with Hn−1(sing V ) = 0. Then reg V is
connected if and only if sptV is connected.

The key point, arguing as in the proof of [Ilm96, Theorem A(ii)], is
that under the assumption Hn−1(sing V ) = 0, stationarity is equivalent
to having vanishing mean curvature together with a local Euclidean
volume bound. Each component of reg V , therefore, defines a stationary
varifold and the varifold maximum principle applies to show that they
must coincide.

2.1.6. Entropy-stability. A smooth self-shrinker Σ is entropy-stable
if it is a local minimum for the entropy functional amongst C2 graphs
over Σ. Here we make this notion precise for varifolds. We first define
normal variations that are not required to be compactly supported.

Definition 2.3. Let V be an integral n-varifold in a manifold Nn+1

and consider a complete Lipschitz vector field X on N . Further suppose
that X vanishes on sing V and is C2 on N \sing V . Writing {ΦX

s }s∈(−ε,ε)
for the flow of X, we say that the image varifolds

(2.12) Vs := (ΦX
s )#V

form a normal variation of V if additionally X(x) ⊥ Tx reg Vs for all s
and any x ∈ reg Vs.

This definition includes deformations by compactly supported normal
graphs over an orientable regular part reg V , since we can construct a
smooth ambient field X by extending in a neighbourhood of reg V away
from the singular set. Similarly, it includes homogenous variations of
a cone V = C(W ) in Rn+1 induced by compactly supported normal
graphs over regW ; in this case the ambient field X only fails to be
smooth at the origin.



560 J. J. ZHU

Definition 2.4. We say that an F -stationary varifold V is entropy-
unstable if there exists a normal variation Vs of V satisfying

Λ(Vs) < Λ(V ) for s > 0.

We say that V is entropy-stable if it is not entropy-unstable.

2.1.7. F -stability. The notion of F -stability of [CM12] extends to the
singular setting by requiring that the variation take place away from the
singular set.

Definition 2.5. Let V be an orientable F -stationary n-varifold in
Rn+1. We say that V is F -unstable if there is a normal variation Vs of
V , compactly supported away from sing V , such that for any variations
xs of x0 = 0 and ts of t0 = 1, we have ∂2

s |s=0Fxs,ts(Vs) < 0.

F -stability is no longer suited for studying the entropy when V is
a cone, since one may always zoom away from the compact variation.
Therefore, we instead consider homogenous variations and introduce the
notion of homogenous F -stability for stationary cones as follows:

Definition 2.6. Let W be a stationary (n − 1)-varifold in Sn. We
say that W is homogenously F -unstable if there is a normal variation
Ws of W in Sn, compactly supported away from singW , such that for
any variation xs of x0 = 0, we have ∂2

s |s=0Fxs,1(C(Ws)) < 0. We say
that W is homogenously F -stable if it is not homogenously F -unstable.

If V = C(W ) is a stationary n-cone in Rn+1 we say that V is ho-
mogenously F -stable if and only if W is homogenously F -stable.

The restriction t0 = 1 will suffice since for any cone we have

Fx0,t0(C(W )) = F x0√
t0
,1(C(W )),

by dilation invariance. Note that any stationary cone has finite entropy
(see Corollary 2.9).

2.1.8. Stability eigenvalues. Let Σn be an orientable self-shrinker in
Rn+1. The second variation operator for the F -functional is given by
the operator

(2.13) L = L+
1

2
+ |A|2,

where L is the drift Laplacian

(2.14) L = ∆Σ −
1

2
〈x,∇Σ·〉.

Our convention is that u is an eigenfunction of L with eigenvalue λ
if Lu = −λu. For (connected) open domains Ω ⊂⊂ Σ the Dirichlet
spectrum {λi(Ω)}i≥1 of L on Ω is well-defined. More generally, we
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define the first stability eigenvalue (with respect to Gaussian area) of Σ
by

(2.15) λ1(Σ) = inf
Ω
λ1(Ω) = inf

f

∫
Σ(|∇Σf |2 − |A|2f2 − 1

2f
2)ρ∫

Σ f
2ρ

.

Here the second infimum may be taken over Lipschitz functions f with
compact support in Σ. Note that the infimum could be −∞. If, how-
ever, we have λ1 = λ1(Σ) > −∞ then we immediately get the stability
inequality

(2.16)

∫
Σ
|A|2f2ρ ≤

∫
Σ
|∇f |2ρ+ (−1

2
− λ1)

∫
Σ
f2ρ,

for Lipschitz functions f compactly supported in Σ.
If V is an orientable F -stationary varifold, we set λ1(V ) = λ1(reg V ).
It will be useful to recall the following elementary eigenfunctions of

L:

Lemma 2.7 ([CM12], Theorem 5.2). On any smooth orientable self-
shrinker, for any constant vector y we have L〈y, ν〉 = 1

2〈y, ν〉 and LH =
H.

For hypersurfaces Mn−1 in Sn, we will consider the usual stability op-
erator for area given by (recalling that Sn has constant Ricci curvature
n− 1)

(2.17) L̃ = ∆M + |Ã|2 + (n− 1).

Here Ã is the second fundamental form of M in Sn. As above we have
the Dirichlet spectrum {κi(Ω)}i≥1 for any domain Ω ⊂⊂ M , and we
define the first stability eigenvalue of M by

(2.18) κ1(M) = inf
Ω
κ1(Ω) = inf

f

∫
M

(
|∇Mf |2 − |Ã|2f2 − (n− 1)f2

)
∫
M f2

.

Again the infimum may be taken over Lipschitz functions f with com-
pact support in M , although it could again be −∞. If W is an orientable
stationary integral (n− 1)-varifold in Sn, we set κ1(W ) = κ1(regW ).

2.2. Entropy of F -stationary varifolds. Colding–Minicozzi showed
that the entropy of a smooth self-shrinker is achieved by the F = F0,1

functional. Ketover and Zhou [KZ15, Lemma 10.4] extended their com-
putation to the singular setting (in fact, for more general varifolds):

Lemma 2.8 ([KZ15]). Let V be an F -stationary varifold satisfying
F (V ) < ∞. Fix a ∈ R and y ∈ Rn+1 and set g(s) = Fsy,1+as2(V ).

Then for all s > 0 with 1 + as2 > 0 we have

(2.19) g′(s) = − 1

2(1 + as2)

∫
|(asx+ y)⊥|2s

1 + as2
ρsy,1+as2 dµV (x) ≤ 0.
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Consequently, the map (x0, t0) 7→ Fx0,t0(V ) achieves its global maximum
at (0, 1), that is, Λ(V ) = F (V ) <∞.

As a result we see that stationary cones have finite entropy:

Corollary 2.9. Let V = C(W ) be a stationary n-cone. Then V

has finite entropy given by Λ(V ) = ‖W‖
Vol(Sn−1)

, where Sn−1 is the totally

geodesic equator of Sn and ‖W‖ is the total mass of the link W .

Proof. A straightforward calculation in polar coordinates gives that

F0,1(V ) = ‖W‖
Vol(Sn−1)

< ∞, and the result then follows from Lemma 2.8.

q.e.d.

We can characterise the equality case in Lemma 2.8 as follows:

Lemma 2.10. Let V be an F -stationary n-varifold in Rn+1.

1) If x⊥ = 0 a.e. on V where x is the position vector, then Σ is a
stationary cone.

2) If y⊥ = 0 a.e. on V for some fixed vector y, then Σ splits off a
line.

Proof. For point (1) suppose x⊥ = 0 a.e. on V . Then the generalised

mean curvature of V is ~H = −1
2x
⊥ = 0, so V is stationary for the area

functional. The fact that V is now a cone follows from the monotonicity
formula as detailed in the proof of [Sim83, Theorem 19.3]. We will not
reproduce it here as it is similar to the proof of the second case to follow.

For point (2) suppose y⊥ = 0 a.e. on V . Without loss of generality
we may assume y = en+1. We, therefore, write x = (x′, xn+1), where
x′ ∈ Rn. By the slicing theorem, the slices V {xn+1 = s} are integral
(n− 1)-varifolds for almost every s ∈ R.

Let φ : R → R and f : Rn → R be C1, compactly supported
functions. We set

(2.20) g(s) =

∫
f(x′)φ(xn+1 + s) dµV (x),

so that g′(s) =
∫
f(x′)φ′(xn+1 + s) dµV (x).

Consider the vector field X = f(x′)φ(xn+1 + s)en+1. We calculate

(2.21) divV X = φ(xn+1+s)〈∇f, en+1〉+f(x)φ′(xn+1+s)〈eTn+1, en+1〉.

Since en+1 = eTn+1 a.e. on Σ, we have that 〈∇f, en+1〉 = 〈Df, en+1〉 = 0,

〈eTn+1, en+1〉 = 1 and 〈x⊥, en+1〉 = 0. Since ~H = −1
2x
⊥, plugging into

(2.5) then gives that g′(s) ≡ 0, hence, g(s) is constant in s.
Now fix a > 0. Using φ to approximate the characteristic function of

the interval [0, a], our work above shows that∫
f(x′)χ{s≤xn+1≤s+a} dµV (x)
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is constant in s, for any compactly supported C1 function f on Rn. Set
V s = V {xn+1 = s}. For almost every s ∈ R, both slices V s and V s+a

are integer rectifiable, so using the coarea formula and differentiating
gives that

(2.22)

∫
f(x′) dµV s(x) =

∫
f(x′) dµV s+a(x),

for all such s. Another application of the coarea formula then gives that
µV is invariant under translation by aen+1. Since a was arbitrary, this
concludes the proof. q.e.d.

In particular, the map (x0, t0) 7→ Fx0,t0(V ) has a strict global max-
imum at (0, 1) for F -stationary varifolds V that do not split off a line
and are not cones. Similarly, the map x0 7→ Fx0,1(V ) has a strict global
maximum at x0 = 0 if V does not split off a line.

3. Applications

Before proving Theorem 1.2, we will describe how entropy lower
bounds for closed hypersurfaces and for singular self-shrinkers can be
deduced from the classification of compact entropy-stable singular self-
shrinkers. In particular, we will assume for this section that the follow-
ing holds:

Proposition 3.1. Let V be a compactly supported F -stationary inte-
gral n-varifold in Rn+1, which has orientable regular part of multiplicity
1, finite entropy and Hn−1(sing V ) = 0. If V is not the round sphere
Sn(
√

2n) then there is an entropy-unstable variation of V , which is com-
pactly supported away from sing V .

Clearly Proposition 3.1 is an immediate corollary of Theorem 1.2 (see
also Theorem 9.5), since a compactly supported varifold certainly can-
not split off a line or be a cone. The main goal of this section will be to
prove Theorem 1.1 under this assumption. The applications we present
here extend the results of Bernstein–Wang to all higher dimensions, and
depend crucially on their theory developed in [BW16].

Let Λn = Λ(Sn) be the entropy of the round sphere. A direct com-
putation (see [Sto94]) shows

(3.1) 2 > Λ1 >
3

2
> Λ2 > · · · > Λn > · · · > 1.

Similar to [BW16] we define SVn to be the set of all integral F -
stationary n-varifolds in Rn+1 with nonempty support. We denote by
CSVn the subset of varifolds in SVn that have compact support. For
Λ > 0 we also define SVn(Λ) to be the subset of varifolds in SVn with
entropy strictly less than Λ, and CSVn(Λ) = SVn(Λ) ∩ CSVn.
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3.1. Entropy lower bound for closed hypersurfaces. It was shown
by Colding–Ilmanen–Minicozzi–White in [CIMW13] that the sphere
Sn(
√

2n) minimises entropy amongst smooth, embedded closed self-
shrinkers (in fact, they showed that there is a gap to the next lowest
entropy in this class). This led them to conjecture the following:

Conjecture 3.2 ([CIMW13]). Any smoothly embedded, closed hy-
persurface Σn ⊂ Rn+1, n ≤ 6 has entropy Λ(Σ) ≥ Λn.

The case n = 1 is an easy consequence of the Gage–Hamilton–
Grayson theorem, which states that any embedded closed curve con-
tracts to a round point. Bernstein and Wang [BW16] settled Con-
jecture 3.2 for 2 ≤ n ≤ 6 by leveraging their insightful observation
that under a carefully chosen weak flow, the final time singularity aris-
ing from compact initial data must be collapsed in a certain sense (see
[BW16, Definition 4.6] and [BW16, Definition 4.9]). In fact, they
were able to prove the entropy bound for objects of weaker regularity,
the compact boundary measures defined as follows (see also [BW16,
Definition 2.10]):

Definition 3.3. Let V be an integral n-varifold in Rn+1. We call
V a compact boundary measure if there is a bounded open nonempty
subset E ⊂ Rn+1 of locally finite perimeter (that is, χE has locally
bounded variation) such that sptµV = ∂E and µV = |DχE |.

In this subsection we will extend their result [BW16, Corollary 6.4]
to all dimensions n ≥ 2.

We will first need Bernstein–Wang’s characterisation of the entropy
minimiser in CSVn(Λn):

Lemma 3.4 ([BW16], Lemma 6.1). Let n ≥ 2. If for all 1 ≤ k ≤
n− 1, the set CSVk(Λn) is empty, then either CSVn(Λn) is also empty,
or there is a V ∈ CSVn(Λn) satisfying:

1) Λ(V ) = inf{Λ(µ) : µ ∈ CSVn(Λn)},
2) V is a compact boundary measure,
3) V is entropy stable,
4) sing V has Hausdorff dimension at most n− 7.

The following proposition is implicit in the proof of [BW16, Corollary
6.4]:

Proposition 3.5 ([BW16]). Consider n ≥ 2 and let V be a compact
boundary measure in Rn+1. If for all 2 ≤ k ≤ n, the set CSVk(Λk)
is empty, then Λ(V ) ≥ Λn. Moreover, if equality holds then, up to
translations and dilations, V is an entropy-stable member of CSVn.

We are now ready to prove the main theorem of this section:

Theorem 3.6. For all n ≥ 2, we have CSVn(Λn) = ∅.
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Proof. First, any V ∈ CSV1(3/2) must be smooth by [BW16, Propo-
sition 4.2] and, hence, have entropy at least Λ1 by [CIMW13, Theorem
0.7]. So by (3.1) we have CSV1(Λn) = ∅ for n ≥ 2.

We proceed by induction. By [BW16, Proposition 6.2], we already
have CSVn(Λn) = ∅ for 2 ≤ n ≤ 6. Now for general n ≥ 2, if
CSVk(Λk) = ∅ for all 2 ≤ k ≤ n − 1, then using the above discus-
sion we see that the hypotheses of Lemma 3.4 are satisfied. Thus, if
CSVn(Λn) is nonempty then there is a V ∈ CSVn(Λn) that is entropy-
stable and has singular set of codimension at least 7. Moreover, V is
a compact boundary measure so its regular part is orientable (see also
[BW16, Proposition 4.3]), and it has multiplicity 1 since it is integral
with Λ(Σ) < Λn < 2. But then Proposition 3.1 gives that V must be
a round sphere, so, in particular, Λ(V ) = Λn which is a contradiction.

q.e.d.

Corollary 3.7. Let n ≥ 2. Any compact boundary measure V in
Rn+1 has entropy Λ(V ) ≥ Λ(Sn), with equality if and only if V is a
round sphere.

Proof. The lower bound follows immediately from Theorem 3.6 and
Proposition 3.5.

If equality holds then, up to a translation and dilation, V ∈ CSVn
and Λ(V ) = Λn <

3
2 , so as above V is orientable by [BW16, Proposition

4.3], and Hn−2(sing V ) = 0 by [BW16, Proposition 4.2]. Since V must
also be entropy-stable, by Proposition 3.1 it must be a round sphere.

q.e.d.

Theorem 1.1 follows from Corollary 3.7 for n ≥ 2, since any closed hy-
persurface separates Rn+1 and, hence, defines a compact boundary mea-
sure. Again the case n = 1 follows from the Gage–Hamilton–Grayson
theorem [GH86, Gra87].

3.2. Gap theorem for compact singular self-shrinkers. The main
theorem of Colding–Ilmanen–Minicozzi–White [CIMW13] established
that the shrinking sphere had the lowest entropy amongst (smooth)
closed self-shrinkers, with a gap to the next lowest. Bernstein–Wang,
using their own methods, were able to provide an independent proof of
this result that, in fact, extended it to compact singular self-shrinkers,
but only for 2 ≤ n ≤ 6. In this subsection we will extend their result to
all n ≥ 2.

We will need the following proposition, which is implicit in the proof
of [BW16, Corollary 6.5]:

Proposition 3.8 ([BW16]). Let n ≥ 2. Assume that, for all 2 ≤
k ≤ n:

• The set CSVk(Λk) is empty;
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• The only compact boundary measure V ∈ CSVk with Λ(V ) = Λk
is the shrinking sphere Sk(

√
2k).

Then there exists εn > 0 such that CSVn(Λn + εn) contains only the
shrinking sphere Sn(

√
2n).

Combining Proposition 3.8 with Theorem 3.6 and Corollary 3.7 then
immediately yields our gap theorem for compact singular self-shrinkers
in all dimensions n ≥ 2 as follows:

Corollary 3.9. Let n ≥ 2. There exists εn > 0 so that CSVn(Λn+εn)
contains only the shrinking sphere Sn(

√
2n).

3.3. Entropy lower bound for partially collapsed self-shrinkers.
We also generalise the results of Bernstein–Wang for so-called partially
collapsed self-shrinkers (see [BW16, Definition 6.6]) to all dimensions
n ≥ 3. The following is implicit in the proof of [BW16, Corollary 6.7]:

Proposition 3.10 ([BW16]). Let n ≥ 3. Assume that, for all 2 ≤
k ≤ n− 1:

• The set CSVk(Λk) is empty;
• The only compact boundary measure V ∈ CSVk with Λ(V ) = Λk

is the shrinking sphere Sk(
√

2k).

Then any partially collapsed V ∈ SVn with noncompact support has
entropy Λ(V ) ≥ Λn−1, with equality if and only if V is the round cylinder

Sn−1(
√

2(n− 1))×R.

As before, we combine Proposition 3.10 with Theorem 3.6 and Corol-
lary 3.7 to obtain the lower bound for all n ≥ 3:

Corollary 3.11. Let n ≥ 3. Any partially collapsed self-shrinker
V ∈ SVn with noncompact support has entropy Λ(V ) ≥ Λn−1, with

equality if and only if V is the round cylinder Sn−1(
√

2(n− 1))×R.

4. Colding–Minicozzi theory

In this section, we recall some results from [CM12], which allow us
to relate entropy-stability to F -stability. We will also need variation
formulae for the Gaussian area functionals, as well as the regularity
theory for self-shrinkers with λ1 bounded from below. The proofs found
in [CM12] extend naturally to the varifold setting, so we will state the
results in this setting.

4.1. Variations. Here we record a second variation formula for the
Gaussian area of an orientable F -stationary varifold V in which the
centre of the Gaussian functional may change. Specifically, in this sub-
section we consider normal variations Vs of V , with generator X com-
pactly supported away from sing V .
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If reg V is orientable, each reg Vs is still orientable with normal de-
noted νs, and the restriction of X is given by X|reg Vs = fsνs for some
functions fs compactly supported in reg Vs. For ease of presentation
we will give the formulae using the functions fs with the understanding
that fs = 0 off the regular part reg Vs.

Proposition 4.1 (Second variation at a critical point). Let V be an
orientable F -stationary n-varifold in Rn+1 with finite entropy. Let Vs
be a normal variation of V with variation field X, compactly supported
away from sing V . Write X|reg Vs = fsνs, with f = f0. Also let xs and
ts be variations of x0 = 0 and t0 = 1 with x′0 = y and t′0 = a. Then
∂2
s |s=0(Fxs,ts(Vs)) is given by

(4.1)

∫ (
−fLf + 2faH − a2H2 + f〈y, ν〉 − |y

⊥|2

2

)
ρdµV .

Here we understand the H2 term via the generalised mean curvature,

H2 = | ~H|2 = 1
4 |x
⊥|2.

The point is that the proofs of the first and second variation formulae,
[CM12, Lemma 3.1] and [CM12, Theorem 4.1] respectively, go through
essentially unchanged, since the normal variation Vs takes place away
from the singular set sing Vs = sing V and the contributions of xs and
ts just come from differentiating the weight. To specialise to a critical
point as in [CM12, Theorem 4.14], one needs certain integral identities
on self-shrinkers; these can be proven in the varifold setting by applying
(2.5) to the appropriate (exponentially decaying) vector fields.

4.2. Entropy stability and F -stability. In this subsection we con-
tinue to consider normal variations Vs of an F -stationary varifold V .

First, for normal variations compactly supported away from sing V ,
the proof of [CM12, Theorem 0.15] goes through to give:

Theorem 4.2. Suppose V is an orientable F -stationary varifold with
finite entropy that does not split off a line and is not a cone. If V is
F -unstable then it is entropy-unstable, where the unstable variation is
compactly supported away from sing V .

For stationary cones V = C(W ) we need to consider homogenous
variations, induced by a normal variation of W in Sn supported away
from singW . The following is implicit in the proof of [CM12, Theorem
0.14]:

Theorem 4.3. Let n ≥ 3. Suppose that V = C(W ) is an orientable
stationary n-cone in Rn+1 that does not split off a line. If W is ho-
mogenously F -unstable then V is entropy-unstable with respect to the
induced homogenous variation.
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4.3. Regularity of self-shrinkers with stability spectrum lower
bound. Here we record a regularity result for F -stationary varifolds V
with λ1(V ) = λ1(Σ) > −∞ that satisfy the α-structural hypothesis,
where Σ = reg V .

The content of the following proposition is essentially contained in
[CM12, Section 12] and depends on the regularity theory of Wick-
ramasekera [Wic14]; it follows from the proof of [CM12, Proposition
12.24], noting that the proof of [CM12, Lemma 12.7] goes through with
any lower bound λ1(Σ) > −∞ because the

∫
Σ φ

2ρ term in the stabil-
ity inequality (2.16) may be estimated on small balls (by the Poincaré
inequality) to be small relative to

∫
Σ |∇φ|

2ρ.

Proposition 4.4. Let V be an orientable F -stationary n-varifold
in Rn+1 with finite entropy, satisfying the α-structural hypothesis for
some α ∈ (0, 1

2). Suppose that λ1(V ) > −∞. Then V corresponds to an
embedded, analytic hypersurface away from a closed set of singularities
of Hausdorff dimension at most n−7 (that is empty if n ≤ 6 and discrete
if n = 7.)

5. Gaussian area functionals on cones

In this section, we consider integral (n−1)-varifolds W in Sn. Specif-
ically, we will study the Gaussian areas of their cones V = C(W ), which
by dilation invariance satisfy

(5.1) Fx0,t0(C(W )) = F x0√
t0
,1(C(W )).

As such, it will often be enough to consider centres x0 ∈ Rn+1, with
fixed scale t0 = 1. The main goal is to provide variation formulae for the
Gaussian areas Fx0,t0(W ) by treating them as functionals on the link
W ; note that the formulae in Section 4.1 do not apply directly since the
variations are noncompact. This will give us the means to determine
the homogenous F -stability of a stationary cone.

Since our focus is on the link, in this section, yT will refer to the
projection to the (approximate) tangent space TpW at a point p ∈
sptW ⊂ Sn, so that y ∈ Rn+1 decomposes as

(5.2) y = yT + 〈y, p〉p+ y⊥.

Here y⊥ denotes the component orthogonal to TpW in TpS
n, which is

equivalent to the component orthogonal to TpC(W ) in Rn+1, and is

given by y⊥ = 〈y, ν̃〉ν̃ on the regular part.

Lemma 5.1. Let W be an integral (n−1)-varifold in Sn, and suppose
that the cone C(W ) has finite entropy. Then we have

(5.3) Fx0,1(C(W )) = (4π)−
n
2 e−|x0|2/4

∫
Kn−1(〈p, x0〉) dµW (p),
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where

(5.4) Kn(t) = et
2/4 In(t)

is the sequence of real analytic functions defined by the recurrence rela-
tion

(5.5) In(t) = tIn−1(t) + 2(n− 1)In−2(t),

for n ≥ 2, and

(5.6) I0(t) =
√
π(1 + erf(t/2)), I1(t) = tI0(t) + 2 e−t

2/4 .

Proof. Set V = C(W ). Using polar coordinates r > 0, p ∈ Sn for
x = rp ∈ Rn+1, we have that

(5.7)

∫
Rn+1

e−
|x−x0|

2

4 dµV (x) =

∫
Sn

(∫ ∞
0

e−
|rp−x0|

2

4 rn−1 dr

)
dµW (p).

Completing the square we have |rp−x0|2 = (r−〈p, x0〉)2+|x0|2−〈p, x0〉2,
where we have used that |p|2 = 1. Setting t = 〈p, x0〉, it remains to
compute the integrals

(5.8) In(t) =

∫ ∞
0

e−
(r−t)2

4 rn dr,

for each n. First, for n = 0 by definition of the error function we have

(5.9) I0(t) =

∫ ∞
−t

e−u
2/4 du =

√
π(1 + erf(t/2)).

For n ≥ 1 we have

In(t) =

∫ ∞
0

(r − t) e−
(r−t)2

4 rn−1 dr + t

∫ ∞
0

e−
(r−t)2

4 rn−1 dr

= −2rn−1 e−
(r−t)2

4

∣∣∣∣∞
0

+ 2(n− 1)In−2(t) + tIn−1(t),

(5.10)

where we have used integration by parts in the second equality. For

n ≥ 2 the first term vanishes whilst for n = 1 it evaluates to 2 e−t
2/4,

which gives the result. q.e.d.

5.1. Variations. For an integral (n− 1)-varifold W in Sn, we consider
normal variations Ws of W in Sn generated by smooth, compactly sup-
ported vector fields X on Sn, so that X(p) ⊥ Tp regWs for any s and
any p ∈ regWs. If W is orientable, then we will write X|regWs = φsν̃s.

Recall that ν̃ and H̃ denote the normal and mean curvature of a hyper-
surface Mn−1 in Sn, respectively.

A direct computation yields the first variation formula for the F -
functional on cones:
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Lemma 5.2 (First variation formula). Let W be an orientable in-
tegral (n − 1)-varifold in Sn. Let Ws be a normal variation of W in
Sn generated by X, compactly supported away from singW . Write
X|regW = φsν̃s with φ = φ0. If xs is a variation of x0 with x′0 = y, then
∂s|s=0(Fxs,1(C(Ws))) is given by

e−|x0|2/4

(4π)
n
2

∫ (
φH̃Kn−1(t)− 1

2
〈x0, y〉Kn−1(t)

+ (〈y, p〉+ 〈x0, ν〉φ)K ′n−1(t)

)
dµW (p),

(5.11)

where as before we have written t = 〈p, x0〉 for convenience.

Lemma 5.3 (Second variation formula). Let W be an orientable
integral (n − 1)-varifold in Sn. Let Ws be a normal variation of W
in Sn generated by X, compactly supported away from singW . Write
X|regW = φsν̃s with φ = φ0 and φ′ = ∂s|s=0φs. Also let xs be a variation
of x0 with x′0 = y, x′′0 = y′. Then ∂2

s |s=0(Fxs,1(C(Ws))) is given by

e−
|x0|

2

4

(4π)
n
2

∫ [
− (φL̃φ)Kn−1(t)− φ〈x0,∇φ〉K ′n−1(t)

+ 2〈y, ν̃〉φK ′n−1(t)− 1

2
|y|2Kn−1(t)

+

(
φH̃ − 1

2
〈x0, y〉

)2

Kn−1(t)

+ (〈y, p〉+ 〈x0, ν̃〉φ)2K ′′n−1(t)

+ 2

(
φH̃ − 1

2
〈x0, y〉

)
(〈y, p〉+ 〈x0, ν̃〉φ)K ′n−1(t)

+ φ′
(
H̃Kn−1(t) + 〈x0, ν̃〉K ′n−1(t)

)
− 1

2
〈x0, y

′〉Kn−1(t) + 〈p, y′〉K ′n−1(t)

]
dµW (p),

(5.12)

where again we have written t = 〈p, x0〉 for convenience, and K ′n−1,K
′′
n−1

are just the usual derivatives of the single-variable function Kn−1 (as
opposed to the variational derivative).

Proof. The proof is a direct calculation by differentiating the first
variation formula, using that on M = regW we have ν̃ ′ = −∇φ and

that H̃ ′ is given by the Jacobi operator,

(5.13) H̃ ′ = −∆Mφ− |Ã|2φ− (n− 1)φ = −L̃Mφ,
for hypersurfaces in Sn (see, for instance, [HP99]). q.e.d.

We will now specialise to the case of a critical point, but first we need
some integral identities for minimal hypersurfaces in Sn.
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Lemma 5.4. If W is a stationary integral (n−1)-varifold in Sn then
for any fixed vector y ∈ Rn+1 we have

(5.14)

∫
〈y, p〉dµW (p) = 0,

(5.15)

∫
|yT |2 dµW = (n− 1)

∫
〈y, p〉2 dµW (p).

Proof. We apply (2.5) to certain ambient vector fields X, recalling
that a stationary varifold in Sn has generalised mean curvature in Rn+1

given by ~H(p) = −(n− 1)p.
For the first claim, simply take X = y, so that divW X = 0.
For the second claim, take X = 〈y, x〉y, then we have divW X =

〈yT , y〉 = |yT |2 and 〈p,X(p)〉 = 〈y, p〉2. q.e.d.

Proposition 5.5 (Second variation at a critical point). Let W be an
orientable stationary integral (n−1)-varifold in Sn. Let Ws be a normal
variation of W in Sn generated by X, compactly supported away from
singW . Write X|regW = φsν̃s with φ = φ0. Also let xs be a variation
of x0 = 0 with x′0 = y. Then ∂2

s |s=0(Fxs,1(C(Ws))) is given by

(5.16)
1

2
π−

n
2 Γ
(n

2

)∫ (
−φL̃φ+ 2

Γ(1+n
2 )

Γ(n2 )
φ〈y, ν̃〉 − 1

2
|y⊥|2

)
dµW (p).

Proof. Using the recurrence for Kn−1 one may verify the special
values Kn−1(0) = 2n−1Γ(n2 ), K ′n−1(0) = 2n−1Γ(1+n

2 ) and K ′′n−1(0) =

2n−2nΓ(n2 ). Plugging x0 = 0 and H̃ = 0 into Lemma 5.3, we get that

∂2
s |s=0(Fx0,1(C(Ws))) is given by

1

2
π−

n
2 Γ
(n

2

)∫ [
− φL̃φ+ 2

Γ(1+n
2 )

Γ(n2 )
φ〈y, ν̃〉 − 1

2
|y|2

+
n

2
〈y, p〉2 +

Γ(1+n
2 )

Γ(n2 )
〈y′, p〉

]
dµW (p),

(5.17)

where y′ = x′′0. Using Lemma 5.4 to handle the last three terms com-
pletes the proof, recalling that according to the decomposition (5.2) we
have |y|2 = |yT |2 + 〈y, p〉2 + |y⊥|2. q.e.d.

Remark 5.6. If V = C(W ) is a stationary cone then, working in
polar coordinates r = |x| on the regular part Σ = regC(W ), the stability
operator LΣ has the decomposition

Lf = r−2∆Mf +
n− 1

r
∂rf + ∂2

rf −
r

2
∂rf +

|Ã|2

r2
f +

1

2
f

= r−2(L̃M − (n− 1) + L1)f,

(5.18)
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where

(5.19) L1 = r2∂2
r + (n− 1)r∂r −

r3

2
∂r +

r2

2
.

Noting that L1r = (n − 1)r, and using the evaluation of the special
integrals In(0), it follows that the integral over the cone C(W )

(5.20)

∫ (
−fLf + f〈y, ν〉 − |y

⊥|2

2

)
ρdµC(W )

coincides with (5.16) if we set f(x) = rφ(xr ). This shows, in particular,
that the second variation formula Proposition 4.1 is valid for homoge-
nous variations of a stationary cone.

We record the following estimate for the coefficient of the middle term
of (5.16).

Lemma 5.7. For any integer n ≥ 2 we have

(5.21)
Γ(1+n

2 )2

Γ(n2 )2
< n− 1.

Proof. Let An = 1
n−1

Γ( 1+n
2

)2

Γ(n
2

)2 . By the functional equation for the

gamma function, we have for n > 3 that An = (n−1)(n−3)
(n−2)2 An−2 < An−2,

so the lemma follows from checking that A2 = Γ(3/2)2

Γ(1)2 = π
4 < 1 and

A3 = 1
2

Γ(2)2

Γ(3/2)2 = 2
π < 1. q.e.d.

6. Integration on singular hypersurfaces

In this section, we present some technical results that will allow us
to work on the regular part of an integral varifold with small enough
singular set.

6.1. Cutoff functions. Given an integral n-varifold V in Rn+1 satis-
fying Hn−q(sing V ) = 0, q ≥ 0, we describe here our choice of cutoff
functions (on Rn+1) that will allow us to integrate around the singular
set.

For any fixed R > 4 and ε > 0, since the singular set is closed,
using the definition of Hausdorff measure we may cover the compact set
sing V ∩BR by finitely many Euclidean balls,

(6.1) sing V ∩BR ⊂
m⋃
i=1

Bri(pi), where
∑
i

rn−qi < ε,

and of course we may assume without loss of generality that ri < 1 for
each i. This covering depends on q, R and ε, but we will suppress this
dependence in the notation.
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Given such a covering, we may take smooth cutoff functions 0 ≤
φi ≤ 1 such that φi = 1 outside B3ri(pi) and φi = 0 inside B2ri(pi),
with |Dφi| ≤ 2

ri
in between. We will also need to cut off on large

balls so we fix a cutoff function 0 ≤ ηR ≤ 1 such that ηR = 1 inside
BR−3 and ηR = 0 outside BR−2, with |DηR| ≤ 2 in between. Then,
we combine these cutoffs by setting φR,ε = infi(φi, ηR) ≤ 1, which is
Lipschitz with compact support in BR−1 \

⋃m
i=1B2ri(pi), and satisfies

|DφR,ε| ≤ supi(|Dφi|, |DηR|).
We will also need cutoff functions on annuli by smooth functions

0 ≤ ψi ≤ 2
ri

satisfying ψi = 2
ri

inside B3ri(pi) \ B2ri(pi) and ψi = 0

outside B4ri(pi) \ Bri(pi), with |Dψi| ≤ 4
r2
i

in between. We also take

0 ≤ ξR ≤ 2 such that ξR = 2 inside BR−2 \ BR−3 and ξR = 0 out-
side BR−1 \ BR−4, with |DξR| ≤ 4 in between. We combine these by
setting ψR,ε = supi(ψi, ξR), which is Lipschitz and satisfies |DψR,ε| ≤
supi(|Dψi|, |DξR|). In particular, we have

(6.2) |DφR,ε| ≤ ψR,ε.

We will reduce the dependence to the single parameter R by choosing
ε = ε(R) such that limR→∞ ε(R) = 0. In this setting we write more
compactly φR = φR,ε, ψR = ψR,ε.

6.2. Integration. We will conduct our analysis in the weighted Lp

spaces introduced in [CM12]. We say that a function f is weighted Lp

on a hypersurface Σ if it is Lp with respect to the measure ρ dµΣ. That

is, for p ∈ (0,∞) we say f is weighted Lp if ‖f‖p :=
(∫

Σ |f |
pρ
) 1

p < ∞,

and for p = ∞ we require ‖f‖∞ = supΣ |f | < ∞. The weighted W k,p

spaces are defined analogously. The goal of this subsection is to es-
tablish conditions under which integration by parts is justified in these
spaces.

Recall that the operator L is symmetric with respect to the weight ρ:

Lemma 6.1 ([CM12], Lemma 3.8). If Σ ⊂ Rn+1 is any hyper-
surface, u is a C1 function with compact support in Σ and v is a C2

function, then

(6.3)

∫
Σ
u(Lv)ρ = −

∫
Σ
〈∇v,∇u〉ρ.

In the remainder of this subsection Σn will denote the regular part
of an n-varifold V in Rn+1 with Euclidean volume growth. The expo-

nential decay of the weight ρ = (4π)−n/2 e−|x|
2/4 then gives that any

function on Σ of polynomial growth in |x| is automatically weighted Lp

for any p ∈ (0,∞).

Lemma 6.2. Let q > 0 and suppose that Hn−q(sing V ) = 0. Let
Σ = reg V , and take φR = φR,ε as in Section 6.1. Then we have the
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following gradient estimate for φR:

(6.4)

∫
Σ
|∇φR|qρ ≤ 2qCV (Rn e−

(R−3)2

4 +3nε),

where CV is the volume growth constant. In particular,

lim
R→∞

∫
Σ
|∇φR|qρ = 0.

Proof. We have∫
Σ
|∇φR|qρ ≤

∫
Σ∩BR−2\BR−3

2qρ+

m∑
i=1

∫
Σ∩B3ri

(pi)\B2ri
(pi)

2q

rqi

≤ 2qCV

(
Rn e−

(R−3)2

4 +3n
∑
i

rn−qi

)

≤ 2qCV (Rn e−
(R−3)2

4 +3nε).

(6.5)

The limit follows since we choose ε such that limR→∞ ε(R) = 0. q.e.d.

Corollary 6.3. Assume Hn−q(sing V ) = 0 for some q. Let Σ = reg V
and φR be as above.

1) Suppose that q ≥ 1 and that f is weighted Lp, p = q
q−1 . Then

(6.6) lim
R→∞

∫
Σ
|f ||∇φR|ρ = 0.

2) Suppose that q ≥ 2 and that f is weighted Lp, p = 2q
q−2 . Then

(6.7) lim
R→∞

∫
Σ
f2|∇φR|2ρ = 0.

Note again that here we allow p =∞.

Proof. For (1), using Hölder’s inequality, we have

(6.8)

∫
Σ
|f ||∇φR|ρ ≤ ‖f‖p

(∫
Σ
|∇φR|qρ

) 1
q

,

where 1
p + 1

q = 1.

Similarly, for (2) we have

(6.9)

∫
Σ
|f |2|∇φR|2ρ ≤ ‖f‖2p

(∫
Σ
|∇φR|qρ

) 2
q

where 2
p + 2

q = 1.

By supposition the weighted Lp-norms of f are finite, so both results
now follow from Lemma 6.2. q.e.d.
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Lemma 6.4. Suppose that Hn−q(sing V ) = 0 for some q ≥ 1. Fur-
ther suppose that u, v are C2 functions on Σ = reg V such that |∇u||∇v|
and |uLv| are weighted L1, and |u∇v| is weighted Lp, p = q

q−1 . Then

(6.10)

∫
Σ

(uLv)ρ = −
∫

Σ
〈∇u,∇v〉ρ.

Proof. If φ has compact support we may use Lemma 6.1 to get

(6.11)

∫
Σ
φu(Lv)ρ = −

∫
Σ
φ〈∇u,∇v〉ρ−

∫
Σ
u〈∇v,∇φ〉ρ.

Applying this to φ = φR, Corollary 6.3 gives that the second term on
the right tends to zero as R → ∞, so the result follows by dominated
convergence. q.e.d.

In practise we will refer to both Lemma 6.1 and Lemma 6.4 simply
as integration by parts.

7. Stability of singular self-shrinkers

Throughout this section Σn will denote an orientable self-shrinker in
Rn+1 with Euclidean volume growth Vol(Σ∩Br(x)) ≤ CV rn. The main
goals of this section are to understand the first stability eigenvalue of Σ
and to construct F -unstable variations when it is low enough.

Frequently we will take Σ to be the regular part of an F -stationary
varifold V with finite entropy (which has Euclidean volume growth by
Lemma 2.1), and the results will depend on the size of the singular set.
In several cases the assumptions on sing V may be weakened using the
regularity theory Proposition 4.4, but we state the stronger hypotheses
to clarify the degree of regularity required.

7.1. Stability spectrum of Σ. Recall that the first stability eigen-
value of the stability operator

(7.1) L = ∆Σ −
1

2
〈x,∇Σ·〉+ |A|2 +

1

2
,

on a self-shrinker Σ is defined by

(7.2) λ1(Σ) = inf
Ω
λ1(Ω) = inf

f

∫
Σ(|∇f |2 − |A|2f2 − 1

2f
2)ρ∫

Σ f
2ρ

,

where the infimum is taken over functions compactly supported in Σ,
and could potentially be −∞. Also recall that if, indeed, λ1 = λ1(Σ) >
−∞, then we have the stability inequality

(7.3)

∫
Σ
|A|2f2ρ ≤

∫
Σ
|∇f |2ρ+ (−1

2
− λ1)

∫
Σ
f2ρ,

for Lipschitz functions f compactly supported in Σ.
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Lemma 7.1. Suppose that u > 0 is a C2 function on Σ with Lu =
−λu. Then λ1(Σ) ≥ λ.

Moreover, if f is Lipschitz with compact support in Σ, then

(7.4)

∫
Ω
f2(|A|2 + |∇ log u|2)ρ ≤

∫
Ω

(4|∇f |2 − 2λf2)ρ.

Proof. Since u > 0, the function log u is well-defined on Σ and we can
compute that

(7.5) L log u = −λ− 1

2
− |A|2 − |∇ log u|2.

Since f has compact support in Σ, then integrating f2L log u by parts
we have that

(7.6)

∫
Σ

(
λ+

1

2
+ |A|2 + |∇ log u|2

)
f2ρ =

∫
Σ
〈∇f2,∇ log u〉ρ.

Using the absorbing inequality |〈∇f2,∇ log u〉| ≤ |∇f |2 + f2|∇ log u|2
we get that

(7.7)

∫
Σ

(
λ+

1

2
+ |A|2

)
f2ρ ≤

∫
Σ
|∇f |2ρ,

and, hence,

(7.8)

∫
Σ(|∇f |2 − |A|2f2 − 1

2f
2)ρ∫

Σ f
2ρ

≥ λ.

Since this holds for any f with compact support in Σ, we conclude that
λ1(Σ) ≥ λ as claimed.

If we instead absorb using |〈∇f2,∇ log u〉| ≤ 2|∇f |2 + 1
2f

2|∇ log u|2
we get that

(7.9)

∫
Σ

(
λ+

1

2
+ |A|2 +

1

2
|∇ log u|2

)
f2ρ ≤ 2

∫
Σ
|∇f |2ρ,

which implies the bound (7.4). q.e.d.

We will frequently apply Lemma 7.1 to subdomains Ω of the regular
part of an F -stationary varifold as well as to the regular part itself.

7.1.1. Weighted integral estimates.

Lemma 7.2. Let V be an orientable F -stationary n-varifold in Rn+1

with finite entropy and Hn−q(sing V ) = 0 for some q ≥ 2. Suppose that
u > 0 is a C2 function on Σ = reg V with Lu = −λu. Then if φ is
weighted W 1,2 and weighted Lp, p = 2q

q−2 . Then

(7.10)

∫
Ω
φ2(|A|2 + |∇ log u|2)ρ ≤

∫
Ω

(8|∇φ|2 − 2λφ2)ρ.
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Proof. We take f = φRφ, where φR is as in Section 6. Applying
Lemma 7.1 we get that∫

Σ
φ2
Rφ

2(|A|2 + |∇ log u|2)ρ

≤
∫

Σ
(8φ2|∇φR|2 + 8φ2

R|∇φ|2 − 2λφ2
Rφ

2)ρ.

(7.11)

As R → ∞, the second and third terms on the right converge since
φ is weighted W 1,2, and Corollary 6.3 implies that the first term on the
right term tends to zero, whence Fatou’s lemma gives the result. q.e.d.

For any integer k ≥ 0, the function |x|2k is a polynomial in x, so
by the Euclidean volume growth it is of course weighted W 1,p for any
p ∈ (0,∞). Thus, we immediately get:

Corollary 7.3. Let V be an orientable F -stationary n-varifold in
Rn+1 with finite entropy and Hn−q(sing V ) = 0 for some q > 2. Suppose
that u > 0 is a C2 function that satisfies Lu = −λu on Σ = reg V . Then
|A||x|k and |x|k|∇ log u| are weighted L2 for any k ≥ 0.

We now record the main quantitative L2 estimates for |A| and |∇ log u|
that will be essential both for constructing unstable variations when
λ1 < −1, and for classifying mean convex self-shrinkers. It is crucial
that the estimate holds for positive eigenfunctions u defined only on a
subdomain Ω.

Lemma 7.4. Let V be an orientable F -stationary n-varifold in Rn+1

with finite entropy and Hn−4(sing V ) = 0. Let φR = φR,ε be as in Sec-
tion 6.1, and consider a domain Ω ⊂ Σ = reg V such that spt(φR|Ω) ⊂⊂
Ω. If u is a positive C2 function on Ω satisfying Lu = −λu, then∫

Ω
(|A|2 + |∇ log u|2)φ2

R|∇φR|2ρ

≤ (256 + 8|λ|)CV (Rn e−
(R−4)2

4 +4nε).

(7.12)

Proof. Recall that we cover the singular set sing V ∩ BR ⊂⋃m
i=1Bri(pi), where

∑m
i=1 r

n−4
i < ε and without loss of generality ri < 1

for each i.
The key is to replace |∇φR| by the annular bump function ψR =

ψR,ε ≥ |∇φR|, which has better regularity properties:

(7.13)

∫
Ω

(|A|2 + |∇ log u|2)φ2
R|∇φR|2ρ ≤

∫
Ω

(|A|2 + |∇ log u|2)φ2
Rψ

2
Rρ.

In particular, the function f = (φRψR)|Ω is Lipschitz with compact
support in Ω, and we may now apply Lemma 7.1 on Ω which yields
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Ω

(|A|2 + |∇ log u|2)φ2
Rψ

2
Rρ

≤
∫

Ω
(8ψ2

R|∇φR|2 + 8φ2
R|∇ψR|2 + 2|λ|φ2

Rψ
2
R)ρ.

(7.14)

We may bound the first term on the right in (7.14) by∫
Σ
ψ2
R|∇φR|2ρ ≤

∫
Σ
ψ4
Rρ

≤
∫

Σ∩BR−1\BR−4

16ρ+
m∑
i=1

∫
Σ∩B4ri

(pi)\Bri (pi)

16

r4
i

≤ 16CV

(
Rn e−

(R−4)2

4 +4n
∑
i

rn−4
i

)

≤ 16CV (Rn e−
(R−4)2

4 +4nε).

(7.15)

Since φ2
R ≤ 1 the second term on the right in (7.14) is bounded by∫

Σ
φ2
R|∇ψR|2ρ ≤

∫
Σ∩BR−1\BR−4

16ρ+

m∑
i=1

∫
Σ∩B4ri

(pi)\Bri (pi)

16

r4
i

≤ 16CV

(
Rn e−

(R−4)2

4 +4n
∑
i

rn−4
i

)

≤ 16CV (Rn e−
(R−4)2

4 +4nε),

(7.16)

and since ri < 1 the last term is bounded by∫
Σ
φ2
Rψ

2
Rρ ≤

∫
Σ∩BR−1\BR−4

4ρ+

m∑
i=1

∫
Σ∩B4ri

(pi)\Bri (pi)

4

r2
i

≤ 4CV

(
Rn e−

(R−4)2

4 +4n
∑
i

rn−2
i

)

≤ 4CV (Rn e−
(R−4)2

4 +4nε).

(7.17)

Combining these estimates gives the result as claimed. q.e.d.

7.1.2. Bottom of the spectrum.

Lemma 7.5. Let Σn be a connected, orientable self-shrinker with
λ1 = λ1(Σ) > −∞. Then there is a positive C2 function on Σ with
Lu = −λ1u.

Moreover, suppose that Σ is the regular part of an F -stationary n-
varifold V with finite entropy and Hn−q(sing V ) = 0 for some q ≥ 2. If
v is a C2 function on Σ with Lv = −λ1v, which is weighted W 1,2 and
weighted Lp, p = 2q

q−2 , then v = cu for some c ∈ R.
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Proof. For the existence of u we proceed as in [CM12]: Fix p ∈ Σ and
consider an exhaustion p ∈ Ω1 ⊂ Ω2 ⊂ · · · of Σ =

⋃
i Ωi. For each i there

is a positive Dirichlet eigenfunction Lui = −λ1(Ωi)ui on Ωi, and we may
normalise so that ui(p) = 1. Since λ1(Ωi) decreases monotonically to
λ1 > −∞, the Harnack inequality gives 1 ≤ supui ≤ C inf ui ≤ C,
where C = C(Ωi, λ1). Elliptic theory gives uniform C2,α bounds on the
ui on each compact set, so we get a subsequence converging uniformly
in C2 to a nonnegative solution of Lu = −λ1u on Σ with u(p) = 1. The
Harnack inequality again implies that u is positive on Σ.

For the uniqueness, by the assumptions on v, Lemma 7.2 gives that
|A|v and v|∇ log u| are weighted L2. By expansion this implies that vLv
and v2L log u are weighted L1, and since v is weighted W 1,2 we see that
|∇v2||∇ log u| ≤ |∇v|2 + v2|∇ log u|2 is weighted L1. Moreover, since
1
2 + 1

p = q−1
q , Hölder’s inequality gives that ‖v∇v‖ q

q−1
≤ ‖∇v‖2‖v‖p <∞

and ‖v2∇ log u‖ q
q−1
≤ ‖v∇ log u‖2‖v‖p <∞.

Lemma 6.4 now allows us to integrate by parts to get∫
Σ
〈∇v2,∇ log u〉ρ = −

∫
Σ
v2L log u ρ

=

∫
Σ
v2(λ1 + |A|2 +

1

2
+ |∇ log u|2)ρ,

(7.18)

and

(7.19)

∫
Σ
|∇v|2ρ = −

∫
Σ
vLv ρ =

∫
Σ
v2(λ1 + |A|2 +

1

2
)ρ.

Rearranging we find that

(7.20)

∫
Σ
|v∇ log u−∇v|2ρ = 0,

hence, v∇ log u−∇v = 0 and v
u is constant on Σ. q.e.d.

Lemma 7.6. Let V be an orientable F -stationary n-varifold in Rn+1

with finite entropy and Hn−q(sing V ) = 0 for some q ≥ 2. Then on
Σ = reg V we get the same λ1(Σ) by taking the infimum over Lipschitz

functions f on Σ that are weighted W 1,2 and Lp, p = 2q
q−2 .

Proof. Obviously we may assume that λ1 = λ1(Σ) > −∞. By using
the global eigenfunction produced by Lemma 7.5 in Lemma 7.2, we have
that |A|f is weighted L2. Let φR be as in Section 6. We will use the
test functions fR = fφR in the definition of λ1.

Now since f and |A|f are weighted L2, dominated convergence gives
that

∫
Σ f

2
Rρ→

∫
Σ f

2ρ and
∫

Σ |A|
2f2
Rρ→

∫
Σ |A|

2f2ρ as R→∞. For the
gradient term we have

(7.21)

∫
Σ
|∇fR|2ρ =

∫
Σ

(φ2
R|∇f |2 + 2〈∇f,∇φR〉+ f2|∇φR|2)ρ.
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The second and third terms on the right tend to zero as R → ∞, by
parts (1) and (2) of Corollary 6.3, respectively. Moreover, the first term
tends to

∫
Σ |∇f |

2ρ by dominated convergence. Thus, we have shown

that
∫

Σ |∇fR|
2ρ→

∫
Σ |∇f |

2ρ, and the lemma follows. q.e.d.

Proposition 7.7. Let V be an orientable F -stationary n-varifold in
Rn+1 with finite entropy and Hn−q(sing V ) = 0 for some q ≥ 2. Suppose
that v 6= 0 is a C2 function on Σ = reg V satisfying Lv = −λv, which
is weighted W 1,2 and weighted Lp, p = 2q

q−2 . Then λ1(Σ) ≤ λ.

Proof. Obviously we may assume λ1 = λ1(Σ) > −∞.
Using the positive eigenfunction produced by Lemma 7.5, as in the

proof of that lemma we have by Lemma 7.2 that |A|v is weighted L2,

and, hence, that vLv is weighted L1. Again since 1
2 + 1

p = q−1
q we have

that ‖v∇v‖ q
q−1
≤ ‖∇v‖2‖v‖p <∞, so by Lemma 7.6 we may use v as a

test function in the definition of λ1, and, moreover, Lemma 6.4 allows
us to integrate by parts:

(7.22)

∫
Σ
|∇v|2ρ =

∫
Σ
v2

(
1

2
+ λ+ |A|2

)
ρ.

This implies that λ1 ≤ λ as claimed. q.e.d.

Corollary 7.8. Let V be an orientable F -stationary n-varifold in
Rn+1 with finite entropy and Hn−q(sing V ) = 0 for some q > 2. Then
λ1(V ) ≤ −1

2 , with equality if and only if sptV is a hyperplane.

Proof. Clearly we may assume λ1 > −∞, and by Lemma 2.2 we
may assume that Σ = reg V is connected. Fix a point p ∈ Σ and set
v(x) = 〈ν(p), ν(x)〉. Then |v| ≤ 1 is bounded, and using the positive
eigenfunction from Lemma 7.5 for Corollary 7.3 we see that |∇v| ≤ |A| is
weighted L2. The upper bound for λ1 then follows from Proposition 7.7
since Lv = 1

2v. Moreover, if equality holds then since L〈y, ν〉 = 1
2〈y, ν〉

for any fixed y, the uniqueness in Lemma 7.5 implies that ν is constant
on Σ. The constancy theorem then implies that sptV is a hyperplane.

q.e.d.

Corollary 7.9. Let V be an orientable F -stationary n-varifold in
Rn+1 with finite entropy and Hn−q(sing V ) = 0 for some q > 2. If H
is not identically zero on Σ = reg V , then we have λ1(Σ) ≤ −1, with
equality if and only if H does not change sign on Σ.

Proof. From the self-shrinker equation H = 1
2〈x, ν〉 we see that |H| ≤

|x| is weighted Lp for any p ∈ (0,∞). Moreover, differentiating the self-
shrinker equation leads to |∇H| ≤ |A||x|.

Now clearly we may assume λ1 > −∞, and by Lemma 2.2 we may
assume that Σ = reg V is connected. Then using the positive eigen-
function u of Lemma 7.5 for Corollary 7.3 implies that |∇H| ≤ |A||x| is
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weighted L2. The result follows from Proposition 7.7 since LH = H. If
equality holds, the uniqueness of Lemma 7.5 implies that H = cu does
not change sign. q.e.d.

7.2. Constructing unstable variations. Here we give the construc-
tion of F -unstable variations when the first stability eigenvalue λ1 is
small. We first consider the easy case when λ1 < −3

2 which does not
require any assumptions on the singular set. The proof is essentially as
in [CM12, Lemma 12.4], but we include it here for completeness.

Proposition 7.10. Let V be an orientable F -stationary n-varifold
in Rn+1 with finite entropy and regular part Σ = reg V . If λ1(Σ) <
−3

2 , then there exists a domain Ω ⊂⊂ Σ such that if u is a Dirichlet

eigenfunction for λ1(Ω), then for any a ∈ R and any y ∈ Rn+1 we have

(7.23)

∫
Ω

(
−uLu+ 2uaH − a2H2 + u〈y, ν〉 − 〈y, ν〉

2

2

)
ρ < 0.

Consequently, V is F -unstable.

Proof. Since λ1(Σ) < −3
2 we may choose a domain Ω ⊂⊂ Σ so that

λ1(Ω) < −3
2 . Then completing the square, the left hand side above is

given by

(7.24)

∫
Ω

((
3

2
+ λ1(Ω)

)
u2 − (u− aH)2 − 1

2
(u− 〈y, ν〉)2

)
ρ < 0,

so we are done by the second variation formula Proposition 4.1. q.e.d.

We now construct F -unstable variations when λ1 < −1. The key, as
in [CM12, Section 9.2], is to quantify an “almost orthogonality” be-
tween the first eigenfunction and the eigenfunction H, but our analysis
of the cross term differs significantly – instead of estimating boundary
terms arising from integration by parts, we use our chosen cutoff func-
tions adapted to sufficiently large domains to estimate the cross term
directly. To do so, we require that the singular set is small enough that
we may use the previous results of this section.

Proposition 7.11. Let V be an orientable F -stationary n-varifold
in Rn+1 with finite entropy and regular part Σ = reg V . Suppose that
Hn−4(sing V ) = 0. If λ1(Σ) < −1, then there exists a domain Ω ⊂⊂ Σ
such that if u is a Dirichlet eigenfunction for λ1(Ω), then for any a ∈ R
and any y ∈ Rn+1 we have

(7.25)

∫
Ω

(
−uLu+ 2uaH − a2H2 + u〈y, ν〉 − 〈y, ν〉

2

2

)
ρ < 0.

Consequently, V is F -unstable.
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Proof. As before we can absorb the cross term u〈y, ν〉 using −1
2u

2

and −1
2〈y, ν〉

2, so the left hand side is bounded above by

(7.26)

∫
Ω

((
1

2
+ λ1(Ω)

)
u2 + 2uaH − a2H2

)
ρ.

If H is identically zero on Σ then we are done, so, henceforth, we assume
this is not the case.

By Proposition 7.10 we may assume −3
2 ≤ λ1(Σ) < −1. Also by

Lemma 2.2 we may assume that Σ is connected. We now claim that we
can find a domain Ω ⊂⊂ Σ with λ1(Ω) < −1 and for which the cross
term can be absorbed by:

(7.27)

(∫
Ω
uHρ

)2

≤ 1

2

(∫
Ω
H2ρ

)(∫
Ω
u2ρ

)
.

Given the claim, the proof proceeds by again completing the square:
Using (7.27) to bound the cross term, the expression (7.26) is bounded
above by

(1 + λ1(Ω))

(∫
Ω
u2ρ

)
−

(
1√
2

(∫
Ω
u2ρ

) 1
2

− |a|
(∫

Ω
H2ρ

) 1
2

)2

< 0,

which is strictly negative since λ1(Ω) < −1. This implies that V is
F -unstable by the second variation formula Proposition 4.1.

To prove the claim, we take R� 4, set ε = R−3 and cover the singular
set as in Section 6.1: sing V ∩BR ⊂

⋃m
i=1Bri(pi), with

∑
i r
n−4
i < ε and

ri < 1 for each i. Now we let φR = φR,ε be as in Section 6.1 and take a
(connected) domain Ω = ΩR such that

(7.28) spt(φR|ΩR
) ⊂⊂ ΩR ⊂⊂ Σ ∩BR.

Then the Ω = ΩR must exhaust Σ as R → ∞, so by domain mono-
tonicity of the first eigenvalue there exists a δ0 > 0 such that

(7.29) λ1(Ω) ≤ −1− δ0,

for any R sufficiently large.
Let u be the first eigenfunction of L on Ω so that u > 0 on Ω. In order

to prove (7.27), we give ourselves some room using the cutoff φ2
R ≤ 1,∣∣∣∣∫

Ω
uHρ

∣∣∣∣ =

∣∣∣∣∫
Ω

(uHφ2
Rρ+ uH(1− φ2

R)ρ)

∣∣∣∣
≤
∣∣∣∣∫

Ω
uHφ2

Rρ

∣∣∣∣+

∫
Ω∩spt(1−φ2

R)
|uH|ρ

≤
∣∣∣∣∫

Ω
uHφ2

Rρ

∣∣∣∣+

(∫
Ω
u2ρ

) 1
2

(∫
Ω∩spt(1−φ2

R)
H2ρ

) 1
2

.

(7.30)
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We can crudely estimate using |H| ≤ |x| ≤ R on BR that∫
Ω∩spt(1−φ2

R)
H2ρ ≤ R2

(∫
Σ∩BR\BR−3

ρ+
m∑
i=1

∫
Σ∩B3ri

(pi)
ρ

)

≤ CVR2

(
Rn e−

(R−3)2

4 +
m∑
i=1

3nCV r
n
i

)

≤ CV (Rn+2 e−
(R−3)2

4 +3nR2ε),

(7.31)

where CV is the volume growth constant, and we have used that the
ri < 1.

For the other term, we note that

(7.32) HLu− uLH = HLu− uLH = (−λ1(Ω)− 1)uH,

on Ω. Setting

(7.33) α = −λ1(Ω)− 1 ∈ [δ0,
1

2
],

we then have∫
Ω
uHφ2

Rρ =
1

α

∫
Ω
φ2
R(HLu− uLH)ρ

=
2

α

∫
Ω
φR〈∇φR, u∇H −H∇u〉ρ,

(7.34)

where we integrated by parts for the second equality. Therefore,

(7.35)

∣∣∣∣∫
Ω
uHφ2

Rρ

∣∣∣∣ ≤ 2

α

∫
Ω
φR|∇φR|(|u∇H|+ |H∇u|)ρ.

We estimate the gradient terms as follows: First, Cauchy–Schwarz
gives

(7.36)

∫
Ω
φR|∇φR||u∇H|ρ ≤

(∫
Ω
u2ρ

) 1
2
(∫

Ω
φ2
R|∇φR|2|∇H|2ρ

) 1
2

.

Using |∇H| ≤ |A||x| ≤ |A|R on BR, we have

(7.37)

∫
Ω
φ2
R|∇φR|2|∇H|2ρ ≤ R2

∫
Ω
φ2
R|∇φR|2|A|2ρ.

For the second gradient term, since u > 0 on Ω, we may use Cauchy–
Schwarz to get∫

Ω
φR|∇φR||H∇u|ρ

≤
(∫

Ω
u2ρ

) 1
2
(∫

Ω
H2φ2

R|∇φR|2
|∇u|2

u2
ρ

) 1
2

.

(7.38)
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Again using |H| ≤ |x| ≤ R on BR, we have

(7.39)

∫
Ω
H2φ2

R|∇φR|2
|∇u|2

u2
ρ ≤ R2

∫
Ω
φ2
R|∇φR|2

|∇u|2

u2
ρ.

But now by Lemma 7.4, since |λ1(Ω)| ≤ |λ1(Σ)| ≤ 3
2 , we have

(7.40)

∫
Ω

(|A|2 + |∇ log u|2)φ2
R|∇φR|2ρ ≤ 268CV (Rn e−

(R−4)2

4 +4nε).

Putting all our estimates into (7.30), using that α ≥ δ0, we obtain
that

(7.41)

∣∣∫
Ω uHρ

∣∣(∫
Ω u

2ρ
) 1

2

≤ C
(
Rn+2 e−

(R−4)2

4 +4nR2ε

) 1
2

,

where C =
(

1 + 2
√

268
δ0

)√
CV does not depend on R. Since we chose

ε = R−3, the right hand side tends to zero as R→∞. This shows that

we can make
|∫Ω uHρ|
(
∫
Ω u

2ρ)
1
2

as small as we like by choosing R large. But since

H is not identically zero, and since the ΩR form an exhaustion of Σ, we
see that

∫
ΩH

2ρ has a uniform positive lower bound δ2
1 for sufficiently

large R. Choosing R large enough so that
|∫Ω uHρ|
(
∫
Ω u

2ρ)
1
2
< 1√

2
δ1 will satisfy

the condition (7.27). Together with (7.29) this establishes the claim
and, thus, concludes the proof. q.e.d.

Finally, we briefly record the construction of F -unstable variations of
stationary cones.

Proposition 7.12. Let V be an orientable stationary n-cone in Rn+1

so that H = 0 on Σ = reg V . If λ1(Σ) < −1
2 , then there exists a domain

Ω ⊂⊂ Σ such that if u is a Dirichlet eigenfunction for λ1(Ω), then for
any y ∈ Rn+1 we have

(7.42)

∫
Ω

(
−uLu+ u〈y, ν〉 − 〈y, ν〉

2

2

)
ρ < 0.

Consequently, V is F -unstable.

Proof. Since λ1(Σ) < −1
2 we may choose a domain Ω ⊂⊂ Σ so that

λ1(Ω) < −1
2 . Completing the square, the left hand side is bounded

above by
(

1
2 + λ1(Ω)

) ∫
Ω u

2ρ < 0, which implies that Σ is F -unstable
by the second variation formula Proposition 4.1, since H = 0 on Σ.

q.e.d.

8. Mean convex singular self-shrinkers

Throughout this section Σ denotes the regular part of an orientable
F -stationary n-varifold V in Rn+1 with Euclidean volume growth. The
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goal is to extend the classification of mean convex self-shrinkers due to
Huisken [Hui90] and Colding–Minicozzi [CM12] to the singular set-
ting.

By Lemma 7.1, if H > 0 on Σ, then λ1(Σ) ≥ −1, so again some of the
hypotheses on the singular set, in this section, may be weakened using
the regularity theory Proposition 4.4. We continue to state the results
with the stronger hypotheses to clarify the dependence on the size of
the singular set. We will need the following Simons-type inequality for
self-shrinkers:

Lemma 8.1 ([CM12], Lemma 10.8). On any smooth orientable self-
shrinker we have LA = A. Hence, at any point where |A| does not
vanish, one has

(8.1) L|A| = |A|+ |∇A|
2 − |∇|A||2

|A|
≥ |A|.

We now adapt the Schoen–Simon–Yau [SSY75] argument to improve
our control on |A|.

Lemma 8.2. Suppose that Hn−4(sing V ) = 0. If H > 0 on Σ = reg V
then |A| is weighted L4 and |∇|A||, |∇A| are weighted L2.

Proof. First, for η with compact support in Σ, integrating |A|2η2 logH
by parts as in Lemma 7.1 and using the absorbing inequality (twice)
gives ∫

Σ
|A|4η2ρ ≤ (1 + a)

∫
Σ
|∇|A||2η2ρ

+

∫
Σ
|A|2

(
(1 + a−1)|∇η|2 +

1

2
η2

)
ρ,

(8.2)

where a is an arbitrary positive number to be chosen later.
Second, it follows from the Simons-type inequality (8.1) and Colding–

Minicozzi’s Kato inequality [CM12, Lemma 10.2] that∫
Σ
|A|4η2ρ+

∫
Σ

(
2n

n+ 1
|∇H|2η2 + a−1|A|2|∇η|2

)
ρ

≥
(

1 +
2

n+ 1
− a
)∫

Σ
|∇|A||2η2ρ.

(8.3)

Combining (8.2) and (8.3) then gives∫
Σ
|A|4η2ρ ≤ 1 + a

1 + 2
n+1 − a

∫
Σ
|A|4η2ρ

+ Cn,a

∫
Σ

(|∇H|2η2 + |A|2η2 + |A|2|∇η|2)ρ.

(8.4)
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Choosing a < 1
n+1 will give that the first coefficient on the right is

less than 1 and, thus, may be absorbed on the left, therefore,

(8.5)

∫
Σ
|A|4η2ρ ≤ C

∫
Σ

(|∇H|2η2 + |A|2η2 + |A|2|∇η|2)ρ,

where C = C(n).
Let φR = φR,ε be as in Section 6.1. We will apply (8.5) with η = φ2

R.
As in Corollary 7.9, using Corollary 7.3 with the positive eigenfunc-

tion H shows that |A| and |∇H| are weighted L2. Therefore, as R→∞,
the first and second terms on the right will converge to the finite inte-
grals

∫
Σ |∇H|

2ρ and
∫

Σ |A|
2ρ, respectively. To bound the last term

in (8.5) we use Lemma 7.4 with the globally defined eigenfunction H,
which gives ∫

Σ
|A|2|∇η|2ρ = 4

∫
Σ
|A|2φ2

R|∇φR|2ρ

≤ 1056CV (Rn e−
(R−4)2

4 +4nε).

(8.6)

Choosing ε = R−1 and taking R → ∞ we see that this term tends
to 0, thus, we have shown that, indeed, |A| is weighted L4 by Fatou’s
lemma. With this fact in hand, it follows from (8.3) that |∇|A|| is
weighted L2.

Finally, multiplying the identity L|A|2 = 2|∇A|2 + |A|2 − 2|A|4 by
1
2η

2 and integrating by parts, we have∫
Σ
η2(|∇A|2 − |A|4)ρ ≤ −

∫
Σ

2η|A|〈∇η,∇|A|〉ρ

≤
∫

Σ
(η2|∇|A||2 + |A|2|∇η|2)ρ.

(8.7)

Since we now know that |∇|A|| is weighted L2 and that |A| is weighted
L4, we again set η = φ2

R and use (8.6) to handle the last term; this
shows that |∇A|2 is weighted L2, as desired. q.e.d.

Lemma 8.3. Suppose that Hn−4(sing V ) = 0. If H > 0 on Σ =
reg V , then |A|/H is constant and, hence, |∇A|2 = |∇|A||2 on Σ.

Proof. By Lemma 2.2 we may assume that Σ is connected.
We wish to integrate |A|2L logH and |A|L|A| by parts. So we check:
First, since |A| is weighted W 1,2 and L4 by the above lemma, using

Lemma 7.2 with H > 0 gives that |A||∇ logH| is weighted L2. Using
Young’s inequality we then have

(|A|2|∇ logH|)p = |A|p(|A| |∇ logH|)p

≤ 2− p
2
|A|

2p
2−p +

p

2
|A|2|∇ logH|2.

(8.8)
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Since |A| was weighted L4 this shows that |A|2|∇ logH| is weighted Lp

for p = 4
3 . Since L logH = 1

2−|A|
2−|∇ logH|2, we see that |A|2|L logH|

is weighted L1. Also

|∇|A|2| |∇ logH| = 2|A| |∇|A|| |∇ logH|
≤ |A|2|∇ logH|2 + |∇|A||2

(8.9)

is weighted L1 since |∇|A|| was weighted L2. By Lemma 6.4 we may
now integrate |A|2L logH by parts to find that

(8.10)

∫
Σ
〈∇|A|2,∇ logH〉ρ =

∫
Σ
|A|2(|A|2 − 1

2
+ |∇ logH|2)ρ.

Now using the Simons equality we have that

(8.11) |A|L|A| = 1

2
|A|2 − |A|4 + |∇A|2 − |∇|A||2

is weighted L1. We already know that |∇|A|| is weighted L2, and as
above we have that

(8.12) (|A| |∇|A||)p ≤ 2− p
2
|A|

2p
2−p +

p

2
|∇|A||2.

Again since |A| is weighted L4 this gives that |A| |∇|A|| is weighted Lp

for p = 4
3 , so we may use Lemma 6.4 to get that

(8.13)

∫
Σ
|∇|A||2ρ = −

∫
Σ
|A|L|A|ρ ≤

∫
Σ

(|A|4 − 1

2
|A|2)ρ.

Subtracting (8.10) from (8.13) and rearranging we get

(8.14) 0 ≥
∫

Σ
||A|∇ logH −∇|A||2ρ,

which implies that |A|∇ logH = ∇|A| and, hence, |A|/H is constant on
Σ.

The final statement follows again from the Simons inequality (8.1)
since equality now must hold in the previous inequalities. q.e.d.

We are now ready to present the proof of Theorem 1.4.

Theorem 8.4. Let V be an orientable F -stationary n-varifold in
Rn+1 with finite entropy, and suppose that Hn−1(sing V ) = 0. If H ≥ 0
on reg V then either V is a stationary cone, or sptV is a generalised
cylinder Sk(

√
2k)×Rn−k.

Proof. Since Hn−1(sing V ) = 0, we may assume by Lemma 2.2 that
Σ = reg V is connected. Then since LH = H, by the Harnack inequality
we must either have H > 0 or H ≡ 0 on Σ. If H ≡ 0 on Σ then, in
particular, x⊥ = 0 almost everywhere on V , so V must be a stationary
cone by Lemma 2.10.
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Otherwise, we have H > 0 on Σ. By Lemma 7.1, we then have
λ1(Σ) ≥ −1 so by the regularity theory Theorem 4.4, we may assume
that sing V has codimension at least 7.

Now by Lemma 8.3, we have that |A|/H is constant and |∇A|2 =
|∇|A||2 on Σ. The remainder of the proof of [CM12, Theorem 0.17]
goes through to prove that either ∇A ≡ 0 on Σ, or there are constant
vectors e2, · · · , en ∈ Rn+1 that are tangent at every point of Σ.

If ∇A ≡ 0 on Σ, then [Law69, Theorem 4] (which does not assume
completeness) implies that Σ is a piece of a generalised cylinder Σ0 =

Sk(
√

2k) ×Rn−k. Then sptV is contained in Σ0, so by the constancy
theorem we must have sptV = Σ0.

On the other hand, if e2, · · · , en ∈ Rn+1 are constant vectors tangent
at every point of Σ, then by Lemma 2.10 we have that µV = µRn−1 ×
µ
Ṽ

, where Ṽ is an orientable F -stationary 1-varifold in R2. Since the

singular set had codimension at least 7, certainly Ṽ and, hence, V must,
in fact, correspond to smooth complete embedded hypersurfaces. By the
result of [CM12, Theorem 0.17] or the remainder of its proof, and since
H > 0 on Σ, we conclude that in this final case sptV must be a cylinder
S1(
√

2)×Rn−1. q.e.d.

9. Classification of stable self-shrinkers

In this section, we classify F -stable and entropy-stable singular self-
shrinkers. It will be convenient to include a quick lemma verifying that
there are no nontrivial stationary cones in low dimensions which satisfy
the α-structural hypothesis.

Lemma 9.1. Let n ≤ 2 and suppose that V = C(W ) be a stationary
n-cone in Rn+1. If V satisfies the α-structural hypothesis for some
α ∈ (0, 1), then sptV must be a hyperplane.

Proof. If n = 1, then the α-structural hypothesis implies that any
tangent cone to sptV consists of at most two rays, for which the only
stationary configuration is a straight line. This shows that V is an
integer multiple of a smooth cone, hence, of a line.

If n = 2, by dilation invariance the link must also satisfy the α-
structural hypothesis. The above argument then shows that the link W
is smooth. But the only smooth closed geodesics in S2 are the great
circles, so V must be a multiple of a plane. q.e.d.

9.1. F -stable self-shrinkers. First we classify F -stable self-shrinkers.

Theorem 9.2. Let V be an orientable F -stationary n-varifold in
Rn+1 with finite entropy, that satisfies the α-structural hypothesis for
some α ∈ (0, 1

2). If V is F -stable then sptV must be a hyperplane Rn

or a shrinking sphere Sn(
√

2n).
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Proof. Set Σ = reg V . By Proposition 7.10, we may assume that
λ1(V ) = λ1(Σ) ≥ −3

2 . As such, by the regularity theory Proposition 4.4
and Lemma 2.2, we may assume that sing V has codimension at least 7
and, hence, that Σ is connected. Since LH = H, the Harnack inequality
gives three cases for the sign of H:

Case 1: H ≡ 0 on Σ. If sptV is not a hyperplane Rn, then Corollary
7.8 gives that λ1(V ) < −1

2 . But then Proposition 7.12 shows that V is
F -unstable.

Case 2: H does not vanish on Σ. In this case by Theorem 8.4 we
know that sptV must be a generalised cylinder Sk(

√
2k)×Rn−k, k > 0.

Colding–Minicozzi showed in [CM12, Theorem 0.16] that of these only
the k = n case is F -stable.

Case 3: H changes sign on Σ. In this final case, Corollary 7.9 gives
that λ1(Σ) < −1. Then Proposition 7.11 provides an F -unstable varia-
tion. q.e.d.

We also need to classify homogenously F -stable stationary cones:

Theorem 9.3. Let V = C(W ) be an orientable stationary n-cone in
Rn+1, that satisfies the α-structural hypothesis for some α ∈ (0, 1

2). If
V is homogenously F -stable, then sptV must be a hyperplane.

Proof. By Lemma 9.1, we may assume n ≥ 3. Suppose that W is
not totally geodesic. We will show that V = C(W ) is homogenously
F -unstable. Indeed, let M = regW and consider a domain Ω ⊂⊂ M .

Let u be a Dirichlet eigenfunction for the Jacobi operator L̃ on Ω, so

that L̃u = −κ1(Ω)u. We would like to use u as our normal variation of
M in Sn.

By the second variation formula for the F -functional on cones, Propo-
sition 5.5, it suffices to ensure that

(9.1)

∫
M

(
κ1(Ω)u2 + 2

Γ(1+n
2 )

Γ(n2 )
u〈y, ν̃〉 − 1

2
〈y, ν̃〉2

)
< 0,

for any y ∈ Rn+1. Completing the square we have that

(9.2) − 1

2
〈y, ν̃〉2 + 2

Γ(1+n
2 )

Γ(n2 )
u〈y, ν̃〉 ≤ 2

Γ(1+n
2 )2

Γ(n2 )2
u2.

But now M is not totally geodesic and n ≥ 3, so Theorem 1.3 (see
also [Zhu16]) and Lemma 5.7 respectively give that

(9.3) κ1(M) ≤ −2(n− 1) < −2
Γ(1+n

2 )2

Γ(n2 )2
.

This implies the existence of the desired domain Ω and, thus, concludes
the proof.

Alternatively, having verified that the second variation formula Propo-
sition 4.1 is valid for homogenous variations (see Remark 5.6), we may
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use it directly. Setting f(x) = |x|u( x
|x|) and Σ = reg V , as in the proof

of [CM12, Theorem 0.14] it suffices to ensure that∫
Σ

(
−fLf + f〈y, ν〉 − 1

2
〈y, ν〉2

)
ρ

=

∫
Σ

(
κ1(Ω)u2 + |x|u〈y, ν〉 − 1

2
〈y, ν〉2

)
ρ < 0.

(9.4)

Estimating 2|x|u〈y, ν〉 ≤ 〈y, ν〉2 + |x|2u2, we may bound the left hand
side from above by

(9.5)

∫
Σ

(
κ1(Ω)u2 +

1

2
|x|2u2

)
ρ =

∫
Σ

(κ1(Ω) + n)u2ρ,

where we have used the fact that
∫∞

0 rn+1 e−
r2

4 dr = n
2

∫∞
0 rn−1 e−

r2

4 dr.
Again the fact that κ1(M) ≤ −2(n − 1) < −n completes the proof.

q.e.d.

Remark 9.4. Similarly to Lemma 5.7, using limn→∞
Γ( 1+n

2
)
√

2

Γ(n
2

)n1/2 = 1

one may verify that n − 1 < 2
Γ( 1+n

2
)2

Γ(n
2

)2 < n for all n. The upper bound

confirms that working on the link is slightly sharper than absorbing on
the cone as in (9.5). The lower bound ensures that the computation
above (correctly) does not apply to the totally geodesic (planar) case.

9.2. Entropy-stable self-shrinkers. Finally, we are ready to classify
entropy-stable self-shrinkers.

Theorem 9.5. Let V be an orientable F -stationary n-varifold in
Rn+1 with finite entropy, that satisfies the α-structural hypothesis for
some α ∈ (0, 1

2). Assume that V is not a cone.

If sptV is not a generalised cylinder Sk(
√

2k) × Rn−k, then V is
entropy-unstable. Furthermore, if V does not split off a line and if
sptV is not the shrinking sphere Sn(

√
2n), then the unstable variation

can be taken to have compact support away from sing V .

Proof. First suppose that V does not split off a line. If V is F -
stable then the classification of singular F -stable self-shrinkers Theorem
9.2 gives that sptV must be a hyperplane Rn or the shrinking sphere
Sn(
√

2n). On the other hand, if V is F -unstable then by Theorem 4.2
it is entropy-unstable with respect to compactly supported variations.

Now suppose that µV = µRn−k × µ
Ṽ

, where Ṽ is an orientable

F -stationary k-varifold in Rk+1 that does not split off a line. Then

Λ(V ) = Λ(Ṽ ). But by the above, if Ṽ is not spherical then it is entropy-
unstable, and the induced (translation-invariant) variation of V will also
be entropy-unstable. q.e.d.
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Theorem 9.6. Let V = C(W ) be an orientable stationary n-cone
in Rn+1, that satisfies the α-structural hypothesis for some α ∈ (0, 1

2).
If sptV is not a hyperplane Rn, then V is entropy-unstable under a
homogenous variation induced by variation of the link W away from its
singular set.

Proof. By Lemma 9.1, we may assume n ≥ 3. If V is homogenously
F -stable, then by Theorem 9.3, sptV must then be a hyperplane Rn.
On the other hand, if V is homogenously F -unstable, then by Theorem
4.3 it is entropy-unstable under the corresponding homogenous varia-
tion. q.e.d.

Remark 9.7. It may be useful contextually to recall that any dila-
tion-invariant or translation-invariant self-shrinker is entropy-stable
amongst compactly supported variations, since we may shift the Gauss-
ian centre away from the variation. Therefore, the natural variations to
consider, as we have above, are those with the same symmetries as the
original self-shrinker.

One may note, in particular, that even the non-flat area-minimising
cones are entropy-unstable when we allow the class of homogenous vari-
ations. On the one hand this makes sense since the area-minimising
condition is only with respect to local perturbations, and there are cer-
tainly area-decreasing perturbations if again one allows homogenous
variations. On the other hand, this suggests that the entropy func-
tional may be limited in its ability to detect the dynamical stability of
stationary cones under the mean curvature flow.

Finally, Theorem 1.2 is simply the combination of Theorems 9.5 and
9.6. We also observe:

Remark 9.8. In Definition 2.3 we considered deformations by cer-
tain ambient vector fields; in particular, for higher multiplicity vari-
folds this did not allow the sheets to come apart. If the sheets are
allowed to come apart, it is easy to verify that two distinct concentric
spheres together have entropy strictly less than twice that of a single
sphere, so for m ≥ 2 we see that m[Sn(

√
2n)] is entropy-unstable in this

sense.
The higher multiplicity (noncompact) cylinders are still entropy-

stable under compactly supported variations as one may blow down
or translate away from the variation, but once we allow for translation-
invariant variations it follows that m[Sk(

√
2k) × Rn−k] is entropy-

unstable for m ≥ 2, 0 < k < n. Finally, the higher multiplicity planes
m[Rn], m ≥ 2, are entropy-unstable once we allow for homogenous vari-
ations – one may consider the cones whose links consist of two distinct
parallel latitudes of radius 1− ε in Sn.
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