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MINIMAL SURFACES IN THE 3-SPHERE BY
STACKING CLIFFORD TORI

David Wiygul

Abstract

Extending work of Kapouleas and Yang, for any integers N ≥
2, k, ` ≥ 1, and m sufficiently large, we apply gluing methods
to construct in the round 3-sphere a closed embedded minimal
surface that has genus k`m2(N − 1) + 1 and is invariant under
a Dkm ×D`m subgroup of O(4), where Dn is the dihedral group
of order 2n. Each such surface resembles the union of N nested
topological tori, all small perturbations of a single Clifford torus T,
that have been connected by k`m2(N−1) small catenoidal tunnels,
with k`m2 tunnels joining each pair of neighboring tori. In the
large-m limit for fixed N , k, and `, the corresponding surfaces
converge to T counted with multiplicity N .

1. Introduction

In [13] Kapouleas and Yang constructed a sequence of embedded min-
imal surfaces in the round 3-sphere S3 converging to a Clifford torus T
counted with multiplicity 2; each surface consists of two small perturba-
tions of T connected by many catenoidal annuli taking their centers at
the sites of a square lattice on T. Accordingly they called their surfaces
doublings of the Clifford torus. Kapouleas announced these in [8] as the
first examples of a general class of gluing constructions to double given
minimal surfaces, subsequently discussed further in [9]. More recently
in [10] he has doubled the equatorial 2-sphere in S3, and now addi-
tional such doublings with different configurations of catenoidal tunnels
have been carried out by Kapouleas and McGrath [11]. Min-max meth-
ods have also been used to double minimal surfaces in S3. Pitts and
Rubinstein proposed a variety of such constructions in [20]. One was
completed by Ketover, Marques, and Neves in [16], where they too dou-
ble the torus over square lattices, conjecturally producing the same sur-
faces as [13] when the lattice spacing becomes small, and in [15] Ketover
has performed more min-max constructions, including doublings, previ-
ously described in [20]. Doublings appear in the free-boundary setting
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as well. Using variational rather than gluing methods, for each integer
n ≥ 3 Fraser and Schoen ([5]) have constructed orientable free-boundary
minimal embeddings in the unit ball with genus 0 and n boundary com-
ponents; for large n these surfaces look like doublings of the equatorial
disc. Later, in [4], Folha, Pacard, and Zolotareva applied gluing tech-
niques to double the equatorial disc, producing free-boundary examples
with genus 0 (possibly the same as those in [5]) or 1 and a large number
n of boundary components.

Returning to [13], the surfaces of Kapouleas and Yang are highly
symmetric, admitting many horizontal symmetries, which preserve as
sets each of the two sides of the doubled Clifford torus and permute
the lattice sites, as well as vertical symmetries, each of which exchanges
the two sides of the doubled torus but fixes as a set a catenoidal tunnel
(and in fact every catenoidal tunnel centered on a certain great circle
on T). All these symmetries are enforced throughout the construction
and exploited to simplify its execution. The present article undertakes
less vertically symmetric doublings of the torus, with the symmetry bro-
ken in two ways. First, we allow the catenoidal tunnels to be arranged
on rectangular rather than strictly square lattices. Any isometry of S3

exchanging the two sides of the doubled Clifford torus will fail to pre-
serve such a lattice, unless it is square. Second, we interpret doubling
in a generalized sense, realizing also triplings, quadruplings, and in fact
embedded minimal surfaces resembling any prescribed finite number of
slightly perturbed copies of T connected to one another by many small
catenoidal tunnels. Whenever at least three copies are incorporated,
even if these tunnels are centered on square lattices, the symmetry group
will not act transitively on the collection of copies.

These new constructions add to the list of known closed minimal em-
beddings in S3, so far comprising those found in [18], [14], [13], [3], [10],
[19], [16], [15], [11], [12], and [1]. The survey article [2] contains an
outline of a few of the constructions just mentioned. The constructions
at hand should be of interest not only as providing new examples in
S3 but also as a basis for further doublings with asymmetric sides in a
variety of settings. A program toward doubling constructions of increas-
ing generality, including potential applications, is described in [9]. The
present work naturally emulates, with a few departures, the approach of
[13] and draws extensively from the general gluing technology developed
by Kapouleas, much of which can be found summarized in [8] and was
itself inspired by techniques applied by Schoen in [21]. Although the
current article can be read without reference to [13] or any other gluing
constructions, for the rest of this introduction we will make use, with-
out detailed explanation, of terminology standardized by Kapouleas, so
that the reader already acquainted with it may easily appreciate the
principal differences between this construction and [13].
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We now outline our procedure in rough terms. We first fix a Clifford
torus T, which by definition is the locus of points in S3 ⊂ R4 at distance
π
4 from some great circle C1. More generally, for each r ∈

(
0, π2

)
the

locus of points at distance r from C1 is a torus of constant mean cur-
vature, which is equivalently the locus of points at distance π

2 − r from

the great circle C2 defined as the intersection with S3 of the orthogonal
complement in R4 of the plane containing C1. We will refer to C1 and
C2 as the axes of each such torus; directions tangential to any of these
tori we will call horizontal, while the orthogonal direction we will call
vertical. As basic data for the construction we take integers k, `,m ≥ 1
and N ≥ 2. Corresponding to a choice of such data an initial surface is
built as follows.

We start with N constant-mean-curvature tori coaxial with T, labeled
T[1],T[2], . . . ,T[N ] so that the index increases with distance from C2.
The precise placements of the tori (that is their signed distances from T)
cannot be freely prescribed but will be determined, as a function of the
data, in the course of the construction. For now we mention only that
as m→∞ every T[j] tends to T. Next we will connect this collection of
tori by first from each one excising discs centered on certain lattices (to
be described momentarily) and then gluing in truncated approximate
catenoids, which shrink to points on T as m→∞. Like the arrangement
of the tori, the precise sizes of the catenoids and the heights (signed
distances from T) of their centers are variables whose values will be set
by conditions—to be described later—necessary for the completion of
the construction.

On the other hand, we impose enough horizontal symmetries (isome-
tries of S3 preserving each side of T) that the horizontal positioning of
the catenoids and equivalently the locations of the discs deleted from the
tori are directly determined by the data already listed. Specifically, we
mark km equally spaced points on C1 and `m equally spaced points on
C2, and we write G[k, `,m] for the subgroup of O(4) preserving each of
these sets of marked points. Thus G[k, `,m] is isomorphic to Dkm×D`m,
where Dn is the dihedral group of order 2n. Note that G[k, `,m] is
equally the subgroup of O(4) preserving the union of the sets of marked
points except when k = `, in which case G[k, `,m] is strictly contained
in this last group, which admits also reflections through certain great
circles on T, exchanging C1 and C2.

We choose orientations on C1 and C2 (together selecting an orienta-
tion on R4), and for each i ∈ {0, 1} we write RθCi for the element of O(4)
fixing Ci pointwise and rotating the great circle in the orthogonally com-
plementary plane through angle θ (according to its orientation). The

group G[k, `,m] is then generated by (i) R
2π/km
C2

, (ii) R
2π/`m
C1

, (iii) reflec-
tion through any great sphere having equator C2 and one pole a marked
point on C1, and (iv) reflection through any great sphere having equator
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C1 and one pole a marked point on C2. (Of course the point antipodal
to a given marked point on C1 (or C2) is itself marked if and only if
km (or `m) is even.) Obviously G[k, `,m] preserves T and each T[j].
We will design the initial surfaces (and the final minimal surfaces they
approximate) to be likewise invariant under G[k, `,m].

Next we pick a marked point on C1, a marked point on C2, and the
minimizing geodesic segment (quarter great circle) joining them. This
segment intersects T at a single point, whose orbit under G[k, `,m] is a
km× `m rectangular lattice on T, which we call L0,0. We will use L0,0

to fix the horizontal positions of the catenoidal annuli connecting the
N tori in our configuration. In fact there are precisely four km × `m
rectangular lattices on T preserved by G[k, `,m]. It would be possible
to carry out the constructions in this paper using any of these lattices
(to locate the catenoidal annuli) without introducing any additional
technical difficulties, but to simplify the presentation we will make use

of only L0,0 and L1,1 := R
π
km
C2

R
π
`m
C1
L0,0. (Of course there are also finer

lattices preserved by the same group. Permitting such lattices in the
construction of the initial surface would allow for different numbers of
catenoidal tunnels connecting different pairs of tori while maintaining
the high horizontal symmetry but would demand a more complicated
approach.)

Now for each j ∈ {1, 2, . . . N−1} and for each point in L (−1)j+1
2

,
(−1)j+1

2

we locate the closest point on T[j] and the closest point on T[j+1], and
we excise from the two tori two small discs having these nearest points
as their respective centers. Then for each such pair of points, using local
coordinates for S3 adapted to the tori, we smoothly glue the boundary
circles of the deleted discs to the boundary circles of a catenoidal an-
nulus centered on the geodesic segment connecting the two points. The
radii of the deleted discs are chosen comparable to the lattice spacing
but small enough so that all the discs are pairwise disjoint, and the
annuli are shaped so that the resulting connected surface is invariant
under G[k, `,m]. As already noted, additional information is needed
to specify the precise sizes and heights of these annuli, but right now
we mention that, when suitably scaled, each tends with large m to a
complete standard catenoid.

Thus we have produced a connected closed surface, the initial surface,
which is preserved by G[k, `,m], is easily seen to have genus N + (N −
1)k`m2 − (N − 1) = k`m2(N − 1) + 1 (since N − 1 of the (N − 1)k`m2

catenoidal annuli are spent to connect the N tori, each of genus 1,
while the remaining ones contribute genus), and, for large m, is approx-
imately minimal in a certain sense. The construction will be completed
by perturbing the surface to exact minimality. Two mechanisms of per-
turbation are applied in tandem. One sort of perturbation is realized by
considering graphs of small functions over the initial surface. To select
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the right function is then to solve the elliptic quasilinear partial differ-
ential equation prescribing zero mean curvature for the corresponding
graph. This equation can be studied by comparing the linearization of
the operator governing the mean curvature of graphs to certain large-m
limit operators on the limit catenoids and limit torus. In the simplest
scenario imaginable one could solve the linearized equation on the toral
and catenoidal components separately, combine these solutions through
an iterative procedure, and finally invoke an inverse function theorem
to solve the original nonlinear equation. However, the presence of non-
trivial kernel to the limit operators gives rise to approximate kernel that
obstructs the approach just described.

The space of admissible perturbing functions is constrained to respect
the symmetries enjoyed by the initial surface, and so their imposition
has the effect of reducing the dimension of the approximate kernel. Each
torus turns out to carry one-dimensional approximate kernel of its own,
but in [13] the two tori can be exchanged by reflections through certain
great circles, and so together the tori contribute just one dimension
to the approximate kernel in [13] versus N dimensions more generally.
Furthermore, in [13] these reflections through circles render trivial the
approximate kernel on the catenoidal tunnels. Following the approach of
[13] in the absence of these symmetries, each tunnel would feature one-
dimensional approximate kernel, but we bypass this kernel altogether
by altering, as compared to [13], the initial data at the tunnel’s waist
for the rotationally invariant mode of the solution.

To overcome the obstruction posed by the approximate kernel [13]
introduces substitute kernel, spanned by a single function supported on
the tori away from the circles where they attach to the tunnels. By
adding multiples of this function to the source term of the linearized
equation, the so modified source can be made orthogonal to the approx-
imate kernel, enabling the success of the above scheme, but at the cost
of solving the original equation only modulo substitute kernel. For the
same purpose the current construction introduces N -dimensional sub-
stitute kernel, spanned by functions each of which is supported on a
single torus away from the tunnels. (Actually, in this construction we
never explicitly identify the approximate kernel, nor do we invoke the h
metric employed in [13] for its analysis, but our application of substitute
kernel is morally identical.)

A further difficulty concerns the vast disparity in scale between the
waist radii of the catenoidal tunnels on the one hand and the much
greater spacing between the tori on the other. The norm of the ini-
tial surface’s second fundamental form grows toward the waists of the
catenoids to a value diverging with m from a value bounded uniformly
in m on the tori, and the embeddedness of graphical perturbations is
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most precarious near the waists. For these reasons, as well as to en-
sure convergence of the iteratively defined global solution, it is neces-
sary to arrange for solutions on the tori to decay toward the catenoidal
waists.

All of the catenoids attaching to each of the two outermost tori—
the only type of torus appearing in [13]—are equivalent modulo the
symmetries, and adjustment of the source term by the substitute kernel
suffices to achieve such decay on these catenoids. (Again, our actual
approach deviates somewhat from this description, applicable to [13],
but just superficially.) However, each of the intermediate tori, N − 2
in number, attaches to catenoids of precisely two equivalence classes
under G[k, `,m], and so the appropriate decay of solutions requires the
introduction of another N − 2 functions, linear combinations of which
are added to the source term to arrange decay, a device originating in
[7] but unneeded in [13]. In total we arrive at a (2N − 2)-dimensional
extended substitute kernel, the sum of the substitute kernel and the span
of these additional functions, modulo which subspace we can, for large
m, invert the linearized operator.

Thus an infinite-dimensional problem is reduced to a finite-dimen-
sional one. The resolution of this latter problem requires the second
type of perturbation and is best understood in terms of a correspon-
dence, which Kapouleas ([7]) calls the geometric principle, between the
initial geometry and the analytic obstructions that the extended sub-
stitute kernel represents. In a few words, elements of the extended
substitute kernel can be generated, as components of the initial sur-
face’s mean curvature, by certain motions of its building blocks—here
catenoids and tori—relative to one another. In accordance with this
principle the other type of perturbation is realized by incorporating pa-
rameters, one for each dimension of extended substitute kernel, into the
definition of the initial surface, whose variation repositions the compo-
nent tori and catenoids. Thus for each choice of k, `, m, and N we
define not one initial surface but a (2N − 2)-parameter family of initial
surfaces. More specifically, two parameters may be associated with each
of the N − 1 classes of catenoids joining pairs of adjacent tori. One set
of parameters, {ζi}N−1

i=1 , controls the waist radii, while the other set,

{ξi}N−1
i=1 , adjusts the heights of the centers. A degree of rigidity, in

the form of matching conditions, is maintained to reposition the tori in
response to the parameters, and the surface is smoothed using cutoff
functions as needed. A single parameter ζ works for [13], since there
N = 2 and the symmetry between the sides of T forces ξ = 0.

In the course of the construction it is necessary to solve for the proper
parameter values along with the perturbing function. The parameter
dependence of the “extended” components of the extended substitute
kernel can be directly estimated with accuracy adequate for our pur-
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poses. It turns out that these components are primarily generated by
dislocations resulting from antisymmetric variation in pairs of ξ param-
eters associated to catenoids adjoining a common torus. The parameter
dependence of the substitute kernel itself is more conveniently moni-
tored indirectly, as in [13], via forces. On each torus the elements of the
approximate kernel, and so of the substitute kernel, may be identified
with approximate translations of the torus relative to T. In fact S3 ad-
mits an exact Killing field which, though it does not exactly generate
this variation of the torus, does approximate it in the vicinity of a great
circle orthogonally intersecting T. The force in the direction of this
Killing field through certain neighborhoods of a given torus then serves
as an estimate of the projection of the mean curvature onto the approx-
imate kernel and thereby as a proxy for the corresponding component
of substitute kernel itself. The balancing equations and the analysis
of the parameter dependence of the forces here are substantially more
complicated than those of [13] but no different in principle.

Finally, estimates for the initial geometry, the linearized equation,
the nonlinear terms, and the parameter dependence of the forces and
dislocations are applied in conjunction with the Schauder fixed-point
theorem to prove our main result, which we state informally now, a
more refined version appearing as Theorem 6.50, which makes use of
notation developed throughout in the paper.

Theorem 1.1 (Informal statement of the main theorem). Let k, ` ≥
1, and N ≥ 2 be given integers. For sufficiently large m there exist both a
choice of parameters and a smooth, appropriately symmetric perturbing
function such that the resulting surface (as described above) is minimal,
invariant under G[k, `,m], and a small perturbation of the corresponding
initial surface, so in particular embedded and of genus k`m2(N −1)+1.

Remark 1.2 (The full symmetry group). As described earlier, the
catenoidal tunnels joining a pair of adjacent tori in a given initial sur-
face take their centers on geodesic arcs intersecting T at the sites of
a km × `m rectangular lattice invariant under G[k, `,m]. Because the
minimal surfaces produced by the construction are small perturbations
of the initial surfaces, the symmetry group of each resulting minimal
surface—that is the subgroup of O(4) preserving it as a set—must pre-
serve each of these lattices. When k 6= `, we can therefore conclude that
this symmetry group does not merely contain G[k, `,m] but coincides
with it. On the other hand, when k = `, there are additional isometries
of S3, not belonging to G[k, `,m] (namely vertical ones, exchanging the
sides of T), that preserve each lattice, which one could easily enforce in
the construction to obtain minimal surfaces enjoying these extra sym-
metries as well. To avoid complicating the presentation, however, we
do not carry out these details. Without making such modifications it
is not immediately clear whether or not the minimal surfaces resulting
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from our construction in the k = ` case necessarily possess vertical sym-
metries; to prove they do it would suffice to establish uniqueness of the
fixed point in the proof of Theorem 6.50.

Remark 1.3 (Choice of lattices). We have also already mentioned
that there are in fact four km× `m rectangular lattices on T invariant
under G[k, `,m], but the constructions in the present article utilize only
two (and of course just one in the special case that N = 2) in alternating
fashion to distribute the catenoidal tunnels joining each pair of adjacent
tori. It would be possible, without incurring any technical difficulties
that we do not already confront, to avail ourselves of any of the four
lattices when fixing the horizontal locations of the catenoidal annuli
(subject only to the obvious constraint that two lattices corresponding
to consecutive pairs of tori be distinct). By doing so, for N > 2, we
could construct a variety of examples not congruent to one another
but having the same genus and symmetry group. This same flexibility
would also allow us to construct examples with k = ` and N > 2
which indubitably do not enjoy any vertical symmetries. (See Remark
1.2, just above.) To avoid complicating the definitions in this article
any further we do not present our construction in this generality. In a
more ambitious construction one could even attempt to allow a different
(large) number of catenoidal annuli at each layer, but this modification
would require a genuinely more elaborate approach.

Outline of the presentation. In Section 2 we define the initial sur-
faces. In Section 3 we analyze the dependence on the ζ and ξ parameters
of the dislocations and vertical forces through various regions. In Sec-
tion 4 we obtain estimates for the geometry of the initial surfaces. In
Section 5 we study the linearized problem. In Section 6 we solve the
nonlinear problem, proving the main theorem.

Acknowledgments. This article presents the results of my PhD the-
sis, supervised by Nicos Kapouleas, who suggested the problems studied
therein; I am deeply grateful for his guidance. Additional thanks are
owed to Scott Field for discussions that further stimulated my interest
in N > 2 stacking, to Christina Danton for help preparing the figures,
to Hung Tran for much appreciated feedback on a portion of the pa-
per, and to Rick Schoen for essential advice throughout the process of
preparation and submission. Last I thank the referees for many valuable
comments improving the manuscript.

2. Initial surfaces

In this section we must make a number of preliminary definitions
before defining the initial surfaces themselves. We also try to offer some
motivation for these definitions. The eager reader may wish to look
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ahead to (2.30) and the references immediately preceding it, consulting
the intervening material only as needed.

We realize S3 as the unit sphere {(z1, z2) ∈ C2 : |z1|2 + |z2|2 = 1} in
C2 and set

(2.1) T :=

{
(z1, z2) : |z1| = |z2| =

1√
2

}
,

the Clifford torus whose axes (as defined in Section 1) are simply the
coordinate unit circles C1 := {z2 = 0} and C2 := {z1 = 0}. We define
the covering map

(2.2)
Φ : R× R×

(
−π

4
,
π

4

)
→ S3\(C1 ∪ C2) by

Φ(x, y, z) :=
(
ei
√

2x sin
(

z +
π

4

)
, ei
√

2y cos
(

z +
π

4

))
,

which maps (i) horizontal planes to constant-mean-curvature tori having
axes C1 and C2, with Φ({z = 0}) = T in particular, (ii) vertical lines to
quarter great circles orthogonal to C1, C2, and T, (iii) vertical planes of
constant x to great hemispheres with equator C2, (iv) vertical planes of
constant y to great hemispheres with equator C1, and (v) vertical planes
of constant x± y to half Clifford tori through C1 and C2, orthogonally
intersecting T along great circles. Writing gS for the standard round
metric on S3 and gE for the standard flat metric on R3, we find

(2.3) Φ∗gS = gE + (sin 2z)
(
dx2 − dy2

)
.

The initial surfaces will be assembled by applying Φ to a stack of hori-
zontal planes connected by staggered catenoidal columns.

Half-catenoids bent to planes. We shall make frequent use of cutoff
functions throughout the construction, so we fix now a smooth, nonde-
creasing Ψ : R → [0, 1] with Ψ identically 0 on (−∞,−1], identically 1
on [1,∞), and such that Ψ− 1

2 is odd. We then define, for any a, b ∈ R,
the function ψ [a, b] : R→ [0, 1] by

(2.4) ψ [a, b] := Ψ ◦ La,b,

where La,b : R → R is the linear function satisfying L(a) = −3 and
L(b) = 3.

We write B[(x, y), r] for the open Euclidean disc in R2 with radius r
and center (x, y). Given X,Y, τ > 0 with τ < min{X,Y }, we set

(2.5) TX,Y,τ := ([−X,X]× [−Y, Y ]) \B[(0, 0), τ ],
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Figure 1. An N = 5 initial surface, cut by four hemi-
spheres and viewed in the (x, y, z) coordinate system; for
clarity the picture grossly exaggerates the ratio, which
in fact tends to 0 with large m, of the vertical spacing
between the tori to the horizontal spacing between the
catenoids.

a solid rectangle with a disc removed from its center. Given also zK , zT ∈
R and R > τ with 2R < min{X,Y }, we define the function

(2.6)

φ = φ[zK , zT , R,X, Y, τ ] : TX,Y,τ → R by

φ(x, y) := zK + (zT − zK)ψ [R, 2R]
(√

x2 + y2
)

+ sgn(zT − zK)

(
τ arcosh

√
x2 + y2

τ

)
ψ [2R,R]

(√
x2 + y2

)
,

where arcosh : [1,∞)→ [0,∞) is the inverse of the restriction to [0,∞)
of the hyperbolic cosine function and the sign function sgn : R → R
takes the value 1 when its argument is nonnegative and the value −1
otherwise. Thus, inside the cylinder of radius R about the z-axis the
graph of φ coincides with the portion between the planes z = zK and
z = zT of the catenoid with vertical axis, center (0, 0, zK), and waist
radius τ , while outside the cylinder of radius 2R about the z-axis it
coincides with the solid rectangle [−X,X] × [−Y, Y ] × {z = zT }. In
between these two cylinders the cutoff function is used to bend the end
of the half-catenoid to become exactly horizontal. With the additional
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data (x0, y0) ∈ R2 we define the embedding

(2.7)
Text[(x0, y0), zK , zT , R,X, Y, τ ] : TX,Y,τ → R3 by

Text(x, y) := (x0 + x, y0 + y, φ[zK , zT , R,X, Y, τ ](x, y)) ,

whose image is the graph of φ translated by (x0, y0, 0).
Given also z′K ∈ R along with τ ′ > 0, now assuming max{τ, τ ′} <

R < 1
4 min{X,Y }, we set

(2.8)

TX,Y,τ,τ ′ := ([−X,X]× [−Y, Y ])

∖(
B

[(
−X

2
,−Y

2

)
, τ

]
∪B

[(
X

2
,
Y

2

)
, τ ′
])

,

and we define the embedding

(2.9)

Tint = Tint[(x0, y0), zK , z
′
K , zT , R,X, Y, τ, τ

′] : TX,Y,τ,τ ′ → R3 by

Tint(x, y) := (x0 + x, y0 + y, z(x, y), ) , where

z(x, y) :=
φ
[
zK , zT , R,

X
2 ,

Y
2 , τ

] (
x + X

2 , y + Y
2

)
on [−X, 0]× [−Y, 0]

φ
[
z′K , zT , R,

X
2 ,

Y
2 , τ

′] (x− X
2 , y −

Y
2

)
on [0, X]× [0, Y ]

(x0 + x, y0 + y, zT ) everywhere else.

Thus the image of Tint looks like a solid 2X × 2Y rectangle in the
z = zT plane with two discs centered at (x0, y0, zT )±

(
X
2 ,

Y
2 , 0
)

replaced
by catenoidal annuli terminating on waist circles at heights z′K and zK .

The initial surfaces will be built from various applications of Text, for
extreme or outermost tori and adjoining half-catenoids, and of Tint, for
the intermediate tori and pairs of adjoining half-catenoids. The horizon-
tal positions of the catenoids (the values of (x0, y0) in the parametriza-
tions above) and the dimensions (X and Y ) of the parametrizing solid
rectangles (or equivalently the lattice edges) will be set directly by the
data k, `, and m. The radii of the annuli of transition (determined
by R) will be chosen on the order of min{X,Y } (but smaller than it by
a wide enough margin that the images of Text and Tint are horizontal
near their boundaries as assumed above). There remain N − 1 selec-
tions of waist radii (τ and τ ′) and N − 1 more of waist heights (zK
and z′K). Balancing conditions studied in the next section allow for the
estimation of the values these 2N − 2 unknowns must assume for the
construction to succeed, but their precise specification is made by the ζ
and ξ parameters described in Section 1. Matching conditions will then
fix the height zT of each torus, by requiring these heights to agree with
the heights of the adjoining catenoids where they meet the transition
annuli, in the case of the extreme tori, or to agree with the average of
the heights of the upper and lower catenoids at the transition circles
they adjoin, in the case of the intermediate tori.
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The hierarchy of data. For any positive integers k, `, and N ≥ 2 the
first phase of the construction produces a sequence, indexed by m, of
(2N − 2)-parameter families of initial surfaces. In order to obtain ade-
quate estimates for the initial mean curvature, the linearized operator,
and the nonlinear terms, we will routinely make the assumption that m
is as large as needed in terms of k, `, N , and all of the parameters. Of
course we expect the ultimate parameter choices themselves to depend
on m, so, in taking m large as just described, it is necessary to assume
that the parameters are all bounded in absolute value by a constant
c > 0 independent of m. Naturally we do not yet know what range is
needed for the parameters, but eventually we will be able to pick c in
terms of k, `, and N so that for every sufficiently large m we will be
able to find parameters bounded by c so that the corresponding initial
surface can be perturbed to minimality.

To continue with the definition of the intial surfaces we assume we
are given integers k, `,m ≥ 1 and N ≥ 2 as well as a constant c > 0 and
parameters ζ, ξ ∈ [−c, c]N−1. For notational simplicity we assume

(2.10) k ≤ `
and we write n = n[N ] for the greatest integer no greater than N/2, so
that

(2.11) N =

{
2n when N is even

2n+ 1 when N is odd.

We acknowledge a certain redundancy in the minimal surfaces ulti-
mately exhibited, one which is easily removed by taking k and ` rel-
atively prime.

Catenoidal radii and vertical specifications. Modulo the symme-
tries that we will impose when defining our initial surfaces we have
N − 1 catenoidal waist radii τ1, . . . , τN−1 to prescribe, one for each pair
of adjacent tori to be joined. Their selection is critical to the success
of the construction, and the next section (Section 3) is devoted in part
to making a viable choice. Specifically, in Lemma 3.18, when N ≥ 4,
we will determine a collection {bj}nj=2 of n − 1 positive real numbers

(recalling (2.11) just above), which in turn we will use in conjunction
with the ζ parameters to set the waist radii of our catenoidal tunnels.
Each bj will be a function of k, `, N , and m but (for large m) will
have an upper bound and a positive lower bound depending only on N ;
in particular b2 will have an upper bound depending on N but always
strictly less than 2. Of course in the simpler cases N = 2 and N = 3
we have n− 1 = 0, but it is nevertheless notationally convenient to set
b2 := 0 when N = 2 and b2 := 1 when N = 3. We emphasize that
each bj = bj [N, k, `,m] depends at least on N and generally on the data
k, `, and m as well, but for brevity in our notation we will frequently
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suppress the expression of this dependence, as we do for many other
quantities of interest. To summarize:

(2.12)

b2[N = 2, k, `,m] := 0, b2[N = 3, k, `,m] := 1, and

{bi[N ≥ 4, k, `,m]}ni=2 is determined in Lemma 3.18,

so there exists a constant C[N, k, `] > 0 such that

1 < max{bi}ni=2 < C[N, k, `] and b2 ≤ 2− 1/C[N, k, `]

whenever m is large enough in terms of N ≥ 4.

Having identified these numbers, we define the collection {τ i[N, k,
`,m]}N−1

i=1 of waist radii when ζ = 0 by

(2.13) τ i :=


1

10`me
− k`m

2

4π (1− 1
2
b2[N,k,`,m]) for i = 1

bi[N, k, `,m]τ1[N, k, `,m] for 2 ≤ i ≤ n
τN−i[N, k, `,m] for n+ 1 ≤ i ≤ N − 1

(recalling (2.11)) and then for general ζ we define the radii τi = τi[N, k, `,
m, ζ] by

(2.14) τi :=

{
eζ1τ1[N, k, `,m] for i = 1

eζ1+k−1`−1m−2ζiτ i[N, k, `,m] for 1 < i < N.

We next define the N heights zi = zi[N, k, `,m, ζ, ξ] of the tori by

(2.15)

z1 := τ1ξ1 − 2N mod 2τn ln
1

10`mτn
− 2

n−1∑
j=1

τj ln
1

10`mτj
,

zN := τN−1ξN−1 − 2N mod 2τn ln
1

10`mτn
+ 2

N−1∑
j=n

τj ln
1

10`mτj
,

zi :=
τi−1ξi−1 + τiξi

2
− 2N mod 2τn ln

1

10`mτn

+ 2

i−1∑
j=1

τj ln
1

10`mτj
− 2

n−1∑
j=1

τj ln
1

10`mτj
for 1 < i < N,

and the N − 1 heights zKi = zKi [N, k, `,m, ζ, ξ] of the catenoids’ centers
by

(2.16)

zKi :=τiξi + τi ln
1

10`mτi
+ 2

i−1∑
j=1

τj ln
1

10`mτj

− 2
n−1∑
j=1

τj ln
1

10`mτj
− 2N mod 2τn ln

1

10`mτn

for 1 ≤ i ≤ N − 1.
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Equivalently (suppressing from the notation in each of the below
equations pieces of data which agree on the two sides and may oth-
erwise be freely chosen) we have

(2.17)

zKi [ξ] = zKi [ξ = 0] + τiξi for 1 ≤ i ≤ N − 1,

zi[ξ] = zi[ξ = 0] +


τ1ξ1 for i = 1

τN−1ξN−1 for i = N
1
2 (τi−1ξi−1 + τiξi) for 1 < i < N ,

zKi [ξ = 0] = zi[ξ = 0] + τi ln
1

10`mτi
for 1 ≤ i ≤ N − 1,

zi+1[ξ = 0] = zi[ξ = 0] + 2τi ln
1

10`mτi
for 1 ≤ i ≤ N − 1, and

zKn [N = 2n, ξ = 0] = zn+1[N = 2n+ 1, ξ = 0] = 0,

recalling (2.11) in the last equation.
From definition (2.14) we have for 1 ≤ i ≤ N

(2.18) ln
1

10`mτi
=
k`

4π

(
1− b2

2

)
m2 − ζ1 − (1− δi1)

(
ln bi +

ζi
k`m2

)
,

where δi1 =
{

1 if i = 1
0 otherwise, so by taking m sufficiently large in terms of

ζ, ξ, and each bi (which according to (2.12) satisfy bounds depending on
just N , k, and `), we can make every zi and zKi as close to 0 as desired
and we can also guarantee that

(2.19) zi[ξ] < zKi [ξ = 0] < zi+1[ξ] for 1 ≤ i ≤ N − 1.

The definitions (2.15) and (2.16) can be understood as implementing
the matching conditions mentioned earlier as well as the vertical offsets
introduced by the ξ parameters. Here the logarithm is used—merely
because it simplifies some expressions later—to capture the dominant
part of the inverse hyperbolic cosine function for large values of its argu-
ment. Thus each logarithmic term, ignoring any powers of 2 appearing
as prefactors, represents the height achieved by a corresponding catenoid
above its waist plane a distance 1

10`m from its axis, where the catenoids
are meant to transition to planes (tori under Φ). The factor of 10` is
chosen—10 somewhat arbitrarily and ` because we assume k ≤ `—to
ensure the transition is completed on the order—m−1—of the lattice
spacing but well away from neighboring catenoids. From the identity

(2.20) arcoshx = lnx+ ln
(

1 +
√

1− x−2
)

we have the estimate

(2.21)

∣∣∣∣τi arcosh
1

10`mτi
− τi ln

1

10`mτi

∣∣∣∣ ≤ τi ln 2,
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Figure 2. A schematic profile of an N = 4 initial sur-
face. The surface depicted has τ1ξ1 = τ2ξ2 6= τ3ξ3, re-
sulting in dislocation at the third torus from the bottom
and nowhere else. The figure is not drawn to scale. In
fact (see especially (2.14) and (2.18)) the vertical spac-

ing τi ln 1
10`mτi

is of order m2τ1 and limm→∞
m2τ1
m−1 = 0.

Note also that the schematic does not attempt to convey
the height mismatch, of order τ1, arising from the ap-
proximation of arcosh by ln (see (2.21)), because, unlike
the dislocations controlled by ξ, it plays no role in the
construction.

so our very substitution of ln for arcosh introduces additional height mis-
match (beyond that contributed by the ξ parameters) where catenoidal
annuli connect to tori, but one whose ratio to τ1 is obviously bounded
independently of the ζ and ξ parameters.

Symmetries and horizontal specifications. By the definition (2.1)
of T as the locus of points in S3 equidistant from C1 and C2, the sym-
metry group Gsym[T] of T in S3, that is the subgroup of O(4) preserving
T as a set, is precisely the symmetry group of C1 ∪ C2. Accordingly
Gsym[T] is generated by the set of all reflections through great spheres
containing either C1 or C2 together with the set of reflections through
any great circle equidistant from C1 and C2 (so contained in a plane
of the form {z1 = eiθz2} or {z1 = eiθz2}) and therefore lying on T.
(Here reflection through a great sphere (or circle) refers to the element
of O(4) that identically preserves the 3-space (or 2-plane) containing
that sphere (or circle) and reflects the orthogonal complement through
the origin.) Consequently Gsym[T] also includes rotation in C1 and C2

by any angles as well as reflection through any great circle orthogonally
intersecting T (and C1 and C2).
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We equip C2, C1, and C2 with their standard orientations and, given
an oriented circle C in S3, we write RθC for rotation by θ about C,
which by definition is the element of O(4) fixing the plane containing
C pointwise and rotating its orthogonal complement by angle θ in the
direction consistent with the induced orientation. We write X for reflec-
tion through the great sphere with equator C2 and poles (±1, 0), Y for
reflection through the great sphere with equator C1 and poles (0,±1),
and Z for reflection through the great circle in the plane {z1 = z2} (so
Z = Rπ{z1=z2}∩S3). Thus (writing z for the complex conjugate of z ∈ C)

(2.22)
X(z1, z2) = (z1, z2), Y(z1, z2) = (z1, z2), Z(z1, z2) = (z2, z1),

RθC2
(z1, z2) = (eiθz1, z2), and RθC1

(z1, z2) = (z1, e
iθz2)

and

(2.23) Gsym[T] =
〈
X,Y,Z,Rθ1C1

,Rθ2C2
: θ1, θ2 ∈ R

〉
,

where the right-hand side is the subgroup of O(4) generated by the
elements the angled brackets enclose.

Recalling (2.2), we also name some elements of O(3) preserving the

domain of Φ and the pullback metric Φ∗gS : we write T̂hx-axis and T̂hy-axis

for translation by (real number) h in the (positive) x and y directions

respectively, X̂ and Ŷ for reflection through the x = 0 and y = 0 planes

respectively, and Ẑ for reflection through the line x = y in the plane
z = 0. Thus

(2.24)

T̂hx-axis(x, y, z) = (x + h, y, z), T̂hy-axis(x, y, z) = (x, y + h, z)

X̂(x, y, z) = (−x, y, z), Ŷ(x, y, z) = (x,−y, z), and

Ẑ(x, y, z) = (y, x,−z).

It is then easy to verify the relations

(2.25)
Φ ◦ X̂ = X ◦ Φ, Φ ◦ Ŷ = Y ◦ Φ, Φ ◦ Ẑ = Z ◦ Φ,

Φ ◦ T̂hx-axis = R
√

2h
C2
◦ Φ, and Φ ◦ T̂hy-axis = R

√
2h

C1
◦ Φ ∀h ∈ R,

which play an essential role in identifying the symmetries of the initial
surfaces, defined via Φ, and in exploiting these symmetries when solving
the linearized problem.

Each initial surface will be built to be invariant under a certain sub-
group of Gsym[T ], with the symmetries of T broken in several ways.
Recall that each initial surface is to be obtained by gluing together a
collection of constant-mean-curvature tori coaxial with T using a col-
lection of catenoidal annuli. Since among these tori only T itself is
equidistant from C1 and C2, the symmetry group of every other such

torus is just the subgroup
〈
X,Y,Rθ1C1

,Rθ2C2
: θ1, θ2 ∈ R

〉
of horizontal

symmetries of T. If the toral components of an initial surface are not
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arranged symmetrically about T, then of course the initial surface it-
self cannot possess any vertical symmetries. The arrangement of the
catenoidal tunnels may also be inconsistent with vertical symmetry and
inevitably breaks the continuous horizontal symmetries, leaving only a
discrete subgroup. In this construction we impose the group

(2.26) G = G[k, `,m] :=

〈
R

2π
km
C2
, R

2π
`m
C1
, X, Y

〉
< Gsym[T] < O(4),

which is the subgroup of O(4) preserving the set of kmth roots of unity
on C1 as well as (separately) the set of `mth roots of unity on C2;
as such, G[k, `,m] is therefore isomorphic to Dkm × D`m, where Dq is
the dihedral group of order 2q. We will sometimes write G in place of
G[k, `,m] when there is no danger of confusion.

The catenoidal tunnels connecting each pair of adjacent tori will be
placed, via Φ, so as to take their centers on the great circles orthogonally
intersecting T at the sites of a G[k, `,m]-invariant km× `m rectangular
lattice. There are precisely four such lattices, namely the G[k, `,m]
orbits

(2.27)

Lσx,σy = Lσx,σy [k, `,m] := G[k, `,m]
(
eiσxπ/(km), eiσyπ/(`m)

)
,

= Φ
(
L̂σx,σy × {0}

)
, where

L̂σx,σy = L̂σx,σy [k, `,m] ⊂ R2

:=

{(
σxπ√
2km

+ nx

√
2π

km
,
σyπ√
2`m

+ ny

√
2π

`m

)}
nx,ny∈Z

,

corresponding to the four choices of σx, σy ∈ {0, 1}. To avoid further
complicating the definition of the initial surfaces in this article we make
use of just the two lattices L0,0 and L1,1, but we emphasize that only
obvious, minor modifications to our procedure would be required to
take advantage of the other two lattices as well, which freedom would
allow us to produce minimal surfaces not congruent to the ones we
explicitly construct here. (It would also be natural to attempt to adapt
the construction to permit more generally G[k, `,m]-invariant nikm ×
ni`m lattices refining the above four, where the positive integer ni could
be allowed to vary from layer to layer.) See Remark 1.3.

Each initial surface will be invariant under the corresponding
G[k, `,m], and we will later admit only deformations respecting this
group, so in fact each minimal surface ultimately produced will also be
invariant under the corresponding G[k, `,m]. When k 6= `, G[k, `,m] is
in fact the largest group preserving each lattice and the largest group
preserving the set of centers of the catenoidal tunnels, and it will con-
sequently be the full symmetry group of the resulting minimal surface.
When k = `, however, there are choices of parameters ζ, ξ such that
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the corresponding initial surface is also preserved by reflection through
certain great circles on T. In this case it would be possible to modify the
procedure that follows by cutting in half the number of free parameters,
imposing constraints respecting these additional symmetries; the con-
struction would then produce minimal surfaces also invariant under the
extra symmetries. We will not pursue this modification here, instead
enforcing just the smaller group G[k, `,m] even in the square case. From
the analysis of this article alone it is unclear whether or not the result-
ing minimal surfaces nevertheless enjoy the additional symmetries. See
Remark 1.2.

Assembly and basic properties. Suppose we are given the following
data as above: integers N ≥ 2, ` ≥ k ≥ 1, and m ≥ 1, as well as two
vectors ζ, ξ ∈ RN−1. We set b2 := 0 if N = 2 and b2 := 1 if N = 3,
and for N ≥ 4 we accept a collection {bj [N, k, `,m]}nj=2 ⊂ (1,∞) as

described in Lemma 3.18 (namely the one determined in its proof).

The set of waist radii {τj}N−1
j=1 is then defined by (2.14), the set of toral

heights {zj}Nj=1 by (2.15), and the set of catenoidal heights {zKj }
N−1
j=1 by

(2.16). Setting

(2.28)

X = X[k, `,m] :=
π√
2km

, Y = Y [k, `,m] :=
π√
2`m

, and

R = R[`,m] :=
1

10`m
,

and recalling (2.2), (2.7), and (2.9), for each integer 1 ≤ i ≤ N we define
the parametrized surface-with-boundary Ωi in S3 by

(2.29)

Ωi = Φ
(

Ω̂i

)
(for 1 ≤ i ≤ N), where

Ω̂1 := Text[(0, 0), zK1 , z1, R,X, Y, τ1](TX,Y,τ1),

Ω̂N := Text[(N − 2)(X,Y ), zKN−1, zN , R,X, Y, τN−1](TX,Y,τN−1
),

and for 1 < i < N

Ω̂i := Tint

[
(2i− 3)

(
X

2
,
Y

2

)
, zKi−1, z

K
i , zi, R,X, Y, τi−1, τi

]
(TX,Y,τi−1,τi).

Note that each Ωi is a
√

2π
km ×

√
2π
`m rectangular patch of the constant-

mean-curvature torus at signed distance zi (increasing toward C1) from
T, within which patch one (for i = 1 or i = N) or two (for 1 < i < N)
discs have been replaced (via Φ and a cutoff function) by catenoidal
annuli, so that the boundary of Ωi is the union of a rectangle with one
or two waist cicles, the nearest-point projection onto T of the center of
each deleted disc is a site of either L0,0 or L1,1 (recalling (2.27)), and⋃N
i=1 Ωi is a smooth connected surface whose boundary is the union of

N rectangles.
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Finally we define the initial surface

(2.30) Σ = Σ[N, k, `,m, ζ, ξ] := G[k, `,m]
N⋃
i=1

Ωi,

the orbit under G[k, `,m] of
⋃N
i=1 Ωi.

Proposition 2.31 (Basic properties of the initial surfaces). Given
a real number c > 0 and integers N ≥ 2 and ` ≥ k ≥ 1, there
exists m0 = m0[N, k, `, c] > 0 such that for every integer m ≥ m0

and every choice of parameters ζ, ξ ∈ [−c, c]N−1 the initial surface
Σ[N, k, `,m, ζ, ξ] (defined by (2.30)) is a smooth, closed surface, em-
bedded in S3, of genus k`m2(N − 1) + 1, and invariant as a set under
the action of G[k, `,m] (defined in (2.26)).

Proof. By (2.12), (2.14), and (2.18) for fixed N , k, `, and c, we have

(2.32) lim
m→∞

(
|c|
m

+
N−1∑
i=1

10`mτi +
N−1∑
i=1

τi ln
1

10`mτi

)
= 0,

ensuring embeddedness of
⋃N
i=1 Ωi. All the claims are now clear from

(2.25), (2.26), and the explicit construction of Σ. q.e.d.

Remark 2.33 (Smooth dependence on the parameters). Since for
any fixed N , k, `, and m, the quantities (2.14), (2.15), and (2.16) all de-
pend smoothly on the ζ, ξ parameters, it follows from (2.30) and the sup-
porting definitions, particularly (2.7) and (2.9), that the initial surface
Σ[N, k, `,m, ζ, ξ] depends smoothly on ζ and ξ in the sense that there ex-
ists a smooth map I = I[N, k, `,m] : RN−1×RN−1×Σ[N, k, `,m, 0, 0]→
S3 such that for any ζ, ξ ∈ RN−1 the map I[N, k, `,m](ζ, ξ, ·) is an em-
bedding (provided m is large enough in terms of |ζ| and |ξ|) with image
Σ[N, k, `,m, ζ, ξ]. In particular I(ζ, ξ, ·) is a diffeomorphism onto its im-
age, and, in casual abuse of notation, we will routinely write I(ζ, ξ, ·) for
this diffeomorphism, so that I[N, k, `,m](ζ, ξ, ·)−1 : Σ[N, k, `,m, ζ, ξ]→
Σ[N, k, `,m, 0, 0] is the inverse diffeomorphism.

Of course it remains to specify {bj}nj=2 ⊂ (1,∞) when N ≥ 4, a gap
filled in the next section.

3. Forces and dislocations

Forces. As mentioned in Section 1, we will eventually discover (in Sec-
tion 5) that on each toral region (not yet defined), as m tends to infinity,
the Jacobi operator converges, after appropriate rescaling, to a limit op-
erator on a corresponding limit region (likewise after rescaling), and this
limit operator has one-dimensional kernel. The nontriviality of this ker-
nel will compel us, when attempting to prescribe mean curvature at
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the linear level by graphical deformation, to modify the term to be pre-
scribed by elements of the substitute kernel (as outlined in Section 1
and formally defined in Section 5). The details appear in Section 5,
where the precise argument is couched in rather different terms, but,
in order to help motivate the study undertaken in the current section,
we offer in this paragraph the following rough sketch of the situation
from a purely geometric point of view. In the next section (specifically
(4.73)) we will define the ith toral region T [i] to be Ωi (2.29) less a
certain portion of the half catenoid(s) attached. Of course the area of
Ωi (and so of T [i] too) shrinks to 0 as m goes to infinity, but if we
scale the ambient spherical metric gS up to m2gS , then under the corre-

sponding induced metric T [i] tends to a flat
√

2π
k ×

√
2π
` solid rectangle

(because the annuli deleted from Ωi to define T [i] are sized so as to van-
ish in this limit). The corresponding limit Jacobi operator is just the
flat Laplacian on this rectangle, its Jacobi operator as a submanifold of
Euclidean R3 (viewed in the domain of the map Φ (2.2)). By enforcing
the symmetry group G (2.26) throughout the construction we impose
periodic boundary conditions on T [i], so that this limit Jacobi operator
has kernel spanned by the constants. The Jacobi field 1 is induced by
the Euclidean Killing field ∂z (viewed in the domain of Φ) orthogonal
to the rectangle.

Of course the vector field ∂z is not Killing relative to Φ∗gS (2.3), but
it is approximately Killing relative to m2Φ∗gS , and, conveniently, on a
neighborhood of Ωi in S3, (viewed through Φ) ∂z is itself approximated
by the exact Killing field K on (S3, gS ) that generates rotation, toward
C1 (defined just below (2.1)), along the great circle through the points
(1, 0), (0, 1) ∈ C2. The geodesic segment joining these points is simply
the closure of the image under Φ of the segment of the z-axis contained
in the domain of Φ; thus K ◦ Φ = Φ∗∂z along this segment. More
generally (recalling (2.2)),

(3.1)

K ◦ Φ =− 1√
2

cot
(

z +
π

4

)
sin
√

2x cos
√

2y Φ∗∂x

+
1√
2

tan
(

z +
π

4

)
cos
√

2x sin
√

2y Φ∗∂y

+ cos
√

2x cos
√

2y Φ∗∂z.

We will now calculate the K force (also called flux in the literature)
through various regions of the initial surface and to study its dependence
on the ζ, ξ parameters. These forces will indirectly measure the projec-
tion of the initial surface’s mean curvature onto the substitute kernel, so
in the final section we will apply the results of this section (specifically
Lemma 3.33) to help manage the substitute kernel and complete the
proof of the main theorem. More immediately we will impose balancing
conditions ([17], [6], [8]) on the initial surface, such that the K force on
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various regions vanishes, at least within a margin on the order of the
perturbations—by functions and parameters—that we will be making.
This balancing will finally determine the waist radii, up to choice of ζ,
thus completing the definition of the initial surfaces.

Let

(3.2)

Fi = Fi[N, k, `,m, ζ, ξ] :=

∫
∂Ωi

(gS ◦ ι)(K ◦ ι, ηi)
√
|ι∗gS |∂Ωi |

=

∫
Ωi

(gS ◦ ι)(K ◦ ι,H)
√
|ι∗gS |,

the K force exerted by the region Ωi (defined by (2.29)) on the rest of
Σ, where ι : Σ → S3 is the inclusion map of Σ in S3, ηi is the outward
conormal for Ωi, H := trι∗g

S
Ddι is the vector-valued mean curvature of

Σ (D being the connection induced on T ∗Σ⊗ι∗TS3 by gS and ι),
√
|ι∗gS |

and
√
|ι∗gS |∂Ωi | are respectively the area and length forms induced by

ι and gS , and the last equality follows trivially from the formula for the
first variation of area and the fact that K is Killing. Since the initial
surface should be designed to be approximately minimal, by virtue of
the second equality we can now impose the approximate (in a sense
made precise below) balancing condition

(3.3) Fi ≈ 0 for each 1 ≤ i ≤ N

in order to estimate the necessary waist radii, before varying the param-
eters or deforming the initial surface graphically. We will see that this
heuristic approach leads to (2.13). We will also analyze how by adjust-
ing the parameters we can fine-tune these radii as well as the heights of
the catenoids and tori in order to control the forces.

The computation of the forces is simple. The boundary of each Ωi

consists of a rectangle on a constant-mean-curvature torus coaxial with
T and one (for i ∈ {1, N}) or two (for 2 ≤ i ≤ N − 1) catenoidal waists.
For each such component, by working in an (x, y, z) coordinate system
defined via Φ (2.2), we will estimate the corresponding integral arising
in (3.2). Suppose S is a catenoidal waist with center (xKi , y

K
i , z

K
i ). The

height zKi has been defined in (2.16), and the horizontal coordinates
xKi , yi

K , though not previously named, can be found in (2.29). The
outward unit conormal ηS along S is, recalling (2.3), simply ±∂z and,
relative to gE , S is a Euclidean circle of radius τi, so by (2.3) and (3.1)

(3.4)

∫
S
gS (K, ηS ) =

∫ 2π

0
cos
[√

2
(
xKi + τi cos θ

)]
× cos

[√
2
(
yKi + τi sin θ

)]
× τi

√
1− (sin 2zKi )(cos 2θ) dθ.
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Now suppose T is a rectangular component of ∂Ωi for some admissible
i, with outward conormal ηT and center (xi, yi, zi). The height zi has
been defined in (2.15), and the horizontal coordinates (xi, yi) can be
found in (2.29). Thus T lies on the constant-mean-curvature torus {z =
zi} and its complement in this torus has two connected components,
the smaller of which (in terms of area) we call T , a solid rectangle in
{z = zi} having boundary ∂T = T . Because of the way Ωi is defined
using cutoff functions, there is a neighborhood U of T in S3 such that
U ∩Ωi = U ∩ T , and therefore ηT is equally the outward unit conormal
for T along T . By invoking the first-variation-of-area formula (as in the
second equality of (3.2)) we have

∫
T gS (K, ηT ) =

∫
T gS (K,HT ), where

HT is the mean curvature of T . From (2.3) we find that the area form on
{z = zi} is cos 2zi dx dy, whence HT = 2 tan 2zi∂z, so using also (2.29)
and (3.1) we get

(3.5)

∫
T
gS (K, ηT ) =

∫ xi+
√
2π
km

xi−
√
2π
km

∫ yi+
√

2π
`m

yi−
√
2π
`m

2 cos(
√

2x) cos(
√

2y) tan(2zi)

× cos(2zi) dx dy.

To estimate the integrals (3.4) and (3.5) we will make the approxima-
tions cosu ≈ 1, sinu ≈ u, and

√
1 + u ≈ 1+u/2. On a heuristic level we

could ignore the error in these approximations and proceed with the cal-
culation to motivate (2.13) as advertised. On the other hand, the actual
construction will demand more detailed estimates, so, to avoid repeat-
ing some calculations, we will instead keep track of the error as we go,
predicating the estimates on (2.12) and (2.14), which themselves are sug-
gested by the more cavalier approach. From (2.12), (2.14), (2.15), (2.16),
and (2.29) we see that whenever m is sufficiently large in terms of N for
(2.12) to hold, there is some constant C[N, k, `] > 0 (possibly larger than
the one appearing in (2.12) but independent of ζ, ξ, and m) for which

(3.6)

(i)
∣∣∣x(K)
i

∣∣∣+
∣∣∣y(K)
i

∣∣∣ ≤ 10Nm−1

for xi, yi and xKi , yKi in (3.4) and (3.5),

(ii) lim
m→∞

mqτ1 = 0

uniformly in ζ ∈ [−c, c]N−1 for any fixed q, c, N , k, `,

(iii) max{τi/τ1 + τ1/τi}Ni=2 ≤ C[N, k, `]e|ζi|/m
2
, and

(iv) max{|zi|}Ni=1 + max{
∣∣zKi ∣∣}N−1

i=1

≤ C[N, k, `]N(m2 + |ζ|+ |ξ|)τ1e
|ζ|/m2 ≤ C[N, k, `]m2τ1,

where |ζ| and |ξ| are the Euclidean norms of ζ, ξ ∈ RN−1 and for the
final inequality we assume m large in terms of |ζ| and |ξ| (and allow a
larger C[N, k, `] on the right-hand side than previously needed).
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Using (3.2), (3.4), (3.5), and (3.6), we conclude

(3.7)

∣∣∣∣2πτ1 +
8π2

k`m2
z1 −F1

∣∣∣∣ ≤ Cm−2τ1,∣∣∣∣−2πτN−1 +
8π2

k`m2
zN −FN

∣∣∣∣ ≤ Cm−2τ1, and∣∣∣∣2π(τi − τi−1) +
8π2

k`m2
zi −Fi

∣∣∣∣ ≤ Cm−2τ1 when 2 ≤ i ≤ N − 1

for some constant C = C[N, k, `] > 0 (independent of m and ζ and ξ)
whenever m is sufficiently large in terms of N , |ζ|, and |ξ|.

It now follows from (3.7) and (2.15), recalling (2.11), that∣∣∣∣2πτ1 −
8π2

k`m2

(
2N mod 2τ1 ln

1

10`mτ1
− τ1ξ1

)
−Fn

∣∣∣∣
≤ Cm−2τ1 if n = 1,∣∣∣∣2π(τn − τn−1)− 8π2

k`m2

(
2N mod 2τn ln

1

10`mτn

−τn−1ξn−1 + τnξn
2

)
−Fn

∣∣∣∣ ≤ Cm−2τ1 if n ≥ 2,

(3.8)

∣∣∣∣−2πτ1 +
8π2

k`m2

(
τ1 ln

1

10`mτ1
+ τ1ξ1

)
−Fn+1

∣∣∣∣
≤ Cm−2τ1 if N = 2,∣∣∣∣2π(τn+1 − τn) +

8π2

k`m2

(
[(N + 1) mod 2]τn ln

1

10`mτn

+
τnξn + τn+1ξn+1

2

)
−Fn+1

∣∣∣∣ ≤ Cm−2τ1 if N ≥ 3,

(3.9)

and, when N ≥ 3,∣∣∣∣2π(τ2 − 2τ1) +
8π2

k`m2

(
2τ1 ln

1

10`mτ1
+
ξ2τ2 − ξ1τ1

2

)
− (Fi+1 −Fi)

∣∣∣∣ ≤ Cm−2τ1 if i = 1,∣∣∣∣2π(τi+1 − 2τi + τi−1) +
8π2

k`m2

(
2τi ln

1

10`mτi

+
ξi+1τi+1 − ξi−1τi−1

2

)
− (Fi+1 −Fi)

∣∣∣∣(3.10)

≤ Cm−2τ1 if 2 ≤ i ≤ N − 2, and∣∣∣∣2π(−2τN−1 + τN−2)
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+
8π2

k`m2

(
2τN−1 ln

1

10`mτN−1
+
ξN−1τN−1 − ξN−2τN−2

2

)
− (Fi+1 −Fi)

∣∣∣∣ ≤ Cm−2τ1 if i = N − 1

(where C can be taken to be twice the value of the C appearing in
(3.7)).

Balancing. The force estimates (3.7)–(3.10) will play an indispensable
role, via Lemma 3.33, in selecting viable parameter values in the final
steps of the construction, but at the moment, with the goal of com-
pleting the specification of the waist radii in the initial surfaces, we set
ζ = ξ = 0 and impose only the approximate balancing conditions (3.3)
(since we will have to vary the parameters and graphically perturb the
initial surface anyway to achieve minimality): temporarily ignoring the
error bounded by the right-hand sides of (3.8)–(3.10), we demand

(3.11)

2πτ1 − 2N mod 2 8π2

k`m2
· τ1 ln

1

10`mτ1

= 0 if n = 1,

2π(τn − τn−1)− 2N mod 2 8π2

k`m2
· τn ln

1

10`mτn
= 0 if n ≥ 2,

and for N ≥ 3

2π(τn+1 − τn) + [(N + 1) mod 2]
8π2

k`m2
· τn ln

1

10`mτn
= 0,

2π(τ2 − 2τ1) +
8π2

k`m2
· 2τ1 ln

1

10`mτ1

= 0,

2π(τ i+1 − 2τ i + τ i−1) +
8π2

k`m2
· 2τ i ln

1

10`mτ i
= 0

when 2 ≤ i ≤ N − 2, and finally

2π(−2τN−1 + τN−2) +
8π2

k`m2
· 2τN−1 ln

1

10`mτN−1

= 0.

From the third equation of (3.11) we see that τn+1 = τn whenever
N ≥ 3 is odd, while from this same equation together with the second
equation we see that τn+1 = τn−1 whenever N ≥ 4 is even (and of
course τn+1 is undefined for N = 2); thus τn+1 = τN−(n+1) whenever
N ≥ 3. If N is even, then N = 2n, so obviously τn = τN−n, while
if N is odd, then N = 2n + 1, so τn = τN−(n+1) and τN−n = τn+1

but we have just established that τN−(n+1) = τn+1; thus we also have
τn = τN−n whenever N ≥ 2. It now follows by induction on j, using the
two equations obtained by taking i = j − 1 and i = N − (j − 1) in the
penultimate line of (3.11), having already dispensed in this paragraph
with the cases j = n and j = n + 1, that τ j = τN−j for each j ∈
Z ∩ [n,N − 1]. In fact it is clear that all the approximate balancing
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conditions in (3.11) will be satisfied if and only if we choose {τ i}ni=1
satisfying (for n = 1) line 1 or (for n ≥ 2) lines 2, 4, and 5 (with
2 ≤ i ≤ n− 1) of (3.11) and simultaneously set

(3.12) τ i := τN−i for n+ 1 ≤ i ≤ N − 1.

For n = 1 it therefore remains only to specify τ1, which is uniquely
determined by imposing line 1 of (3.11):

(3.13) τ1 :=

 1
10`me

− k`m
2

4π if N = 2

1
10`me

− k`m
2

8π if N = 3.

For n ≥ 2 (equivalently N ≥ 4) we define

(3.14) bi := τ i/τ1 for 1 ≤ i ≤ N − 1,

so in particular b1 = 1; dividing equations 4, 5, and 2 of (3.11) by 2πτ1,
we need now only solve the n equations

(3.15)

b2 − 2 =
8π

k`m2
ln 10`mτ1,

bi+1 − 2bi + bi−1 =
8π

k`m2
bi ln 10`mbiτ1 for 2 ≤ i ≤ n− 1, and

bn−1 − bn =

(
1

2

)(N+1) mod 2 8π

k`m2
bn ln 10`mbnτ1

for the n unknowns b2, . . . , bn, and τ1.
The first equation requires

(3.16) τ1 :=
1

10`m
e−

k`m2

4π
(1−b2/2),

which we note even recovers (3.13) if we define b2 = 0 for N = 2 and
b2 = 1 for N = 3. Assuming N ≥ 4 (equivalently n ≥ 2), we derive
a system equivalent (presuming each bi 6= 0) to the remaining n − 1
equations of (3.15) by (i) for each i ∈ Z∩ [2, n−1] (a vacuous condition
when n = 2) subtracting the middle equation of (3.15) from bi times

the top equation of (3.15) and (ii) subtracting 2(N+1) mod 2 times the
bottom equation of (3.15) from bn times the top equation of (3.15). In
this way (recalling b1 = 1) we obtain the system

(3.17)
− bi−1 + b2bi − bi+1 = − 8π

k`m2
bi ln bi for 2 ≤ i ≤ n− 1 and

− 2(N+1) mod 2bn−1 + (b2 −N mod 2)bn = − 8π

k`m2
bn ln bn.

Lemma 3.18 (Determination of the waist ratios by the approximate
balancing conditions). Let N ≥ 4 be a given integer and recall (2.11).
There exist n − 1 real numbers d2[N ] < d3[N ] < · · · < dn[N ], with
d2[N ] ∈ (1, 2) and d2[N ] strictly increasing in n (for a fixed parity of
N), and furthermore there exists m0 = m0[N ] > 0 such that for each
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integer m > m0 and for all integers ` ≥ k ≥ 1 there are n − 1 real
numbers b2[N, k, `,m], b3[N, k, `,m], . . . , bn[N, k, `,m] solving (3.17) and
satisfying lim

m→∞
bi[N, k, `,m] = di[N ] for any fixed k and `.

Proof. Bear in mind that balancing has been accomplished by (3.13)
for N = 2 and N = 3. Momentarily ignoring the logarithmic terms, for
N = 4 the system (3.17) reduces to d2

2 = 2, so d2[4] =
√

2 ∈ (1, 2), while

for N = 5 we get d2
2−d2−1 = 0, yielding d2[5] = 1+

√
5

2 ∈ (1, 2). Now the

functions b2 7→ b22 and b2 7→ b22− b2−1 have nonzero derivatives at these
respective values, so the lemma is established for N = 4 and N = 5
by applying the inverse function theorem and taking m large. Thus we
may assume n ≥ 3 and pursue an elaboration of the same strategy.

For real β we define the (n− 1)× (n− 1) matrices

(3.19) A2n(β) :=



β −1 0 0 · · · 0
−1 β −1 0 · · · 0
0 −1 β −1 · · · 0
...

...
. . .

. . .
. . .

...
0 0 · · · −1 β −1
0 0 · · · 0 −2 β


and

(3.20) A2n+1(β) :=



β −1 0 0 · · · 0
−1 β −1 0 · · · 0
0 −1 β −1 · · · 0
...

...
. . .

. . .
. . .

...
0 0 · · · −1 β −1
0 0 · · · 0 −1 β − 1


,

so that the system obtained by temporarily replacing all the logarithmic
terms in (3.17) by 0 is equivalent (recalling b1 = 1) to the equation

(3.21) AN (β)


d2

d3
...
dn

 =


1
0
...
0

 with β = d2 and di > 0 for 2 ≤ i ≤ n.

Using Cramer’s rule and expansion by minors, we find

(3.22)

di[N ] =
Pn−i+1[N mod 2](β)

Pn[N mod 2](β)
for 2 ≤ i ≤ n, where

Pi[0](λ) = detA2i(λ) and Pi[1](λ) = detA2i+1(λ) for i ≥ 3,

P2[0](λ) = λ and P2[1] = λ− 1, and

P1[0](λ) = 2 and P1[1](λ) = 1.
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Further expansion by minors reveals the recursive relations (indepen-
dent of the parity of N)

(3.23) Pi+1(λ) = λPi(λ)− Pi−1(λ) for i ≥ 2.

On the other hand, by applying the constraint d2 = β, the expression
for d2 given by (3.22) can be rewritten as

(3.24) βPn(β) = Pn−1(β),

whence (3.23) delivers

(3.25) Pn+1(β) = 0.

We now claim that for each i ≥ 3 (and either parity of N)

(i) Pi = Pi[N mod 2] has a root strictly greater than 1; if γi =
γi[N mod 2] is its largest such root, then

(ii) Pi−1(x) > 0 whenever x ≥ γi,
(iii) Pi+1(γi) < 0, and
(iv) γi is strictly increasing in i.

These claims can be established by induction on i. The case i = 3
is easily verified: P2[0](x) = x, P3[0](x) = x2 − 2, and P4[0](x) =
x3 − 3x, so γ3[0] =

√
2, P2[0](x ≥ γ3[0]) > 0, and P4[0](γ3[0]) = 2

√
2−

3
√

2 < 0, while P2[1](x) = x− 1, P3[1](x) = x2 − x− 1, and P4[1](x) =

x3 − x2 − 2x + 1, so γ3[1] = 1+
√

5
2 , P2[1](x ≥ γ3[1]) ≥

√
5−1
2 > 0, and

P4[1](γ3[1]) = 1−
√

5
2 < 0. Now suppose that claims (i)–(iii) hold for

i = j. By claim (i) γj exists and γj > 1. According to claim (iii)
Pj+1(γj) < 0, but Pj+1 is clearly monic, so Pj+1(x) > 0 for large x,
which implies that Pj+1 has a root greater than γj , so γj+1 exists and
γj+1 > γj > 1 (verifying claims (i) and (iv)). Therefore Pj(x ≥ γj+1) >
0 by the maximality of γj (verifying claim (ii)). Finally, using (3.23),
Pj+2(γj+1) = γj+1Pj+1(γj+1) − Pj(γj+1), which is negative, since the
first term vanishes and the second has just been established positive
(verifying claim (iii) and so completing the proof of claims (i)–(iv)).

Thus β = γn+1 solves (3.25) and is strictly increasing in n (for each
fixed parity of N). We have already checked that β > 1; now we claim
that β < 2. In fact we assert that for each i ≥ 2 (regardless of the parity
of N)

(v) Pi(x)− Pi−1(x) ≥ 0 and Pi(x) > 0 whenever x ≥ 2,

which is proven by induction on i. For i = 2 and x ≥ 2 we have
P2(x)− P1(x) = x− 2 ≥ 0 (whatever the parity of N) and clearly both
P2[0](x) = x > 0 and P2[1](x) = x − 1 > 0. Assuming then that claim
(v) holds for i = j, we get from (3.23), assuming still x ≥ 2,

(3.26)

Pj+1(x)− Pj(x) = xPj(x)− Pj−1(x)− Pj(x)

= (x− 1)Pj(x)− Pj−1(x)

≥ Pj(x)− Pj−1(x) ≥ 0
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and therefore Pj+1(x) > 0 as well. We conclude that for every i ≥ 2 we
have Pi(x) > 0 whenever x ≥ 2, so all roots of Pi lie to the left of 2,
establishing the bound on d2 = β = γn+1.

To show that for each fixed N dj [N ] is a strictly increasing function
of j we claim that for any n ≥ 3 and either parity of N

(vi) Pj+1(γn+1)− Pj(γn+1) < 0 whenever 1 ≤ j ≤ n,

which we prove by induction on j. Since P2(x)−P1(x) = x−2 (whatever
the parity of N), the case j = 1 follows immediately from the fact,
proved in the preceding paragraph, that γn+1 < 2. Assuming now that
claim (vi) holds for a given j ∈ Z ∩ [1, n − 1] and applying (3.23) with
i = j + 1 along with the same inequality γn+1 < 2, we get

(3.27)
Pj+2(γn+1)− Pj+1(γn+1) = (γn+1 − 1)Pj+1(γn+1)− Pj(γn+1)

< Pj+1(γn+1)− Pj(γn+1) < 0,

confirming (vi). It then follows from (3.22) that 1 < d2 < d3 < d4 <
· · · < dn.

It remains to reintroduce the logarithmic terms. Recalling the defi-
nitions (3.19) and (3.20), for each integer N ≥ 2 we define the function
FN : Rn−1 → Rn−1 by

(3.28) FN


x2

x3
...
xn

 := AN (x2)


x2

x3
...
xn


and calculate its derivative at (di)

n
i=2:

(3.29) dFN |(di)ni=2
= AN (d2) +


d2 0 0 · · · 0
d3 0 0 · · · 0
...

...
...

. . .
...

dn 0 0 · · · 0

 ,

whose determinant is detAN (d2) + detB, where B is the matrix

(3.30)



d2 −1 0 0 · · · 0
d3 d2 −1 0 · · · 0
d4 −1 d2 −1 · · · 0
...

...
. . .

. . .
. . .

...
dn−1 0 · · · −1 d2 −1

dn 0 · · · 0 −2(N+1) mod 2 d2 −N mod 2


.

Using just expansion by minors along with the inequalities, proven
above, di > 1 > 0 for 2 ≤ j ≤ n and Pj(d2) > 0 for 1 ≤ j ≤ n,
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we then obtain

(3.31) det dFN |(di)ni=2
= Pn(d2) +

n−1∑
i=2

diPn−i+1(d2) + dn > 0.

We conclude by invoking the inverse function theorem and taking m
large in terms of d2, . . . , dn. q.e.d.

Henceforth, given integers N ≥ 2, ` ≥ k ≥ 1, and m ≥ 1, along with
N − 1 real numbers ζ1, . . . , ζN−1, we define (i) b2[N = 2, k, `,m] := 0,
b2[N = 3, k, `,m] := 1, and {bi[N ≥ 4, k, `,m]}ni=2 as in the proof of
Lemma 3.18, (ii) τ1[N, k, `,m] as defined by (3.16), (iii) τ i[N, k, `,m] :=
bi[N, k, `,m]τ1[N, k, `,m] for 2 ≤ i ≤ n, (iv) τ i[N, k, `,m] and bi[N, k,
`,m] for n+ 1 ≤ i ≤ N − 1 (and b1[N, k, `,m] = 1) in accordance with
(3.12) and (3.14), and (v) τi[N, k, `,m, ζ] for 1 ≤ i ≤ N as defined by
(2.14). These quantities complete the specification of the initial surfaces
defined in (2.30).

Parameter dependence. The ζ and ξ parameters influence the forces,
which will be analyzed later to manage the substitute kernel (described
in Section 1 and formally introduced in Section 5), as well as the dislo-
cations

(3.32)

Di = Di[N, k, `,m, ζ, ξ]

:=

{
1
2τiξi −

1
2τi−1ξi−1 for 2 ≤ i ≤ N − 1

0 for i = 1 and i = N,

which will be used to manage the extended part of the extended sub-
stitute kernel (again see Sections 1 and 5) and each of which measures
the antisymmetric part of the vertical displacement of a pair of adjacent
inequivalent (under the action of G (2.26)) catenoidal regions relative
to the toral region they share. Morally, the next lemma ensures that,
by adjusting the parameters, we can freely prescribe any set of suitably
bounded forces and dislocations. Indeed this surjectivity assertion could
be stated precisely and proved as a corollary of the lemma by apply-
ing the Brouwer fixed-point theorem. Because, however, we will also
need to allow graphical deformations of the initial surfaces, we bypass
this step and instead will more directly apply the lemma to control the
extended substitute kernel in the proof of Theorem 6.50.

Lemma 3.33 (Parametric dependence of the forces and dislocations).
Given c > 0 and integers N ≥ 2 and ` ≥ k ≥ 1, there exist real numbers
C = C[N, k, `],m0 = m0[N, k, `, c] > 0 and an invertible linear map
Θ = Θ[N, k, `,m] : R2N−2 → R2N−2 such that whenever m > m0

(i) ‖Θ‖+
∥∥Θ−1

∥∥ ≤ C[N, k, `],
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where ‖·‖ denotes the operator norm induced by the Euclidean norm on
R2N−2, and whenever ζ, ξ ∈ [−c, c]2N−2

(ii)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
τ−1

1



m2F1[N, k, `,m, ζ, ξ]
...

m2FN [N, k, `,m, ζ, ξ]

D2[N, k, `,m, ζ, ξ]
...

DN−1[N, k, `,m, ζ, ξ]


−Θ



ζ1

...

ζN−1

ξ1

...

ξN−1



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
≤ C[N, k, `],

where |·| denotes the Euclidean norm on R2N−2.

We emphasize that the estimates made in Lemma 3.33 are indepen-
dent of m and the size of the parameters: C[N, k, `] does not depend
on m or c (but m0[N, k, `, c] does depend on c). This independence
will be crucial in the proof of the main theorem when defining the
nonlinear map whose fixed point will give us our final minimal sur-
face. In particular it will be needed to establish that we can choose
the parameter factor of the domain of this map to be compact, an
ingredient in the justification of the applicability of the Schauder fixed-
point theorem in the proof of Theorem 6.50. (Roughly, the indepen-
dence from c of these estimates ensures that attempts to control the
extended substitute kernel (via the forces and dislocations) by vary-
ing the parameters will not drive any of these parameters off to infin-
ity.)

Proof. To begin, it is easy to see that the linear map T = T [N, k, `] :
RN−1 → RN−1 defined by

(3.34) T :



m2F1

m2F2

...

m2FN−1

m2FN
D2

...

DN−1


7→



k`m2

2π (F1 −F2) + 4π(D1 +D2)
k`m2

2π (F2 −F3) + 4π(D2 +D3)
...

k`m2

2π (FN−1 −FN ) + 4π(DN−1 +DN )
k`m2

8π2 F1

2D2

...

2DN−1


is invertible (since, the lowest N −2 components on the right determine
all dislocations, which with the top N components then determine all
the forces too) with inverse bounded independently of m and c. To
prove the lemma it will therefore suffice to identify an invertible linear
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map Θ̃ = Θ̃[N, k, `,m] : R2N−2 → R2N−2 such that

(3.35)

∥∥∥Θ̃
∥∥∥+

∥∥∥Θ̃−1
∥∥∥ ≤ C[N, k, `] and∣∣∣∣τ−1

1 T

(
m2F
D

)
− Θ̃

(
ζ
ξ

)∣∣∣∣ ≤ C[N, k, `]

for some constant C[N, k, `] > 0 whenever ζ, ξ ∈ [−c, c]N−1 and m is
sufficiently large in terms of N , k, `, and c.

In fact we will show that we can take

(3.36) Θ̃

(
ζ
ξ

)
:=

(
Z 0
B Ξ

)(
ζ
ξ

)
,

where 0 is the (N − 1) × (N − 1) zero matrix, B = B[N, k, `,m] is
an (N − 1) × (N − 1) matrix bounded independently of c and m, and
Z = Z[N, k, `,m] and Ξ = Ξ[N, k, `,m] are the (N−1)×(N−1) matrices

(3.37)

Z :=
(
8πb Q

)
, with b =

(
b1 b2 · · · bN−1

)>
and

Q :=



−b2 0 · · · 0 0
b1 + b3 −b3 0 · · · 0

−b2 b2 + b4 −b4
. . .

...

0
. . .

. . .
. . . 0

...
. . . −bN−3 bN−3 + bN−1 −bN−1

0 · · · 0 −bN−2 bN−2 + bN


,

and

(3.38) Ξ :=



b1 0 0 · · · 0 0
−b1 b2 0 · · · 0 0

0 −b2 b3
. . . 0 0

...
. . .

. . .
. . .

. . .
...

0 0
. . . −bN−3 bN−2 0

0 0 · · · 0 −bN−2 bN−1


,

recalling (2.12) and understanding bN := 0. (We acknowledge that
b1 = bN−1 = 1 but refrain from making these substitutions above so as
to avoid obscuring the structure of the matrices.) We will now verify

that Θ̃ so defined satisfies (3.35), identifying the matrix B along the
way.

First we check that Z and Ξ are invertible. Invertibility of Ξ is ob-
vious, since it is lower-triangular with all its diagonal entries strictly
positive. Next, we inductively alter the middle N − 3 columns of Z,
starting with column N − 2 and working our way to the left until col-
umn 2, by replacing each by its sum with the column immediately to
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its right; we also divide the first column by 8π. The resulting matrix
(for the computation of which we recall that bN = 0)

(3.39) Z̃ :=



1 −b2 0 · · · 0 0
b2 b1 −b3 0 · · · 0

b3 0 b2 −b4
. . .

...

b4 0
. . .

. . .
. . . 0

...
...

. . . 0 bN−3 −bN−1

bN−1 0 · · · 0 0 bN−2


is invertible if and only if Z is. The only nonzero entries of Z̃ lie in (i)
the first column, whose entries are all strictly positive, (ii) the diagonal,
whose entries are also all strictly positive, and (iii) the superdiagonal,
whose entries are all strictly negative. It is easy to see that any square
matrix of this form has strictly positive determinant. For example we
can compute the determinant by cofactor expansion along the bottom
row. Starting with the entry in the bottom row and first column (bN−1

in Z̃), we see that the submatrix obtained by deleting the bottom row
and first column is lower-triangular with all diagonal entries strictly
negative. Counting minus signs, including possibly one contributed by
the position of the entry in question, we find that the corresponding
cofactor is strictly positive and, the entry itself being strictly positive
as well, therefore the corresponding term in the expansion is also strictly
positive. The remaining term, corresponding to the entry in the bottom

row and last column (bN−2 in Z̃) is clearly the product of a strictly
positive number, the entry itself, with the determinant of a smaller
matrix of the same form under consideration. Since our claim is obvious
in the 1 × 1 case, the general case now follows by induction. Thus we
see that Z is invertible as well. Consequently, for any choice of B (to

be identified shortly) in (3.36), the map Θ̃ is indeed invertible, and
the first inequality in (3.35) is now ensured by (2.12) (and the bound
‖B‖ ≤ C[N, k, `] established below).

Now we estimate k`m2

2πτ1
(Fi−Fi+1) + 4π

τ1
(Di +Di+1) for 1 ≤ i ≤ N − 1.

When N = 2, from (3.8) and (3.9) we find

(3.40)

∣∣∣∣F1 −F2 −
(

4πτ1 −
16π2

k`m2
τ1 ln

1

10`mτ1

)∣∣∣∣ ≤ Cm−2τ1,

whence with (2.14)

(3.41)

∣∣∣∣F1 −F2

−2eζ1
(

2πτ1 −
8π2

k`m2
τ1

(
−ζ1 + ln

1

10`mτ1

))∣∣∣∣ ≤ Cm−2τ1,
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so by the balancing condition (3.11)

(3.42)

∣∣∣∣F1 −F2 −
16π2τ1

k`m2
ζ1

∣∣∣∣ ≤ Cm−2τ1,

while D1 = D2 = 0 by (3.32), which proves

(3.43)

∣∣∣∣k`m2

2πτ1
(F1 −F2) +

4π

τ1
(D1 +D2)− 8πζ1

∣∣∣∣ ≤ C when N = 1,

taking the constant C possibly larger (depending on k and `) than the
one immediately above but still independent of c and m.

When N ≥ 3 and 1 ≤ i ≤ N − 1, from (3.10) and (3.32) we find

(3.44)

∣∣∣∣k`m2

2πτ1
(Fi −Fi+1) +

4π

τ1
(Di +Di+1)

−k`m
2

2πτ1

(
2π (−τi−1 + 2τi − τi+1)

− 16π2

k`m2
τi ln

1

10`mτi

)∣∣∣∣ ≤ C,
understanding τ0 = τN := 0. Using (2.13), (2.14), and Taylor expansion,
for 2 ≤ j ≤ N − 1 we have

(3.45)

∣∣∣τj − eζ1τ j − k−1`−1m−2bjζjτ1

∣∣∣ ≤ m−4c2e2c/m2
bjτ1

≤ Cm−2τ1,

where to ensure the last inequality we take m sufficiently large in terms
of c. Thus, when 3 ≤ i ≤ N − 1,

(3.46)

∣∣∣(−τi−1 + 2τi − τi+1)− eζ1
(
−τ i−1 + 2τ i − τ i+1

)
− τ1

k`m2
(−bi−1ζi−1 + 2biζi − bi+1ζi+1)

∣∣∣ ≤ Cm−2τ1

and, further using (2.13) and (2.14), when 2 ≤ i ≤ N − 1

(3.47)

∣∣∣∣τi ln
1

10`mτi

−
(
eζ1τ i ln

1

10`mτ i
− τ1biζ1 +

τ1biζi
4π

− τ1b2biζi
8π

)∣∣∣∣ ≤ Cτ1

provided m is sufficiently large in terms of c. Note that by virtue of
(2.13) and (3.17)

(3.48) |b2bi − (bi−1 + bi+1)| ≤ Cm−2 for 1 ≤ i ≤ N − 1



500 D. WIYGUL

(understanding b0 = bN = 0), so the last term on the left-hand side

of (3.47) may be replaced by − τ1(bi−1+bi+1)ζi
8π . By applying estimates

(3.46)–(3.48) to (3.44) and imposing the balancing condition (3.11) we
obtain

(3.49)

∣∣∣∣k`m2

2πτ1
(Fi −Fi+1) +

4π

τ1
(Di +Di+1)

− (8πbiζ1 − bi−1ζi−1 + (bi−1 + bi+1)ζi − bi+1ζi+1)

∣∣∣∣ ≤ C
when N ≥ 3 and 3 ≤ i ≤ N − 1 (understanding bN := 0).

In the remaining cases that N ≥ 3 but i ∈ {1, 2} a similar computa-
tion (using simply τ1 = eζ1τ1 in place of (3.45) when j = 1) reveals

(3.50)

∣∣∣∣k`m2

2πτ1
(F1 −F2) +

4π

τ1
(D1 +D2)− (8πb1ζ1 − b2ζ2)

∣∣∣∣ ≤ C and∣∣∣∣k`m2

2πτ1
(F2 −F3) +

4π

τ1
(D2 +D3)

− (8πb2ζ1 + (b1 + b3)ζ2 − b3ζ3)

∣∣∣∣ ≤ C.
Together, (3.43), (3.49), and (3.50) show that

(3.51)

∣∣∣∣k`m2

2πτ1
(Fi −Fi+1) +

4π

τ1
(Di +Di+1)− (Zζ)i

∣∣∣∣ ≤ C
for some constant C = C[N, k, `] > 0 whenever N ≥ 2, 1 ≤ i ≤ N − 1,
ζ, ξ ∈ [−c, c]N−1, and m is sufficiently large in terms of c.

Next, it is obvious from (3.32), using (3.45) as necessary and contin-
uing to take m large in terms of c, that

(3.52)

∣∣∣∣ 2

τ1
Di − (biξi − bi−1ξi−1)

∣∣∣∣ ≤ C for 2 ≤ i ≤ N − 1.

Furthermore, from (2.15), (3.7), and (3.11), using (3.47) and (3.48)
again and still taking m large in terms of c, we have

(3.53)

∣∣∣∣ k`m2

8π2τ1
F1 −

(
b1ξ1 + 2N mod 2ζ1

)∣∣∣∣ ≤ C if 2 ≤ N ≤ 3 and∣∣∣∣∣∣ k`m
2

8π2τ1
F1 −

b1ξ1 +

2N mod 2bn + 2
n−1∑
j=1

bj

 ζ1

+
1

4π

n−1∑
j=2

(bj−1 − 2bj + bj+1) ζj

+
2N mod 2

8π
(bn−1 − 2bn + bn+1) ζn

]∣∣∣∣ ≤ C if N ≥ 3.
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Together, (3.51), (3.52), and (3.53) establish the second inequality of

(3.35) with Θ̃ defined by (3.36), the entries of the first row of the matrix
B given by the coefficients of the components of ζ appearing in (3.53),
and the remaining entries of B vanishing. This completes the proof.
q.e.d.

4. Estimates of the initial geometry

Norms and spaces of sections. To state the estimates for the geom-
etry of the initial surfaces and to carry out the rest of the construc-
tion we must first identify certain norms and corresponding spaces of
sections. For the most part our notation is standard and speaks for
itself. Given a smooth vector bundle E over a smooth manifold M
(possibly with boundary), a nonnegative integer j, and a real number

α ∈ (0, 1), we write Cjloc(E) and Cj,αloc (E) for the space of sections of E

having component functions of class Cjloc or Cj,αloc respectively relative
to any (so every) smooth local chart and smooth trivialization; we set

C∞(E) :=
⋂∞
j=0C

j
loc(E). When E is the trivial bundle M ×R, we write

simply M in place of M ×R in our notation for the spaces just defined
and also for the spaces below, as is standard for spaces of real-valued
functions.

All of the vector bundles of interest to us are derived from tangent
bundles by a combination of duality, tensor product, pullback, and pro-
jection; a Riemannian metric on M or on another manifold in which
it is immersed will determine canonical metrics and connections on all
these bundles. When there is no danger of confusion, we write simply |·|
for the corresponding pointwise norm and D for the connection. Given
a section u of a bundle E over M thus equipped, we define the standard
global norms

(4.1) ‖u‖j = ‖u‖Cj(E,g) =
∥∥u : Cj(E, g)

∥∥ :=

j∑
i=0

sup
p∈M

∣∣Diu(p)
∣∣

as well as the Hölder seminorm

(4.2) [u]α := sup
γ:[0,1]→M

∣∣u(γ(1))− P 1
0 [γ]u(γ(0))

∣∣
|γ|α

,

where the supremum is taken over all piecewise C1 paths, |γ| denotes
the length of such a path, and P 1

0 [γ] : Eγ(0) → Eγ(1) is the parallel
transport map along γ from the fiber over γ(0) to the fiber over γ(1).

Then we can define also the Hölder norms

(4.3) ‖u‖j,α =
∥∥u : Cj,α(E, g)

∥∥ := ‖u‖j +
[
Dju

]
α
.

Note that for functions on convex open subsets of Euclidean space these
Hölder norms agree with the conventional ones. Generally, the spaces
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Cj,α(E, g) and Cj(E, g) consisting of sections with finite corresponding
norm enjoy many of the properties familiar from the Euclidean case;
in particular Cj,β(E, g) embeds compactly in Cj,α(E, g) whenever M
is compact and 0 < α < β < 1. In the construction we will rou-
tinely wish to compare norms of the above type induced by different
metrics on a single manifold. The definitions make it easy to see that∥∥u : Cj,α(E, h)

∥∥ ≤ C
∥∥u : Cj,α(E, g)

∥∥, where C is controlled by the g-
norms of h, its inverse, and finitely many g-derivatives of h (the max-
imum order needed depending in a transparent way on j, α, and on
the bundle E); of course if M is not compact, then C may blow up,
depending on g and h.

If M is a two-sided hypersurface immersed in a Riemannian mani-
fold N and GM is a group of isometries of N preserving M as a set,
then GM acts on a section u of the normal bundle of M by (g.u)(p) :=
g∗[u

(
g−1(p)

)
] for each element g : N → N of GM . Because this bundle

is just the trivial R bundle over M , its sections can be identified with
functions (for us representing mean curvature or normal perturbations)
on which the corresponding action of GM is given by

(4.4) (g.f)(p) :=

{
f
(
g−1(p)

)
if g preserves each side of M

−f
(
g−1(p)

)
if g reverses the sides of M.

All the elements of the symmetry group G = G[k, `,m] (defined in (2.26))
of the construction can be seen to fix each side of the initial surface
Σ = Σ[N, k, `,m, ζ, ξ] (defined in (2.30)), so its action is always given
by the first line of (4.4). (As mentioned earlier (Remark 1.2), when
k = `, we have the option of enforcing a larger symmetry group in the
construction, one admitting reflections through great circles on T. When
N is odd, such reflections reverse the sides of the initial surface Σ.)

Notation 4.5. In general, if M is a two-sided hypersurface immersed
in a Riemannian manifold N and GM is a group of isometries of N
preserving M as a set, we will append the subscript GM to a space of
functions to designate the subspace consisting of functions which are
equivariant under the GM action (4.4).

Finally we will often wish to work with weighted versions of the above
norms. For this construction the following definition suffices:

(4.6)
∥∥u : Cj,α(E, g, f)

∥∥ := sup
p∈M

∥∥u : Cj,α
(
E|B[p,1,g], g

)∥∥
f(p)

,

where f : M → (0,∞) is a given weight function and B[p, 1, g] ⊆ M is
the g metric ball of radius 1 centered at p ∈M . We will also make use
of weighted Cj norms, with the obvious definition.
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The χ metric. It is the primary task of this section to estimate the
intrinsic and extrinsic geometry of the initial surfaces. We continue to
write ι = ι[N, k, `,m, ζ, ξ] : Σ[N, k, `,m, ζ, ξ]→ S3 for the inclusion map
of Σ in S3, and we define

(4.7) g = g[N, k, `,m, ζ, ξ] := ι∗gS ,

the metric induced on Σ by gS and ι. To fix the extrinsic quan-
tities we pick on each initial surface Σ the global unit normal ν =
ν[N, k, `,m, ζ, ξ] which is directed toward C1 at the points of Σ closest
to C1. We then define

(4.8)
A = A[N, k, `,m, ζ, ξ] := (gS ◦ ι)(Ddι, ν) and

H = H[N, k, `,m, ζ, ξ] := trι∗g A,

respectively the scalar-valued second fundamental form and mean cur-
vature of Σ relative to ν and gS , D being the connection induced on
T ∗Σ⊗ ι∗TS3 by gS and ι. In particular H = (gS ◦ ι)(H, ν), recalling the
vector-valued mean curvature H defined below (3.2).

Every initial surface admits by virtue of its construction a natural
decomposition into overlapping regions, each of which resembles either
a portion of a torus coaxial with T or (via Φ (2.2)) a truncated catenoid.
Modulo the horizontal symmetries, there are N such toral regions, one
for each torus incorporated in the construction, and there are N − 1
catenoidal regions, one for each pair of adjacent tori. Definitions are
made in the subsections below. The estimates will then be obtained by
treating the catenoidal regions as perturbations of Euclidean catenoids
and the toral regions as graphs over the Clifford torus.

Because all these regions shrink with increasing m and because even
on a fixed initial surface the characteristic scale m−1 of the toral regions
dwarfs the characteristic scale τ1 near the waists, it will be advantageous
to uniformize the problem (and flatten Σ) by working with a metric χ
on each initial surface conformal to the natural one g = ι∗gS . We will
set

(4.9) χ = χ[N, k, `,m, ζ, ξ] := ρ2g,

where the conformal factor ρ = ρ[N, k, `,m, ζ, ξ] : Σ → R is defined so
that its reciprocal ρ−1 is a G-equivariant function (i) measuring on each
catenoidal region the Φ−1∗gE distance to the axis and (ii) transitioning
smoothly to the constant m−1 by the edge of the toral regions.

To be precise, recalling (2.4) and setting

(4.10) d(x, y, z) :=
√

x2 + y2 on R3,

we first define ρ̃[z′1, z
′
2] : R3 → R, for given z′1 < z′2 ∈ R, by

(4.11) ρ̃[z′1, z
′
2] :=

{(
1
d −m

)
· ψ
[

1
5`m ,

1
10`m

]
◦ d on {z ∈ [z′1, z

′
2]}

0 elsewhere
,
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we define ρ̃q[z
′
1, z
′
2] : R3 → R, for given point q = (x0, y0) ∈ R2, by

(4.12) ρ̃q[z
′
1, z
′
2](x, y, z) := ρ̃[z′1, z

′
2] (x− x0, y − y0, z) ,

and we define ρ̂ : R3 → R by

(4.13) ρ̂ := m+

N−2∑
i=0

∑
q∈L̂i mod 2,i mod 2

ρ̃q
[
zKi , z

K
i+2

]
,

recalling (2.16) and (2.27) and taking zK0 := −π
5 and zKN := π

5 . Then,
recalling (2.2), ρ ∈ C∞G (Σ) is uniquely defined by requiring

(4.14) ρ ◦ Φ = ρ̂ on Φ−1(Σ).

Evidently from (2.12), (2.14), and (2.30)

(4.15)
m

C[N, k, `]
≤ ρ ≤ C[N, k, `]

τ1

for some constant C[N, k, `] > 0 whenever ζ, ξ ∈ [−c, c]N−1 and m is
sufficiently large in terms of N , k, `, and c. Equipped with the χ metric,
each catenoidal region tends with large m to the flat cylinder of radius
1, while each toral region tends, away from the catenoids adjoining it,

to a flat
√

2π
k ×

√
2π
` rectangle. Details are provided in the next two

subsections.
Before proceeding, we briefly mention a couple differences of our ap-

proach from [13]. First, our catenoidal and toral regions (defined below)
correspond to their extended standard regions, but since we never view
their standard regions or transition regions in isolation, we omit the
modifier extended. Second, our use of the χ metric follows theirs to
study the mean curvature equation on the initial surfaces globally, but
whereas Kapouleas and Yang introduce another metric (the h metric)
conformal to g in order to analyze the approximate kernel, we will apply
the χ metric to this problem as well, in the next section.

Catenoidal regions. We define the standard cylinder

(4.16) K := R× S1,

where S1 := {z ∈ C : |z| = 1}. We write t for the standard coordinate
on the R factor and θ for the standard coordinate on the universal cover
R of the S1 factor given by θ 7→ eiθ. We will routinely and implicitly
define functions on K by defining functions on this universal cover that
are invariant under the deck transformations. We equip K with its usual
flat metric

(4.17) χ̂K := dt2 + dθ2

and we define the embedding

(4.18) κ̂ : K→ R3 by κ̂(t, θ) = (cosh t cos θ, cosh t sin θ, t),
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whose image is the catenoid with waist radius 1, axis of symmetry the
z-axis, and horizontal plane of the symmetry the z = 0 plane. It is easy
to see that κ̂ is conformal, with

(4.19) κ̂∗gE = cosh2 t χ̂K ,

gE being the Euclidean metric on R3, and that its unit normal pointing
outward at the waist is

(4.20) ν̂ = sech t cos θ ∂x + sech t sin θ ∂y − tanh t ∂z.

Of course the catenoid is famously minimal, and it is elementary to
check that, more specifically, it has second fundamental form (relative
to ν̂)

(4.21) Â = dt2 − dθ2.

Given a > 0, we define the truncated cylinder

(4.22) Ka := [−a, a]× S1,

and, given also (x0, y0, z0) ∈ R3 and τ > 0, we define the embedding

(4.23)
κ̂[(x0, y0, z0), τ, a] : Ka → R3 by

(t, θ) 7→ (x0, y0, z0) + τ(cosh t cos θ, cosh t sin θ, t),

whose image is a truncated, translated, and scaled catenoid with vertical
axis of symmetry. For 1 ≤ i ≤ N − 1 we set

(4.24)

ai = ai[N, k, `,m, ζ, ξ] := arcosh
1

10`mτi

=
k`

4π

(
1− b2

2

)
m2 − ζ1 − (1− δi1)

(
ln bi +

ζi
k`m2

)
+ ln

(
1 +

√
1− 100`2m2τ2

i

)
(writing δij for the Kronecker delta and recalling (2.12), (2.14), (2.18),
and (2.20)) and, recalling (2.2), we define the map

(4.25)

κi = κi[N, k, `,m, ζ, ξ] : Kai → S3 by

κi := Φ ◦ κ̂
[(

(i− 1)π√
2km

,
(i− 1)π√

2`m
, zKi

)
, τi, ai

]
.

Then (referring to (2.30) and particularly (2.29)) the image of κi is
entirely contained in the initial surface Σ and defines the catenoidal
region

(4.26) K[i] = K[i;N, k, `,m, ζ, ξ] := κi (Kai) ,

so that κi is a diffeomorphism onto its image; in innocuous abuse of
notation we will routinely write κ−1

i : K[i]→ Kai for the inverse of this
diffeomorphism.
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Note that, recalling (4.14),

(4.27) κi
∗ρ = τ−1

i sech t

and, by applying (2.12) and (2.14) to (4.24),

(4.28) C[N, k, `]−1m2 ≤ ai ≤ C[N, k, `]m2

for some constant C[N, k, `] > 0 whenever ζ, ξ ∈ [−c, c]N−1 and m is
sufficiently large in terms of N , k, `, and c. From (2.14), (2.16), and
(4.26) it is clear that

(4.29) K[i] ∩ K[i′] 6= ∅ if and only if i = i′.

Since on small scales the covering map Φ is an approximate isometry,
we expect that in a suitably rescaled sense each catenoidal region will
converge in the large-m limit to an exact catenoid in Euclidean space.
The next proposition quantifies this convergence.

Proposition 4.30 (Estimates of the geometry of the catenoidal re-
gions). Given a real number c > 0 and integers N ≥ 2, ` ≥ k ≥ 1,
and j ≥ 0, there exist real numbers m0 = m0[N, k, `, c] > 0 and C =
C[N, k, `, j] > 0 such that whenever ζ, ξ ∈ [−c, c]N−1 and m > m0, for
1 ≤ i ≤ N − 1

(i)
∥∥κi∗χ− χ̂K : Cj

(
T ∗K⊗2

ai , χ̂K
)∥∥ ≤ Cm2τ1,

(ii)
∥∥ρ : Cj(K[i], χ, ρ)

∥∥+
∥∥ρ−1 : Cj(K[i], χ, ρ−1)

∥∥ ≤ C,

(iii)
∥∥z : Cj(K[i], χ)

∥∥ ≤ Cm2τ1,

(iv)
∥∥∥A− (−1)N−iκ−1

i
∗
τi
(
dt2 − dθ2

)
: Cj

(
T ∗K[i]⊗2, χ, τ1 |z|+ ρ−2

)∥∥∥
≤ C,

(v)
∥∥∥ρ−2 |A|2g − 2τ2ρ2 : Cj(K[i], χ, τ1 + |z|+ ρ−2)

∥∥∥ ≤ C, and

(vi)
∥∥ρ−2H : Cj

(
K[i], χ, τ1 |z|+ ρ−2 |z|+ τ2

1

)∥∥ ≤ C,

where z : S3 → R is defined via (2.2) and we also recall (2.14), (4.6),
(4.7), (4.8), (4.9), (4.14), (4.17), (4.22), (4.25), and (4.26).

Proof. From (2.3), (4.23), (4.25), and (4.27) we calculate

(4.31)
κi
∗χ− χ̂K =

(
sin 2

(
zKi + τit

)) (
tanh2 t cos 2θ dt2

−2 tanh t sin 2θ dt dθ − cos 2θ dθ2
)
.

It follows from (2.14), (3.6) (the bottom line), and (4.28) that∣∣zKi + τit
∣∣ ≤ C[N, k, `]m2τ1 everywhere on Kai for some C[N, k, `] > 0

whenever m is sufficiently large in terms of N , k, `, and c. Since
χ̂K = dt2 + dθ2 is flat, it is trivial to differentiate (4.31), so item (i)
now follows immediately, as do items (ii) and (iii) in turn, using also
(4.27) and

(4.32) κi
∗z = zKi + τit.
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Next, using (4.25), for any vector fields V and W on Kai we have

(4.33)

κi
∗A(V,W ) = A[κ̂i,Φ

∗gS ](V,W )

= ν[κ̂i,Φ
∗gS ]c (D[Φ∗gS ]dκ̂iV dκ̂iW )c

=
ν[κ̂i, gE ]c

|ν[κ̂i, gE ]|Φ∗g
S
◦κ̂i

(D[gE ]dκ̂iV dκ̂iW

+ (D[Φ∗gS ]−D[gE ]) (dκ̂iV, dκ̂iW ))c

= |ν[κ̂i, gE ]|−1
Φ∗g

S
◦κ̂i (A[κ̂i, gE ](V,W ) +B(V,W )) ,

where κ̂i := κ̂
[(

(i−1)π√
2km

, (i−1)π√
2`m

, zKi

)
, τi, ai

]
(recalling (4.23)), ν[κ̂i,Φ

∗gS ]

is the unit normal for κ̂i relative to gS directed so that dΦν[κ̂i,Φ
∗gS ] =

ν◦κi and ν[κ̂i,Φ
∗gS ]c is its Φ∗gS metric dual, ν[κ̂i, gE ] is the unit normal

for κ̂i relative to gE directed so that its gE metric dual ν[κ̂i, gE ]c is a
positive multiple of ν[κ̂i,Φ

∗gS ]c, A[κ̂i, ·] is the second fundamental of
κ̂i with respect to the ambient metric · and the unit normal ν[κ̂i, ·],
D[·] is the Levi-Civita connection induced by the metric ·, and B is the
symmetric tensor

(4.34)

Bαβ := ν[κ̂i, gE ]c(Γ
c
ab ◦ κ̂i)(dκ̂i)aα(dκ̂i)

b
β with

Γcab :=
1

2
(Φ∗gS )cd (D[gE ]b(Φ

∗gS )ad

+D[gE ]a(Φ
∗gS )bd −D[gE ]d(Φ

∗gS )ab) .

Recalling that we have chosen the unit normal ν for Σ pointing toward
C1 at the points closest to C1 (so ν has positive inner product with ∂z

at the top of Σ, in an (x, y, z) coordinate system defined via Φ), we see
from (4.23) that

(4.35) ν[κ̂i, gE ] = (−1)N−iν̂,

recalling (4.20), so in particular, using (2.3),

(4.36)

|ν[κ̂i, gE ]|Φ∗g
S
◦κ̂i (t, θ)

=

√
1− sech2 t cos 2θ sin 2κi∗z− tanh2 t sin2 2κi∗z

cos 2κi∗z
.

It is also easy to see from (2.3) that the only Christoffel symbols (in
(x, y, z) coordinates) for Φ∗gS not vanishing identically are

(4.37)
Γz

xx = −Γz
yy = − cos 2z, Γx

xz = Γx
zx =

cos 2z

1 + sin 2z
, and

Γy
yz = Γy

zy =
− cos 2z

1− sin 2z
.
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Returning to (4.34) (and again using (4.20) and (4.23)) we now find

(4.38)

(−1)N−iBtt = κi
∗ρ−2 tanh3 t cos 2θ cos 2κi

∗z

+ 2τ2
i tanh t cos 2θ sec 2κi

∗z

− 2τ2
i tanh t tan 2κi

∗z,

(−1)N−iBtθ = −κi∗ρ−2 tanh2 t sin 2θ cos 2κi
∗z

− τ2
i sin 2θ sec 2κi

∗z, and

(−1)N−iBθθ = −κi∗ρ−2 tanh t cos 2θ cos 2κi
∗z.

Thus, applying (4.36) and (4.38) in (4.33), we have computed A on
K[i], proving (iv). From (4.31) we also compute

(4.39)

(κ̂∗iΦ
∗gS )−1 =

1

1− sech2 t cos 2θ sin 2κi∗z− tanh2 t sin2 2κi∗z

× κi∗ρ2
(
∂2
t + ∂2

θ + (sin 2κi
∗z)
(
− cos 2θ ∂2

t

+2 tanh t sin 2θ ∂t ∂θ + tanh2 t cos 2θ ∂2
θ

))
,

which in conjunction with (iv) immediately yields the estimate (v). The
estimate (vi) requires slightly more care, but from (4.21), (4.33), (4.36),
and (4.39) we compute the exact mean curvature

(4.40)

κi
∗H =

(−1)N−i
(
κi
∗ρ2
)(

1− sech2 t cos 2θ sin 2κi∗z− tanh2 t sin2 2κi∗z
)3/2

×
[
−1

2
τi(sin 4κi

∗z)(1 + tanh2 t) cos 2θ

−κi∗ρ−2(sin 4κi
∗z)(cos 2κi

∗z) tanh3 t

+τ2
i tanh t cos 2θ − 4τ2

i (sin 2κi
∗z) tanh t

+3τ2
i (sin2 2κi

∗z) tanh t cos 2θ

]
,

delivering (vi) and completing the proof. q.e.d.

Graphs over immersions. The estimates away from the catenoidal
regions will be obtained by treating the initial surface there as a graph
over the torus, as an application of the following lemma, which will be
used again in the final section to estimate the contributions to the mean
curvature of the perturbed surface which are nonlinear in the perturbing
function and to estimate the perturbation to the corresponding forces
(3.2). We first clarify some notation used in the statement of the lemma.
Suppose (M, g) is a Riemannian manifold. If u ∈ C2

loc(M), we write

D[g]2abu and ∆gu := gabD[g]2abu for the Hessian and Laplacian of u

under g. Given p ∈M and r > 0, we write B[p, r, (M, g)] for the closed
metric ball in (M, g) with center p and radius r. We adopt the sign and
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indexing conventions that the Riemann curvature tensor Rabcd of (M, g)
is defined by

(4.41) RabcdV
aW bXcY d = g

(
DVDWX −DWDVX −D[V,W ]X,Y

)
,

for any vector fields V,W,X, Y on M ; then Rab := R c
ac b = Rcab

c is
the Ricci curvature of (M, g). Suppose also that φ : S → M is a C2

loc
codimension-one immersion of a manifold S into M and that ν is a
global unit normal for φ. We write A[φ, ν] := (g ◦ φ)(ν,D[g]dφ) and
H[φ, ν] := trφ∗g A[φ, ν] for the corresponding second fundamental form
and mean curvature (here D[g] being the canonical connection on the
bundle φ∗TM ⊗T ∗S defined by the Levi-Civita connections induced by
g and φ∗g). Finally we point out that we reserve the right to denote
evaluation of a section X at a point p by either of the standard options
X|p = X(p).

Lemma 4.42 (Graphs over immersions). Let φ : S →M be a smooth
two-sided (codimension-one) immersion of a smooth manifold S into a
smooth complete Riemannian manifold M with smooth metric g. Let
ν ∈ φ∗(TM) be a global unit normal for φ and write A := A[φ, ν]
and H := H[φ, ν] for the corresponding second fundamental form and
mean curvature. For each t ∈ R and u ∈ C2

loc(S) we define the maps
φt, φ[u] : S →M by

(4.43)
φt(p) := expφ(p) tν(p) and

φ[u](p) := expφ(p) u(p)ν(p) = φu(p)(p),

where exp : TM → M is the exponential map of (M, g). Suppose that
for a given u ∈ C2

loc(S) and p ∈ S

(4.44) |u(p)| |A(p)|φ∗g + |u(p)|2
∥∥∥|R|g : C0(B[p, |u(p)| , (M, g)])

∥∥∥ < 1

3
.

Then φ[u] is a C2
loc immersion on a neighborhood of p, as is φt for every

t between 0 and u(p). On this neighborhood φt and φ[u] admit respective
C1
loc unit normals νt and ν[φ[u]] satisfying νt(p) = d

dt expφ(p) tν(p) and

g (ν[φ[u]]|p, νt|p) > 0. If (working near p) we set gt := φ∗t g, gt :=

(φ∗t g)−1, and At := A[φt, νt], then

(i)
∂tg

t
αβ = −2Atαβ and

∂tA
t
αβ = νt

aνt
dφt

b
,αφt

c
,βRabcd ◦ φt −AtαγAtβδgtγδ.

If we also set A[u] := A[φ[u], ν[φ[u]]] and H[u] := H[φ[u], ν[φ[u]]] and

we define on S the symmetric 2-tensors gu := gu(·), gu := gu(·), and

Au := Au(·), as well as the function Hu := gu
αβAuαβ and the section

φu
c
,α := φt

c
,α

∣∣
t=u(·) of φ[u]∗TM , then

φ[u]∗g = gu + du⊗ du,(ii)
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A[u]αβ =
Auαβ +D[gu]2αβu− 2gu

γδAuγ(αu,β)u,δ√
1 + |du|2gu

, and(iii)

H[u] = H +
(

∆φ∗g + |A|2g + νaνbRab ◦ φ
)
u

+ u,γgu
γδgu

αβ

∫ 1

0

(
2uAtuαδ;β + 2u,βA

tu
αδ − uAtuαβ;δ − u,δAtuαβ

)
dt

−
u,γu,δgu

αγgu
βδ√

1 + |du|2gu

 Hu + ∆guu

1 +
√

1 + |du|2gu
guαβ +

D[gu]2αβu+ 3Auαβ

1 + |du|2gu


+ u2

∫ 1

0
(t− 1)

[
2gtu

αβgtu
γδAtuαβνtu

aνtu
dφtu

b
,γφtu

c
,δRabcd ◦ φ[u]

+2AtuαβA
tu
γδA

tu
εζgtu

βγgtu
δεgtu

αζ + νtu
aνtu

bνtu
cRab|c ◦ φ[u]

]
dt,

(iv)

where the vertical bar and semicolon before an index indicate differentia-
tion under the Levi-Civita connection induced by g and φ∗g respectively.

Remark 4.45. Note that in the special case of Lemma 4.42 that
(M, g) = (S3, λ2gS ) is the round 3-sphere of radius λ > 0 we have

(4.46)
νt
aνt

dφt
b
,αφt

c
,βRabcd ◦ φt = λ−2gtαβ,

νaνbRab ◦ φ = 2λ−2, and Rab|c = 0.

Proof. We begin with a few basic generalities concerning connections
on pullbacks of vector bundles. Suppose ϕ : P → M is a smooth
map (not necessarily an immersion) between smooth manifolds and the
target M is equipped with a smooth Riemannian metric g. We will
write D[TM ] for the Levi-Civita connection on TM induced by g. We
omit the elementary verification of the following observations. There is
a unique connection D[ϕ∗TM ] on the pullback bundle ϕ∗TM satisfying
the chain rule

(4.47) D[ϕ∗TM ]V (X ◦ ϕ) = (D[TM ]ϕ∗VX) ◦ ϕ

for all V ∈ C0
loc(TP ) and X ∈ C1

loc(TM). Moreover, D[ϕ∗TM ] is
torsion-free in the sense that

(4.48) D[ϕ∗TM ]V ϕ∗W −D[ϕ∗TM ]Wϕ∗V = ϕ∗[V,W ]

for all V,W ∈ C1
loc(TP ); D[ϕ∗TM ] is compatible with g in the sense

that

(4.49)
V (g ◦ ϕ)(X,Y ) =(g ◦ ϕ)(D[ϕ∗TM ]VX,Y )

+ (g ◦ φ)(X,D[ϕ∗TM ]V Y )
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for all V ∈ C0
loc(TP ) and X,Y ∈ C1

loc(ϕ
∗TM); and D[ϕ∗TM ] inherits

the curvature of M : for all V,W ∈ C1
loc(TP ) and X ∈ C2

loc(ϕ
∗TM)

(4.50) DVDWX −DWDVX −D[V,W ]X = (R ◦ ϕ)(ϕ∗V, ϕ∗W )X,

in which every instance of D is D = D[ϕ∗TM ].
Now let (M, g), S, φ, and ν be as in the statement of the lemma. We

define the map

(4.51) Φ : S × R→M by Φ(p, t) := expφ(p) tν(p),

so that φt = Φ(·, t). Suppose V ∈ C∞(TS) and write V for the unique
vector field on Σ × R such that (Vf)(p, t) = (V f(·, t))(p) for all f ∈
C∞(S×R), p ∈ S, and t ∈ R. Then Φ∗V|(p,t) = dφtV |p and Φ∗∂t|(p,t) =
d
dt expφ(p) tν(p). Given s, t ∈ R, we write P ts : Φ∗TM |(·,s) → Φ∗TM |(·,t)
for the map of parallel translation (relative to D[Φ∗TM ]) along the R
cross-sections of S ×R. Using (4.48) and (4.50) as well as the fact that
D[Φ∗TM ]∂tΦ∗∂t = 0, we have

(4.52)

d

dt

∣∣∣∣
t=0

P 0
t (dφtV ) =

d

dt

∣∣∣∣
t=0

P 0
t (Φ∗V) = D[Φ∗TM ]∂tΦ∗V|(·,0)

= D[Φ∗TM ]VΦ∗∂t|(·,0) = D[φ∗TM ]V ν and

d2

dt2
P 0
t (dφtV ) =

d2

dt2
P 0
t (Φ∗V) =

d

dt
P 0
t (D[Φ∗TM ]∂tΦ∗V)

=
d

dt
P 0
t (D[Φ∗TM ]DVΦ∗∂t)

= P 0
t (D[Φ∗TM ]∂tDVΦ∗∂t)

= P 0
t ((R ◦ φt)(Φ∗∂t, dφtV )Φ∗∂t) .

Thus

(4.53)

P 0
t dφtV =dφV + tD[φ∗TM ]V ν

+

∫ t

0
(t− s)P 0

s ((R ◦ φs)(Φ∗∂t, dφsV )Φ∗∂t) ds,

so, noting that Φ∗∂t is unit, for all p ∈ S and t ∈ R (replacing [0, t]
below by [t, 0] if t < 0)

(4.54) sup
s∈[0,t]

|dφsVp|g ≤
1 + |t| |A(p)|φ∗g

1− t2
∥∥∥|R|g : C0(B[p, |t| , (M, g)])

∥∥∥ |dφVp|g
and also consequently

(4.55)
|dφtVp|g
|dφVp|g

≥ 1− |A(p)|φ∗g |t| −K
1 + |t| |A(p)|φ∗g

1−Kt2
t2,

where

(4.56) K :=
∥∥∥|R|g : C0(B[p, |t| , (M, g)])

∥∥∥ ,
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confirming that φt is an immersion near p whenever

(4.57) |t| |A(p)|φ∗g + t2
∥∥∥|R|g : C0(B[p, |t| , (M, g)])

∥∥∥ < 1/3

(which condition is obviously not sharp).
Using (4.48) and (4.49) as well as the fact that D[Φ∗TM ]∂tΦ∗∂t = 0,

we also compute

(4.58)

(g ◦ Φ)(D[Φ∗TM ]VΦ∗∂t, ∂t) =
1

2
V(g ◦ Φ)(Φ∗∂t,Φ∗∂t) = 0 and

d

dt
(g ◦ Φ)(Φ∗V,Φ∗∂t) = (g ◦ Φ)(D[Φ∗TM ]∂tΦ∗V,Φ∗∂t)

= V(g ◦ Φ)(Φ∗∂t,Φ∗∂t) = 0.

Since Φ∗∂t|(·,0) = ν, in fact Φ∗∂t is everywhere and always orthogonal to
Φ∗V. Thus wherever |t| is small enough that φt is locally an immersion,
Φ∗∂t is a smooth local unit normal for φt, designated νt in the statement
of the lemma. Then, letting W be another vector field on S with W the
canonically corresponding vector field on S × R, (4.48)–(4.50),

(4.59)

d

dt
φ∗t g(V,W ) = (g ◦ Φ)(D[Φ∗TM ]VΦ∗∂t,Φ∗W)

+ (g ◦ Φ)(Φ∗V, D[Φ∗TM ]WΦ∗∂t) and

d

dt
A[φt, νt](V,W ) = (g ◦ Φ) ((R ◦ Φ)(Φ∗∂t,Φ∗V)W

+D[Φ∗TM ]VD[Φ∗TM ]WΦ∗∂t,Φ∗∂t) ,

proving item (i) of the lemma.
Now suppose u ∈ C2

loc(S) and take φ[u] as defined in the statement
of the lemma. Let π : S × R → S be the canonical projection onto S
and let νu be the section of φ[u]∗TM defined by

(4.60) νu := νu(·)

(so νu(p) = νu(p)(p), νt having been defined in the statement of the
lemma). Since φ[u](p) = Φ(p, u(p)),

(4.61) dφ[u]V = dΦ (V + (Vπ∗u)∂t) = (dφt)|t=u(·) V + (V u)νu,

which implies item (ii) of the lemma. In particular, because du ⊗ du
is nonnegative, φ[u] is an immersion on a neighborhood of p whenever
φu(p) is, so in particular, in view of (4.55), provided (4.44) holds. It also
follows that the corresponding metric on the cotangent space satisfies

(4.62) (φ[u]∗g)−1 = gu −
1

1 + |du|2gu
∇guu⊗∇guu,

where gu and gu are as defined in the statement of the lemma and ∇gu is
the gradient operator on S induced by the metric gu. (Equation (4.62)
is a trivial consequence of item (ii) of the lemma at points where du
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vanishes; at any other point p it is easily derived by working relative to
a gu orthogonal basis one of whose elements is ∇guu|p.)

Clearly the 1-form dt− dπ∗u on S×R annihilates all tangent vectors
to the graph of u in S × R, so, relative to the metric Φ∗g = φ∗t g + dt2,
the upward unit normal to this graph is

(4.63)
∂t −∇Φ∗gπ

∗u√
1 + |dπ∗u|2Φ∗g

.

Noting that dΦ (∇Φ∗gπ
∗u) |(p,t) = dφt

(
∇φ∗t gu

)
|p, we see that the unit

normal ν[φ[u]] for φ[u] identified in the statement of the lemma satisfies

(4.64) ν[φ[u]] =
νu − (dφt)|t=u(·)∇guu√

1 + |du|2gu
.

The corresponding second fundamental form is

(4.65) A[u] = (g ◦ φ[u])(ν[φ[u]], D[φ[u]∗TM ]V dφ[u]W ),

but

(4.66)

D[φ[u]∗TM ]V dφ[u]W |p = D[Φ∗TM ]V+(Vπ∗u)∂t (Φ∗W
+(Wπ∗u)Φ∗∂t) |(p,u(p))

= D[φ∗u(p)TM ]V

(
dφt|p

)∣∣∣
t=u(p)

W |p

+ (VWu)ν[φu(p)]|p
+ (Wu)D[φ∗u(p)TM ]V ν[φu(p)]|p
+ (V u)D[φ∗u(p)TM ]W ν[φu(p)]|p,

whose inner product with (4.64) yields item (iii) of the lemma. By
contracting item (ii) of the lemma with item (iii) we obtain

(4.67)

H[u] =
Hu + ∆guu√

1 + |du|2gu
− u,γu,δ

D[gu]2αβu+ 3Auαβ(
1 + |du|2gu

)3/2
gu
αγgu

βδ

= Hu + ∆guu−
u,γu,δgu

αγgu
βδ√

1 + |du|2gu

 Hu + ∆guu

1 +
√

1 + |du|2gu
guαβ

+
D[gu]2αβu+ 3Auαβ

1 + |du|2gu

)
,
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but, using item (i) of the lemma,

(4.68)

∆guu = ∆φ∗gu+ u,γgu
γδgu

αβ

(
1

2
D[φ∗g]δg

u
αβ −D[φ∗g]βg

u
αδ

)
= ∆φ∗gu+ u,γgu

γδgu
αβ

∫ 1

0

(
2uAtuαδ;β

+2u,βA
tu
αδ − uAtuαβ;δ − u,δAtuαβ

)
dt

and

(4.69)

Hu =H + u
(
|A|2g + (Rab ◦ φ)νaνb

)
+ u2

∫ 1

0
(t− 1)

×
[
2gtu

αβgtu
γδAtuαβ(Rabcd ◦ φ[u])νtu

aνtu
dφtu

b
,γφtu

c
,δ

+2AtuαβA
tu
γδA

tu
εζgtu

βγgtu
δεgtu

αζ

+
(
Rab|c ◦ φ[u]

)
νtu

aνtu
bνtu

c

]
dt,

establishing item (iv) and completing the proof. q.e.d.

Toral regions. Recalling (2.5), (2.8), (2.14), and (2.28) we define, for
1 ≤ i ≤ N , the closed domains Ti ⊂ R2 by

(4.70)

Ti = Ti[N, k, `,m, ζ, ξ]

:=


mTX,Y,√τ1 if i = 1

mTX,Y,√τN−1
if i = N

mTX,Y,√τi−1,
√
τi if 2 ≤ i ≤ N − 1,

so that Ti is a
√

2π/k×
√

2π/` rectangle with one or two discs removed,
each having radius of order m

√
τ1. By virtue of the second line of (3.6)

we see that Ti tends with large m to

(4.71)

T̂i = T̂i[N, k, `] :=

[
− π√

2k
,
π√
2k

]
×
[
− π√

2`
,
π√
2`

]
∖{

{(0, 0)} if i ∈ {1, N}{
±
(

π
2
√

2k
, π

2
√

2`

)}
if 1 < i < N.

Recalling (2.2), (2.7), (2.9), (2.15), and (2.16), we also define the maps
Ti = Ti[N, k, `,m, ζ, ξ] : Ti → S3 by

(4.72)

Ti(x, y) := Φ
(
T̂i

( x

m
,

y

m

))
, where

T̂N := Text
[
(N − 2)(X,Y ), zKN−1, zN , R,X, Y, τN−1

]
,

T̂1 := Text
[
(0, 0), zK1 , z1, R,X, Y, τ1

]
, and for 1 < i < N

T̂i := Tint

[
(2i− 3)

(
X

2
,
Y

2

)
, zKi−1, z

K
i , zi, R,X, Y, τi−1, τi

]
.
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Then, referring to (2.30) and particularly (2.29), the image of each Ti
is entirely contained in the initial surface Σ[N, k, `,m, ζ, ξ] and defines
the corresponding toral region

(4.73) T [i] = T [i;N, k, `,m, ζ, ξ] := Ti (Ti) ,

so that Ti a diffeomorphism onto its image. Abusing notation slightly we
denote the inverse of this diffeomorphism by T−1

i . From (2.14), (2.15),
(2.16), (2.26), (2.29), (2.30), (4.26), and (4.73) it is clear that

(4.74)

T [i] ∩ T [i′] 6= ∅ if and only if i = i′,

T [i] ∩ K[i′] 6= ∅ if and only if i− i′ ∈ {0, 1},
N⋃
i=1

Ωi =
N−1⋃
i=1

K[i] ∪
N⋃
i=1

T [i], and Σ =
N−1⋃
i=1

GK[i] ∪
N⋃
i=1

GT [i].

Each limit region T̂i ⊃ Ti naturally carries the flat metric gE =
dx2 + dy2, but we also equip it with the conformal metric

(4.75)

χ̂i = χ̂i[N, k, `] := ρ̂2
i gE , having conformal factor

ρ̂i = ρ̂i[N, k, `] : T̂i → (0,∞) defined by

ρ̂i(x, y) := ψ

[
1

10`
,

1

5`

]
(di(x, y))

+
1

di(x, y)
· ψ
[

1

5`
,

1

10`

]
(di(x, y)), where

di(x, y) is the Euclidean distance in R2 from the set{
{(0, 0)} if i ∈ {1, N}{
±
(
mX

2 , mY2
)}

if 1 < i < N,

recalling (2.4). Under the χ̂i metric T̂i looks like a flat
√

2π/k×
√

2π/`
rectangle with one or two discs of radius 1/5` replaced by one or two infi-
nite half-cylinders of radius 1, each attached smoothly along an annulus.
We emphasize that ρ̂i is independent of m as well as the parameters ζ,
ξ, and, in view of (4.14), we observe that on each domain Ti

(4.76) T ∗i ρ = mρ̂i.

In the next section we will define the extended substitute kernel needed
to complete the construction, as outlined in Section 1. Then, in the final
section, the role of the dislocations will become clear: the dislocation Di
(recalling (3.32)) on the toral region T [i] will be varied to cancel the “ex-
tended” portion of the extended substitute kernel supported there. For
this reason it is necessary to isolate the dominant contribution of each
dislocation to the mean curvature, and to that end for 2 ≤ i ≤ N − 1
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we define vi ∈ C∞(T̂i) by

(4.77)

vi(x, y) :=ψ

[
1

5`
,

1

10`

]√(x− mX

2

)2

+

(
y − mY

2

)2


− ψ
[

1

5`
,

1

10`

]√(x +
mX

2

)2

+

(
y +

mY

2

)2


and we define wi ∈ C∞G (Σ) to be the unique G-invariant (recalling (2.26)
and (4.4)) function satisfying

(4.78)

wi|Σ\GT [i] := 0 and

T ∗i wi :=

{
(−1)N−i

(
∆χ̂ivi

)∣∣
Ti

if 1 < i < N

0 if i ∈ {1, N},

the alternating sign included to account for the alternating direction of
the unit normal on the toral regions and the exceptional cases i = 1
and i = N included merely for convenience of notation. (We could have
alternatively built the alternating sign into the definition of the disloca-
tions.) The function vi|Ti ◦T

−1
i should be regarded as the section of the

normal bundle graphically generating dislocations on T [i], and in the
following proposition we will see that the function wi then captures the
principal effect of dislocation on the mean curvature. Later the collec-
tion {wi}N−1

i=2 will reappear as the defining basis for the extended part
of the extended substitute kernel. Right now we estimate the geometry
of the toral regions.

Proposition 4.79 (Estimates of the geometry of the toral regions).
Given a real number c > 0 and integers N ≥ 2, ` ≥ k ≥ 1, and j ≥ 0,
there exist real numbers m0 = m0[N, k, `, c] > 0 and C = C[N, k, `, j] >
0 such that whenever ζ, ξ ∈ [−c, c]N−1 and m > m0, for 1 ≤ i ≤ N

(i)
∥∥∥χ− T−1

i
∗
χ̂i : Cj

(
T ∗T [i]⊗2, χ

)∥∥∥ ≤ Cm2τ1;

(ii)
∥∥ρ : Cj(T [i], χ, ρ)

∥∥+
∥∥ρ−1 : Cj(T [i], χ, ρ)

∥∥ ≤ C,

(iii)
∥∥∥A− (−1)N−im−2T−1

i
∗
(dy2− dx2) : Cj (T [i]\ (K[i− 1]∪K[i]) , χ)

∥∥∥
≤ Cmτ1,

(iv)
∥∥∥ρ−2 |A|2g : Cj (T [i], χ)

∥∥∥ ≤ Cm−2, and

(v)
∥∥ρ−2H −Diwi : Cj

(
T [i], χ,m2ρ−2τ1 +m2τ2

1

)∥∥ ≤ C,

recalling (2.14), (3.32), (4.6), (4.7), (4.8), (4.9), (4.14), (4.72), (4.73),
(4.75), and (4.78).
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Proof. We first observe, using (4.17), (4.25), (4.27), (4.72), (4.75),
and (4.76), that if T [i] ∩ K[i′] 6= ∅, then

(4.80)
χ̂K |κ−1

i′ (T [i]) − κ∗i′T
−1
i
∗
χ̂i

∣∣∣
T [i]∩K[i′]

= sech2 t dt2

= τ2
i′ (ρ ◦ κi′)

2 dt2,

but ρ|κ−1
i′ (T [i]) ≤ τ

−1/2
i′ by (4.73), so by applying items (i) and (ii) of

Proposition 4.30 we have proven item (i) of the present proposition on
the overlap of the toral and catenoidal regions. On this same intersection
the remaining items (with (iii) obviously excluded) also follow from the
corresponding ones in Proposition 4.30.

We will finish the proof by verifying the estimates on T [i] ∩ {ρ ≤
10`m} = T [i]\ (K[i− 1] ∪ K[i]) (understanding K[0] = K[N ] = ∅). For
this we set

(4.81) Di := T−1
i ({ρ ≤ 10`m}) ⊂ Ti

and apply Lemma 4.42, viewing Ti|Di as a perturbation φi[ui] of the
embedding φi := $ ◦ Ti : Di → (S3,m2gS ) of Di into the Clifford
torus T with m2gS unit normal ν[φi] directed toward C1; here $ :
S3\(C1 ∪ C2)→ T is nearest-point projection in (S3,m2gS ) onto T and
the function ui generating the perturbation is identified below. Thus,
recalling (2.2) and (2.3),

(4.82)

$ (Φ(x, y, z)) = Φ(x, y, 0),

φi(x, y) = Φ
( x

m
+ xi,

y

m
+ yi, 0

)
, φ∗im

2gS = gE ,

ν[φi]|(x,y) = m−1Φ∗∂z

∣∣
( x
m

+xi,
y
m

+yi,0)
and

ν[φi[ui]]|(x,y) = (−1)N−im−1ν|Ti(x,y),

where xi, yi give the appropriate lattice site appearing in (4.72), ν[φi[ui]]
is the m2gS unit normal for φi[ui] specified in Lemma 4.42, and ν is the
gS unit normal we chose for Σ just above (4.8). Writing A[ui] and H[ui]
for the second fundamental form and mean curvature of φi[ui] relative
to m2gS and ν[φi[ui]], as in Lemma 4.42, and recalling (4.8) and the
definition of ι : Σ→ S3 as the inclusion map of the initial surface in S3,
it follows that

(4.83)

ι∗gS |Ti(Di) = m−2φi[ui]
∗m2gS ,

A|Ti(Di) = (−1)N−im−1A[ui], and

H|Ti(Di) = (−1)N−imH[ui].

Setting

(4.84) r0(x, y) :=
√

x2 + y2 and r±1(x, y) := r0

(
x∓ mX

2
, y ∓ mY

2

)
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and referring to (4.72) and the supporting definitions (including in par-
ticular (2.15) and (2.16)) and recalling (3.32), we have as the function
generating the perturbation (that is playing the role of u in the state-
ment of Lemma 4.42) ui : Di → R given by

u1

m
(x, y) =z1 + ψ

[
1

5`
,

1

10`

]
(r0(x, y))

× τ1

(
ln

1

10`mτ1
− arcosh

r0(x, y)

mτ1

)
,

(4.85)

uN
m

(x, y) =zN + ψ

[
1

5`
,

1

10`

]
(r0(x, y))

× τN−1

(
arcosh

r0(x, y)

mτN−1
− ln

1

10`mτN−1

)
,

(4.86)

and for 1 < i < N

(4.87)

ui
m

(x, y) =zi + ψ

[
1

5`
,

1

10`

]
(r−1(x, y))

×
(
−Di + τi−1 arcosh

r−1(x, y)

mτi−1
− τi−1 ln

1

10`mτi−1

)
+ ψ

[
1

5`
,

1

10`

]
(r1(x, y))

×
(
Di + τi ln

1

10`mτi
− τi arcosh

r1(x, y)

mτi

)
.

Using (2.21), the last item of (3.6), the inequality |Di| ≤ C[N, k, `]mτ1

(by (2.12) and (2.14) whenever m ≥ c), along with the estimates

(4.88)

∥∥∥∥ψ [ 1

5`
,

1

10`

]
◦ r0 : Cj(T ∗D1

⊗j , gE )

∥∥∥∥ ≤ C[`, j],∥∥∥∥D[gE ]j arcosh
r0

mτi
: C0(T ∗D1

⊗j , gE )

∥∥∥∥ ≤ C[`, j] for j > 0,

and

N−1∑
i=1

∥∥∥∥τi arcosh
r0

mτi
: C0(D1)

∥∥∥∥ ≤ C[N, k, `]m2τ1

(again using (2.12) and (2.14) for the third line), we obtain

(4.89)

∥∥ui : C0(Di)
∥∥ ≤ C[N, k, `]m3τ1 and∥∥∥D[gE ]jui : C0(T ∗Di

⊗j , gE )
∥∥∥ ≤ C[N, k, `, j]m2τ1 for j ≥ 1.

Using (2.3) and recalling the notation of Lemma 4.42 (remembering
in particular that we are taking g in its statement to be m2gS ) we also
have

(4.90)
gui = (1 + sin 2m−1ui) dx2 + (1− sin 2m−1ui) dy2,

so by (4.89)
∥∥gui − gE : Cj

(
T ∗D⊗2

i , gE
)∥∥ ≤ C[N, k, `, j]m2τ1.
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Item (ii) of Lemma 4.42 now yields

(4.91)
∥∥m2T ∗i gS − gE : Cj

(
T ∗D⊗2

i , gE
)∥∥ ≤ C[N, k, `, j]m2τ1.

The proofs of (i) and (ii) are now completed by (4.75), (4.76), and the
observation that

(4.92)
∥∥ρ̂i : Cj(Di, gE )

∥∥+
∥∥ρ̂−1

i : Cj(Di, gE )
∥∥ ≤ C[`, j].

Furthermore, again using (2.3) and the notation of Lemma 4.42,

(4.93)
Aui = −m−1

(
cos 2m−1ui

) (
dx2 − dy2

)
, so by (4.89),∥∥Aui −m−1(dy2 − dx2) : Cj

(
T ∗D⊗2

i , gE
)∥∥ ≤ C[N, k, `, j]mτ1,

while from (4.89) and (4.90)

(4.94)
C[N, k, `, j]m2τ1 ≥

∥∥D[gui ]2ui : Cj
(
T ∗D⊗2

i , gE
)∥∥

+
∥∥∥|dui|gui : Cj (Di, gE )

∥∥∥ .
Item (iii) of the present proposition is now proved by applying item
(i), (4.93), and (4.94) (and (4.89) again) in item (iii) of Lemma 4.42,
keeping in mind (4.83). Item (iv) follows in turn.

Finally, from the identity

(4.95) ∆g
E

arcosh
r0

mτi
= − m2τ2

i

r0

(
r2
0 −m2τ2

i

)3/2
along with (2.21), the first two estimates of (4.88), definition (4.78),
and the fact that ∆χ̂i = ρ̂−2

i ∆g
E

(by (4.75) and the two-dimensionality

of T̂i) we find

(4.96)

∥∥∥∆g
E
ui − (−1)N−imρ̂2

iDiT ∗i wi : Cj (Di, gE )
∥∥∥

≤ C[N, k, `, j]mτ1.

(Note that without subtracting the dislocation term on the left it would
be necessary to allow C on the right-hand side of (4.96) to depend on
c, or, if we were to apply the assumption we have used repeatedly that
c ≤ m, to allow the exponent on m to increase.) We now apply item
(iv) of Lemma 4.42. In doing so we make use of (4.96), (4.89), (4.90),
(4.93), and (4.94); we also take note of Remark 4.45 and of course the
facts that T itself is minimal and m2τ1 < 1. We thereby obtain

(4.97)
∥∥H[ui]− (−1)N−imρ̂2

iDiT ∗i wi : Cj(Di, gE )
∥∥ ≤ C[N, k, `, j]mτ1,

and the proof is completed by (4.76) and (4.83). q.e.d.
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Decay norms and a global estimate of the mean curvature.
As mentioned in Section 1, because the characteristic size τ1 of the
catenoidal waists is so much smaller than the characteristic size m−1 of
the toral regions, we must allow perturbing functions to be much larger
on the toral regions than on the core of the catenoidal regions. For this
reason we will weight our norms by powers of the factor mρ−1, which
takes the value 1 a maximal distance from the catenoidal regions and is
of order mτ1 at the waists. Specifically, for each α ∈ (0, 1), γ ∈ [0,∞),
and nonnegative integer j, we define the norm

(4.98) ‖·‖j,α,γ = ‖·‖Cj,α,γ(Σ) :=

∥∥∥∥· : Cj,α(Σ, χ,
mγ

ργ

)∥∥∥∥ ,
(recalling (4.6) and (4.14)) and the corresponding Banach space along
with its (closed) G-invariant subspace (recalling (2.26) and (4.4))

(4.99)
Cj,α,γ(Σ) :=

{
u ∈ Cj,α(Σ, χ)

∣∣ ‖u‖j,α,γ <∞} and

Cj,α,γG (Σ) :=
{
u ∈ Cj,α,γ(Σ)

∣∣ g.u = u for all g ∈ G
}
,

in accordance with Notation 4.5.

Remark 4.100. Of course, since each initial surface Σ is compact,

Cj,α,γ(Σ), Cj,α(Σ, χ), and Cj,αloc (Σ) all refer to the same topological vec-

tor space, which we more simply call Cj,α(Σ) (forgetting the norm struc-
tures of the first two spaces and dropping the superfluous subscript of
the third).

Definition 4.101 (Continuity in the parameters). If

(4.102) f = f [N, k, `,m, ζ, ξ] ∈ Cj,α(Σ[N, k, `,m, ζ, ξ])

defines a family of functions on the initial surfaces and we make the
usual assumption that ζ, ξ ∈ [−c, c]N−1 for some c > 0, we say that f
depends continuously on (ζ, ξ) if we have continuity of the map

(4.103)
[−c, c]N−1 × [−c, c]N−1 → Cj,α(Σ[N, k, `,m, 0, 0])

(ζ, ξ)→ f [N, k, `,m, ζ, ξ] ◦ I[N, k, `,m](ζ, ξ, ·),

where I = I[N, k, `,m] is as described in Remark 2.33. Note that this
definition does not depend on the particular choice of I.

Similarly, if A[ζ, ξ] = A[N, k, `,m, ζ, ξ] : CJ,α(Σ[N, k, `,m, ζ, ξ]) →
Cj,α(Σ[N, k, `,m, ζ, ξ]) (or R) is a family of (not necessarily linear) con-
tinuous maps, we call the associated map (u, ζ, ξ) 7→ A[ζ, ξ][u] continu-
ous for fixed N , k, `, and m if we have continuity of the map

(4.104)
CJ,α(Σ[N, k, `,m, 0, 0])× [−c, c]N−1 × [−c, c]N−1

→ Cj,α(Σ[N, k, `,m, 0, 0]) or R
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given by

(4.105)
(u, ζ, ξ) 7→ I(ζ, ξ, ·)∗

(
A[ζ, ξ]

(
I(ζ, ξ, ·)−1∗u

))
or (u, ζ, ξ) 7→ A[ζ, ξ]

(
I(ζ, ξ, ·)−1∗u

)
.

In order to secure acceptable decay estimates for solutions to the
linearized problem we will need the following estimate for the initial
mean curvature.

Corollary 4.106 (Global weighted estimate of the initial mean cur-
vature). Given real numbers c > 0 and γ ∈ (0, 1) as well as inte-
gers N ≥ 2 and ` ≥ k ≥ 1, there exist C = C[N, k, `] > 0 and
m0 = m0[N, k, `, c, γ] such that for each integer m > m0, each ζ, ξ ∈
[−c, c]N−1, and each α ∈ (0, 1)

(4.107)

∥∥∥∥∥ρ−2H −
N−1∑
i=2

Diwi

∥∥∥∥∥
0,α,γ

≤ Cτ1,

using the norm (4.98) and recalling (3.32), (4.8), (4.14), and (4.78).
Moreover ρ−2H is G-invariant (recalling (2.26) and (4.4)) and depends
continuously, as an element of C0,α,γ(Σ), on (ζ, ξ) in the sense of Def-
inition 4.101.

Proof. The continuity claim is obvious, as in fact both ρ ◦ I and
H ◦ I are manifestly smooth. The G-invariance of ρ also follows di-
rectly from its definition, while that of H follows from the G-invariance
of Σ itself, establishing that ρ−2H is G-invariant as well. (Note that
in this construction all elements of our symmetry group G act on all
functions under consideration according to the first line of (4.4). Of
course, were we to enforce also symmetries reversing the sides of Σ,
it would be natural to consider a different action of G on ρ from that
defined by (4.4) on H, since the former represents a true scalar field,
while H represents a section of the normal bundle. Specifically, the ap-
propriate action on ρ would be to follow the first line of (4.4) even for
elements reversing the sides of Σ. In this case too we would conclude the
appropriate G-equivariance of ρ−2H.) As for the estimate, from item
(v) of Proposition 4.79 and items (iii) and (vi) of Proposition 4.30 we
get

(4.108)

∥∥∥∥∥ρ−2H −
N−1∑
i=2

Diwi : C1
(
Σ, χ,m2ρ−2τ1 +m2τ2

1

)∥∥∥∥∥
≤ C[N, k, `]
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for some constant C[N, k, `] > 0 whenever m is sufficiently large in terms
of N , k, `, and c, but

(4.109)

m2ρ−2τ1 +m2τ2
1

mγρ−γτ1
=

(
m

ρ

)2−γ
+m2−γτ1ρ

γ

≤
(m
m

)2−γ
+m2−γτ1−γ

1 ,

using (4.15) for the last inequality, and the estimate now follows from
the second item of (3.6). q.e.d.

5. The linearized operator

We continue to write ι = ι[N, k, `,m, ζ, ξ] : Σ[N, k, `,m, ζ, ξ] → S3

for the inclusion map of the initial surface Σ = Σ[N, k, `,m, ζ, ξ] in S3

and ν = ν[N, k, `,m, ζ, ξ] : Σ→ ι∗TS3 for the unit normal which points
toward C1 at the points of Σ nearest to C1 (or equivalently which points
upward at the top of Σ as viewed via coordinates obtained through the
map Φ defined in (2.2)). Fixing the data N ≥ 2, ` ≥ k ≥ 1, and
m sufficiently large, we consider deformations of ι[N, k, `,m, 0, 0] ob-
tained by varying the parameters ζ and ξ and by additionally perturb-
ing the resulting initial surface Σ[N, k, `,m, ζ, ξ] in the normal direction
by a prescribed function. Specifically we define ι[N, k, `,m, ζ, ξ, u] :
Σ[N, k, `,m, ζ, ξ]→ S3 by

(5.1)
ι[u] = ι[N, k, `,m, ζ, ξ, u](p)

:= expι[N,k,`,m,ζ,ξ](p) u(p)ν[N, k, `,m, ζ, ξ](p),

where exp : TS3 → S3 is the exponential map for (S3, gS ). As asserted in
Lemma 4.42, ι[N, k, `,m, ζ, ξ, u] is an immersion for sufficiently small u.
In this case we write ν[N, k, `,m, ζ, ξ, u] : Σ→ ι[ζ, ξ, u]∗TS3 for the unit
normal of ι[N, k, `,m, ζ, ξ, u] whose value at each p ∈ Σ has positive in-
ner product with the vector d

dt expι[N,k,`,m,ζ,ξ](p) tν[N, k, `,m, ζ, ξ](p) and

we writeH[u] = H[u, ζ, ξ] = H[N, k, `,m, ζ, ξ, u] : Σ[N, k, `,m, ζ, ξ]→ R
for the corresponding mean curvature

(5.2)
H[u] = H[u, ζ, ξ] = H[N, k, `,m, ζ, ξ, u]

:= H[ι[N, k, `,m, ζ, ξ, u], ν[N, k, `,m, ζ, ξ, u]],

with the notation and conventions introduced just below (4.41).
Our goal is to find ζ, ξ ∈ RN−1 and u ∈ C∞G (Σ) (recalling Notation

4.5) solving

(5.3) H[N, k, `,m, ζ, ξ, u] = 0

for each given N ≥ 2, ` ≥ k ≥ 1, and m sufficiently large, with u small
enough that the resulting minimal surface (the image of ι[N, k, `,m, ζ,
ξ, u]) is a small perturbation of the initial surface Σ[N, k, `,m, ζ, ξ], so in
particular embedded. A major step toward the solution of (5.3) consists
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in the study of the initial surface’s Jacobi operator L = L[N, k, `,m, ζ, ξ]
defined by

(5.4) Lu =
d

dt

∣∣∣∣
t=0

H[N, k, `,m, ζ, ξ, tu] =
(

∆g + |A|2g + 2
)
u,

recalling that g = ι[N, k, `,m, ζ, ξ]∗gS . Actually, because of the unifor-
mity afforded by the χ metric (4.9), it is much more convenient to study
instead the linear operator

(5.5) Lχ = Lχ[N, k, `,m, ζ, ξ] := ρ−2L = ∆χ + ρ−2 |A|2g + 2ρ−2,

which clearly takes G-equivariant functions (as defined by (2.26) and
(4.4)) to G-equivariant functions and which, by virtue of the estimates

of ρ−2 |A|2g in Propositions 4.30 and 4.79, defines (for any α, γ ∈ (0, 1))

a linear map Lχ : C2,α,γ
G (Σ) → C0,α,γ

G (Σ) bounded independently of m
and c.

In this section we construct a likewise bounded right inverse R to
Lχ, modulo the extended substitute kernel described in Section 1 and
formally defined below. We do this by first analyzing Lχ “semilocally”,
meaning on the toral and catenoidal regions individually, and by observ-
ing that on each of these regions Lχ has a simple limit as m→∞. Sig-
nificantly, because adjacent toral and catenoidal regions overlap, when
attempting to solve the equation Lχu = f on a toral region T [i], we
may assume that f is supported outside the intersection of T [i] with
the adjoining catenoidal region(s). We will find we can invert these
regional limits of Lχ (modulo extended substitute kernel in the toral
cases) and so produce approximate semilocal inverses to Lχ, which will
be applied iteratively, using decay properties of the solutions they yield,
to construct R.

Approximate solutions on the catenoidal regions. Recalling (4.16)
and (4.17), we define the operator

(5.6) L̂K := ∆χ̂
K

+ 2 sech2 t

on functions on K. Note that L̂K is simply cosh2 t times the Jacobi
operator of the standard catenoid (4.18). From items (i) and (v) of
Proposition 4.30 we see that (recalling (5.5))

(5.7) lim
m→∞

κi
∗Lχκi∗−1 = L̂K ,

where the convergence is to be interpreted in the following sense. For
any given bounded subset Ω of the cylinder K the operator on the left-
hand side of (5.7) is defined as a map C2

loc(Ω) → C0
loc(Ω) whenever m

is taken sufficiently large in terms of the diameter of Ω and |ζ| (not-
ing limm→∞ ai = ∞ by (4.24)) and its difference from the operator on
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the right-hand side is a first-order operator X[m] + f [m] on Ω satisfy-
ing limm→∞

(∥∥X[m] : Cj(TΩ, χ̂K )
∥∥+

∥∥f [m] : Cj(Ω, χ̂K )
∥∥) = 0 for each

nonnegative integer j.
Recall that each catenoidal region K[i] is defined in (4.26) via (4.25)

as the image under Φ (2.2) of a certain catenoid in R3. Of course this
last catenoid has an axis of symmetry, a line in R3 whose intersection
with the domain of Φ has image under Φ a quarter great circle in S3,
which circle (at least in this paragraph) we will call the axis of K[i]. It
follows from (2.25), (2.26), and (4.26) that the subgroup of G preserving
a given catenoidal region K[i] as a set is isomorphic to the dihedral
group D2 of order 4 (also isomorphic to Z2×Z2 of course, but we favor
the more concise and geometric nomenclature), consisting of (i) the
identity element I of O(4), (ii) reflection Xi through the great sphere
containing C2 and the axis of K[i], (iii) reflection Yi through the great
sphere containing C1 and the axis of K[i], and (iv) rotation XiYi = YiXi
through angle π (also called reflection) through the axis of K[i].

Using (2.25) again, we see that κi intertwines the above D2 action
on K[i] with the natural action of the D2 subgroup of symmetries of
(K, χ̂K )

(5.8)
GK :=

{
ÎK , X̂K , ŶK , X̂KŶK

}
, where

ÎK(t, θ) := (t, θ), X̂K(t, θ) := (t, π − θ), and ŶK(t, θ) := (t,−θ),

in the sense that

(5.9) κi ◦ X̂K = Xi ◦ κi and κi ◦ ŶK = Yi ◦ κi

(and these elements generate the two groups). Since I, X̂, and Ŷ all
preserve each side (choice of unit normal) of Σ, the natural action (re-
calling (4.4)) of any element g ∈ GK on a function f on K is simply
g.f = f ◦ g.

Next, having in mind (4.98) and using (2.12), (2.14), and (4.27), we
also note that on each Kai

(5.10) C[N, k, `]−1mτ1 ≤
mκi

∗ρ−1

e|t|
≤ C[N, k, `]mτ1,

so that the pullback to Kai by κi of the weight mγρ−γ appearing in our

global norm (4.98) on Σ is comparable to the weight mγτγ1 e
γ|t| on K,

where obviously the first two factors are constant on K. All the above
considerations motivate us to introduce, for each nonnegative integer j
and α ∈ [0, 1) and γ ∈ (0, 1) the norms

(5.11) ‖·‖Cj,α,γ(K) :=
∥∥∥·, Cj,α (K, χ̂K , eγ|t|)∥∥∥
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(recalling (4.6)) and corresponding Banach spaces of GK-even functions

(5.12)
Cj,α,γGK

(K) :=
{
u ∈ Cj,α(K, χ̂K )

∣∣ ‖u‖Cj,α,γ(K) <∞

and g.u = u for all g ∈ GK
}
.

Clearly L̂K : C2,α,γ
GK

(K)→ C0,α,γ
GK

(K) is bounded (independently of α, γ ∈
(0, 1)). The following proposition presents a suitable inverse.

Proposition 5.13 (Solutions to the model problem on the catenoid).
There exists a linear map

(5.14) R̂K : C0,α,γ
GK

(K)→ C2,α,γ
GK

(K)

defined for all α, γ ∈ (0, 1), and, given any α, γ ∈ (0, 1), there exists a

constant C = C[α, γ] > 0 such that whenever f ∈ C0,α,γ
GK

(K),

(5.15) L̂KR̂Kf = f and
∥∥∥R̂Kf∥∥∥

C2,α,γ(K)
≤ C ‖f‖C0,α,γ(K) ,

recalling (4.16), (5.6), (5.8), (5.11), and (5.12).

Proof. Let f ∈ C0,α,γ
GK

(K) for some α, γ ∈ (0, 1). For each nonnegative

integer n we define the functions f±n : R→ R by

(5.16)

f+
n (t) :=

∫ 2π

0
f(t, θ) cosnθ dθ and

f−n (t) :=

∫ 2π

0
f(t, θ) sinnθ dθ,

but f is GK-even, so by (5.8) and (5.12) f−n (t) ≡ 0 for every n and
f+
n (t) ≡ 0 for every odd n, so that

(5.17) f(t, θ) =
1

2π
f+

0 (t) +
1

π

∞∑
n=1

f+
2n(t) cos 2nθ,

at least distributionally. From the factorizations

(5.18)
∂2
t + 2 sech2 t− 1 = (∂t − tanh t)(∂t + tanh t) and

∂2
t − 1 = (∂t + tanh t)(∂t − tanh t)

we find that for n ≥ 2 the kernel (without any restriction on the rate
of growth) of ∂2

t + 2 sech2 t − n2 is spanned by the functions (∂t −
tanh t)e±nt = (±n − tanh t)e±nt, while for n = 0 it is spanned by the
functions −(∂t − tanh t)1 = tanh t and (∂t − tanh t)t = 1 − t tanh t
(the Jacobi fields on the catenoid (4.18) induced respectively by ver-
tical translation and dilations about the origin), and for n = 1 (not
needed for this construction) the kernel is spanned by the functions
(∂t − tanh t) sinh t = sech t and (∂t − tanh t)t sinh t = sinh t + t sech t
(which, multiplied by linear combinations of cos θ and sin θ, respec-
tively generate horizontal translations and rotations about horizontal
axes through the center of (4.18)).
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It follows (and is straightforward to check directly) that if for each
nonnegative integer n 6= 1 we define the function un : R→ R by

(5.19)

u0(t) :=

∫ t

0
[(t− s) tanh s tanh t+ (tanh t− tanh s)] fn(s) ds

and for n > 1

un(t) :=
n+ tanh t

2n(1− n2)
e−nt

∫ t

−∞
(n− tanh s)ensfn(s) ds

+
n− tanh t

2n(1− n2)
ent
∫ ∞
t

(n+ tanh s)e−nsfn(s) ds,

then un solves
(
∂2
t + 2 sech2 t− n2

)
un = fn with u0(0) = u̇0(0) = 0 and

un bounded whenever fn is compactly supported and n > 1. Therefore
the distribution

(5.20) u :=
1

2π
u0 +

1

π

∞∑
n=1

u2n

solves L̂Ku = f , at least in the distributional sense, and is even (also as

a distribution) under the reflections X̂K and ŶK (defined in (5.8)). It is
elementary to verify from (5.19) that

(5.21)
|un(t)| ≤ C[γ]

n2 + 1
‖f‖C0,α,γ(K) e

γ|t|, so

‖u‖C0,0,γ(K) ≤ C[γ] ‖f‖C0,α,γ(K)

for some constant C[γ] independent of the data f . Standard elliptic
theory, using in particular the Schauder estimates, then implies that in
fact u is a classical solution satisfying

(5.22) ‖u‖C2,α,γ(K) ≤ C[α, γ] ‖f‖C0,α,γ(K)

for some constant C[α, γ] > 0 independent of the data f , and we have

already observed that u is GK-even. Taking R̂Kf := u thus concludes
the proof. q.e.d.

Approximate solutions on the toral regions. Recalling (4.71) and

(4.75), note that both T̂i and χ̂i are, for all i, independent of m and the
ζ, ξ parameters. Recalling also (4.70) and (5.5), from items (i) and (ii)
of Proposition 4.79 we see that on Ti
(5.23) lim

m→∞
T ∗i LχT ∗i

−1 = ∆χ̂i ,

where the convergence is to be interpreted along the lines described
for (5.7), using in this case, in addition to Proposition 4.79, the fact
that limm→∞m

√
τi = 0, as follows from the second line of (3.6). Note

additionally that, by (2.25), (2.26), (2.30), and (4.72), the pullback by
Ti of any G-invariant function on Σ to Ti must satisfy periodic boundary
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conditions on the rectangular part of the boundary and must moreover
respect a D2 group of symmetries.

Specifically, for 1 ≤ i ≤ N , we define the quotients

(5.24)

(Ti/∼) ⊂ T̂i/∼, where

(x, y) ∼ (x′, y′)⇔ (x− x′, y − y′) ∈
√

2π

k
Z×
√

2π

`
Z,

so that Ti/∼ (or T̂i/∼) is a
√

2π/k ×
√

2π/` torus with one disc (or
point) deleted if i ∈ {1, N} and two otherwise. We also define the D2

subgroup of symmetries of T̂i/∼

(5.25)

GTi :=
{
ÎT , X̂Ti , ŶTi , X̂TiŶTi

}
, where

ÎT (x, y) := (x, y),

X̂Ti(x, y) :=

{
(−x, y) if i ∈ {1, N}(

π√
2k
− x, y

)
if 1 < i < N,

and

ŶTi(x, y) :=

{
(x,−y) if i ∈ {1, N}(

x, π√
2`
− y
)

if 1 < i < N

(using coordinates on the universal cover of T̂i/∼ to define the symme-

tries). Obviously GTi preserves both T̂i/∼ and Ti/∼.

Remark 5.26. Recalling Notation 4.5, it now follows from (2.25),
(2.26), (2.30), (4.25), (4.26), (4.72), (4.73), (5.8), and (5.25) that, for
any α ∈ [0, 1) and nonnegative integer j, a function

(5.27) f ∈ Cj,αloc

(
N−1⋃
i=1

K[i] ∪
N⋃
i=1

T [i]

)
extends (uniquely) to a function in Cj,αloc,G(Σ) if and only if κi

∗f ∈
Cj,αloc,GK (Kai) for each 1 ≤ i ≤ N − 1 and T ∗i f descends to a function in

Cj,αloc,GTi
(Ti/∼) for each 1 ≤ i ≤ N .

Motivated also by (4.76) and definition (4.98), we are led to define,
for any nonnegative integer j, α ∈ [0, 1), and γ ∈ (0,∞), the norms

(5.28) ‖·‖
Cj,α,γ(T̂i/∼) :=

∥∥∥· : Cj,α (T̂i/∼, χ̂i, ρ̂−γi )∥∥∥
(recalling (4.6)) and the corresponding Banach spaces of GTi-even func-
tions

(5.29)
Cj,α,γGTi

(
T̂i/∼

)
:=
{
u ∈ Cj,α

(
T̂i/∼, χ̂i

) ∣∣∣ ‖u‖Cj,α,γ(T̂i/∼) <∞

and g.u = u for all g ∈ GTi

}
.
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Clearly ∆χ̂i : C2,α,γ
GTi

(
T̂i/∼

)
→ C0,α,γ

GTi

(
T̂i/∼

)
is bounded (indepen-

dently of α, γ ∈ (0, 1)). Proposition 5.31 below presents a suitable
inverse, modulo the extended substitute kernel and with a support con-
dition on the source function. The support assumption (expressed below
using the function di from (4.75) and writing spt f for the support of
a function f) we can afford to make because in practice we will ap-
ply Proposition 5.13 before applying Proposition 5.31. The extended
substitute kernel we formally define right now. We first recall the defi-
nition (4.78) of wi, remembering in particular that w1 and wN vanish
identically, and for 1 ≤ i ≤ N we introduce wi ∈ C∞G (Σ) defined by

(5.30)
T ∗i wi := ψ

[
1

10`
,

1

5`

]
◦ di and

wi|Σ\GT [i] := 0 for 1 ≤ i ≤ N,

recalling the function di from (4.75). Finally we define the extended
substitute kernel to be the linear span in C∞(Σ) of {wi, wi}Ni=1.

Proposition 5.31 (Solutions to the model problems on the torus).
Let ` ≥ k ∈ Z ∩ [1,∞) and i ∈ Z ∩ [1, N ]. There exists a linear map

(5.32)

R̂Ti = R̂Ti [k, `] :{
f ∈ C0,α

GTi

(
T̂i/∼, χ̂i

) ∣∣∣ spt f ⊂
{
di >

1

20`

}}
→ C2,α,2

GTi

(
T̂i/∼

)
× R× R

defined for all α ∈ (0, 1), and, given any α ∈ (0, 1), there exists a
constant C = C[k, `, α] > 0 such that whenever f belongs to the domain

of R̂Ti above and (u, µ, µ) = R̂Tif , then

(5.33)
∆χ̂iu = f + µT ∗i wi + µT ∗i wi and

‖u‖
C2,α,2(T̂i/∼) + |µ|+

∣∣µ∣∣ ≤ C ∥∥∥f : C0,α
(
T̂i/∼, χ̂i

)∥∥∥ ,
recalling (4.71), (4.75), (4.78), (5.24), (5.25), (5.28), (5.29), and (5.30).

Proof. Suppose f ∈ C0,α
GTi

(T̂i/∼, χ̂i) has support contained in the set

U := {1/di < 20`}. We intend to apply a conformal change of metric
and attack the corresponding problem on the flat torus (Ti, gE ), where

Ti is simply T̂i/∼ with the missing point(s) filled in and gE = dx2 +dy2

is the standard flat metric. By definition (4.75) (and because T̂i is two-

dimensional) the equation ∆χ̂iu = f on T̂i/∼ is equivalent to ∆g
E
u =

ρ̂2
i f . Note that GTi acts by isometries on (Ti, gE ) in the obvious way.

Clearly the function ρ̂i defined in (4.75) descends to a function (which
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we give the same name) in C∞GTi
(T̂i/∼) and clearly

(5.34)
∥∥ρ̂i|U : Cj(U, χ̂i)

∥∥ ≤ C[`, j]

for some constant C[`, j]. Consequently

(5.35)
∥∥ρ̂2

i f : C0,α(Ti, gE )
∥∥ ≤ C[`]

∥∥∥f : C0,α(T̂i/∼, χ̂i)
∥∥∥

(where we have trivially extended ρ̂2
i f to a function of the same name

on Ti, simply by requiring it to vanish at the filled in point(s)).
Of course the equation ∆g

E
u = ρ̂2

i f has a solution on Ti if and only

if the right-hand side has vanishing integral over Ti, which we do not
assume. Accordingly we would like to permit ourselves the freedom of
adding a constant to the right-hand side. Soon though (at the end of
this section) we intend to transfer the solution from this model problem
to the initial surface, so we want to confine any modification of the
right-hand side to the toral region in question, avoiding any interference
on the adjoining catenoidal regions. Therefore we will we use the cutoff
function T ∗i wi in (5.30) in lieu of the constant function 1 for the purpose
of adjusting the right-hand side to make it orthogonal to the kernel.

More precisely we note that T ∗i wi descends smoothly to Ti and we
define

(5.36) µ := −
∫
Ti ρ̂

2
i f dx dy∫

Ti ρ̂
2
iT
∗
i wi dx dy

,

so that
∫
Ti ρ̂

2
i (f + µT ∗i wi) dx dy = 0. Consequently there is a unique

function u0 : Ti → R solving

(5.37) ∆g
E
u0 = ρ̂2

i (f + µT ∗i wi)

and satisfying
∫
Ti u0 dx dy = 0; in particular u0 is necessarily GTi-

invariant. Note also that by (4.75) ρ̂i ≥ 1 on T̂i and that by (4.71)
and (5.30) w = 1 on a region of positive gE -area (depending on just k

and `), while of course Ti itself has area 2π2

k` ; it then follows from (5.35)
and (5.36) that

(5.38) |µ| ≤ C[k, `]
∥∥∥f : C0,α(T̂i/∼, χ̂i)

∥∥∥
for some constant C[k, `] > 0. The classical global Schauder estimates
applied to (5.37) imply in particular that

(5.39)

∥∥u0 : C0(Ti)
∥∥ ≤ C[k, `]

∥∥ρ̂2
i (f + µT ∗i wi) : C0,α(Ti, gE )

∥∥
≤ C[k, `]

∥∥∥f : C0,α(T̂i/∼, χ̂i)
∥∥∥

(for a possibly larger constant C[k, `] than above), where for the first
inequality we have again used the fact that Ti is just a flat

√
2π/k ×√

2π/` torus and for the second we have used (5.35) and (5.38).
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We still need to arrange the rapid decay of our solution toward the

point(s) in Ti missing from T̂i. To this end we first observe that, be-
cause both f (by assumption) and w (by definition (5.30)) have support
contained in U = {1/di < 20`}, the solution u0 to (5.37) is harmonic on
the set Ti\U =

{
di ≤ 1

20`

}
, where, as we see from (4.75), di = 1/ρ̂i. For

i ∈ {1, N} this set has one component—the closed disc of radius 1
20` and

center p0 := (0, 0)—while otherwise it has two components—the closed

discs of radius 1
20` and centers p± :=

(
π

2
√

2k
, π

2
√

2`

)
= ±

(
mX

2 , mY2
)
, re-

calling (2.28). Now we define µ ∈ R by

(5.40) (−1)N−iµ :=

{
0 if i ∈ {1, N}
1
2 [u0(p−)− u0(p+)] if i 6∈ {1, N},

so that by (5.39)

(5.41)
∣∣µ∣∣ ≤ C[k, `]

∥∥∥f : C0,α(T̂i/∼, χ̂i)
∥∥∥ .

Recalling (4.77) and noting that v descends smoothly to Ti, we also
define u : Ti → R by

(5.42) u :=

{
u0 − u0(p0) if i ∈ {1, N}
u0 − 1

2 [u0(p−) + u0(p+)] + (−1)N−iµvi otherwise

(where we include the alternating signs because of the one present in
definition (4.78) of wi, which in turn we included to account for the
alternating direction of the unit normal on the toral regions). Thus by
(5.37) and (4.78)

(5.43) ∆χ̂iu0 = f + µT ∗i wi + µT ∗i wi.

Note that vi is constant on each component of Ti\U , so, like u0,
the function u is harmonic on Ti\U . By classical harmonic function
theory

(5.44)
∥∥u : C2(Ti\U, gE )

∥∥ ≤ C[`]
∥∥u : C0(∂U, gE )

∥∥
for some constant C[`] > 0. On the other hand, since vi(p±) = ±1,
we have u(p0) = 0 if i ∈ {1, N} and u(p±) = 0 otherwise. Moreover,
u is GTi-invariant (because u0, v, and the constants are), so, recalling
(5.25), both first partial derivatives of u also vanish at p0 if i ∈ {1, N}
and at both points p± otherwise. Using Taylor’s theorem and (5.44),
we therefore obtain

(5.45)

∥∥u : C0
(
Ti\U, gE , di

2
)∥∥ ≤ C[`]

∥∥u : C0(∂U, gE )
∥∥

≤ C[k, `]
∥∥∥f : C0,α(T̂i/∼, χ̂i)

∥∥∥ ,
where we recall (4.6) and for the last inequality we use (5.39). As already
observed ρ̂−1

i = di on Ti\U , while on U it is bounded below by 1
20` , so
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it now follows from (4.6), (5.28) (5.43), (5.45), and the standard local

Schauder estimates together with the bounded geometry of (T̂i/∼, χ̂i)
that

(5.46) ‖u‖
C2,α,2(T̂i/∼)

≤ C[k, `, α]
∥∥∥f : C0,α(T̂i/∼, χ̂i)

∥∥∥ ,
which, along with (5.38), (5.41), (5.43), and the already observed GTi-
invariance of u, concludes the proof. q.e.d.

Exact global solutions. Now we use Propositions 5.13 and 5.31 to
construct global solutions to the linearized problem on each initial sur-
face, modulo extended substitute kernel.

Proposition 5.47 (Global solutions to the linearized problem). Given
a real number c > 0 and integers N ≥ 2 and ` ≥ k ≥ 1, there ex-
ists m0 = m0[N, k, `, c] > 0 such that whenever ζ, ξ ∈ [−c, c]N−1 and
m > m0, there is a linear map

(5.48)
R = R[N, k, `,m, ζ, ξ] : C0,α,γ

G[k,`,m](Σ[N, k, `,m, ζ, ξ])

→ C2,α,γ
G[k,`,m](Σ[N, k, `,m, ζ, ξ])× RN × RN−2

(recalling (4.99)) defined for all α, γ ∈ (0, 1), and, given α, γ ∈ (0, 1),
there is a constant C = C[N, k, `, α, γ] > 0 such that whenever f ∈
C0,α,γ
G (Σ) and (u, (µ1, · · · , µN ), (µ

2
, · · · , µ

N−1
)) = Rf , then

(5.49)

Lχu = f +
N∑
i=1

µiwi +
N−1∑
i=2

µ
i
wi and

‖u‖2,α,γ +
N∑
i=1

|µi|+
N−1∑
i=2

∣∣∣µ
i

∣∣∣ ≤ ‖f‖0,α,γ
(recalling (4.98) and (5.5)); moreover, for any fixed N , k, `, and m,
the map

(5.50) (f, ζ, ξ) 7→ R[N, k, `,m, ζ, ξ]f is continuous

in the sense of Definition 4.101.

Proof. Let c > 0, α, γ ∈ (0, 1), N ∈ Z ∩ [2,∞), ` ≥ k ∈ Z ∩ [1,∞),
ζ, ξ ∈ [−c, c]N−1, and m ∈ Z∩ [m0,∞), where m0 is at least as large as
the maximum of the homonymous quantities appearing in Propositions
4.30, 4.79, 5.13, and 5.31 and is subject to an additional lower bound
imposed at the end of the proof. Recalling (4.26), we start by defining,
for 1 ≤ i ≤ N − 1, the linear maps

(5.51) ΨK[i] : C(K[i])→ C(Σ)
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so that ΨK[i]f is the unique G-equivariant function which vanishes out-
side GK[i] and which satisfies

(5.52)

(
ΨK[i]f

)∣∣
K[i]

: = κ−1
i
∗

[(ψ [ai, ai − 1/2] ◦ |t|) · κi∗f ]

=
(
ψ [ai, ai − 1/2] ◦

∣∣t ◦ κ−1
i

∣∣) · f,
recalling (2.4), (4.24), and (4.25). Note that by (4.17) the jth χ̂K co-
variant derivative of ψ [ai, ai − 1] ◦ |t| is uniformly χ̂K-bounded on Kai

by a constant depending on just j. Recalling Proposition 5.13, we also
define

(5.53)

R̃K : C0,α,γ
G (Σ)→ C2,α,γ

G (Σ) by

R̃Kf :=

N−1∑
i=1

ΨK[i]vK[i], with

vK[i] := κ−1
i
∗
(
R̂K

(
κi
∗ΨK[i](f |K[i])

))
,

where κi
∗ΨK[i](f |K[i]) is trivially (and smoothly) extended from Kai to

K so that it vanishes outside Kai , recalling (4.16) and (4.22). Then

(5.54)
LχR̃Kf =

N−1∑
i=1

([
Lχ,ΨK[i]

]
vK[i]

+ΨK[i]κ
−1
i
∗
(
κi
∗Lχκ−1

i
∗ − L̂K

)
κi
∗vK[i] + Ψ2

K[i]f |K[i]

)
,

where in the first term the brackets indicate the commutator of the
operators they enclose, in the second term we recall (5.6), and in the
last term we make use of Proposition 5.13.

We will absorb the “cutoff error” in (5.54), present in the first and
third terms, into the right-hand side when solving on the toral regions
in the next step. More precisely, for any given f ∈ C0,α,γ

G (Σ) we define

(5.55) fT := f −
N−1∑
i=1

Ψ2
K[i]f |K[i] −

N−1∑
i=1

[
Lχ,ΨK[i]

]
vK[i],

where each vK[i] is defined (for the given f) in (5.53). Note that fT is

G-equivariant and has support contained in G
(⋃N

i=1 T [i]
)

. In fact, since

(5.56)
τi cosh

(
ai −

1

2

)
= τi cosh ai

(
cosh

1

2
− tanh ai sinh

1

2

)
≥ e−1/2τi cosh ai >

1

20`m

(using (4.24) for the final inequality), we have, recalling (4.72),

(5.57) sptTi
∗fT ⊂

{
di >

1

20`

}
.
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Next, recalling (4.73), for 1 ≤ i ≤ N we now define the linear maps

(5.58) ΨT [i] : C(T [i])→ C(Σ)

so that ΨT [i]f is the unique G-equivariant function on Σ vanishing out-
side GT [i] and satisfying

(5.59)

(
ΨT [i]f

)∣∣
T [i]

:= T−1
i
∗
[(
ψ
[
lnmτ

1/3
1 , lnmτ

1/6
1

]
◦ ln di

)
· Ti∗f

]
=
(
ψ
[
lnmτ

1/3
1 , lnmτ

1/6
1

]
◦ ln

(
di ◦ Ti−1

))
· f

for which we recall (4.72) and (4.75). Note that by (2.12) and (2.14) we

have
√
τi < τ

1/3
1 < τ

1/6
1 for 1 ≤ i ≤ N − 1 and that moreover by (4.75)

all χ̂i covariant derivatives of ψ
[
lnmτ

1/3
1 , lnmτ

1/6
1

]
◦ ln di are uniformly

χ̂i-bounded on Ti.
Now, recalling Proposition 5.31 and (5.55) just above, we also define

for 1 ≤ i ≤ N the maps

(5.60)

R̃T [i] : C0,α,γ
G (Σ)→ C2,α,γ

G (Σ)× R× R by

R̃T [i]f :=
(
ΨT [i]vT [i], µ, µ

)
with

vT [i] := T−1
i
∗
v̂T [i] and

(
v̂T [i], µ, µ

)
:= R̂Ti (Ti

∗fT ) .

Here we are implicitly regarding Ti
∗fT as a function on T̂i/∼ (possible

because fT is G-equivariant) after extending it to a function on T̂i which
simply vanishes outside Ti, and moreover we see that (5.57) ensures

that this function truly belongs to the domain of R̂Ti . It now follows

by Proposition 5.31 that if (uT [i], µ, µ) = R̃T [i]f , then

(5.61)
LχuT [i] =

[
Lχ,ΨT [i]

]
vT [i] + ΨT [i]fT |T [i] + µwi + µwi

+ ΨT [i]T
−1
i
∗
(
Ti
∗LχT−1

i
∗ −∆χ̂i

)
Ti
∗vT [i].

Next we define the approximate solution operator

(5.62)

R̃ : C0,α,γ
G (Σ)→ C2,α,γ

G (Σ)× RN × RN−2 by

R̃f :=

(
R̃Kf +

N∑
i=1

uT [i], (µ1, . . . , µN ) ,
(
µ

2
, . . . , µ

N−1

))
with

(
uT [i], µi, µi

)
:= R̃T [i]f,

where R̃K and R̃T [i] are defined in (5.53) and (5.60) above and where

from the output of R̃ we are simply omitting µ
1

= µ
N

= 0, as indi-

cated. Clearly R̃ (from its definition and Propositions 5.13 and 5.31)
is bounded independently of c and m. Moreover, the map (f, ζ, ξ) 7→
R̃[N, k, `,m, ζ, ξ]f is manifestly continuous (in the sense of Definition
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4.101), since all the operators (including Lχ itself) on Σ used to con-
struct it clearly enjoy this continuous dependence themselves, while the

maps R̂K and R̂Ti are of course independent of the parameters. Defin-
ing also the operator

(5.63)

L̃ : C2,α,γ
G (Σ)× RN × RN−2 → C0,α,γ

G (Σ) by

L̃
(
u, (µ1, . . . , µN ) ,

(
µ

2
, . . . , µ

N−1

))
:= Lχu−

N∑
i=1

µiwi −
N−1∑
i=2

µ
i
wi

and using (5.54), (5.55), (5.61), and the definitions of ΨK[i] and ΨT [i]

above, we find that for any f ∈ C0,α,γ
G (Σ)

(5.64)

L̃R̃f − f =
N−1∑
i=1

κ−1
i
∗
(
κi
∗Lχκ−1

i
∗ − L̂K

)
κi
∗vK[i]

+
N∑
i=1

T−1
i
∗
(
Ti
∗LχT−1

i
∗ −∆χ̂i

)
Ti
∗vT [i]

+

N∑
i=1

[
Lχ,ΨT [i]

]
vT [i],

where vK[i] and vT [i] are defined in (5.53) and (5.60).
From (5.5), items (i) and (v) of Proposition 4.30, items (i) and (iv) of

Proposition 4.79, Propositions 5.13 and 5.31, and the definitions of ΨK[i]

and ΨT [i] above we find that the first two sums in (5.64) have C0,α,γ

norm bounded by m−2 times some constant C = C[N, k, `, α, γ] > 0
times ‖f‖0,α,γ . As for the commutator terms, note that each commu-

tator
[
Lχ,ΨT [i]

]
itself has support contained in Ti

({
di ≤ mτ1/6

})
, but

by Proposition 5.31 and the definition of vT [i] in (5.60) we know that

(5.65)

∥∥∥∥vT [i] : C0,α

(
Ti

({
di ≤ mτ1/6

1

})
, χ,

mγ

ργ

)∥∥∥∥
≤ C ‖f‖0,α,γm

2−γτ
1/3−γ/6
1

(for a possibly larger C = C[N, k, `, α, γ] than above). Thus (making
use of line 2 of (3.6)) we may take m large enough (in terms of C) so that

L̃R̃ is a small perturbation of the identity operator on C0,α,γ
G (Σ) and

consequently invertible. Taking R := R̃
(
L̃R̃
)−1

concludes the proof.

q.e.d.

As an immediate application we obtain the first-order correction of
the initial surface toward minimality.
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Corollary 5.66 (The solution to first order). Given c > 0, α, γ ∈
(0, 1), and integers N ≥ 2 and ` ≥ k ≥ 1, there exist real numbers
m0 = m0[N, k, `, c, γ] > 0 and C = C[N, k, `] > 0 such that whenever
ζ, ξ ∈ [−c, c]N−1, m > m0, and

(5.67)

(
u1, (λ1, . . . , λN ) ,

(
λ2, . . . , λN−1

))
:= −R

(
ρ−2H −

N−1∑
i=2

Diwi

)
(recalling (3.32), (4.8), (4.14), (4.78), and Proposition 5.47), then

(5.68) ‖u1‖2,α,γ +
N∑
i=1

|λi|+
N−1∑
i=2

|λi| ≤ Cτ1

(recalling (4.98)); moreover, λ1, . . . , λN and λ2, . . . , λN−2 all depend
continuously on (ζ, ξ), as does u1 (in the sense of Definition 4.101).

Proof. All the claims follow directly from Corollary 4.106 and Propo-
sition 5.47, with the obvious supplemental facts that Di is continuous
in the parameters and, in the sense of Definition 4.101, wi is too. q.e.d.

6. The main theorem

The nonlinear terms. Recall (4.8), (5.2) and (5.4). We will need the
following estimate for the nonlinear contribution

(6.1)
Q[u] = Q[N, k, `,m, ζ, ξ, u]

:= H[N, k, `,m, ζ, ξ, u]−H − L[N, k, `,m, ζ, ξ]u

that the deforming function u makes to the mean curvature. (Of course
H = H[N, k, `,m, ζ, ξ, 0].)

Lemma 6.2 (The nonlinear terms). Given Cu, c > 0, α, γ ∈ (0, 1),
and integers N ≥ 2 and ` ≥ k ≥ 1, there exists

m0 := m0[N, k, `,m,Cu, c] > 0

such that (recalling (2.13), (4.14), (4.98), and (6.1)) Q[N, k, `,m, ζ, ξ, u]
is well-defined and

(6.3)
∥∥ρ−2Q[N, k, `,m, ζ, ξ, u]

∥∥
0,α,γ

≤ τ1+γ/2
1

whenever m > m0, ζ, ξ ∈ [−c, c]N−1, and u ∈ C2,α(Σ, χ) satisfies
‖u‖2,α,γ ≤ Cuτ1; furthermore, for each fixed N , k, `, and m > m0,

the map (u, ζ, ξ) 7→ Q[N, k, `,m, ζ, ξ, u] is continuous (in the sense of
Definition 4.101).

Proof. That Q[u] is defined at all will be clear from Lemma 4.42 in
conjunction with the estimates below (which show that ι[u] (5.1) is an
immersion and H[u] is defined). The continuity follows immediately
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from the smooth dependence (Remark 2.33) of the initial surfaces on
the parameters and from definition (5.2). To make the estimate we will
apply Lemma 4.42 to the embedding ι : Σ → S3 of the initial surface
into (S3, gS ), as Q[u] can then be read off from item (iv) of the lemma.
First we observe, recalling (4.6), (4.7), (4.8), and (4.14), that by (4.9)
and Propositions 4.30 and 4.79

(6.4)
C[j] ≥

∥∥∥g : Cj
(
T ∗Σ⊗2, χ, ρ−2

)∥∥∥+
∥∥g−1 : Cj

(
TΣ⊗2, χ, ρ2

)∥∥
+
∥∥∥A : Cj

(
T ∗Σ⊗2, χ, τ1 + ρ−2

)∥∥∥ .
Now, using the notation of Lemma 4.42, we can apply its system (i) to
estimate gt, gt, and At.

Actually the estimates become more transparent if we first rescale
the system: we set

(6.5) g̃s := ρ2gs/ρ(·), g̃s := ρ−2gs/ρ(·), and Ãs := ρAs/ρ(·),

so that by item (i) of Lemma 4.42 and Remark 4.45

(6.6) ∂sg̃
s
αβ = −2Ãsαβ and ∂sÃ

s
αβ = ρ−2g̃sαβ − g̃γδs ÃsαγÃsβδ

and by (6.4), (4.15), item (ii) of Proposition 4.30, and item (ii) of Propo-
sition 4.79

(6.7)
C[j] ≥

∥∥∥g̃0 : Cj
(
T ∗Σ⊗2, χ

)∥∥∥+
∥∥g̃0 : Cj

(
TΣ⊗2, χ

)∥∥
+
∥∥∥Ã0 : Cj

(
T ∗Σ⊗2, χ

)∥∥∥+
∥∥ρ−2 : Cj(Σ, χ)

∥∥ .
It follows from the system (6.6) and the estimates (6.7) on the initial
conditions and coefficients that there exists some ε > 0 such that the
solution to the system exists at all points p ∈ Σ whenever |s| < ε and
moreover for any nonnegative integers i and j there exists a constant
C[i, j] such that whenever |s| ≤ ε/2

(6.8)
C[i, j] ≥

∥∥∥∂sig̃s : Cj
(
T ∗Σ⊗2, χ

)∥∥∥
+
∥∥∂sig̃s : Cj

(
TΣ⊗2, χ

)∥∥+
∥∥∥∂siÃs : Cj

(
T ∗Σ⊗2, χ

)∥∥∥ .
Now let Cu > 0 and u ∈ C2,α,γ

G (Σ) with ‖u‖2,α,γ ≤ Cuτ1. By (4.6)

and (4.98)

(6.9)
∥∥ρu : C2,α

(
Σ, χ,mγτ1ρ

1−γ)∥∥ ≤ Cu,
so in particular by (4.15) and line 2 of (3.6)

(6.10)
∥∥ρu : C2,α(Σ, χ)

∥∥ ≤ mγτγ1 ≤
ε

2
,

provided m is chosen large enough (in terms of ε > 0, c, and Cu).
Consequently we can apply the estimates (6.8) along with the definitions
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(6.5) to conclude that for all t ∈ [0, 1]
(6.11)

C ≥
∥∥∥gtu : C2,α

(
T ∗Σ⊗2, χ, ρ−2

)∥∥∥
+
∥∥gtu : C2,α

(
TΣ⊗2, χ, ρ2

)∥∥+
∥∥∥Atu : C2,α

(
T ∗Σ⊗2, χ, ρ−1

)∥∥∥
for some constant C = C[N, k, `] > 0 whenever m > m0 for some
m0 = m0[N, k, `, c] > 0. Thus we also have

(6.12)
C[N, k, `, Cu] ≥

∥∥Hu : C2,α(Σ, χ, ρ)
∥∥

+
∥∥∥gu − g : C2,α

(
T ∗Σ⊗2, χ,mγτ1ρ

−1−γ
)∥∥∥ ,

using (i) of Lemma 4.42 to estimate the second norm.
Since χ = ρ2g,

(6.13)
∥∥∥D [T ∗Σ, g]−D [T ∗Σ, χ] : Cj

(
T ∗Σ⊗2, χ

)∥∥∥ ≤ C[j],

so, using also ‖u‖2,α,γ ≤ Cuτ1, (6.11), and the estimate for the second

term of (6.12),

(6.14)
C ≥

∥∥∥D[gu]Atu : C1,α
(
T ∗Σ⊗3, χ, ρ−1

)∥∥∥
+
∥∥∥D[gu]2u : C0,α

(
T ∗Σ⊗2, χ, τ1

)∥∥∥
for another constant C = C[N, k, `, Cu] > 0, whenever ζ, ξ ∈ [−c, c]N−1

and m > m0 for some m0 = m0[N, k, `, c, Cu] > 0. Applying (6.11),
(6.14), and ‖u‖2,α,γ ≤ Cuτ1 (as well as Remark 4.45) in item (iv) of

Lemma 4.42 and then using (2.14) and (4.15), for each p ∈ Σ we obtain

(6.15)

∥∥ρ−2Q[u] : C0,α(B[p, 1, χ], χ)
∥∥

mγρ−γ
≤ Cτ2

1m
γρ(p)1−γ

= Cτ
1+γ/2
1 mγτ

1−γ/2
1 τγ−1

1

≤ Ce4cτ
1+γ/2
1 mγτ

γ/2
1 ,

where B[p, 1, χ] is the χ metric ball of center p and radius 1 and C =
C[N, k, `, Cu] > 0 is yet another constant, whenever ζ, ξ ∈ [−c, c]N−1

and m is sufficiently large in terms of N , k, `, and c. The proof is now
concluded by invoking line 2 of (3.6). q.e.d.

Forces through the perturbed surface. Recall, in addition to (5.1)
and (5.2), the perturbed unit normal ν[u] = ν[N, k, `,m, ζ, ξ, u] defined
just after (5.1) for sufficiently small u. For such u and for each integer
i ∈ [1, N ] we define the force

(6.16)

F̃i = F̃i[N, k, `,m, ζ, ξ, u]

:=

∫
Ωi

H[u] (gS ◦ ι[u])(K ◦ ι[u], ν[u])
√
|ι[u]∗gS |,
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the perturbation by u of (3.2), where
√
|ι[u]∗gS | is the area form induced

by ι[u] and gS . We will need the following estimate for F̃i.

Lemma 6.17 (Estimates of the perturbations to the forces). Given
Cu, c > 0, α, γ ∈ (0, 1), and integers N ≥ 2 and ` ≥ k ≥ 1, there exist
real numbers c̃ := c̃[N, k, `, Cu] > 0 and m0 := m0[N, k, `,m,Cu, c] > 0
such that (recalling (3.2) and (6.16))

(6.18)
∣∣∣F̃i[N, k, `,m, ζ, ξ, u]−Fi[N, k, `,m, ζ, ξ]

∣∣∣ ≤ c̃m−2τ1

whenever 1 ≤ i ≤ N , m > m0, ζ, ξ ∈ [−c, c]N−1, and u ∈ C2,α(Σ, χ)
satisfies ‖u‖2,α,γ ≤ Cuτ1; furthermore, for each fixed i, N , k, `, and

m > m0, the map (u, ζ, ξ) 7→ F̃i[N, k, `,m, ζ, ξ, u] is continuous (in the
sense of Definition 4.101).

We emphasize that in the statement of Lemma 6.17 c̃ does not depend
on c or m.

Proof. The continuity is clear from the smooth dependence of the
initial surfaces on the ζ, ξ parameters and from definitions (5.1) and
(5.2). Turning to the estimate, obviously

(6.19)

F̃i −Fi =

∫
Ωi

H[u] (gS ◦ ι[u])(K ◦ ι[u], ν[u])
[√
|g[u]| −

√
|g|
]

+

∫
Ωi

H[u] [(gS ◦ ι[u])(K ◦ ι[u], ν[u])− (gS ◦ ι)(K ◦ ι, ν)]
√
|g|

+

∫
Ωi

[H[u]−H] (gS ◦ ι)(K ◦ ι, ν)
√
|g|,

using the notation of Lemma 4.42.
From (5.2), (5.5), Corollary 4.106, Lemma 6.2, (2.14), (3.32), and the

assumption that ‖u‖2,α,γ ≤ Cuτ1

(6.20)
∥∥ρ−2H[u]

∥∥
0,α,γ

=
∥∥ρ−2H + Lχu+ ρ−2Q[u]

∥∥
0,α,γ

≤ mτ1

whenever ζ, ξ ∈ [−c, c]N−1 and m is sufficiently large in terms of N , k,
`, Cu, and c. By (3.1)

(6.21) |(gS ◦ ι[u])(K ◦ ι[u], ν[u])|+ |(gS ◦ ι)(K ◦ ι, ν)| ≤ 2

and, using also (4.64), the proof of Lemma 6.2 (particularly (6.11)), and
again the assumption ‖u‖2,α,γ ≤ Kτ1,

(6.22)
C[N, k, `, Cu]τ1 ≥

∣∣∣∣(gS ◦ ι[u])(K ◦ ι[u], ν[u])

−(gS ◦ ι)(K ◦ ι, ν) : C1,α
(
Σ, χ,mγρ1−γ)∣∣∣∣ .
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By item (ii) of Lemma 4.42 and the proof of Lemma 6.2 (particularly
the estimate of the second term in 6.12)

(6.23)
∥∥∥√|g[u]| −

√
|g| : C1,α

(
Σ, χ,mγρ−1−γ)∥∥∥ ≤ C[N, k, `, Cu]τ1.

Finally, for the χ area |Ωi|χ of Ωi we have, whenever ζ, ξ ∈ [−c, c]N−1

and m is sufficiently large in terms of N , k, `, and c, the estimate

(6.24)

|Ωi|χ ≤ |T [i]\(K[i− 1] ∪ K[i])|χ + |K[i− 1]|χ + |K[i]|χ

=

∫ π√
2`

− π√
2`

∫ π√
2k

− π√
2k

(
1 + Cm2τ1

)
dx dy

+ 4

∫ 2π

0

∫ m2+2c

0

(
1 + Cm2τ1

)
dt dθ ≤ 200m2,

recalling (2.29), (4.26), and (4.73), understanding K[0] = K[N ] = ∅,
and using (2.12), (4.24) and Propositions 4.30 and 4.79, which supply
the constant C = C[N, k, `].

It now follows from the estimates of the previous paragraph (and
(4.15) and line 2 of (3.6)) that, whenever ζ, ξ ∈ [−c, c]N−1 and m is
sufficiently large in terms of N , k, `, c, and Cu,

(6.25)

∣∣∣∣∫
Ωi

H[u] (gS ◦ ι[u])(K ◦ ι[u], ν[u])
[√
|g[u]| −

√
|g|
]∣∣∣∣

≤ Cm3+2γτ2
1

∥∥ρ1−2γ
∥∥
C0(Σ)

≤ m−2τ1 and∣∣∣∣∫
Ωi

H[u] [(gS ◦ ι[u])(K ◦ ι[u], ν[u])− (gS ◦ ι)(K ◦ ι, ν)]
√
|g|
∣∣∣∣

≤ Cm3+2γτ2
1

∥∥ρ1−2γ
∥∥
C0(Σ)

≤ m−2τ1

(regardless of the sign of 1 − 2γ). Furthermore, using also Lemma 6.2
(as well as (2.14)),

(6.26)

∣∣∣∣∫
Ωi

Q[u] (gS ◦ ι)(K ◦ ι, ν)
√
|g|
∣∣∣∣ ≤ Cm2τ

1+γ/2
1 ≤ m−2τ1,

again for m sufficiently large in terms of N , k, `, c, and Cu. Therefore

(6.27)

∣∣∣∣∫
Ωi

[H[u]−H] (gS ◦ ι)(K ◦ ι, ν)
√
|g|
∣∣∣∣ ≤∣∣∣∣∫

Ωi

(gS ◦ ι)(K ◦ ι, ν)Lu
√
|g|
∣∣∣∣+m−2τ1,
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recalling (5.4), but K is Killing, so integration by parts (specifically
Green’s identity) yields
(6.28)∫

Ωi

(gS ◦ ι)(K ◦ ι, ν)Lu
√
|g| =−

∫
Ωi

u (gS ◦ ι)(K ◦ ι, ι∗∇gH)
√
|g|

+

∫
∂Ωi

[(gS ◦ ι)(K ◦ ι, ν)(ηu)

− u (η [(gS ◦ ι)(K ◦ ι, ν)])]
√
|g|,

where η is the outward conormal on Ωi induced by g (and acts on
functions as a derivation).

Using (3.1), (3.32), (4.78), (4.108), and (6.24), it follows that

(6.29)

∣∣∣∣∫
Ωi

u (gS ◦ ι)(K ◦ ι, ι∗∇gH)
√
|g|
∣∣∣∣

≤ CCum2+γτ1

(∥∥m2ρ−1−γτ1 +m2ρ1−γτ2
1

∥∥
0

+ cm1−γτ1

)
≤ m−2τ1

for m sufficiently large in terms of N , k, `, Cu, and c. Turning to the
boundary term, as in the computation following (3.3), ∂Ωi has one or
two circular components (catenoidal waists) and a single rectangular
component. Suppose S := κi({t = 0}) or S := κi−1({t = 0}) is a
circular component and T := ∂Ωi\[κi−1({t = 0}) ∪ κi({t = 0})] is the
rectangular component. By (2.2), (2.29), and (3.1)

(6.30)
C ≥m2

∥∥(gS ◦ ι)(K ◦ ι, ν)− 1 : C0(T )
∥∥

+m
∥∥η [(gS ◦ ι)(K ◦ ι, ν)] : C0(T )

∥∥
for some constant C = C[N, k, `] > 0 and obviously T has g length
|T | |g|T ≤ Cm−1 and

∥∥u : C0(T )
∥∥ ≤ Cuτ1, so

(6.31)

∣∣∣∣∫
T
u (η [(gS ◦ ι)(K ◦ ι, ν)])

√
|g|T |

∣∣∣∣ ≤ Cm−2τ1

for another constant C = C[N, k, `, Cu] > 0, while
∥∥ηu : C0(T )

∥∥ ≤
Cumτ1, so

(6.32)

∣∣∣∣∫
T

[(gS ◦ ι)(K ◦ ι, ν)] (ηu)
√
|g|T |

∣∣∣∣
≤ Cm−2τ1 +

∣∣∣∣∫
T

(ηu)
√
|g|T |

∣∣∣∣ ≤ Cm−2τ1,

where for the first inequality we have used (6.30) and for the second we
have used the fact that, because u is G-equivariant, it satisfies periodic
boundary conditions on T and accordingly

∫
T (ηu)

√
|g|T | = 0.
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On the other hand, on S we have

(6.33)

∥∥u : C0(S)
∥∥ ≤ Cumγτ1+γ

1 ,∥∥ηu : C0(S)
∥∥ ≤ Cumγτγ1 , and∥∥η [(gS ◦ ι)(K ◦ ι, ν)] : C0(S)

∥∥
≤ sup

S

(
|D[gS ]K|g

S
+ |K|g

S
|A|g

)
≤ Cτ−1

1

for some constant C = C[N, k, `] > 0, having used item (v) of Propo-
sition 4.30 for the last inequality, and S has g length |S|g|S ≤ Cτ1,
so

(6.34)

m−2τ1 ≥ C[N, k, `, Cu]mγτ1+γ
1

≥
∫
S

(|u (η [(gS ◦ ι)(K ◦ ι, ν)])|

+ |[(gS ◦ ι)(K ◦ ι, ν)] (ηu)|)
√
|g|S |,

provided m is sufficiently large in terms of N , k, `, c, and Cu, yet again
using line 2 of (3.6) for the last inequality. The proof is now completed
by combining (6.19), (6.25), (6.27), (6.28), (6.29), (6.31), (6.32), and
(6.34). q.e.d.

Explicitly defined diffeomorphisms between initial surfaces.
Recall Remark 2.33 and Definition 4.101. Throughout the construction
we have made use of the existence of maps I[N, k, `,m] as in Remark
2.33 in order to identify function spaces defined on initial surfaces with
identical data N , k, `, and m but different ζ, ξ parameter values. So
far we have made these identifications merely so as to articulate certain
continuity properties, which do not depend on the choice of I. In the
proof of the main theorem, however, we will need bounds for the norms
of the corresponding identification maps between our normed function
spaces, and so we now explicitly define diffeomorphisms between the ini-
tial surfaces. We define these diffeomorphisms as compromises between
natural identifications on the various standard regions. More precisely,
recalling (4.24), (4.25), (4.26), (4.72), and (4.73), for any given data N ,
k, `, m, and ζ, ξ we start by defining, for 1 ≤ i ≤ N − 1,

(6.35)

ai := ai[N, k, `,m, ζ, ξ] and ai := ai[N, k, `,m, 0, 0],

K[i] := K[i;N, k, `,m, ζ, ξ] and K[i] := K[i;N, k, `,m, 0, 0],

κi := κi[N, k, `,m, ζ, ξ] and κi := κi[N, k, `,m, 0, 0],

and also, for 1 ≤ i ≤ N ,

(6.36)
T [i] := T [i;N, k, `,m, ζ, ξ] and T [i] := T [i;N, k, `,m, 0, 0],

Ti := Ti[N, k, `,m, ζ, ξ] and T i := Ti[N, k, `,m, 0, 0].
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We observe that the map

(6.37)
Ti ◦ T−1

i

∣∣
T [i]\(K[i−1]∪K[i])

:

T [i]\(K[i− 1] ∪ K[i])→ T [i]\(K[i− 1] ∪ K[i]),

(understanding K[0] = K[N ] = ∅) is a well-defined diffeomorphism. We
also observe (recalling (4.22)) that whenever T [i] ∩ K[j] 6= ∅, the map
Ti◦T−1

i ◦κj is well-defined on the component of Kaj\Kaj−1 whose image

under κj lies in T [i] and that on this set Ti◦T−1
i ◦κj has image contained

in K[j] and moreover satisfies

(6.38)
(
Ti ◦ T−1

i ◦ κj
)

(t, θ) = κj

(
(sgn t) arcosh

[
τ j
τj

cosh t

]
, θ

)
,

where sgn : R→ R takes the value 1 when its argument is nonnegative
and −1 otherwise. Note that (using the identity (2.20))

(6.39)

arcosh

(
τ j
τj

cosh t

)
= |t|+ ln

τ j
2τj

+ ln
(

1 + e−2|t|
)

+ ln

(
1 +

√
1− τ2

j τ
−2
j sech2 t

)
.

So motivated, for 1 ≤ j ≤ N − 1 we define the function t̃j : R → R
by

(6.40)

t̃j(t) :=
aj
aj
t · ψ

[
aj , aj − 1

]
(|t|)

+ (sgn t) arcosh

(
τ j
τj

cosh t

)
· ψ
[
aj − 1, aj

]
(|t|).

Using

(6.41)

d

dt
arcosh

(
τ j
τj

cosh t

)
=

tanh t√
τ2
j cosh2 t− τ2

j

τ j cosh t,

arcosh

(
τ j
τj

cosh±aj
)

= ±aj ,

and (by (4.24))

∣∣∣∣ajaj − 1

∣∣∣∣ ≤ 2c

m
,

along with (2.14) and (4.24), we see that by taking m sufficiently large
in terms of c we can guarantee that t̃ takes [−aj , aj ] monotonically onto
[−aj , aj ]. Away from the ends of [−aj , aj ] this reparametrization is
simply multiplication by aj/aj ≈ 1, while close to the ends it almost
agrees with the map t 7→ t+ (sgn t)(aj − aj).

We can now define the diffeomorphism

(6.42)
P [ζ, ξ] = P [N, k, `,m, ζ, ξ] :

Σ[N, k, `,m, 0, 0]→ Σ[N, k, `,m, ζ, ξ]
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by requiring that

(6.43)

(i) P commute with the action of G (recalling (2.26)),

(ii) for 1 ≤ i ≤ N
P [ζ, ξ]|T [i]\(K[i−1]∪K[i]) := Ti ◦ T−1

i ,

(iii) and for 1 ≤ i ≤ N − 1

(P [ζ, ξ] ◦ κi) (t, θ) := κi
(
t̃(t), θ

)
for all (t, θ) ∈ Kai

(continuing to understand K[0] = K[N ] = ∅). We define in turn the
map

(6.44) P = P[ζ, ξ] = P[N, k, `,m, ζ, ξ] := P [N, k, `,m, ζ, ξ]∗

taking functions on Σ[N, k, `,m, ζ, ξ] to functions on Σ[N, k, `,m, 0, 0].
Clearly the map I = I[N, k, `] : RN−1 × RN−1 × Σ[N, k, `, 0, 0] → S3

defined by I(ζ, ξ, ·) := ι[N, k, `,m, ζ, ξ] ◦ P [N, k, `,m, ζ, ξ] satisfies the
properties specified in Remark 2.33. Last we have the following esti-
mate.

Lemma 6.45 (Bound for P and its inverse). Given real numbers
α, γ ∈ (0, 1) and c > 0 as well as integers N ≥ 2 and ` ≥ k ≥ 1, there
exist real numbers C = C[N, k, `, α, γ] > 0 and m0 = m0[N, k, `, c] > 0
such that whenever ζ, ξ ∈ [−c, c]N−1 and m > m0 we have (recalling
(4.98)) the estimates

(6.46)

‖P[ζ, ξ]u‖C2,α,γ(Σ[N,k,`,m,0,0])

≤ Ce2c ‖u‖C2,α,γ(Σ[N,k,`,m,ζ,ξ]) and∥∥P[ζ, ξ]−1v
∥∥
C2,α,γ(Σ[N,k,`,m,ζ,ξ])

≤ Ce2c ‖v‖C2,α,γ(Σ[N,k,`,m,0,0]) .

Proof. Let u ∈ C2,α,γ(Σ[N, k, `,m, ζ, ξ]). By (4.70), (4.72), and (6.35)

(6.47) T−1
i (T [i]\(K[i− 1] ∪ K[i])) = T−1

i (T [i]\(K[i− 1] ∪ K[i])),

and by (6.43) and (6.44)

(6.48)
(T ∗i u) (x, y) = (T ∗i (Pu)) (x, y)

for all (x, y) ∈ T−1
i (T [i]\(K[i− 1] ∪ K[i])),

while by (6.40)

(6.49)
(κ∗iu)

(
(t̃(t), θ

)
= (κ∗i (Pu)) (t, θ)

for all (t, θ) ∈ Kai (equivalently all
(
t̃(t), θ

)
∈ Kai).

The asserted bounds are now clear from (4.98), using (2.14), (4.14),
(6.41), and Propositions 4.30 and 4.79. q.e.d.
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The main theorem. We are ready to prove the main theorem.

Theorem 6.50 (The main theorem). Let α, γ ∈ (0, 1). Given inte-
gers N ≥ 2 and ` ≥ k ≥ 1, there are real numbers C, c,m0 > 0 such
that for every m > m0 there exist parameters ζ, ξ ∈ [−c, c]N−1 and a
function u ∈ C∞G (Σ[N, k, `,m, ζ, ξ]) (recalling (2.26), (2.30), and Nota-
tion 4.5) such that ‖u‖2,α,γ ≤ Cτ1 (recalling (2.14) and (4.98)) and the

image of the normal deformation ι[u] : Σ→ S3 (recalling (5.1)) by u of
the inclusion ι : Σ→ S3 is a closed embedded minimal surface invariant
under G[k, `,m] and having genus k`m2(N − 1) + 1.

Proof. Fix α, γ ∈ (0, 1) and integers N ≥ 2 and ` ≥ k ≥ 1. For each
integer m ≥ 1 set

(6.51)
B[N, k, `,m] :=

{
v ∈ C2,α/2

G[k,`,m] (Σ[N, k, `,m, 0, 0], χ)

: ‖v‖2,α,γ ≤ τ
1+γ/3
1

}
(recalling (2.13)). Given ζ, ξ ∈ RN−1 and assuming m sufficiently large,
define also

(6.52)

(
u1, (λ1, . . . , λN ) ,

(
λ2, . . . , λN−1

))
:= −R

(
ρ−2H −

N−1∑
i=2

Diwi

)
[N, k, `,m, ζ, ξ],

as in Corollary 5.66 (recalling (3.32), (4.8), (4.14), (4.78), and Proposi-
tion 5.47), and for each v ∈ B[N, k, `,m] define

(6.53)

(
v′, (µ1[v], . . . , µN [v]) ,

(
µ

2
[v], . . . , µ

N−1
[v]
))

:= −R
(
ρ−2Q

[
u1 + P−1v

])
[N, k, `,m, ζ, ξ]

(recalling (6.1) and (6.44)).
Thus, for all ζ, ξ ∈ RN−1 and v ∈ B[N, k, `,m], provided m is suffi-

ciently large in terms of N , k, `, and ζ, ξ, recalling (5.2), (5.4), (5.5),
(6.1), and Proposition 5.47,

ρ−2H
[
u1 + v′, ζ, ξ

]
= ρ−2H + Lχ(u1 + v′) + ρ−2Q[u1 + v′]

=

[
Lχu1 +

(
ρ−2H −

N−1∑
i=2

Diwi

)]

+ ρ−2Q[u1 + v′] + Lχv′ +
N−1∑
i=2

Diwi
(6.54)

= ρ−2Q
[
u1 + v′

]
− ρ−2Q

[
u1 + P−1v

]
+

N∑
i=1

(λi + µi[v])wi
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+

N−1∑
i=2

(
Di + λi + µ

i
[v]
)
wi.

Evidently we want to pick (v, ζ, ξ) so that Pv′ = v (to make the non-
linear terms cancel), λi + µi[v] = 0 for all i ∈ Z ∩ [1, N ] (to make the
wi terms vanish), and Di + λi + µ

i
[v] = 0 for all i ∈ Z ∩ [2, N − 1] (to

make the wi terms vanish). Recalling (3.1), the unit normal ν for Σ
specified just above (4.8), and (5.30), we observe that on the support
of wi|Ωi the function (gS ◦ ι)(K ◦ ι, ν) has a sign (namely (−1)N−1) and
the function wi itself is nonnegative. Consequently, recalling (6.16), if
Pv′ = v and Di + λi + µ

i
[v] = 0 for all i ∈ Z ∩ [2, N − 1], then, for any

given i ∈ Z ∩ [1, N ], λi + µi[v] = 0 if and only if F̃i = 0. Accordingly,
recalling (6.52), (6.53), and Lemma 3.33, we seek a fixed point for the

map J : B[N, k, `,m]×R2N−2 → C
2,α/2
G[k,`,m](Σ[N, k, `,m, 0, 0], χ)×R2N−2

given by

(6.55)

J


v,



ζ1
...

ζN−1

ξ1
...

ξN−1




=


Pv′,



ζ1
...

ζN−1

ξ1
...

ξN−1



− Θ−1τ−1
1



m2F̃1[N, k, `,m, ζ, ξ, u1 + P−1v]
...

m2F̃N [N, k, `,m, ζ, ξ, u1 + P−1v]
D2[N, k, `,m, ζ, ξ] + λ2 + µ

2
[v]

...
DN−1[N, k, `,m, ζ, ξ] + λN−1 + µ

N−1
[v]




.

We will check that the hypotheses of the Schauder fixed-point the-
orem apply to J , after restricting its domain as specified below. It is
clear from definition (3.32) and from the continuity assertions made in
Proposition 5.47, Corollary 5.66, Lemma 6.2, and Lemma 6.17 that J
is continuous in the sense of Definition 4.101, with the product topology
on the domain and target, the Euclidean topology on the R2N−2 factors,
and the C2,α/2 topology on the function-space factors. Because each ini-
tial surface is compact, the topology of each Hölder space is independent
of the underlying metric and C2,α(Σ) embeds compactly in C2,α/2(Σ)
(as does the former’s G-equivariant subspace); therefore B[N, k, `,m] is

compact relative to the C2,α/2 topology and is clearly convex.
Now let CR be the constant C[N, k, `, α, γ] from Proposition 5.47, let

C1 be the constant C[N, k, `] from Corollary 5.66, let CP be the constant
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C[N, k, `] from Lemma 6.45, let c̃ be the constant c̃[N, k, `, 2C1] from
Lemma 6.17, let CΘ be the constant C[N, k, `] from Lemma 3.33, let

(6.56) c := CΘ

(
CΘ +

√
N
√
c̃2 + 4C2

1

)
,

and let m1 be the maximum of the quantities named m0[N, k, `, c] from
Proposition 2.31, Lemma 3.33, and Proposition 5.47 as well as the quan-
tity namedm0[N, k, `, c, γ] from Corollary 5.66 and the quantities named
m0[N, k, `,m, 2C1, c] from Lemma 6.2 and Lemma 6.17.

Suppose m > m1, ζ, ξ ∈ [−c, c], and v ∈ B[N, k, `,m]. Then by
(6.51), (6.52), Corollary 5.66, and Lemma 6.45

(6.57)

N∑
i=1

|λi|+
N−1∑
i=2

|λi| ≤ C1τ1 and

‖u1‖2,α,γ +
∥∥P−1v

∥∥
2,α,γ

≤ C1τ1 + CP e
2cτ

1+γ/3
1 ≤ 2C1τ1,

where for the last inequality we use (2.13), (2.14), and line 2 of (3.6)
and we assume m > m2 for some m2 = m2[N, k, `, γ] ≥ m1. It follows
in turn, using (6.53), Proposition 5.47, Lemma 6.2, and Lemma 6.45,
that

(6.58)
∥∥Pv′∥∥

2,α,γ
+

N∑
i=1

|µi[v]|+
N−1∑
i=2

∣∣∣µ
i
[v]
∣∣∣ ≤ CP e2cCRτ

1+γ/2
1 ≤ τ1+γ/3

1 ,

assuming, for the last inequality, that m > m3 for some m3 = m3[N, k,
`, γ] ≥ m2. In particular we have verified that

(6.59) v ∈ B[N, k, `,m]⇒ Pv′ ∈ B[N, k, `,m].

Continuing to assume m > m3, from Lemma 3.33, Lemma 6.17,
(6.56), (6.57), and (6.58) we find that for any ζ, ξ ∈ [−c, c]N−1

(6.60)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣



ζ1
...

ζN−1

ξ1
...

ξN−1


−Θ−1τ−1

1



m2F̃1[ζ, ξ, u1 + P−1v]
...

m2F̃N [ζ, ξ, u1 + P−1v]
D2[ζ, ξ] + λ2 + µ

2
[v]

...
DN−1[ζ, ξ] + λN−1 + µ

N−1
[v]



∣∣∣∣∣∣∣∣∣∣∣∣∣∣
≤ C2

Θ + CΘ

√
Nc̃2 + 4(N − 2)C2

1 ≤ c,

where the norm |·| is the Euclidean one on R2N−2 and we have sup-

pressed the N , k, `, and m arguments from each F̃i and Di. In con-
junction with (6.59) this bound shows that J (defined in (6.55)) maps
B[N, k, `,m] × [−c, c]2N−2 to itself. Moreover, it is immediately clear
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from our observations in the paragraph following (6.55) that J is contin-
uous and B[N, k, `,m]× [−c, c]2N−2 is compact relative to the topology
described there, and of course B[N, k, `,m]× [−c, c]2N−2 is convex.

The Schauder fixed-point theorem therefore applies to guarantee the
existence of a fixed point (v, ζ, ξ) for J . If we set u := u1 +P−1v, then,
as discussed above in the paragraph containing (6.54), we get

(6.61) H[u, ζ, ξ] = 0 and ‖u‖2,α,γ ≤ 2C1τ1.

That u is actually smooth now follows from the minimality and standard
regularity theory. We have already chosen m sufficiently large that ι[u]
is an immersion. By taking m possibly even larger, we can guarantee
embeddedness as follows. Recalling (4.14), consider in the initial surface
Σ the overlapping subsets K :=

{
ρ ≥ m2

}
and T :=

{
ρ ≤ m3

}
, so that

K has (N − 1)k`m2 components, each contained in an isometric copy
(under an element of G) of some K[i], and T has N components, each a
graph over T. By scaling gS it is clear that there exists ε = ε[N, k, `, c] >
0 such that ι[u]|K and ι[u]|T are embeddings whenever (given that they
are immersions)

∥∥u|K : C0(K)
∥∥ < ετ1 and

∥∥u|T : C0(T )
∥∥ < εm−3. Both

inequalities are ensured by the estimate for u in (6.61), assuming m >
m4 for some m4 = m4[N, k, `, γ] ≥ m3 (and, to get the first inequality,
using the decay built into the norm ‖·‖2,α,γ (4.98)). Moreover, there

is a constant δ = δ[N, k, `] > 0 so that the distance between any two
components of K is at least min{δm−1, δm2τ1}, the distance between
any two components of T is at least δm2τ1, and the distance between
any component of K\T and component of T\K is at least δm−2. Of
course 2C1τ1 < m2τ1 < m−2 < m−1 provided m > m0 for some m0 =
m0[N, k, `, γ] ≥ m4. Thus ι[u] is an embedding when m > m0. In
particular its image is diffeomorphic to Σ, so by Proposition 2.31 has
the stated genus. This ends the proof. q.e.d.
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