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LORENTZIAN EINSTEIN METRICS WITH
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Abstract

We prove a local well-posedness theorem for the (n+ 1)-dimen-
sional Einstein equations in Lorentzian signature, with initial data
(g̃, K) whose asymptotic geometry at infinity is similar to that
anti-de Sitter (AdS) space, and compatible boundary data ĝ pre-
scribed at the time-like conformal boundary of space-time. More
precisely, we consider an n-dimensional asymptotically hyperbolic
Riemannian manifold (M, g̃) such that the conformally rescaled
metric x2g̃ (with x a boundary defining function) extends to the
closure M of M as a metric of class Cn−1(M) which is also poly-
homogeneous of class Cp

polyhom(M). Likewise we assume that the

conformally rescaled symmetric (0, 2)-tensor x2K extends to M
as a tensor field of class Cn−1(M) which is polyhomogeneous of

class Cp−1
polyhom(M). We assume that the initial data (g̃, K) sat-

isfy the Einstein constraint equations and also that the boundary
datum is of class Cp on ∂M × (−T0, T0) and satisfies a set of
natural compatibility conditions with the initial data. We then
prove that there exists an integer rn, depending only on the di-
mension n, such that if p > 2q + rn, with q a positive integer,
then there is T > 0, depending only on the norms of the initial
and boundary data, such that the Einstein equations (1.1) has
a unique (up to a diffeomorphism) solution g on (−T, T ) × M
with the above initial and boundary data, which is such that
x2g ∈ Cn−1((−T, T ) × M) ∩ Cq

polyhom((−T, T ) × M). Further-

more, if x2g̃, x2K are polyhomogeneous of class C∞ and ĝ is in
C∞((−T0, T0)× ∂M), then x2g is in C∞polyhom((−T, T )×M).
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1. Introduction

Our goal in this paper is to prove a local well-posedness theorem for
the (n+ 1)-dimensional Einstein equations

(1.1) Ric(g) = −ng,

in Lorentzian signature, with initial data (g̃,K) corresponding to the as-
ymptotic geometry of anti-de Sitter (AdS) space, and compatible bound-
ary data ĝ prescribed at the time-like conformal boundary of space-time.
More precisely, we consider an n-dimensional asymptotically hyperbolic
Riemannian manifold (M, g̃), such that the conformally rescaled met-
ric x2g̃ extends to M , the union of M with its boundary ∂M (given
by x = 0), as a metric of class Cn−1(M) which is polyhomogeneous of
class Cppolyhom(M). Here and in what follows, x is a boundary defin-

ing function, that is a non-negative function on M , smooth up to the
boundary ∂M of M , with ∂M = {x = 0} and such that the differen-
tial of x is nonzero on ∂M . We refer to Section 4 for the definition of
polyhomogeneity.

Likewise we assume that the conformally rescaled symmetric (0, 2)-
tensor x2K extends to M as a tensor field of class Cn−1(M) which is

polyhomogeneous of class Cp−1
polyhom(M). We assume that the initial data

(g̃,K) satisfy the Einstein constraint equations and also give boundary
data of class Cp on ∂M × (−T0, T0) satisfying a set of natural compati-
bility conditions with the initial data (we refer to Appendix A for a dis-
cussion of the constraint equations and compatibility conditions). The
main result of our paper, which asserts that these initial and boundary
data determine an Einstein metric, can be stated as follows:

Theorem 1.1. Suppose that we are given initial and boundary condi-
tions (g̃, K, ĝ) with x2g̃ ∈ Cn−1(M) ∩ Cppolyhom(M), x2K ∈ Cn−1(M) ∩
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Cp−1
polyhom(M) and ĝ ∈ Cp((−T0, T0)×∂M) satisfying the constraint equa-

tions and the compatibility conditions to order p. There exists an inte-
ger rn, depending only on the dimension n, such that if p > 2q + rn,
then there is T > 0, depending only on the norms of the initial and
boundary data, such that the Einstein equations (1.1) has a unique
(up to a diffeomorphism) solution g on (−T, T ) × M with the above
initial and boundary data, which is such that x2g ∈ Cn−1((−T, T ) ×
M)∩Cqpolyhom((−T, T )×M). Furthermore, if x2g̃, x2K ∈ C∞polyhom(M),

ĝ ∈ C∞((−T0, T0) × ∂M) and the compatibility conditions are satisfied
to all orders, then x2g ∈ C∞polyhom((−T, T )×M).

Hence, the main result of our paper gives an extension to higher di-
mensions of the fundamental pioneering work of Friedrich [20], in which
a general existence theorem is proved for anti-de Sitter type space-times
in dimension n + 1 = 4. The approach of [20] is based on a reduction
of the problem with boundary at infinity to a finite maximally dissi-
pative initial-boundary value problem, achieved through an ingenious
conformal representation of the Einstein equations in dimension four.
This leads to a general existence result for solutions of the Einstein
equations with negative cosmological constant admitting a smooth con-
formal extension at space-like infinity. It is should be noted that even
though the results of [20] are proved the assumption of smooth initial
and boundary data, the method used in [20] is flexible enough to allow
for results on metrics of Ck regularity with large but finite k.

The reason for which the method in [20] does not extend to the
Einstein equations in odd space-time dimensions is that the metrics ob-
tained through this approach are smooth up to the boundary, while
the Fefferman–Graham expansion [19] implies that in odd dimension
n + 1 > 3, the corresponding Einstein metric cannot have this type
of boundary regularity due to the appearance of log terms, which are
present since the obstruction tensor does not vanish for a generic bound-
ary datum in odd space-time dimensions. In the case of even (e.g., four)
space-time dimensions, this technical point has another subtle but sig-
nificant effect: while the results of [20] are finer than ours in the sense
that initial data that are smooth up the boundary are shown to yield
Einstein metrics that are also smooth up to the boundary (which is a
stronger boundary regularity result than the one we obtain), our re-
sult has the advantage that it also applies to initial data that are only
assumed to be polyhomogeneous, yielding polyhomogeneous Einstein
metrics. This is relevant because, even in four dimensions, the solutions
to the constraint equations constructed in [4] are generically polyhomo-
geneous (in fact, in Cn−1(M)∩C∞polyhom(M)) but not smooth up to the

boundary. (Notice, however, that, despite this generic lack of smooth-
ness up to the boundary, [4] does yield many nontrivial solutions to the
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constraint equations that are smooth up to the boundary and which
give rise to many nontrivial Einstein metrics in four dimensions directly
using the breakthrough result of [20].) Finally, it is worth mentioning
that we obtain explicit values for the constant rn appearing in the state-
ment of Theorem 1.1 (e.g., in four dimensions one can take r3 = 17) but
that they are by no means sharp.

We shall see below that our purely PDE approach to the formulation
of the Einstein equations is of a different nature from that of [20], and
that it uses instead as its starting point some of the key similarities in
the algebraic structure of the Einstein equations between the cases of
Lorentzian and Euclidean signature. The existence of Einstein metrics
in latter case is well understood thanks to the work of Graham–Lee [23],
Anderson [1, 3], Biquard [8] and others on the global existence and
regularity of Riemannian Einstein metrics with prescribed conformal
infinity that are close, in a suitable sense, to the hyperbolic metric.
The situation in Lorentzian signature is fundamentally different since
it corresponds to a hyperbolic evolution problem. Both the available
analytical techniques and the expected results are, thus, vastly different.
In particular, the metric g is only guaranteed to exist locally in time
(that is, for |t| < T ), even for small data, a reflection of the fact that the
anti-de Sitter space is not expected to enjoy the good stability properties
of Minkowski space [14] (we refer to [9] and [22] for important recent
work on the stability problem for anti-de Sitter space).

We would also like to mention that besides the case of the Einstein
equations considered in [20], the study of wave equations on asymp-
totically anti-de Sitter spaces has attracted much attention in the last
few years. To the best of our knowledge, the wave equation on AdS4

was first considered by Breitenlohner and Freedman in [10] using the
strong symmetry of the problem to separate variables. Again for AdS4,
Choquet-Bruhat [11, 12] proved global existence for the Yang–Mills
equation under a radiation condition, and Ishibashi and Wald [29] gave
a proof of the well-posedness of the Cauchy problem for the Klein–
Gordon equation in AdSn+1 using spectral theory. More refined results
for the Klein–Gordon equation in an AdS space were developed by Bach-
elot [5, 6, 7], who used energy methods and dispersive estimates to study
the decay of the solutions and prove some results on the propagation of
singularities. In [35], Vasy established fine results on the propagation
of singularities are proved for the Klein–Gordon equation on asymp-
totically AdS spaces using microlocal analysis. Holzegel and Warnick,
both independently and in joint work [26, 36, 27], used energy meth-
ods to prove the well-posedness of the Cauchy problem for this equation
in asymptotically AdS4 space-times and discussed the boundedness of
solutions to the Klein–Gordon equation in stationary AdS black hole
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geometries. The local well-posedness for semilinear Klein–Gordon equa-
tions in asymptotically anti-de Sitter spaces with nontrivial boundary
conditions at infinity was established in [18]. Spherically symmetric
Einstein–Klein–Gordon systems have been considered in [28].

Finally, we mention that besides its interest as a question in geomet-
ric analysis and mathematical General Relativity, an important motiva-
tion for the problem of constructing Lorentzian Einstein manifolds with
prescribed conformal infinity arises in the context of the AdS/CFT cor-
respondence in string theory [31, 37] (see [2, 17] for further details
on this point). The AdS/CFT correspondence is a conjectural relation
which posits that a gravitational field on a Lorentzian (n+ 1)-manifold
endowed with an asymptotically anti-de Sitter metric can be recovered
from a conformal gauge field defined on the conformal boundary of the
manifold. The gravitational field is typically modeled as a Lorentzian
metric g satisfying the Einstein equation and the conformal gauge field
corresponds to the conformal infinity [ĝ] of the metric. In this set-
ting, the holographic principle asserts that the boundary data (which in
the context of the Einstein equation would be the boundary metric ĝ),
defined on the n-dimensional boundary, propagates through a suitable
(n + 1)-manifold (referred to as the bulk in the physics literature) to
determine the field (here the metric g) via a locally well-posed problem.

Acknowledgments. We would like to thank the referee for his de-
tailed comments and suggestions, which helped to significantly improve
our paper. A.E. is supported by the ERC Starting Grant 633152 and
thanks McGill University for hospitality and support. A.E.’s research is
supported in part by the ICMAT Severo Ochoa grant SEV-2015-0554.
The research of N.K. is supported by NSERC grant RGPIN 105490-
2011.

2. Strategy of the proof

In this section, we will present the overall strategy of the proof of
Theorem 1.1. We will also point out where the main points of the
argument can be found in the article, so this section also serves as a
guide to the paper.

Our first step is replace the Einstein equations (1.1) with modified
Einstein equations taking the form of a quasilinear hyperbolic system,
using what is often called DeTurck’s trick [15, 16]. In the Riemannian
case, this is amounts to writing the Einstein equations as an equivalent
elliptic quasilinear system.

The specific features of the quasilinear hyperbolic system correspond-
ing to Theorem 1.1 give rise to difficulties that make its proof rather
involved, both technically and conceptually. A first difficulty lies in the
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fact that asymptotically anti-de Sitter metrics are not globally hyper-
bolic, so the classical local well-posedness result of Choquet-Bruhat [33]
does not apply. This is also reflected in the fact that the modified
Einstein equation when expressed in terms of the conformally rescaled
metric ḡ = x2g contains terms that are strongly singular at the bound-
ary x = 0, so that the usual hyperbolic estimates are not enough to
control the behavior of the solutions of this equation. This requires
the introduction of a functional framework adapted to the geometry of
these spaces. For this we rely on a scale of twisted, weighted Sobolev
spaces that are closely related to the spaces used in the edge differential
calculus [32] but which we find more convenient for our purposes.

A second difficulty is that in contrast to the globally hyperbolic case,
where the modified Einstein equations correspond to a quasi-diagonal
system (meaning that the leading part of the hyperbolic system is given
by a scalar second-order differential operator, in our case the wave op-
erator gµν∂µ∂ν), the leading part of the equations in the asymptotically
anti-de Sitter setting is no longer given by a quasi-diagonal system.
This is because the leading terms of the equation (meaning the ones
that cannot be absorbed into constants in the estimates) are not only
given by the second-order derivatives, but also by additional terms that
are singular at leading order when x = 0, and reflects the fact that, in
the adapted coordinates, the singularity at x = 0 is critical from the
point of view of scalings. When these additional terms are taken into
account, the equation is no longer quasi-diagonal, so one must construct
approximate diagonalizations of the operators and take into account the
fact that the estimates that we obtain in different “eigenspaces” are not
equivalent. It is remarkable, though, that the various powers of x that
appear in scattered through the equations work together to allow us to
prove Theorem 1.1.

A third difficulty is that, in general, it is notoriously hard to im-
pose boundary conditions in the Einstein equations (see, e.g., [21] and
references therein). The way that we circumvent this problem is by
constructing the solution metric g as a sum of two terms, one that is
“large” at infinity and which we construct using essentially algebraic
methods, and one which is “small” at infinity, whose existence must be
proved using analytic techniques, so that for all practical purposes one
does not need to consider the boundary conditions here.

Hence, we are led to considering the following strategy in order to
tackle the problem:

Step 1: The modified Einstein equation. In Section 3, we discuss how
one can replace the Einstein equations (1.1) by a quasilinear hyperbolic
system Q(g) = 0 using DeTurck’s trick. Although from a conceptual
point of view the argument goes along familiar lines, the lack of global
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hyperbolicity makes technically nontrivial some arguments needed to
prove that both equations are equivalent. This is established in Sec-
tion 10 using ideas developed in the paper (Theorem 10.1).

Step 2: Peeling off the metric. In Section 4, we construct asymptoti-
cally anti-de Sitter metrics γl that are “approximate solutions” to the
modified Einstein equation Q(g) = 0 and satisfy the desired boundary
conditions (Theorem 4.5). These metrics have the property that Q(γl)
is suitably small and are obtained from the boundary datum ĝ in an
essentially algebraic way that can be understood as peeling off the lead-
ing “layers” of the solution at x = 0, step by step. The parameter l
corresponds to the number of steps that one considers and is related
to the norms in which γl is an approximate solution of the modified
Einstein equations. One should notice that, in general, the rescaled
metrics γ̄l := x2γl are not smooth up to the boundary, but in some
polyhomogeneous space Cn−1 ∩ Cplpolyhom.

Step 3: Setting an iteration within a suitable functional framework. To
construct the metric g that solves the modified Einstein equation, we
write it as

g = γ + x
n
2 u ,

where we have set γ := γl for a large enough l. There γ is going to be
the “large” part at x = 0 and the other terms is going to be “small” at
the boundary.

To construct u, we set up an iteration in Section 5. The convergence
of this iteration will not be proved until Section 9, however. Before that,
we need to define suitable Sobolev spaces adapted to the geometry of
the anti-de Sitter space in which we can derive suitable estimates for u.
In Sections 6 and 7, we consider two related scales of Sobolev spaces,
Hm,r
α and Hm,r, and derive several key estimates for them. It should

be noticed that not only the are proofs of these estimates different from
those of the usual Sobolev spaces Hk(Rn), but so is also the case for
the range of parameters for which, e.g., we have pointwise estimates
(Corollary 6.3) or can obtain estimates for the product of two functions
(Theorem 7.1).

Step 4: Linear estimates and convergence of the iteration. Using the
above adapted Sobolev spaces, in Section 8, we obtain estimates for
the linear operators that appear in the iteration under certain assump-
tions about the structure of the metric. Here the way that the various
powers of x appear is crucial to deriving the estimates that are analo-
gous (although the spaces and range of parameters are different) to the
usual ones obtained for globally hyperbolic quasilinear wave equations.
It should be emphasized though that the combination of the equation
being effectively not quasi-diagonal with the fall-off of the nonlineari-
ties at the boundary make the analysis of the linear equations and the
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treatment of the functional spaces much subtler than in our previous
paper [18], which was only concerned with scalar equations.

With these estimates in hand and equipped with the results about
the adapted Sobolev spaces established in the previous step, the proof
of the convergence of the iteration goes along the lines of the classical
result for globally hyperbolic spaces. The details are presented in Sec-
tion 9 although, as we have already mentioned, one has to wait until
Theorem 10.1 to show that these metrics are, in fact, Einstein.

The paper concludes with two appendices. In Appendix A we recall
the constraint and compatibility conditions that must be imposed on
the initial and boundary data and the Andersson–Chrusciel result on
the existence of solutions to the constraint equations. In Appendix B
we record some results about the integral operators Aα and A∗α, defined
in (6.7), that we established in [18]. These operators play an important
role in Sections 6 and 7. For the benefit of the reader, we also include
a sketch of the proof.

3. The modified Einstein equation

When dealing with the Einstein equation, a first difficulty, well un-
derstood by now, is that the gauge invariance of the Einstein equation
under changes of coordinates makes it a very degenerate system. A
standard way of solving this difficulty is using a technique that is often
called “DeTurck’s trick” [15, 16], which employs a reference metric to
get rid of this gauge freedom. In the setting that we are considering, it
is important to choose a reference metric, which we will denote by γ0,
which a certain asymptotic behavior at infinity. To avoid unnecessary
repetitions, let us then begin by introducing the following definition,
where I := (−T0, T0) denotes a small interval of the real line contain-
ing 0.

Definition 3.1. A metric g on I ×M is called weakly asymptotically
AdS if the following conditions hold:

(i) The rescaled reference metric ḡ := x2g is of class C2 up to the
boundary.

(ii) The differential of the function x satisfies ḡµν(∂µx)(∂µx) = 1 on
I × ∂M .

This definition is motivated by the formal calculations of Graham
and Lee in [23], many of which carry over verbatim to the case of
Lorentzian signature. The definition should be compared with that of
an asymptotically AdS metric, cf. [25].
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We will choose the reference metric γ0 to be a weakly asymptotically
AdS metric on I ×M such that the pullback of

γ̄0 := x2γ0

to I×M is ĝ. A convenient way of doing this in terms of the initial metric
g0 := g|t=0, which we write in terms of the initial data as described in
Appendix A, is the following (we recall that the pullback of ḡ0 := x2g0

to the boundary is precisely ĝ). Identifying TI = I ×R, for any (t, z) ∈
I × ∂M let us consider the tensor on T(t,z)(I × ∂M) = R× Tz∂M given
by

G′ := ĝ|(t,z) − ĝ|(0,z) .
Now let G be the only tensor on T(t,z)(I×M) = R×TzM which satisfies

(j(−T,T )×∂M )∗G = G′ , (ḡ0|z +G)−1dx = ḡ−1
0 |zdx

at (t, z). Notice that, by continuity, the inverse appearing in the second
equation is well defined provided that the interval I is small enough.
This defines a tensor field on I × ∂M .

We can now extend G to a tensor field E(G) defined on a small
neighborhood of I×∂M , for instance, by parallel transport with respect
to the metric ḡ0 along integral curves of the gradient of x. A suitable
reference metric can then be constructed as γ0 := x−2γ̄0 with

(3.1) γ̄0 := ḡ0 + χE(G) ,

with χ a suitable cutoff function that is equal to 1 in a neighborhood of
the boundary. Notice that the reference metric depends on the boundary
and initial data and that it is a (non-degenerate) Lorentzian metric
because E(G) is small if the interval is small.

Let us now denote by Γνλρ and Γ̃νλρ the Christoffel symbols of the
metrics g and γ0, respectively. DeTurck’s trick consists in looking for
solutions to the modified Einstein equation

(3.2) Q(g) = 0 ,

where the components of the tensor Q(g) are given in terms of those of
the Ricci tensor, Rµν , by

(3.3) Qµν := Rµν + ngµν +
1

2
(∇µWν +∇νWµ) .

Here the covariant derivatives and the Ricci tensor are those of the
metric g and the 1-form W is

(3.4) Wµ := gµν g
λρ (Γνλρ − Γ̃νλρ) .

We will discuss the relationship between the solutions of the Einstein
equations (1.1) and those of the modified equation (3.2) in Section 10,
as the lack of global hyperbolicity introduces some peculiarities. It is
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worth mentioning that Q(g) also depends on the initial and boundary
conditions through the reference metric γ0.

It is well-known that the advantage of Equation (3.2) over the Ein-
stein equations is that the nondegeneracy has been taken care of; indeed,
(3.2) is a quasilinear wave equation because

(3.5) Qµν = −1

2
gλρ∂λ∂ρgµν +Bµν(g, ∂g) ,

with the second term quadratic in ∂g. Our goal now is to solve the
modified Einstein equation (3.2) together with the compatible initial
and boundary conditions

g|t=0 = g0 , ∂tg|t=0 = g1 , (j(−T,T )×∂M )∗ḡ = ĝ .

For the class of metrics that we are considering, the coefficients are
strongly singular at x = 0. Indeed, it essentially follows from a com-
putation by Graham and Lee [23, Equation (2.19)] that for a weakly
asymptotically AdS metric g one can express (3.5) in terms of ḡ as
(3.6)

Qµν =
1

x2

(
n(1− ḡλρxλxρ) ḡµν −

1

2
(Bµxν +Bνxµ)

)
+

1

x
P1(ḡ) +P2(ḡ) ,

where xµ := ∂µx,

Bµ := ḡλρ(γ̄0)λρ ḡµν(γ̄0)νλxλ − (n+ 1)xµ ,

γ̄0 := x2γ0 and P1(ḡ) (respectively P2(ḡ)) stands for terms that depend
smoothly on x, ḡ, γ̄0 and ∂γ̄0 and are linear in ∂ḡ (respectively linear in
∂2ḡ and quadratic in ∂ḡ, depending also on ∂2γ̄0). Here all the indices
are raised and lowered using the metric ḡµν but (γ̄0)µν , which is the
inverse of γ̄0.

In view of Equation (3.6), we can immediately make the following
important observation:

Proposition 3.2. Suppose that g is a weakly asymptotically AdS
metric. Then Q(g) = O(x−1) if and only if the following relations hold
true on (−T, T )× ∂M :

ḡµν(γ̄0)µν = n+ 1 and ḡµνxν = (γ̄0)µνxν .

4. Peeling off the metric

Throughout the defining function x will be a C∞ positive function on
M that vanishes to first order at the boundary, which ensures that one
can take it as a coordinate in a certain neighborhood of the boundary
∂M in M , which we will denote by A. To parametrize A we will always
take coordinates (x, θ), where θ = (θ1, . . . , θn−1) are local coordinates
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on ∂M . Since the analysis of the equation Q(g) = 0 is only problem-
atic in a neighborhood of the boundary, these are the most convenient
coordinates to carry out the key estimates that are needed in this paper.

Let us start with some preliminary results that we will need to prove
the main result of this section. Here we denote by S2 the space of
symmetric covariant 2-tensors on I ×M . In the following proposition
we provide a convenient decomposition of this space at any point close
to, or lying on, the boundary I × ∂M . Throughout the section, we will
assume that g is a weakly asymptotically AdS metric.

Proposition 4.1. In I × A, the space of symmetric tensors can be
decomposed as

S2 = Vg0 ⊕ V
g
1 ⊕ V

g
2 ⊕ V

g
3 ,

where

Vg0 :=
{
H ∈ S2 : Hµν = ϕḡµν with ϕ scalar

}
,

Vg1 :=
{
H ∈ S2 : Hµν ḡ

νλxλ = 0 and Hµν ḡ
µν = 0} ,

Vg2 :=
{
H ∈ S2 : Hµν = ϕ [(n+ 1)xµxν − ḡµν ] with ϕ scalar} ,

Vg3 :=
{
H ∈ S2 : Hµν = aµxν + aνxµ with ḡλρaλxρ = 0} .

Proof. Since the 1-form dx does not vanish in I × A, it is easy to
check that Vgi ∩V

g
j = {0} if i 6= j and that the dimensions of the spaces

Vgj at each point of I ×A are

1 ,
n(n+ 1)

2
− 1 , 1 and n ,

respectively. The sum of these numbers gives

(n+ 1)(n+ 2)

2
,

that is, the dimension of S2 at any point. The proposition then follows.
q.e.d.

In what follows we will need more information about the structure of
the modified Einstein operator Q(g) in a neighborhood of the boundary.
To analyze Q(g), we will restrict our attention to the set I × A and
use coordinates (t, x, θ), where θ are local coordinates on ∂M . It was
computed by Graham and Lee [23, Proposition 2.10] that the action of
the differential of the map (3.3) on a symmetric tensor h = h0 +h′, with
h0 ∈ Vg0 and h′ ∈ Vg1 ⊕ V

g
2 ⊕ V

g
3 , is of the form

(4.1) (DQ)g(h) = −1

2

(
(�g − 2n)h0 + (�g + 2)h′

)
+ xL1h ,
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where �ghµν := gλρ∇λ∇ρhµν is the wave operator on tensor fields and

we, henceforth, use the notation Lm for a matrix mth order linear dif-
ferential operator in the conormal derivatives (x∂x, ∂θ, ∂t) whose coeffi-
cients are smooth functions of (x, ḡ, ∂ḡ, γ̄0, ∂γ̄0, ∂

2γ̄0) up to x = 0. In
the case m = 1, the operator will not depend on ∂2γ̄0.

In particular, the part with second-order derivatives of the linearized
operator (DQ)g is the same as that of the wave operator −1

2�g. Re-
garding the terms that are most singular at x = 0, it was shown in [23,
Proposition 2.7] that, in terms of the coordinates (t, x, θ), the Laplacian
on a symmetric tensor h can be expanded in x as

�ghµν =
(
x2∂2

x + (1− n)x∂x
)
hµν + 2hλρḡ

λλḡρρxλxρḡµν

− (n+ 1)
(
hµλḡ

λρxρxν + hνλḡ
λρxρxµ

)
+ 2ḡλρhλρxµxν

+ xL1(h)µν + x2L2(h)µν .

To further simplify this expression, let us define the quadratic poly-
nomials

pj(s) := −1

2

(
s− n

2
+ αj

)(
s− n

2
− αj

)
,

where 0 6 j 6 3 and αj are the constants

(4.2) α0 :=

√
n(n+ 8)

2
, α1 :=

n

2
, α2 := α0 , α3 :=

√
n(n+ 4)

2
.

In the following lemma, which we borrow from [23, Lemma 2.9] with
a minor change the notation, we use the subspaces Vgj to effectively

diagonalize (DQ)g up to terms that are smaller at x = 0. Here pj(x∂x)
has the obvious meaning.

Lemma 4.2 ([23]). If h ∈ Vgj , we have that

(DQ)g(h)µν = x−2 pj(x∂x)h̄µν + x−1(L1h̄)µν + (L2h̄)µν .

We will also need some information on the second derivative (D2Q)g,
understood as a quadratic form. For our purposes, it will be enough to
have the following symbolic description of (D2Q)g(h), where we are not
displaying indices for the ease of notation:

Lemma 4.3. The second derivative of Q is of the form

(D2Q)g(h) = O(1)h̄ ∂2h̄+O(1) ∂h̄ ∂h̄+O(x−1) h̄ ∂h̄+O(x−2) h̄ h̄ .

Here we are using the notation h̄ := x2h and each term O(x−s) above
stands for a smooth function of x, ḡ, ∂ḡ and the derivatives of γ̄0 up to
order s.
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Proof. Ignoring the indices, we can use Eqs. (3.5) and (3.6) to sym-
bolically write the structure of Q(g) as

Q(g) = ḡ−1∂2ḡ + a0(ḡ) ∂ḡ ∂ḡ +
a1(ḡ)

x
∂ḡ +

a2(ḡ)

x2
,

where aj(ḡ) stands for a smooth function of x, ḡ and the derivatives of
γ̄0 up to order j. Since

Q(g + εh) = Q(g) + ε (DQ)g(h) +
1

2
ε2(D2Q)g(h) +O(ε3) ,

an elementary computation using that

(ḡ + εh̄)−1 = ḡ−1 − εḡ−1h̄ḡ−1 + ε2ḡ−1h̄ḡ−1h̄ḡ−1 +O(ε3),

readily yields the desired expression for (D2Q)g. q.e.d.

We will also need the following elementary fact:

Lemma 4.4. For any integers σ > 0 and s there is a polynomial f
of degree σ or σ + 1 such that

pj(x∂x)
(
xsf(log x)

)
= xs(log x)σ .

Furthermore, f has degree σ + 1 if and only if pj(s) = 0.

Proof. Since pj(0) 6= 0, it is clear that

pj(x∂x)

(
1

pj(0)

)
= 1 .

We now proceed by induction on s and σ. Indeed, assume that the
statement holds true for all s 6 s0 and σ 6 σ0. The key observation is
that

(4.3)

pj(x∂x)
(
xs(log x)σ

)
= pj(s)x

s(log x)σ − σ(2s+ 4− n)

2
xs(log x)σ−1

− σ(σ − 1)

2
xs(log x)σ−2 .

If pj(s0 + 1) 6= 0, by the induction hypothesis there is a polynomial F
of degree at most σ0 such that

pj(x∂x)ϕ = xs0+1(log x)σ0 ,

with

ϕ := xs0+1

(
(log x)σ0

pj(s0 + 1)
+ F (log x)

)
.

On the other hand, if pj(s0 + 1) = 0 we have that s0 is n
2 ± αj , and in

this case 2s0 + 2−n is always nonzero. Hence, the induction hypothesis
and the identity (4.3) ensure that we can then take a polynomial F of
degree at most σ0 such that

pj(x∂x)ϕ = xs0+1(log x)σ0 ,
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with

ϕ := xs0+1

(
− 2(log x)σ0+1

(σ0 + 1)(2s0 + 2− n)
+ F (log x)

)
.

The same argument yields analogous functions ψ with

pj(x∂x)ψ = xs0(log x)σ0+1,

and deals with the case of negative s, thereby completing the induction
argument. q.e.d.

Armed with these auxiliary results, we are now ready for the analysis
of the equation Q(g) = 0 that we will carry out in this section. For this
we need to impose more stringent regularity assumptions on the metric
γ̄0 than those in Section 3. Specifically, hereafter we make the following
regularity assumption:

Assumption (Regularity of the reference metric). The metric γ̄0 is
of class Cn−1 ∩ Cppolyhom on I ×M .

Here p > n − 1 a given integer and we recall that a function h is
in Cppolyhom(I ∩M) (polyhomogeneous of class Cp) if it is of class Cp

away from the boundary (say, on I × (M\A)) and a Cp function of
(t, x, θ, log x) on a neighborhood of the boundary, say I × A. The last
condition means that in a small neighborhood of each point of I × A
there is a Cp function h′ of n+ 2 arguments such that

h = h′(t, x, θ, log x) .

Since the pullback of the reference metric γ̄0 to the boundary is ĝ, this
regularity assumption implies that the boundary metric ĝ must be of
class Cp(I × ∂M).

To state the following theorem, we will introduce the space Cmr (I×M)
of functions with m+r continuous derivatives, with the peculiarity that
the last r derivatives with respect to x are regularized by multiplying
by x. This way, for instance, for all k, l,m > 1 we have that

(4.4) xm (log x)l

is in Cm−1
k but not in Cm+k−1. To define the space Cmr (I×M), we will

also use a smooth nonnegative function χA of x that vanishes outside
I×A and is equal to 1 in a neighborhood of I×∂M . With these objects
at our disposal, we can now define Cmr (I×M) as the space of functions
ϕ such that

(4.5) ‖ϕ‖Cmr (I×M) := ‖(1− χA)ϕ‖Cm+r(I×M)

+
∑

|β|+j+k6r

‖(x∂x)j∂kt ∂
β
θ (χAϕ)‖Cm(I×M)
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is finite. The space Cpr (M) is defined analogously. (Of course, the

notation ∂βθ is somewhat heuristic as ∂M is not covered by a global
chart. To define it rigorously, it is standard that one can resort to
either covering ∂M with a fixed finite collection of charts and use a
subordinate partition of unity, or to taking vector fields X1, . . . , XM on
∂M that span the whole tangent space Tp∂M at each point p ∈ ∂M

and replace ∂βθ ϕ by

Xβ1
1 · · ·X

βM
M ϕ ,

with |β| = β1 + · · ·+ βM . For notational simplicity, we will stick to the

notation ∂βθ , which must be interpreted in the aforementioned sense.)

We shall next present the main result of this section, which is a pro-
cedure to obtain asymptotically anti-de Sitter metrics γ that satisfy the
boundary condition (jI×∂M )∗γ̄ = ĝ and for which Q(γ) is suitably small.
To state the theorem, we need to introduce some notation. Given non-
negative integers s and σ, we will say that a symmetric tensor field q, of
class Cp in the interior of I×M , is in Oj(xs log6σ x) if it can be written
in A as

q = xs
σ∑

σ′=0

(log x)σ
′
Bσ′ ,

where Bσ′ is a smooth symmetric tensor field in I ×M satisfying the
bounds

‖Bσ′‖Ck(I×M) 6 Fk
(
‖γ̄0‖Ck′

r′ (I×M)

)
,

for each k 6 p−j, where k′ := min{k+j, n−2}, r′ := max{0, k+j−n+2}
and Fk is a polynomial with Fk(0) = 0. Although we will not say it
explicitly hereafter, it is important that in all the terms of the form
Oj(xs log6σ x) that will appear in this section, the coefficients of the
corresponding polynomials Fk will be uniformly bounded in terms of
the Cn−1 ∩ Cpp−n+1 norm of γ̄0.

Theorem 4.5. Let us take a nonnegative integer n− 1 6 l 6 p and
a small real δ > 0. Then there is a weakly asymptotically AdS metric γl
on I ×M of the form

γl =

l∑
k=0

Ok(xk−2 log6σk x) ,

where each nonnegative integer σk is zero for k 6 n− 1, such that:

(i) The pullback to the boundary of γ̄l := x2γl is

(jI×∂M )∗γ̄l = ĝ .

(ii) The metric γl is uniformly close to γ̄0 in the sense that

‖γ̄l − γ̄0‖L∞ < δ,
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and, furthermore,

‖γ̄l‖Cn−1
p−n+1(I×M) < C,

with a constant that depends only on ‖γ̄0‖Cn−1
p−n+1

and δ.

(iii) The metric γl is a solution of the modified Einstein equation almost
to order l − 1 in the sense that

Q(γl) = Ol+1(xl−1 log6σ
′
l x) +Ol+2(xl log6σ

′
l x) ,

where σ′k is a nonnegative integer that is equal to zero for all k 6
n− 1.

Proof. Proposition 3.2 trivially proves the result for l = 0. To see
how things work for l = 1, let us write the O1(x−1) terms that appear
in

Q(γ0) = O1(x−1) +O2(1),

as

O1(x−1) =
H1

x
+O1(1) ,

where the tensor field H1 is defined in terms of this quantity as

(4.6) H1 := E
(
xO1(x−1)|x=0

)
,

and is O1(1). Here E denotes the extension operator that we introduced
in Equation (3.1), and for the time being we will restrict our attention
to small values of x.

Let us now use the direct sum decomposition of S2 proved in Propo-
sition 4.1 to write in a unique way

H1 =
3∑
j=0

H1j ,

with H1j ∈ Vγ0j . We will take now

γ1 := γ0 −
3∑
j=0

f1j(x)H1j ,

with suitably chosen functions f1j(x). By Lemma 4.2 and Taylor’s for-
mula,

Q(γ1) = Q(γ0) + (DQ)γ(γ1 − γ0) + I1

= x−2
3∑
j=0

(
x− pj(x∂x)f1j

)
H1j +O2(1)

+ (xL1 + x2L2)(γ1 − γ0) + I1 ,
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where the error term is

I1 :=

∫ 1

0
(D2Q)(1−s)γ0+sγ1(γ1 − γ0) ds .

Since pj(−1) 6= 0, Lemma 4.4 ensures that we can take functions f1j =
O(x−1) (indeed, f1j(x) = x−1/pj(−1)) such that

pj(x∂x)f1j = x .

SinceH1, in principle, is only defined in a neighborhood of the boundary,
we should include in f1j a suitable cut-off function, which we, hence-
forth, omit for the ease of notation. In any case, with this choice of f1j

and Lemma 4.3, we obtain that the error term is controlled by

I1 = O2(1) +O3(x) ,

which immediately implies that

Q(γ1) = O2(1) +O3(x) .

The general case follows by an induction argument that also relies
on Taylor’s formula and Lemmas 4.2–4.4. To sketch the proof, let us
assume that the claim holds for all integers up to l − 1, with

γ̄l−1 =
l−1∑
k=0

Ok(xk log6σk x),

and σk = 0 for all k 6 n − 2. To prove it for l, we argue as above to
write

(4.7) Q(γl−1) = xl−2
3∑
j=0

σ′l−1∑
k=0

(log x)kHlkj +Ol+1(xl−1 log6σ
′
l−1 x) ,

with Hlkj = Ol(1) a tensor field in Vγl−1

j and σ′l−1 an integer, related
to σl−1 and to the regularity of γ̄0 up to the boundary, which will be
discussed later. Notice that Hlkj can be assumed to be related to the
extension via the operator E of a suitable tensor field defined on the
boundary, in an analogous fashion to (4.6).

Lemma 4.4 allows us to take polynomials flkj , of degree k if pj(l) 6= 0
and k + 1 otherwise, so that

pj(x∂x)
(
xlflkj(log x)

)
= xl(log x)k .

If we now set

γ̄l := γ̄l−1 − xl
3∑
j=0

σl−1∑
k=0

flkj(log x)Hlkj ,

a computation analogous to the one for γ1 then shows that

Q(γl) = Ol+1(xl−1 log6σl x) +Ol+2(xl log6σl x),

for some integer σl.
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Let us now complete our analysis of the log terms that appear in
this computation by discussing the values that σ′l−1 can take. We have
seen that σl = 0 as long as σ′k = 0 for all k 6 l − 1 and pj(l) 6= 0.
That is, log terms appear in γl either through log terms the right hand
side of Equation (4.7) (where they can come from log terms in γ̄l−1 or
from the reference metric γ̄0, which is in Cn−1∩Cppolyhom and, therefore,

such that its first non-smooth term is of the form xn log x) or due to the
existence of integer roots of a polynomial pj(s), as shown in Lemma 4.4.
It follows from Equation (4.2) that the first integer root of a polynomial
pj(s) is p1(n) = 0, so log terms can only appear at order xn log x in γ̄l
and we, therefore, get that γ̄l is of class Cn−1 ∩ Cppolyhom.

Since γ̄l − γ̄0 vanishes at x = 0, it suffices to take the support of
the aforementioned cut-off functions to be small enough to ensure that
‖γ̄l − γ̄0‖L∞ is as small as one wishes. Besides, it is apparent from the
construction that the tensor fields Hlkj that appear at the lth step of
the induction that the coefficients are bounded in terms of γ̄0 and its
lth order derivatives which yields the estimate

‖γ̄l‖Cn−1
p−n+1

< C ,

with C a constant that depends on ‖γ̄0‖Cn−1
p−n+1

. Of course, the reason

for which in general we get this estimate in Cn−1
p−n+1 but not in Cp is

the presence of log terms in the expression for γ̄l starting with xn log x.
q.e.d.

5. Setting the iteration

Our goal in this section is to set up an iterative procedure that will
eventually lead to a solution of the equation Q(g) = 0 with the desired
initial and boundary conditions. To this end, let us write the solution
as

g =: γ + h ,

where

γ := γl

is the metric constructed in Theorem 4.5 with some large enough value
of the parameter l that we will specify later. We will also assume that
the number p appearing the regularity assumption of Section 4 is large
enough. Intuitively, the weakly asymptotically AdS metric γ is the part
of the metric that is “large” at the boundary and h is “smaller”.

Let us recall from Equation (3.5) that one can write Q(g) in local
coordinates as

Q(g) = P̃gg +B(g) ,
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where we define the g-dependent linear differential operator P̃g as

(P̃gg
′)µν := −1

2
gλρ∂λ∂ρg

′
µν ,

and B(g) depends on g and quadratically on ∂g. Taylor’s formula en-
sures that

(5.1) B(g) = B(γ) + (DB)γh− Ẽ(h) ,

where the error term is

(5.2) Ẽ(h) := −
∫ 1

0
(D2B)γ+sh(h) ds,

and the second order differential of B is understood as a quadratic form.
The equation Q(g) = 0 can then be written as

(5.3) P̃gh+ (DB)gh+ (P̃γγ − P̃gγ) +Q(γ)− Ẽ(h) = 0 .

Let us now define a linear operator, depending on g, as

Tgh := −3h(∇(γ)x,∇(γ)x) ḡ ,

where ∇(γ) stands for the connection associated with the metric γ. As
easy computation shows that Tg is the differential of the function g 7→
P̃γγ − P̃gγ at g = γ. Hence, we will set

(5.4) F̃(h) := Tgh+ P̃gγ − P̃γγ ,

which, in view of (5.3), allows us to write the equation Q(g) = 0 as

P̃gh+ (DB)gh+ Tgh = −Q(γ) + F̃(h) + Ẽ(h) .

Let us now define another g-dependent linear differential operator Pg
by setting

P̃gh+ (DB)gh+ Tgh =: x
n
2

+2Pgu ,

where we have introduced the new unknown u as

h =: x
n
2 u .

Full details about the structure of the differential operator will be given
in Section 8. In terms of u, the equation Q(g) = 0 can be finally written
as

(5.5) Pgu = F0 + G(u) ,

where

G(u) := F(u) + E(u),

and

F0 := −x−
n
2
−2Q(γ), F(u) := x−

n
2
−2F̃(h), E(u) := x−

n
2
−2Ẽ(h).
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In the forthcoming sections our objective will be to solve this equa-
tion using an iterative procedure that will produce u as the limit of a
sequence um, with u1 := 0 and

Pgmu
m+1 = F0 + G(um) .

Of course, here gm := γ+x
n
2 um and the initial conditions that we need

to impose are

um+1|t=0 = u0 , ∂tu
m+1|t=0 = u1 ,

where we have set

(5.6) uj := x−
n
2 (gj − ∂jt γ|t=0),

for each nonnegative integer j, with gj := ∂jt g|t=0. As we will see,
the compatibility conditions of the initial and boundary data boil down
to assumption that a certain number of the functions uj fall off fast
enough at x = 0 to be in a suitable space of square-integrable functions
over M . Since gj is just a time derivative of the metric at t = 0, and,
therefore, determined by the initial datum of the problem (that is, a
Riemannian metric on M and a second fundamental form satisfying the
constraint equations), and γ was determined by algebraically solving the
Einstein equations to a certain order near the boundary, this just means
that the formal series expansions for the solution that we get from the
initial and boundary data must be compatible to a certain order. In the
terminology of [20], this is means imposing corner conditions to a finite
order.

6. Adapted Sobolev spaces

In this section, we will introduce some twisted Sobolev spaces that are
adapted to the AdS geometry near the conformal boundary. They will
be key in our derivation of the estimates that will allow us to prove the
convergence of the iteration presented in the previous section. Specif-
ically, we will consider two kinds of adapted Sobolev spaces, Hm

α and
Hm, as well as certain modifications of them, Hm,r

α and Hm,r, that play
a role somewhat similar to that of the spaces Cmr introduced in (4.5).
The first kind of adapted spaces depends on a parameter α that in our
applications will ultimately be one of the quantities αj defined in (4.2),
so we will assume throughout that α > 1 without further mention. The
properties of these spaces for α < 1 are quite different, as discussed
in [18].

To define the spaces Hm
α , let us begin by introducing the twisted

derivative with parameter α as

Dx,αϕ := ∂xϕ+
α

x
ϕ .
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Its formal adjoint in the Hilbert space

(6.1) L2
x := L2((0,∞), x dx)

is

D∗x,αϕ := −∂xϕ+
α− 1

x
ϕ ,

and we will set

(6.2) D(k)
x,αϕ :=

{
(D∗x,αDx,α)

k
2ϕ if k is even,

Dx,α(D∗x,αDx,α)
k−1
2 ϕ if k is odd,

with the proviso that D
(0)
x,αϕ := ϕ.

The twisted Sobolev space Hm
α ≡ Hm

α (M) is defined as follows. Let
us suppose that the function u is supported in a small neighborhood of
the boundary ∂M , which we will take as

A :=
{

(x, θ) ∈ (0, a)× ∂M
}
.

We can then define its Hm
α norm as

‖u‖2Hm
α (A) :=

∑
j+|β|6m

∫
∂M

∫ a

0
|D(j)

x,α∂
β
θ u|

2 x dx dθ,

where dθ is the canonical measure on the sphere and the twisted deriv-
ative acts on u in the obvious way. Using a suitable cutoff function that
is equal to 1 in a neighborhood of the boundary and vanishes outside
A, for a function u defined on the ball we can then set

(6.3) ‖u‖Hm
α

:= ‖χu‖Hm
α (A) + ‖(1− χ)u‖Hm(M) ,

whereHm is the usual Sobolev space. The space Hm
α can then be defined

as the closure in this norm of the space of smooth functions on M of
compact support, the definition being also applicable to tensor-valued
functions using standard arguments. For m = 0 the norm, which does
not depend on α, will be simply denoted by ‖u‖L2 or occasionally by
‖u‖.

For real s > 0, we can use interpolation to define the space Hs
α ≡

Hs
α(M). Equivalently, since D∗x,αDx,α is an essentially self-adjoint op-

erator in L2(R+, x dx) with the domain C∞0 (R+), we can write

(6.4) ‖u‖Hs
α

:=
∥∥Λsα(χu)

∥∥
L2 + ‖(1− χ)u‖Hs(M) ,

where

(6.5) Λsα := (1−∆∂M + D∗x,αDx,α)s/2

is defined using the spectral theorem. As we did in (4.5), we can also
consider the space with m derivatives as above and r “regularized”
derivatives. For this we use the norm that is defined as

‖u‖Hm,r
α

:=
∑

j+|β|6r

‖(x ∂x)j∂βθ (χu)‖Hm
α

+ ‖(1− χ)u‖Hm+r(M) .
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Closely related scales of Sobolev spaces are Hm ≡ Hm(M) and
Hm,r ≡ Hm,r(M), which do not depend on any parameters and are
weighted variations of the spaces typically considered in the theory of
differential edge operators (see, e.g., [32]). They are respectively defined
as the closure of C∞0 (M) in the norm

‖u‖Hm :=
∑

j+|β|6m

‖xj−m∂jx∂
β
θ (χu)‖L2 + ‖(1− χ)u‖Hm+r(M) ,

‖u‖Hm,r :=

r∑
j=0

‖xju‖Hm+j ,

in each case. Notice that these norms are constructed by including in
each derivative a singular weight that depends on the number of x-
derivatives that one is taking. These spaces can also be defined for
non-integer values using interpolation or, denoting by ∂∗x := −∂x − 1/x
the formal adjoint of ∂x with respect to the L2

x product, directly through
the formula

‖u‖Hs :=

∥∥∥∥(1−∆∂M

x2
+ ∂∗x∂x

)s/2
(χu)

∥∥∥∥
L2

+ ‖(1− χ)u‖Hs(M) .(6.6)

In particular, this ensures that the usual interpolation formulas are valid
for these scales of Sobolev spaces.

We shall need estimates relating the various adapted Sobolev spaces
that we have introduced. A simple observation is the following, which
show how multiplication by powers of x can help us redistribute the
“standard” and “regularized” derivatives in the spaces Hm,r

α and Hm,r:

Proposition 6.1. Given nonnegative integers m, r and an integer
l ∈ [−m, r], we have the inequality

‖xlu‖Hm,r 6 C‖u‖Hm+l,r−l .

Proof. It is enough to expand the various terms appearing in the
definitions of the norm and use some elementary algebra. q.e.d.

To explore the properties of these spaces we will make use of the
integral operators

Aαϕ(x) := x−α
∫ x

0
yαϕ(y) dy ,(6.7a)

A∗αϕ(x) := xα−1

∫ 1

x
y1−αϕ(y) dy ,(6.7b)

which act on functions of one variable and will play an essential role in
the rest of this section. Notice that these operators are right inverses of
Dx,α and D∗x,α in the sense that

Dx,α(Aαϕ) = D∗x,α(A∗αϕ) = ϕ ;
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in particular, A∗α is the adjoint of Aα in L2
x. Obviously Aα, A

∗
α also act

on functions defined on A. In Appendix B we record some important
properties of these operators, extracted from [18].

A simple but important estimate is the following, which gives an L∞

bound for functions belonging to an adapted Sobolev space. Notice that,
contrary to what happens in the usual Sobolev embedding theorem,
we are not asking for the square-integrability of n

2 + ε derivatives but

actually of n+1
2 + ε:

Theorem 6.2. Let u ∈ H1,r
α with r > n−1

2 . Then we have the point-
wise estimate in the ball

‖u‖L∞ 6 C ‖u‖H1,r
α
.

Proof. By the definition of the norm and the Sobolev embedding, it
is obviously enough to prove the result for u supported in A. But for
a.e. (x, θ) in A we then have

|u(x, θ)| =
∣∣A∗α(Dx,αu)(x, θ)|

6 C‖Dx,αu(·, θ)‖L2
x

6 C‖Dx,αu‖L2
xH

r
θ

6 C‖u‖
H1,r
α
,

where Hr
θ ≡ Hr(∂M) is the Sobolev space of functions on ∂M with r

square-integrable derivatives and to pass to the first, second and third
lines we have respectively used the properties (i) and (iii) in Theo-
rem B.1 and the Sobolev embedding. The theorem then follows. q.e.d.

Corollary 6.3. For any ρ > n−1
2 , ‖u‖Cmr (M) 6 C‖u‖Hm+1,r+ρ. Fur-

thermore, we have the bound

‖x−m(x ∂x)j∂βθ u‖L∞(A) 6 C‖u‖Hm+1,r+ρ ,

for all indices with j + |β| 6 m+ r.

Proof. It stems Theorem 6.2 and the fact that x−m(x ∂x)j∂βθ u ∈ H
1,ρ

for the above range of indices whenever u ∈ Hm+1,r+ρ. q.e.d.

The connection between the spaces Hm,r
α and Hm,r is subtler. Of

course, the estimate

(6.8) ‖u‖Hm,r
α
6 C‖u‖Hm,r

follows from an elementary computation. That for some range of the
parameters there is a converse to this inequality, so that the norms Hm,r

α

and Hm,r are equivalent, is more sophisticated. The following theorem
is the partial converse to the inequality (6.8) that we need:
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Theorem 6.4. For any k 6 m, if α > k − 1,

‖u‖Hk,r+m−k 6 C‖u‖Hm,r
α

.

In particular, both norms are equivalent if α > k − 1.

Proof. Since u ∈ Hm,r
α if and only if (x ∂x)j∂βθ u ∈ Hm

α for all j+ |β| 6
r, it is clearly enough to prove that

‖u‖Hk,m−k 6 C‖u‖Hm
α
,

whenever α > k− 1. There is no loss of generality in proving the result
for functions supported in A, since away from the boundary both norms
are equivalent.

With m = 1, it suffices to see that one can write

u = Aα(Dx,αu),

as a consequence of Theorem B.1 and that, due to this theorem,∥∥∥∥ux
∥∥∥∥
L2

6 C‖Dx,αu‖L2 6 C‖u‖H1
α
.

Hence,

‖∂xu‖L2 =

∥∥∥∥Dx,αu− α
u

x

∥∥∥∥
L2

6 ‖Dx,αu‖L2 + α

∥∥∥∥ux
∥∥∥∥
L2

6 C‖u‖H1
α
,

as we wanted to prove.

Let us now consider the case m = 2. A moment’s thought reveals
that it is enough to keep track of derivatives with respect to x in the

argument, which is what we will do here, because we have that ∂βθ u ∈
H
m−|β|
α . Hence, let us start by using Theorem B.1 to write

Dx,αu = A∗α(D(2)
x,αu) + xα−1f1(θ) ,

where f1(θ) is a function on the sphere satisfying ‖f1‖L2
θ
6 C‖u‖H2

α
.

Here we are using the notation L2
θ ≡ L2(∂M). Again by Theorem B.1,

this implies

u = A(2)
α (D(2)

x,αu) + cxαf1(θ) ,

where c is a constant and we are using the notation

A(l)
α ϕ :=

{
(A∗αAα)

l
2ϕ if l is even,

Aα(A∗αAα)
l−1
2 ϕ if l is odd.

The desired estimates follow from this formula and the properties of the
operators Aα and A∗α listed in Theorem B.1. In order to see this, we
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start by noticing that∥∥∥∥A(2)
α ϕ

x2

∥∥∥∥
L2

=

∥∥∥∥ 1

xα+2

∫ x

0
yαA∗αϕ(y) dy

∥∥∥∥
L2

=

∥∥∥∥1

x
Aα+1

(
A∗αϕ

x

)∥∥∥∥
L2

6 C

∥∥∥∥A∗αϕx
∥∥∥∥
L2

6 C‖ϕ‖L2 ,(6.9)

which readily yields∥∥∥∥ ux2

∥∥∥∥
L2

6

∥∥∥∥A(2)
α (D

(2)
x,αu)

x2

∥∥∥∥
L2

+ |c|‖xα−2f1(θ)‖L2

6 C‖D(2)
x,αu‖L2 + |c|‖xα−2‖L2

x
‖f1‖L2

θ
,

6 C‖u‖H2
α

provided α > 1, which is the condition for xα−2 to be in L2
x. If α ∈ (0, 1],

one can easily fix the argument by multiplying by a factor of x, which
yields the estimate

‖u‖H1,1 6 C‖u‖H2
α
,

for α in this range. A similar argument shows that∥∥∥∥∂xux
∥∥∥∥
L2

6

∥∥∥∥A∗α(D
(2)
x,αu)

x

∥∥∥∥
L2

+ C

∥∥∥∥ ux2

∥∥∥∥
L2

6 C‖u‖H2
α
,

‖∂2
xu‖L2 6 ‖D(2)

x,αu‖+ C

∥∥∥∥∂xux
∥∥∥∥
L2

+ C

∥∥∥∥ ux2

∥∥∥∥
L2

6 C‖u‖H2
α

provided α > 1. This proves the claim for m = 2.

The general case follows by induction using the same argument using
that if u ∈ Hm

α , one can write it as

u = A(m)
α (D(m)

x,α u) +
∑

0<l6m/2

xα+2(j−1)fj(θ) ,

with ‖fj‖L2
θ
6 C‖u‖Hm

α
. As before, the constraint on α appears from

the fact that, for u to be in Hk,j , xα−k must be in L2
x, which forces

α > k − 1. The only aspect that is slightly different than above is that
the way in which the powers of x must the distributed when we have

an expression of the form x−lA
(l)
α is by recursively using the formulas

‖x−lA∗αϕ‖L2 6 C‖x1−lϕ‖L2 , x−lAαϕ =
1

x
Aα+l−1(x1−lϕ) .

q.e.d.

Combining Theorem 6.4 with Proposition 6.1 we arrive at the follow-
ing useful:
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Corollary 6.5. If α > m− l − 1,

‖u‖Hm,r 6 C‖xlu‖Hm,r
α

.

Proof. It is enough to consider l 6 m. We then have

‖xlu‖Hm,r 6 C‖u‖Hm−l,r+l 6 C‖u‖Hm−l,r+l
α

6 C‖u‖Hm,r
α

,

where we have used Theorem 6.4 to pass to the second inequality. q.e.d.

7. Nonlinear estimates for adapted Sobolev spaces

We shall next provide estimates that help us deal with nonlinear
functions of elements of an adapted Sobolev space. To obtain estimates
for products of functions in adapted Sobolev spaces, a basic result will
be the following. To state it, we will use the notation

(7.1) Dk,β := (x∂x)k∂βθ .

Theorem 7.1. Given r > n−1
2 , consider functions w1, . . . , wm−1 ∈

H1,r and u ∈ H0,r, which we can assume to be supported in A. Then,
given multiindices with

m∑
i=1

(ki + |βi|) 6 r ,

we have that

‖(Dk1,β1w1) · · · (Dkm−1,βm−1wm−1) (Dkm,βmu)‖L2

6 C‖u‖H0,r

m−1∏
i=1

‖wi‖H1,r .

Proof. Notice that for any α > 1 we have∥∥∥∥∥
(m−1∏

j=1

Dkj ,βjwj
)
Dkm,βmu

∥∥∥∥2

L2

=

∫ (m−1∏
j=1

(Dkj ,βjwj)
2

)
(Dkm,βmu)2 x dx dθ

6
∫ (m−1∏

j=1

sup
x′
|Dkj ,βjwj(x

′, θ)|2
)

(Dkm,βmu)2 x dx dθ

6
∫ (m−1∏

j=1

‖Dx,αDkj ,βjwj(·, θ)‖L2
x

)2

(Dkm,βmu)2 x dx dθ

6
∫
∂M

m∏
j=1

V 2
j dθ ,(7.2)
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where we have defined

Vm := ‖Dkm,βmu‖L2
x

and Vj := ‖Dx,αDkj ,βjwj(·, θ)‖L2
x
,

for 1 6 j 6 m − 1 and in order to pass to the third line we have used
that, by Theorem B.1, for any one-variable function ϕ(x) ∈ H1

α with
α > 1 we have the inequality:

‖ϕ‖L∞x = ‖Aα(Dx,αϕ)‖L∞x 6 C‖Dx,αϕ‖L2
x
.

By definition and the Sobolev embedding, when r − kj − |βj | < n−1
2

we have

Vj ∈ H
r−kj−|βj |
θ ⊂ Lpjθ , pj :=

2n− 2

n− 1− 2r − 2kj − 2|βj |
,

while for r− kj − |βj | > n−1
2 the function Vj is in L∞θ . For convenience,

we will also relabel the functions Vj so that r − kj − |βj | > n−1
2 if and

only if j > m′, so that Vj ∈ L
pj
θ with pj = ∞ for j > m′. We will also

relabel the functions so that r−kj−|βj | = n−1
2 exactly for m′′ < j 6 m′,

and for this range of j’s we will take pj to be any finite but very large
number. Of course, these last two sets can obviously be empty. Since
∂M is compact, the generalized Schwartz inequality ensures that the
integral (7.2) can be estimated as∫

∂M

m∏
j=1

V 2
j dθ 6

m∏
j=1

‖Vj‖2
L
pj
θ

6 C
m∏
j=1

‖Vj‖2
H
r−kj−|βj |
θ

6 C‖u‖2H0,r

m−1∏
j=1

‖wj‖2H1,r

provided that

(7.3)
m∑
j=1

2

pj
6 1 .

Let us show that the condition (7.3) holds, which completes the proof
of the theorem. For this, let us write

r = (1 + ρ)
n− 1

2
,

where ρ > 0 by hypothesis. Since pj = ∞ for m > m′ and pj is
arbitrarily large for m′′ <6 j 6 m′, we can then take an arbitrarily
small constant δ such that

m∑
j=1

2

pj
6

m′′∑
j=1

2

pj
+ δ

=
1

n− 1

m′′∑
j=1

(n− 1− 2r + 2kj + 2|βj |) + δ
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=
1

n− 1

(
m′′(n− 1− 2r) + 2

m′′∑
j=1

(kj + |βj |)
)

+ δ

6 m′′ − 2r(m′′ − 1)

n− 1
+ δ

= 1− (m′′ − 1)ρ+ δ .(7.4)

Therefore, the claim follows for m′′ > 2 by taking δ smaller than (m′′−
1)ρ. To conclude the proof, let us discuss the remaining cases. When
m′′ = 0, the claim is immediate. For m′′ = 1 one can go over the proof
of (7.4) and observe that the only problematic case is when k1+|β1| = r.
But in this case kj + |βj | = 0 for all j > 1, which implies that there are
not any j’s for which r− kj − |βj | = n−1

2 and, thus, one can take δ = 0.
The theorem then follows. q.e.d.

Theorem 7.1 will be key in the rest of the paper. It should be no-
ticed that this theorem provides a wide range of estimates for nonlinear
functions of elements of an adapted Sobolev space. In particular, we
have the following result, where, although we do not emphasize it nota-
tionally, here the function F (w1, . . . , wN ) can also depend on the space
variables:

Corollary 7.2. Let u ∈ H0,r and w1, . . . , wm ∈ H1,r with r > n−1
2 .

Then, if F is a Cr function of wj and a C0
r function of the space vari-

ables (whose dependence will not be made explicit), we have

(7.5) ‖F (w1, . . . , wm)u‖H0,r 6 C‖u‖H0,r ,

where C depends on ‖w1‖H1,r + · · ·+ ‖wm‖H1,r .

Proof. The result follows by applying Theorem 7.1 to the various
terms that appear after using the Leibniz rule on

Dk,β
[
F (w1, . . . , wm)u

]
,

with k + |β| 6 r. q.e.d.

8. Estimates for the linearized equation

For future convenience, we will assume that the metric g possesses
the following properties, which will be needed in the following section
to prove the convergence of the iteration set in Section 5. While some
parameters could have been chosen in a different range for the purposes
of this section, this way the application of these results in the following
section will be transparent.

Assumption. Throughout this section we will assume that the met-
ric g satisfies the following hypotheses:
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(i) The metric g is weakly asymptotically AdS and can be written as

ḡ = γ̄ + xw ,

with γ ≡ γl is the metric constructed in Theorem 4.5 with l >
n
2 + s+ 2, for some integer s satisfying

2 6 s <
n

2
+ 2 .

We also assume that ‖ḡµν‖L∞ < Λ.
(ii) The tensor field w is bounded as

(8.1)
s−1∑
k=0

‖∂kt w‖L∞t H2,r+s−k−2 + ‖∂stw‖L∞t H1,r−1 < Λ ,

for some integer r > n−1
2 and some constant Λ.

(iii) The metric γ̄ satisfies

‖γ̄‖Cn−1
p−n+1

< Λ,

with p > l + r + s+ 1, which is equivalent to demanding that the
initial and boundary data (g̃,K, ĝ) satisfy

‖x2g̃‖Cn−1
p−n+1

+ ‖x2K‖Cn−1
p−n

+ ‖ĝ‖Cp(I×∂M) < Λ′ .

Using the formula (4.1), which ensures that the principal part of Pg
is ḡµν∂µ∂ν , together with the small-x behavior described in Lemma 4.2
and the fact that g is weakly asymptotically AdS, is easy to derive a
manageable expression for Pgu. Specifically, if we take u ∈ Vgj , a direct
calculation shows that Pgu can be written in A using local coordinates
as

(8.2) (Pgu)µν = −1

2
ḡtt
(
∂2
t + ∂∗θiG

ij∂θj + D∗x,αjb
1Dx,αj + x ∂∗θi(b

2)i∂x

+ x∂xb
3∂t + ∂θi(b

4)i∂t

)
uµν

+
(
b5∂xu+ b6∂tu+ b7∂θu+

b8

x
u
)
µν
,

where as usual the local coordinates θ = (θ1, . . . , θn−1) parametrize
the boundary ∂M , the star denotes the formal adjoint of a differential
operator computed with respect to the scalar product of L2, and the
quantities bl are scalar functions or tensor fields that depend smoothly
on ĝ, ∂ĝ (through γ and ∂γ), w and ∂w. Observe that the principal
part of Pg is scalar. Although we do not make explicit the tensorial

structure of the tensor fields bl appearing in the non-principal part of
the operator, their action must be understood in the obvious fashion,
e.g.,

(b6∂xu)µν ≡ (b6)λρµν ∂xuλρ.
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Notice that, in particular,

b1 = − ḡ
xx

ḡtt
, Gij = − ḡ

θiθj

ḡtt
, x(b2)i = −2ḡxθ

i

ḡtt
,(8.3)

xb3 = −2ḡxt

ḡtt
, (b4)i = −2ḡtθ

i

ḡtt
.

Since the metric is weakly asymptotically AdS, all the quantities bj are
of order O(1), with b1 > 0 and Gij a positive definite matrix.

We shall next derive estimates for a function satisfying the scalar
equation

(8.4) Lg,αu = F , u|t=0 = u0 , ∂tu|t=0 = u1 ,

where

Lg,αu :=
(
∂2
t + ∂∗θiG

ij∂θj + D∗x,αb
1Dx,α + x ∂∗θi(b

2)i∂x

+ x∂xb
3∂t + ∂θi(b

4)i∂t

)
u .

Taking α = αj , Lg,α would be the part of Pgu containing both the
highest order derivatives and the more singular terms at x = 0, which
is a scalar differential operator for u ∈ Vgj . The metric g is assumed

to satisfy the above hypotheses, and we will also assume that α > n/2.
The reason for which we introduce this auxiliary equation is to postpone
the treatment of the tensorial nature of the equation until the end of
this section, but we have chosen to keep the notation u for the unknown
as we will eventually replace u by a tensor field satisfying Pgu = F .

In the following theorem we provide a priori estimates for the prob-
lem (8.4). To state the theorem in a notationally concise way, let us
denote by

(8.5) uk := ∂kt u|t=0 , 2 6 k 6 s,

the value of the kth time derivative of u at t = 0. Notice that, by
isolating the term with the highest number of time derivatives in (8.4)
and differentiating k − 2 times with respect to t, one can write uk in
terms of derivatives of the initial data and source term (u0, u1, F ). The
functions uk will often appear in arguments via the quantity

(8.6) Cs,r :=
s−1∑
k=0

‖uk‖H1,r+s−k−1 + ‖us‖H0,r .

For the tensor-valued equation Pgu = F , this quantity will correspond
to the quantity that appears in the statement of Theorem 1.1.
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To state the results, we will make use of the following norms (here
the prime does not refer to any sort of duality):

‖u‖s,r :=

s−1∑
k=0

‖∂kt u‖L∞t H1,r+s−k−1 + ‖∂st u‖L∞t H0,r ,(8.7a)

‖F‖′s,r :=
s−1∑
k=0

‖∂kt F‖L∞t H0,r+s−k−1 .(8.7b)

Throughout, we will use the notation C0 for constants depending only
on δ and Λ.

Theorem 8.1. For any F ∈ L∞t L2 there is a unique solution u ∈
L∞t H1 ∩W 1,∞

t L2 to the Cauchy problem (8.4), which satisfies the fol-
lowing estimate in (−T, T )×M :

‖u‖s,r 6 eC0TCs,r + C0T‖F‖′s,r .

For small T , the constant depends only on Λ.

Proof. It is standard that it suffices to prove the a priori estimate.
For this, there is no loss of generality in assuming that u is supported
in A, since the estimate is known to hold for u supported away from
the boundary. Let us then define the energy functional
(8.8)

E1[v] :=
1

2

∫
M

(
(∂tv)2 +Gij∂iv ∂jv+b1(Dx,αv)2 +x(b2)i∂xv ∂iv

)
x dx dθ ,

where in the rest of this section we will write ∂i ≡ ∂θi . It is apparent

that at any time E1[v]
1
2 is equivalent to the norm ‖v‖H1

α
+ ‖∂tv‖L2

(which is in turn equivalent to ‖v‖H1 + ‖∂tv‖L2 by Theorem 6.4) in the
sense that

(8.9)
1

C
E1[v]

1
2 6 ‖v‖H1 + ‖∂tv‖L2 6 CE1[v]

1
2 ,

where the constant C only depends on

‖ḡ‖C1
1

+ ‖∂tḡ‖C0
1

+ ‖∂2
t ḡ‖C0 .

In particular, by Corollary 6.3, C ≡ C0 only depends on Λ.

Now let us use the energy functional (8.8) to define

E1,r′ [v] :=
∑

k+|β|6r′
E1[Dk,βv] ,

where again we are using the shorthand notation Dk,β := (x∂x)k∂βθ . In
view of the norm equivalence (8.9), it is clear that E1,r′ [v] is equivalent
to the norm

‖v‖H1,r′ + ‖∂tv‖H0,r′ ,
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with a constant that only depends on Λ. We can now define a higher
analog of the energy E1 by setting

(8.10) Es,r[v] :=
s−1∑
k=0

E1,r+s−k−1[∂kt v] .

In view of the norm equivalence (8.9), it is clear that Es,r[v]1/2 is equiv-
alent to the norm

(8.11)
s−1∑
k=0

‖∂kt v‖H1,r+s−k−1 + ‖∂st v‖H0,r ,

in the same sense as above, which implies that

sup
|t|<T

Es,r[v]
1
2

is equivalent to ‖v‖s,r.
Our goal now is to show that, if u is a solution of (8.4), the energy

Es,r[u] satisfies the differential inequality

(8.12) ∂tEs,r[u] 6 C0Es,r[u] + C0Es,r[u]
1
2

s−1∑
k=0

‖∂kt F‖H0,r+s−k−1 .

Indeed, by Grönwall’s inequality it is standard that this implies

Es,r[u](t)
1
2 6 eC

′
0|t|
(
Es,r[u](0)

1
2 + C ′0

s−1∑
k=0

∫ |t|
−|t|
‖∂kt F‖H0,r+s−k−1

)
.

Since Es,r[u]
1
2 is equivalent to ‖u‖s,r, the a priori estimate of the theorem

then follows from the above inequality.

Armed with Theorems 6.2 and 7.1, the proof of (8.12) is now stan-
dard. Let us begin by computing the evolution of E1,r+s−1[u]. One
readily finds that it is given by

(8.13) ∂tE1,r+s−1[u] =
∑

k+|β|6r+s−1

[ ∫
∂t(Dk,βu)Lg,α(Dk,βu)

−
∫
x∂tDk,βu ∂x(b3∂tDk,βu)−

∫
∂tDk,βu ∂i((b4)i∂tDk,βu)

+

∫
O(1)∂tDk,βu ∂Dk,βu+

∫
O(1)

x
Dk,βu ∂tDk,βu

+

∫
O(1)

x
(Dk,βu)2 +

∫
O(1) (∂Dk,βu)2

]
,

where all the integrals hereafter correspond to integration over the ball
with respect to the natural measure x dx dθ and we are denoting by
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O(1) well-behaved functions of γ̄, w and ∂w. We claim that this can be
estimated as

∂tE1,r+s−1[u]

(8.14)

6 C0E1,r+s−1[u] + C0E1,r+s−1[u]
1
2

∑
k+|β|6r+s−1

‖Lg,α(Dk,βu)‖ ,

where ‖ · ‖ stands for the L2 norm. Indeed, for k + |β| 6 r + s− 1 the
first term in (8.13) is bounded as∫

|∂tDk,βuLg,αDk,βu| 6 C0E1,r+s−1[u]
1
2 ‖Lg,αDk,βu‖,

and the last for summands can be easily upper bounded by

C0E1,r+s−1[u]

using Theorems 6.2 and 7.1. Let us now consider the first of the two
remaining terms. We have that∣∣∣∣ ∫ x∂tDk,βu ∂x(b3∂tDk,βu)

∣∣∣∣
=

∣∣∣∣ ∫ (∂tDk,βu)2x∂xb
3 +

1

2

∫
b3x∂x[(∂tDk,βu)2]

∣∣∣∣
6
∫ ∣∣∣1

2
x∂xb

3 − b3
∣∣∣(∂tDk,βu)2

6 C0E1,r+s−1[u],

and an analogous argument shows that∣∣∣∣ ∫ ∂tDk,βu ∂i((b4)i∂tDk,βu)

∣∣∣∣ 6 C0E1,r+s−1[u] .

Putting everything together, this yields (8.14). To conclude, we can
now estimate the commutator using Theorems 6.2 and 7.1 to infer that

‖Lg,α(Dk,βu)‖ 6 ‖Dk,β(Lg,αu)‖+ ‖[Lg,α,Dk,β]u‖
6 ‖Dk,βF‖+ ‖[Lg,α,Dk,β]u‖

6 ‖F‖H0,r+s−1 + C0Es,r[u]
1
2 ,

which shows that

∂tE1,r+s−1[u] 6 C0Es,r[u] + C0Es,r[u]
1
2 ‖F‖′s,r .

The computation of the time evolution of the other quantities
E1,r+s−k−1[∂kt u] appearing in the definition of Es,r[u] (cf. Equa-
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tion (8.10)) is similar, the only difference being that one needs to control
the commutator

‖Lg,α(Dj,β∂kt u)‖ 6 ‖Dj,β∂kt F‖+ ‖[Lg,α,Dj,β∂kt ]u‖

6 ‖∂kt F‖H0,r+s−k−1 + C0Es,r[u]
1
2 .

Summing over k, this readily yields the differential inequality (8.12).
q.e.d.

Remark 8.2. Notice that we are not imposing that u(t) ∈ H2
α for

a.e. t, so Equation (8.4) has to be understood using the energy formu-
lation, as it is customary.

Promoting the estimates proved in Theorem 8.1 to estimates for the
tensor-valued equation

(8.15) Pgu = F , u|t=0 = u0 , ∂tu|t=0 = u1

is now immediate as the norms (8.7) can be trivially extended to tensor-
valued functions. As before, we will state the theorem in terms of the
quantity Cs,r, which we can still define in terms of the initial data and
source term at t = 0 as in Equation (8.6).

Theorem 8.3. For all times T < T0, if u solves the problem (8.15)
one has the estimates

‖u‖s,r 6 eC0TCs,r + C0T‖F‖′s,r ,
where the constant C0 depends only on Λ.

A final simple result that will come in handy in the following section is
the following, which controls the difference between the solution to two
Cauchy problems of the form (8.15) with different metrics and source
terms. For concreteness we will control the difference in the ‖ · ‖1,0
norm and assume that we have the same initial conditions (u0, u1), but
we could have used any norm ‖ · ‖s′,r with s′ 6 s − 1 and allowed for
distinct initial conditions. It is worth emphasizing that estimating the
difference is not completely trivial a priori because the leading part of
the equation, as represented by the operator Pg, is not scalar: we have
seen that the parameter α = αj takes a different value depending on the
subspace Vgj that u is assumed to belong to. However, the structure of
the metrics under consideration allows to prove the result quite easily.

Proposition 8.4. Let

ḡ := γ̄ + xw and ḡ′ := γ̄ + xw′

be metrics satisfying the assumptions (i)–(iii) above. Suppose that u, u′∈
L∞H1 ∩H1

t L
2 satisfy the equations

Pgu = F and Pg′u
′ = F ′,
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with the same initial conditions (u0, u1). Then the difference is bounded
by

‖u− u′‖1,0 6 CeCTT (‖F − F ′‖′1,0 + ‖w − w′‖1,0) ,

where the constant C only depends on Λ, ‖F‖′s,r and Cs,r.

Proof. A short computation using the expression for Pg shows that
the differential operator Pg, whose leading part at x = 0 is not scalar,
can be symbolically written in a neighborhood of x = 0 as
(8.16)

Pgu = A2(ḡ) ∂2u+

(
A1(ḡ)

x
+A′1(ḡ, ∂ḡ)

)
∂u+

(
A0(ḡ)

x2
+
A′0(ḡ, ∂ḡ)

x

)
u ,

where Aj , A
′
j are tensor-valued functions. Furthermore, we know that

the term with second-order derivatives is scalar, and given by (8.2).

With ḡ = γ̄+xw, it then follows that Pg agrees with Pγ modulo terms
that are subdominant at x = 0. More precisely, Theorem 7.1 yields

‖(Pg − Pg′)u‖ 6
2∑

k=0

∥∥∥∥Ak(ḡ)−Ak(ḡ′)
x2−k ∂ku

∥∥∥∥
+

1∑
0

∥∥∥∥A′k(ḡ, ∂ḡ)−A′k(ḡ′, ∂ḡ′)
x1−k ∂ku

∥∥∥∥
6 C‖w − w′‖1,0 ,(8.17)

with ‖ · ‖ denoting the L2 norm and the constant C depending only
on the quantities discussed at the statement as a consequence of the
estimates for u proved in Theorem 8.3.

To see why this is true, let us consider a term that does not depend
on ∂ḡ, such as A2(ḡ) ∂2u. Observe that, as the L∞ norm of w and ∂w is
bounded by a constant that depends on Λ by Theorem 6.2, it is standard
that we have

|A(ḡ, ∂ḡ)−A(ḡ′, ∂ḡ′)| 6 C0(|w − w′|+ x|∂w − ∂w′|) .

Therefore,

‖(A2(ḡ)−A2(ḡ′)) ∂2u‖ 6 ‖(xw − xw′)H(xw, xw′)∂2u‖
6 C‖(w − w′)x∂2u‖
6 C‖w − w′‖L∞x L2

θ
‖x∂2u‖L2

xL
∞
θ

6 C‖w − w′‖H1‖u‖H1,r′+1

6 C‖w − w′‖1,0 .

Here H is a smooth tensor-valued function, r′ is any number larger in
(n−1

2 , r] and the constant C is as above. When derivatives of ḡ are
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involved, the argument is similar. For instance,

‖(A′1(ḡ, ∂ḡ)−A′1(ḡ′, ∂ḡ′)) ∂u‖ 6 ‖(w − w′)H1∂u‖+ ‖x(∂w− ∂w′)H2∂u‖
6 C‖(w − w′)∂u‖+ C‖(∂w − ∂w′)x∂u‖
6 C‖w − w′‖L∞x L2

θ
‖∂u‖L2

xL
∞
θ

+ C‖∂w − ∂w′‖‖x∂u‖L∞
6 C‖w − w′‖H1‖u‖H1,r′+1

6 C‖w − w′‖1,0 .

To conclude the proof of the proposition, let us notice that

Pg′(u− u′) = F ′ − F + (Pg − Pg′)u .
Since

‖(Pg − Pg′)u‖′1,0 = ‖(Pg − Pg′)u‖L∞t L2 6 C‖w − w′‖1,0,
by (8.17), Theorem 8.3 then provides the desired control for the differ-
ence u− u′. q.e.d.

9. Convergence of the iteration

We are now ready to prove the existence of solutions to the equation
Q(g) = 0 with the desired initial and boundary conditions. With the
technical tools that we have already developed, the argument is now
standard.

To present the result, let us introduce a new norm that is stronger
than ‖u‖s,r in the sense that it also includes additional (adapted) deriva-
tives with respect to the variable x. To define it, we can assume that
the tensor field u is supported in A and consider its decomposition

u = u0 + u1 + u2 + u3 ,

where uj ∈ Vγj . The norm is then defined using the metric γ as

|||u|||s,r := ‖u‖s,r +

3∑
j=0

∑
i+k+m6s−2

‖D(2+i)
x,αj ∂

k
t u

j‖H0,r+m .

For s = 1 we simply take |||u|||1,r := ‖u‖1,r. By Theorem 6.4 and the
fact that αj > n

2 , for s < n
2 + 1 this is equivalent to

|||u|||s,r := ‖u‖s,r +
∑

i+k+m6s−2

‖∂kt u‖H2+i,r+m ,

so, in particular, it does not depend on γ. Likewise, for s ∈ [n2 +1, n2 +2)
one can write

|||u|||s,r := ‖u‖s,r+
3∑
j=0

‖D(s)
x,αju

j‖H0,r+
∑

i+k+m6s−2 and i6s−3

‖∂kt u‖H2+i,r+m .
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Of course, when u is not supported in A one defines its triple norm using
a compactly supported function χ, e.g., as in Equation (6.3). It should
be noticed that we will not only estimate u, but also xρu, as in the
bound (9.2) below. The reason for this is that this not only amounts to
redistributing standard and regularized derivatives as in Proposition 6.1,
but, in fact, allows us to control ρ additional time derivatives of u. This
will be useful to prove Theorem 1.1.

Theorem 9.1. Let us choose numbers s, r, l and p and take γ ≡ γl
as in the assumptions (i)–(iii) of Section 8. For any compatible initial
and boundary data (g̃, K, ĝ), there is some time T > 0 and a function u
such that the weakly asymptotically AdS metric

g := γ + x
n
2 u

solves the modified Einstein equation Q(g) = 0 in (−T, T )×M with the
specified initial and boundary conditions and is bounded as

(9.1) |||u|||s,r < C,

with a constant depending only on

‖x2g̃‖Cn−1
p−n+1

+ ‖x2K‖Cn−1
p−n

+ ‖ĝ‖Cp(I×∂M) .

Furthermore, if r > n−1
2 + ρ with ρ a positive integer, we also have

(9.2) |||xρu|||s+ρ,r−ρ < C ,

and ḡ ∈ C∞polyhom if g̃ ∈ C∞ and x2g̃, x2K ∈ C∞polyhom.

Proof. For simplicity we will divide the proof in four steps. As usual,
it is enough to prove the estimates in a small neighborhood A of the
boundary. As before, we will write the metric as ḡ = γ̄ + x

n
2

+2u and
write the equation Q(g) = 0 in the convenient form (5.5).

Estimates for the source terms. Let us begin by deriving some estimates
for the functions F(u) and E(u) under the assumptions that

(9.3) ‖γ̄‖Cn−1
p−n+1

< Λ, ‖u‖s,r < Λ, ‖ḡµν‖L∞ < Λ ;

cf. Section 8. Just as in that section, we will write the metric as ḡ =
γ̄ + xw with w := x

n
2

+1u bounded in the norm (8.1). Throughout, we
will denote by C0 a constant that only depends on Λ and δ and we
will use without further mention the properties of the adapted Sobolev
spaces that we established in Sections 6 and 7.

A close look at Equation (5.4) reveals that the function F(u) can be
written as

F(u) =
F (ḡ)u

x
,
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where F (ḡ) is a smooth function of ḡ := γ̄+x
n
2

+2u (in particular, F(u)
does not involve any derivatives of u). Hence, at any fixed time we have

‖F(u)−F(u′)‖ 6 C0

∥∥∥∥u− u′x

∥∥∥∥ 6 C0‖u− u′‖H1 ,

where ‖ · ‖ again stands for the L2 norm, which implies

‖F(u)−F(u′)‖′1,0 6 C0‖u− u′‖1,0 .
Furthermore, by the elementary inequality ‖v/x‖Hk,s 6 C‖v‖Hk+1,s ,

‖F(u)‖′s,r = sup
|t|<T

s−1∑
k=0

‖∂kt F(u)‖H0,r+s−k−1

6 C0 sup
|t|<T

s−1∑
k=1

‖∂kt u‖H1,r+s−k−1

6 C0‖u‖s,r .

Using the formula for E(u) given in Equation (5.2) and computing
the second derivative of B as in Lemma 4.3, we infer that E(u) can be
symbolically written as

E(u) =

∫ 1

0
x
n
2B(u, x ∂u) dσ ,

where B is a quadratic form whose coefficients are smooth functions of
γ̄ + σx

n
2

+2u and the integral is with respect to the parameter σ. Using
this formula and arguing essentially as in the case of F(u) one can prove
the analogous estimates

‖E(u)− E(u′)‖′1,0 6 C0‖u− u′‖1,0 ,
‖E(u)‖′s,r 6 C0‖u‖s,r .

Hence, it stems that the function G(u) := F(u) + E(u) that appears in
Equation (5.5) satisfies the same bounds, that is,

‖G(u)− G(u′)‖′1,0 6 C0‖u− u′‖1,0 ,(9.4)

‖G(u)‖′s,r 6 C0‖u‖s,r .(9.5)

Convergence in the low norm. Our objective will be to solve the equation
using the iteration

(9.6a) Pgmu
m+1 = F0 + G(um) ,

where gm := γ + x
n
2 um and the initial conditions that we impose are

(9.6b) um+1|t=0 = u0 , ∂tu
m+1|t=0 = u1 ,

where of course uj := x−
n
2 (gj−∂jt γ|t=0). We can start the iteration with

u1 := 0 and the desired solution to the equation Q(u) = 0 will arise as
the limit of um as m→∞. Notice that we are using superscripts both
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for the sequence of iterates and for the components of u in the space
Vγj , but this should not cause any confusion because only the former
will appear in the study of the convergence of the sequence.

Let us assume that the condition (9.3) is satisfied, where Λ is chosen
so that

(9.7) ‖γ̄‖Cn−1
p−n+1

+ ‖ḡµν |t=0‖L∞ + Cs,r + ‖F0‖′s,r <
Λ

2
.

Recall that, by Theorem 4.5,

‖F0‖′s,r 6 C‖F0‖C1
s+r−1(I×M) 6 C‖ĝ‖Cp(I×∂M) ,

where we have used that l > s+ n
2 + 2 and p > l+ s+ r+ 1, so this just

means that we choose Λ in terms of the sizes of the initial and boundary
data.

To prove the convergence of the sequence in the norm ‖ · ‖1,0, then
we can use Proposition 8.4 and the estimate (9.4) to write, for T < T0,

‖um+1 − um‖1,0 6 C0T‖G(um)− G(um−1)‖′1,0 + C0T‖um − um−1‖1,0
6 C0T‖um − um−1‖1,0 .(9.8)

It then follows that the sequence (um)∞m=1 converges in the norm ‖ · ‖1,0
to some u ∈ L∞t H1 ∩W 1,∞

t L2, provided that T is smaller than some
constant depending only on Λ (i.e., T < 1/(2C0)).

Boundedness in the high norm. Let us assume that the bound (9.3) is
satisfied up to the mth step of the iteration with Λ chosen so that (9.7)

holds. Writing gm = γ + xwm with wm := x
n
2

+1um, we then infer that
the assumptions on the metric of Section 8 are satisfied too. Hence,
applying Theorem 8.3 to Equation (9.6) immediately yields, for T < T0,

‖um+1‖s,r 6 eC0TCs,r + C0T
(
‖F0‖′s,r + ‖G(um)‖′s,r

)
.(9.9)

If we employ that ‖F0‖′s,r < Λ/2 in the inequality (9.9) and use the
estimate (9.5), we arrive at

‖um+1‖s,r 6 eC0TCs,r + C0T‖um‖s,r

6 (eC0T + C0T )
Λ

2
< Λ(9.10)

provided that T is small enough.

Since the sequence (um) is bounded in ‖ · ‖s,r by (9.10) and converges
to u in ‖ · ‖1,0 by (9.8), together with the fact that these spaces pos-
sess good interpolation properties (essentially as a consequence of the
formula (6.6)), we immediately obtain that um → u in ‖ · ‖s′,r for any
real s′ < s and that u also satisfies the bound ‖u‖s,r 6 Λ. The usual
argument then shows (cf., e.g., [33, Chapter 9]) that u is, indeed, a
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solution of the equation Q(g) = 0 in (−T, T )×M , with T small enough,
and that u is bounded by

(9.11) ‖u‖s,r < Λ,

as a consequence of (9.10).

Higher spatial regularity. Our goal now is to show that, if u satisfies
the equation Q(g) = 0, up to s adapted derivatives of u can then be
controlled in terms of the energy Es,r[u]. More precisely, need to prove
that

3∑
j=0

∑
i+k+m6s−2

‖D(2+i)
x,αj ∂

k
t u

j‖L∞t H0,r+m(9.12)

6 C0‖u‖s,r + C0

∑
i+k+m6s−2

‖∂kt F0‖Hi,r+m .

Since l > s+ n
2 + 2 and p > l+ s+ r+ 1, Theorem 4.5 then asserts that∑

i+k+m6s−2

‖∂kt F0‖Hi,r+m 6 C‖x2−sF0‖C0
s+r−2(I×M)

6 CΛ .

Hence, the desired bound (9.1) follows from the inequality (9.12) and
the estimate (9.11).

The estimates (9.12) are proved by isolating the term D
(2)
x,αu in the

equation Q(g) = 0, which we write as

Pgu = F0 + G(u),

with g = γ + x
n
2 u. Once the term D

(2)
x,αu has been isolated, we can

take the necessary number of adapted x-derivatives for which we need
a priori estimates. For concreteness, let us spell out the details for the

first quantity, namely the norm ‖D(2)
x,αu‖L∞t H0,r+s−2 .

From Equation (8.4) we can write

(9.13)

D(2)
x,αju

j =
1

b1

(
F j0 + G(u)j + ∂2

t u
j − (∂xb

1)Dx,αju
j − ∂∗i (Gik∂ku

j)

− x∂∗i [(b2)i∂xu
j ]− x∂x(b3∂tu

j)− ∂i[(b4)i∂tu
j ] + l.o.t.

)
,

where the superscript j indicates the component in Vγj and we have

employed the identity (8.16) to write

Pgu = Pγu+ l.o.t.

using the same ideas as in the proof of Proposition 8.17. Besides, we
have used that, as thanks to our choice of the number s, r we have the
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uniform bound

‖ḡ − ḡ|t=0‖L∞ 6 CT .
Equation (8.3) guarantees that we can, indeed, divide by b1 to solve the

equation for D
(2)
x,αju. To compute the norm ‖D(2)

x,αju
j‖H0,r+s−2 we must

now consider the action of the differential operatorDk,β on this equation,
with l+|β| 6 r+s−2 and Dk,β defined as in (7.1). Given the dependence
on u of the various terms that appear in the equation, a straightforward
computation shows that, in fact, the terms that appear can, indeed, be
controlled using the norm ‖u‖s,r and Theorems 6.2 and 7.1 as

(9.14) ‖D(2)
x,αju

j‖L∞t H0,r+s−2 6 C0‖u‖s,r + C0‖F0‖L∞t H0,r+s−2 .

Although we will not write down the tedious but straightforward minu-
tiae, it is clear from (9.13), e.g., that the most dangerous terms that can

appear when one estimates ‖D(2)
x,αju

j‖H0,r+s−2 are of the symbolic form

‖F (u)∂2
t u‖H0,r+s−2 + ‖F (u)x∂x∂θu‖H0,r+s−2 + ‖F (u)x∂x∂tu‖0,r+s−2 ,

and these are clearly controlled by ‖u‖s,r.

Now that we have estimated ‖D(2)
x,αju

j‖H0,r+s−2 , which gives
control over ‖u‖L∞t H2,r+s−2 , we can easily obtain bounds for

‖D(2)
x,αj∂

k
t u‖L∞t H0,r+s−2−l by taking time derivatives in Equation (9.13)

and repeating the argument. Estimates for the other terms

‖D(2+i)
x,αj ∂

k
t u

j‖L∞t H0,r+k are then obtained by successively acting with

D
(i)
x,α on Equation (9.13), with i = 1, 2 . . . , s − 2. The only difference

is that one has to use that, by the choice of the range of parameters
made in the assumptions (i)–(iii), the norms ‖ · ‖

Hs′,r′
α

and ‖ · ‖Hs′,r′ are

equivalent by Theorem 6.4 for all s′ < n
2 + 1.

Additional time derivatives and C∞ estimates. The proof of the a priori
estimate (9.2) is, in a way, analogous to that of (9.12). If we now isolate
∂2
t u in Equation (9.13), we find that the component uj ∈ Vγj satisfies

the equation

(9.15)

∂2
t u

j = G(u)j−D(2)
x,αju

j−(∂xb
1)Dx,αju

j−∂∗i (Gik∂ku
j)−x∂∗i [(b2)i∂xu

j ]

− x∂x(b3∂tu
j)− ∂i[(b4)i∂tu

j ] + l.o.t.

Multiplying by xρ, taking s− 1 derivatives with respect to t and using
the bound |||u|||s,r < Cδ, we immediately find that xρ∂s+1

t u satisfies

‖xρ∂s+1
t u‖L∞t H0,r−1 < C .

Likewise, by successively taking s− 2 + i time derivatives in (9.15) and
repeating the argument, we readily obtain the bound
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‖xρ∂s+it u‖L∞t H0,r−i < C,

for 2 6 i 6 ρ.

The fact that the solution is smooth in the polyhomogeneous sense
if the initial and boundary data are is a straightforward consequence of
Theorem 6.3 and the persistence of regularity principle (see, e.g., [34]),
which just means that the time of existence T does not depend on
the choice of the integer s, r as long as they are large enough, so that
in this case |||u|||s,r is finite (although not uniformly bounded) for all

s, r (of course, γ̄ is smoothly polyhomogeneous by construction). This
completes the proof of the theorem. q.e.d.

The statement about the existence of Cq metrics that appears in the
statement of Theorem 1.1 is an immediate consequence of Theorem 9.1
due to Corollary 6.3 provided that the initial and boundary data are
smooth enough. Specifically, by keeping track of the various choices of
exponents that we have made in the preceding sections we arrive at the
following:

Corollary 9.2. Given any q > n − 1, let us choose an integer p >
2q+ 5

2n+ 7. If ĝ ∈ Cp, x2g̃, x2K ∈ Cn−1∩Cppolyhom and they satisfy the

constraint equations and the compatibility conditions to order q, then
there exists a T > 0 and a unique solution to the equation Q(g) = 0 on
(−T, T )×M with the above initial and boundary data, which is of class
ḡ ∈ Cn−1 ∩ Cqpolyhom.

10. DeTurck’s trick revisited

Corollary 9.2 provides a weakly asymptotically AdS metric g that
solves the equation Q(g) = 0 in (−T, T ) ×M , satisfies the desired ini-
tial and boundary conditions. Our objective in this section is to show
that g is also a solution of the Einstein equation Ric(g) = −ng, which
completes the proof of Theorem 1.1. The standard way of proving this
is via the so-called DeTurck’s trick. A textbook presentation of this
method can be found in [33, Chapter 14] (see also [24]), so we will
only sketch the main ideas and refer to this book for further details. It
should be noticed, however, that the lack of global hyperbolicity and
the fact that the equations that appear are singular at the conformal
boundary ensure that an additional effort is necessary to show that De-
Turck’s method actually works in the situation that we are considering.
Fortunately, the estimates that we have derived in the previous sections
of this paper are well suited for this task.

The key idea in DeTurck’s method is that, if Q(g) = 0, the 1-form
W introduced in (3.4) to break the gauge invariance of the Einstein
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equation must satisfy the linear hyperbolic equation

(10.1) �gWµ +RνµWν = 0 ,

where Rνµ := gνλRµλ is the tensor obtained by raising an index of the
Ricci tensor of the metric g. When the metric g is globally hyperbolic,
it is immediate that if Wµ = 0 and ∂tWµ = 0 at t = 0, then W ≡ 0
for all time, which readily implies that the metric satisfies the Einstein
equation Ric(g) = −ng because of the structure of the operator Q.

The difficulty here is that Equation (10.1) is not globally hyperbolic.
In fact, since g is weakly asymptotically AdS (which ensures that g =
x−2ḡ for some ḡ smooth enough up to the boundary and such that
ḡµνxµxν = 1 on (−T, T ) × ∂M), a tedious computation shows that,
in A, Equation (10.1) reads as

(10.2) gλν∂λ∂νWµ+
(3− n) ∂xWµ

x
−nWµ + (n− 1)ḡλνxλWν xµ

x2
+l.o.t. ,

where l.o.t. stand for terms with at most one derivative of W that are
smaller at x = 0 (i.e., they are of the form O(1) ∂W +O(x−1)W ).

Let us now write W =: W 0 +W 3, with

(W 0)µ :=
ḡλνxλWν

|dx|2ḡ
xµ .

This decomposition diagonalizes (10.2) in the sense that the leading
terms of the equation (both in terms of derivatives and singular behavior
at the boundary) are now controlled by scalar operators:

L0W0 :=

(
gλν∂λ∂ν +

3− n
x

∂x −
3n− 1

x2

)
W0 + l.o.t. ,

L3W3 :=

(
gλν∂λ∂ν +

3− n
x

∂x −
2n

x2

)
W3 + l.o.t. ,

where again l.o.t. stands for lower-order terms that are smaller at x = 0.
Setting Wj =: x

n
2
−1Vj for j = 0, 3, we can now write

LjWj =: x
n
2
−1PjVj ,

where in A the linear operator Pj reads as

PjVj = ḡ00
(
∂2
t + ∂∗θiG

ik∂θk + D∗x,αjb
1Dx,αj + x ∂∗θ b̃

2∂x

+ x∂∗xb̃
3∂θ + x∂xb̃

4∂t + x∂θ b̃
5∂t

)
Vj

+
(
b̃6x∂xVj + xb̃7∂tVj + xb̃8∂θVj + b̃9Vj

)
,

with α0 and α3 defined in Equation (4.2)

Since this has the same structure as the operator Pg considered
in (8.2), a minor variation of Theorem 8.3 proves, in particular, that
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any solution V := V0 + V3 must vanish identically in (−T, T )×M if it
has zero boundary and initial conditions. The compatibility conditions
for the initial and boundary conditions guarantee that this is, indeed,
the case (cf. Appendix A), so we have proved the following:

Theorem 10.1. The metric g constructed in Theorem 9.1 (or Corol-
lary 9.2) solves the Einstein equation Ric(g) = −ng in (−T, T )×M .

The main result of the paper (Theorem 1.1) then follows.

Appendix A. Constraint equations and compatibility
conditions

In this appendix we recall the constraints that must be satisfied by
the initial and boundary data of the Einstein equations Ric(g)+ng = 0.
We refer to [4] for details.

The initial and boundary conditions are a Riemannian metric g̃ij on
the n-dimensional manifold M , a second-order tensor Kij on M and a

Lorentzian metric ĝαβ on R × ∂M . We also need a function x on M ,
which we assume to be C∞ up to the boundary. The connection of
these objects with the Lorentzian Einstein metric g on (−T, T )×M is
that ĝαβ is the pullback of ḡµν := x2gµν to (−T, T ) × ∂M , g̃ij is the
pullback of gµν to the Cauchy surface {0} ×M and Kij is the second
fundamental form of the Cauchy surface in (−T, T ) ×M with respect
to the metric gµν . In terms of regularity, we assume that ĝαβ is of class

Cp((−T0, T0)× ∂M), that x2g̃ij is in Cn−1(M)∩Cppolyhom(M) and that

Kij can be written as

Kij =
1

x
Lij +

1

n
Kg̃ij ,

where Lij is traceless (that is, g̃ijLij = 0, so K = g̃ijKij) and Lij ,K ∈
Cn−1(M)∩Cq−1

polyhom(M). With some abuse of notation, throughout this

paper we use the shorthand notation

‖x2K‖
Cp−1
n−1

:= ‖Lij‖Cp−1
n−1

+ ‖K‖
Cp−1
n−1

,

and when we say that x2Kij is in Cn−1∩Cp−1
polyhom we mean that Lij ,K ∈

Cn−1 ∩ Cp−1
polyhom. We recall that the estimates in [4] control precisely

these quantities (in addition, to x2g̃ij).

The way to compute ∂kt gµν |t=0 from the initial data (g̃,K) is well
know, the only difference being that one must take care of the powers of
x that characterize the behavior at infinity of the metric. An economic
way of doing this (see, e.g., [13, Section 7.5] for details) is by embedding
M in the product (−T0, T0) ×M and choosing t ∈ (−T0, T0) as a time
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coordinate. We can then identity {t = 0} with M and set, for any local
coordinates on M ,

gij |t=0 = g̃ij , gti|t=0 = 0 , , gtt = −x−2 .

The condition that K be the second fundamental form of the spatial
hypersurface {t = 0} translates into

∂tgij |t=0 =
2

x
Kij ,

while the time derivatives of the coefficients gtµ at 0 are chosen so as to
ensure that the 1-form W (cf. Equation (3.4)) vanishes at t = 0. Higher
order time derivatives of the metric a time 0 can then be computed from
the equation Q(g) = 0. Because of Proposition 3.2 we assume that

1 = ḡµνxµxν |{0}×∂M = g̃
ij
∂ix ∂jx|∂M ,

where g̃
ij

is the inverse of g̃ij := x2gij .

The initial data (g̃ij ,Kij) cannot be chosen freely, as the following
constraint equations must be satisfied:

R̃−KijK
ij +K2 = −n(n− 1) ,(A.1a)

∇̃jKji − ∇̃iK = 0 .(A.1b)

Here the quantities with tildes are computed using the Riemannian met-

ric g̃, R̃ stands for the scalar curvature of g̃ and indices are raised and
lowered using this metric. The proof goes exactly as in [33].

This kind of initial data, with the assumption that the objects should
be C∞ up to the boundary, were considered by Friedrich in his break-
through paper [20] to construct space-times with AdS-type behavior
at space-like infinity in dimension 4. This has been discussed in more
generality in Kánnár [30]. Andersson and Chrusciel [4] have established
the existence of many solutions with the right behavior at infinity to the
constraint equations under the additional assumption thatK is constant,
that it,

∇̃iK = 0 .

This extra hypothesis is used to decouple the scalar and vector con-
straint equations. These solutions are “labeled” by a symmetric trace-
less tensor Aij that is sufficiently smooth up to the boundary (say, in
C∞(M)). It is worth mentioning that, generically, the resulting solu-

tions (g̃ij , Lij ,K) are not arbitrarily smooth up to the boundary due to

the appearance of log terms: they are generically in Cn−1 ∩ C∞polyhom,
although there are also “many” nontrivial solutions that are smooth up
to the boundary, in which the log terms are absent.

Additionally, one must consider compatibility conditions between the
initial conditions (g̃,K) and the boundary datum ĝ. As is well-known,
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solving the Einstein equation in a bounded domain with nontrivial
boundary conditions on the boundary is usually problematic (see,
e.g., [21] and references therein). Fortunately, in this setting we can
exploit the fact that the metric we want to construct is asymptotically
anti-de Sitter to obtain a manageable set of compatibility conditions:
one have fixed the integers s, r (with s + r 6 p), we only need to im-
pose that the functions uk, defined in (5.6) and (8.5), belong to H1,r

for 0 6 k 6 s − 1 and to L2 for k = s. This integrability condition
at infinity is enough to ensure that the arguments in the paper make
sense, essentially because we can integrate by parts in the proof of The-
orem 8.3. A more intuitive way of understanding this condition is that
it is tantamount to saying that the formal solutions that we calculate
at t = 0 using (g̃,K) (that is, ∂kt ḡ|t=0 as computed above) and at x = 0
using the boundary data (the metrics γ̄l of Theorem 4.5 with l > q)
must agree to order q.

Appendix B. Some estimates for the operators Aα and A∗α

The integral operators Aα and A∗α, defined in (6.7), play a key role
in some arguments presented in Sections 6 and 7. Therefore, we will
record here some estimates the we proved in [18, Theorem 3.1 and
Proposition 3.3], where as usual we assume that α > 1. For the benefit
of the reader, we also include a sketch of the proof.

Theorem B.1 ([18]). The following statements hold:

(i) Acting on one-variable functions, the operators Aα and A∗α define
continuous maps

L2
x → L∞x .

(ii) The operators 1
xAα and 1

xA
∗
α are continuous maps

L2
x → L2

x and L2 → L2 .

(iii) If u is a function in L2(A) with Dx,αu in L2(A), then

u(x, θ) = (AαDx,αu)(x, θ) .

(iv) If u is a function in L2(A) with D∗x,αu in L2(A), then

u(x, θ) = (A∗αD∗x,αu)(x, θ) + f(θ)xα−1 ,

the function f(θ) being bounded in L2
θ ≡ L2(∂M) by

‖f‖L2
θ
6 C(‖u‖L2 + ‖Dx,αu‖L2) .

Proof. We can assume that u is smooth and supported in the region
0 < x < 1. Let us begin analyzing the mapping properties of A∗α.
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In view of the expression for A∗α, we will use the Hardy inequality

(B.1)

∫ 1

0
x2α−2r−1

(∫ 1

x
y1−αϕ(y) dy

)2

dx 6 C
∫ 1

0
x3−2rϕ(x)2 dx ,

with r = 0, 1. To prove this, let us set

ψ(x) :=

∫ 1

x
y1−αϕ(y) dy .

Then integrating by parts and using the Cauchy–Schwarz inequality we
find∫ 1

0
x2α−2r−1ψ2 dx =

1

α− 1

∫ 1

0
ϕψ xα−2r−1 dx

=
1

α− r

∫ 1

0
(xα−r−

1
2ψ) (x

3
2
−rϕ) dx

6
1

α− r

(∫ 1

0
x2α−2r−1ψ2 dx

) 1
2
(∫ 1

0
x3−2rϕ2 dx

) 1
2

.

This proves (B.1). This implies that, with r = 0, 1, 1
xA
∗
α is a bounded

map

L2((0, 1), x3−2rdx)→ L2((0, 1), x1−2r dx) ,

and with r = 1 this implies that 1
xA
∗
α : L2

x → L2
x. Since the star denotes

the adjoint with respect to the L2
x product, a standard duality argument

then ensures that Aα is a bounded map

L2((0, 1), x1+2rdx)→ L2((0, 1), x2r−1dx) ,

which with r = 0 implies that 1
xAα : L2

x → L2
x. The fact that this also

corresponds to L2 → L2 bounds is immediate.

Let us now pass to the pointwise bounds. To prove (i) for A∗α we
utilize the Cauchy–Schwarz inequality to write∣∣A∗αϕ(x)

∣∣ = xα−1

∣∣∣∣ ∫ 1

x
y1−αϕ(y) dy

∣∣∣∣
6 xα−1

(∫ 1

x
y1−2α dy

) 1
2
(∫ 1

x
y ϕ(y)2 dy

) 1
2

6 ‖ϕ‖L2
x

(
1− xα−1

2− 2α

)1/2

6 (2− 2α)−
1
2 ‖ϕ‖L2

x
.

The L∞x estimate for Aα is similar.

To prove (iv), notice that if u1 := D∗x,αu ∈ L2, we can solve the ODE

D∗x,αu = u1,
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to write

u = A∗α(u1) + f(θ)xα−1,

for some function f(θ). Moreover,

‖f‖L2
θ

= C‖f(θ)xα−1‖L2 6 C(‖u‖L2 + ‖A∗α(u1)‖L2)

6 C(‖u‖L2 + ‖u1‖L2) ,

where we have used that A∗α : L2 → L2 by (ii). To prove (iii), the
reasoning is analogous: again we can solve the ODE

Dx,αu = u2,

to write

u = Aα(u2) + f2(θ)x−α ,

but we infer that f2 must be 0 because x−α is not in L2
x. The theorem

then follows. q.e.d.
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