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Abstract

Given a reductive representation ρ : π1(S) → G, there exists
a ρ-equivariant harmonic map f from the universal cover of a
fixed Riemann surface Σ to the symmetric space G/K associated
to G. If the Hopf differential of f vanishes, the harmonic map
is then minimal. In this paper, we investigate the properties of
immersed minimal surfaces inside symmetric space associated to
a subloci of Hitchin component: the qn and qn−1 cases. First, we
show that the pullback metric of the minimal surface dominates a
constant multiple of the hyperbolic metric in the same conformal
class and has a strong rigidity property. Secondly, we show that
the immersed minimal surface is never tangential to any flat inside
the symmetric space. As a direct corollary, the pullback metric
of the minimal surface is always strictly negatively curved. In the
end, we find a fully decoupled system to approximate the coupled
Hitchin system.

1. Introduction

For a closed, connected, oriented surface S of genus g ≥ 2 and a reduc-
tive Lie group G, consider the representation variety Rep(π1(S), G) =
Hom(π1(S), G)//G. For G = PSL(2,R), there are two connected com-
ponents of Rep(π1(S), PSL(2,R)) are identified with Teichmüller space;
and the representations in these components are called Fuchsian. For a
general real split Lie group, using the unique irreducible representation
PSL(2,R) → G, we can single out a component of Rep(π1(S), G), the
connected component containing representations factors through Fuch-
sian representations, called Hitchin component for G. In particular, we
denote the Hitchin component for PSL(n,R) as Hitn.

Fix a Riemann surface structure Σ on S. By the work of Donaldson
[5] and Corlette [4], given a reductive representation ρ : π1(S) → G,
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there exists a ρ-equivariant harmonic map f from the universal cover
of Σ to the symmetric space G/K associated to G, where K is the
maximal compact subgroup of G. If the representation ρ is a Hitchin
representation, Sanders [20] showed that the corresponding equivariant
harmonic map is an immersion. In particular, if the Hopf differential
of the harmonic map f vanishes, then the harmonic map is conformal
and, hence, is a minimal immersion.

Understanding such equivariant minimal immersions f : Σ̃ → G/K
for Hitchin representations is the main goal of this paper.

To achieve this goal, we need to use the tool of Higgs bundles. By
the results of Hitchin [9] and Simpson [21], given a polystable G-Higgs
bundle (E, φ), there exists a Hermitian metric h (compatible with G-
structure) satisfying Hitchin equation, giving rise to a flat connection
D = ∇h + φ + φ∗h , the corresponding holonomy ρ : π1(S) → G, and a

ρ-equivariant harmonic map f : Σ̃→ G/K.
Hitchin [10] gives an explicit description for the Hitchin compo-

nent for SL(n,R) in terms of Higgs bundles. Explicitly, the bundle

of the Higgs bundles is E = K
n−1
2 ⊕ K

n−3
2 ⊕ · · · ⊕ K

1−n
2 and the

Higgs field is explicitly parametrized by the holomorphic differentials

(q2, q3, · · · , qn) ∈
n⊕
i=2

H0(Ki). In particular, q2 is the Hopf differential

of the corresponding harmonic map.
Replacing the quadratic differential by varying the Riemann surface

choice, Labourie [13] considered the Hitchin map from the total space
of vector bundle over Teichmüller space with fiber at Σ as (0, q3, · · · , qn)
to Hitn and showed that this map is surjective. Therefore, understand-
ing all minimal surfaces arising from the Hitchin representations will
eventually give properties of the representations, not depending on the
choice of Riemann surface. In the same paper, Labourie conjectured
that the Hitchin map is also injective. When n = 3, Labourie [12] and
Loftin [16] independently proved the conjecture using affine geometry.
Using different methods, Labourie [14] then proved the conjecture for
Hitchin representations into all rank 2 real split Lie groups: PSL(3,R),
PSp(4,R), G2, and PSL(2,R) × PSL(2,R). Equivalently, given any
Hitchin representation ρ into a rank 2 real split Lie group G, there is a
unique minimal surface inside G/K that is ρ-equivariant.

We restrict to consider the Higgs fields parametrized by (0, · · · , 0, qn)
and (0, · · · , qn−1, 0):

0 qn
1 0

1 0
. . .

0
1 0


,



0 qn−1 0
1 0 qn−1

1 0
. . .

0
1 0


.
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In particular, qn = 0 or qn−1 = 0 gives the base Fuchsian point. From
the surjectivity of the Hitchin map, for any Hitchin representation, we
may find a complex structure on S, such that q2 = 0 in the corresponding
Higgs bundle. Hence, if we vary the choice of Riemann surface, these
two families of Higgs bundles give the whole Hitchin component for
PSL(3,R), PSp(4,R), and G2.

If n = 2, the Higgs bundles of the q2 case parametrize the whole
Teichmüller component. If n = 3, the qn−1 case gives the embedding of
Teichmüller component inside Hitchin component for PSL(3,R). But
in these two cases, the Hopf differential of the harmonic map does not
vanish and, hence, the harmonic map is not conformal. However, we
remark that in these two cases, almost all of our results can be ap-
plied. For simplicity of language, from now on, whenever referring to
the qn, qn−1 cases, we don’t include the case that qn (or qn−1) is q2.

Such Higgs bundles of the qn case were initially studied by Baraglia
[1], which he called cyclic Higgs bundle. Later Collier [3] considered
other Higgs bundles under finite order automorphisms, in particular,
qn−1 case (also see [2]). These families of Higgs bundles possess par-
ticular nice properties. In both cases, the Hermitian metric h solving
Hitchin equations is diagonal, i.e., h = (h1, h2, · · · , h−1

2 , h−1
1 ).

We are ready to explain our main results for the qn, qn−1 cases. In
general, these are some families in Hitchin component. But from the
above argument, we remark that our results, in fact, hold for the Hitchin
component for PSL(3,R), PSp(4,R), and G2.

•Metric Domination. We show that the pullback metric gf of the
minimal immersion f dominates the base Fuchsian metric gFuchsian.

Theorem 1.1. For the qn, qn−1 cases

gf = 2ntr(φφ∗) ≥ gFuchsian =
1

6
(n4 − n2)g0.

Moreover, if equality holds at one point, then qn = 0, or qn−1 = 0,
respectively, which implies it is base Fuchsian.

For the precise definitions above involving the qn, qn−1 cases, see
Section 3.

If we integrate the pullback metric, this is closely related to the Morse
function considered in Hitchin [10], which plays an important role to
determine the topology of the representation variety for PSL(n,R). The
Morse function on moduli space of polystable Higgs bundles is defined
as:

f(E, φ) =

∫
Σ

tr(φφ∗)
√
−1dz ∧ dz̄.

Hitchin [10] showed that in the Hitchin component, the only minimum
is the base Fuchsian point. That is, consider any Higgs bundle (E, φ)



50 S. DAI & Q. LI

in Hitchin component parametrized by (q2, q3, · · · , qn), then

f(E, φ) ≥ base Fuchsian case = topological quantity.

Equality holds if and only if it is base Fuchsian.
When q2 = 0, the harmonic map is a minimal immersion and the

Morse function is, in fact, the area of the minimal surface up to a
constant. Then

MinArea(ρ) ≥ Area(ρFuchsian) = topological quantity,

where MinArea(ρ) is the minimum of the area of the pullback metric
going through all the ρ-equivariant immersion. Equality holds if and
only if it is the base Fuchsian representation ρFuchsian. Labourie [14]
pointed out that this is also a corollary of the entropy result for Hitchin
representations by Potrie–Sambarino [19]. For the Hitchin component
for rank 2 Lie group, this is reproved by Labourie [14] which he called
area rigidity formula.

In fact, this area rigidity formula by Labourie inspired us to be in-
terested in this metric domination question. We conjecture that this
domination property also holds for all minimal surfaces arising from
Hitchin representations.

Conjecture 1.2. (Metric Domination Conjecture) Consider Higgs
bundle (E, φ) in Hitchin component parametrized by (0, q3, · · · , qn). On
the surface Σ, the pullback metric gf of the minimal immersion f sat-
isfies

gf ≥ gFuchsian =
1

6
(n4 − n2)g0.

If the equality holds at one point, then it holds at every point.

Remark 1.3. For q2 6= 0, in other words, the harmonic map f is
not conformal. Instead of the pullback metric gf , we consider the (1, 1)

part of gf , g
(1,1)
f = 2ntr(φφ∗h) which is conformal to the base Fuchsian

metric. From our proof of Theorem 1.1, the above domination theorem
is also true in non-minimal surface case for the lower rank case. More
precisely, for Hitchin representations in PSL(2,R) parametrized by q2,
we have

g
(1,1)
f ≥ gFuchsian = 2g0.

Moreover, if equality holds at one point, then q2 = 0, that is, the base
Fuchsian case.

The domination question above is comparing Hitchin representations
with the base Fuchsian points. If instead, we consider the other non-
Hitchin components, it won’t make sense to compare them with Fuch-
sian points. At first, the harmonic map is not necessarily an immer-
sion, hence, the pullback metric can never dominate a hyperbolic metric
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pointwise. A more desired question is to ask whether the representa-
tions dominate some particular special representations which are similar
to the status of Fuchsian points in Hitchin components.

It is interesting to compare the domination question here with an-
other type of domination question in terms of length spectrum. By
work of Deroin and Tholozan [6] and Guéritaud, Kassel and Wolff [8],
for representations of π1(S) into PSL(2,R), any Fuschian representa-
tion dominates some non-Fuchsian representation and any non-Fuchsian
representation can be dominated by some Fuchsian one. In a similar
spirit, Lee and Zhang [15] conjectured for any Hitchin representation
ρ : π1(S)→ PSL(n,R), there is a Fuchsian representation whose length
spectrum strictly dominated by ρ. Tholozan [23] proved this conjecture
for n = 3 case and mentioned that Labourie pointed out the conjecture
of Lee and Zhang cannot hold anymore for n ≥ 4. The contradiction
comes from Hitchin representations in PSp(2k,R) and PSO(k, k + 1).
Therefore, in the same paper, Tholozan made some modification of the
conjecture by changing Fuchsian representation by representations into
SO(n, n + 1) or Sp(2n,R). Our Conjecture 1.2 here is, in fact, weaker
than the conjecture by Lee and Zhang since the length spectrum of the
pullback back metric is larger than the length spectrum of the represen-
tation which is Lipschitz to the distance inside the symmetric space. So
even though our conjecture is already true for Hitchin representations
into rank 2 Lie groups: PSL(3,R), PSp(4,R), and G2, it does not imply
the conjecture of Lee and Zhang.

• Negative Curvature. We describe how the immersed minimal
surface sits inside the symmetric space by showing that the minimal
immersion is never tangential to any flat inside the symmetric space
G/K.

Theorem 1.4. For the qn, qn−1 cases, we have the following results.
(1) The Hitchin equation never decouples: for every point on Σ,

F∇
h 6= 0, [φ, φ∗h ] 6= 0.

(2) The sectional curvature KG/K(σ) is strictly negative, where σ is the
tangent space of the image of f . Geometrically, the minimal immersion
is never tangential to any flat inside the symmetric space.

(3) On each line bundle K
n+1−2k

2 , 1 ≤ k ≤ n, the Chern form of hk:
√
−1Θhk =

√
−1∂∂ log hk

is strictly positive if n + 1 − 2k > 0; zero if n + 1 − 2k = 0; strictly
negative if n+ 1− 2k < 0.

Remark 1.5. The phenomenon in Part (1) is in contrast to the
asymptotic behavior of Hitchin equation proved in Collier and Li [2]:
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along the ray tqn (or tqn−1), the Hitchin equation decouples as t→∞:

F∇
h → 0, [φ, φ∗h ]→ 0.

This asymptotic behavior is generalized by Mochizuki [17] to a much
more general family of Higgs bundles.

From Gauss equation, it is easy to see that the curvature of the
pullback metric gf is always non-positive. Then, moreover, as a corollary
of Theorem 1.4, we obtain the curvature is strictly negative.

Corollary 1.6. For the qn, qn−1 cases, the sectional curvature of the
immersed minimal surface is strictly negative.

We conjecture that this phenomenon is true for all minimal immer-
sions arising from Hitchin representations.

Conjecture 1.7. (Negative Curvature Conjecture) For the Hitchin
representation parametrized by (0, q3, · · · , qn), the minimal immersion
is never tangential to any flat inside the symmetric space. And as a
corollary, the sectional curvature of immersed minimal surface is strictly
negatively curved.

We apply our result to estimate the entropy of Hitchin representa-
tions. Given ρ a Hitchin representation into G and select a point in the
symmetric space p ∈ G/K. The volume entropy of ρ is defined as

h(ρ) := lim sup
R→∞

log(#|{γ ∈ π1(S)|d(p, ρ(γ)(p)) ≤ R}|)
R

,

where d is the distance in G/K. Lots of progress have been made on
the volume entropy of Hitchin representations. Potrie and Sambarino
[19] showed that for any Hitchin representation ρ, one has h(ρ) ≤ 1
and the equality holds only if ρ is Fuchsian. Zhang [25, 26] constructed
certain sequences of Hitchin representations along which h(ρ)→ 0. For
n = 3, Nie [18] showed that the entropy of Hitchin representations
parametrized by tq3 goes to zero as t → ∞. Sanders [20] showed that
for a Hitchin representation, the curvature of the pullback metric gf
satisfies

1

Area(gf )

∫
Σ

√
−KgfdVgf ≤ h(ρ).

And he used this inequality to show h(ρ) > 0. The entropy of Hitchin
representation then satisfies:

h(ρ) ≥ min
Σ
{
√
−Kgf }.

By Corollary 1.6, the sectional curvature of immersed minimal surface
Kgf < 0 for the qn, qn−1 cases, we obtain
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Corollary 1.8. min
Σ
{
√
−Kgf } provides a positive lower bound for the

volume entropy h(ρ) of Hitchin representations for the qn, qn−1 cases.

In fact, since Kgf ≤ KG/K , we can also use min
Σ
{
√
−KG/K} as a

weaker lower bound. The term min
Σ
{
√
−KG/K} is very interesting and

involves more analytical terms. We hope to show a more quantitative
estimate on this term in future work.

• Coupled Hitchin System vs Decoupled System. We investi-
gate the coupled Hitchin system in the qn, qn−1 cases. Coupled equations
are generally hard to study. If there is some way to decouple the system,
it will be substantially easier to solve the system. In this paper, we find
a fully decoupled system such that the solutions of the decoupled sys-
tem approximate the solutions of coupled Hitchin system of equations.
The decoupled system are formed of single scalar equations as follows.
For n even, set n = 2m; for n odd, set n = 2m+ 1.

Theorem 1.9. There exists a unique Hermitian metric uk, vk, re-

spectively, on the holomorphic line bundle K
n+1−2k

2 satisfying, locally

4 log uk + u
− 2
n+1−2k

k − (u2
k|qn|2)

1
2k−1 = 0, 1 ≤ k ≤ m,

4 log vk + v
− 2
n+1−2k

k − (v2
k|2qn−1|2)

1
2k−2 = 0, 2 ≤ k ≤ m.

And the following estimates hold,

max{|qn|
2αk
n , (αkg0)αk} ≤ u−1

k < ((max
Σ
|qn|

2
n
g0 + αk)g0)αk ,

max{|2qn−1|
2αk
n−1 , (αkg0)αk} ≤ v−1

k < ((max
Σ
|2qn−1|

2
n−1
g0 + αk)g0)αk ,

where αk = n+1−2k
2 and g0 is the Hermitian hyperbolic metric on K−1.

Remark 1.10. Such equations are natural generalization of familiar
vortex-like equations. In particular, in the case n = 2, k = 1, this is the
harmonic equation from surface to surface with given Hopf differential
q2. In the case n = 3, k = 1, this gives Wang’s equation [24] and the
solution is the Blaschke metric for the hyperbolic affine sphere. Dumas
and Wolf [7] solved such equations for the case when n is general and
k = 1 on the complex plane.

Remark 1.11. Surprisingly, there is a geometric interpretation for

the above system of equations. Let σk = u
− 2
n+1−2k

k be a Hermitian
metric on the Riemann surface Σ. The equation for σk is

n+ 1− 2k

2
Kσk = −1 + |qn|

2
2k−1
σk ,

where Kσk is the curvature of σk. Roughly speaking, the curvature of
σk differs from the curvature of hyperbolic metric by the norm of qn.
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We show that uk (or vk) is an upper approximate of hk. Let utk (or
vtk) be the solution for tqn (or tqn−1) in Theorem 1.9.

Theorem 1.12. For m ≥ 2, suppose qn (or qn−1) is not zero. Then
for each compact set K ⊂ Σ away from zeros of qn (or qn−1), there is a
positive constant C = C(K) independent of t such that

qn case: utk(1− C||tqn||−1) ≤ htk < utk, 1 ≤ k ≤ m,
qn−1 case: vtk(1− C||tqn−1||−1) ≤ htk < vtk, 2 ≤ k ≤ m.

Remark 1.13. To prove the left direction of the above theorem, we
make use the asymptotic behavior of hk established by Collier and Li
[2]: for example, for the qn case,

hk = |qn|−
n+1−2k

n (1 +O(||qn||−1))

away from the zeros of qn. And our results, in fact, improve the estimate
of Collier and Li from the other direction by the estimate of uk, vk in
Theorem 1.9.

Structure of the article. The article is organized as follows. In Sec-
tion 2, we recall some fundamental results about Higgs bundles. In
particular, we recall the Donaldson–Uhlenbeck–Yau correspondence and
the explicit relation between Higgs bundles and related harmonic maps
for further calculation. We fix some notations at the end of Section 2.
In Section 3, we set up the main object and describe the qn case and
qn−1 case. In Section 4, we show the metric domination Theorem 1.1.
In Section 5, we describe the shape of minimal surface inside the sym-
metric space by proving Theorem 1.4. In Section 6, we find a decoupled
system to bound the Hitchin coupled system and prove Theorem 1.9
and Theorem 1.12.

Acknowledgment. The authors wish to thank Mike Wolf, Andy San-
ders, Ian McIntosh, Daniele Alessandrini and Brian Collier for helpful
discussions and comments. The second author acknowledges support
from U.S. National Science Foundation grants DMS 1107452, 1107263,
1107367 “RNMS: GEometric structures And Representation varieties”
(the GEAR Network).

2. Preliminaries and notations

In this section, we recall some results in (principal) Higgs bundle and
harmonic map. A good reference is the thesis of Baraglia [1], Section
2.1.

Let Σ be a closed Riemann surface with genus g ≥ 2. Let π1 =
π1(Σ, p) be the fundamental group. Let G be a complex semisimple Lie
group, K be a compact real form of G. Let g, k be the corresponding
Lie algebra. Then g = k ⊗ C as a real Lie algebra. Let θ be the anti-
linear involution of g induced from the conjugation of C. Let Bg be the
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complex Killing form of g and Bk be the real Killing form of k. Then Bg

is the complex linear extension of Bk. So without confusing, we just use
B to denote Killing form of g or k. Then H(X,Y ) := −B(X, θY ) gives
an Hermitian metric on g. Then we have an orthogonal decomposition
g = k ⊕ k⊥ with respect to H, where k⊥ =

√
−1k. This decomposition

also gives a direct sum as AdK module. And notice that [k⊥, k⊥] ⊆ k.
For example, G = SL(n,C), K = SU(n), then B(X,Y ) = 2ntrC(XY ),
where X,Y ∈ sl(n,C).

We can establish a correspondence between the following two moduli
spaces.

Betti Moduli Space: Equivalent classes [ρ] of reductive representa-
tions, ρ : π1 → G. Here reductive means that the induced representation
on g is a direct sum of irreducible representations. For two representa-
tions ρ1, ρ2, they are equivalent if and only if there exists g ∈ G, such
that ρ1 = gρ2g

−1.

Higgs Moduli Space: Gauge equivalent classes of harmonic G-
Higgs. More precisely, let P be a principal G bundle over Σ. Suppose
we have a K principal bundle reduction i : PK ↪→ P , or equivalently, a
section of P ×lG/K, where l is the left multiplication. Denote AdP c =
P ×AdG g. This reduction also gives an identification

AdP c = P ×AdG (k⊗ C) = PK ×AdK (k⊗ C) = (PK ×AdK k)⊗ C.

Notice that θ and B are both AdK invariant on k ⊗ C. So as a com-
plex vector bundle AdP c, we can define θ and B on AdP c, and then
Hermitian metric H. Let X ∈ AdP c, denote X∗ = −θ(X) for the sake
that the adjoint of adX is ad−θ(X) with respect to H. Let φ be a sec-
tion of AdP c ⊗K, where K is the canonical line bundle (don’t confuse
with the compact subgroup K). Locally, suppose φ = Xdz, then we
define φ∗ = X∗dz̄ ∈ AdP c ⊗ K̄ and [φ, φ∗] = [X,X∗]dz ∧ dz̄. Let A be
a principal connection on PK , ∇A be the corresponding connection on
associated bundles of PK . Denote ∂̄A = ∇0,1

A ⊗ 1 + 1 ⊗ ∂̄, which gives
a holomorphic structure on AdP c ⊗K. Denote FA be the curvature of
A. Then the Hitchin equations are given by

FA + [φ, φ∗] = 0,(1)

∂̄Aφ = 0.(2)

For a harmonicG-Higgs bundle, we mean the data (Σ, G,K, P, PK , φ,A),
or briefly (φ,A), satisfying equations (1) and (2). Notice that A+φ+φ∗

gives a principal connection on P , and equation (1) is equivalent to this
connection being flat. Given Σ, G,K, for two harmonic G-Higgs bun-
dles, (φ1, A1) and (φ2, A2), they are equivalent if and only if there exists
a K-gauge transformation α over Σ (automatically G-gauge transforma-
tion), such that α∗φ2 = φ1, α

∗A2 = A1.
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Before we discuss the relation between Betti Moduli Space and Higgs
Moduli Space, we first consider the relation between (vector) Higgs bun-
dle and harmonic G-Higgs bundle.

Definition 2.1. Let Σ be a Riemann surface, E be a holomorphic
vector bundle over Σ. Let φ be a holomorphic section of End(E)⊗K.
We call (E, φ) a Higgs bundle over Σ.

Given a harmonic G-Higgs bundle and suppose G acts on Cn. Then
the associated bundle gives a complex vector bundle E, and ∇0,1

A gives a
holomorphic structure of E. By definition, φ is a section of End(E)⊗K.
And by equation (2), φ is holomorphic.

Conversely, under some assumptions, one can obtain a harmonic G-

Higgs bundle from Higgs bundle. Denote µE = deg(E)
rank(E) be the slope of

E, where deg(E) is the degree of E, and rank(E) is the complex rank
of E. We call (E, φ) is stable if for any proper φ-invariant holomorphic
subbundle F , µF < µE . We call (E,Φ) is polystable if (E,Φ) is a direct
sum of stable Higgs bundles of the same slope. Let G = SL(n,C),
K = SU(n). We have the following result.

Theorem 2.2. (Hitchin [9] and Simpson [21]) Let (E, φ) be a poly-
stable Higgs bundle with structure group SL(n,C). Then there exists a
Hermitian metric h on E compatible with the SL(n,C) structure, such
that

F∇
h

+ [φ, φ∗h ] = 0,(3)

where F∇
h

is the Chern connection of h, in local holomorphic trivial-
ization,

F∇
h

= ∂(h−1∂h),

and φ∗h is the adjoint of φ with respect to h, in the sense that

h(φ(u), v) = h(u, φ∗h(v)), u, v ∈ Γ(E)

in local frame, φ∗h = h
−1
φ
>
h, and the bracket is the commutator of

End(E). We regard both F∇h and [φ, φ∗h ] as sections of (K ∧ K) ⊗
End(E). This gives rise to a flat connection ∇h + φ+ φ∗h.

Notice that the Hermitian metric h gives a reduction to SU(n) bun-
dle, and ∇h gives a principal SU(n) connection. Then clearly we obtain
a harmonic G-Higgs bundle.

Now we establish the correspondence between Betti Moduli Space
and Higgs Moduli Space. Given a harmonic G-Higgs bundle, since A+
φ + φ∗ is a flat principal connection on P , the monodromy gives a
representation ρ : π1 → G. One can show that ρ is reductive. And the
monodromy descends to the equivalent classes.

Given a reductive representation ρ, we have an associated principal
G bundle Σ̃ ×ρ G, denoted as P , where Σ̃ is the universal cover of Σ,
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regarded as the π1 principal bundle over Σ. Now we want to find a
reduction from P to a principal K bundle PK . The reduction should
satisfy some condition which will be clarified below. Let i : PK ↪→ P be
the reduction, which is equivalent to a ρ-equivariant map f : Σ̃→ G/K.
Notice that the Maurer–Cartan form ω of G gives a flat connection on
P , we still use ω to denote the connection. Consider i∗ω, which is a g
value one form on PK . Decomposing i∗ω = A+Φ from g = k⊕k⊥, where
A is k valued and Φ is k⊥ valued. Then A is a principal connection on
PK and Φ is a section of T ∗M ⊗ (PK ×AdK k⊥). Consider

T ∗M ⊗ (PK ×AdK k⊥)⊗ C = (T ∗M ⊗ C)⊗ (PK ×AdK k⊥ ⊗ C)

= (K ⊕ K̄)⊗AdP c.
Regard Φ as a section of T ∗M ⊗ (PK ×AdK k⊥) ⊗ C, and consider the
decomposition (K⊕ K̄)⊗AdP c. Let Φ = φ+φ∗, where φ is a section of
K ⊗AdP c and φ∗ is a section of K̄ ⊗AdP c. Notice that θ(Φ) = −Φ, so
φ∗ = −θ(φ). Now we obtain all the desired data. Equation (1) follows
from the flatness of ω. By direct calculation (see [1]), equation (2) is

equivalent to f being harmonic, where the conformal metric on Σ̃ is
induced from the complex structure and the metric on G/K is induced
from the Killing form of g. So our requirement on f is just that f
is ρ-equivariant and harmonic. From Donaldson [5] and Corlette [4],
the existence of such f is equivalent to ρ being reductive. And f is
unique up to the composition of the centralizer of ρ(π1). We see the
above construction descends to the equivalence classes. So we have the
bijection between Betti Moduli Space and Higgs Moduli Space.

So far, given a reductive representation ρ : π1 → G, we have a ρ-
equivariant harmonic map f : Σ̃→ G/K. Let ĝ be the metric on G/K
induced from Killing form of g. More precisely, let B be the Killing
form of g. Consider the tangent bundle T (G/K) = G ×AdK k⊥ over
G/K. Since B is AdK-invariant and positive definite on k⊥, we have
a well defined Riemannian metric on G/K. Locally, suppose U is a

neighborhood of p ∈ G/K, X,Y ∈ TpU . Let Ũ , p̃, X̃, Ỹ be a lift to
G. Using the Maurer–Cartan form, we have a decomposition of Tp̃G

according to g = k⊕ k⊥. Then ĝ(X,Y ) = B(X̃⊥, Ỹ ⊥), where X̃⊥ is the

k⊥ component of X̃.
The Higgs bundle and the corresponding harmonic map are related

as follows.
Locally, choose a lift from Σ to Σ̃ and a lift from G/K to G. And lift

f to f̃ as a map from Σ̃ to G. For x ∈ Σ, we see that,

(f̃∗X̃)⊥ = Φ(X),

where X ∈ TxΣ. Hence,

(f̃∗
∂̃

∂z
)⊥ = φ(

∂

∂z
), (f̃∗

∂̃

∂z̄
)⊥ = φ∗(

∂

∂z̄
).
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We consider the pullback metric gf on Σ, gf = π∗f
∗ĝ, where π is the

covering map π : Σ̃→ Σ. Since f is ρ-equivariant and ĝ is G-invariant,
gf is well defined. Then ∀X,Y ∈ TΣ,

gf (X,Y ) = B(Φ(X),Φ(Y )).

In particular, for G = SL(n,C), K = SU(n), we have

Hopf(f) = g2,0
f = 2ntrC(φφ).

If Hopf(f) = 0, then as a section of K ⊗ K̄, the Hermitian metric is

gf = g1,1
f = 2ntrC(φφ∗h).

(In fact, φφ∗h is real.) And the corresponding Riemannian metric is
gf + ḡf .

Now we fix some notations used throughout this paper.
Let g be an Hermitian metric on K−1, where K is the canonical line

bundle. We can also regard g as a section of K⊗K̄. In local coordinate,
g = gdz ⊗ dz̄. We abuse the same notation g to denote both the metric
and the local function. Similarly, let h be an Hermitian metric on K−l,
denoted by h = hdz⊗l ⊗ dz̄⊗l. Notice that as a local function, h is not
globally well defined, but if we set h = agl, then a is a globally defined
function.

Let qn be an n-differential. Locally, denote qn = qndz
n. Define a local

function |qn|2 = qnq̄n, which is corresponding to the Hermitian metric
on K−n. Here are some notations used later.
(1) |qn|2g as the square of the norm of qn with respect to the metric g,

which is globally defined, in local coordinate, |qn|2g = |qn|2g−n;

(2) ||qn|| =
∫

Σ |qn|
2
n , which will be used in Section 6;

(3) g0 as the unique Hermitian hyperbolic metric compatible with the
complex structure;
(4) gFuchsian as the Hermitian metric corresponding to the base Fuchsian
point, a multiple of g0;

(5) 4 = ∂z∂z = 1
4( ∂2

∂x2
+ ∂2

∂y2
), which is locally defined;

(6) 4g = g−14, noting that 4g is globally defined.

3. Rewriting Hitchin equations in two subclasses for Hitchin
representations

In Section 2, we relate the moduli space of reductive representations
ρ ∈ Hom(π1, SL(n,C)) to the moduli space of harmonic SL(n,C)-Higgs
bundles. Under this bijection, we can also describe the moduli space
of reductive representations ρ ∈ Hom(π1, SL(n,R)) in the setting of
Higgs bundles. In fact, in [10], Hitchin gives a parametrization of the
Hitchin component of the SL(n,R)-Higgs bundle moduli space using
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Higgs bundles of the form (E, φ) as follows. Let

E = Sn−1(K
1
2 ⊕K−

1
2 ) = K

n−1
2 ⊕K

n−3
2 ⊕ · · · ⊕K−

n−3
2 ⊕K−

n−1
2

be the (n − 1)’st symmetric power and the Higgs field φ is explicitly

parametrized by (q2, q3, . . . , qn) ∈
n⊕
j=2

H0(Σ,Kj). The embedded copy

of Teichmüller space comes from setting q3 = · · · = qn = 0.
We restrict to consider two subclasses of Higgs bundles in Hitchin

component: the qn, qn−1 cases.

qn Case: The Higgs field φ is a holomorphic section of End(E)⊗K
of the form 

0 qn
1 0

1 0
. . .

0
1 0


,

where qn is a holomorphic section of Kn. From [1], the Hermitian metric
h is given by

h = diag(h1, h2, . . . , h
−1
2 , h−1

1 ),

where hk is an Hermitian metric on K
n−2k+1

2 , i.e., hk is a positive definite

smooth section of K−
n−2k+1

2 ⊗K−
n−2k+1

2 . We also denote K⊗K as |K|2.
Sanders [20] showed that the corresponding equivariant harmonic

map f for Hitchin representations is an immersion. By direct calcu-
lation, the Hopf differential Hopf(f) = 2ntrC(φ2) vanishes and, hence,
f is a minimal immersion. Equation (3) gives the following system of
equations.

For n = 2m even,

4 log h1 + h−1
1 h2 − h2

1|qn|2 = 0,

4 log hk + h−1
k hk+1 − h−1

k−1hk = 0, 2 ≤ k ≤ m− 1,

4 log hm + h−2
m − h−1

m−1hm = 0,

where 4 = ∂z∂z = 1
4( ∂2

∂x2
+ ∂2

∂y2
) is the coordinate Laplacian.

If qn = 0, by the uniqueness of the solution, one may solve the system
of equations as

h−1
k hk+1 =

1

2
k(n− k)g0, 1 ≤ k ≤ m− 1, h−2

m =
1

8
n2g0,

where g0 is the hyperbolic Hermitian metric on K−1.
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The pullback metric gf of the minimal immersion on the surface is

gf = 2ntrC(φφ∗h) = 2n(h2
1|qn|2 + 2

m−1∑
k=1

h−1
k hk+1 + h−2

m ).

For n = 2m + 1 odd, the situation is similar. Notice that there is a
trivial bundle K0 in the middle of E, we see that the metric on K0 is
1, i.e., the standard Hermitian metric on C. Then the last equation of
the system of equations becomes

4 log hm + h−1
m − h−1

m−1hm = 0.

If qn = 0, then

h−1
k hk+1 =

1

2
k(n− k)g0, 1 ≤ k ≤ m− 1, h−1

m =
1

8
(n2 − 1)g0.

The last term in the pullback metric gf of the minimal immersion is
2h−1

m instead of h−2
m .

qn−1 Case: The Higgs field φ is a holomorphic section of End(E)⊗K
of the form 

0 qn−1 0
1 0 qn−1

1 0
. . .

0
1 0


,

where qn−1 is a holomorphic section of Kn−1. From [2], the Hermitian
metric h is given by

h = diag(h1, h2, . . . , h
−1
2 , h−1

1 ).

By direct calculation, the Hopf differential Hopf(f) = 2ntrC(φ2) van-
ishes and, hence, f is a minimal immersion. Equation (3) gives the
following system of equations.

For n = 2m even,

4 log h1 + h−1
1 h2 − h1h2|qn−1|2 = 0,

4 log h2 + h−1
2 h3 − h−1

1 h2 − h1h2|qn−1|2 = 0,

4 log hk + h−1
k hk+1 − h−1

k−1hk = 0, 3 ≤ k ≤ m− 1,

4 log hm + h−2
m − h−1

m−1hm = 0.

When qn−1 = 0, hk is the same as in the qn case, n = 2m.
The pullback metric of minimal immersion is

gf = 2ntrC(φφ∗h) = 2n(2h1h2|qn−1|2 + 2

m−1∑
k=1

h−1
k hk+1 + h−2

m ).
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For n = 2m+ 1 is odd, the last equation of the system of equations is

4 log hm + h−1
m − h−1

m−1hm = 0.

When qn−1 = 0, hk is the same as in the qn case, n = 2m+ 1.
The last term in the pullback metric gf is 2h−1

m instead of h−2
m .

Remark 3.1. For the situation qn = 0 in qn case (or qn−1 = 0
in qn−1 case), it is the base Fuchsian point. We denote the pullback
metric gf in this situation as gFuchsian. It is computed in Section 4 that

gFuchsian = 1
6(n4 − n2)g0, where g0 is the unique Hermitian hyperbolic

metric.

4. Domination of pullback metric

Let g0 be the unique hyperbolic metric on Riemann surface Σ with
constant curvature −1 and compatible with the complex structure. Re-
garding g0 as a section of K ⊗ K̄, we set g0 = g0dz ⊗ dz̄. (If we regard
g0 as an Hermitian metric on TΣ, then g0 = g0(dz ⊗ dz̄ + dz̄ ⊗ dz) =
2g0(dx2 + dy2).)

Locally, g0 satisfies

4 log g0 − g0 = 0,

where 4 = ∂z∂z = 1
4( ∂2

∂x2
+ ∂2

∂y2
) is the coordinate Laplacian.

In this section, we show that the pullback metric of minimal immer-
sion for the qn, qn−1 cases dominates the base Fuchsian metric gFuchsian.
More precisely,

Theorem 4.1. For the qn, qn−1 cases

gf ≥ gFuchsian =
1

6
(n4 − n2)g0.

Moreover, if equality holds at one point, then qn = 0, or qn−1 = 0,
respectively, which implies hk is a suitable power of g0, as described in
Section 3.

Remark 4.2. In fact, we prove the rigidity result for every term
in gf . For example, for the qn case, n = 2m, if one of the following
equalities hold at one point,

h−1
k hk+1 ≥ (km− 1

2
k2)g0, 1 ≤ k ≤ m− 1, h−2

m ≥
1

2
m2g0,

the rigidity result then holds.

Proof of Theorem 4.1. We only prove the theorem for the qn case,

n = 2m. For other cases, the proof is similar. Write hk = akg
k− 1

2
−n

2
0 , 1 ≤

k ≤ m and |qn|2 = a0g
n
0 . Then ak, 0 ≤ k ≤ m are globally well-defined

functions. They satisfy
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4 log a1 + (
1

2
− n

2
)4 log g0 + a−1

1 a2g0 − a2
1a0g0 = 0,

4 log ak + (k − n+ 1

2
)4 log g0 + (a−1

k ak+1 − a−1
k−1ak)g0 = 0,

for 2 ≤ k ≤ m− 1,

4 log am −
1

2
4 log g0 + (a−2

m − a−1
m−1am)g0 = 0.

Then gf becomes 2n(a2
1a0 + 2

∑m−1
k=1 a

−1
k ak+1 + a−2

m )g0.

Let bk = a−1
k ak+1, 1 ≤ k ≤ m− 1 and bm = a−2

m . Then

ak = b
− 1

2
m b−1

m−1 · · · b
−1
k , 1 ≤ k ≤ m− 1, am = b

− 1
2

m .

So

4 log ak = −1

2
4 log bm −4 log bm−1 − · · · − 4 log bk, 1 ≤ k ≤ m− 1,

4 log am = −1

2
4 log bm.

Plug these terms into the system of equations above, using4 log g0 = g0,
we have

1

2
4 log bm +

m−1∑
j=1

4 log bj − (
1

2
−m+ b1)g0 ≤ 0,

1

2
4 log bm +

m−1∑
j=k

4 log bj − (k − 1

2
−m+ bk − bk−1)g0 = 0,

for 2 ≤ k ≤ m− 1,
1

2
4 log bm − (−1

2
+ bm − bm−1)g0 = 0.

Then

4 log b1 + (1 + b2 − 2b1)g0 ≤ 0,

4 log bk + (1 + bk+1 + bk−1 − 2bk)g0 = 0, 2 ≤ k ≤ m− 1,(4)

4 log bm + (1 + 2bm−1 − 2bm)g0 = 0.

Let xk be a minimizer of bk. Then

2b1 ≥ 1 + b2(x1),

2bk ≥ 1 + bk+1(xk) + bk−1(xk), 2 ≤ k ≤ m− 1,

2bm ≥ 1 + 2bm−1(xm).

First consider

2bm−1 ≥ 1 + bm(xm−1) + bm−2(xm−1),

2bm ≥ 1 + 2bm−1(xm).

We see bm(xm−1) ≥ 2+bm−2(xm−1) and then 2bm−1 ≥ 3+2bm−2(xm−1).
Then, similarly, consider k = m− 1,m− 2. We obtain
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bm−1(xm−2) ≥ 4 + bm−3(xm−2),

2bm−2 ≥ 5 + 2bm−3(xm−2).

Follow this procedure until we obtain

b3(x2) ≥ 2(m− 2) + b1(x2),

2b2 ≥ 2m− 3 + 2b1(x2).

From 2b1 ≥ 1 + b2(x1), we have b2(x1) ≥ 2m−2 and then 2b1 ≥ 2m−1.
Similarly,

2bk ≥ (2m− 1) + · · ·+ (2m− (2k − 1)), 1 ≤ k ≤ m.
So we obtain

2bk ≥ 2km− k2, 1 ≤ k ≤ m.
Recall that

∑m−1
k=1 k

2 = 1
6(m− 1)m(2m− 1). Hence, finally,

gf = 2n(h2
1|q2m|2 + 2

m−1∑
k=1

h−1
k hk+1 + h−2

m ) ≥ n4 − n2

6
g0.

For rigidity, suppose bk = km− 1
2k

2 holds at one point p for some k, let
log bk = Ωk, then from (4),

4Ωk + 2(km− 1

2
k2 − eΩk)g0 ≤ 0.

Then one may apply the strong maximum principle to finish the proof.
More precisely, in a local coordinate chart,

4(Ωk − log(km− 1

2
k2))

−2(Ωk − log(km− 1

2
k2))(

∫ 1

0
etΩk+(1−t) log(km− 1

2
k2)dt)g0 ≤ 0.

This is from the fact

eΩk − elog(km− 1
2
k2) =

d

dt

∣∣∣1
0
etΩk+(1−t) log(km− 1

2
k2).

Notice that
∫ 1

0 e
tΩk+(1−t) log(km− 1

2
k2)dt ≥ 0 and Ωk− log(km− 1

2k
2) ≥ 0,

then by the strong maximum principle [11], if Ωk − log(km− 1
2k

2) = 0

at one point p, then Ωk − log(km − 1
2k

2) = 0 everywhere. Then bk
equals km− 1

2k
2 identically for all 1 ≤ k ≤ m. From the origin system

of equations, we see that qn must be zero. q.e.d.

5. Shape of minimal surface inside symmetric space

In this section, we investigate the shape of minimal surface Σ inside
the symmetric space G/K. In particular, we show that the tangent
space of Σ is never tangential to any flat inside G/K. Recall G =
SL(n,C), K = SU(n).
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Theorem 5.1. For the qn, qn−1 cases, we have the following results.
(1) The Hitchin equation never decouples: for every point on Σ,

F∇
h 6= 0, [φ, φ∗h ] 6= 0.

(2) The sectional curvature KG/K(σ) is strictly negative, where σ is the
tangent space of the image of gf . Geometrically, the minimal immersion
is never tangential to any flat inside the symmetric space.

(3) On each line bundle K
n+1−2k

2 , 1 ≤ k ≤ n, the Chern form of hk:
√
−1Θhk =

√
−1∂∂ log hk

is strictly positive if n + 1 − 2k > 0; zero if n + 1 − 2k = 0; strictly
negative if n+ 1− 2k < 0.

Before we prove Theorem 5.1, an immediate corollary is as follows.

Corollary 5.2. For the qn, qn−1 cases, the sectional curvature Kgf
of Σ equipped with the induced metric gf is strictly negative.

Proof of Corollary 5.2. Given the ρ-equivariant harmonic map f :

Σ̃→ G/K, we want to investigate that, as an immersed submanifold in-

side the symmetric space G/K, how f(Σ̃) interacts with the symmetric
space. Let ∇ denote the Levi-Civita connection of G/K and ∇T denote
the component of ∇ tangential to the image of f . Then the second
fundamental form is the symmetric 2-tensor with values in the normal
bundle given by

II(X,Y ) = ∇XY −∇TXY,

where X,Y ∈ Γ(f∗T (G/K)) are tangent to the image of f . Let {e1, e2}
be an orthonormal basis such that

II(e1, e2) = 0.

The immersion is minimal if the trace of II with respect to gf is van-
ishing. Therefore,

II(e1, e1) + II(e2, e2) = 0.

Recall the Gauss equation, let X,Y be orthonormal vector fields on
Σ, then

Kgf (X,Y ) = KG/K(X,Y )+ < II(X,X), II(Y, Y ) > −|II(X,Y )|2.

Therefore, the sectional curvature Kgf and KG/K measured in Σ and
in G/K, respectively, are related by Gauss equation:

Kgf = KG/K −
1

2
||II||2gf .

By Theorem 5.1, KG/K < 0. Therefore, Kgf < 0. q.e.d.
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Proof of Theorem 5.1. We first discover the following inequalities for
the 2-tensors appearing in the Hitchin system of equations. We will
prove Lemma 5.3, 5.4 later.

Lemma 5.3. For the qn case, on the whole surface Σ, if n = 2m

h2
1|qn|2 < h−1

1 h2 < h−1
2 h3 < · · · < h−1

k−1hk < · · · < h−1
m−1hm < h−2

m .

If n = 2m+ 1, the last term is replaced by h−1
m .

Lemma 5.4. For the qn−1 case, on the whole surface Σ, if n = 2m

h1h2|qn−1|2 < h−1
1 h2,

h1h2|qn−1|2 + h−1
1 h2 < h−1

2 h3 < · · · < h−1
m−1hm < h−2

m .

If n is odd, the last term is replaced by h−1
m .

For the qn case, the (1, 1)-entry of [φ, φ∗h ] is h2
1|qn|2 − h

−1
1 h2. It is

strictly negative everywhere by Lemma 5.3. For the qn−1 case, the (1, 1)-
entry of [φ, φ∗h ] is h1h2|qn−1|2−h−1

1 h2. It is strictly negative everywhere
by Lemma 5.4. Therefore, Part (1) follows.

For part (2), the sectional curvature in the symmetric space G/K for
the 2-dimensional subspace spanned by Y, Z is

KG/K(Y, Z) := −B([Y0, Z0], [Y0, Z0])

B(Y0, Y0)B(Z0, Z0)
= −|[Y0, Z0]|2

|Y0|2|Z0|2
,

where Y0 = Φ(Y ) ∈ k⊥ and Z0 = Φ(Z) ∈ k⊥ from Section 2.
The tangent space of the minimal immersion at f(p) inside G/K

is spanned by Y = f∗(
∂
∂x) and Z = f∗(

∂
∂y ) with Y0 = Φ( ∂

∂x) = (φ +

φ∗)( ∂
∂x) = φ( ∂∂z )+φ∗( ∂∂z̄ ), and Z0 = Φ( ∂∂y ) = (φ+φ∗)( ∂∂y ) =

√
−1φ( ∂∂z )−

√
−1φ∗( ∂∂z̄ ). Hence,

[Y0, Z0] = −2
√
−1[φ(

∂

∂z
), φ∗(

∂

∂z̄
)] = −2

√
−1[φ, φ∗](

∂

∂z
,
∂

∂z̄
).

By part (1), [φ, φ∗] 6= 0, hence, KG/K < 0. Therefore, Part (2) follows.
Part (3) directly follows from Lemma 5.3, 5.4. q.e.d.

Proof of Lemma 5.3. We focus on the case n = 2m. Along the proof,
we single out each time the only differences for the case n = 2m+1 and

show that the proof works as well in this case. Let hk = akg
k−n+1

2
0 , 1 ≤

k ≤ m. Let |qn|2 = a0g
n
0 . Then ak, 0 ≤ k ≤ m are globally defined

functions.
The situation qn = 0 is clear. We then assume qn is not identically

zero. Since qn is holomorphic, qn only has discrete zeros. Denote U =
{p ∈ Σ|qn(p) 6= 0}. Then ak satisfies, locally

4 log a1 + (1− n+ 1

2
+ a−1

1 a2 − a2
1a0)g0 = 0,
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4 log ak + (k − n+ 1

2
+ a−1

k ak+1 − a−1
k−1ak)g0 = 0, 2 ≤ k ≤ m− 1,

4 log am + (m− n+ 1

2
+ a−2

m − a−1
m−1am)g0 = 0.

For the case n = 2m+ 1, in the last equation, a−2
m is replaced by a−1

m .
Let Ωk = log ak, k = 0, 1, . . . ,m. Notice that at the zero point of qn,

Ω0 goes to −∞ continuously. Then the system of equations becomes,

4Ω1 + (1− n+ 1

2
+ e−Ω1+Ω2 − e2Ω1+Ω0)g0 = 0, in U,

4Ωk + (k − n+ 1

2
+ e−Ωk+Ωk+1 − e−Ωk−1+Ωk)g0 = 0, 2 ≤ k ≤ m− 1,

4Ωm + (m− n+ 1

2
+ e−2Ωm − e−Ωm−1+Ωm)g0 = 0.

For the case n = 2m + 1, in the last equation, e−2Ωm is replaced by
e−Ωm .

Let f1 = 2Ω1 + Ω0, fk = −Ωk−1 + Ωk, 2 ≤ k ≤ m, fm+1 = −2Ωm.
For the case n = 2m + 1, let fm+1 = −Ωm. Notice that, since qn is
holomorphic, away from zeros of qn,

4Ω0 = 4 log a0 = 4 log(|qn|2g−n0 )

= 4 log |qn|2 − n4 log g0 = −ng0.

Then we obtain

4f1 + (1 + 2ef2 − 2ef1)g0 = 0, in U,

4fk + (1 + efk+1 − 2efk + efk−1)g0 = 0, 2 ≤ k ≤ m,
4fm+1 + (1− 2efm+1 + 2efm)g0 = 0.

For the case n = 2m+ 1, the last equation is replaced by

4fm+1 + (1− efm+1 + efm)g0 = 0.

Then

4(f1 − f2) + (−3(ef1 − ef2) + (ef2 − ef3))g0 = 0, in U,(5)

4(fk − fk+1) + ((efk−1 − efk) + (efk+1 − efk+2)− 2(efk − efk+1))g0 = 0,

for 2 ≤ k ≤ m− 1,

4(fm − fm+1) + (−3(efm − efm+1) + (efm−1 − efm))g0 = 0.

For the case n = 2m+ 1, the last equation is replaced by

4(fm − fm+1) + (−2(efm − efm+1) + (efm−1 − efm))g0 = 0.

Let Ak be the maximum of efk−fk+1 , 1 ≤ k ≤ m.
Step 1: We first show Am ≤ 1. From the compactness of Σ, Ak,

2 ≤ k ≤ m must be achieved at some pk. For A1, since f1 − f2 goes
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to −∞ around the zeros of qn, A1 must be achieved at some p1 ∈ U .
Notice that Ak ≥ 0, 1 ≤ k ≤ m. Then by the maximum principle, at p1

−3(ef1(p1) − ef2(p1)) + (ef2(p1) − ef3(p1)) ≥ 0

⇒ −3(e(f1−f2)(p1) − 1) + (1− e−(f2−f3)(p1)) ≥ 0

⇒ −3(A1 − 1) + (1−A−1
2 ) ≥ 0

⇒ 2(A1 − 1) ≤ (1−A−1
2 )− (A1 − 1).

At pk, 2 ≤ k ≤ m− 1

(−2(efk(pk) − efk+1) + (efk−1 − efk) + (efk+1 − efk+2))(pk) ≥ 0

⇒ −2(e(fk−fk+1)(pk) − 1) + (e(fk−1−fk)(pk) − 1)e(fk−fk+1)(pk)

+(1− e−(fk+1−fk+2)(pk)) ≥ 0

⇒ −2(Ak − 1) + (Ak−1 − 1)Ak + (1−A−1
k+1) ≥ 0

⇒ (1−A−1
k )− (Ak−1 − 1) ≤ A−1

k ((1−A−1
k+1)− (Ak − 1)).

Similarly, at pm, we obtain

(1−A−1
m )− (Am−1 − 1) ≤ −2(1−A−1

m ).

For n = 2m+ 1 case, at pm, instead we obtain

(1−A−1
m )− (Am−1 − 1) ≤ −(1−A−1

m ).

Let B1 = 2(A1 − 1), Bk = (1−A−1
k )− (Ak−1 − 1), 2 ≤ k ≤ m. Then

B1 ≤ B2,

Bk ≤ A−1
k Bk+1, 2 ≤ k ≤ m− 1,

Bm ≤ −2(1−A−1
m ).

For n = 2m+ 1 case, the last inequality is replaced by

Bm ≤ −(1−A−1
m ).

On the other hand,

1−A−1
m = Bm + (Am−1 − 1)

= Bm +Am−1(1−A−1
m−1)

= Bm +Am−1(Bm−1 + (Am−2 − 1))

...

= Bm +Am−1Bm−1 +Am−1Am−2Bm−2 + · · ·
+Am−1Am−2 · · ·A2B2 +Am−1Am−2 · · ·A2(A1 − 1)

≤ Bm +Bm + · · ·+Bm︸ ︷︷ ︸
m− 1 terms

+
1

2
Bm

≤ −2(m− 1

2
)(1−A−1

m ).
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For n = 2m+ 1 case, the inequality is replaced by

1−A−1
m ≤ −(m− 1

2
)(1−A−1

m ).

Thus, we obtain Am ≤ 1.
Step 2: Now we claim A1 < 1 and Am < 1. To prove A1 < 1 by

contradiction, assume A1 ≥ 1. Then B1 ≥ 0. And then Bk ≥ 0 for
2 ≤ k ≤ m. In other words, 1− A−1

k ≥ Ak−1 − 1 for 2 ≤ k ≤ m. From
A1 ≥ 1, we see Ak ≥ 1 for 2 ≤ k ≤ m. In particular, Am ≥ 1. So Am
has to be equal to 1. It turns out Ak = 1 for every k. We use the strong
maximum principle to get contradiction. Consider equation (5)

4(f1 − f2) + (−3(ef1−f2 − 1) + (1− e−(f2−f3)))ef2g0 = 0, in U.

Since ef2−f3 ≤ 1, we have

4(f1 − f2)− 3(ef1−f2 − 1)ef2g0 ≥ 0 in U.

Let u = f1 − f2. Then

4u− (3ef2g0

∫ 1

0
etudt)u ≥ 0 in U.

By the assumption, u achieves its maximum 0 in U . Then by the
strong maximum principle, u has to be 0 identically in U . But qn
must have zeros. So u has to take value −∞, which is a contradiction
to ueqnarray ∗ uiv0. So we have proved Am < 1 by contradiction. But
since A1 ≥ 1 implies Am ≥ 1, we also see A1 < 1 by contradiction as
well, and ef1 < ef2 everywhere on Σ.

Step 3: Now we begin to show Ak < 1, for all 1 ≤ k ≤ m. Assume
there is some 1 ≤ k0 ≤ m− 1 such that Bk0 ≤ 0, Bk0+1 > 0. The proof
below works in the other two cases B1 > 0 and Bm ≤ 0 as well. Since
Bk ≤ A−1

k Bk+1, for all 1 ≤ k ≤ m− 1, then

Bk ≤ 0, 1 ≤ k ≤ k0,

Bk > 0, k0 + 1 ≤ k ≤ m.
Then Bk = (1−A−1

k )− (Ak−1 − 1) ≤ 0 for 1 ≤ k ≤ k0 gives

1−A−1
k ≤ Ak−1 − 1, 1 ≤ k ≤ k0.

Since A1 < 1, then A1 − 1 < 0, hence,

Ak − 1 < 0, 1 ≤ k ≤ k0.

And Bk = (1−A−1
k )− (Ak−1 − 1) > 0 for k0 + 1 ≤ k ≤ m gives

1−A−1
k+1 > Ak − 1, k0 + 1 ≤ k ≤ m.

Since Am − 1 < 0, we have

Ak − 1 < 0, k0 + 1 ≤ k ≤ m.
Therefore, we obtain Ak < 1, for all 1 ≤ k ≤ m. q.e.d.
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Proof of Lemma 5.4. We only prove for the case n = 2m. The case
for n = 2m+1 is proved in a similar way as in Lemma 5.3. As above, let

hk = akg
k− 1

2
−m

0 , 1 ≤ k ≤ m. Let |qn−1|2 = a0g
n−1
0 . Then ak satisfies,

locally

4 log a1 + (
1

2
−m+ a−1

1 a2 − a1a2a0)g0 = 0,

4 log a2 + (
3

2
−m+ a−1

2 a3 − a−1
1 a2 − a1a2a0)g0 = 0,

4 log ak + (k − 1

2
−m+ a−1

k ak+1 − a−1
k−1ak)g0 = 0, 3 ≤ k ≤ m− 1,

4 log am + (−1

2
+ a−2

m − a−1
m−1am)g0 = 0.

Denote U = {p ∈ Σ|qn−1(p) 6= 0}. Let Ωk = log ak, k = 0, 1, . . . ,m.
Then

4Ω1 + (
1

2
−m+ e−Ω1+Ω2 − eΩ1+Ω2+Ω0)g0 = 0, in U,

4Ω2 + (
3

2
−m+ e−Ω2+Ω3 − e−Ω1+Ω2 − eΩ1+Ω2+Ω0)g0 = 0, in U,

4Ωk + (k − 1

2
−m+ e−Ωk+Ωk+1 − e−Ωk−1+Ωk)g0 = 0,

for 3 ≤ k ≤ m− 1,

4Ωm + (−1

2
+ e−2Ωm − e−Ωm−1+Ωm)g0 = 0.

Let f1 = Ω1 + Ω2 + Ω0, fk = −Ωk−1 + Ωk, 2 ≤ k ≤ m, fm+1 = −2Ωm.
Notice that 4Ω0 = (1− n)g0. Then we obtain

4f1 + (1 + ef3 − 2ef1)g0 = 0, in U,

4f2 + (1 + ef3 − 2ef2)g0 = 0,

4f3 + (1 + ef4 − 2ef3 + ef2 + ef1)g0 = 0,

4fk + (1 + efk+1 − 2efk + efk−1)g0 = 0, 4 ≤ k ≤ m,
4fm+1 + (1− 2efm+1 + 2efm)g0 = 0.

Then we have the following system

4(f3 − f4) + (−2(ef3 − ef4) + (ef4 − ef5) + (ef1 + ef2 − ef3))g0 = 0,

4(fk − fk+1) + ((efk−1 − efk) + (efk+1 − efk+2)− 2(efk − efk+1))g0 = 0,

for 3 ≤ k ≤ m− 1,

4(fm − fm+1) + (−3(efm − efm+1) + (efm−1 − efm))g0 = 0.

Let Ak be the maximum of efk−fk+1 , k = 1 and 3 ≤ k ≤ m, and A2 be
the maximum of ef1−f3 + ef2−f3 .
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Step 1: We show A1 < 1. We only look at the first equation of the
Hitchin equation

4Ω1 + (
1

2
−m+ e−Ω1+Ω2 − eΩ1+Ω2+Ω0)g0 = 0, in U .

Consider the function −1
2Ω0 = log |qn−1|−1g

n−1
2

0 , it satisfies the above
equation. Since it is ∞ at zeros of qn−1, it gives an upper bound for

Ω1. By the strong maximum principle, we have Ω1 < log |qn−1|−1g
n−1
2

0 .
Hence, e2Ω1 |qn−1|2 < 1, then A1 < 1.

Step 2: We claim that Am < 1. For other Ak, we apply the same
argument in Lemma 5.3 to the above system. Let Bk = (1 − A−1

k ) −
(Ak−1 − 1), 3 ≤ k ≤ m. Then

Bk ≤ A−1
k Bk+1, 3 ≤ k ≤ m− 1,(6)

Bm ≤ −2(1−A−1
m ).

Let B2 = A2−1. Now we start to obtain inequality for B2. Applying
the inequality

4 log(ef + 1) ≥ ef

ef + 1
4f,

we have
1

g0
4 log(ef1−f3 + ef2−f3)

= 4 log(ef1−f2 + 1) +4 log ef2−f3

≥ ef1−f2

ef1−f2 + 1
4(f1 − f2) +4(f2 − f3)

=
ef1−f2

ef1−f2 + 1
2(ef1 − ef2) + (ef1 + 3ef2 − 3ef3 + ef4)

= ef2
(ef1−f2 − 1)2

ef1−f2 + 1
+ (ef1 − ef2) + (ef1 + 3ef2 − 3ef3 + ef4)

> 2(ef1 + ef2 − ef3)− (ef3 − ef4), By Step 1

= 2ef3(ef1−f3 + ef2−f3 − 1)− ef3(1− e−f3+f4).

Hence, at maximum of ef1−f3 + ef2−f3 , we have

2(A2 − 1) < 1−A−1
3 .

Hence,

(7) B2 = A2 − 1 < (1−A−1
3 )− (A2 − 1) = B3.

We apply the same argument:

1−A−1
m

= Bm + (Am−1 − 1)

= Bm +Am−1(Bm−1 + (Am−2 − 1))
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· · ·
= Bm +Am−1Bm−1 +Am−1Am−2Bm−2 + · · ·

+Am−1Am−2 · · ·A3B3 +Am−1Am−2 · · ·A3(A2 − 1)

Applying Inequality (6),(7)

< Bm +Bm + · · ·+Bm︸ ︷︷ ︸
m− 1 terms

< −2(m− 1)(1−A−1
m ).

Therefore, Am < 1.
Step 3: By applying the same process as in Lemma 5.3, we show

Ak < 1 and finish the proof. q.e.d.

6. Comparison to decoupled equations

In this section, we compare the solution to coupled Hitchin equations
by the solutions to decoupled vortex-like equations. For n even, set
n = 2m; for n odd, set n = 2m+1. Throughout this section, we assume
m ≥ 2, since for m = 1 the Hitchin system of equations is a single
equation which is already decoupled.

Theorem 6.1. There exists a unique Hermitian metric uk, vk, re-

spectively, on the holomorphic line bundle K
n+1−2k

2 satisfying, locally

4 log uk + u
− 2
n+1−2k

k − (u2
k|qn|2)

1
2k−1 = 0, 1 ≤ k ≤ m,(8)

4 log vk + v
− 2
n+1−2k

k − (v2
k|2qn−1|2)

1
2k−2 = 0, 2 ≤ k ≤ m.(9)

And the following estimates hold,

max{|qn|
2αk
n , (αkg0)αk} ≤ u−1

k < ((max
Σ
|qn|

2
n
g0 + αk)g0)αk ,

max{|2qn−1|
2αk
n−1 , (αkg0)αk} ≤ v−1

k < ((max
Σ
|2qn−1|

2
n−1
g0 + αk)g0)αk ,

where αk = n+1−2k
2 and g0 is the unique Hermitian hyperbolic metric

on K−1.

Remark 6.2. Such equations are natural generalization of familiar
vortex-like equations. In particular, in the case n = 2, k = 1, this is the
harmonic equation from surface to surface with given Hopf differential
q2. In the case n = 3, k = 1, this gives Wang’s equation [24] and the
solution is the Blaschke metric for the hyperbolic affine sphere. Dumas
and Wolf [7] solved such equations for the case when n is general and
k = 1 on the complex plane.

Remark 6.3. Let uk = bkg
2k−n−1

2 , then equation (8) becomes

4g log bk −
2k − n− 1

2
Kg + b

− 2
2(m−k)+1

k − (b2k|qn|2g)
1

2k−1 = 0,
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where Kg = −4g log g is the sectional curvature of g. In particular,
there is a geometric interpretation for the equation (8). Let σk =

u
− 2
n+1−2k

k . Then σk is an Hermitian metric on the Riemann surface
Σ. The equation for σk is

n+ 1− 2k

2
Kσk = −1 + |qn|

2
2k−1
σk .

Proof of Theorem 6.1. Again, we only prove the case n = 2m for
the qn case. The proof for other cases is similar. Take the Hermitian

hyperbolic metric g0 on Σ. Let σk = u
− 2
n+1−2k

k and σk = g0e
ηk with ηk

being a C∞ function on Σ. Then equation (8) is equivalent to

n+ 1− 2k

2
4g0ηk − eη + |qn|

2
2k−1
g0 e−

n+1−2k
2k−1

ηk +
n+ 1− 2k

2
= 0,

for 1 ≤ k ≤ m. Then showing the first part of Theorem 6.1 reduces to
show the existence and uniqueness of ηk which follows from the following
lemma. The proof is similar to Proposition 4.0.2 in Loftin [16].

Lemma 6.4. Let (M, g) be a closed Riemannian manifold, f be a
nonnegative C∞ function on M , and a, b, c be positive real numbers.
Then the equation

a4gη − eη + f(x)e−cη + b = 0, 1 ≤ k ≤ m

has a unique C∞ solution, such that

log b ≤ η < log(G
1
c+1 + b),

where G denotes the maximum value of f(x). If f is not identically
zero, then η > log b.

Proof of Lemma 6.4. For the existence, it is sufficient to find a subso-
lution and a supersolution for this equation (see Schoen and Yau [22]).
First, the constant function η = log b is a subsolution by direct calcula-
tion. Second, set m to be the smallest positive root of the equation

xc+1 − bxc −G = 0.

Then η = logm satisfies

a4gη − eη + f(x)e−cη + b = −m+ f(x)m−c + b ≤ 0.

Therefore, s = logm is a supersolution. Then there is a smooth solution
η to the equation satisfying

log b ≤ η ≤ logm < log(G
1
c+1 + b).

If f is not zero, the strong maximum principle implies η > log b. The
uniqueness comes from the maximum principle. And by the standard
elliptic theory, we obtain the smoothness of the solution. q.e.d.
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Theorem 6.1 then follows from the above Lemma directly except to

show uk ≤ |qn|−
n+1−2k

n . In fact, we observe that |qn|−
n+1−2k

n is also a
solution to equation (8) outside the zero locus of qn. Then applying the
strong maximum principle, we finish the proof. q.e.d.

We now compare the solution to the coupled Hitchin system of equa-
tions to such Hermitian metrics uk and vk satisfying decoupled equa-
tions.

Theorem 6.5. For m ≥ 2,

qn case: hk < uk, 1 ≤ k ≤ m,
qn−1 case: hk < vk, 2 ≤ k ≤ m.

Remark 6.6. If m = 1, for the qn case, then the Hitchin equation
coincides with the equation for u1. Therefore, h1 = u1. In this sense,
uk is a natural generalization to bound the coupled Hitchin system.

Proof of Theorem 6.5. Again, we only prove the case n = 2m for the
qn case. The proof for the other cases is similar. From Lemma 5.3

(h−1
k hk+1)2(m−k)+1 < (h−1

k hk+1)2 · · · (h−1
m−1hm)2 · h−2

m = h−2
k ,

hence,

h−1
k hk+1 < h

− 2
2(m−k)+1

k , 1 ≤ k ≤ m− 1.

From Lemma 5.3

(h−1
k−1hk)

2k−1 > (h2
1|q2m|2)(h−1

1 h2)2 · · · (h−1
k−1hk)

2 = h2
k|q2m|2,

hence,

h−1
k−1hk > (hk

2|q2m|2)
1

2k−1 , 2 ≤ k ≤ m.
Therefore, the system of equations

4 log h1 + h−1
1 h2 − h2

1|qn|2 = 0,

4 log hk + h−1
k hk+1 − h−1

k−1hk = 0, 2 ≤ k ≤ m− 1,

4 log hm + h−2
m − h−1

m−1hm = 0,

implies that

4 log hk + h
− 2

2(m−k)+1

k − (h2
k|q2m|2)

1
2k−1 > 0, 1 ≤ k ≤ m.

Then applying the strong maximum principle, we obtain hk < uk. q.e.d.

Remark 6.7. For h1 in the qn−1 case, from Lemma 5.4, one can
show that h1 < |qn−1|−1.

Now fixing qn (or qn−1), we study the asymptotic behavior of hk, uk, vk
along the ray tqn (or tqn−1) when t approaches to infinity. For hk, Collier
and Li [2] proved the following result.
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Theorem 6.8. (Collier-Li [2]) Suppose qn (or qn−1) is not zero.
Then for each compact set K ⊂ Σ away from zeros of qn (or qn−1),
there is a positive constant C = C(K) independent of t such that at
each point p ∈ K,

qn case: hk = |qn|−
n+1−2k

n (1 +O(||qn||−1)), 1 ≤ k ≤ m,

qn−1 case: hk = (|2qn−1|)−
n+1−2k
n−1 (1 +O(||qn−1||−1)), 2 ≤ k ≤ m,

where ||qn|| =
∫

Σ |qn|
2
n and f ∈ O(||qn||−1) means |f |/||qn||−1 ≤ C.

Remark 6.9. By Theorem 6.1 and Theorem 6.5, hk < |qn|−
n+1−2k

n ,
so we improve the above result in one direction.

Let utk (or vtk) be the solution for tqn (or tqn−1) in Theorem 6.1 (or
tqn−1). Combining Theorem 6.5 and Theorem 6.8, we obtain

Theorem 6.10. Suppose qn (or qn−1) is not zero. Then for each
compact set K ⊂ Σ away from zeros of qn (or qn−1), there is a positive
constant C = C(K) independent of t such that

qn case: utk(1− C||tqn||−1) ≤ htk < utk, 1 ≤ k ≤ m,
qn−1 case: vtk(1− C||tqn−1||−1) ≤ htk < vtk, 2 ≤ k ≤ m.

Remark 6.11. The theorem above shows that uk (or vk) is an upper
approximation of hk.

Finally, we prove the following asymptotic estimates of uk, vk. It can
be derived from Theorem 6.1, Theorem 6.5 and Theorem 6.8. Here we
give a direct proof not relying on Theorem 6.8.

Theorem 6.12. Suppose qn (or qn−1) is not zero. Then for each
compact set K ⊂ Σ away from zeros of qn (or qn−1), there is a positive
constant C = C(K) independent of t such that

|tqn|−
n+1−2k

n (1− C||tqn||−1) ≤ utk < |tqn|−
n+1−2k

n , 1 ≤ k ≤ m,

|2tqn−1|−
n+1−2k
n−1 (1− C||tqn−1||−1) ≤ vtk < |2tqn−1|−

n+1−2k
n−1 , 2 ≤ k ≤ m.

Proof of Theorem 6.12. For simplicity, we drop the superscript t of

utk, v
t
k. We only prove uk ≥ |tqn|−

n+1−2k
n (1 − C||tqn||−1). Let K be a

compact subset of Σ which does not contain any zeros of qn. Choose a

background metric g on the surface Σ defined as follows: g = |qn|
2
n

||qn|| on

K and g ≥ |qn|
2
n

||qn|| outside K. Let uk = bkg
2k−n−1

2 , where bk is a positive

function on Σ satisfying

4g log bk −
2k − n− 1

2
Kg + b

− 2
n+1−2k

k − (b2k|tqn|2g)
1

2k−1 = 0.
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At the minimum of bk,

n+ 1− 2k

2
Kg + b

− 2
n+1−2k

k − (b2k|tqn|2g)
1

2k−1 ≤ 0.

Let M = max
Σ

n+1−2k
2 |Kg| and, hence,

−M + b
− 2
n+1−2k

k ≤ (b2k|tqn|2g)
1

2k−1 ≤ b
2

2k−1

k ||tqn||
n

2k−1 .

Let x = ||tqn||b
2

n+1−2k

k , then x satisfies

x
n

2k−1 +
M

||tqn||
x− 1 ≥ 0.

Therefore, ||tqn||b
2

n+1−2k

k = x ≥ 1 − C||tqn||−1 at the minimum of bk,
also the minimum of x.

Hence, globally on the surface, ||tqn||b
2

n+1−2k

k = x ≥ 1 − C||tqn||−1.
Then

uk = (x||tqn||−1)
n+1−2k

2 g−
n+1−2k

2

≥ x
n+1−2k

2 |tqn|−
n+1−2k

n

≥ |tqn|−
n+1−2k

n (1− C||tqn||−1). q.e.d.

Remark 6.13. It is an interesting question that how C varies when
K approaches to Σ− Z, where Z is the set of zeros of qn.
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