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INVERSE PROBLEMS FOR THE CONNECTION
LAPLACIAN
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Abstract

We reconstruct a Riemannian manifold and a Hermitian vector
bundle with compatible connection from the hyperbolic Dirichlet-
to-Neumann operator associated with the wave equation of the
connection Laplacian. The boundary data is local and the re-
construction is up to the natural gauge transformations of the
problem. As a corollary we derive an elliptic analogue of the main
result which solves a Calderón problem for connections on a cylin-
der.

1. Introduction

The purpose of the present paper is to show how to reconstruct a
Riemannian metric and a Hermitian vector bundle with compatible con-
nection from partial boundary measurements associated with the wave
equation of the connection Laplacian (or rough Laplacian). The recov-
ery is possible up to the natural gauges of the problem, and the proof
uses techniques from the Boundary Control method [1].

There is considerable literature on the topic, and we shall review it
in due course, but the strength of our results lies in the geometric gen-
erality involved: there are no restrictions on the Riemannian manifold,
Hermitian vector bundle or connection. Our methods also include a
transparent and direct proof in the case of the trivial vector bundle that
avoids gluing of local reconstructions. The problem is motivated by the
Aharonov–Bohm effect which asserts that different gauge equivalence
classes of electromagnetic potentials have different physical effects that
can be detected by experiments. The solution to the inverse problem
presented in this paper shows in great generality that different gauge
equivalence classes of Hermitian connections (e.g., Yang–Mills poten-
tials) will have different boundary data, and therefore, are detectable
by boundary measurements.

We proceed to state our results in more detail. Let (M, g) be a
smooth, compact, connected Riemannian manifold of dimension m with
non-empty boundary ∂M . Let E → M be a smooth Hermitian vector
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bundle of rank n, and let us denote by 〈·, ·〉E the Hermitian inner product
on each fiber. Let ∇ be a connection compatible with the Hermitian
structure, that is, if we think of ∇ as operating on sections

∇ : C∞(M ;E)→ C∞(M ;E ⊗ T ∗M),

then for any pair u, v ∈ C∞(M ;E), we have

d〈u, v〉E = 〈∇u, v〉E + 〈u,∇v〉E .
Note that both the sides of the above equation are differential forms,
that is, sections in C∞(M ;T ∗M).

We can define a natural L2-inner product of sections by setting

〈u, v〉L2(M ;E) =

∫
M
〈u, v〉E dx.

Here dx is the Riemannian volume measure of (M, g), and we do not
assume that M is oriented. Similarly we get a natural L2-inner product
in C∞(M ;E⊗T ∗M). The elements in C∞(M ;E⊗T ∗M) can be thought
of as 1-forms taking values in E. A pointwise product 〈α, β〉E is a
complex-valued 2-tensor on M which can be contracted with g to obtain
a complex-valued function, and then integrated in M . In other words,
if α = αidx

i and β = βidx
i, then

〈α, β〉L2(M ;E⊗T ∗M) =

∫
M
gij〈αi, βj〉E dx.

We denote by ∇∗ the adjoint of ∇ with respect to these L2-inner prod-
ucts, and define the connection Laplacian as

P = ∇∗∇.
We denote by End(E) the vector bundle whose fiber at x ∈M is the

space of linear maps from the fiber Ex to itself, and say that a section
V ∈ C∞(M ; End(E)) is a potential if it is symmetric in the sense that
for any pair of sections u, v of E,

〈u, V v〉E = 〈V u, v〉E .(1)

Let V be a potential and consider the wave equation on sections,

(∂2
t + P + V )u(t, x) = 0, (0,∞)×M,(2)

u|(0,∞)×∂M = f, (0,∞)× ∂M,

u|t=0 = ∂tu|t=0 = 0, in M.

Let T > 0, let S ⊂ ∂M be open, and define the restricted Dirichlet-to-
Neumann operator

Λ2T
S f = ∇νu|(0,2T )×S , f ∈ C∞0 ((0, 2T )× S;E),

where ν is the interior unit normal on ∂M and u is the solution of (2).
Our main result is that, for a sharp time T > 0, the Hermitian

vector bundle E|S and the restricted Dirichlet-to-Neumann operator
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Λ2T
S determine the Riemannian manifold (M, g), the Hermitian vector

bundle E, the connection ∇ and potential V . Here E|S is the pullback
bundle j∗E given by the inclusion map j : S →M .

Theorem 1.1. Let (Mi, gi, Ei,∇i, Vi), i = 1, 2, be two smooth Her-
mitian vector bundles that are defined on smooth, compact and connected
Riemannian manifolds with boundary, and that are equipped with smooth
Hermitian connections and smooth potentials. Suppose that T > 0 and
open Si ⊂ ∂Mi, i = 1, 2, satisfy

T > max
x∈Mi

dgi(x,Si), i = 1, 2,

where dgi is the distance function on (Mi, gi). Suppose, furthermore,
that there is a Hermitian vector bundle isomorphism φ : E1|S1 → E2|S2

intertwining the Dirichlet-to-Neumann operators Λ2T
S1

and Λ2T
S2

, that is,

φ∗Λ2T
S2

= Λ2T
S1
φ∗. Then there is a Hermitian vector bundle isomorphism

Φ : E1 → E2 that covers an isometry between (Mi, gi), i = 1, 2, and that
satisfies Φ∗∇2 = ∇1, Φ∗V2 = V1 and Φ|E1|S1

= φ.

Let us denote by πi : Ei → Mi, i = 1, 2, the associated bundle
projections, and recall that a vector bundle isomorphism Φ : E1 → E2

determines a diffeomorphism Ψ : M1 →M2 via the equation

Ψ ◦ π1 = π2 ◦ Φ.

The isomorphism Φ covering an isometry means that Ψ∗g2 = g1.
It is a simple exercise to check that if an isomorphism Φ as in The-

orem 1.1 exists, then the restriction of Φ on E1|S1 intertwines the
Dirichlet-to-Neumann operators. Hence, Theorem 1.1 is optimal in
terms of the gauge invariances.

We recall that a generalized Laplacian H on E is a differential oper-
ator such that its principal symbol is

|ξ|2 = gij(x)ξiξj , (x, ξ) ∈ T ∗M,

and we say that H is symmetric if

〈u,Hv〉L2(M ;E) = 〈Hu, v〉L2(M ;E) , u, v ∈ C∞0 (M ;E).

A symmetric generalized Laplacian H on E can be written in the form
P + V for some Hermitian connection ∇ and potential V , see, e.g.,
[3, Proposition 2.5], and wave equations for generalized Laplacians are
the most general hyperbolic equations for which unique continuation
is known to hold in the whole domain of influence, see Theorem 2.3
below. Such time sharp unique continuation, that goes back to the
seminal paper [33], is crucial to our proof.

Let us also point out that if the symmetry assumptions in Theo-
rem 2.3 are weakened, then all the known uniqueness results in the
scalar case require additional assumptions on the global geometry of
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(M, g), see [14, 25, 28]. We discuss the difficulties related to weaker
symmetry assumptions in more detail in Remark 3.4 below.

As a corollary of Theorem 1.1, let us consider the case when (M, g)
is known, E is the trivial bundle M ×Cn with its usual Hermitian inner
product and V = 0. Then ∇ is of the form

dA = d+A,(3)

where A = Aidx
i and each Ai(x), x ∈M , is a skew-Hermitian (n× n)-

matrix. The Dirichlet-to-Neumann operator depends on A and we write
Λ2T
∂M = Λ2T

∂M ;A.

Corollary 1.2. Let dA and dB be two Hermitian connections on the
trivial bundle M × Cn over a fixed Riemannian manifold (M, g), and
suppose that ΛT∂M ;A = ΛT∂M ;B for T > maxx∈M dg(x, ∂M). Then, there

exists a smooth U : M → U(n) such that U |∂M = Id and

B = U−1dU + U−1AU.(4)

Note that if A and B satisfy (4), then U−1dAU = dB and, hence,
PB = U−1PAU , where Pi = d∗i di, i = A,B. Thus, if u solves the wave
equation for PB, then Uu solves it for PA. Hence, the above corollary
cannot be improved, that is, if U : M → U(n) satisfies U |∂M = Id and
(4) holds, then ΛT∂M ;A = ΛT∂M ;B for any T . In the context of the gauges

in Theorem 1.1, we have that φ is the identity and Φ(x, s) = (x, U(x)s),
where (x, s) ∈M × Cn.

The situation of the corollary is the one that appears in the litera-
ture. For the abelian case n = 1, the corollary in essentially proved in
[24] via the Boundary Control method. The Boundary Control method
was pioneered for the isotropic wave equation on a domain in [1] and
developed for manifolds in [2]. Note, however, that in [24] the boundary
spectral data is used, and therefore, the result does not give the sharp
time T .

In [17], the corollary is proved under the further assumptions that
M is a two dimensional domain, g is the Euclidean metric tensor and
the connection is small in a suitable sense. The proof uses geometric
optics solutions and reduces the problem to an injectivity result about
the non-abelian Radon transform, which is of independent interest; see
[11] for the case of the Euclidean metric and compactly supported con-
nections. More recently, the injectivity result for the non-abelian Radon
transform was extended to any simply connected surface with strictly
convex boundary and no conjugate points [32] and to higher dimensions
and negative curvature [18].

There is a result due to G. Eskin [12] that implies Corollary 1.2
under the assumption that M is a domain in Euclidean space with
obstacles. Our proof seems, however, simpler. Eskin also proves a
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related theorem for the case of time-dependent Yang–Mills potentials in
[15]. A survey on these results, including amended statements, is given
in [13].

The proof of Corollary 1.2 follows directly from of our local recon-
struction procedure and well-known properties of the cut locus, so the
full power of Theorem 1.1 is not needed. As far as we are aware, there
are no previous results for this problem when the bundle is not trivial;
perhaps the closest in spirit is the result in [26] for the hyperbolic Dirac
equation. However, in this reference it is assumed that the data is given
on the whole boundary for an infinite time interval, whereas our main
result assumes only partial data and is sharp in terms of T . One of
the main contributions of the present paper is to develop a new method
to glue local reconstructions. The method allows us to reconstruct an
isomorphic copy of the structure (g,E,∇, V ) on the interior of M given
the data Λ2T

S corresponding to a sharp time T .
Let us mention that there is a recent stability result for Gel’fand’s

inverse interior spectral problem [5]. There the problem is studied for
compact Riemannian manifolds without boundary, and the result is
closer to Corollary 1.2 than Theorem 1.1 in the sense that the global
geometry needs to be considered only along the cut locus of suitable
semi-geodesic coordinates. As the proof in [5] uses also techniques from
the Boundary Control method, we conjecture that if dA and dB are as
in Corollary 1.2, then d1(O(B),O(A)) ≤ ω(d2(ΛT∂M ;A,Λ

T
∂M ;B)) where ω

is a modulus continuity of the same double logarithmic type as in [5],
d1 and d2 are suitable distance functions, and

O(A) = {U−1AU + U−1dU ; U : M → U(n), U |∂M = Id}

is the orbit of A under the gauge group.
As a final corollary, let us consider an elliptic analogue of Theo-

rem 1.1. This application is very much in the spirit of [8, Theorem
1.5] where an elliptic scalar valued equation was considered.

Let (M0, g0) be a compact, connected Riemannian manifold with
boundary, and let C = R ×M0 be the infinite cylinder with the prod-
uct metric g = dt2 + g0. Here dt2 is the Euclidean metric on R.
We consider a Hermitian vector bundle E0 → M0 with a Hermitian
connection ∇0, and define the operator P0 = ∇∗0∇0. Moreover, we
have an induced Hermitian bundle E with connection ∇ on C, that
is, E = π∗E0 and ∇ = π∗∇0, where π : C → M0 is the canonical
projection.

Let us denote by λ1 ≤ λ2 ≤ . . . the Dirichlet eigenvalues of the
operator P0. A point λ ∈ C \ [λ1,∞) is not in the continuous spectrum
of the operator ∇∗∇ = −∂2

t + P0 and, for any f ∈ C∞0 (∂C;E), the
equation

(−∂2
t + P0 − λ)u = 0 in C, u|∂C = f
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has a unique bounded solution u ∈ C∞(C;E). We define the elliptic
Dirichlet-to-Neumann map

Λ(λ)f = ∇νu|∂C , Λ(λ) : C∞0 (∂C;E)→ C∞(∂C;E).

Our application is the following recovery result:

Corollary 1.3. The Hermitian vector bundle E|∂C and the elliptic
Dirichlet-to-Neumann map Λ(λ) for a fixed λ ∈ C \ [λ1,∞) determine
the structure (M0, g0, E0,∇0).

Here, the structure is determined up to the natural gauge invariances
as in Theorem 1.1. It is possible to prove also a version of the corollary
assuming that λ is in the continuous spectrum of −∂2

t + P0 as long as
it avoids the eigenvalues λi. This extension can be carried out as in [8,
Theorem 1.7] but we do not include it here.

This paper is organized as follows. Section 1 is the introduction and
states the main results. In Section 2, we include preliminaries, mostly
having to do with the direct problem, finite speed of propagation, unique
continuation and approximate controllability. The results here are stan-
dard, but some details are provided to ensure the usual techniques fit
our setting. Section 3 contains the local reconstruction procedure near
the boundary. We first reconstruct the metric g and the core of the sec-
tion is the reconstruction of the Hermitian bundle and the connection.
The main local result is Theorem 3.11 and Corollary 1.2 is immediately
derived from this theorem and well-known properties of the cut locus.
Section 4 contains the global reconstruction procedure, explains in de-
tail how to build up the structure from local data and finishes the proof
of Theorem 1.1. In the final Section 5 we prove Corollary 1.3.
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CNRS.

2. Preliminaries

2.1. Local trivializations. The connection ∇ is of the form (3) on
a local trivialization of E. Let us derive local expressions for d∗A and
P = d∗AdA. To this end, we consider a section u : M → E and a E-
valued 1-form β = βidx

i supported on a local trivialization. As A is
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skew-hermitian,

〈Au, β〉L2(M ;E⊗T ∗M) =

∫
M
gij〈Aiu, βj〉E dx = −

∫
M
〈u, gijAiβj〉E dx.

We define (A, β) = gijAiβj and see that d∗A = d∗ − (A, ·). Thus,

Pu = d∗du+ d∗(Au)− (A, du)− (A,Au).

We recall that for a 1-form α in local coordinates

d∗α = −|g|−1/2 ∂

∂xi

(
|g|1/2gijαj

)
,

hence, d∗(Au) = (d∗A)u− (A, du), and

(5) Pu = d∗du− 2(A, du) + (d∗A)u− (A,Au).

This exposes the nature of P : the principal part is the usual Laplacian
and the first order term given by −2(A, du).

When working near the boundary ∂M , it is convenient to use bound-
ary normal coordinates, that is, semigeodesic coordinates adapted to the
boundary. Let Γ ⊂ ∂M be open. Then the semigeodesic coordinates
adapted to Γ are given by the map

(s, y) 7→ γ(s; y, ν), y ∈ Γ, s ∈ [0, σΓ(y)),(6)

where the cut distance σΓ : Γ→ (0,∞) is defined by

σΓ(y) = max{s ∈ (0, τM (y)]; dg(γ(s; y, ν),Γ) = s},(7)

τM (y) = sup{s ∈ (0,∞); γ(s; y, ν) ∈M int}.
Here γ(·;x, ξ) is the geodesic with the initial data (x, ξ) ∈ TM . We
recall that ν is the interior unit normal on ∂M , and define

MΓ = {γ(s; y, ν); y ∈ Γ, s ∈ [0, σΓ(y))}.(8)

Then a point x ∈ MΓ is represented in the coordinates (6) by (s, y),
where s is the distance dg(x,Γ) and y is the unique closest point to x

in Γ. Moreover, g has the form ds2 + hjk(s, y)dyjdyk and the principal
part of P is

−∂2
s − hjk(s, y)∂yj∂yk .(9)

2.2. The direct problem. Let us consider the initial-boundary value
problem

(∂2
t + P + V )u(t, x) = F, (0, T )×M,(10)

u|(0,T )×∂M = f, (0, T )× ∂M,

u|t=0 = ψ, ∂tu|t=0 = φ, in M,

where T > 0. When f = 0 we have the energy estimate

‖u(t)‖H1
0 (M ;E) + ‖∂tu(t)‖L2(M ;E)(11)

≤ C(‖ψ‖H1
0 (M ;E) + ‖φ‖L2(M ;E) + ‖F‖L2((0,t)×M ;E)),
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for all t ∈ (0, T ). For a proof in the scalar valued case, we refer to
[16, Section 7.2]. The proof is analogous in the vector valued case
and we omit it. We have also higher regularity results under suitable
compatibility conditions. In what follows, we need only the following
estimate

‖u‖Hm((0,T )×M ;E) ≤ C(‖φ‖Hm−1(M ;E) + ‖F‖Hm−1((0,T )×M ;E)),(12)

where m ≥ 1, f and ψ vanish, F is compactly supported in the time
interval (0, T ) (but not necessarily in space), and φ is compactly sup-
ported in M int, see, e.g., [16]. We can extend f ∈ C∞0 ((0,∞)× ∂M ;E)
as a smooth function on the whole domain (0,∞)×M and substract it
from u. By using (12) we see that the solution of (2) is smooth for such
sources f .

We need a sharp regularity result for the Neumann trace. The result
is due to Lasiecka, Lions and Triggiani in the scalar valued case [27].
The proof in the present setting is analogous but we give it for the
convenience of the reader. We will use the following identity

〈∇∗u, v〉L2(M ;E) − 〈u,∇v〉L2(M ;E⊗T ∗M)(13)

= 〈d∗u, v〉L2(M ;E) − 〈u, dv〉L2(M ;E⊗T ∗M) =

∫
∂M
〈iνu, v〉E dS,

where u ∈ C∞(M ;E ⊗ T ∗M), v ∈ C∞(M ;E), and dS is the Riemann-
ian volume of (∂M, g). This follows from [34, Prop. 2.9.1] since the
principal symbol of ∇ coincides with the principal symbol of d.

Theorem 2.1. Suppose that F , f and ψ vanish and let φ ∈ L2(M ;E).
Then the solution u of (10) satisfies ∇νu ∈ L2((0, T )× ∂M ;E).

Proof. We will first suppose that φ ∈ C∞0 (M ;E). Then u is smooth
by (12). We extend ν as a smooth vector field on the whole domain M ,
and denote this extension still by ν. We have

〈Pu,∇νu〉L2((0,T )×M ;E)

= 〈∇u,∇∇νu〉L2((0,T )×M ;E⊗T ∗M) +

∫ T

0

∫
∂M
|∇νu|2E dS.

Here |u|2E = 〈u, u〉E . In local coordinates, the principal part of both

〈∇ju,∇k∇νu〉E g
jk and

1

2
ν(〈∇ju,∇ku〉E g

jk)

is 〈∂ju, νp∂p∂ku〉E g
jk. Thus,

〈∇u,∇∇νu〉L2((0,T )×M ;E⊗T ∗M) =
1

2

∫ T

0

∫
M
ν(〈∇ju,∇ku〉E g

jk)dx+R,
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where the remainder term R satisfies |R| ≤ C ‖u‖2H1((0,T )×M ;E). More-
over,∫ T

0

∫
M
ν(〈∇ju,∇ku〉E g

jk)dx = −
∫ T

0

∫
M

(div ν) 〈∇ju,∇ku〉E g
jkdx

−
∫ T

0

∫
∂M
〈∇ju,∇ku〉E g

jkdS.

As u vanishes on the boundary, we have in the boundary normal
coordinates (s, y) ∈ [0, ε)× ∂M that

〈∇ju,∇ku〉E g
jk = |∂su|2E = |∇νu|2E .

Hence,

〈Pu,∇νu〉L2((0,T )×M ;E) =
1

2
‖∇νu‖2L2((0,T )×∂M ;E) +R,(14)

where the remainder term R satisfies |R| ≤ C ‖u‖2H1((0,T )×M ;E).

Analogously〈
∂2
t u,∇νu

〉
L2((0,T )×M ;E)

= −1

2

∫ T

0

∫
M
ν 〈∂tu, ∂tu〉E dx+

[∫
M
〈∂tu,∇νu〉E dx

]t=T
t=0

,

and ∫ T

0

∫
M
ν 〈∂tu, ∂tu〉E dx = −

∫ T

0

∫
M

(div ν) 〈∂tu, ∂tu〉E dx

−
∫ T

0

∫
∂M
〈∂tu, ∂tu〉E dx,

where the second term on the right-hand side is zero since u = 0 on
∂M . Hence,

|
〈
∂2
t u,∇νu

〉
L2((0,T )×M ;E)

| ≤ C ‖u‖2H1((0,T )×M ;E)(15)

+ C max
t=0,T

(‖u(t)‖2H1
0 (M ;E) + ‖∂tu(t)‖2L2(M ;E)).

Clearly

| 〈V u,∇νu〉L2((0,T )×M ;E) | ≤ C ‖u‖
2
H1((0,T )×M ;E) .(16)

Combining (14)–(16) with the energy estimate (11), we get

‖∇νu‖2L2((0,T )×∂M ;E) ≤ C ‖φ‖
2
L2(M ;E) .

The claim follows since C∞0 (M ;E) is dense in L2(M ;E). q.e.d.

We will next discuss how (10) can be solved for non-smooth φ that
are supported in the interior of M . Let K ⊂ M int be compact and
choose χ ∈ C∞0 (M) such that χ = 1 near K. Define first the map

W : Hm−1
0 ((0, T )×M ;E)→ Hm

0 (M ;E), WF = χu(T ),



466 Y. KURYLEV, L. OKSANEN & G. P. PATERNAIN

where u solves (10) with f = 0, ψ = 0 and φ = 0. For φ ∈ C∞0 (M ;E)
satisfying supp(φ) ⊂ K it holds that

〈WF, φ〉L2(M ;E) = 〈F, v〉L2((0,T )×M ;E) ,

where v is the solution of

(∂2
t + P + V )v(t, x) = 0, (0, T )×M,(17)

v|(0,T )×∂M = 0, (0, T )× ∂M,

v|t=T = 0, ∂tv|t=T = −φ, in M.

Then the adjoint of W, restricted on the subspace

Ḣ−m(K;E) = {φ ∈ H−m(M ;E); supp(φ) ⊂ K}

is the unique continuous extension

Ḣ−m(K;E)→ H−m+1((0, T )×M ;E),

of the map solving (17) for smooth φ. We may reverse time to get the

solution u of (10) with φ ∈ Ḣ−m(K;E) and F , f and ψ vanishing.
Let us now consider the traces of such a solution u. As the principal

part of P + V is of the form (9) in the boundary normal coordinates
(s, y) ∈ [0, ε)×∂M , we may repeat the proof of [21, Th. B.2.9] without
any changes in the present, vector valued setting. This implies that u

is in H
loc
(µ,σ)((0, T )× (0, ε)×Γ;E) where µ+σ ≤ −m+ 1 and Γ ⊂ ∂M is

a coordinate neighbourhood. Taking now large µ ∈ R and small σ ∈ R,
we may apply [21, Th. B.2.7] to see that there is m′ ∈ R such that
that the maps s 7→ u(·, s, ·) and s 7→ ∇νu(·, s, ·) are continuous with

values in H−m
′
((0, T )× Γ;E). In particular, the traces u|(0,T )×∂M and

∇νu|(0,T )×∂M are well-defined for the solution u of the wave equation

(10) with φ ∈ Ḣ−m(K;E) and F , f and ψ vanishing.

2.3. Finite speed of propagation, unique continuation and ap-
proximate controllability. Equation (2) has the following finite speed
of propagation property:

Theorem 2.2. Let T > 0, U ⊂M be open and define the cone

C = {(t, x) ∈ (0, T )×M ; dg(x, U) < T − t}.

Suppose that f ∈ C∞0 ((0, T )× ∂M ;E) vanishes in the intersection

C ∩ ((0, T )× ∂M).

Then the solution u of (2) vanishes in C. In particular, if Γ ⊂ ∂M
is open, r ∈ (0, T ), and supp(f) ⊂ (T − r, T ) × Γ, then supp(u(T )) is
contained in the domain of influence

M(Γ, r) = {x ∈M ; dg(x,Γ) ≤ r}.
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We refer to [22, Lemma 4.1] for a proof in the scalar valued case.
The proof in the present setting is analogous and we omit it.

The operator P +V is of principally scalar form, and the local unique
continuation result [9] can be applied. The local result implies the
following result due to Eller and Toundykov [10] that is analogous to
the semi-global Holmgren theorem.

Theorem 2.3. Let T > 0 and let Γ ⊂ ∂M be open. Let s ∈ R, and
suppose that u ∈ Hs((0, 2T )×M ;E) satisfies (∂2

t + P + V )u = 0 and

u|(0,2T )×Γ = 0, ∇νu|(0,2T )×Γ = 0.

Then u(T, x) = 0 whenever x ∈M(Γ, T )int.

Let us denote Wf = u(T ), where u is the solution of (2). The formal
adjoint of W is W ∗φ = ∇νv|(0,T )×∂M , where v is the solution of (17).
Indeed,

0 =
〈
(∂2
t + P + V )u, v

〉
L2((0,T )×M ;E)

−
〈
u, (∂2

t + P + V )v
〉
L2((0,T )×M ;E)

=
[
〈∂tu, v〉L2(M ;E) − 〈u, ∂tv〉L2(M ;E)

]t=T
t=0

+ 〈∇νu, v〉L2((0,T )×∂M ;E) − 〈u,∇νv〉L2((0,T )×∂M ;E)

= 〈u(T ), φ〉L2(M ;E) − 〈f,∇νv〉L2((0,T )×∂M ;E) .

As discussed in the end of the previous section, for any m ∈ R and
compact K ⊂M int there is m′ ∈ R such that

W ∗ : Ḣ−m(K;E)→ H−m
′
((0, T )× ∂M ;E).(18)

For the purposes of the present paper, apart from the case m = 0
described in Theorem 2.1, the optimal value of m′ is irrelevant. We may
consider L2(K;E) as the subspace of L2(M ;E) consisting of functions

supported in K (i.e., Ḣ0(K;E)).
If Γ ⊂ ∂M is open and nonempty and r > 0, then the map

φ 7→ ∇νv|(0,r)×Γ : L2(M(Γ, r);E)→ L2((0, r)× Γ;E)

is injective by Theorem 2.3. A duality argument implies that the wave
equation (2) is approximately controllable in the sense of the lemma
below. This is well-known in the scalar valued case, see, e.g., [23]. The
proof in the present setting is analogous, however, we give it for the
convenience of the reader.

Lemma 2.4. Let Γ ⊂ ∂M be open and r > 0. Then

{Wf ; f ∈ C∞0 ((T − r, T )× Γ;E)}(19)

is dense in L2(M(Γ, r);E).
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Proof. By the finite speed of propagation, the set (19) is a subspace of
L2(M(Γ, r);E). It is enough to show that the orthogonal complement of
this subspace contains only the origin. Suppose that φ ∈ L2(M(Γ, r);E)
satisfies

(Wf, φ)L2(M ;E) = 0, f ∈ C∞0 ((T − r, T )× Γ;E).(20)

Recall that W ∗φ = ∇νv|(0,T )×∂M where v is the solution of (17). Hence,
(20) implies that ∇νv|(T−r,T )×Γ = 0. We extend v across the surface
t = T by using the odd reflection v(t, x) = −v(2T − t, x). Then the
extension satisfies the wave equation

(∂2
t + P + V )v(t, x) = 0, (0, 2T )×M,

v|(0,2T )×∂M = 0, (0, 2T )× ∂M,

v|t=T = 0, ∂tv|t=T = −φ, in M,

together with the additional boundary condition ∇νv|(T−r,T+r)×Γ = 0.
Theorem 2.3 implies that φ = 0. Here we used also the fact that the
boundary of M(Γ, r) is of measure zero [29]. q.e.d.

As described in the scalar valued case in Section 4.4 of [28], in order to
determine the cut distance σΓ from the restricted Dirichlet-to-Neumann
map, we need to use a perturbation argument that is based on a refined
version of approximate controllability and modified domains of influ-
ence. Let Γ ⊂ ∂M and h : Γ→ R, and define

M(Γ, h) = {x ∈M ; inf
y∈Γ

(dg(x, y)− h(y)) ≤ 0},

and denote for T > 0

B(Γ, h;T ) = {(t, y) ∈ (0, T )× Γ; T − h(y) < t}.

If r > 0 and h(y) = r, y ∈ Γ, then M(Γ, h) coincides with our earlier
definition of M(Γ, r). We denote by 1S the indicator function of a set
S ⊂M , that is, 1S(x) = 1 if x ∈ S and 1S(x) = 0 otherwise.

For the convenience of the reader, we give a proof of the following
lemma. An analogous lemma is stated in [28] without a proof.

Lemma 2.5. Let T > 0 and suppose that Γ ⊂ ∂M is open. Let
L ∈ N, let Γ` ⊂ Γ be open and let h` ∈ C(Γ̄`), ` = 1, . . . , L. We define

h =

L∑
`=1

h`1Γ` ,(21)

and suppose that h ≤ T pointwise. Then

{Wf ; f ∈ C∞0 (B(Γ, h;T );E)}(22)

is dense in L2(M(Γ, h);E).
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Proof. Let ε > 0. There is a simple function

hε(y) =

J∑
j=1

Tj1Γj (y),

where J ∈ N, Tj ∈ (0, T ) and Γj ⊂ Γ are open and disjoint, such that
h < hε + ε almost everywhere on Γ and hε < h on Γ̄, see, e.g., [29,
Lemma 4.2].

We show by induction on J that the density holds when h = hε. The
base case J = 1 follows from Lemma 2.4. We define h̃ε = hε − TJ1ΓJ ,

and use the shorthand notation M0 = M(Γ, h̃ε) and M1 = M(ΓJ , TJ).
Let ψ ∈ L2(M(Γ, hε);E). Note that M(Γ, hε) = M0 ∪ M1. By the
induction hypothesis there is a sequence of smooth functions (f0

k )∞k=1

supported in B(Γ, h̃ε;T ) such that

Wf0
k → 1M0ψ, k →∞.

Moreover, by Lemma 2.4 there is a sequence of smooth functions (f1
k )∞k=1

supported in B(ΓJ , TJ ;T ) such that

Wf1
k → 1M1(ψ − 1M0ψ), k →∞.

Thus, W (f0
k + f1

k )→ ψ. This proves that the density holds for hε.
Suppose now that ψ ∈ L2(M(Γ, h);E). We have shown that there is

a smooth function f supported in B(Γ, hε;T ) such that∥∥1M(Γ,hε)ψ −Wf
∥∥2

L2(M ;E)
< ε.

Thus,

‖ψ −Wf‖2L2(M ;E) < ε+

(∫
M(Γ,h)

|ψ|2Edx−
∫
M(Γ,hε)

|ψ|2Edx

)
.

The Riemannian volumes converge |M(Γ, hε)| → |M(Γ, h)| as ε → 0,
see [29, Lemma 4.3]. Thus, the claimed density holds. q.e.d.

3. Local reconstruction near the boundary

In this section, we show how to recover the coefficients of P + V ,
up to the gauge invariances, near the accessible part of the boundary
S given the map Λ2T

S . The main novelty is the recovery of the con-
nection and potential by using such sources f that Wf localizes near
a point in M . The basic idea of finding localized Wf given Λ2T

S is de-
scribed in Lemma 3.6, and the inner products appearing in this lemma
are shown to be determined by Λ2T

S in Corollary 3.2. The localiza-
tion technique is refined in Lemma 3.9, and the localized solutions are
then used to probe the connection and potential in the proof of Theo-
rem 3.11.
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3.1. Inner products. We begin by generalizing an integration by parts
technique due to Blagovestchenskii in the 1+1 dimensional scalar valued
case [4]. For a multidimensional scalar valued case this was first used
by Belishev [1].

Lemma 3.1. Let T > 0, let S ⊂ ∂M be open, and let f and h be
functions in C∞0 ((0, 2T )× S;E). Then

〈Wf,Wh〉L2(M ;E)

=
〈
f, JΛ2T

S h
〉
L2((0,2T )×S;E)

−
〈
f, (Λ2T

S )∗Jh
〉
L2((0,2T )×S;E)

,

where J is the integral operator in the time variable with the kernel
sgn(t− s)1L(t, s)/4. Here L = {(s, t) ∈ R2 : 0 ≤ t+ s ≤ 2T, t, s > 0}.

Proof. We write uf = u for the solution of (2) and define the function
w(t, s) = 〈uf (t), uh(s)〉L2(M ;E). We have

(∂2
t − ∂2

s )w(t, s) = 〈∂2
t u

f (t), uh(s)〉L2(M ;E) − 〈uf (t), ∂2
su

h(s)〉L2(M ;E)

= −〈∇∗∇uf (t), uh(s)〉L2(M ;E) + 〈uf (t),∇∗∇uh(s)〉L2(M ;E)

= −
∫
∂M
〈∇νuf (t), uh(s)〉E dS +

∫
∂M
〈uf (t),∇νuh(s)〉E dS

=

∫
∂M
〈f(t),Λ2T

S h(s)〉E dS −
∫
∂M
〈Λ2T
S f(t), h(s)〉E dS.

Since w(0, s) = w(t, 0) = ∂tw(0, s) = ∂sw(0, s) = 0 and w solves the
above 1+1 dimensional wave equation, the result follows by considering
w(T, T ). q.e.d.

Corollary 3.2. Let T > 0, S ⊂ ∂M be open. Then Λ2T
S determines

the inner products

〈Wf,Wh〉L2(M ;E) , f, h ∈ C∞0 ((0, 2T )× S;E).(23)

Moreover, Λ2T
S determines, for all (fj)

∞
j=1 ⊂ C∞0 ((0, 2T )× S;E), if the

sequence (Wfj)
∞
j=1 converges, in the strong or weak sense, in L2(M ;E).

Proof. We allow the metric tensor g to be a priori unknown on S.
However, Λ2T

S determines the distances dg(x, y), x, y ∈ S, see, e.g., [7,
Section 2.2], and these distances determine g on S. Thus, we can assume
without loss of generality that the Riemannian volume measure dS of
(S, g) is known, and Lemma 3.1 implies that Λ2T

S determines the inner
products (23).

For the second claim, we observe that the inner products (23) can
be used to determine if (Wfj)

∞
j=1 is a Cauchy sequence in L2(M ;E).

This allows us to determine if (Wfj)
∞
j=1 converges in the strong sense.

Moreover, using again (23) we can determine if (Wfj)
∞
j=1 is bounded in

L2(M ;E), and we may test the weak convergence analogously to [28,
Lemma 3]. q.e.d.
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3.2. Reconstruction of the metric tensor. Our reconstruction of
the metric tensor is based on the proof in [28]. The following lemma is
a variation of [28, Lemma 6]. We give a short proof for the convenience
of the reader.

Lemma 3.3. Let T > 0, s ∈ (0, T ], let Σ,Γ ⊂ ∂M be open and let
h : Γ → [0, T ]. Suppose that h is of form (21). Then the following are
equivalent:

(i) M(Σ, s) ⊂M(Γ, h).
(ii) For all f0 ∈ C∞0 (B(Σ, s;T );E) there is a sequence (fj)

∞
j=1 in

C∞0 (B(Γ, h;T );E) such that (W (f0 − fj))∞j=1 converges to zero in

L2(M ;E).

Proof. The implication from (i) to (ii) follows from the density of (22)
in L2(M(Γ, h);E). We will now show that (ii) implies (i). We denote

M0 = M(Σ, s), M1 = M(Γ, h),

S0 = B(Σ, s;T ), S1 = B(Γ, h;T ).

Let us assume that (i) does not hold. There is a nonempty open set
U ⊂ M0 such that U ∩M1 = ∅, see [28, Lemma 6]. By Lemma 2.4
there is a smooth function f0 supported in S0 such that

∫
U Wf0dx 6= 0.

However, by finite speed of propagation Wf |U = 0 for any f supported
in S1. Thus,

〈W (f0 − f), 1U 〉L2(M ;E) = 〈Wf0, 1U 〉L2(M ;E) 6= 0,

for all f supported in S1 and (ii) does not hold. q.e.d.

By Corollary 3.2 we can determine, given the restricted Dirichlet-to-
Neumann map Λ2T

S , whether the condition (ii) in Lemma 3.3 holds for
a function f0 and a sequence (fj)

∞
j=1, assuming that Σ,Γ ⊂ S.

Remark 3.4. Suppose for the moment that we weaken the sym-
metry assumptions by not requiring (1). Then the closest analogue of
the identity in Lemma 3.1 allows us to compute the inner products
〈ũ(T ),Wh〉L2(M ;E) where ũ is the solution of (2) with V replaced by its

formal adjoint V ∗. It seems to be difficult to use such inner products
to test for convergence as in the condition (ii). In the non-symmetric
scalar valued case [25], a global condition on the billiard flow of (M, g)
is assumed in order for the map

W : L2((0, T )× S)→ L2(M),

not only to have a dense range, but to be surjective. In this case, it
is easy to test for a variant of the condition (ii) where convergence in
the norm is replaced by weak convergence. In [28] a similar difficulty is
treated by imposing an asymptotic spectral condition of the type that
was first studied in [19].
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Let Γ ⊂ ∂M be open and let T > 0. We recall that the cut distance
σΓ is defined by (7), and define

σTΓ (y) = min(σΓ(y), T ), y ∈ Γ,(24)

MT
Γ = {γ(s; y, ν); y ∈ Γ, s ∈ [0, σTΓ (y))}.

Theorem 3.5. Let T > 0 and let Γ ⊂ ∂M be open. Then the
Riemannian manifold (Γ, g), the Hermitian vector bundle E|Γ and Λ2T

Γ

determine (MT
Γ , g).

Proof. By combining Corollary 3.2 and Lemmas 2.5 and 3.3 we can
determine the relation

{(Σ, s, h); M(Σ, s) ⊂M(Γ, h)},(25)

for any open Σ ⊂ Γ, s ∈ (0, T ] and a function h of form (21). This
relation determines σTΓ and the Riemannian manifold (MT

Γ , g) by using
the purely geometric method described in Sections 4.2–4.4 of [28]. Note
that the relations with M(Γ, h) replaced by the union of two domains
of influence are obtained by using piecewise continuous functions h as
in [28, Lem. 6], and that also the two limiting arguments in the proof
of [28, Prop. 2] are needed. q.e.d.

3.3. Reconstruction of the connection. Our reconstruction method
is based on a use of sequences of sources (fj)

∞
j=1 such that supp(Wfj)

converges to a point.

Lemma 3.6. Let Γ1,Γ2 ⊂ ∂M be open and r1, r2 > 0. Suppose that
for a sequence (fj)

∞
j=1 ⊂ C∞0 ((T −r1, T )×Γ1;E) the sequence (Wfj)

∞
j=1

converges weakly to a function φ ∈ L2(M ;E), and that

〈Wfj ,Wh〉L2(M ;E) → 0, h ∈ C∞0 ((T − r2, T )× Γ2;E).

Then supp(φ) ⊂M(Γ1, r1) \M(Γ2, r2)int.

Proof. The lemma follows immediately from the density of the set
(19). q.e.d.

Lemma 3.7. Let T > 0, Γ ⊂ ∂M be open, and let x ∈ Γ ∪M int

satisfy dg(x,Γ) < T . Then there are functions h` ∈ C∞0 ((0, 2T )× Γ;E)
such that Wh`(x), ` = 1, . . . , n, form an orthonormal basis of the fiber
Ex of E at x.

Proof. If x ∈ Γ, then Wh(x) = h(T, x) and the claim clearly holds in
this case. Suppose now that x ∈ M int. It is enough to show that the
fiber Ex is spanned by the vectors

Wh(x), h ∈ C∞0 ((0, T )× Γ;E).
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In order to show this it is enough to show that if e ∈ Ex and

〈e,Wh(x)〉E = 0, h ∈ C∞0 ((0, T )× Γ;E),(26)

then e = 0.
We recall that the adjoint of W is given by W ∗φ = ∇νv|(0,T )×∂M ,

where v is the solution of (17), and that the continuity (18) holds. We
choose φ = eδx. The restriction W ∗φ|(0,T )×Γ = ∇νv|(0,T )×Γ vanishes
by (26), and v|(0,T )×Γ vanishes by the boundary condition in (17). We
extend v on the time interval (0, 2T ) by the odd reflection with respect
to t = T , and denote the extension still by v. The extension satisfies
(∂2
t + P + V )v = 0 on (0, 2T ) ×M . Theorem 2.3 implies that e = 0.

q.e.d.

Lemma 3.8. Let Γ ⊂ ∂M be open, let T > 0, and let e : M → E
be a section of E. Let U ⊂ M int ∪ Γ be open in M and suppose also
that U ⊂ M(Γ, T ). Suppose, furthermore, that x 7→ 〈e(x),Wh(x)〉E is
smooth on U for all h ∈ C∞0 ((0, 2T )× Γ;E). Then e is smooth on U .

Proof. Let x ∈ U , and let us choose h`, ` = 1, . . . , n, as in Lemma 3.7.
Then the functions Wh` form a smooth frame near x, and the represen-
tation of e in this frame is smooth. q.e.d.

We recall that |X| denotes the Riemannian volume of a measurable
set X ⊂M , and that the set MΓ is defined by (8).

Lemma 3.9. Let Γ ⊂ ∂M be open. Let x ∈ MΓ, and let y ∈ Γ and
s ∈ [0, σΓ(y)) satisfy γ(s; y, ν) = x. Define sk = s+ 1/k,

Yk = {ỹ ∈ Γ; dg(ỹ, y) < 1/k}, Xk = M(Yk, sk) \M(Γ, s).

Suppose that a double sequence Φ = (fjk)
∞
j,k=1 of functions in the space

C∞0 ((T − sk, T )× Yk;E) satisfies the following

(i) For each k = 1, 2, . . . , the sequence (Wfjk)
∞
j=1 converges weakly

in L2(M ;E) to a function supported in Xk.
(ii) There is C > 0 such that

‖Wfjk‖L2(M ;E) ≤ C|Xk|−1/2, j, k = 1, 2, . . . .

(iii) The limit limk→∞ limj→∞ 〈Wfjk,Wh〉L2(M ;E) exists for any func-

tion h in the space C∞0 ((0, 2T )× Γ;E).

Then there is a vector e(x; Φ) ∈ Ex that depends on x and Φ such that

lim
k→∞

lim
j→∞

〈Wfjk, φ〉L2(M ;E) = 〈e(x; Φ), φ(x)〉E , φ ∈ C∞(M ;E).(27)

Note that we allow here the case x ∈ Γ, i.e., s = 0.

Proof. By Lemma 3.7 there are h` such that Wh`(x), ` = 1, . . . , n,
form an orthonormal basis of Ex. Let us write b` = Wh` and denote
the weak limit of (Wfjk)

∞
j=1 by uk. We choose local coordinates x̃ in a

neighborhood U ⊂ M of x, and suppose that k is large enough so that
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Xk ⊂ U and that the sections b`(x̃) form a basis in Ex̃ for all x̃ ∈ Xk.
Let φ ∈ C∞(M ;E) and write φ(x̃) = c`b`(x̃) + (xp − x̃p)ψp(x̃), where

c` ∈ C and ψp ∈ C∞(U ;E), p = 1, . . . ,m. Then

〈uk, φ〉L2(M ;E) = c` 〈uk, b`〉L2(M ;E) +Rk,(28)

where the remainder term satisfies

|Rk| ≤ m max
p=1,...,m

‖ψp‖C(U) diam(Xk)

∫
Xk

|uk(x̃)|Edx̃

≤ m max
p=1,...,m

‖ψp‖C(U) diam(Xk) ‖uk‖L2(M ;E) |Xk|1/2.

Note that diam(Xk) → 0 since Xk ⊃ Xk+1 and Xk → x as k → ∞.
Thus, (ii) implies that Rk → 0. By (iii) the limits

a` = lim
k→∞

〈uk, b`〉L2(M ;E) , ` = 1, . . . , n,

exist. We set e = a`b`(x). Then

lim
k→∞

〈uk, φ〉L2(M ;E) = c` lim
k→∞

〈uk, b`〉L2(M ;E) =

n∑
`=1

a`c` = 〈e, φ(x)〉E .
q.e.d.

Lemma 3.10. Let Γ ⊂ ∂M be open, let x ∈MΓ and let e ∈ Ex. Then
there is a double sequence Φ = (fjk)

∞
j,k=1 that satisfies the conditions of

Lemma 3.9, and furthermore, e(x; Φ) = e where e(x; Φ) is as in (27).

Proof. Let ẽ ∈ C∞(M ;E) satisfy ẽ(x) = e. By Lemma 2.4 there is a
double sequence Φ = (fjk)

∞
j,k=1 of functions in C∞0 ((T − sk, T )× Yk;E)

such that (Wfjk)
∞
j=1 converges to the function uk = |Xk|−11Xk ẽ. We

recall that 1Xk is the indicator function of the set Xk and |Xk| is its

volume. Moreover, uk satisfies ‖uk‖L2(M ;E) ≤ |Xk|−1/2 ‖ẽ‖L∞(M ;E) and,

for a function φ ∈ C∞(M ;E),

〈uk, φ〉L2(M ;E) =
1

|Xk|

∫
Xk

〈ẽ(x̃), φ(x̃)〉E dx̃→ 〈e, φ(x)〉E ,

where x̃ are local coordinates on Xk. q.e.d.

Theorem 3.11. Let T > 0, let Γ ⊂ ∂M be open and suppose that the
vector bundle E|Γ is trivial. Then the Riemannian manifold (MT

Γ , g),
where MT

Γ is defined in (24), the Hermitian vector bundle E|Γ and the
restricted Dirichlet-to-Neumann map Λ2T

Γ determine the Hermitian vec-
tor bundle E|MT

Γ
, the connection ∇ and the potential V on E|MT

Γ
.

Proof. We choose for each x ∈MT
Γ a double sequence Φx = (fxjk)

∞
j,k=1

satisfying conditions (i)–(iii) of Lemma 3.9. Observe that, by combin-
ing Corollary 3.2 and Lemma 3.6, we can determine if condition (i) of
Lemma 3.9 is valid, while conditions (ii) and (iii) can be verified by using
Lemma 3.1 alone. We use Lemma 3.1 once again to compute the inner
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products 〈e(x; Φx),Wh(x)〉E for h ∈ C∞0 ((0, 2T ) × Γ;E). Next we will
impose some further conditions on the choice of the double sequences
Φx.

First, we choose the double sequences Φx, x ∈ MT
Γ so that the func-

tions

x 7→ 〈e(x; Φx),Wh(x)〉E , h ∈ C∞0 ((0, 2T )× Γ;E),(29)

are smooth in MT
Γ . Then Lemma 3.8 implies that e(x) = e(x; Φx) is a

smooth section of the vector bundle E|MT
Γ

.

Second, we pick an orthonormal frame B = (b`)
n
`=1 of E|Γ and choose

double sequences Φx
` = (fxjk,`)

∞
j,k=1, ` = 1, . . . , n, so that the correspond-

ing smooth sections e`(x) = e(x; Φx
` ) satisfy,

〈e`(x),Wh(x)〉E = 〈b`(x), h(T, x)〉E , x ∈ Γ, h ∈ C∞0 ((0, 2T )× Γ;E).

This condition implies that e` = b` on Γ.
Our next goal is to choose Φx

` so that the corresponding sections e`
form an orthonormal frame also on the set M0 = MT

Γ ∩M int. To this
end, we observe that the vector bundle E|MT

Γ
is trivial. This follows from

[20, Th. 4.2.4], since the identity map on MT
Γ is smoothly homotopic

with the map (s, y) 7→ (0, y) in coordinates (6).
Let x ∈ M0, and choose a cut off function χ ∈ C∞0 (M0) such that

χ(x) = 1. As the functions (29) and the geometry (MT
Γ , g) are known,

we can compute the limits

lim
k→∞

lim
j→∞

〈
χeκ,Wfxjk,`

〉
L2(M ;E)

= 〈eκ(x), e`(x)〉E , κ, ` = 1, . . . , n,

(30)

where the equality follows from Lemma 3.9. Hence, we can choose the
double sequences Φx

` so that E = (e`)
n
`=1 forms an orthonormal frame on

M0. Note that Lemma 3.10 implies that for any frame on M0 there are
double sequences Φx

` , ` = 1, . . . , n, x ∈M0, such that the corresponding
functions e` coincide with the frame.

Now (x, a) 7→ a`e`(x), where a = (a`)n`=1 ∈ Cn and x ∈ MT
Γ , is a

trivialization of E|MT
Γ

, and the Hermitian inner product is given by〈
a`e`(x), cκeκ(x)

〉
E

=
n∑
`=1

a`c`, a, c ∈ Cn, x ∈MT
Γ ,

on this trivialization.
Let us write uh = u for the solution of (2) with f = h. The functions

(29) determine the representation of

Wh(x) = uh(t, x), t = T, x ∈M0, h ∈ C∞0 ((0, 2T )× Γ;E),(31)

in the frame E . To avoid cumbersome notation, we will not make explicit
distinction between the functions (31) and their representation until
Section 4.2.
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Observe that the wave equation (2) is translation invariant in time

in the sense that uh(t − s, ·) = uh̃(t, ·) where h̃(t, ·) = h(t − s, ·) and
s ≥ 0. Thus, the functions (31) are determined also for t ∈ (0, T ). We
differentiate twice in time and obtain the functions

(P + V )uh(t, x), t ∈ (0, T ), x ∈M0, h ∈ C∞0 ((0, 2T )× Γ;E).

Let φ ∈ C∞0 (M0;E). We can compute the inner products〈
(P + V )uh(T ), φ

〉
L2(M ;E)

= 〈Wh, (P + V )φ〉L2(M ;E) ,

for h ∈ C∞0 ((0, 2T )×Γ;E). As the functions (31) are known and dense
in L2(M0;E), we can determine (P + V )φ on M0.

Let x ∈ M0, ` = 1, . . . , n and k = 1, . . . ,m. We choose φ = φk` such

that φ(x) = 0 and ∂jφ(x) = δkj e` for j = 1, . . . ,m. As the metric tensor
is known near x, we can compute d∗dφ at x. Thus, we can recover the
first order term in (P + V )φ at x. By (5), this is

−2(A, dφ)(x) = −2gik(x)Aie`(x),

and therefore, A can be determined. Finally, A and g determine P , and
we can determine V by V = P + V − P . q.e.d.

3.4. Reconstruction of ∇ when (M, g) is known and E is triv-
ial. We will show next that Corollary 1.2 follows from the above local
reconstruction step, that is, from the proof of Theorem 3.11.

Corollary 3.12. Suppose that (M, g) is known, E is the trivial bun-
dle M × Cn, and that T > maxx∈M dg(x, ∂M). Let dA be a Hermitian
connection on E. Then the Dirichlet-to-Neumann map Λ2T

∂M ;A deter-
mines the orbit

O(A) = {U−1AU + U−1dU ; U : M → U(n), U |∂M = Id}.

Proof. Let b1, . . . , bn be the standard basis of Cn and let B be the
corresponding constant frame of E. Let E be the orthonormal frame of
E|M∂M

chosen in the proof of Theorem 3.11. We recall that E can be
enforced to satisfy E = B on ∂M .

We have M∂M = M \N where the cut locus N is of measure zero, see,
e.g., [6]. In particular, M∂M is dense in M . We know the representation
of the functions Wh, h ∈ C∞0 ((0, 2T )×∂M ;E), in the frame E , see (31)
above. Let us impose the further condition on the choice of Φx

` in the
proof of Theorem 3.11 that the representation of Wh(x) in the frame
E is smooth in M = M∂M for all h ∈ C∞0 ((0, 2T ) × ∂M ;E). Then
Lemma 3.8 implies that E gives a smooth frame for the whole vector
bundle E.

There is a smooth transition function U : M → U(n) between the two
frames E and B, and U = Id on ∂M . Moreover, we can reconstruct the
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representation of dA in the frame E . Let us denote the representation
by d

Ã
. Then

Ã = U−1AU + U−1dU,

and, hence, we can determine the orbit O(Ã) = O(A). q.e.d.

Suppose now that dA and dB are two Hermitian connections on E,
and that the assumptions of Corollary 1.2 are satisfied. Then the above
corollary implies that O(A) = O(B), and we have shown Corollary 1.2.

4. Global reconstruction

In this section, we show how to recover globally the coefficient of
P + V , up to the gauge invariances, by iterating the local reconstruc-
tion step and by continuing the data Λ2T

S inside the region that we have
already reconstructed. We will begin by giving a brief outline of the iter-
ative scheme. The data Λ2T

S can be viewed as a model of measurements
with sources and receivers on Γ. To initialize the iteration, we choose a
small ball B0 in the region where the coefficients of P + V are already
known from the local reconstruction step in the previous section. Then
we use unique continuation to recover data modeling measurements with
sources on Γ and receivers on B0, and also with both sources and re-
ceivers on B0. Then we repeat the local reconstruction step for the data
with sources and receivers on B0, and recover the coefficients of P + V
on a larger ball B containing B0. Using unique continuation again, we
recover the data with sources and receivers on a small ball B1 in B, and
also the data with sources on Γ and the receivers on B1. Iterating this
alternating procedure, we can cover M with small patches where the
coefficients of P + V are known. The data with sources on Γ and the
receivers on B0, B1, . . . , is then used to glue the patches together.

4.1. Continuation of the data. For T > 0 and open sets B ⊂M and
Γ ⊂ ∂M , we define the map

LTΓ,Bf = u|(0,T )×B, f ∈ C∞0 ((0, T )× Γ;E),

where u is the solution of (2). Moreover, for open B ⊂M int, we define
the map

LTBF = u|(0,T )×B, F ∈ C∞0 ((0, T )×B;E),

where u is the solution of

(∂2
t + P + V )u(t, x) = F, (0,∞)×M,(32)

u|(0,∞)×∂M = 0,

u|t=0 = ∂tu|t=0 = 0.

We write B(x, ε) = {y ∈M ; dg(y, x) < ε} for x ∈M and ε > 0.
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t

ν

2T

2T − t0

x

Figure 1. A schematic of the unique continuation argu-
ment in the proof of Lemma 4.1. The origin represents
the set Γ, and the gray area is the cylinder (0, 2T−t0)×B.
In order to recover u on {2T − t0} ×B, data (u,∇νu) is
needed on the cylinder I × Γ where I = (2T − 2t0, 2T ).
We may translate the interval I to cover the whole gray
cylinder.

Lemma 4.1. Let T > 0, Γ ⊂ ∂M be open and let x ∈ MT
Γ . Define

s = dg(x,Γ), let ε ∈ (0, T − s) and define

B = B(x, ε), t0 = s+ ε.

Then Λ2T
Γ and the structure (g,E,∇, V ) on MT

Γ determine the map

L2T−t0
Γ,B∩MT

Γ

. Furthermore, if B ⊂MT
Γ ∩M int then they determine also the

map L
2(T−t0)
B .

Proof. Let f ∈ C∞0 ((0, 2T )× Γ;E). We will next use unique contin-

uation to determine L2T−t0
Γ,B∩MT

Γ

f given P + V on MT
Γ and Λ2T

Γ f . Let us

first extend the solution u of (2) by 0 to (−∞, 0)×M . We denote the

distance function of (MT
Γ , g) by d̃g and observe that

d̃g(x,Γ) = dg(x,Γ), x ∈MT
Γ ,

by the definition of MΓ, see (8). Let ũ be a solution of

(∂2
t + P + V )ũ = 0, (−∞, 2T )×MT

Γ ,(33)

satisfying the boundary conditions

ũ = f and ∇ν ũ = Λ2T
Γ f on (−∞, 2T )× Γ.(34)
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Given P + V on MT
Γ and Λ2T

Γ f , we can determine the set of functions

Uf = {ũ ∈ C∞((−∞, 2T )×MT
Γ ); (33) and (34) hold}.

Let ũ ∈ Uf , and apply Theorem 2.3 on the function w = ũ− u with M

replaced by MT
Γ and with suitable translations in the time variable, see

Figure 1. This implies that ũ = u on (0, 2T − t0) × (B ∩MT
Γ ), and we

have shown the first claim.
Let us now assume that B ⊂MT

Γ ∩M int. We will reconstruct the map

L
2(T−t0)
B in two steps that we outline before giving a detailed proof. Note

that L2T−t0
Γ,B can be interpreted as data with sources on Γ and receivers

on B. We will first transpose L2T−t0
Γ,B and obtain data with sources on

B and receivers on Γ. Then we will use unique continuation to obtain

data with both sources and receivers on B, that is, the map L
2(T−t0)
B .

By taking the adjoint of L2T−t0
Γ,B and conjugating it with the operator

reversing the time on the interval (0, 2T − t0), we get the map

F 7→ ∇νu : C∞0 ((0, 2T − t0)×B;E)→ C∞((0, 2T − t0)× Γ;E),(35)

where u is the solution of (32). We extend u by 0 to (−∞, 0)×M , and
let ũ be a solution of

(∂2
t + P + V )ũ = F, (0,∞)×MT

Γ ,

satisfying ũ = 0 and ∇ν ũ = ∇νu on (−∞, 2T − t0)×Γ. Then w = ũ−u
satisfies conditions of Theorem 2.3 with M again replaced by MT

Γ , and
therefore, ũ = u on (0, 2T − t0− t0)×B. This implies the second claim.

q.e.d.

We denote by SM the unit sphere bundle of M . Similarly to σΓ and
σTΓ , see (7) and (24), we define for x ∈M int, ξ ∈ SxM and T > 0,

σx(ξ) = sup{t ∈ (0, τx(ξ)]; dg(γ(t;x, ξ), x) = t},
τx(ξ) = sup{t ∈ (0,∞); γ(t;x, ξ) ∈M int},

and σTx (ξ) = min(σx(ξ), T ). Moreover, we define

MT
x = {γ(t;x, ξ); ξ ∈ SxM, t ∈ [0, σTx (ξ))}.

Note that the injectivity radius injx at a point x ∈M int satisfies

injx = min
ξ∈SxM

σx(ξ).

Lemma 4.2. Let T > 0, x ∈M int, ε ∈ (0, injx), and set B = B(x, ε).
Then L2T

B and the structure (g,E,∇, V ) on B determine the structure
(g,E,∇, V ) on MT+ε

x .
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Proof. We define M̃ = M \B and consider the wave equation

(∂2
t + P + V )ũ = 0, (0,∞)× M̃,(36)

ũ|(0,∞)×∂B = f, ũ|(0,∞)×∂M = 0,

ũ|t=0 = ∂tũ|t=0 = 0.

We will show that L2T
B determines the restricted Dirichlet-to-Neumann

map Λ2T
∂B of M̃ , that is, the map

Λ2T
∂Bf = ∇ν ũ|(0,2T )×∂B, f ∈ C∞0 ((0, 2T )× ∂B;E),

where ũ is the solution of (36). Let f ∈ C∞0 ((0, 2T )×∂B;E) and extend
the solution of (36) smoothly into (0,∞)×B keeping the notation ũ for

the extension. Then ũ satisfies (32) with F̃ = (∂2
t + P + V )ũ, and F̃

belongs to

C = {F ∈ C∞((0,∞)×M ;E); supp(F ) ⊂ (0,∞]×B}.

Observe that L2T
B has a unique extension as an operator on

L2((0, 2T )×B;E). By using this extension, we can determine the set

Ff = {F ∈ C; L2T
B F |(0,2T )×∂B = f}.

Since the solution of (36) is unique, it hods for F ∈ Ff that

∇νL2T
B F |(0,2T )×∂B = ∇ν ũ|(0,2T )×∂B.

We have shown that the map L2T
B determines the map Λ2T

∂B.

We denote by σ∂B the cut distance on the manifold M̃ defined anal-
ogously to (7) and define σT∂B(y) = max(σ∂B(y), T ), y ∈ ∂B. Note that

the vector bundle E|∂B is trivial, in fact, E is trivial over MT
x due to

its contractibility via the radial geodesics emanating from x. We apply
Theorems 3.5 and 3.11 with M = M̃ and Γ = ∂B. This gives us the
structure (g,E,∇, V ) on

M̃T
∂B = {γ(s; y, ν); y ∈ ∂B, s ∈ [0, σT∂B(y))}.

Note that σx(ξ) = σ∂B(y) + ε, where y = γ(ε;x, ξ), and therefore,

MT+ε
x = B ∪ M̃T

∂B. q.e.d.

Lemma 4.3. Let T0, ε0 > 0, x0 ∈ M int, and define B0 = B(x0, ε0)
and M0 = MT0

x0
. Let x ∈ M0 \ B0 and define s = dg(x, x0). Let T > 0

and let ε ∈ (0, injx) satisfy

ε < dg(x, ∂M0), ε < T − s+ ε0.

Define B1 = B(x, ε) and t1 = s + ε − ε0. Then L2T
B0

and the structure

(g,E,∇, V ) on M0 determine the map L
2(T−t1)
B1

. Furthermore, for open

Γ ⊂ ∂M , L2T
Γ,B0

and the structure (g,E,∇, V ) on M0 determine the map

L2T−t1
Γ,B1

.
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Proof. By the proof of Lemma 4.2, L2T
B0

determines Λ2T
∂B0

. It holds

that dg(x, ∂B0) = s− ε0, and Lemma 4.1 shows that Λ2T
∂B and the struc-

ture (g,E,∇, V ) on M0 determine L
2(T−t1)
B1

. Finally, L2T
Γ,B0

determines

L2T−t1
Γ,B1

by a unique continuation argument similar to that in the proof
of Lemma 4.1. q.e.d.

4.2. Gluing local reconstructions in the interior. In this section,
we show the following theorem:

Theorem 4.4. Let S ⊂ ∂M be open and suppose that

T > max
x∈M

dg(x,S).(37)

Then the Hermitian vector bundle E|S and the restricted Dirichlet-to-
Neumann operator Λ2T

S determine the smooth manifold M int and the
structure (g,E,∇, V ) on M int.

Up to this point we have avoided writing all the isomorphisms ex-
plicitly, but in this section, the distinction between different representa-
tions is crucial. Let us choose an open cover GS of S consisting of small
enough sets Γ ⊂ S so that each Γ is a coordinate neighborhood in ∂M
and that the vector bundle E|Γ is trivial. Then we may choose an open
set YΓ ⊂ Rm−1 and a unitary trivialization

E
φΓ//

��

YΓ × Cn

��
Γ

ψΓ

// YΓ

(38)

By a unitary trivialization we mean that the diagram (38) commutes,
φΓ is a smooth bijection that is linear in fibers, and that the Hermitian
structure is preserved, that is, φ∗Γ 〈·, ·〉Cn = 〈·, ·〉E .

Starting from the representation of Λ2T
Γ on the trivialization (38), the

local reconstruction method in Section 3 determines the cut distance
σTΓ : Γ → (0, T ), a metric tensor gΓ on XT

Γ , and a connection ∇Γ and
potential VΓ on XT

Γ × Cn, such that there is a unitary trivialization

E
Φ̃Γ //

��

XT
Γ × Cn

��
MT

Γ
Ψ̃Γ

// XT
Γ

(39)

satisfying g = Ψ̃∗ΓgΓ, ∇ = Φ̃∗Γ∇Γ and V = Φ̃∗ΓVΓ. Here

XT
Γ = {(s, y) ∈ Rm; s ∈ [0, σTΓ ◦ ψ−1

Γ (y)), y ∈ YΓ}
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is the representation of MT
Γ in boundary normal coordinates, and the

restriction of Φ̃Γ on the vector bundle E|Γ coincides with φΓ. We recall
that σTΓ is defined by (24).

We will next iterate the procedure in Section 4.1. The initial step is
the following:

1. Given Λ2T
Γ and a representation of the structure (g,E,∇, V ) on

MT
Γ , that is, gΓ, XT

Γ × Cn, ∇Γ and VΓ, we choose (s0, y0) ∈ XT
Γ

and ε0 > 0 such that

B0 = B(z0, ε0) ⊂MT
Γ ∩M int,(40)

where z0 = Ψ̃−1
Γ (s0, y0) ∈MT

Γ .

We invoke Lemma 4.1 to reconstruct the representations of L2T−t0
Γ,B0

and

L
2(T−t0)
B0

on the trivialization (39). Here

t0 = s0 + ε0,(41)

and we emphasize that we do not know the point z0 ∈ M , only its
representation (s0, y0) in the boundary normal coordinates.

We iterate Lemmas 4.2 and 4.3 as follows:

2. Given a representation of L
2(T−tj)
Bj

, where Bj = B(zj , εj), we de-

termine a representation of the structure (g,E,∇, V ) on the set

Mj = M
T−tj+εj
zj .

3. We choose sj+1 > 0, ξj+1 ∈ SzjM and εj+1 > 0 such that

Bj+1 = B(zj+1, εj+1) ⊂Mj ,

where zj+1 = γ(sj+1; zj , ξj+1). Again, we do not know zj+1, only
its representation (sj+1, ξj+1) in normal coordinates at zj . Given

representations of L
2(T−tj)
Bj

and L
2T−tj
Γ,Bj

, we determine representa-

tions of L
2(T−tj+1)
Bj+1

and L
2T−tj+1

Γ,Bj
, where

tj+1 = tj + sj+1 + εj+1 − εj .(42)

We terminate the iteration after repeating the steps 2 and 3 a finite
number of times denoted by N = 0, 1, 2, . . . . Note that we must satisfy
the condition tj < T in each step of the iteration.

If N = 0 then we do not need to satisfy the constraint (40). That

is, we can use Lemma 4.1 to reconstruct a representation of L2T−t0
Γ,B0∩MT

Γ

where B0 = B(z0, ε0), z0 ∈ MT
Γ and ε0 ∈ (0, T − s0). In particular, for

y0 ∈ Γ and for small enough ε0 > 0 we can reconstruct a representation
of L2T−ε0

Γ,C0
where

C0 = {γ(s; y, ν); s ∈ (0, ε0), y ∈ B∂(y0, ε0)},(43)

and B∂(y0, ε0) = {y ∈ ∂M ; dg(y, y0) < ε0}.
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There are is a lot freedom in our iteration process. Namely, we can
choose N , the points zj and the radii εj freely within the constraints
of the iteration. Let AΓ denote the set of all choices that are allowed
within the constraints of iteration when starting from Γ ∈ GS . We define
also the disjoint union A =

⊔
Γ∈GS AΓ.

We denote by Bα = BN(α) the set chosen in the last invocation of step
3 in the iteration process α ∈ AΓ, and use analogous notation for other
chosen quantities. The iteration gives us a metric tensor gα, a connection
∇α and a potential Vα such that there is a unitary trivialization

E
Φ̃α//

��

Xα × Cn

��
Bα

Ψ̃α

// Xα

(44)

satisfying g = Ψ̃∗αgα, ∇ = Φ̃∗α∇α and V = Φ̃∗αVα. Here Xα is the open

ball of radius εN(α) in Rm with center at the origin, and Ψ̃α gives normal
coordinates at zN(α). The iteration gives also the representation Lα of

L
2T−tN(α)

Γ,Bα
on the trivialization (44).

If the iteration is terminated immediately after the initial step (that
is, N(α) = 0) we allow Bα to be also of the form (43).

Let us show that the balls Bα, α ∈ AΓ, cover M(Γ, T )int and that
they separate points:

(G1) For all distinct z, z′ ∈ M(Γ, T )int there are α, β ∈ AΓ such that
z ∈ Bα, z′ ∈ Bβ and Bα ∩Bβ = ∅.

Proof. Let z ∈ M(Γ, T )int. Then there is a shortest path γ from Γ̄
to z having length strictly less than T . The path γ can be perturbed
to get a broken geodesic γ̃ from y ∈ Γ to z having length strictly less
than T . Moreover, γ̃ can be chosen so that it intersects ∂M only at its
starting point y. Then the points zj , j = 1, . . . , N , can be chosen along
γ̃. Moreover, when z0 is close to Γ and the radius εN is chosen small
enough, we have tN < T . Indeed, by (41) and (42),

tN = εN + s0 +

N∑
j=1

sj ,

where s0 = dg(z0,Γ) and sj = dg(zj , zj−1). In particular, the balls Bα,
α ∈ A, form an open cover of M(Γ, T )int.

Let z′ ∈ M(Γ, T )int and suppose that z′ 6= z. We may choose the
radius εN small enough so that εN < dg(z, z

′)/2, and perform an anal-
ogous construction for z′. This gives us disjoint balls as claimed. q.e.d.

Note that the assumption (37) does not imply that M(Γ, T ) = M
since Γ might be smaller than S. However, it implies that the sets
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M(Γ, T )int, Γ ∈ GS , form an open cover of M int, and therefore, the sets
Bα, α ∈ A, form an open cover of M int by (G1). We will show next how
to glue together the local representations of (g,E,∇, V ) on the sets Bα,
α ∈ A.

Lemma 4.5. Let T > 0, Γ ⊂ ∂M be open, and suppose that B ⊂
M int is open and satisfies B ⊂ M(Γ, T ). Let h ∈ C∞0 (B;E) and s ∈
(0, T ). Then the maps Λ2T

Γ and L2T−s
Γ,B together with the structure (g,E)

on B determine the non-empty set

{(fj)∞j=1 ⊂ C∞0 ((0, 2T )× Γ;E); lim
j→∞

Wfj = h in L2(M ;E)}.(45)

Proof. We expand the squared norm

‖Wfj − h‖2L2(M ;E)

= 〈Wfj ,Wfj〉L2(M ;E) − 2Re 〈Wfj , h〉L2(M ;E) + 〈h, h〉L2(M ;E) ,

and observe that Λ2T
Γ determines the first term on the right-hand side

by Corollary 3.2, L2T−s
Γ,B and (g,E) on B determine the second term,

and (g,E) on B determines the third term. To conclude we observe
that Lemma 2.4 implies that the set (45) is non-empty. q.e.d.

Lemma 4.6. Suppose that open S ⊂ ∂M and T > 0 satisfy (37). Let
x1, x2 ∈ M int. We have x1 = x2 if and only if for all sufficiently small
ε > 0 and any h1 ∈ C∞0 (B(x1, ε);E) there is h2 ∈ C∞0 (B(x2, ε);E) such
that

〈h1 − h2,Wf〉L2(M ;E) = 0, f ∈ C∞0 ((0, 2T )× S;E).(46)

Proof. Let us suppose that x1 6= x2. We choose small enough ε > 0
so that the balls B(xj , ε), j = 1, 2, are disjoint. We choose non-zero
h1 ∈ C∞0 (B(x1, ε);E) and let h2 ∈ C∞0 (B(x2, ε);E) be arbitrary. Then
h1 6= h2 and Lemma 2.4 implies that there is f ∈ C∞0 ((0, 2T ) × S;E)
satisfying

〈h1 − h2,Wf〉L2(M ;E) 6= 0.

The other implication is trivial. q.e.d.

Lemmas 4.5 and 4.6 allow us to determine if two points xi ∈ Xαi ,
αi ∈ AΓi , Γi ∈ GS , i = 1, 2, satisfy

Ψ̃−1
α1

(x1) = Ψ̃−1
α2

(x2).(47)

Indeed, let ε > 0 be small, let B̃i, i = 1, 2, be the geodesic ball in
(Xαi , gαi) with center xi and radius ε, and let h̃i ∈ C∞0 (B̃i;E). Then
using Lemma 4.5, we can find sequences (f ij)

∞
j=1 ⊂ C∞0 ((0, 2T )× Γi;E)

such that limj→∞Wf ij = hi where hi = Φ∗αi h̃i. Note that in order to
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apply Lemma 4.5 it is enough to know Λ2T
Γ and the representations Lαi

and gαi , i = 1, 2. By Corollary 3.2, we can compute

lim
j→∞
〈Wf1

j −Wf2
j ,Wf〉L2(M ;E) = 〈h1 − h2,Wf〉L2(M ;E),(48)

for all f ∈ C∞0 ((0, 2T )× S;E). Hence, we can use (46) to determine if
(47) holds.

Equation (47) gives an equivalence relation on the disjoint union

X̃ =
⊔
α∈AXα and we denote by X and q : X̃ → X the correspond-

ing quotient space and the canonical map. Moreover, we define the set
Uα = q(Xα) ⊂ X and the restriction qα = q|Xα , α ∈ A. We will show
that X is a smooth manifold:

(G2) The maps qα : Xα → Uα are bijective, and there is a unique
Hausdorff topology and a complete atlas on X such that each q−1

α

is a coordinate system.

As we can determine if x and x′ are equivalent given the data Λ2T
Γ , we

see that the smooth structure of X is determined. Let us show (G2)
simultaneously with the following:

(G3) Let us define a map Ψ : M int → X by Ψ(z) = q ◦ Ψ̃α(z) when
z ∈ Bα. Then Ψ is a well-defined diffeomorphism.

Proof of (G2) and (G3). Let z ∈M int. Then (G1) implies that there
is α ∈ A such that z ∈ Bα. If z ∈ Bβ also for β ∈ A, then q(x) = q(x′)

where x = Ψ̃α(z) and x′ = Ψ̃β(z). Thus, Ψ is well-defined.

Note that the sets Uα cover X since the sets Xα = Ψ̃α(Bα) cover

X̃ . This implies that Ψ is surjective. Suppose that Ψ(z) = Ψ(z′) for

some z ∈ Bα and z′ ∈ Bβ. Then q(x) = q(x′) where x = Ψ̃α(z) and

x′ = Ψ̃β(z). Thus, z = z′ by the definition of q, and we have shown that
Ψ is injective.

We define Ψα : Bα → Uα as the restriction Ψα = Ψ|Bα . It is clearly

bijective. Now Ψα = qα ◦ Ψ̃α implies that qα = Ψα ◦ Ψ̃−1
α . Hence, the

maps qα are bijective. Moreover, if U = Uα ∩ Uβ 6= ∅ then we have on
q−1
α (U) that

q−1
β ◦ qα = Ψ̃β ◦Ψ−1 ◦Ψ ◦ Ψ̃−1

α = Ψ̃β ◦ Ψ̃−1
α ,

and we see that q−1
β ◦qα is smooth on the open set q−1

α (U) = Ψ̃α(Bα∩Bβ).

We have shown that the conditions (1) and (2) of [30, Prop. 1.42]
hold. To finish the proof of (G2) we need only to verify the separation
condition (3) in [30, Prop. 1.42].

Let p, p′ ∈ X be distinct. Then we have z 6= z′ where z = Ψ−1(p)
and z′ = Ψ−1(p′). Let α, β ∈ A be as in (G1). Then Uα and Uβ are
disjoint sets containing p and p′ respectively, since Uα = Ψ(Bα) and
Uβ = Ψ(Bβ). Now (G2) follows from [30, Prop. 1.42].
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To show that Ψ is smooth, it is enough to show that each q−1
α ◦Ψ◦Ψ̃−1

α

is smooth. But this is simply the identity map on Xα. q.e.d.

Let us show that the metric tensors gα can be glued together:

(G4) We have (q−1
α )∗gα = (Ψ−1)∗g on each Uα.

Proof. We recall that g = Ψ̃∗αgα on Bα. Thus, we have on Uα that

(Ψ−1)∗g = (Ψ̃α ◦Ψ−1)∗gα = (Ψ̃α ◦Ψ−1
α )∗gα = (q−1

α )∗gα. q.e.d.

Let us now turn to gluing of the vector bundles Xα × Cn. Denote
by Eα = (eα` )n`=1 the constant frame on Xα × Cn corresponding to the
standard basis of Cn. Suppose that Uα and Uβ intersect for some indices
α, β ∈ A, and write

Xαβ = q−1
α (Uα ∩ Uβ), Xβα = q−1

β (Uα ∩ Uβ).

We define functions h1 = Φ∗αh̃1 and h2 = Φ∗βh̃2, where

h̃1 = 1Xαβe
α
` ∈ L2(Xα;Cn), h̃2 = 1Xβαa

κ
` e
β
κ ∈ L2(Xβ;Cn).

Here `, κ = 1, . . . , n and aκ` ∈ C∞(Xβα). Analogously to the con-
siderations preceding (48), we can choose two sequences of sources
(f ij)

∞
j=1, i = 1, 2, such that (Wf ij)

∞
j=1 converges to hi, and determine

if (46) holds. Suppose now that we have chosen aκ` ∈ C∞(Xβα) so that
(46) holds. We define Uβα = (aκ` )nκ,`=1 on Xβα. Moreover, we define an

equivalence relation on X̃ × Cn by

q(x) = q(x′), ξ′ = Uβα(x′)ξ,(49)

where x ∈ Xα, x′ ∈ Xβ and ξ, ξ′ ∈ Cn. We have:

(G5) Equations (49) hold if and only if Φ̃−1
α (x, ξ) = Φ̃−1

β (x′, ξ′).

Proof. Observe that x ∈ Xα, x′ ∈ Xβ and q(x) = q(x′) imply that
x′ ∈ Xβα. Therefore, the second equation in (49) is well-defined when-
ever the first one holds.

We write B = Bα ∩ Bβ. Let Z ∈ π−1
E (B) where πE : E|M int → M int

is the bundle projection, and take z = πE(Z). Moreover, denote by

Zp = (Z`p)
n
`=1 the representation of Z in the frame Φ̃∗pe

p
` , p = α, β.

Then, since h1 and h2 are smooth in B and satisfy (46), Lemma 2.4
implies that

Z = Z`αΦ̃∗αe
α
` |z = Z`αΦ̃∗β(aκ` e

β
κ)|z = Z`αa

κ
` (Ψ̃β(z))Φ̃∗βe

β
κ|z.

Hence, Zβ = Uβα(Ψ̃β(z))Zα.

Suppose that (49) holds, and define Z = Φ̃−1
α (x, ξ). Then Z ∈ π−1

E (B)

and we have, using the above notation z = πE(Z) and Zp = (Z`p)
n
`=1,
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p = α, β, that Ψ̃α(z) = x and Zα = ξ. Moreover, Φ̃β(Z) = (Ψ̃β(z), Zβ)

where Ψ̃β(z) = x′ as q(x) = q(x′), and

Zβ = Uβα(Ψ̃β(z))Zα = Uβα(x′)ξ = ξ′.

On the other hand, if Z = Φ̃−1
α (x, ξ) = Φ̃−1

β (x′, ξ′), then q(x) = q(x′)

and
ξ′ = Zβ = Uβα(Ψ̃β(z))Zα = Uβα(x′)ξ. q.e.d.

We denote by F the quotient space with respect to the equivalence
(49) and by Q : X̃ × Cn → F the corresponding canonical map. More-
over, we define

πF : F → X : πF (Q(x, ξ)) = q(x), (x, ξ) ∈ X̃ × Cn,(50)

and Qα as the restriction of Q on Xα × Cn, α ∈ A. These maps define
a smooth vector bundle structure:

(G6) The map πF is a well-defined surjection and the maps

Qα : Xα × Cn → π−1
F (Uα)

are bijective. There is a unique Hausdorff topology and a complete
atlas on F such that each Q−1

α is a coordinate system. The maps
ξ 7→ Qα(x, ξ) are bijective from Cn to π−1

F ({q(x)}) for x ∈ Xα and

α ∈ A, and, if the fibers π−1
F ({p}), p ∈ X , are equipped with the

vector space structure that is pulled back from Cn via the inverses
of these maps, then πF : F → X is a smooth vector bundle that
is trivial on each Uα.

Let us show (G6) simultaneously with the following:

(G7) Let us define a map Φ : E|M int → F by Φ(Z) = Q ◦ Φ̃α(Z) when
Z ∈ π−1

E (Bα). Here πE is the bundle projection E|M int → M int.
Then Φ is a well-defined vector bundle isomorphism covering Ψ.

Proof of (G6) and (G7). Clearly πF is a well-defined surjection. A
proof that Φ is a well-defined bijection is essentially identical with the
above proof that Ψ is a well-defined bijection, and we omit it.

Let α ∈ A, x ∈ Xα, and consider the map Qxα(ξ) = Qα(x, ξ). The
definition of πF implies that Qxα : Cn → F x where F x = π−1

F ({q(x)}).
Let us show that Qxα is surjective. Let β ∈ A and x′ ∈ Xβ satisfy
q(x′) = q(x) and let ξ′ ∈ Cn. Then, if we choose ξ = Uβα(x′)−1ξ′,

we have Qx
′
β (ξ′) = Qxα(ξ) due to (49). Thus, Qxα is surjective. The

surjectivity implies that

Q(Xα × Cn) =
⋃
x∈Xα

Qxα(Cn) = π−1
F (q(Xα)) = π−1

F (Uα).

We write Eα = π−1
E (Bα), Fα = π−1

F (Uα), and define Φα = Φ|Eα . The
sets

Φ(Eα) = Q(Xα × Cn) = Fα, α ∈ A,
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cover F , and Φα : Eα → Fα is bijective. The factorization Φα = Qα◦Φ̃α

implies that Qα is bijective, and Q−1
β ◦Qα = Φ̃β ◦ Φ̃−1

α is smooth on the

open set Q−1
α (Fα ∩ Fβ) = Φ̃α(Eα ∩ Eβ).

Let p, p′ ∈ F , and define z = πE ◦ Φ−1(p) and z′ = πE ◦ Φ−1(p′).
If z 6= z′ then we may choose α, β ∈ A as in (G1). Then Eα and Eβ
are disjoint, whence Fα and Fβ are disjoint sets containing p and p′

respectively. On the other hand, if z = z′ then there is α ∈ A such that
p, p′ ∈ Fα. Now [30, Prop. 1.42] implies that F has a unique smooth
manifold structure.

To show that πF is smooth, it is enough to show that each q−1
α ◦πF ◦Qα

is smooth. But this is simply the map πα : Xα×Cn → Xα, πα(x, ξ) = x.
A proof that Φ is smooth is essentially identical with the above proof
that Ψ is smooth, and we omit it.

We define a vector space structure on F x by pulling back the addition
and scalar multiplication via (Qxα)−1 : F x → Cn. That is,

Qxα(ξ) + cQxα(η) = Qxα(ξ + cη), ξ, η ∈ Cn c ∈ C.
Let us show that this does not depend on the choice of x′ ∈ q−1({x}).
Suppose that F x = F x

′
for some β ∈ A and x′ ∈ Xβ, and let ξ′, η′ ∈ Cn.

We choose ξ = Uβα(x′)−1ξ′ and η = Uβα(x′)−1η′. Then it holds that

Qx
′
β (ξ′) = Qxα(ξ), Qx

′
β (η′) = Qxα(η) and Qx

′
β (ξ′+ cη′) = Qxα(ξ+ cη) for all

c ∈ C.
Next let us construct local trivializations for F . We define

ρ : X̃ × Cn → X × Cn

by ρ = q ⊗ id, that is, ρ(x, ξ) = (q(x), ξ), and set ρα = ρ ◦ Q−1
α . Then

ρα : Fα → Uα×Cn is a smooth bijection since (q−1
α ⊗ id)◦ρα ◦Qα is the

identity on Xα×Cn. Moreover, πF ◦ ρ−1
α is the identity on Uα, and, for

x ∈ Xα, the map ξ 7→ ρ−1
α (q(x), ξ) is Qxα. Thus, the maps ρ−1

α , α ∈ A,
give local trivializations for F , and πF : F → X is a smooth vector
bundle.

Let us show that Φ is a vector bundle homomorphism. We recall that

qα = Ψ ◦ Ψ̃−1
α , q−1

α ◦ πF ◦Qα = πα and Qα = Φα ◦ Φ̃−1
α , where πα is the

projection on right in (44). Thus, we have

q−1
α ◦ πF ◦ Φ ◦ Φ̃−1

α = q−1
α ◦ πF ◦Qα = πα,(51)

and, as the diagram (44) commutes, we have also

q−1
α ◦Ψ ◦ πE ◦ Φ̃−1

α = q−1
α ◦Ψ ◦ Ψ̃−1

α ◦ πα = πα.(52)

Thus, πF ◦ Φ = Ψ ◦ πE . Let α ∈ A, z ∈ Bα. Then Φ is linear from
the fiber π−1

E ({z}) to the fiber π−1
F ({Ψ(z)}), since (Qxα)−1, Θ(ξ)x =

Φ̃−1
α (x, ξ) and (Qxα)−1 ◦ Φ ◦Θ = id are linear where x = Ψ̃α(z) and the

last equation follows from (51) and (52). Hence, Φ is a vector bundle
homomorphism. As it is bijective, it is a vector bundle isomorphism.

q.e.d.
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The connections ∇α, potentials Vα and the Hermitian structures can
be glued together:

(G8) On each π−1
F (Uα), (Q−1

α )∗∇α = (Φ−1)∗∇, (Q−1
α )∗Vα = (Φ−1)∗V

and (Q−1
α )∗ 〈·, ·〉Cn = (Φ−1)∗ 〈·, ·〉E .

A proof is essentially identical with the proof of (G4) and we omit it.
To summarize, we have shown that the following diagram

E
Φ //

��

F

��
M int

Ψ
// X

gives an isomorphism of the structure (g,E,∇, V ) on M int when X
is equipped with the metric tensor given by the gluing (G4) and F is
equipped with the connection, the potential and the Hermitian structure
given by the gluing (G8). This concludes the proof of Theorem 4.4.

Let us show that Φ extends to the accessible part S of the boundary.
If α ∈ AΓ, Γ ∈ GS , corresponds to an iteration that is terminated
immediately after the initial step, then we can use Bα = C0, where C0

is of the form (43) and Φ̃α = Φ̃Γ|C0 . Thus, Q−1
α ◦Φ|Bα = Φ̃Γ|C0 extends

to C0 ∪B∂(y0, ε0) and

Q−1
α ◦ Φ = φΓ, on B∂(y0, ε0).(53)

4.3. Extension to the inaccessible part of boundary. We will give
a non-constructive proof that the structure (g,E,∇, V ) is determined
up to the boundary, and this will conclude the proof of Theorem 1.1.
To this end, let (Mi, gi, Ei,∇i, Vi), i = 1, 2, be two structures as in
Theorem 1.1. Let Si ⊂ ∂Mi be open and nonempty, and suppose that
there is an isomorphism between the induced Hermitian vector bundles
on Si, i = 1, 2,

E1
φ //

��

E2

��
S1

ψ
// S2

Note that we do not assume a priori that ψ is an isometry.
Let us choose an open cover GS1 of S1 as in the proof of Theorem 4.4.

Then for each Γ1 ∈ GS1 there is a unitary trivialization

E1

φΓ1//

��

YΓ1 × Cn

��
Γ1

ψΓ1

// YΓ1
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We define Γ2 = ψ(Γ1) and φΓ2 = φΓ1◦φ−1. Then φΓ2 : E2|Γ2 → YΓ1×Cn
is a unitary trivialization, and, if φ intertwines the maps Λ2T

S1
and Λ2T

S2
,

then their representations on the respective trivializations coincide.
Theorem 4.4 implies that there is a Hermitian vector bundle F → X ,

that is equipped with a Hermitian connection ∇̃ and a potential Ṽ , and
whose base manifold X is equipped with a Riemannian metric g̃, such
that, for both i = 1, 2, there is a Hermitian vector bundle isomorphism
Φi : Ei|M int

i
→ F , covering an isometry Ψi : M int

i → X , such that

∇i = Φ∗i ∇̃ and Vi = Φ∗i Ṽ . Hence, Φ−1
2 ◦ Φ1 gives an isomorphism

between the structures (gi, Ei,∇i, Vi) on M int
i , i = 1, 2.

It follows from [31] that Ψ = Ψ−1
2 ◦ Ψ1 extends smoothly to the

boundary ∂M1 and (Mi, gi), i = 1, 2, are isometric via the extended Ψ.
By considering the pullback bundle Ψ∗E2, we can assume without loss
of generality that M1 = M2. Thus, the following proposition implies
that also the bundle isomorphism Φ = Φ−1

2 ◦ Φ1 extends smoothly to
the boundary.

Proposition 4.7. Let Ei → M , i = 1, 2, be two Hermitian vector
bundles over a smooth manifold with boundary ∂M , and let ∇i be a
Hermitian connection on Ei, i = 1, 2. Suppose that the exists a Hermit-
ian vector bundle isomorphism Φ between E1|M int and E2|M int such that
it covers the identity and that Φ∗∇2 = ∇1 on M int. Then Φ extends
smoothly to ∂E1 and the bundles and connections are isomorphic on M
via the extended Φ.

Proof. Fix a point x ∈ ∂M and introduce coordinates

(x1, . . . , xm) ∈W := [0, ε)× (−ε, ε)m−1,

around x such that the boundary of M is given by x1 = 0. Without
loss of generality we may assume that the bundles E1 and E2 are trivial
over these coordinates and that ∇1 = d + A, ∇2 = d + B. The bundle
isomorphism Φ can be represented by a smooth U(n)-valued function
u(x1, . . . , xm) defined for x1 > 0 and such that

B = u−1du+ u−1Au.

Consider the smooth map uA : W → U(n) uniquely defined by solv-
ing the following parallel transport equation along the curves x1 7→
(x1, . . . , xm):

duA
dx1

+A(x1,...,xm)(∂x1)uA = 0,

uA(0, x2, . . . , xm) = Id.

Consider a similar map uB : W → U(n) associated to B. These two
maps are convenient because, if we set

Ã = u−1
A duA + u−1

A AuA, B̃ = u−1
B duB + u−1

B BuB,
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then Ã(∂x1) = B̃(∂x1) = 0. For x1 > 0 define v = u−1
A uuB. Then, a

simple calculation shows that

B̃ = v−1dv + v−1Ãv, x1 > 0.

This implies dv(∂x1) = 0 and the map v is independent of x1. Hence,
v smoothly extends to x1 = 0 and, since u = uAvu

−1
B , u is also smooth

up to the boundary x1 = 0. q.e.d.

In order to finish the proof of Theorem 1.1 we still need to show that
Φ|S1 = φ. Using the coordinate systems Q−1

α on F corresponding to
choices α as in (53), we see that Φi = φΓi on Γi. Thus,

Φ = Φ−1
2 ◦ Φ1 = φ−1

Γ2
◦ φΓ1 = φ,

on each Γi ∈ GS1 . This concludes the proof of Theorem 1.1.

5. Calderón problem for connections on a cylinder

The proof of Corollary 1.3 is based on a simple relation between the
Dirichlet-to-Neumann map Λ(λ) of the operator −∂2

t +P0− λ and that
of the transversal operator P0 defined analogously to Λ(λ). That is, if
λ ∈ C \ [λ1,∞) then we define

Λ0(λ)h = (∇0)νu|∂M0 , h ∈ C∞(∂M0;E0),

where u is the solution of the equation

(P0 − λ)u = 0 in C, u|∂C = f.

We consider an L2-space with a weight in the Euclidean direction,

L2
δ(C;E) = {f ∈ L2

loc(C;E); (1 + t2)δ/2f ∈ L2(C;E)}, δ ∈ R,

and define the corresponding Sobolev spaces Hs
δ analogously to [8, Sec-

tion 5]. Now we can formulate a relation between Λ(λ) and Λ0(λ).

Proposition 5.1. Let λ ∈ C\ [λ1,∞) and δ ∈ R. Then Λ(λ) extends

as a bounded linear map Λ(λ) : H
3/2
δ (∂C;E)→ H

1/2
δ (∂C;E). Moreover,

if k ∈ R, then

Λ0(λ− k2)h = e−kitΛ(λ)(eikth).

Note that if h ∈ H3/2(∂M0;E0), then eikth ∈ H
3/2
δ (∂C;E) for any

δ < −1/2.

Proof. The proof that Λ(λ) extends as claimed is analogous to the

scalar case [8, Proposition 5.1] and we omit it. Let h ∈ H3/2(∂M0;E0)
and let vh ∈ H2(M0;E0) solve

(P0 − (λ− k2))vh = 0 in M0, vh|∂M0 = h.

Since λ /∈ [λ1,∞), the number λ − k2 is not a Dirichlet eigenvalue
of P0 and there is a unique solution vh. Set f(t, x) = eikth(x) and
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u(t, x) = eiktvh(x). The function u is in H2
δ (C;E) for any δ < −1/2,

and solves

(−∂2
t + P0 − λ)u = 0 in C, u|∂C = f.

Note that −∂2
t + P0 = ∇∗∇, where ∇ = π∗∇0 and π : C → M0 is the

canonical projection. It follows that

Λ(λ)f = ∇νu|∂C = eikt(∇0)νvh|∂M0 = eiktΛ0(λ− k2)h,

and the proposition is proved. q.e.d.

Proof of Corollary 1.3. Using that C∞0 (∂C;E) is dense in

H
3/2
δ (∂C;E) for all δ together with Proposition 5.1, we can determine

the map

Λ0(λ− k2) : H3/2(∂M0;E0)→ H1/2(∂M0;E0),

for all k ∈ R. Since µ 7→ Λ0(µ) is a meromorphic map whose poles
are contained in {λ1, λ2, . . . }, see, e.g., [23, Lemma 4.5], we can recover
Λ0(µ) for all µ ∈ C. This is equivalent to knowing the Dirichlet-to-
Neumann map ΛT∂M0

for the wave operator ∂2
t + P0 for any T > 0 [23,

Chapter 4]. Thus, Theorem 1.1 implies that we can recover the structure
(M0, g0, E0,∇0) as claimed. q.e.d.
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