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Abstract

In this paper we introduce a flow on the spectral data for sym-
metric CMC surfaces in the 3-sphere. The flow is designed in such
a way that it changes the topology but fixes the intrinsic (metric)
and certain extrinsic (periods) closing conditions of the CMC sur-
faces. By construction the flow yields closed (possibly branched)
CMC surfaces at rational times and immersed higher genus CMC
surfaces at integer times. We prove the short time existence of this
flow near the spectral data of (certain classes of) CMC tori and
obtain thereby the existence of new families of closed (possibly
branched) connected CMC surfaces of higher genus. Moreover,
we prove that flowing the spectral data for the Clifford torus is
equivalent to the flow of Plateau solutions by varying the angle of
the fundamental piece in Lawson’s construction for the minimal
surfaces ξg,1.

Introduction

The investigation and construction of closed surfaces with special
geometric properties is an important subject in differential geometry.
Of particular interest are minimal surfaces and constant mean curva-
ture (CMC) surfaces in space forms. Global properties of CMC surfaces
were first considered by Hopf, showing that all CMC spheres are round.
This result was generalized by Alexandrov [2] in the 1950s, who showed
that the round spheres are the only embedded compact CMC surfaces in
R3. It was a long standing conjecture by Hopf that this should be also
true for immersed surfaces in Euclidean 3−space until Wente [36] con-
structed counter examples in the class of tori in 1986. Although the gen-
eralized Weierstrass representation for CMC surfaces [8] gives all CMC
immersions from simply connected domains into space forms, global
questions (like the construction of closed surface with genus g ≥ 2) are
very hard to study in this setup. The reason is that the moduli space
of compact CMC surfaces of genus g is finite dimensional, while the
space of conformal CMC immersions of a disc or a plane is always in-
finite dimensional. For tori this problem was substantially simplified
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Figure 1. The deformation of minimal surfaces from
the Clifford torus to Lawson ξ2,1. The images in the
second row show the corresponding Plateau solutions for
varying angles of the geodesic polygon.

in the work of Abresch [1], Pinkall and Sterling [33], Hitchin [23] and
Bobenko [4] in the 1980s, by reducing to a finite dimensional problem
via integrable system methods. These methods were used to produce
various new examples of CMC tori. Recently Hauswirth, Kilian and
Schmidt studied the moduli space of all minimal tori in S2×R by inte-
grable systems methods. They proved that properly embedded minimal
annuli in S2 × R are foliated by circles [13, 14]. The technique (based
on the so-called Whitham deformation of the spectral data) has also
been applied for the investigation of Alexandrov embedded CMC tori
in S3 [15], giving an alternative approach to the conjectures of Lawson
(proved by Brendle [5]) and Pinkall–Sterling (proved by Andrews and
Li [3] using Brendle’s method). On the other hand, examples of and
methods for closed CMC surfaces of higher genus are rare. Lawson [29]
constructed closed embedded minimal surfaces in the round 3-sphere for
every genus and Kapouleas [25, 26] showed the existence of compact
CMC surfaces in Euclidean 3-space for all genera. Since these construc-
tions are implicit even fundamental geometric properties like the area
cannot be explicitly computed.

The integrable system approach to CMC surfaces is based on the
associated C∗-family of flat SL(2,C)-connections λ ∈ C∗ 7→ ∇λ. Know-
ing the family of flat connections is tantamount to knowing the CMC
surface, as the surface is given by the gauge between two trivial con-
nections ∇λ1 and ∇λ2 for λ1 6= λ2 ∈ S1 ⊂ C∗ with mean curvature
H = iλ1+λ2

λ1−λ2 . An important property of this family of flat connections

is the unitarity for the connections along λ ∈ S1. In the abelian case
of CMC tori, ∇λ splits for generic λ ∈ C∗ into a direct sum of flat
line bundle connections. Therefore, the associated C∗-family of flat
SL(2,C)-connections of a CMC torus is characterized by spectral data
parametrizing the corresponding family of flat line bundles on the torus.
For higher genus surfaces, flat SL(2,C)-connections are generically irre-
ducible and, therefore, the abelian spectral curve theory for CMC tori is
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no longer applicable. Nevertheless, if one restricts to certain symmetric
compact Riemann surfaces, it is still possible to characterize flat sym-
metric SL(2,C)-connections in terms of flat line bundle connections on
an associated torus via abelianization [21, 17]. Hence, the associated
family ∇λ of a symmetric CMC surface of higher genus is again deter-
mined by spectral data which parametrize flat line bundle connections
on a torus. The drawback of this approach is that for higher genus the
unitarity condition for ∇λ along the unit circle is only given implicitly
in terms of the Narasimhan–Seshadri section. Understanding the con-
struction of spectral data satisfying the unitarity condition is our main
purpose.

In this paper we propose a more explicit construction of higher genus
CMC surfaces and the Narasimhan–Seshadri section. The basic idea is
to start at a well known surface, e.g., a CMC torus, where the closing
conditions are well understood in terms of the spectral data. Then the
surface is deformed in a direction which changes the genus “continu-
ously”. The motivating example is the flow of Plateau solutions from
the Clifford torus to Lawson’s minimal surface of genus 2 and beyond
by changing angles of the geodesic polygonal boundary (see Figure 1).
More generally we construct a flow from CMC tori which gives com-
pact and branched CMC surfaces (with controlled branch points and
branch order) for rational times and immersed CMC surfaces of genus
g for discrete times. We construct this flow by deforming (gauge equiv-
alence classes of) the associated families of flat connections: using the
abelianization procedure and under the assumption of certain discrete
symmetries, the family of flat connections can be reduced to a family
of flat connections over a 4-punctured torus, i.e., connections on a triv-
ial C2-bundle over the 2-torus with four simple pole-like singularities.
The genus of the surface is encoded in the local monodromies, i.e., in
the eigenvalues of the residues of the flat connections. Deforming these
eigenvalues induces a flow from given spectral data of CMC tori to the
spectral data of higher genus CMC surfaces through branched CMC
immersions (see Figure 3 and Figure 4).

The paper is organized as follows: In Section 1, we recall the in-
tegrable systems techniques for CMC surfaces from a general point of
view. We then describe the spectral curve theory for CMC tori in our
setup and consider two classes of examples, the homogeneous CMC tori
and the 2-lobed Delaunay tori. In Section 3, we develop a spectral curve
theory for higher genus CMC surfaces with discrete symmetries gener-
alizing the theory for CMC tori (see [23] or Section 2) and the theory
for Lawson symmetric CMC surfaces of genus 2 in [21]. In Section 4, we
define the flow on spectral data and prove its short time existence for
initial data given by homogeneous CMC tori. In particular, we prove
that flowing the spectral data for the Clifford torus is equivalent to the
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flow of Plateau solutions by changing the angle of the fundamental piece
in Lawson’s construction for the minimal surfaces ξg,1. We also prove
the short time existence of two distinct flows starting at the 2-lobed De-
launay tori of spectral genus 1. Geometrically, these two flows can be
distinguished by the fact that the Delaunay tori are cut along curvature
lines between different pairs of points as shown in Figure 3 and Figure 4.
In our theory, the existence of two different flow directions corresponds
to the choice whether the family of flat connections contains only stable
points inside the unit disc.

Acknowledgment. We would like to thank the anonymous referee for
his helpful comments which enabled us to improve the presentation
of the paper. The first author is supported by the European Social
Fund and by the Ministry of Science, Research and the Arts Baden–
Würtemberg, the other authors are supported by the DFG through the
project HE 6829/1-1.

1. Integrable surface theory

In this Section, we recall the basics of integrable surface theory. We
explain how CMC tori can be described from our perspective and con-
sider two families of CMC tori as examples in detail.

In the integrable systems approach to CMC surfaces the crucial step
is to translate the elliptic PDE H ≡ const into a system of ODEs on the
Riemann surface: to a CMC immersion f : M → S3 we can associate
a C∗−family of flat SL(2,C) connections as was introduced by Hitchin
[23]. In order to construct CMC surfaces it is, thus, sufficient to write
down appropriate families of flat connections, which will turn out to be
easier than to solve the PDE directly.

In order to make the reader more comfortable with the correspon-
dence between CMC surfaces and their associated families of flat con-
nections, we briefly recall its construction starting with the case H = 0
(following [23]). Consider S3 as the Lie group S3 ∼= SU(2), then its
Levi-Civita connection is given by

∇ = d+ 1
2g
−1dg,

where g−1dg is the Maurer–Cartan form acting on su(2) by the adjoint
representation. It gives rise to the (special unitary) spin connection

∇ = d+ 1
2g
−1dg,

on the trivial C2-bundle over S3, where su(2) is acting on C2 through
the standard representation.

Let f : M → S3 be a minimal conformal immersion from a Riemann
surface M . Pulling back ∇ by f we obtain a special unitary connection
(with respect to the standard hermitian inner product) on C2×M →M ,
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also denote by ∇, given by

∇ = d+ 1
2f
−1df.

Since f is minimal and conformal, it is harmonic, giving rise to the
following equations:

d∇φ = 0,

d∇ ∗ φ = 0,
(1.1)

where φ := 1
2f
−1df is the connection 2−form and ∗ is the negative

of the Hodge star (i.e., ∗dz = idz, ∗dz̄ = −idz̄ for a locally defined
holomorphic function z : U ⊂ M → C). The first equation of (1.1) is a
reformulation of the Maurer–Cartan equation for f−1df and the second
equation is equivalent to f being harmonic. After decomposing φ into
its complex linear part Φ = 1

2(φ− i∗φ) and its complex anti-linear part
−Φ∗, so that φ = Φ− Φ∗, we can rewrite (1.1) as

d∇Φ = ∂̄
∇

Φ = 0,

d∇Φ∗ = ∂∇Φ∗ = 0,
(1.2)

where∂∇ := 1
2(∇− i ∗ ∇) and ∂̄

∇
:= 1

2(∇+ i ∗ ∇).
Consider now the C∗−family of special linear connections

∇λ = ∇+ λ−1Φ− λΦ∗, λ ∈ C∗,

which is called the associated family of flat SL(2,C) connections of f .
That the curvature for all ∇λ vanishes for all λ can be seen as follows:
firstly, by equation (1.2) the curvature of ∇λ is independent of λ ∈ C∗.
Further, we have by definition ∇1 = d + f−1df and ∇−1 = d are both
trivial, and, hence, of zero curvature.

In this formulation the conformality of f is equivalent to Φ being
nilpotent (see Proposition 1.8 of [23]) and f being immersed translates
to Φ being non-vanishing. For minimal tori the connections ∇λ are
unitary for λ ∈ S1, since in this case the connection 1−form λ−1Φ−λΦ∗

is skew-adjoint. Moreover, the immersion f is constructed as the gauge
transformation between ∇1 and ∇−1 (where we have identified S3 =
SU(2)).

For conformally parametrized CMC surfaces with non-zero mean cur-
vatureH 6= 0, the construction becomes slightly more complicated, since
f is no longer harmonic. Nevertheless, by the Lawson correspondence
or by the fact that the Gauss map of a CMC surface in S3 is harmonic,
we still obtain an associated family of flat connections as follows: split
f−1df = Ψ − Ψ∗ into complex linear and complex anti-linear parts as
before, and rescale

Φ =
λ2

1 + λ2
Ψ and Φ∗ =

1

1 + λ2
Ψ∗,
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where

λ2 =
−iH + 1

iH + 1
∈ S1 ⊂ C∗.

Define ∇ := d + Φ − Φ∗ (which is no longer the pullback of the spin
connection of S3) and consider the associated family of connections

(1.3) λ ∈ C∗ 7→ ∇λ = ∇+ λ−1Φ− λΦ∗.

Again we have ∇−1 = d and ∇λ2 = d+ f−1df are both trivial and that
the residue term Ψ at λ = 0 is nilpotent. Vanishing of the curvature
of ∇λ for all λ follows from its independence of λ. This is equivalent
to d∇Φ = d∇Φ∗ = 0 which itself follows from a not too long computa-
tion involving the Maurer–Cartan equation and the formula relating the
Laplacian of the immersion and its mean curvature; see, for example,
Lemma 2.2 in [35].

This shows one direction of Theorem 1.1 below. The reverse direction
can be proven by reversing the computations. See also [4, 19] for more
details.

Theorem 1.1 ([23, 4]). Let f : M → S3 be a conformal CMC im-
mersion. Then its associated family of flat SL(2,C) connections (1.3) is
unitary for λ ∈ S1 ⊂ C∗ and trivial for λ1 6= λ2 ∈ S1. Conversely, given
such a family of flat SL(2,C) connections with nilpotent Φ, the immer-
sion f given by the gauge between ∇λ1 and ∇λ2 (identifying SU(2) = S3)

is conformal and of constant mean curvature H = iλ1+λ2
λ1−λ2 and has ∇λ

as its associated family.

Remark 1.1. Following [27] we call the spectral parameter λ1, λ2 ∈
C∗ Sym points. The existences of two Sym points is the extrinsic closing
condition while the unitarity of the connections ∇λ along the unit circle
is the intrinsic closing condition.

Remark 1.2. For compact CMC surfaces which are not totally um-
bilic the generic connection ∇λ of the associated family is not triv-
ial [23]. Moreover, for CMC immersions from a compact Riemann
surface of genus g ≥ 2, the connection ∇λ of the associated family
is irreducible for generic λ ∈ C∗ [19].

Remark 1.3. In the above theorem we can weaken the condition that
there are two spectral parameter λ1, λ2 ∈ C∗ such that ∇λk is trivial (for
k = 1, 2) as follows: it is sufficient that the two connections∇λk have the
same monodromy representation with values in Z2 = {± Id} ⊂ SU(2).
Because this subgroup is the center of SU(2), the gauge between these
two connections is still well-defined in this situation and it is a conformal
CMC immersion with H = iλ1+λ2

λ1−λ2 . By an abuse of notation, we also
call this family the associated family of flat connections even if it differs
from (1.3) by a λ-independent shift given by tensoring with a flat Z2

line bundle.
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For M a torus Hitchin [23] developed a theory classifying all pos-
sible families ∇λ and explicitly parametrizing the corresponding CMC
immersions. This procedure depends crucially on the fact that the first
fundamental group of the torus is abelian so there is no straightfor-
ward generalization of the theory to higher genus surfaces. For higher
genus CMC surfaces (to which we restrict if not otherwise stated) it
has been proven useful to first consider the gauge equivalence classes
of the connections ∇λ. Thus, let A2 = A2(M) be the moduli space
of flat SL(2,C) connections modulo gauge transformations. This space
inherits the structure of a complex analytic variety of dimension 6g− 6
whose singular set consists of the gauge classes of reducible connections.
This can be seen by identifying A2 with the character variety of SL(2,C)
representations of the fundamental group of M modulo conjugation as
in [12], or by carrying out an infinite dimensional Kähler reduction as
in [24].

For a CMC surface f with associated family of flat connections ∇λ
we consider the map

(1.4) D : C∗ → A2, λ 7→ [∇λ].

Although in general D does not uniquely determine a CMC surface in
S3, those CMC surfaces corresponding to the same D are related by
a well understood transformation called dressing (see [7] for general
information about dressing transformations in the setup of associated
families). We note that we only consider dressing transformations which
preserve the topology of the surface. Without the topological constraint
(i.e., for a simply connected CMC surface) the space of dressing trans-
formations is infinite dimensional, whereas for compact surfaces this
space is finite dimensional. In the abelian case of CMC tori, the dress-
ing transformations are induced by a shift of the eigenline bundle of the
spectral curve (see [30]) and are usually called isospectral deformations.
For higher genus CMC immersions the space of these dressing transfor-
mations are “based” at the finitely many points λi ∈ C∗ at which the
holomorphic map D : C∗ → A2 represents the gauge class of a reducible
connection (Theorem 7 in [21]).

The following theorem might be considered as a variation or general-
ization of the DPW method [8]. It summarizes the above discussion and
generalizes it to the case of (possibly) branched CMC surfaces. Under
a bound on the number of branch points the theory for immersed CMC
surfaces carries over. The branched CMC surfaces constructed in this
paper (in particular, in Theorem 3.3) obey the given bound.

Theorem 1.2. Let M be a compact Riemann surface of genus g and
let D : C∗ → A2 = A2(M) be a holomorphic map satisfying

1) the unit circle S1 ⊂ C∗ is mapped into the real analytic subvariety
consisting of gauge equivalence classes of unitary flat connections,
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2) around λ = 0 there exists a local lift ∇̃λ of D with an expansion

∇̃λ ∼ λ−1Ψ + ∇̃0 + higher order terms in λ,

for a nilpotent Ψ ∈ Γ(M,K End0(V )),
3) there are two distinct points λ1, λ2 ∈ S1 ⊂ C∗ such that D(λk)

k = 1, 2 represents the trivial gauge class.

Then there exists a (possibly branched) CMC surface f : M → S3 induc-
ing the map D as the family of gauge equivalence classes D(λ) = [∇λ].
The branch points of f are given by the zeros of Ψ and f is unique up
to dressing transformations if the number of zeros of Ψ (counted with
multiplicity) is less than 2g − 2.

Conversely, every CMC surface determines a holomorphic C∗-curve
into A2 via (1.4).

Proof. We have two cases to consider. Either the family ∇̃λ is re-
ducible for all λ or it is generically irreducible. In the first case the
corresponding CMC surface is a branched covering of a CMC torus by
[11] and the reconstruction of the surface is carried out in [23]. In the
latter case the proof of the construction works analogously to the proof
of Theorem 8 in [21]. Uniqueness part follows with the same arguments

as in Theorem 7 of [21] provided that the Higgs pair (∂̄
∇̃0

,Ψ) is stable,
i.e., every Ψ-invariant line subbundle of V has negative degree. Since
Ψ is nilpotent, the kernel bundle L = ker Ψ is the only Ψ-invariant sub-
bundle. Moreover, because Ψ gives rise to a non-vanishing holomorphic
section of KL2 (see Section 2.1 in [19] or the proof of Lemma 3.4 below)
the degree of L is negative if and only if the number of zeros of Ψ is less
than the degree of the canonical bundle. q.e.d.

Remark 1.4. As in Remark 1.3 we can weaken the extrinsic closing
condition so that D(λk) only need to represent for k = 1, 2 the same
flat Z2-bundle.

Remark 1.5. Since D is holomorphic and maps into the real analytic
subvariety of A2 consisting of gauge equivalence classes of unitary flat
connections for λ ∈ S1, D is already determined by its values on D1 :=
{λ | |λ|2 ≤ 1} as a consequence of the Schwarzian reflection principle.

2. CMC tori revisited

In this section, we consider the case of CMC tori and rephrase the
well-known spectral curve theory for CMC tori of [23] in the context of
Theorem 1.2. Additionally, we prove two technical lemmas showing the
non-degeneracy of the initial data of the flow defined in Section 4.

2.1. Flat line bundles on tori. Consider the Riemann surface of
genus 1 given by

T 2 = C/Γ,
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where Γ = 2Z+2τZ is the lattice generated by 2 and 2τ for some τ ∈ C
with Im(τ) > 0. We assume by a change of basis that −1

2 < Re(τ) < 1
2 .

The Jacobian of T 2 is given by

Jac(T 2) = H0(T 2,K)/Λ,

where

Λ = {η̄ ∈ H0(T 2,K) |
∫
γ
(−η+ η̄) ∈ 2πiZ for all closed curves γ in T 2}.

The Jacobian can be viewed as the moduli space of holomorphic struc-
tures on the trivial line bundle. By fixing the global anti-holomorphic
1-form dw̄ we can identify

Λ ∼= πi
τ−τ̄Z + πiτ

τ−τ̄Z.

The moduli space of flat line bundle connections A1 = A1(T 2) is simi-
larly given by

A1 = H1(T 2,C)/Λ̃,

where H1(T 2,C) is the space of complex valued harmonic 1-forms on
T 2 and

Λ̃ = {ω ∈ H1(T 2,C) |
∫
γ
ω ∈ 2πiZ for all closed curves γ in T 2}

is a lattice of full rank. The moduli space of flat line bundle connections
can be seen as an affine holomorphic bundle

(2.1) (.)′′ : A1(T 2)→ Jac(T 2)

by assigning to a representative ∇ of a gauge class [∇] ∈ A1(T 2) the

isomorphism class of the induced holomorphic structure ∂̄
∇

.

2.2. Spectral curve theory for CMC tori. The main difference be-
tween CMC tori and higher genus CMC surfaces is that the first fun-
damental group of a torus π1(T 2) is abelian. Thus, for a flat unitary
connection and p ∈ T 2 there is a basis of Vp which simultaneously
diagonalizes the monodromy of ∇ along both generators of π1(T 2, p).
Therefore, ∇ splits into two line bundle connections on its parallel eigen-
lines L±, which are dual to each other. In fact, a generic flat SL(2,C)
connection on a torus has diagonalizable monodromy and splits into two
flat line bundle connections.

For the associated family ∇λ of a CMC torus this implies that ∇λ
splits into flat line bundle connections on the eigenlines of the mon-
odromy L± for generic λ ∈ C∗, since the family is unitary along S1.
More concretely, this means that for a generic λ ∈ C∗ the connection
∇λ is gauge equivalent to

(2.2) d+

(
−χ(λ)dw̄ + α(λ)dw 0

0 χ(λ)dw̄ − α(λ)dw

)
,
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with respect to the splitting V = L+
λ ⊕ L−λ , where dw is the (non-

trivial) holomorphic 1-form on the torus. The functions χ(λ) and α(λ)
are locally defined and holomorphic in λ away from exceptional values
of the spectral parameter λi (and are independent of w ∈ T 2).

In fact, it is shown in [23] that ∇λ is gauge equivalent to (2.2) except
at finitely many points λ1, . . . , λk. At these points λi the eigenlines L±λ
of the monodromy coalesce. The necessary condition for this to happen
is that the corresponding flat line bundle connection is self-dual. Then
the eigenlines are equipped with a flat spin connection, implying that
the trace of the monodromy of ∇λi along an arbitrary closed curve is
±2.

In order to obtain globally defined holomorphic maps χ and α we
replace the spectral plane C∗ by a double covering of C∗ branched at λi.
This new parameter space can be compactified by adding two points
over λ = 0 and λ = ∞ as shown in [23]. The resulting (compact)
hyperelliptic Riemann surface determined by the equation

Σ : ξ2 = λΠk
i=1(λ− λi)

is called the spectral curve of the CMC torus.

By (1.3) the associated family of holomorphic structures ∂̄
λ

= (∇λ)′′

extends through λ = 0 while the family of anti-holomorphic structures
∂λ = (∇λ)′ has a simple pole at λ = 0. Thus, ∇λ and its flat eigenline
bundles are parametrized by the spectral data (Σ, χ, α), where

χ : Σ \ {∞} → Jac(T 2) ∼= C/Λ

is an odd holomorphic map to the Jacobian of T 2 which is isomorphic
to C/Λ for a lattice Λ, and

α : Σ→ Jac(T 2)

is an odd meromorphic map to the moduli space of anti-holomorphic
line bundles over T 2 of degree 0 whose only pole is a first order pole at
λ = 0.

In general, a CMC immersion is not uniquely determined by its spec-
tral data (Σ, χ, α) due to the fact that a CMC immersion whose spec-
tral curve Σ has spectral genus ≥ 1 always admit non-trivial isospectral
deformations (including reparametrizations). These deformations are
given by shifts of the so-called (holomorphic) eigenline bundle Ep → Σ
(in which definition it is necessary to fix a base point p ∈ T 2) in the Pi-
card variety. Hitchin has shown in [23] that the spectral data (Σ, χ, α)
together with the eigenline bundle Ep uniquely determine the CMC
immersion as a conformal map; see also [30] for the relationship be-
tween the eigenline bundle and dressing transformations. For the CMC
tori of spectral genus ≤ 2 an isospectral deformation only changes the
parametrization of the CMC surface. Hence, we ignore the eigenline
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bundle and the isospectral deformations in the discussion of CMC tori
of spectral genus ≤ 2 in Section 2.3 and 2.4 below.

The extrinsic closing condition, i.e., the condition that the immersion
has no periods, is guaranteed by the existence of two points ξ1, ξ2 ∈ Σ
lying over the Sym points λ1 6= λ2 ∈ S1 ⊂ C∗, i.e., λ(ξk) = λk for
k = 1, 2, which satisfy

χ(ξ1) = χ(ξ2) = 0 ∈ Jac(T 2).

Remark 2.1. The map χ : Σ \ {∞} → Jac(T 2) uniquely determines
the meromorphic map α by the condition that ∇λ is unitary along
S1 ⊂ C∗, i.e., α(ξ) = χ(ξ) for points ξ ∈ λ−1(S1) lying over the unit
circle. Also, the map χ is already determined by its values on the
preimage of the closed unit disc. Thus, to construct a map D satisfying
the properties of Theorem 1.2 boils down to write down an appropriate
holomorphic map χ on the preimage of the disc D1+ε ⊂ C∗. The main
issue will be that the corresponding map α must have a simple pole over
λ = 0. For tori, in contrast to the spectral data of higher genus CMC
surfaces, this condition is understood and is equivalent to χ : Σ\{∞} →
Jac(T 2) having a first order pole at the point lying over λ = ∞, i.e.,
dχ is a meromorphic 1-form with a pole of order 2 over λ =∞ without
residue.

Remark 2.2. In order to obtain a unified theory for higher genus
surfaces, we apply an overall shift of Jac(T 2) by the half lattice point

−πi(1+τ)
4τ . The maps χ and α are shifted accordingly:

χshift = χ− πi(1+τ)
4τ ,

αshift = α+ πi(1+τ̄)
4τ̄ .

(2.3)

In the following, abusing notations, we will denote χshift and αshift
again by χ and α. Note that this shift gives rise to tensoring the asso-
ciated family by a flat Z2-bundle; see also 1.3 and 1.4.

We next determine the spectral data for those tori, which will serve as
the initial condition for the short time existence of our flow in Sections
4.1 and 4.2.

2.3. Homogeneous CMC tori. Homogenous tori are the simplest
CMC tori in S3. They are the product of two circles with different
radii and can be parametrized by

f(x, y) = (1
re
irx, 1

se
isy) ⊂ S3 ⊂ C2, r, s ∈ R\{0}, 1

r2
+

1

s2
= 1.

Thus, (simply wrapped) homogenous tori always have rectangular con-
formal types so we identify T 2 = C/Γ where Γ = 2Z + 2τZ for some
τ ∈ iR≥1. The Jacobian of T 2 is the dual torus given by

Jac(T 2) = H0(T 2,K)/Λ ∼= C/( πi2τZ + πi
2 Z),
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where the isomorphism is given by the trivializing section dw̄. For ho-
mogenous tori the spectral curve Σ, which has genus 0, is defined by
the algebraic equation

ξ2 = λ.

Since Σ ∼= CP1 is simply connected, every meromorphic map

χ : CP1 → Jac(T 2)

lifts to a meromorphic function χ̂ : CP1 → C. By Remark 2.1 and
because χ is odd we obtain

(2.4) χ̂(ξ) = πiR
4τ ξdw̄ + γ,

for some R ∈ C∗ and γ ∈ 1
2Λ. The constant term γ determines the spin

class of the corresponding CMC immersion. By rotating the spectral
plane we may assume that R ∈ R>0.

The extrinsic closing condition is that there are two trivial con-
nections ∇λ1 and ∇λ2 for distinct λ1 6= λ2 ∈ S1. If the intrinsic
closing condition holds the extrinsic closing condition is equivalent to
χ(±ξi) = 0 ∈ Jac(T 2) at all ξi satisfying ξ2

i = λi. After applying the
shift (2.3) the extrinsic closing condition is equivalent to the existence
of four points

±ξ1,±ξ2 ∈ S1 ⊂ C∗,
such that

χ̂(±ξ1,2) ∈ πi(1+τ)
4τ dw̄ + Λ.

The function χ̂ is linear for Σ ∼= CP 1, thus, the image of S1 under χ̂ is
a circle itself. Further, since Γ is rectangular the lattice Λ of its Jacobian
is also rectangular. A computation (comparing the monodromies of the
∇λ corresponding to χ and the actual associated family) shows that the
spectral data of homogenous tori are given by the choice γ = 0 (after
the shift) and

(2.5) R =
√

1 + τ τ̄ ,

see §6 of [23]. Note that (2.5) gives the smallest possible R in (2.4) for
which the image of S1 under χ contains four lattice points of Λ.

2.4. 2-lobed Delaunay tori. Next we describe the spectral data (Σ, χ)
for certain CMC tori of revolution. Such a torus is given by the rotation
of a profile curve in the upper half plane, viewed as the hyperbolic plane
H2, around the x−axis, where we consider S3 as the one point compact-
ification of R3. The torus has constant mean curvature if and only if its
profile curve is elastic in H2. The 2-lobed Delaunay CMC tori are those
whose profile curve closes after two periods of its geodesic curvature in
H2; see [16, 27] for details. The conformal type of a CMC torus of
revolution is rectangular and determined by a lattice Γ = 2Z + 2τZ for
some τ ∈ iR>0. The corresponding spectral curve Σ is a torus and,
thus, it can be identified with C/Γspec for a lattice Γspec. The spectral
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curve branches over λ = 0 and the branch points reflect across the unit
circle, thus, Σ = C/Γspec is of rectangular conformal type and can be
identified with

Σ = C/(Z + τspecZ),

where τspec ∈ iR. We use the coordinate ξ on the universal covering C
of Σ and consider

λ : C/(Z + τspecZ)→ CP1,

as the holomorphic map of order two determined by its ramification
points

[0], [1
2 ], [

1+τspec
2 ], [

τspec
2 ] ∈ C/(Z + τspecZ),

and its branch points

(2.6) λ([0]) = 0, λ([1
2 ]) = r, λ([

1+τspec
2 ]) =

1

r
, λ([

τspec
2 ]) =∞,

for some r ∈ (0, 1). The preimage of the unit circle S1 ⊂ C∗ under λ
has two components

C± = {[s± 1
4τspec] ∈ C/(Z + τspecZ) | s ∈ R},

and the preimage of the unit disc is

Σ0 = {[x+ yi] ∈ C/(Z + τspecZ) | x, y ∈ R,
i

4
τspec < y < − i

4
τspec}.

Because there are no meromorphic functions of degree 1 on a compact
Riemann surface of genus g > 0, the map

χ : Σ \ λ−1({∞})→ Jac(T 2) ∼= C/Λ,

must have periods, i.e., there is no global lift of χ mapping to the univer-
sal covering of Jac(T 2). Nevertheless, the differential dχ is a well-defined

meromorphic 1-form (with values in H0(T 2,K) ∼= C) with a double pole
at [

τspec
2 ] = λ−1(∞) and no other singularities. As χ is odd, we know

that χ([0]) is a spin point (or half lattice point) of Jac(T 2). The 2-lobed
Delaunay tori bifurcate from the homogeneous tori, i.e., for τspec → 0
the spectral data converge to the spectral data of a homogeneous torus,
as is shown in [27]. Thus, (after the shift) χ([0]) = 0 ∈ Jac(T 2) is
the trivial holomorphic line bundle. Moreover, dχ has only a period in
the direction 1 ∈ (Z + τspecZ) = π1(Σ̄), and no period in the direction
of τspec, as one can deduce by carefully studying the behavior of the
spectral data for τspec → 0. Thus,

(2.7) dχ = (a℘(ξ − τspec
2 ) + b)dξ ⊗ πi

2τ
dw̄,

where ℘ is the Weierstrass ℘-function on C/Λ and a and b are uniquely
determined by
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τspec

(a℘(ξ − τspec
2 ) + b)dξ = 0,∫

1
(a℘(ξ − τspec

2 ) + b)dξ = 2.

(2.8)

The last equation reflects the fact that the 2-lobed Delaunay tori con-
verge to the homogenous torus with τ =

√
3i and there the image of S1

for the limit map 2τ
πiχ has perimeter 2. For closed surfaces the period

along 1 ∈ Γspec is necessarily an integer due to the normalization in
(2.7). Thus, it remains constant along the continuous family.

The condition that the map χ takes values in πi(1+τ)
4τ dw̄ + Λ at two

disjoint ξi ∈ C+ then determines the conformal type τ = τ(τspce) of
the 2−lobed Delaunay torus as follows: let ζ be the Weierstrass ζ-
function defined by −ζ ′(ξ) = ℘(ξ) and limξ→0(ζ(ξ)− ξ−1) = 0, and let

η3 := ζ(
τspec

2 ) and η1 := ζ(1
2). It is well-known (see [37]) that

η1
τspec

2 − η3
1
2 = π

2 i.

Together with (2.8) this yields

a = − τspec
πi ,

b = −2η3πi .
(2.9)

Since Σ is rectangular, the constants a and b are real; moreover, a is
negative. By construction there exists a smallest s0 ∈ R>0 such that

(2.10) Re

∫ s0+ 1
4
τspec

0
(a℘(ξ − τspec

2 ) + b)dξ = 1.

Define

h := Im

∫ s0+ 1
4
τspec

0
(a℘(ξ − τspec

2 ) + b)dξ.

Using that the imaginary part of
∫

(a℘(ξ − τspec
2 ) + b)dξ is monotonic

decreasing along the curves [0; 1
2 ] 3 t 7→ [t+ 1

4τspec] ∈ Σ and [0; 1
4 ] 3 t 7→

[1
2 + tτspec] ∈ Σ together with

Im

∫ 1
2

0
(a℘(ξ − τspec

2 ) + b)dξ = 0,

we obtain that h > 0.
We define the conformal structure of T 2 = C/Γ by the lattice Γ =

2Z + 2τZ with

(2.11) τ := hi.

Since a and b are real and Σ is of rectangular conformal type one can
compute that∫ −s0+ 1

4
τspec

0
(a℘(ξ − τspec

2
) + b)dξ = −1 + τ

2 ∈
1
2Λ.
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Moreover, because the period of (a℘(ξ − τspec
2 ) + b)dξ with respect to

1 ∈ Γspec is 2, we obtain that s0 <
1
2 , and, therefore,

[−s0 +
1

4
τspec] 6= [s0 +

1

4
τspec] ∈ Σ.

This yields the existence of two distinct points ξ1 = [s0+ 1
4τspec] ∈ C

+

and ξ2 = [−s0 + 1
4τspec] ∈ C

+ with the property that

χ(ξk) ∈
πi(1 + τ)

4τ
dw̄ + Λ, k ∈ {1, 2}.

The corresponding flat SL(2,C) connections ∇λk for λ1 6= λ2 ∈ S1 are
then trivial on T 2 so τ = hi is, indeed, the conformal type of the im-
mersion. Altogether, we have seen the existence of a family of CMC tori
parametrized by the real parameter Im(τspec). Note that by Hitchin’s
energy formula for harmonic maps (§13 in [23]), the area of the CMC
torus is 8iτab. Hence, iτb < 0 for all τspec ∈ iR>0 yielding b > 0.

We will need the following two lemmas in Section 4.2 below.

Lemma 2.1. The spectral data (Σ, χ) of a 2-lobed Delaunay torus
have the property that

{ξ ∈ Σ̄0 | χ(ξ) = 0 ∈ Jac(T 2)} = {[0], [1
2 ]} ⊂ Σ,

where Σ̄0 = λ−1({λ ∈ C | λλ̄ ≤ 1}).

Proof. We first show the statement for τspec → 0, where the corre-
sponding 2-lobed Delaunay tori converge to the homogeneous torus with
R = 2. For homogeneous tori the spectral curve Σ ∼= CP 1 is given by
ξ2 = λ and the spectral datum χ with R = 2 has the property that

{ξ ∈ C | ξξ̄ ≤ 1 and χ(ξ) = 0 ∈ Jac(T 2)} = λ−1({0, 1}).
For the 2-lobed Delaunay tori, we have χ([1

2 ]) = 0 ∈ Jac(T 2), and

λ([1
2 ]) = r → 1 and λ([

1+τspec
2 ]) = 1

r → 1 as τspec → 0.

Because the family of associated holomorphic structures ∂̄
λ

of the De-
launay tori converge, as τspec → 0, uniformly against the family of as-
sociated holomorphic structures of the homogeneous torus with R = 2
on the set {λ ∈ C | λλ̄ ≤ 1}, the statement holds in the limit.

The full statement follows from continuity of the spectral data within
the Whitham deformation together with the fact that for 2-lobed De-
launay tori there is no other point λnew ∈ S1 appearing on the unit
circle such that

χ(ξnew) = 0 ∈ Jac(T 2),

for ξnew ∈ λ−1(λnew):
By Proposition 2.1 in [28] together with the fact that the 2-lobed

Delaunay tori are not minimal Theorem 4.5 in [27], the Willmore energy∫
T 2(H2 + 1)dA of the 2-lobed Delaunay tori is monotonically increasing
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in τspec and converges to 8π for τspec →∞, where the surfaces converge
to a branched double cover of a geodesic sphere ([27, Lemma 4.4]). If
there were a point ξnew ∈ λ−1(S1), the monodromy of the corresponding
flat SL(2,C) connection would be − Id along both generators 1 and τ of
the first fundamental group π1(T 2). At the ramification point ξb = [1

2 ] ∈
T 2 the trace of monodromy of the corresponding SL(2,C) connection is
also −2 along both generators 1, τ . An adaption of the proof of Theorem
6.7 in [10] gives a lower bound on the Willmore energy depending on the
dimension of the space of monodromy-free holomorphic sections: On the
two fold covering of T 2 determined by the lattice (1−τ)Z+(1+τ)Z the
parallel sections with respect to ∇ξb and ∇ξnew and the parallel sections
with respect to the trivial connections at the two Sym points yield a
subspace of the space of quaternionic holomorphic sections with respect
to the induced quaternionic holomorphic structure whose quaternionic
dimension is at least 4. The Plücker formula in [10, Equation (89)] gives
the Willmore estimate

W (f) ≥ π
2 42 = 8π,

which is a contradiction. q.e.d.

Lemma 2.2. Let (Σ, χ) be the spectral data of a 2-lobed Delaunay
torus, where χ is given by (2.7) and (2.9) with χ([0]) = 0. Consider
the preimage ξ1 ∈ C+ ⊂ Σ of a Sym point λ1 ∈ S1 given by ξ1 =
s0 + 1

4τspec ∈ C. Then the vectors

∂χ

∂τspec
|ξ1 ∈ H0(T 2,K),

∂χ

∂ξ
|ξ1 ∈ H0(T 2,K)

are R-linear independent, where ∂χ
∂τspec

|ξ1 is the derivative of χ with re-

spect to τspec ∈ iR>0 at s0 + 1
4τspec.

Proof. By Theorem 5 and Section 3.5 in [16] we obtain ∂ τ
∂ τspec

6= 0

along the family of 2-lobed Delaunay tori. Hence, by (2.11), it is enough
to prove that

Re
2τ

πidw̄

∂χ

∂ξ
|ξ1 = Re(a℘(ξ1 − τspec

2 ) + b) 6= 0,

for all τspec ∈ iR>0 with a, b ∈ R as in (2.9). Because s0 ∈ R>0 is the
smallest number satisfying (2.10) by definition of the Sym point and

because
∫ ξ

0 (a℘(ξ − τspec
2 ) + b)dξ is imaginary along the imaginary axis,

Re(a℘(ξ1 − τspec
2 ) + b) < 0 is impossible.

If
Re(a℘(ξ1 − τspec

2 ) + b) = 0,

then the function

g : R→ R, g(s) =

∫ s+
τspec

4

0
(a℘(ξ − τspec

2 ) + b)dξ,
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would have either a local maximum (s0 as a minimum does not occur,
because s0 is the smallest number satisfying (2.10)) or an inflection point
at s0.

If g(s) has an inflection point at s0, then g′′(s0) = 0. Since 2τ
πidw̄dχ =

(a℘(s − τspec
4 ) + b) = ãλ + b̃ for real ã, b̃ ∈ R, and because λ : Σ →

CP 1 maps the line R +
τspec

4 onto the unit circle, the map R 3 s 7→
a℘(s − τspec

4 ) + b maps the real line onto a circle in C centered on the

real axis. Moreover, the circle intersect the x-axis exactly for s ∈ 1
2Z

and these are the only critical points of the real-valued function g′(s).
But we have 0 < s0 by definition and s0 6= 1

2 because the real part of

R 3 t 7→ 2τ
πidw̄χ(1

2 + ti) is constant and 2τ
πidw̄χ(1

2) = 1 by (2.8), which
leads to a contradiction. Thus, for every τspec the Sym point satisfies
0 < s0 <

1
2 and s0 is not a inflection point of g.

If g has a local maximum at s0, then by (2.8) there must be another
s̃0 ∈]s0,

1
2 [ which satisfies (2.10). This is not the case as τspec → 0

or τspec → ∞; see [37]. Further, since all involved functions and the
constants a, b depend real analytically on τspec, we get a conformal type
τspec0 for the spectral curve such that for Im(τspec) < Im(τspec0) there
is only one point s0 ∈]0, 1

2 [ satisfying (2.10) and for Im(τspec0) + ε >
Im(τspec) > Im(τspec0) (for some small ε > 0) there are at least two
points s0 6= s̃0 ∈]0, 1

2 [ satisfying (2.10). Hence, for τspec0 we get that
the corresponding s0 is an inflection point of gτspec0 and we get also a
contradiction in this case. q.e.d.

3. Spectral curve theory

In the previous section we have shown how CMC tori can be de-
scribed by a holomorphic map from the associated spectral curve into
the Jacobian of the CMC torus. The main ingredient was the reduc-
tion of (a generic) flat SL(2,C) connection over the torus to a flat line
bundle connection. Now we want to explain how to generalize the torus
spectral curve theory to the case of higher genus CMC surfaces with cer-
tain discrete symmetries. The theory for the particular case of Lawson
symmetric CMC surfaces of genus 2 was developed in [21]. In Section
3.1, we start with a λ-independent discussion of certain flat SL(2,C)
connections in terms of flat line bundles, and in 3.2 we consider the
λ-dependent version thereof.

3.1. Abelianization. As in Section 2, we consider the lattice Γ = 2Z+
2τZ and the corresponding Riemann surface T 2 = C/Γ of genus 1. Let
σ : T 2 → CP 1 be the elliptic involution and let

(3.1) z : T 2 → CP1

be the induced double covering with its four ramification points by

(3.2) P1 = [0], P2 = [1], P3 = [1 + τ ], P4 = [τ ] ∈ T 2.
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By applying a Moebius transformation we assume that the branch points
pk of z are given by
(3.3)
p1 = z([0]) = 0, p2 = z([1]) = 1, p3 = z([1+τ ]) =∞, p4 = z([τ ]) =m∈CP1,

for some m ∈ C \ {0, 1}. For ρ ∈]− 1
2 ,

1
2 [ consider the moduli space

A2
ρ(CP1 \ {p1, . . . , p4})

of flat SL(2,C) connections on the 4-punctured sphere CP1\{p1, . . . , p4}
with the additional property that the local monodromies Mk around
every puncture pk are contained in the conjugacy class of

(3.4)

(
exp (2πi2ρ+1

4 ) 0

0 exp (−2πi2ρ+1
4 )

)
.

We have the following important relation between flat line bundles
on the torus and A2

ρ(CP1 \ {p1, . . . , p4}):

Theorem 3.1 ([17]). Let ρ ∈]− 1
2 ,

1
2 [ and let π1 : A1(T 2)→ Jac(T 2)

be the projection from the moduli space of flat line bundle connections to
the moduli space of holomorphic structures on a trivial line bundle. Then
there is a 2:1 correspondence Π between the open and dense set A1(T 2)\
(π1)−1(Λ) and an open and dense subset of A2

ρ(CP1 \ {p1, . . . , p4}) of
flat SL(2,C) with local monodromies lying in the conjugacy class given
by (3.4).

This 2:1 correspondence extends to the π1-preimage of Λ ≡ πi
τ−τ̄Z +

πiτ
τ−τ̄Z in the following sense: Let χ 7→ α(χ) be a holomorphic map on

U ⊂ C \ ( πi
τ−τ̄Z + πiτ

τ−τ̄Z) and γ ∈ Ū ∩ πi
τ−τ̄Z + πiτ

τ−τ̄Z. Then the map

χ 7→ Π([∇χ,α(χ)]) extends to χ = γ if and only if α expands around
χ = γ as

(3.5) α(χ) ∼γ ±
4πi

τ − τ̄
ρ

χ− γ
+ γ̄ + higher order terms in χ.

A proof of theorem can be found in [17], but we shortly recall the
construction of Π below; see (3.10). The reader should be aware of the
differing normalizations here and in [17] and [21]. It is also important
to mention that the abelianization is related to (and, in fact, motivated
by) the Hitchin system [24]. These two theories are not equivalent since
we use the complex structure J on the moduli space of flat connections
induced by the complex group SL(2,C) whereas the Hitchin system is
making use of the complex structure I.

In order to describe the map Π in Theorem 3.1 we need the lattice
1
2Γ = Z+τZ and the (shifted) theta-function ϑ on C/1

2Γ, i.e., the unique
(up to a multiplicative constant) entire function ϑ : C → C satisfying
ϑ(0) = 0 and

(3.6) ϑ(w + 1) = ϑ(w), ϑ(w + τ) = −ϑ(w)e−2πiw,
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for all w ∈ C. For every x /∈ 1
2Γ we define the function

(3.7) βx(w) =
ϑ(w − x)

ϑ(w)
e

2πi
τ̄−τ x(w−w̄)

.

For x ∈ C \ 1
2Γ the function βx is doubly periodic in w with respect to

the lattice 1
2Γ and satisfies(

∂̄− 2πi

τ − τ̄
xdw̄

)
βx = 0.

Thus, βx is a meromorphic section of the trivial bundle C → C/1
2Γ

equipped with the holomorphic structure ∂̄− 2πi
τ−τ̄ xdw̄ and has a simple

zero at w = x and a first order pole at w = 0. We can view βx on the
bigger torus T 2 = C/Γ→ C/1

2Γ as a meromorphic section with respect

to the holomorphic structure ∂̄− 2πi
τ−τ̄ xdw̄. This section has four simple

zeros and four simple poles.
For a given flat line bundle connection

(3.8) dχ,α = d+ αdw − χdw̄,
with χ ∈ C \ ( πi

τ−τ̄Z+ πiτ
τ−τ̄Z), x = τ−τ̄

2πi χ, and α ∈ C we consider the flat

singular connection ∇̂χ,α on the trivial rank 2 bundle C2 × T 2 → T 2:

(3.9) ∇̂χ,α = d+

(
−χdw̄ + αdw ρ ϑ′(0)

ϑ(−2x)β2x(w)dw

ρ ϑ
′(0)

ϑ(2x)β−2x(w)dw χdw̄ − αdw

)
.

Note that the off-diagonal of (3.9) only depends on the holomorphic
structure ∂̄−χdw̄ and is independent of α.

In [17] it is shown that ∇̂χ,α is gauge equivalent (via a two-valued
gauge transformation with singularities at P1, . . . , P4) to a flat SL(2,C)

connection which is given by the pullback of a representative ∇̃χ,α of an
element of A2

ρ(CP1 \ {p1, . . . , p4}). The map Π is then given by

(3.10) Π([dχ,α]) = [∇̃χ,α] ∈ A2
ρ(CP1 \ {p1, . . . , p4}).

Replacing the line bundle connection dχ,α by its dual connection d−χ,−α

in (3.9) yields the same gauge equivalence class inA2
ρ(CP1\{p1, . . . , p4}),

i.e.,

Π([d−χ,−α]) = Π([dχ,α]) = [∇̃χ,α].

Remark 3.1. Note that the ambiguity of the sign of the residue
±4πiρ
τ−τ̄ in (3.5) is meaningful: For positive residue the corresponding

underlying parabolic structure is stable (see [17] for more details). If the
residue is negative, the underlying parabolic structure is unstable, which
implies that the corresponding SL(2,C) connection on the 4-punctured
sphere cannot be unitary. It should be also mentioned that parabolic
stability reduces in the case of rational ρ to the stability of a related
holomorphic structure on a certain covering of the torus.
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We use (ρ, χ, α) to parametrize flat connections of the form (3.9)
with four simple poles at P1, . . . , P4 on T 2. We think of χ as a point
in Jac(T 2) and consider the pair (χ, α) as a point in A1(T 2) via (3.8).
By the Mehta–Seshadri Theorem [31] (see also [17] for a treatment
of the Mehta–Seshadri theorem in the setup at hand) there exist for
every χ ∈ C \ ( πi

τ−τ̄Z + πiτ
τ−τ̄Z) a unique α = αuρ(χ) ∈ C such that

the monodromy representation of the connection given by (3.9) with
(ρ, χ, αuρ(χ)) is unitarizable. In fact, for every ρ ∈] − 1

2 ,
1
2 ] this map

χ 7→ αuρ(χ) induces a real analytic section of the affine holomorphic

bundle A1(T 2)→ Jac(T 2) which we denote by

(3.11) αMS
ρ ∈ Γ(Jac(T 2) \ {0},A1(T 2))

given by αMS
ρ ([∂̄−χdw̄]) = [d+αuρ(χ)dw−χdw̄]. Note that αuρ satisfies

the following functional properties:

αuρ(χ+
πi

τ − τ̄
τ) = αuρ(χ) +

πi

τ − τ̄
τ̄ ,

αuρ(χ+
πi

τ − τ̄
) = αuρ(χ) +

πi

τ − τ̄
,

(3.12)

for all ρ ∈]−1
2 ,

1
2 [ and χ ∈ C \ Λ̂.

Lemma 3.1. Let T 2 = C/(2Z + 2τZ) and ρ ∈] − 1
2 ,

1
2 [. Then the

section αMS
ρ in (3.11) is odd with respect to the involution on Jac(T 2)

induced by mapping a holomorphic structure to its dual structure. If
τ ∈ iR then αMS

ρ is real in the sense that

αuρ(χ̄) = αuρ(χ),

for all χ ∈ C \ ( πi
τ−τ̄Z + πiτ

τ−τ̄Z).

Proof. Because the dual line bundle connection induces the same
SL(2,C) connection on the punctured torus, the section αMS

ρ is odd

for all ρ ∈ ]−1
2 ,

1
2 [. The second assertion follows from the fact that the

complex conjugated Riemann surface of a rectangular torus is isomor-
phic to the torus itself. q.e.d.

Lemma 3.2. Away from the origin 0 ∈ Jac(T 2) the map

αMS : ]−1
2 ,

1
2 [×Jac(T 2) \ {0} → A1(T 2)

is real analytic.

Proof. As indicated in (13) and Remark 7 in [21], a connection of
the form (3.9) is the pullback of a connection on a one-punctured torus.
A necessary (respectively sufficient) condition that such a connection is
unitary with respect to a suitable hermitian metric is that the traces
of two independent global monodromies lie in the interval [−2, 2] ⊂ R
(respectively, in ] − 2, 2[⊂ R). The statement, thus, follows from the
fact that the monodromy depends analytically on (ρ, χ, α). q.e.d.
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Remark 3.2. It was shown in [21] that for ρ = 1
6 the moduli space

A2
ρ(CP1 \{p1, . . . , p4}) is equivalent to the moduli space of Lawson sym-

metric flat SL(2,C) connections on a Lawson symmetric Riemann sur-
face of genus 2. A similar interpretation is true for certain discrete
values of ρ; see also Section 3.3 below. By changing ρ we are, therefore,
continuously deforming (certain subspaces of) the moduli space of flat
connections on varying Riemann surfaces of different genera.

3.2. The spectral data. The spectral curve theory (as described be-
low) unifies the spectral curve theory for CMC tori (see Section 2) and
the spectral curve theory for Lawson symmetric CMC surfaces of genus
2 as developed in [21]. The main idea is to parametrize λ-families of
(gauge equivalence classes of) SL(2,C) connections in terms of fami-
lies of (gauge equivalence classes of) line bundle connections. A slight
drawback of this approach is that the line bundle connections can only
be parametrized in terms of a spectral curve, i.e., a double covering
λ : Σ→ C of the spectral plane. In fact, in order to obtain conformally
parametrized CMC surfaces, the spectral curve branches over λ = 0
and possibly other discrete spectral values λ1, λ2, . . . ,∈ C. The spectral
curve Σ is equipped with an odd holomorphic map χ : Σ → Jac(T 2)
(with respect to the hyperelliptic involution) and with a corresponding
odd meromorphic map α such that

dα,χ = d+ αdw − χdw̄

is a lift of χ into the affine moduli space A1(T 2) of flat line bundle
connections on T 2. Note that the maps χ and dα,χ must be odd because
the corresponding family of flat SL(2,C) connections is well-defined in
terms of λ. Moreover, dα,χ must have a first order pole in the affine
holomorphic bundle A1(T 2) → Jac(T 2) at λ−1(0) as a consequence of
(1.3). The spectral data (Σ, χ, dα,χ) of a family λ 7→ [∇λ] give rise to a
commuting diagram

(3.13) A1(T 2)

′′

��
Π

��

Σ

dα,χ
77

χ
//

λ
��

Jac(T 2)

C
[∇λ] // A2

where Π is the 2:1 covering map discussed in Theorem 3.1, and A2 =
A2
ρ(CP1 \ {p1, . . . , p4}).

Remark 3.3. Note that the spectral curves for higher genus CMC
surfaces (as discussed in Section 3.2 below) are not compact as in the
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case of CMC tori. Nevertheless, we use the same notations for the
spectral curve and the spectral data as in the torus case.

In order to define a CMC surface the spectral data must further
satisfy the conditions stated in the following theorem:

Theorem 3.2. Let ρ ∈]0; 1
2 [ and let λ : Σ → D1+ε ⊂ C be a double

covering of the (1 + ε) disc branched over finitely many points λ0 =
0, λ3, . . . , λk. Further, let χ : Σ→ Jac(T 2) be an odd map (with respect
to the involution σ on Σ induced by λ) and dα,χ be an odd meromorphic
lift of χ to A1(T 2) satisfying the following conditions:

1) χ(λ−1(0)) = 0 ∈ Jac(T 2);
2) D has a first order pole at λ−1(0);
3) D has a first order pole satisfying the condition induced by (3.5)

at every ξs ∈ Σ \ λ−1({0}) with χ(ξs) = 0 ∈ Jac(T 2) and no other
singularities;

4) for all ξ ∈ λ−1(S1): dα,χ(ξ) = αMS
ρ (χ(ξ));

5) there are four distinct points ξ1, σ(ξ1), ξ2, σ(ξ2) ∈ λ−1(S1) ⊂ Σ

with χ(ξk) ∈ πi(1+τ)
2τ−2τ̄ + Λ for k ∈ {1, 2}, where Λ = πi

τ−τ̄Z + πiτ
τ−τ̄Z

is the lattice generating Jac(T 2).

Then there exists a conformal CMC immersion

f : T 2 \ (l1 ∪ l2)→ S3,

whose associated family of flat connections give rise to the spectral data
(Σ, χ,D), where l1 = {[tτ ] | t ∈ [0, 1]} and l2 = {[tτ + 1] | t ∈ [0, 1]}.

Proof. For all ρ ∈]0, 1
2 [, χ ∈ Jac(T 2) \ {Spin bundles} and α ∈ C

the connection ∇̂χ,α given by (3.9) is irreducible. By condition (3) the
family of (gauge equivalence classes of) SL(2,C) connections has no
singularities on D1+ε except at λ = 0. By the proofs of Theorem 6 and
Theorem 8 in [21] applied to our situation we obtain a family of flat
SL(2,C) connections of the form

∇λ = λ−1Φ +∇− λΦ∗,

on T 2 \ {P1, . . . , P4} (where the Pk are as in (3.2)) with the property
that ∇λ is unitary with respect to a fixed hermitian metric for λ ∈ S1

and such that Φ is a complex linear, nilpotent and nowhere vanishing
1-form on T 2 \ {P1, . . . , P4}.

Because of Remark 1.3 it remains to prove that the restrictions of both
connections ∇λk , k = 1, 2 to T 2 \ (l1 ∪ l2) ⊂ T 2 \ {P1, . . . , P4} are gauge
equivalent to the same flat connection which has monodromy taking

values in {± Id}. Note that for any χ0 ∈ πi(1+τ)
2τ−2τ̄ + Λ the (unitarizable)

connection ∇̂χ0,αuρ (χ0) yields the same gauge equivalence class due to the
periodicity properties; compare with (3.12).
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Figure 2. Four paths γ±k k = 1, 2 in the cut torus T 2 \
(l1∪ l2) and their images under z in CP1. These are used
in the proof of Theorem 3.2.

We proceed as follows: We start with a reducible connection on the
4-punctured sphere, whose monodromy is easily computable, and show
that its pullback is gauge equivalent (by a two-valued gauge transfor-

mation, i.e., the gauge is well-defined up to sign) to ∇̂χ0,αuρ (χ0). Note
that the monodromy representations of two flat connections which are
gauge equivalent by a two-valued gauge transformation differ by a rep-
resentation with values in {± Id}.

We have identified T 2 = C/(2Z+2τZ) and we make use of the elliptic

function z : T 2 → CP1 as in (3.1). For ε = 2ρ+1
4 consider the Fuchsian

system

(3.14) d+ ε

(
1 0
0 −1

)
dz

z
+ ε

(
−1 0
0 1

)
dz

z − 1
+ ε

(
−1 0
0 1

)
dz

z −m
,

on the 4-punctured sphere CP1 \ {0, 1,∞,m}. The pullback of this
Fuchsian system via the degree 2 map z is a flat meromorphic connection
∇̃ which has first order poles at the ramification points Pk of z. The
local monodromies are determined by the eigenvalues ±(ρ + 1

2) of the

residues of ∇̃. We claim that the monodromies of ∇̃ along the curves
γ±1 : t ∈ [0, 2] 7→ t± τ

2 and γ±2 : t ∈ [0, 2] 7→ tτ± 1
2 are all the identity Id,

which then implies that the monodromy representation of ∇̃ is trivial
when we restrict it to T 2 \ (l1 ∪ l2). But the monodromy representation
of the (diagonal) Fuchsian system on the 4-punctured sphere can be
computed via the residue theorem, and it can be easily related to the
monodromy representation of ∇̃ on the 4-punctured torus. For example,
the closed planar curves z(γ±1 ) have winding number −1 around p1 = 0
and p2 = 1, and winding number 0 around p4 = m. Therefore, the
monodromy of ∇̃ is trivial along γ±1 .

To construct the (two-valued) gauge transformation we consider the
following meromorphic 1-form
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φ =

(
0 1
0 0

)
dz

z
+

(
0 0
1 0

)
dz

z − 1
+

(
0 0
−1 0

)
dz

z −m
,

and its eigenline bundles E± which are well-defined on T 2. The standard
computation of eigenlines shows that each eigenline bundle corresponds
to the divisor

D = −[0]− [1 + τ ] ≡ −[1]− [τ ],

of degree −2, and that they are realized as holomorphic line subbundles
E± of the trivial C2-bundle over T 2 as the image of the map(

±â
b̂

)
: L(−[0]− [1 + τ ])→ C2,

where â, b̂ ∈ H0(T 2, L(−[0] − [1 + τ ])∗) are determined up to a multi-
plicative constant by their divisors

(â) = [1] + [τ ] and (b̂) = [0] + [1 + τ ].

Note that the holomorphic line bundles L(−[0]− [1 + τ ]) and L(−2[0])
differ by the spin bundle L([0]− [1 + τ ]) which corresponds to the holo-
morphic structure

∂̄
0−πi(1+τ)

2τ−2τ̄ dw̄.

Consider the meromorphic frame s = s−2[0] (with double pole at [0] ∈
C/(2Z + 2τZ) = T 2) of the line bundle L(−2[0]). With respect to the
frame (s⊕0, 0⊕s) of L(−2[0])⊕L(−2[0]), the gauge which diagonalizes
φ is given by

g =

(
a −a
b b

)
,

where

(3.15) a(w) = cβ
[
1
2 ]

(1
2w)β[

τ
2 ](

1
2w) and b(w) = β

[
1+τ

2 ]
(1

2w),

for some constant c ∈ C∗ and βx as in (3.7). Write

∇̃ = d+

(
f 0
0 −f

)
dw,

for the unique odd meromorphic function f : C/(2Z + 2τZ) → C with
simple poles at [0], [1], [1+ τ ] and [τ ] and residues given by ρ+ 1

2 ,−(ρ+
1
2), ρ+ 1

2 , and −(ρ+ 1
2), respectively. Then we obtain

(3.16) ∇̃.g = d+

(
0 −f
−f 0

)
+ 1

2

(
da
a + db

b −da
a + db

b
−da

a + db
b

da
a + db

b

)
.

Consider the unique flat meromorphic line bundle connection ∇S on
L(−2[0]) satisfying

(∇S ⊗∇S)s−[0]−[1]−[1+τ ]−[τ ] = 0,
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for the meromorphic section s−[0]−[1]−[1+τ ]−[τ ] of the bundle L(−2[0])⊗
L(−2[0]) with simple poles at [0], [1], [1 + τ ] and [τ ]. It satisfies

∇Ss−2[0] = 1
2
d℘′

℘′ s−2[0],

where ℘′ is the derivative of the Weierstrass ℘-function of T 2, which is
an odd meromorphic function with zeros at [1], [1 + τ ] and [τ ] and a
pole of order 3 at [0]. Using the ϑ-function in (3.6) and denoting

ϑ0(w) = ϑ(1
2w), ϑ1(w) = ϑ(1

2(w − [1])), ϑ2(w) = ϑ(1
2(w − [1 + τ ]))

and ϑ3(w) = ϑ(1
2(w − [τ ]))

we get the identity

d℘′(w)

℘′(w)
= −3

dϑ0

ϑ0
+
dϑ1

ϑ1
+
dϑ2

ϑ2
+
dϑ3

ϑ3
+ constant dw,

where the constant-term can be computed explicitly. Therefore,

∇̂ := (∇S)∗ ⊗ ∇̃.g

is a rank 2 connection on the trivial C2-bundle whose diagonal part is
smooth. Note that the global monodromies (along γ±1 and γ±2 ) of ∇S
are − Id, and its local monodromies are − Id as well. The (0, 1)-part of
the upper left entry and of the lower right entry of the corresponding
connection 1-form (with respect to the standard frame of C2) are both
given by

πi(1 + τ)

2τ − 2τ̄
dw̄,

as can be computed by looking at (3.16) using (3.15) and (3.7). Finally,

we gauge ∇̂ by the diagonal gauge transformation

h =

(
i exp( 2πi

τ−τ̄ (1 + τ)(w − w̄)) 0

0 −i

)
.

It remains to prove that for χ0 = πi(1+τ)
2τ−2τ̄ the connections ∇̂χ0,αuρ (χ0)

and ∇̂.h are equal. By the definition of h it follows that the (0, 1)-

parts of the diagonals (of the connection 1-forms) of ∇̂χ0,αuρ (χ0) and

∇̂.h (with respect to the standard frame) coincide. The off-diagonal
parts of (3.16) and of (3.9) coincide as well, as one can deduce by using
standard identities of elliptic functions and (3.15). Hence, both flat
connections give rise to the same parabolic structure (see [31] for more
details on parabolic structures). On the other hand, both connections

∇̂χ0,αuρ (χ0) and ∇̂.h are unitarizable. Therefore, they must coincide by
the uniqueness part of the Mehta–Seshadri theorem [31]. Alternatively,

that the (1, 0)-parts of the diagonal parts of ∇̂χ0,αuρ (χ0) and ∇̂.h coincide
can be computed directly. This finishes the proof of the theorem. q.e.d.
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Remark 3.4. Instead of cutting the torus T 2 along the curves l1 and
l2, cutting the torus along l̃1 = {[t] | t ∈ [0; 1]} and l̃2 = {[τ + t] | t ∈
[0; 1]} yields a different CMC immersion. However, the analytic contin-
uations of both CMC surfaces (after a suitable isometry of the 3-sphere)
are the same. Moreover, for rational weights, this analytic continuation
yields a closed (possibly branched) CMC surface; see Section 3.3 below.

Remark 3.5. If the torus T 2 has rectangular conformal structure,
i.e., τ ∈ iR, and if the Hopf differential is a real multiple of (dz)2, then
the four boundary curves of the immersion f : T 2 \ (l1 ∪ l2) → S3 are
curvature lines. The boundary curves on the surface belonging to the
same li in the domain intersect at an angle of 4πρ. For rational ρ this
follows from Section 3.3; see also Figure 1.

3.3. Rational weights. Let (Σ, χ,D) be spectral data satisfying the
conditions of Theorem 3.2 for a rational ρ ∈]0, 1

2 [. The purpose of
this section is to show that the analytic continuation of the surface f
given by Theorem 3.2 gives a closed (possibly branched) CMC surface

in S3. The spectral data give a family of flat connections λ 7→ ∇̂λ on
the 4-punctured torus with singularities determined by ρ around the
punctures. Pointwise in λ, the connections ∇̂λ give rise to meromorphic
connections (with eigenvalues of the residues given by ±2ρ+1

4 ) on the
4-punctured sphere by Theorem 3.1 (see Theorem 3.4 and Theorem 3.5
in [17] for details).

Further, the proofs of Theorem 1 and Theorem 2 in [17] (together
the condition that χ is odd) show that for small open subsets of C∗
the correspondence works in families; i.e., for every λ0 ∈ C∗ there is
an open neighborhood U ⊂ C∗ of λ0 and a family of meromorphic
connections λ ∈ U 7→ DU,λ such that DU,λ and ∇̂λ are related by the
2:1 correspondence of Theorem 3.1 (see also the proof of Lemma 3.3
below). We need the following lemma in order to analyze the situation
at λ = 0.

Lemma 3.3. There is an open neighborhood U of λ = 0 and a family
λ ∈ U \ {0} 7→ Dλ of meromorphic connections on the 4-punctured
sphere with first order pole at λ = 0 (and nilpotent residue Ψ) such

that the 2:1 correspondence of Theorem 3.1 relates ∇̂λ and Dλ for all
λ ∈ U \ {0}.

Proof. We work with Fuchsian systems of the form

∇u,s = ∇u + sΨu,

where ∇u and Ψ(u) are given by equations (2.3) respectively (2.5) in
[17]. Let

2ρ+ 1

4
=
p

q
,
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for coprime integers p and q and set

A1 =
p

q

(
1 0
2 −1

)
, A2 =

p

q

(
−1 0
−2 1

)
, Am =

p

q

(
−1 2u
0 1

)
,(3.17)

and

Ψ1 =

(
u −u
u −u

)
, Ψ2 =

(
0 0

1− u 0

)
, Ψm =

(
−u u2

−1 u

)
.(3.18)

We define the Fuchsian system

(3.19) ∇u := d+A1
dz

z − 1
+A2

dz

z
+Am

dz

z −m
,

and the so-called parabolic Higgs field

(3.20) Ψ = Ψ(u) := Ψ1
dz

z − 1
+ Ψ2

dz

z
+ Ψm

dz

z −m
.

The 2:1 correspondence of Theorem 3.1 can be expressed in terms of
the connections (3.9) and the Fuchsian systems ∇u,s explicitly (on open
dense subsets of the moduli spaces): because of (3.2) in [17] u(χ) is
given in terms of χ as the unique meromorphic function u(χ) of degree
2 on Jac(T 2) which branches at the half lattice points with branch
values 0, 1,∞,m (see Equation (3.5) in [17]). In particular, composing
u(χ) with the map χ on the spectral curve (see Diagram 3.13), we
obtain a well-defined meromorphic function u = u(λ) on the spectral
plane C with u(0) = m since the map χ is odd. Similarly, we obtain
a well-defined holomorphic function s(λ) on U \ {0} (after shrinking
U if necessary). Since Ψ(m) is nilpotent, it remains to show that the
function s = s(λ) determined by the 2:1 correspondence of Theorem 3.1
has a first order pole at λ = 0. This can be done by making use of the
computations in the proof of Theorem 2 in [17]: for an appropriate odd
meromorphic function a : λ−1(U) → C with simple pole at λ−1(0) the
family of connections determined by

ξ ∈ λ−1(U) 7→ Π(∇̂χ(ξ),α(ξ)+a(ξ)),

via the 2:1 correspondence in Theorem 3.1 extends to λ−1(0), giving
a Fuchsian system whose underlying parabolic structure is unstable
since 42ρ+1

4 > 0 (see § 2.4 in [17]). Because adding a holomorphic
u-dependent family of parabolic Higgs fields s̃(u)Ψu changes the first
and higher order term in the expansion (3.7) in [17] (see the end of the
proof of Theorem 3.5), a change of the order -1 term via

α(ξ) + a(ξ) α(ξ)

yields a first order pole of the function s(λ) at λ = 0. Hence, the family

ξ ∈ λ−1(U) 7→ ∇̂χ(ξ),α(ξ)

determines the required family of meromorphic connections

(3.21) λ 7→ Dλ = ∇u(λ) + s(λ)Ψ(u(λ)). q.e.d.
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Remark 3.6. In the above proof and in the proof of Theorem 3.2
we have, respectively, obtained a direct relation between connections of
the form (3.9) on the 4-punctured torus and Fuchsian systems on the
4-punctured sphere. Both cases rely on the abelianization procedure
developed in §3 of [17].

In order to obtain compact (possibly branched) CMC surfaces, we
proceed as follows: we pull back the connections Dλ and, respectively,
DU,λ to a certain covering M of the 4-punctured sphere, such that the
pullbacks of the connections are gauge equivalent to smooth flat con-
nections. As these smooth connections (Dλ, DU,λ for the various sets
U ⊂ C∗) on M are still gauge-equivalent on the intersections of the

corresponding sets, they give rise to a map D̂ : C∗ → A2(M) as in

Theorem 1.2. It remains to prove that D̂ satisfies conditions (1), (2)
and (3) of Theorem 1.2. Condition (1) is satisfied as one can see ei-
ther by looking at the monodromy representation of the connections
which are pulled back to M (which must be simultaneously unitarizable
if the monodromy of the corresponding connection on the 4-punctured
sphere is simultaneously unitarizable), or by pulling back and gauging
the hermitian metric which is parallel with respect to the corresponding
connection on the 4-punctured sphere. To treat condition (2) we need
the following lemma:

Lemma 3.4. Let z0 be one of the four branch points of T 2 → CP1.
There exists a local holomorphic coordinate x centered at z0 such that
with respect to an appropriate (locally defined) holomorphic frame the
family Dλ of connections expands at λ = 0 as

(3.22) Dλ ∼ d+

( p
q λ−1b(λ)

a(λ)x −p
q

)
dx
x + λ−1η + ωλ,

where a(λ) and b(λ) are holomorphic functions in λ, η is a holomorphic
1-form whose lower left entry vanishes at x = 0, and ωλ is a holomorphic
1-form in a neighborhood of x = 0 which depends holomorphically on λ
and whose lower left entry vanishes at x = 0.

Proof. We use the frame which diagonalizes the residue at z0 of ∇m
given by (3.19) for u = m whose upper left entry is the positive eigen-
value p

q . Note that this frame has the property that the residue of Ψ(m)

is a nilpotent sl(2,C) matrix whose only non-zero entry is in upper right.
The expansion (3.22) is then a consequence of (3.21) where u(0) = m
and s has a first order pole at λ = 0. q.e.d.

To treat conditions (2) and (3) of Theorem 1.2 in detail we need to
specify the covering M : The eigenvalues of the residues of the mero-
morphic connections on the 4-punctured sphere are 2ρ+1

4 = p
q ∈ Q with
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p and q coprime and λ-independent. There are two cases depending on
whether q is odd or even.

We first consider the case when q is odd, and take π : M → CP1

to be the q-fold covering of CP1 totally branched over 0, 1, m and ∞
determined by the compact algebraic curve of genus q−1 corresponding
to the affine algebraic equation

(3.23) Y q =
Z

(Z − 1)(Z −m)
.

Note that for the standard coordinate z on C ⊂ CP1 we have z ◦ π = Z
on M . We will see in the proof of Theorem 3.3 that this equation deter-
mines the compact Riemann surface on which the analytic continuation
of the CMC surface f (given by Theorem 3.2) closes in an analogous
way to the Riemann extension for germs of holomorphic functions.

Using a coordinate y on M satisfying yq = x (where x is as in Lemma
3.4 above) and the expansion (3.22), the local behavior of the pullback
of Dλ is given by

(3.24) π∗Dλ ∼ d+

(
p qλ−1b(λ)

qa(λ)yq −p

)
dy
y + π∗ηλ−1 + π∗ωλ.

Gauging (3.24) by

g(y) =

(
y−p 0
0 yp

)
yields

π∗Dλ.g(y) ∼ d+

(
0 qλ−1y2p−1

qa(0)yq−2p−1 0

)
dy

+ g−1(y)π∗ηg(y)λ−1 + g−1(y)π∗ωλg(y),

(3.25)

where g−1(y)π∗ηg(y) and g−1(y)π∗ωλg(y) are holomorphic in y because
the lower left entries of η and ωλ vanish at x = 0 due to the previous
Lemma and because

2q − 1− 2p > 0,

as 1
2 >

p
q . Moreover, the lower left entries of the 1-forms g−1(y)π∗ηg(y)

and g−1(y)π∗ωλg(y) vanish at y = 0. These locally defined gauges g(y)
glue together to form a globally defined gauge transformation on M ,
gauging the family λ 7→ Dλ to a family of smooth flat connections

λ 7→ ∇̄λ = λ−1Ψ + ∇̄+ . . .

on M in a punctured neighborhood of λ = 0 with first order pole at
λ = 0 and nilpotent residue Ψ ∈ Ω(1,0)(M ; sl(2,C)). We can do the
same with the pullbacks of the connections DU,λ to obtain a well-defined
map

D̂ : C∗ → A2(M)
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satisfying the properties (1) and (2) of Theorem 1.2. By the concrete
construction in the proof of Lemma 3.3 we have constructed (respec-

tively chosen) the wrong lift λ 7→ ∇̄λ of the map D̂. This can be either
seen from the geometric or from the algebraic viewpoint: algebraically,
we would like to have a stable holomorphic structure at λ = 0; see, for
example, Theorem 3.4 in [20] for the case p = 1 and q = 3. But the
corresponding parabolic structure on the 4-punctured sphere is unsta-
ble since 42ρ+1

4 > 0 (see § 2.4 in [17]). Geometrically, we want that the
branch order is less than the umbilic order, and we want that the num-
ber of zeros (counted with multiplicity) of the nilpotent residue at λ = 0
is less then 2g − 2 (see Theorem 1.2). In order to overcome this issue
we do the following: let L ⊂ C2 ×M be the holomorphic kernel bundle
of the residue term Ψ of λ 7→ ∇̄λ at λ = 0 (note that this line bundle
extends holomorphically through the zeros of Ψ). Since Ψ is nilpotent
and the connections are SL(2,C) connections, the holomorphic struc-
tures have trivial determinant bundle and we obtain an induced vector
bundle homomorphism

Ψ: C2/L ∼= L∗ → KL;

see §2 in [19] for more details. We choose a topological complement
L∗ ⊂ C2 ×M of L in C2 and decompose

C2 = L⊕ L∗ and ∇̄λ = λ−1

(
0 α
0 0

)
+

(
∇L β
γ ∇L∗

)
+ λ(. . . ).

Since L is a holomorphic line subbundle, γ is a complex linear 1-form,
and flatness of ∇̄λ (for all λ ∈ U) implies that α ∈ H0(M,KL2) and
γ ∈ H0(M,KL−2) are holomorphic. Define a gauge transformation

Λ =

(
1√
λ

0

0
√
λ

)
,

with respect to C2 = L⊕ L∗ obtaining

∇̃λ := ∇̄λ.Λ.

Note that even though the gauge is double-valued (in λ), the family ∇̃λ
is well-defined. By construction ∇̃λ is also a lift of D̂ in a neighborhood
of λ = 0 satisfying condition (2) of Theorem 1.2. We, therefore, have

proven that in the case of q is odd there exists a map D̂ satisfying the
condition (1) and (2) of Theorem 1.2. From (3.25) we obtain that the

residue of ∇̃λ at λ = 0 has zeros of order (q − 2p − 1) at the four
preimages π−1(z0) of the singular points on CP1 and no other zeros,
and the Hopf differential (which is given by α up to a multiplicative
constant) has zeros of order 2p − 1 at the same points. Note that for

0 < ρ < 1
4 the number 4(q − 2p − 1) of zeros of the residue of ∇̃λ at

λ = 0 is less than 2g − 2 = 2q − 4.
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In the second case, when q is even, we pull back the connections to the
totally branched q

2 -covering π : M → CP1 determined by the algebraic
equation

Y
q
2 =

Z

(Z − 1)(Z −m)
.

A similar argument as in the first case using a two-valued gauge

g(y) =

(
y−

p
2 0

0 y
p
2

)
shows the existence of a map D satisfying the conditions (1) and (2)
of Theorem 1.2 and determines the corresponding branch and umbilic
orders at the preimages π−1(pk) (k = 1, . . . , 4) of the singular points on
CP1.

Theorem 3.3. Let ρ ∈ Q with 0 < ρ < 1
2 and let p and q be coprime

integers satisfying p
q = 2ρ+1

4 . The analytic continuation of the CMC

surface
f : T 2 \ (l1 ∪ l2)→ S3,

in Theorem 3.2 is a compact (branched) CMC surface f̂ : M → S3. For

odd q the surface f̂ is of genus g = q−1 with four umbilic branch points
of branch order q− 2p− 1 and umbilic order 2p− 1. For even q, f̂ is of
genus g = q

2 − 1 with branch order q
2 − p− 1 and umbilic order p− 1 at

these four points. The surface has no other branch points or umbilics.

Proof. We need to prove that the map D̂ : C∗ → A2(M) satisfies con-
dition (3) in Theorem 1.2 and to relate the analytic continuation of

the surface given by Theorem 3.2 with the surface f̂ : M → S3 corre-
sponding to D̂. As we are primarily interested in proving the existence
of closed CMC surfaces, the second part is actually not so important,
and we only sketch the idea of proof: first observe that both surfaces
f : T 2 \ (l1 ∪ l2) → S3 and f̂ : M → S3 are the analytic continuations

of the same CMC surface f̃ defined on CP1 \ λ(l1 ∪ l2). This can be
proven by carefully going through the construction of the associated
families of the CMC surfaces f̃ and f , respectively, f̂ . The associated
families are constructed by an application of loop group factorization
methods (see the proofs of Theorem 6 and Theorem 8 in [21]), and it
can be shown that the associated families must be related to each other
by pullback since the unique parallel hermitian metrics are related by
pullback. The last statement is equivalent to the fact that the surfaces
are analytic continuations of each other.

Finally, we show that the gauge classes D(λk) for k = 1, 2 are trivial
on M . By Remark 3.6 it is enough to observe that the pullback of
the Fuchsian system (3.14) for ε = 2ρ+1

4 = p
q has trivial monodromy

on M . In the case of q is odd the meromorphic function Y : M → C
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determined by (3.23) gives rise to a globally well-defined parallel frame
F of the pullback of the Fuchsian system (3.14), namely

F =

(
1
Y p 0
0 Y p

)
.

This follows from the observation that

dY

Y
=

1

q

dY q

Y q
=

1

q
d log(

Z

(Z − 1)(Z −m)
) =

1

q
π∗(

dz

z
− dz

z − 1
− dz

z −m
).

In the case of q is even we obtain a double-valued parallel frame

F =

(
Y −

p
2 0

0 Y
p
2

)
,

which is good enough to obtain a closed surface on f̂ : M → S3 (recall
the discussion in the beginning of the proof of Theorem 3.2). q.e.d.

Remark 3.7. In the case ρ = 1
6 Theorem 3.3 is equivalent to Theo-

rem 8 in [21] and yields Lawson symmetric CMC surfaces of genus 2 in

terms of spectral data. More generally, for ρ = g−1
2g+2 we obtain compact

CMC surfaces (without branch points) of genus g with Zg+1 symmetry.

Remark 3.8. We have dealt with the even and the odd case by
working on the 4-punctured sphere. In the even case it would have been
more natural to work directly on the 4-punctured torus in order to avoid
some of the two-valued gauge transformations. But then we would have
needed to prove an analogon of 3.3 for the 4-punctured torus, which we
have decided to avoid as being a repetetion.

4. A generalized Whitham flow on the spectral data

It is known that the generic spectral data (Σ, χ,D) of CMC tori in the
3-sphere can be uniquely deformed such that induced deformation of the
corresponding surface preserves the closing conditions. The existence
of these so called Whitham deformation for CMC tori, introduced in
[14, 15, 27], is shown by applying the implicit function theorem on some
finite dimensional “function” space (in fact, the space one is looking at
is in general an affine space whose underlying vector space is a function
space) over the compact spectral curve. We generalize this approach by
taking the weight ρ as flow parameter, which can be considered as the
generalized genus of the immersion. Our flow interpolates between CMC
surfaces of different genera (via CMC immersions on a torus with two
cuts l1 and l2) preserving the intrinsic and most of the extrinsic closing
conditions. If the initial surface is closed, then for small ρ ∈ Q during
the deformation the analytic continuation of the CMC surface is closed
by Theorem 3.3. For the CMC tori considered in Sections 2.3 and 2.4
as initial data, we show in the following that the closing conditions we
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impose determine a unique vector field for the deformation, and that its
flow exists for small times. We conjecture that the flow exist for short
times for generic CMC tori as initial surface.

4.1. Flowing from stable homogeneous tori. The first case we
want to consider is the deformation of the spectral data for homogenous
tori; see Section 2.3, with

√
2 ≤ R < 2. The corresponding conformal

type of the Riemann surface is given by T 2 = C/Γ with Γ = 2Z + 2τZ
for some τ ∈ iR with 1 ≤ Im(τ) <

√
3. The spectral curve is given by

the two-fold covering

CP1 3 ξ 7→ λ = ξ2 ∈ CP1,

and the map χ is given by its lift

χ̂(ξ) = Rπi
4τ ξdw̄,

as derived in Section 2.3. Again, we identify

Jac(T 2) = H0(T 2,K)/Λ = {ξdw̄ | ξ ∈ C}/( πi2τZ + πi
2 Z)dw̄.

Recall that the extrinsic closing condition, i.e., the Sym point condition,
relates R to the conformal type τ by (2.5).

Using the global coordinate dw̄ to identify H0(T 2,K) with C the

lattice Λ corresponds to the lattice Λ̂ generated by πi
2τ and πiτ

2τ in C.
For d > 0 we consider the (complex) Banach space of bounded holo-

morphic functions on the disc {ξ ∈ C | ξξ̄ < d2} equipped with the
supremum norm. We denote by Bd the real Banach subspace consisting
of odd functions with respect to ξ 7→ −ξ satisfying the reality condition
f(ξ̄) = f(ξ).

Recall from Lemma 3.2 that the Mehta–Seshadri section αMS
ρ de-

pends real analytically on [ξ] ∈ Jac(T 2) as well as its “lift” αuρ : C\Λ̂→ C
does; see (3.12). For ρ ∈] − 1

2 ,
1
2 [ and a holomorphic function f ∈ Bd

(with d > 1) such that f(ξ) /∈ Λ̂ for all ξ ∈ S1 we consider the holomor-
phic function

αρ(f) : U ⊂ C→ C
defined on an open neighborhood U of the unit circle S1 ⊂ C uniquely
determined by the property

(4.1) αρ(f)(ξ) = αuρ(f(ξ)) for all ξ ∈ S1.

Lemma 4.1. Let R ∈ R>0 be such that χ̂(ξ) = R πi
4τ ξ does not contain

a lattice point in Λ̂ along the unit circle. There exist real numbers c, δ >
0 and an open neighborhood U ⊂ B1+c of χ̂ such that for all −δ < ρ < δ
and for all f ∈ U the holomorphic function αρ(f) is well-defined and
bounded on the annulus {ξ ∈ C | 1

(1+c) <| ξ |< 1 + c}. Moreover, αρ(f)

is odd and satisfies αρ(f)(ξ̄) = αρ(f)(ξ).
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Proof. The image χ̂(S1) is a compact subset C of H0(T 2,K) ∼= C
which does not contain a lattice point in Λ̂. Hence, there exists an open
neighborhood V ⊂ C× C2 containing the set

{(0, Rξ,Rξ−1) | ξ ∈ S1 ⊂ C},

on which there is a bounded holomorphic function

F : V → C,

with the property

Fρ(ξ, ξ̄) = αρu(ξ),

for all (ρ, ξ, ξ̄) ∈ R× C2 ∩ V . Let Anc := {ξ ∈ C | 1
(1+c) < |ξ| < 1 + c}.

Then there exist c > 0 and δ > 0 with

]− 2δ; 2δ[ × {(χ̂(ξ), χ̂(ξ)) | ξ ∈ An2c} ⊂ V.

Since Bd is equipped with the supremum norm, there exists an open
neighborhood U of χ̂ ∈ B1+c such that for all ρ ∈]− δ; δ[, for all f ∈ U
and for all ξ ∈ Anc we have

(ρ, f(ξ), f(ξ̄−1)) ∈ V.

But for ρ ∈]− δ; δ[, f ∈ U and ξ ∈ Anc we have

αρ(f)(ξ) = Fρ(f(ξ), f(ξ̄−1)),

which proves that for all f ∈ U the holomorphic function αρ(f) is
bounded on Anc. The remaining statements follow from Lemma 3.1.

q.e.d.

Lemma 4.2. Let τ ∈ iR≥1 be the conformal type of a homogeneous
CMC torus with χ̂(ξ) = R0

πi
4τ ξ for R0 =

√
1 + τ τ̄ ∈ [

√
2, 2[. Then there

is an open neighborhood U ⊂ R2 of (0, R0) ∈ R2 and a constant ε > 0
with the property that for all (ρ,R) ∈ U there exists a unique holomor-
phic function χ̂ρR ∈ U ⊂ B1+ε such that the holomorphic function

αρ(χ̂ρR)

extends holomorphically to {ξ | 0 < ξξ̄ ≤ 1} and has a first order pole
at ξ = 0 with residue R πi

4τ . Moreover, χ̂ρR depends smoothly on (ρ,R).

Proof. ForR ∈]1, 2[ consider the holomorphic function χ̂0
R(ξ) = R πi

4τ ξ.
The image of the unit circle under χ̂ does not contain a lattice point in
Λ̂. By Lemma 4.1 there exists an ε > 0 and an open neighborhood U
of χ̂0

R in B1+ε such that the holomorphic function αρ(f) is bounded on
the annulus Anε for all f ∈ U and ρ small enough.

Let B̄1+ε be the space of odd, bounded holomorphic functions on

CP1 \ {ξ | |ξ| ≤ 1
1+ε} satisfying f(ξ̄) = f(ξ). Clearly, B1+ε and B̄1+ε are
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isomorphic by f 7→ (ξ 7→ f(ξ−1)). For f ∈ B̄1+ε with Laurent expansion
f =

∑
k fkξ

k along S1 ⊂ C define the bounded linear map

(4.2) M : B̄1+ε → B̄1+ε; M(f) =
∑
k<0

fkξ
k.

Consider the differentiable map between Banach spaces

Aρ : U ⊂ B1+ε → B̄1+ε; f 7→M(αρ(f)).

By Lemma 4.1 Aρ depends smoothly on ρ. Further, for ρ = 0 the
differential of Aρ is a (continuous) Banach space isomorphism because
α0(f(ξ)) = f(ξ−1). Hence, the differential of Aρ is an isomorphism
for small ρ in a neighborhood of χ̂. By the implicit function theorem
there exists an open neighborhood U ⊂ R2 of (0, R0) such that for all
(ρ,R) ∈ U there exist a map χρR ∈ B1+ε with

Aρ(χ
ρ
R)(ξ) = R πi

4τ ξ
−1,

proving the lemma. q.e.d.

Theorem 4.1. Let τ ∈ iR≥1 be the conformal type of a homogeneous
CMC torus with χ(ξ) = R0

πi
4τ ξ, where R0 =

√
1 + τ τ̄ ∈ [

√
2, 2[. Then

for ρ small enough there exist a unique χρ : {ξ | |ξ| < 1 + ε} → Jac(T 2)
and a lift Dρ : {ξ | |ξ| < 1 + ε} → A1(T 2) satisfying the conditions of
Theorem 3.2.

Proof. By Lemma 4.2 we obtain for every ρ near 0 a one-dimensional
set of functions χρR parametrized by R satisfying the intrinsic closing
condition that αρ(χρR) extends to the punctured disc {ξ | 0 < ξξ̄ ≤ 1}
with a first order pole at ξ = 0 and residue R πi

4τ . Moreover, χ0
R(ξ) =

R πi
4τ ξ, and by restricting this map to ξ ∈ S1 the differential of the map

(ξ,R) ∈ S1 × R>0 7→ χ0
R(ξ) ∈ Jac(T 2)

is invertible everywhere. By the implicit function theorem there exists
a smooth map

ρ 7→ R(ρ),

with R(0) = R0 such that the map

χρ = χρR(ρ)

has the value πi(1+τ)
4τ at some ξ1(ρ) ∈ S1. That χρ is odd and real

along the real axis R ⊂ C implies the existence of four distinct points

on ξi ∈ S1 with χ(ξi) = πi(1+τ)
4τ mod Λ̂ (for small ρ). q.e.d.

An immediate consequence of this Theorem together with Theorem
3.2 and Theorem 3.3 is:



448 L. HELLER, S. HELLER & N. SCHMITT

Corollary 4.1. For large genus g >> 2 we obtain new 1-parameter
families of compact branched CMC surfaces. The families are para-
metrized by the conformal type τ ∈ [1,

√
3)i of the corresponding CMC

torus. If the flow reaches ρ = g−1
2g+2 we obtain closed CMC immersions

of genus g.

Example 4.1. We consider the case where the initial surface of the
generalized Whitham flow is the (minimal) Clifford torus. The Clifford
torus is a Lawson surface [29], namely ξ1,1, and has square conformal
structure. This implies that there is an additional symmetry on the
Riemann surface and its Jacobian which we denote by i. It is easy to
show that for ρ > 0 the Mehta–Seshadri section of the square torus
also has an additional symmetry: in terms of the lift to the universal
covering we have for all ξ /∈ Λ̃

(4.3) αuρ(iξ) = −iαuρ(ξ).

Consequently, we can restrict to the following subspaces of holomorphic
functions:

B+
1+ε = {f ∈ B1+ε | f(iξ) = if(ξ)},

and

B̄−1+ε = {f ∈ B̄1+ε | f(iξ) = −if(ξ)},
in the proof of Theorem 4.1. Because of (4.3) all maps remain well-
defined by restricting to these two subspaces. Thus, the map χρ con-
structed in Theorem 4.1 satisfies

χρ(iξ) = iχρ(ξ),

for ρ > 0. Therefore, the preimages of the Sym points are ξ = ±e±
πi
4

and all surfaces fρ within the flow starting at the Clifford torus are
minimal. Let S ⊂ T 2 = C/(2Z + 2iZ) be the square defined by the
vertices [0], [1+i

2 ], [1], [1−i
2 ] ∈ T 2. Since the coordinate lines of T 2 are

curvature lines of the corresponding surfaces (by reality of the Hopf
differential), the diagonals are asymptotic lines. Because of the reality
of the spectral data, the diagonals are geodesics on the surface. Thus,
the image of the boundary of S under the minimal immersion fρ is a
geodesic 4-gon, which is the geodesic polygon used in [29] to construct
the Lawson surfaces; see Figure 1.

4.2. Flowing from Delaunay tori. Next we define the generalized
Whitham flow starting at a slightly more complicated surface class: the
2-lobed Delaunay tori. As we have seen in Section 2.4 the spectral
data χ : Σ → Jac(T 2) of a 2-lobed Delaunay torus does not lift to a

well-defined function χ̂ : Σ → H0(T 2,K) but rather has periods. Nev-
ertheless, these periods are constant along every continuous deformation
and, therefore, a deformation vector field of χ is still a well-defined map
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into H0(T 2,K) ∼= C. The spectral curve Σ of a Delaunay torus is given
by the algebraic equation

Σ : y2 = λ(λ− r)(λ− 1
r ),

for some r ∈]0; 1[, and we consider y, λ : Σ → CP1 as meromorphic
functions. It is well-known that r is determined by τspec ∈ iR and vice
versa. The real involution which fixes the preimages λ−1(S1) of the unit
circle is given by

(4.4) (y, λ) 7→ (ȳλ̄−2, λ̄−1).

Deformations of odd maps to Jac(T 2) can be identified with odd

functions on Σ, and any odd holomorphic function f̂ : U ⊂ Σ → C on
an open subset U is given by

f̂ = yf,

where f : λ(U) → C is a holomorphic function on the spectral plane C
with coordinate λ (we use the shorthand notation f = f ◦ λ : U → C
throughout the section). Hence, we work with the Banach space Bd of
bounded holomorphic functions

f : {λ ∈ C | |λ| < d} → C,
satisfying the condition f(λ̄) = f(λ). We also consider the Banach
space B̄d of bounded holomorphic functions on CP1 \ {λ ∈ C | |λ| ≤ 1

d}
satisfying f(λ̄) = f(λ). Clearly, Bd and B̄d are isomorphic via f 7→
(λ 7→ f(λ−1)).

We fix ρ ∈] − 1
2 ; 1

2 [. For the 2-lobed Delaunay tori the map χ has
period 2. Let

(4.5) χ =

∫
(a℘(ξ − τspec

2 ) + b)dξ,

where a and b are defined in (2.9) and ξ is the holomorphic coordinate
on Σ ∼= C/Γspec. Let

Â(ξ) = −χ(ξ̄ +
τSpec

2 ).

Then every odd holomorphic map with period 2 along 1 ∈ π1(Σ) and
trivial period along τspec ∈ π1(Σ) is given by

χ̃ = χ+ yf : λ−1({λ ∈ C | |λ| < d}) ⊂ Σ→ C,
for a holomorphic function f : {λ ∈ C | |λ| < d} → C. There exist a
holomorphic function

αρ(χ̃) : U → C,

defined on an open neighborhood U of λ−1(S1) ⊂ Σ satisfying the equa-
tion

[d+ (αρ(χ̃)(ξ) + Â(ξ)) πi2τ dw − χ̃(ξ) πi2τ dw̄] = αMS
ρ ([χ̃(ξ) πi2τ dw̄]) ∈ A1(T 2)

for all ξ ∈ λ−1(S1). The splitting of the anti-holomorphic structure αuρ
into Â- and αρ(χ̃)-parts ensures that αρ(χ̃) is single-valued on U by the
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functional properties of αuρ ; see (3.12). Analogously to Lemma 4.1 we
obtain:

Lemma 4.3. Let T 2 be a rectangular torus and χ : Σ → Jac(T 2) be
as in (4.5). Assume that the image under χ of the preimage of the unit
circle λ−1(S1) ⊂ Σ does not contain a lattice point. Then there exist
c > 0, δ > 0 and an open neighborhood U ⊂ B1+c of 0 such that for all
−δ < ρ < δ and for all f ∈ U the holomorphic function αρ(χ + yf) is
well-defined and bounded on λ−1{λ ∈ C | 1

(1+c) < |λ| < 1+c}. Moreover,

αρ(χ+ yf) is odd and satisfies αρ(χ+ yf)(ξ̄) = αρ(χ+ yf)(ξ).

Note that we do not demand in Lemma 4.3 that the Sym point
conditions are satisfied. Thus, for a given conformal type τ of T 2

there is an open set Wτ ⊂ iR determining a 1−parameter family of
genus 1 spectral curves Στspec such that the corresponding function
χτspec = χ : Στspec → Jac(T 2) (as defined in (4.5)) satisfies the assump-
tions of Lemma 4.3.

By Lemma 2.1, D : Σ → A1(T 2) must have a pole at [1
2 ] ∈ Σ with

residue determined by ρ > 0. Thus, the main difference to the case of
stable homogenous tori is that we need to satisfy the condition (3.5) to
flow starting at the 2-lobed Delaunay tori. The sign of the residue of D
at [1

2 ] introduces a freedom in the choice of the deformation vector field
for ρ = 0.

Lemma 4.4. Consider a 2-lobed Delaunay torus T 2 with spectral
data (Στspec , χ) with τspec ∈ iR. Then there is an open neighborhood
U ⊂ iR×R2 of (τspec, 0, 0) and an ε > 0 such that for all (τs, ρ, R) ∈ U
there exists a unique fτs,ρ,R ∈ B1+ε such that the holomorphic function

αρ(χ+ yfτs,ρ,R) : λ−1{λ ∈ C | 1
1+ε < |λ| < 1 + ε} ⊂ Στs → C

extends meromorphically to λ−1{λ ∈ C | |λ| ≤ 1} ⊂ Στs with first order
poles only at [0], [1

2 ] ∈ Στs = C/(Z + τsZ) and such that its residue at

[1
2 ] is R. Moreover, fτs,ρ,R ∈ B1+ε depends smoothly on (τs, ρ, R).

Proof. Analogously to Lemma 4.2 we obtain for small ρ a map

Aρ : U ⊂ B1+ε → B̄1+ε,

defined by
Aρ(f) = M̃(αρ(f)),

where M̃ is the (continuous) linear map given by M̃(yf ◦ λ) = M(f)
the principal part of f as in (4.2).

For ρ = 0, the differential of the (linear) map A0 is not surjective

anymore because for f̂ = yf ◦ λ
A0(f̂)(λ) = λ−2f(λ−1)

by (4.4). Hence, we cannot control (by the implicit function theorem)
the residue term at (y, λ) = (0, 0) ∈ Στs for the function αρ(χ+yfτs,ρ,R).
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Figure 3. The stable deformation of a 2-lobed Delaunay
torus to a CMC surface of genus 2.

Nevertheless, we still can guarantee that αρ(χ+ yfτs,ρ,R) extends mero-
morphically and has only a first order pole at (y, λ) = (0, 0) ∈ Στs .

The main difference is that we need to introduce a new parameter
R which gives the residue of the first order pole at [1

2 ] ∈ Σ. This new
pole can easily be introduced for ρ = 0 by adding to χ (an appropriate
multiple of) the unique odd meromorphic function x : Στs → CP1 with
first order poles at [1+τs

2 ] = λ−1(1
r ) and [ τs2 ] = λ−1(∞) with residue 1

and −1, respectively. q.e.d.

Theorem 4.2. Let τ ∈ iR>0 be the conformal type of a 2-lobed De-
launay CMC torus with χ : Στspec → Jac(T 2) as described in Section
2.4.

For small ρ, there exist a unique rectangular elliptic curve
λρ,+ : Σρ,+ → CP1 together with an odd holomorphic map

χρ,+ : λ−1
ρ,+({λ | |λ| < 1 + ε}) ⊂ Σρ,+ → Jac(T 2),

and a lift Dρ,+ : λ−1
ρ,+({λ | |λ| < 1 + ε}) → A1(T 2) satisfying the con-

ditions of Theorem 3.2 such that the induced parabolic structure ∂̄
λ

is
stable for all λ inside the unit disc (see Remark 3.1).

Moreover, for ρ near 0, there exist an unique rectangular elliptic curve
λρ,− : Σρ,− → CP1 together with an odd holomorphic map

χρ,− : λ−1
ρ,−({λ | |λ| < 1 + ε}) ⊂ Σρ,− → Jac(T 2),

and a lift Dρ,− : λ−1
ρ,−({λ | |λ| < 1 + ε}) → A1(T 2) satisfying the con-

ditions of Theorem 3.2 such that there is exactly one λ inside the unit
disc where the induced holomorphic structure is unstable.

Consequently, there exist two distinct flows starting at a 2-lobed De-
launay torus through closed CMC surfaces with boundaries in the sense
of Theorem 3.2 and Remark 3.5.

Proof. The main difference from Theorem 4.1 is that we need to con-
trol the residue term at the branch point [1

2 ] ∈ Στs . Consider for fixed
τs ∈ iR the following ODE on the 2-dimensional space Uτs = {(ρ,R) |
(τs, ρ, R) ∈ U} given by Lemma 4.4:

(4.6) Ṙ±(ρ) = ±4x1(ρ,R)− 4ρẋ1(ρ,R)

(x1(ρ,R))2
,
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Figure 4. The unstable deformation of a 2-lobed Delau-
nay torus to a CMC surface of genus 2.

where the dot denotes the derivative with respect to ρ, and x1(ρ,R) is
the first order term of the expansion of χ + fτs,ρ,R at [1

2 ] with respect
to the holomorphic coordinate ξ on Στs = C/(Z + τsZ). Note that the
condition (3.5) on the order 0 term γ̄ is always satisfied for αρ(χ +
yfτs,ρ,R) as all relevant maps are odd. Therefore, each of the two ODEs
(4.6) guarantees that condition (3) in Theorem 3.2 is fulfilled by the lift
D (which is uniquely determined by the unitarity along the preimage of
the unit circle) of the map

χ±τs,ρ := (χ+ yfτs,ρ,R±(ρ))
πi
2τ dw̄ : U ⊂ Σ→ Jac(T 2).

Then for every small ρ > 0 there is a real 1-dimensional space (para-
metrized by τs ∈ iR) of appropriate spectral data (Στs , χ±τs,ρ) satisfying
the intrinsic closing conditions. The extrinsic closing condition is sat-
isfied at ρ = 0 for a unique τs = τspec, see Section 2.4 and Lemma 2.2.
Thus, by Lemma 2.2 we can apply (for each sign ±) the implicit func-
tion theorem again to obtain a unique local parametrization ρ 7→ τ±s (ρ)
such that the Sym point condition is satisfied by χ±

τ±s (ρ),ρ
at a point

ξ1 ∈ λ−1
ρ,±(S1) ⊂ Στ±s (ρ). By reality of the spectral data, there is a

second point ξ2 6= ±ξ1 ∈ λ−1
ρ,±(S1) ⊂ Στ±s (ρ) at which the Sym point

condition also holds. q.e.d.

For rational ρ the analytic continuation of the corresponding surface
closes to a compact (possibly branched) CMC surface. As a Corollary
of this theorem and Theorem 3.3 we obtain:

Corollary 4.2. For every large genus g >> 2 we obtain new 1-
parameter families of compact branched CMC surfaces. The families
are parametrized by the conformal type τ ∈ (

√
3,∞)i of the correspond-

ing CMC torus. If the flow reaches ρ = g−1
2g+2 we obtain closed CMC

immersions of genus g.

4.3. Experiments and conjectures. We have numerically implement-
ed the flow of spectral data given by Theorem 4.1 and Theorem 4.2,
and experiments suggest (for appropriate initial data) the long time ex-
istence of the flow (see [18] for details). Consider the continuous family
of CMC tori parametrized by τi consisting of the homogenous tori for
τ ≤

√
3 and the 2-lobed Delaunay tori for τ >

√
3. This family con-
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verges to the branched double cover of a geodesic sphere as τ → ∞.
The experiments indicate that this family of tori flows (if we choose the
stable direction for τ >

√
3) to the Lawson symmetric CMC surfaces de-

forming Lawson’s minimal surface and converging to a branched double
cover of a geodesic sphere as the conformal type of the surfaces degen-
erates; see Figure 3. The flow of a 2-lobed Delaunay torus, which has
for positive ρ an unstable holomorphic structure inside the unit disc,
reaches CMC surfaces of genus 2 for τ large enough and converges to a
3-fold cover of a sphere as τ →∞; see Figure 4. We have been able to
flow to all CMC surfaces of genus 2 found by a naive numerical search in
[22]. These experiments indicate that the moduli space of (symmetric)
higher genus CMC surfaces inherits some structure of the moduli space
of CMC tori.

We have used the parameter ρ corresponding to the angle between
curvature lines at the umbilics as the “flow parameter” in Theorem 4.1
and Theorem 4.2. The deformation of the conformal type of the torus
τ ∈ iR can be used as a second flow direction. For ρ = 0 this recovers
the Whitham flow of CMC tori. Using the methods of this paper it is
possible to show the existence of a flow of CMC surfaces by varying the
conformal type (for fixed ρ near 0). It is clear that the ρ-flow and the
conformal type flow commute. It might be useful to consider the extra
flow direction in order to avoid possible singularities of the ρ-flow. We
aim to study these phenomena and the long time existence of the ρ-flow
in future work.

Further, the experiments suggest that the embeddedness of the cylin-
der, given by the image of {[w] ∈ T 2 = C/(2Z+2τZ) | τ ≤ Im(w) ≤ 2τ}
of the CMC immersion f : T 2 → S3, is preserved throughout the flow.
By applying a combined version of the ρ-flow with the conformal type
flow one can preserve minimality during the flow. Because the Clifford
torus is the only embedded minimal torus in S3 [5] (see also [15] for a
Whitham theory approach), we conjecture that the Lawson surface ξ2,1

is the only embedded minimal surface in S3 of genus 2.
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