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ASYMPTOTICS FOR THE WAVE EQUATION ON
DIFFERENTIAL FORMS ON KERR–DE SITTER SPACE

Peter Hintz & András Vasy

Abstract

We study asymptotics for solutions of Maxwell’s equations, in
fact, of the Hodge–de Rham equation (d+δ)u = 0 without restric-
tion on the form degree, on a geometric class of stationary space-
times with a warped product type structure (without any sym-
metry assumptions), which, in particular, include Schwarzschild-
de Sitter spaces of all spacetime dimensions n ≥ 4. We prove
that solutions decay exponentially to 0 or to stationary states
in every form degree, and give an interpretation of the stationary
states in terms of cohomological information of the spacetime. We
also study the wave equation on differential forms and, in particu-
lar, prove analogous results on Schwarzschild–de Sitter spacetimes.
We demonstrate the stability of our analysis and deduce asymp-
totics and decay for solutions of Maxwell’s equations, the Hodge–
de Rham equation and the wave equation on differential forms on
Kerr–de Sitter spacetimes with small angular momentum.

1. Introduction

Maxwell’s equations describe the dynamics of the electromagnetic
field on a 4-dimensional spacetime (M, g). Writing them in the form
(d + δg)F = 0, where δg is the codifferential, for the electromagnetic
field F (a 2-form) suggests studying the operator d+ δg, whose square

�g = (d+ δg)
2

is the Hodge d’Alembertian, i.e., the wave operator on differential forms.
It is then very natural to study solutions of (d + δg)u = 0 or �gu = 0
without restrictions on the form degree or the dimension of the space-
time. Here, we study quasinormal modes (or resonances) of �g (or

d+ δg) when M = Rt ×X, X = X
◦

with X compact, is equipped with
a stationary Lorentzian metric g which has a suitable warped product
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structure near ∂X: resonances are complex numbers σ ∈ C for which
there exists a smooth t-independent differential form u(x) on M satis-
fying outgoing boundary conditions at ∂X, such that �g(e−itσu) = 0
(or (d + δg)(e

−itσu) = 0): roughly, we show that all such resonances
satisfy Imσ < 0, with the exception of a possible resonance at σ = 0,
corresponding to stationary solutions of the wave or Hodge–de Rham
equation, for which we give a (rather subtle) description in terms of the
cohomology of M , thus, significantly refining the geometric understand-
ing of asymptotics for waves on single black hole spacetimes studied in
the literature to date (see Section 1.2 for references).

Important examples of spacetimes that fit into the class studied in
the present paper are Schwarzschild–de Sitter spacetimes of dimension
≥ 4; it is important to note that our results are much more general, al-
lowing for an arbitrary topology of X (thus, allowing, e.g., for multiple
black holes). For Schwarzschild–de Sitter spaces, or, indeed, perturba-
tions of these, in particular, on Kerr–de Sitter spaces with small angular
momenta, we can use our results on the location and structure of res-
onances and prove a partial resonance expansion of waves into their
stationary part plus an exponentially decaying remainder:

Theorem 1. Let (M, ga) denote a neighborhood of the domain of
outer communications of a non-degenerate Kerr–de Sitter space with
black hole mass M• > 0, cosmological constant Λ > 0 and angular mo-
mentum a which we assume to be very small, |a| � M•;

1 Denote by
t∗ a smooth time function which is equal to the Boyer–Lindquist coor-
dinate t away from the horizons, and a suitable (Kerr-star coordinate
type) modification of t near the horizon.2 Suppose u ∈ C∞(M ; ΛM) is
a solution of the equation

(d+ δga)u = 0,

with smooth initial data, and denote by uj the form degree j part of u,
j = 0, . . . , 4. Then u2 decays exponentially in t∗ to a stationary state,
which is a linear combination of the t∗-independent 2-forms ua,1, ua,2. In
the standard (Boyer–Lindquist) local coordinate system on Kerr–de Sit-
ter space, ua,1 and ua,2 have explicit closed form expressions; in partic-
ular, on Schwarzschild–de Sitter space, u0,1 = r−2 dt∧ dr, and u0,2 = ω
is the volume element of the round unit 2-sphere. Moreover, u1 and u3

decay exponentially to 0, while u0 decays exponentially to a constant,
and u4 to a constant multiple of the volume form.

1The non-degeneracy requirement ensures that the cosmological horizon lies out-
side the event horizon. For example, if M• is fixed and Λ > 0 is small, sufficiently
small values of a work.

2See (2.2) for the definition in the warped product setting which applies to
Schwarzschild–de Sitter spacetimes (i.e., a = 0), and Section 5 for references for
the Kerr–de Sitter case.
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Suppose now u ∈ C∞(M ; ΛM) instead solves the wave equation

�gau = 0,

with smooth initial data, then the same decay as before holds for u0, u2

and u4, while u1 decays exponentially to a member of a 2-dimensional
family of stationary states, likewise for u3.

The Schwarzschild–de Sitter case of this theorem, i.e., the special
case a = 0, will be proved in Section 4.2, and we give explicit expres-
sions for all stationary states, see Theorems 4.4 and 4.7. Section 5
provides the perturbation arguments, see, in particular, Theorem 5.1;
we point out that while Schwarzschild–de Sitter spacetimes fit directly
into our framework, Kerr–de Sitter spacetimes do not, as they do not
have the requisite warped product structure described in Section 1.1
below, hence, we can only treat them perturbatively here. For the ex-
plicit form of ua,1 and ua,2, see Remark 5.4. Note that asymptotics and
exponential decay of differential form solutions to the wave equation are
stronger statements than corresponding statements for Maxwell’s equa-
tions or for the Hodge–de Rham equation, as any solution of one of the
latter equations is automatically a solution of the former; improved re-
sults for the Maxwell or Hodge–de Rham equation can then be obtained
in a second step.

Our arguments strongly use that we are dealing with the Hodge–
d’Alembertian �g = (d+δg)

2 rather than related operators which differ
from �g by lower order terms, e.g., the rough wave operator −tr∇2, or
the Klein–Gordon type operator �g−m2, m ∈ R. Indeed, the factoriza-
tion of the Hodge–d’Alembertian is essential for us. Furthermore, as we
rely heavily on integration by parts and symmetry considerations which
exploit properties of the form bundle, we do not treat more general
tensor bundles here.

We stress that the main feature of the spacetimes (M, g) considered
in this paper is a warped product type structure of the metric; we do not
make any symmetry assumptions on M . From a geometric point of view
then, the main novelty of this paper is a general cohomological interpre-
tation of stationary states, which in the above theorem are merely ex-
plicitly given. On a technical level, we show how to analyze quasinormal
modes (also called resonances, further discussed below) for equations on
vector bundles whose natural inner product is not positive definite. To
stress the generality of the method, we point out that symmetries only
become relevant in explicit calculations for specific examples such as
Schwarzschild–de Sitter and Kerr–de Sitter spaces. Even then, the per-
turbation analysis around Schwarzschild–de Sitter space works without
restrictions on the perturbation; only for the explicit form of the space
〈ua,1, ua,2〉 of stationary states do we need the very specific form of the
Kerr–de Sitter metric. Thus, combining the perturbation analysis with
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the non-linear framework developed by the authors in [32], we can im-
mediately solve suitable quasilinear wave equations on differential forms
on Kerr–de Sitter spacetimes; see Remark 5.3. To put this into context,
part of the motivation for the present paper is the black hole stability
problem, see the lecture notes by Dafermos and Rodnianski [15] for
background on this, and we expect that the approach taken here will
facilitate the linear part of the stability analysis, which, when accom-
plished, rather directly gives the non-linear result when combined with
the non-linear analysis in [32].3

1.1. Outline of the general result. Going back to the linear problem
studied in this paper, we proceed to explain the general setup in more
detail. Let X be a connected, compact, orientable (n− 1)-dimensional

manifold with non-empty boundary Y = ∂X 6= ∅ and interior X = X
◦
,

and let

M = Rt ×X,
which is, thus, n-dimensional. Denote the connected components of Y ,
which are of dimension (n − 2), by Yi, for i in a finite index set I. We
assume that M is equipped with the metric

(1.1) g = α(x)2 dt2 − h(x, dx),

where h is a smooth Riemannian metric on X (in particular, incomplete)
and α is a boundary defining function of X, i.e., α ∈ C∞(X), α = 0 on
Y , α > 0 in X and dα|Y 6= 0. (As we demonstrate in equations (4.1)
and (4.4), (Schwarzschild–)de Sitter space, indeed, has this form.) We,
moreover, assume that every connected component Yi of Y , i ∈ I, has
a collar neighborhood [0, εi)α × (Yi)y in which h takes the form

(1.2) h = β̃i(α
2, y) dα2 + ki(α

2, y, dy),

with β̃i(0, y) ≡ βi > 0 constant along Yi.
4 In particular, α−2h is

an even asymptotically hyperbolic metric in the sense of Guillarmou
[27]; for the connection between horizons and asymptotically hyperbolic
spaces, we also refer to [4, 46] and [9, Chapter 4].5 We change the
smooth structure on X to only include even functions of α, and show
how one can then extend the metric g to a stationary metric (denoted
g̃, but dropped from the notation in the sequel) on a bigger spacetime

3Note in proof: this has recently been accomplished by the authors in Acta Math-
ematica, 220(1), 2018, 1–206.

4The constancy is required for the Fredholm analysis in Section 2, and is satisfied
for all examples considered in this paper; in the case of Schwarzschild–de Sitter
spacetimes, it amounts to the constancy of the surface gravities of the event and the
cosmological horizon.

5Thus, as we will show, de Sitter and Schwarzschild–de Sitter spaces fit into this
framework, whereas asymptotically flat spacetimes like Schwarzschild (or Kerr) do
not.
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M̃ = Rt∗×X̃, where X ↪→ X̃◦, and where t∗ is a shifted time coordinate.
Since the operator d+ δ commutes with time translations, it is natural
to consider the normal operator family

d̃(σ) + δ̃(σ) = eit∗σ(d+ δ)e−it∗σ

acting on differential forms (valued in the form bundle of M) on a

slice of constant t∗, identified with X̃; that is, every ∂t∗ is replaced by

multiplication by −iσ. The normal operator family �̃(σ) of � is defined
completely analogously.

Since the Hodge d’Alembertian (and, hence, the normal operator

family �̃(σ)) has a scalar principal symbol, it can easily be shown to
fit into the microlocal framework developed by Vasy [54]; we prove this
in Section 2, where we also recall the key elements of this framework.

In particular, the family of inverses �̃(σ)−1 : C∞(X̃) → C∞(X̃) is a
meromorphic family of operators in σ ∈ C,6 and under the assumption

that the inverse family �̃(σ)−1 verifies suitable bounds as |Reσ| → ∞
and Imσ > −C (for C > 0 small), one can deduce exponential decay
of solutions to �u = 0, up to contributions from a finite dimensional

space of resonances. Here, resonances are poles of �̃(σ)−1, and reso-

nant states (for simple resonances) are elements of the kernel of �̃(σ)
for a resonance σ.7 Therefore, proving wave decay and asymptotics
is reduced to studying high energy estimates, which depend purely on
geometric properties of the spacetime and will be further discussed be-
low, and the location of resonances as well as the spaces of resonant
states. (For instance, resonances in Imσ > 0 correspond to exponen-
tially growing solutions and, hence are particularly undesirable when
studying non-linear problems.) Our main theorem is then:

Theorem 2. Let (M, g) be a manifold satisfying the assumptions
stated at the beginning of this section. The only resonance of d + δ in
Imσ ≥ 0 is then σ = 0, and 0 is a simple resonance. Zero resonant

states are smooth, and the space H̃ of these resonant states is equal

to ker d̃(0) ∩ ker δ̃(0). (In other words, resonant states, viewed as t∗-

independent differential forms on M̃ , are annihilated by d and δ.) Using

the grading H̃ =
⊕n

k=0 H̃k of H̃ by form degrees, there is a canonical
exact sequence

(1.3) 0→ Hk(X)⊕Hk−1(X, ∂X)→ H̃k → Hk−1(∂X).

Furthermore, the only resonance of � in Imσ ≥ 0 is σ = 0. Zero

resonant states are smooth, and the space K̃ =
⊕n

k=0 K̃k of these reso-

6Thus, the same is true for (d̃(σ) + δ̃(σ))−1 = (d̃(σ) + δ̃(σ))�̃(σ)−1.
7The outgoing boundary condition for an element e−itσa(x) in the kernel of �g,

with a(x) a t-independent section of the form bundle on M , is precisely the condition

that e−itσa(x) = e−it∗σa∗(x) where a∗ is smooth down to the boundary ∂X.
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nant states, graded by form degree and satisfying K̃k ⊃ H̃k, fits into the
short exact sequence

(1.4) 0→ Hk(X)⊕Hk−1(X, ∂X)→ K̃k → Hk−1(∂X)→ 0.

Lastly, the Hodge star operator on M̃ induces natural isomorphisms

? : H̃k
∼=−→ H̃n−k and ? : K̃k

∼=−→ K̃n−k, k = 0, . . . , n.

See Theorem 3.20 for the full statement, including the precise defini-
tions of the maps in the exact sequences. In fact, the various cohomology
groups in (1.3) and (1.4) correspond to various types of resonant dif-
ferential forms, namely forms which are square integrable on X with
respect to a natural Riemannian inner product on forms on M , induced
by the metric obtained by switching the sign in (1.1), that is,

(1.5) α2 dt2 + h,

as well as ‘tangential’ and ‘normal’ forms in a decomposition u = uT +
α−1 dt ∧ uN of the form bundle corresponding to the warped product
structure of the metric. Roughly speaking, (1.4) encodes the fact that
resonant states for which a certain boundary component vanishes are
square integrable with respect to the natural Riemannian inner product
on X and can be shown to canonically represent absolute (for tangential
forms) or relative (for normal forms) de Rham cohomology of X, while
the aforementioned boundary component is a harmonic form on Y and
can be specified freely for resonant states of �. (Notice by contrast
that the last map in the exact sequence (1.3) for d+ δ is not necessarily
surjective.)

The proof of Theorem 2 proceeds in several steps. First, we exclude
resonances in Imσ > 0 in Section 3.1; the idea here is to relate the
normal operator family of d+ δ (a family of operators on the extended

space X̃) to another normal operator family d̂(σ) + δ̂(σ) = eitσ(d +
δ)e−itσ, which is a family of operators on X that degenerates at ∂X, but
has the advantage of having a simple form in view of the warped product

type structure (1.1) of the metric: since one formally obtains d̂(σ)+ δ̂(σ)
by replacing each ∂t in the expression for d+ δ by −iσ, we see that on

a formal level d̂(σ) + δ̂(σ) for purely imaginary σ resembles the normal
operator family of the Hodge–de Rham operator of the Riemannian

metric (1.5); then one can show the triviality of ker(d̂(σ)+δ̂(σ)) in a way
that is very similar to how one would show the triviality of ker(A+ σ)
for self-adjoint A and Imσ > 0. For not purely imaginary σ, but still
with Imσ > 0, one can change the tangential part of the metric on M in
(1.1) by a complex phase and then run a similar argument, using that
the resulting ‘inner product,’ while complex, still has some positivity
properties. Next, in Section 3.2, we exclude non-zero real resonances by
means of a boundary pairing argument, which is a standard technique
in scattering theory, see, e.g., Melrose [42]. Finally, the analysis of
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the zero resonance in Section 3.3 relies on a boundary pairing type
argument, and we again use the Riemannian inner product on forms
on M . The fact that this Riemannian inner product is singular at ∂X
implies that resonant states are not necessarily square integrable, and
whether or not a state is square integrable is determined by the absence
of a certain boundary component of the state. This is a crucial element
of the cohomological interpretation of resonant states in Section 3.4.

As already alluded to, deducing wave expansions and decay from The-
orem 2 requires high energy estimates for the normal operator family.
These are easy to obtain if the metric h on X is non-trapping, i.e., all
geodesics escape to ∂X, as is the case for the static patch of de Sitter
space (discussed in Section 4.1). Another instance in which suitable es-
timates hold is when the only trapping within X is normally hyperbolic
trapping, as is the case for Kerr–de Sitter spaces with parameters in
a certain range. (See [24, §5.1] for the definition of (r-)normal hyper-
bolicity, and [23] for details in the Kerr and Kerr–de Sitter settings.)
In the scalar setting, such estimates are now widely available, see, for
instance, Wunsch and Zworski [60], Dyatlov [25] and their use in Vasy
[54]: the proof of exponential decay relies on high energy estimates in
a strip below the real line. For � acting on differential forms, obtaining
high energy estimates requires a smallness assumption on the imaginary
part of the subprincipal symbol of � relative to a positive definite in-
ner product on the form bundle; the choice of inner product affects the
size of the subprincipal symbol. Conceptually, the natural framework
in which to find such an inner product involves pseudodifferential inner
products. This notion was introduced by Hintz [30] and used there to
prove high energy estimates for � on tensors of arbitrary rank on per-
turbations of Schwarzschild–de Sitter space. In the present paper, we
use the estimates provided in [30] as black boxes.

1.2. Previous and related work. The present paper seems to be
the first to describe asymptotics for differential forms solving the wave
or Hodge–de Rham equation in all form degrees and in this general-
ity, and also the first to demonstrate the forward solvability of non-
scalar quasilinear wave equations on black hole spacetimes, but we
point out that for applications in general relativity, our results require
the cosmological constant to be positive, whereas previous works on
Maxwell’s equations deal with asymptotically flat spacetimes: Sterbenz
and Tataru [49] showed local energy decay for Maxwell’s equations on a
class of spherically symmetric asymptotically flat spacetimes including
Schwarzschild.8 Blue [6] established conformal energy and pointwise

8One needs to assume the vanishing of the electric and the magnetic charge. For
a positive cosmological constant, this precisely corresponds to assuming the absence
of the r−2 dt∧ dr and ω asymptotics in form degree 2 in the Schwarzschild–de Sitter
case of Theorem 1.
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decay estimates in the exterior of the Schwarzschild black hole; An-
dersson and Blue [2] proved similar estimates on slowly rotating Kerr
spacetimes. These followed earlier results for Schwarzschild by Inglese
and Nicolo [34] on energy and pointwise bounds for integer spin fields
in the far exterior of the Schwarzschild black hole, and by Bachelot [3],
who proved scattering for electromagnetic perturbations. There are fur-
ther works which, in particular, establish bounds for certain components
of the Maxwell field, see Donninger, Schlag and Soffer [19] and Whit-
ing [59]. Dafermos [11], [12] studied the non-linear Einstein–Maxwell-
scalar field system under the assumption of spherical symmetry.

Vasy’s proof of the meromorphy of the (modified) resolvent of the
Laplacian on differential forms on asymptotically hyperbolic spaces [56]
makes use of the same microlocal framework as the present paper, and
it also shows how to link the ‘intrinsic’ structure of the asymptotically
hyperbolic space and the form of the Hodge–Laplacian with a ‘non-
degenerately extended’ space and operator. For Kerr–de Sitter space-
times, Dyatlov [21] defined quasinormal modes or resonances in the
same way as they are used here, and obtained exponential decay to con-
stants away from the event horizon for scalar waves. This followed work
of Melrose, Sá Barreto and Vasy [43], where this was shown up to the
event horizon of a Schwarzschild–de Sitter black hole, the work of Bony
and Häfner [7] (following Sá Barreto and Zworski [46]) on full resonance
expansions away from the horizons, and of Dafermos and Rodnianski
[14] who proved polynomial decay in this setting. Dyatlov proved ex-
ponential decay up to the event horizon for Kerr–de Sitter in [20], and
significantly strengthened this in [22], obtaining a full resonance expan-
sion for scalar waves.

In the scalar setting too, the wave equation on asymptotically flat
spacetimes has received more attention. Dafermos, Rodnianski and
Shlapentokh-Rothman [18], building on [17, 16, 47], established the
decay of scalar waves on all non-extremal Kerr spacetimes, following
pioneering work by Kay and Wald [35, 57] in the Schwarzschild setting.
Tataru and Tohaneanu [50, 51] proved decay and Price’s law for slowly
rotating Kerr using local energy decay estimates, and Strichartz esti-
mates were proved by Marzuola, Metcalfe, Tataru and Tohaneanu [39].

Non-linear results for wave equations on black hole spacetimes in-
clude [32], see also the references therein, Luk’s work [38] on semilinear
forward problems on Kerr, and the scattering construction of dynamical
black holes by Dafermos, Holzegel and Rodnianski [13]. Fully general
stability results for Einstein’s equations specifically are available for de
Sitter space by the works of Friedrich [26], Anderson [1], Rodnianski
and Speck [45] and Ringström [44], and for Minkowski space by the
work of Christodoulou and Klainerman [10], partially simplified and
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extended by Lindblad and Rodnianski [36, 37], Bieri and Zipser [5] and
Speck [48].

1.3. Structure of the paper. In Section 2, we show how to put the
Hodge–de Rham and wave equation on differential forms into the mi-
crolocal framework of [54]; this is used in Section 3 in the analysis of
resonances in Imσ ≥ 0, and we prove Theorem 2 there. In Section 4,
we apply this result on de Sitter space, where we can take a global
point of view which simplifies explicit calculations considerably, and on
Schwarzschild–de Sitter space, where such a global picture is not avail-
able, but using Theorem 2, the necessary computations are still very
straightforward. In Section 5, we show the perturbation stability of
the analysis, in particular, deal with Kerr–de Sitter space, and indicate
how this gives the forward solvability for quasilinear wave equations on
differential forms.

2. Analytic setup

Recall that we are working on a spacetime M = Rt × X, equipped
with a metric g as in (1.1)–(1.2), where X is the interior of a connected,
compact, orientable manifold X with non-empty boundary Y = ∂X 6= ∅
and boundary defining function α ∈ C∞(X). Fixing a collar neighbor-
hood of Y identified with [0, ε)α × Y , denote by Xeven the manifold X
with the smooth structure changed so that only even functions in α
are smooth, i.e., smooth functions are precisely those for which all odd
terms in the Taylor expansion at all boundary components vanish. For
brevity, we assume from now on that Y is connected,

(2.1) h = β̃(α2, y)2 dα2 + k(α2, y, dy),

in a collar neighborhood of Y , with β̃(α2, y) a positive constant at the

boundary α = 0, so β̃(0, y) = β > 0; all of our arguments readily
go through in the case of multiple boundary components. The main
examples of spaces which directly fit into this setup are the static patch
of de Sitter space (with 1 boundary component) and Schwarzschild–de
Sitter space (with 2 boundary components); see Section 4 for details.

On M , we consider the Hodge–de Rham operator d + δ, acting on
differential forms. We put its square, the Hodge d’Alembertian

� = (d+ δ)2,

which is principally scalar, into the microlocal framework developed in
[54], which we briefly recall below. We shall mainly only make use of two
of its consequences: one obtains a precise description of the regularity of
resonant states (see Lemma 2.1 below) and, under additional dynamical
hypotheses on the null-geodesic flow (which yield high energy estimates

for the operator �̃(σ), discussed below), resonance expansions of waves
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as in Theorem 1. The reader unfamiliar with the details of [54] may
simply view these as black boxes; the main results in the present paper
are orthogonal to those in the reference.

We renormalize the time coordinate t in the collar neighborhood of
Y by writing

(2.2) t = t∗ + F (α), ∂αF (α) = − β̃
α
− 2αc(α2, y),

with c smooth, hence F (α) ∈ −β logα + C∞(Xeven); notice that the
above requirement on F only makes sense near Y . We introduce the
boundary defining function µ = α2 of Xeven; then one computes

(2.3) g = µdt2∗ − (β̃ + 2µc) dt∗ dµ+ (µc2 + β̃c) dµ2 − k(µ, y, dy).

The determinant of g in these coordinates equals − β̃2

4 det(k), hence g
is non-degenerate up to Y . Furthermore, we claim that we can choose
c(µ, y) such that dt∗ is timelike on Rt∗×Xeven; indeed, with G denoting
the dual metric to g, we require

(2.4) G(dt∗, dt∗) = −4β̃−2(µc2 + β̃c) > 0.

This is trivially satisfied if c = −β̃/2µ, which corresponds to undoing
the change of coordinates in (2.2), however, we want c to be smooth at

µ = 0. But for µ ≥ 0, (2.4) holds provided −β̃/µ < c < 0; hence, we
can choose a smooth c verifying (2.4) in µ ≥ 0 and such that, moreover,

c = −β̃/2µ in µ ≥ µ1 (intersected with the collar neighborhood of Y )
for any fixed µ1 > 0. Thus, we can choose F as in (2.2) with F = 0
in α2 ≥ µ1 (in particular, F is defined globally on X) such that (2.4)
holds.

Since the metric g in (2.3) is stationary (t∗-independent) and non-
degenerate on Xeven, it can be extended to a stationary Lorentzian

metric on an extension X̃ into which Xeven embeds. Concretely, one

defines X̃δ = (Xeven t ([−δ, ε)µ × Yy))/ ∼ with the natural smooth

structure, where ∼ identifies elements of [0, ε)µ×Yy with points in Xeven

by means of the collar neighborhood of Y . Then, extending β̃, k, and c,

and, thus, g, in an arbitrary t∗-independent manner to X̃δ, the extended

metric, which we denote by g̃, is non-degenerate on X̃δ, and dt∗ remains

timelike uniformly on Rt∗×X̃δ, provided one fixes δ > 0 to be sufficiently

small: indeed, in µ < 0, (2.4) (with the dual metric G̃ of g̃ in place of

G) holds for any negative function c as long as β̃ remains positive on

X̃δ. Note that µ−1G(dµ, dµ) = −4β̃−2 < 0 in µ > 0, so the level set

{µ = −δ} is spacelike for the extended dual metric G̃ if one reduces
δ > 0 even further (if necessary). We let

X̃ := X̃δ,
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for such a choice of δ. There are two reasons for extending the spacetime
a bit beyond the ‘horizon’ Y : first, this makes the microlocal radial point
estimates of [54] applicable; the microlocal approach is crucial later on,
as it is the most stable and straightforward way to obtain the high en-
ergy estimates which are needed to deduce an expansion of solutions of
the wave equation into quasinormal modes up to exponentially decay-
ing (in t∗) remainders—this is discussed in the proofs of Theorems 4.2
and 4.5 below. Second, the microlocal framework is stable under per-
turbations that do not respect the warped product structure near Y .9

We remark that instead of the complex absorption in the extension re-

gion {µ < 0} ⊂ X̃ which was used in [54], we have introduced Cauchy

hypersurfaces at {µ = −δ} ⊂ X̃ (which may have several connected
components) as in10 [31, §2.1.3] and [29, §8]; these are spacelike by
construction.

The operator d + δg on M now extends to an operator d + δg̃ on

M̃ = Rt∗ × X̃. Correspondingly, the wave operator �g on M extends

to the wave operator �g̃ on M̃ . Consider �g̃, which is invariant under
translations in t∗, acting on differential forms which have time depen-
dence e−it∗σ; that is, consider the operator

�̃(σ) = eit∗σ�e−it∗σ.

(This amounts to formally replacing each ∂t∗ in the expression for �
by −iσ.) The operator �̃(σ) acts on sections of the pullback Λ

X̃
M̃

of the form bundle ΛM̃ under the map X̃ → M̃ , x̃ 7→ (0, x̃); Writing

differential forms ũ on M̃ as

(2.5) ũ = ũT + dt∗ ∧ ũN ,

with ũT and ũN valued in forms on X̃, we can identify Λ
X̃
M̃ with

ΛX̃ ⊕ ΛX̃.11

We also record that �̃(σ) is elliptic in X: indeed, on X, we have

(2.6) �̃(σ) = e−iFσeitσ�e−itσeiFσ = e−iFσ�̂(σ)eiFσ,

9If one is not interested in these two issues, i.e., microlocal control and stabil-
ity under perturbations, one can alternatively use Warnick’s approach [58] to the
definition of quasinormal modes.

10In the notation of the reference, t2 = µ + δ, while t1 is only used to define a
Cauchy hypersurface {t1 = 0} where one can impose Cauchy data for the wave or
Hodge–de Rham equation; the choice of the latter is very flexible, and we could e.g.,
take t1 = t∗.

11At this point, �̃(σ) is simply a family of operators depending on σ ∈ C. Its
relation to the wave operator �g̃ and use for the description of solutions of the wave
equation, e.g., in the form of partial resonance expansions, requires precise control of

�̃(σ) as an operator on suitable function spaces as |Reσ| → ∞—these are the high
energy estimates mentioned before.
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where �̂(σ) = eitσ�e−itσ is the conjugation of � by the Fourier trans-

form in −t, and F is as in (2.2); here, we view �̂(σ) as an operator

acting on sections of Λ
X̃
M̃ |X . Now, the latter bundle is isomorphic to

ΛX ⊕ ΛX, with the isomorphism given by writing differential forms as
u = uT + dt ∧ uN , with uT and uN valued in forms on X; the relation

of the expression of �̂(σ) as a 2 × 2 block matrix in this bundle de-
composition with the decomposition (2.5) is given by conjugation by a
bundle isomorphism on ΛX ⊕ ΛX, which preserves ellipticity.12 The

principal symbol of �̂(σ) as a second order operator acting on sections
of ΛX ⊕ ΛX is given by (−H) ⊕ (−H), where H is the dual metric to
h, here identified with the dual metric function on T ∗X; this follows
from the calculations in the next section. Since H is Riemannian, this

implies that �̂(σ), hence, �̃(σ), is elliptic in X.

Consider now �̃(σ) as an operator

(2.7) �̃(σ) : X s → Ys−1,

where

X s = {u ∈ H̄s(X̃◦; ΛX̃ ⊕ ΛX̃) : �̃(σ)u ∈ Ys−1},

Ys−1 = H̄s−1(X̃◦; ΛX̃ ⊕ ΛX̃);

here, using the notation introduced in [33, Appendix B.2], the bar de-

notes extendible distributions, i.e., H̄s(X̃◦) denotes the space of restric-

tions to X̃◦ of Hs functions on a compact manifold without boundary

containing X̃◦ as an open submanifold. The key result of [54] is that
for any fixed C ∈ R and for regularity above a certain threshold,

(2.8) s > 1/2 + β̂ − βC, Imσ > −C,
the operator (2.7) is Fredholm, and, indeed, invertible for Imσ � 1: this

is [54, Theorem 1.2] with Qσ = 0, λ = 0, Pσ = �̃(σ). The additional

shift β̂ is due to the fact that �̂(σ), σ ∈ R, is not symmetric with
respect to a positive definite fiber inner product on the form bundle;
see the proof of [54, Propositions 2.3 and 2.4], esp. Equation (2.15)

there, for the contribution of �̂(σ)∗− �̂(σ) to the radial point estimate,
as well as [31, Footnote 5] for the spacetime version of this estimate,
i.e., prior to conjugating by the Fourier transform in t∗. The Fredholm

property of (2.7) follows from the ellipticity of �̃(σ) in X, from real
principal type propagation estimates (or more simply, energy estimates)

in the extension region {µ < 0} where �̃(σ) is a hyperbolic (wave-type)
operator, and the radial point estimates at N∗{µ = 0} which use the

source/sink nature of the Hamilton flow of the principal symbol of �̃(σ)

12Ellipticity is the invertibility of the principal symbol—which in the present case

is valued in endomorphisms of ΛX̃M̃ |X—away from the zero section of T ∗X; invert-

ibility of endomorphisms is preserved by conjugation with isomorphisms.



ASYMPTOTICS FOR DIFFERENTIAL FORMS 233

there (this is the phase space manifestation of the classical red-shift
effect); see [54, §4.8] for a verification of these facts for metrics of the
form (2.3).13

We remark that since �̃(σ) = (d̃(σ) + δ̃(σ))2 : X s → Ys−1 is an
analytic family of Fredholm operators with meromorphic inverse, the
map

(d̃(σ) + δ̃(σ))−1 := (d̃(σ) + δ̃(σ))�̃(σ)−1 : Ys−1 → Ys−1

is meromorphic as well for the same s and σ as above, and is a right
inverse (away from its poles) of

(2.9) d̃(σ) + δ̃(σ) : Zs−1 → Ys−1,

where Zs−1 = {u ∈ H̄s−1(X̃; ΛX̃ ⊕ ΛX̃) : (d̃(σ) + δ̃(σ))u ∈ Ys−1}.
Increasing the lower bound on s required in (2.8) by 1, an element u ∈
kerYs−1 d̃(σ)+δ̃(σ) of course satisfies u ∈ X s−1, hence, u ∈ kerX s−1 �̃(σ),
thus, has above threshold regularity, which means it lies in a finite-
dimensional space. Thus, with this increased requirement on s, the
map (2.9) is Fredholm, invertible for Imσ � 1, and satisfies high energy

estimates provided �̃(σ) does.

To summarize this to the extent needed in the sequel, �̃(σ) is an an-
alytic family of Fredholm operators on suitable function spaces, and the

inverse family �̃(σ)−1 : C∞(X̃; ΛX̃ ⊕ ΛX̃)→ C∞(X̃; ΛX̃ ⊕ ΛX̃) (where
we use the identification (2.5)) admits a meromorphic continuation from
Imσ � 0 to the complex plane. Moreover, (see [54, Lemma 3.5]), the
Laurent coefficient at the poles are finite rank operators mapping suf-

ficiently regular distributions to elements of C∞(X̃; ΛX̃ ⊕ ΛX̃). Note,
however, that without further assumptions on the geodesic flow (for in-
stance, semiclassical non-trapping or normally hyperbolic trapping), we
do not obtain any high energy bounds, i.e., polynomial (in σ) estimates

on the operator norm of �̂(σ)−1 : Ys−1 → X s when |Reσ| → ∞ and
Imσ ≥ −C for (suitable) C > 0.

Lemma 2.1. A complex number σ ∈ C is a resonance of �, i.e.,

�̃(σ)−1 has a pole at σ, if and only if there exists a non-zero u ∈
α−iβσC∞(Xeven; ΛXeven ⊕ ΛXeven) (using the identification (2.5)) such

that �̂(σ)u = 0.

Proof. If σ ∈ C is a resonance, then there exists a non-zero ũ ∈
C∞(X̃; ΛX̃ ⊕ ΛX̃) with �̃(σ)ũ = 0. Restricting to X, this implies by

(2.6) and (2.2) that �̂(σ)u = 0 for

u = eiFσũ|X ∈ α
−iβσC∞(Xeven; ΛXeven ⊕ ΛXeven).

13See also [54, §2.2], where Λ± = {∓c dµ : c > 0} denotes the two components of
N∗{µ = 0}, for a precise description of the relevant dynamical properties: Λ− is a

source, Λ+ a sink for the Hamilton flow of the principal symbol of �̃(σ).
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If u = 0, then ũ vanishes to infinite order at Y , and since �̃(σ) is a
conjugate of a wave or Klein–Gordon operator on an asymptotically de
Sitter space, see [55], unique continuation at infinity on the de Sitter
side as in [53, Proposition 5.3] (which is in the scalar setting, but works
similarly in the present context since it relies on a semiclassical argu-
ment in which only the principal symbol of the wave operator matters,

and this is the same in our setting) shows that ũ ≡ 0 on X̃. This

is the place where we use that we capped off X̃ outside of Xeven by a
Cauchy hypersurface: (pseudodifferential) complex absorption in princi-
ple would have the mildly undesirable effect of allowing for the existence

of resonant states supported in X̃ \X, see [54, Proposition 3.9]. Hence,
u 6= 0, as desired.

Conversely, given u ∈ α−iβσC∞(Xeven; ΛXeven ⊕ ΛXeven) such that

�̂(σ)u = 0, we define ũ′ ∈ C∞(X̃; ΛX̃⊕ΛX̃) to be any smooth extension

of e−iFσu from Xeven to X̃. Then �̃(σ)ũ′ is identically zero in X and,
thus, vanishes to infinite order at Y ; hence, we can solve

�̃(σ)ṽ = −�̃(σ)ũ′

in X̃ \X with ṽ vanishing to infinite order at Y : this is a wave equa-
tion on an asymptotically de Sitter space, as mentioned above, hence,
solvability is provided by [53, Proposition 3.4 and Corollary 3.6]. Thus,
extending ṽ by 0 to X, we find that ũ = ũ′+ ṽ is a non-zero solution to

�̃(σ)ũ = 0 on X̃. q.e.d.

Since � = (d + δ)2, we readily obtain the following analogue of
Lemma 2.1 for d+ δ:

Lemma 2.2. The map14

kerC∞(X̃)
(d̃(σ) + δ̃(σ))→ kerα−iβσC∞(Xeven)(d̂(σ) + δ̂(σ)),

ũ 7→ eiFσũ|X
is an isomorphism.

Proof. Since ũ ∈ ker(d̃(σ) + δ̃(σ)) implies ũ ∈ ker �̃(σ), injectivity
follows from the proof of Lemma 2.1. To show surjectivity, take u ∈
eiFσC∞(Xeven) with (d̂(σ)+δ̂(σ))u = 0 and choose any smooth extension

ũ′ of e−iFσu to X̃. Solving �̃(σ)ṽ′ = −(d̃(σ) + δ̃(σ))ũ′ with supp ṽ′ ⊂
X̃ \ X and then defining ṽ = (d̃(σ) + δ̃(σ))ṽ′, we see that ũ = ũ′ + ṽ

extends ũ′ to X̃ and is annihilated by d̃(σ) + δ̃(σ). q.e.d.

Thus, when studying the location and structure of resonances, we
already have very precise information about regularity and asymptotics
(on X) of potential resonant states.

14We drop the bundles from the notation for simplicity.
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3. Resonances in Imσ ≥ 0

Using Lemma 2.2, we now study the resonances of in Imσ ≥ 0 by

analyzing the operator d̂(σ) + δ̂(σ) (and related operators) on Xeven.
Recall that a resonance at σ ∈ C and a corresponding resonant state ũ
yield a solution (d+ δ)(e−it∗σũ) = 0, hence, Imσ > 0 implies in view of
|e−it∗σ| = et∗ Imσ that e−it∗σũ grows exponentially in t∗, whereas reso-
nances with Imσ = 0 yield solutions which at most grow polynomially
in t∗ (and do not decay). We will continue to drop the metric g or g̃
from the notation for brevity.

In order to keep track of fiber inner products and volume densities,
we will use the following notation.

Definition 3.1. For a density µ on X and a complex vector bun-
dle E → X equipped with a positive definite Hermitian form B, let
L2(X,µ; E , B) be the space of all sections u of E for which ‖u‖2µ,B :=∫
X B(u, u) dµ <∞.

If B is merely assumed to be sesquilinear (but not necessarily positive
definite), we define the pairing

〈u, v〉µ,B :=

∫
X
B(u, v) dµ,

for all sections u, v of E for which B(u, v) ∈ L1(X,µ). If the choice of
the density µ or inner product B is clear from the context, it will be
dropped from the notation.

Remark 3.2. It will always be clear what bundle E we are using at
a given time, so E will from now on be dropped from the notation; also,
X will mostly be suppressed.

Since the metric g in (1.1) has a warped product structure and αdt
has unit squared norm, it is natural to write differential forms on M =
Rt ×Xx as

(3.1) u(t, x) = uT (t, x) + αdt ∧ uN (t, x),

where the tangential and normal forms uT and uN are t-dependent forms
on X, and we will often write this as

u(t, x) =

(
uT (t, x)
uN (t, x)

)
.

Thus, the differential d on M is given in terms of the differential dX on
X by

(3.2) d =

(
dX 0
α−1∂t −α−1dXα

)
.
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Since the dual metric is given by G = α−2∂2
t −H, the fiber inner product

Gk on k-forms is given by

(3.3) Gk =

(
(−1)kHk 0

0 (−1)k−1Hk−1

)
,

whereHq denotes the fiber inner product on q-forms onX. Furthermore,
the volume density on M is |dg| = α|dt dh|, and we, therefore, compute
the L2(M, |dg|)-adjoint of d to be

(3.4) δ =

(
−α−1δXα −α−1∂t

0 δX

)
,

where δX is the L2(X, |dh|; ΛX,H)-adjoint of dX ; the signs here are due
to the signs in (3.3) which depend on the form degree. Thus,

(3.5) d̂(σ) =

(
dX 0

−iσα−1 −α−1dXα

)
, δ̂(σ) =

(
−α−1δXα iσα−1

0 δX

)
.

In the course of our arguments we will need to justify various integra-
tions by parts and boundary pairing arguments. This requires a precise
understanding of the asymptotics of uT and uN for potential resonant
states u at Y = ∂Xeven. To this end, we further decompose the bundle
ΛX ⊕ ΛX near Y by writing uT as

(3.6) uT = uTT + dα ∧ uTN ,

and, similarly, for uN , hence,

(3.7) u = uTT + dα ∧ uTN + αdt ∧ uNT + αdt ∧ dα ∧ uNN ,

where the u•• are forms on X valued in ΛY . Now for a resonant state
u, we have

(3.8) u = α−iβσ(ũ′TT + d(α2)∧ ũ′TN + dt∗ ∧ ũ′NT + dt∗ ∧ d(α2)∧ ũ′NN ),

near Y with ũ′•• ∈ C∞(Xeven; ΛY ), which we rewrite in terms of the
decomposition (3.7) using (2.2), obtaining

u = α−iβσ
(
ũ′TT + dα ∧ (2αũ′TN − F ′(α)ũ′NT )

+ αdt ∧ α−1ũ′NT + 2αdt ∧ dα ∧ ũ′NN
)
;

hence, introducing the ‘change of basis’ matrix

C =


1 0 0 0
0 α βα−1 0
0 0 α−1 0
0 0 0 1

 ,
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and defining the space
(3.9)

C∞(σ) := Cα−iβσ


C∞(Xeven; ΛY )
C∞(Xeven; ΛY )
C∞(Xeven; ΛY )
C∞(Xeven; ΛY )

 ⊂


α−iβσC∞(Xeven; ΛY )
α−iβσ−1C∞(Xeven; ΛY )
α−iβσ−1C∞(Xeven; ΛY )
α−iβσC∞(Xeven; ΛY )

 ,

we obtain

(3.10)


uTT
uTN
uNT
uNN

 = Cα−iβσ


ũTT
ũTN
ũNT
ũNN

 ∈ C∞(σ),

with ũ•• ∈ C∞(Xeven; ΛY ), where the u•• are the components of u in
the decomposition (3.7).

We will also need the precise form of d̂(σ) and δ̂(σ) near Y . Since in
the decomposition (3.6), the fiber inner product on ΛX-valued forms is

H = K ⊕ β̃−2K in view of (2.1), we have

(3.11) dX =

(
dY 0
∂α −dY

)
and δX =

(
δY ∂∗α
0 −β̃2δY β̃

−2

)
,

where dY is the differential on Y and ∂∗α is the formal adjoint of

∂α : C∞(X; ΛY ) ⊂ L2(X, |dh|; ΛY,K)→ L2(X, |dh|; ΛY, β̃−2K).

Thus, if β̃ and k are independent of α near Y , we simply have ∂∗α =
−β−2∂α, and in general

(3.12) ∂∗α = −β−2∂α + α2p1∂α + αp2, p1, p2 ∈ C∞(Xeven).

Finally, we compute the form of d̂(σ) near Y acting on forms as in
(3.10):

(3.13) d̂(σ)C =


dY 0 0 0
∂α −αdY −βα−1dY 0

−iσα−1 0 −α−1dY 0
0 −iσ −iσβα−2 − α−1∂α dY

 .

Thus, applying d̂(σ) to u ∈ C∞(σ) yields an element

d̂(σ)u ∈


α−iβσC∞(Xeven; ΛY )
α−iβσ−1C∞(Xeven; ΛY )
α−iβσ−1C∞(Xeven; ΛY )
α−iβσC∞(Xeven; ΛY )

 ,

where we use that there is a cancellation in the (4, 3) entry of d̂(σ)C
in view of (iσβα−2 + α−1∂α)α−iβσ = 0; without this cancellation, the
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fourth component of d̂(σ)u would only lie in α−iβσ−2C∞(Xeven; ΛY ).
Similarly, we compute
(3.14)

δ̂(σ)C =


−δY −α−1∂∗αα

2 −βα−1∂∗α + iσα−2 0

0 αβ̃2δY β̃
−2 βα−1β̃2δY β̃

−2 iσα−1

0 0 α−1δY ∂∗α
0 0 0 −β̃2δY β̃

−2

 ,

thus, applying δ̂(σ) to u ∈ C∞(σ) also gives an element

δ̂(σ)u ∈


α−iβσC∞(Xeven; ΛY )
α−iβσ−1C∞(Xeven; ΛY )
α−iβσ−1C∞(Xeven; ΛY )
α−iβσC∞(Xeven; ΛY )

 ,

where there is again a cancellation in the (1, 3) entry of δ̂(σ)C ; with-

out this cancellation, the first component of δ̂(σ)u would only lie in
α−iβσ−2C∞(Xeven; ΛY ).

In fact, a bit more is true: namely, one checks that the conjugated

operators15 αiβσC−1d̂(σ)Cα−iβσ and αiβσC−1δ̂(σ)Cα−iβσ preserve the
space C∞(Xeven; ΛY )4 (in the decomposition (3.8)), hence, if u ∈ C∞(σ),

then also d̂(σ)u, δ̂(σ)u ∈ C∞(σ). Since it will be useful later, we check this

explicitly for σ = 0 by computing

(3.15) C−1d̂(0)C =


dY 0 0 0

α−1∂α −dY 0 0
0 0 −dY 0
0 0 −α−1∂α dY

 ,

and
(3.16)

C−1δ̂(0)C =


−δY −α−1∂∗αα

2 −α−1∂∗αβ 0

0 β̃2δY β̃
−2 βα−2β̃2[δY , β̃

−2] −βα−1∂∗α
0 0 δY α∂∗α
0 0 0 −β̃2δY β̃

−2

 .

3.1. Absence of resonances in Imσ > 0. The fiber inner product on
the form bundle is not positive definite, thus, we cannot use standard
arguments for (formally) self-adjoint operators to exclude a non-trivial

kernel of d̂(σ) + δ̂(σ). We, therefore, introduce a different inner product
(by which we mean here a non-degenerate sesquilinear form), related to
the natural inner product induced by the metric, which does have some

15Either, this follows by a direct computation; or one notes that these operators
are equal (up to a smooth phase factor) to the matrices of the Fourier transforms in
t∗ of d and δ with respect to the form decomposition (3.8), which are smooth on the

extended manifold X̃.
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positivity properties. Concretely, for θ ∈ (−π/2, π/2), we use the inner
product H ⊕ e−2iθH, i.e., on pure degree k-forms on M , the fiber inner
product is given by Hk⊕e−2iθHk−1 in the decomposition into tangential
and normal components as in (3.1).

Lemma 3.3. Let θ ∈ (−π/2, π/2). Suppose that u ∈ L2(α|dh|;H ⊕
H) is such that 〈u, u〉H⊕e−2iθH = 0. Then u = 0.

Proof. With u = uT + αdt ∧ uN , we have

‖uT ‖2L2(α|dh|;H) + e−2iθ‖uN‖2L2(α|dh|;H) = 0.

Multiplying this equation by eiθ and taking real parts gives

cos(θ)‖u‖2L2(α|dh|;H⊕H) = 0,

hence, u = 0, since cos θ > 0 for θ in the given range. q.e.d.

Using the volume density α|dh| to compute adjoints,16 we have

〈d̂(σ)u, v〉H⊕e−2iθH = 〈u, δ̂θ(σ)v〉H⊕e−2iθH , u, v ∈ C∞c (X; ΛX ⊕ ΛX),

for the operator

δ̂θ(σ) =

(
α−1δXα ie2iθσ̄α−1

0 −δX

)
,

which equals −δ̂(σ) provided e2iθσ̄ = −σ, i.e., σ ∈ eiθ · i(0,∞).

Remark 3.4. Since the inner product H ⊕ e−2iθH is not Hermitian,

we do not have 〈δ̂θ(σ)u, v〉H⊕e−2iθH = 〈u, d̂(σ)v〉H⊕e−2iθH in general.
Rather, one computes

〈δ̂θ(σ)u, v〉H⊕e2iθH = 〈v, δ̂θ(σ)u〉H⊕e−2iθH

= 〈d̂(σ)v, u〉H⊕e−2iθH = 〈u, d̂(σ)v〉H⊕e2iθH .
(3.17)

Now suppose u ∈ C∞(σ) is a solution, with Imσ > 0, of

(3.18) (d̂(σ) + δ̂(σ))u = 0.

We claim that every such u must vanish. To show this, we apply d̂(σ)
to (3.18) and pair the result with u; this gives

0 = 〈d̂(σ)δ̂(σ)u, u〉H⊕e−2iθH = 〈δ̂(σ)u, δ̂θ(σ)u〉H⊕e−2iθH

= −〈δ̂(σ)u, δ̂(σ)u〉H⊕e−2iθH ,
(3.19)

where we choose θ ∈ (−π/2, π/2) so that σ ∈ eiθ ·i(0,∞); the integration
by parts will be justified momentarily. By Lemma 3.3, this implies

16See Definition 3.1 for the notation used here.
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δ̂(σ)u = 0. On the other hand, applying δ̂(σ) to (3.18) and using (3.17),
we get, for σ ∈ eiθ · i(0,∞),

0 = 〈δ̂(σ)d̂(σ)u, u〉H⊕e2iθH = −〈δ̂θ(σ)d̂(σ)u, u〉H⊕e2iθH
= −〈d̂(σ)u, d̂(σ)u〉H⊕e2iθH ,

(3.20)

hence, d̂(σ)u = 0 by Lemma 3.3, again modulo justifying the integration
by parts.

Using the splitting (3.1) and the form (3.5) of d̂(σ), the second com-

ponent of the equation d̂(σ)u = 0 gives iσuT + dXαuN = 0. Taking the
L2(α|dh|;H)-pairing of this with uT gives (the integration by parts to
be justified below)

(3.21) 0 = iσ‖uT ‖2 + 〈dXαuN , uT 〉 = iσ‖uT ‖2 + 〈uN , δXαuT 〉,

and then the first component of δ̂(σ)u = 0, i.e., δXαuT = iσuN , can
be used to rewrite the pairing on the right hand side; we obtain 0 =
i(σ‖uT ‖2 − σ̄‖uN‖2). Writing σ = ieiθσ̃ with σ̃ > 0 real, this becomes

(3.22) 0 = σ̃(eiθ‖uT ‖2 + e−iθ‖uN‖2),

and taking the real part of this equation gives uT = 0 = uN , hence,
u = 0.

We now justify the integrations by parts used in (3.19) and (3.20),
which is only an issue at Y . First of all, since u ∈ C∞(σ) and Imσ > 0,

the pairings are well-defined in the strong sense that all functions which
appear in the pairings are elements of L2(α|dh|;H ⊕ H); in fact, all
functions in these pairings lie in C∞(σ). In view of the block structure

H ⊕ e−2iθH = K ⊕ β̃−2K ⊕ e−2iθK ⊕ β̃−2e−2iθK of the inner product,
the only potentially troublesome term for the integration by parts is the
pairing of the first components, since this is where we need the cancella-
tion of two too singular summands mentioned after (3.14) to ensure that

δ̂(σ)u ∈ L2. Integrating by parts separately in each of the summands of
one factor of the L2 pairing, one can only use the cancellation in (i.e.,
the L2-membership of) the other factor; that is, we integrate by parts in
a pairing (of the first components) of an element of α−iβσC∞(Xeven; ΛY )
(using the cancellation) with one in α−iβσ−2C∞(Xeven; ΛY ) (not using
the cancellation), thus, this pairing is still absolutely integrable and the
integration by parts is justified. Likewise, the integration by parts used
in (3.20) only has potential issues in the pairing of the fourth compo-
nents, since we need the cancellation mentioned after (3.13) to ensure

that d̂(σ)u ∈ L2. But again, if we only use this cancellation in one of
the terms, we pair α−iβσC∞(Xeven; ΛY ) against α−iβσ−2C∞(Xeven; ΛY ),
which is absolutely integrable.



ASYMPTOTICS FOR DIFFERENTIAL FORMS 241

In order to justify (3.21), we observe using (3.11) that near Y ,

uT , dXαuN ∈
(
α−iβσC∞
α−iβσ−1C∞

)
, uN , δXαuT ∈

(
α−iβσ−1C∞
α−iβσC∞

)
,

where we write C∞ = C∞(Xeven; ΛY ). These membership statements
do not rely on any cancellations, and since all these functions are in
L2(α|dh|; ΛY,K) near Y , the integration by parts in (3.21) is justified.

We summarize the above discussion and extend it to a quantitative
version:

Proposition 3.5. There exists a constant C > 0 such that for all
σ ∈ C with Imσ > 0, we have the following estimate for u ∈ C∞(σ):

(3.23) ‖u‖L2(α|dh|;H⊕H) ≤ C
|σ|
| Imσ|2

‖(d̂(σ) + δ̂(σ))u‖L2(α|dh|;H⊕H).

Proof. Write σ = ieiθσ̃, θ ∈ (−π/2, π/2), σ̃ > 0, as before. Let

f = (d̂(σ) + δ̂(σ))u; in particular, f ∈ C∞(σ). Then d̂(σ)δ̂(σ)u = d̂(σ)f ,
so

〈δ̂(σ)u, δ̂(σ)u〉H⊕e−2iθH = −〈d̂(σ)δ̂(σ)u, u〉H⊕e−2iθH

= 〈f, δ̂(σ)u〉H⊕e−2iθH ,
(3.24)

and, similarly,

(3.25) 〈d̂(σ)u, d̂(σ)u〉H⊕e2iθH = 〈f, d̂(σ)u〉H⊕e2iθH .

Multiply (3.24) by eiθ, (3.25) by e−iθ and take the sum of both equations
to get

eiθ(‖(δ̂(σ)u)T ‖2 + ‖(d̂(σ)u)N‖2) + e−iθ(‖(δ̂(σ)u)N‖2 + ‖(d̂(σ)u)T ‖2)

= eiθ〈f, δ̂(σ)u〉H⊕e−2iθH + e−iθ〈f, d̂(σ)u〉H⊕e2iθH .

Here, the norms without subscript are L2(α|dh|;H⊕H)-norms as usual.
Taking the real part and applying Cauchy–Schwarz to the right hand
side produces the estimate

(3.26) ‖d̂(σ)u‖+ ‖δ̂(σ)u‖ ≤ 4

cos θ
‖f‖ =

4|σ|
Imσ

‖f‖.

We estimate u in terms of the left hand side of (3.26) by following the

arguments leading to (3.22): put v = d̂(σ)u and w = δ̂(σ)u. Then
iσuT + dXαuN = −αvN ; we pair this with uT in L2(α|dh|;H) and
obtain

iσ‖uT ‖2 + 〈uN , δXαuT 〉 = −〈αvN , uT 〉.
Using −δXαuT + iσuN = αwT , this implies

iσ‖uT ‖2 − iσ̄‖uN‖2 = −〈αvN , uT 〉+ 〈uN , αwT 〉,
thus,

σ̃(eiθ‖uT ‖2 + e−iθ‖uN‖2) = 〈αvN , uT 〉 − 〈uN , αwT 〉.



242 P. HINTZ & A. VASY

Taking the real part and applying Cauchy–Schwarz, we get

(cos θ)‖u‖ ≤ |σ|−1(‖αv‖+ ‖αw‖) . |σ|−1(‖v‖+ ‖w‖).
In combination with (3.26), this yields (3.23). q.e.d.

3.2. Boundary pairing; absence of non-zero real resonances.
We proceed to exclude non-zero real resonances for d+ δ by means of a
boundary pairing argument similar to [42, §2.3].

Proposition 3.6. Suppose σ ∈ R, σ 6= 0. If u ∈ C∞(σ) solves (d̂(σ) +

δ̂(σ))u = 0, then u = 0.

Proof. We proceed in the usual three steps: (1) vanishing of the lead-
ing coefficient at the horizon, (2) rapid decay at the horizon, (3) unique
continuation.

Step (1). Writing u = uT + αdt ∧ uN as usual, we can expand

(d̂(σ) + δ̂(σ))u = 0 as

(αdX − δXα)uT + iσuN = 0,(3.27)

−iσuT + (−dXα+ αδX)uN = 0.

Applying (−dXα + αδX) to the first equation and using the second
equation to simplify the resulting expression produces a second order
equation for uT ,

(3.28) (dXαδXα+ αδXαdX − dXα2dX − σ2)uT = 0.

Writing uT = uTT + dα ∧ uTN as in (3.6), we see from the definition of
the space C∞(σ) that

uT ∈ C∞(σ),T := α−iβσC∞(Xeven; ΛY )⊕ α−iβσ−1C∞(Xeven; ΛY )

near Y . Notice that for σ ∈ R, the space C∞(σ),T barely fails to be

contained in L2(α|dh|).
We will deduce from (3.28) that uT = 0; equation (3.27) then gives

uN = 0, as σ 6= 0. Now, the L2(α|dh|;H)-adjoint of dXα is δXα, hence,
even ignoring the term dXα

2dX , the operator in (3.28) is not symmetric.
However, we can obtain a simpler equation from (3.28) by applying dX
to it; write vT = dXuT ∈ C∞(σ),T , and near Y ,

vT =

(
α−iβσṽTT
α−iβσ−1ṽTN

)
, ṽTT , ṽTN ∈ C∞(Xeven; ΛY ).

Then vT satisfies the equation

(dXαδXα− σ2)vT = 0,

and dXαδXα is symmetric with respect to the L2(α|dh|;H)-inner prod-
uct. We now compute the boundary pairing formula (using the same
inner product); to this end, pick a cutoff function χ ∈ C∞(X) such that
in a collar neighborhood [0, δ)α × Yy of Y in X, χ = χ(α) is identically
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0 near α = 0 and identically 1 in α ≥ δ/2, and extend χ by 1 to all of
X. Define χε(α) = χ(α/ε) and χ′ε(α) = χ′(α/ε). Then

0 = lim
ε→0

(〈(dXαδXα− σ2)vT , χεvT 〉 − 〈vT , χε(dXαδXα− σ2)vT 〉)

= lim
ε→0
〈vT , [dXαδXα, χε]vT 〉.

(3.29)

The coefficients of the commutator are supported near Y , hence, we use
(3.11) and (3.12) to compute its form as

[dXαδXα, χε] =

[(
dY αδY α dY α∂

∗
αα

∂ααδY α ∂αα∂
∗
αα+ dY αβ̃

2δY β̃
−2α

)
, χε

]
=

(
0 dY α[∂∗α, χε]α

[∂α, χε]αδY α [∂αα∂
∗
αα, χε]

)
= ε−1

(
0 −β−2(α2 +O(α4))χ′εdY + α4χ′ε[dY , p1]

χ′εαδY α χ′εα∂
∗
αα− ∂α(α2 +O(α4))β−2χ′ε

)
.

In (3.29), the off-diagonal terms of this give terms of the form

(3.30)

∫
Y

∫
α∓iβσα±iβσ−1ε−1α2χ′εṽ dα |dk|,

with ṽ ∈ C∞(Xeven), and are easily seen to vanish in the limit ε → 0.
The non-zero diagonal term gives17 a term which comes from the O(α4)
summand and vanishes in the limit ε→ 0, plus

ε−1
〈
α−iβσ−1ṽTN ,

(χ′εα∂
∗
αα− ∂αα2β−2χ′ε)α

−iβσ−1ṽTN
〉
L2(X;αβ dα|dk|;ΛY ;β̃−2K)

= 2

∫
Y

∫
〈ṽTN , iβ−2σṽTN 〉Kε−1χ′ε dα|dk|+ o(1)

ε→0−−→ −2iβ−2σ‖ṽTN |Y ‖2L2(Y,|dk|;K);

here, both summands in the pairing yield the same result, as is most
easily seen by integrating by parts in α, hence, the factor of 2, and the
o(1)-term comes from differentiating ṽTN , which produces a term of the
form (3.30). We, thus, arrive at

0 = 〈(dXαδXα− σ2)vT , vT 〉 − 〈vT , (dXαδXα− σ2)vT 〉
= −2iβ−2σ‖ṽTN |Y ‖2,

whence, ṽTN |Y = 0 in view of σ 6= 0, so we, in fact, have

(3.31) vT =

(
α−iβσṽTT
α−iβσ+1ṽ′TN

)
, ṽ′TN ∈ C∞(Xeven; ΛY ).

17Recall that the volume density is given by α|dh| = αβ dα|dk|, and the fiber inner

product in the (TN)-component is β̃−2K.



244 P. HINTZ & A. VASY

Step (2). For the next step, recall that on a manifold with boundary
X, 0-vector fields, introduced by Mazzeo and Melrose [41] to analyze
the resolvent of the Laplacian on asymptotically hyperbolic spaces, are
smooth vector fields that vanish at ∂X, i.e., are of the form αV , where
V is a smooth vector field on X, and α, as in our case, is a boundary
defining function, i.e., in local coordinates a linear combination, with
smooth coefficients, of α∂α and α∂yj . Further, 0-differential operators,

A ∈ Diff0(X), are the differential operators generated by these (taking
finite sums of finite products, with C∞(X) coefficients). As a contrast,
b-vector fields are merely tangent to ∂X, so in local coordinates they
are linear combinations, with smooth coefficients, of α∂α and ∂yj , and

they generate b-differential operators Diffb(X). Often, as in our case,
one is considering solutions of 0-differential equations with additional
properties, such as having an expansion in powers of α (and perhaps
logα) with smooth coefficients, i.e., polyhomogeneous functions. In
these cases αDiffb(X) ⊂ Diff0(X) acts ‘trivially’ on an expansion in
that it maps each term to one with an additional order of vanishing, so,
in particular, one can analyze the asymptotic expansion of solutions of
0-differential equations in this restrictive class by ignoring the αDiffb(X)
terms. Notice that α∂yj ∈ αDiffb(X), in particular, so the tangential
0-derivatives can be dropped for this purpose. The indicial equation
is then obtained by freezing the coefficients of A ∈ Diff0(X) at ∂X,
i.e., writing it as

∑
k,β ak,β(α, y)(α∂α)k(α∂y)

β, where ak,β are bundle
endomorphism valued, and restricting α to 0, and dropping all terms
with a positive power of α∂y, to obtain

∑
k ak,0(0, y)(α∂α)k. This can

be thought of as a regular-singular ODE in α for each y; its indicial
roots are called the indicial roots of the original 0-operator, and they
determine the asymptotics of solutions of the homogeneous PDE with
this a priori form.

Now dXαδXα−σ2 ∈ Diff2
0(X) is a 0-differential operator which equals

dXαδXα− σ2 =

(
−σ2 0

0 −β−2∂αα∂αα− σ2

)
modulo αDiff2

b(X); its indicial roots (i.e., the values of λ for which
α−λ(dXαδXα− σ2)αλ, which is a matrix depending polynomially on λ,
is not invertible) are ±iβσ−1. In particular, −iβσ+j, j ∈ N0, is not an
indicial root. Thus, a standard inductive argument starting with (3.31)

shows that vT ∈ Ċ∞(X; ΛX).
Step (3). Next, we note that vT lies in the kernel of the operator

(3.32) dXαδXα+ α2δXdX − σ2 ∈ Diff2
0(X; 0ΛX),

which has the same principal part as α2∆X (computed with respect to
the metric h), hence, is principally a 0-Laplacian; thus, we can apply
Mazzeo’s result [40, Theorem (13)] on unique continuation at infinity for
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elliptic second order 0-differential operators such as (3.32) to conclude
that the rapidly vanishing vT must, in fact, vanish identically.

We, thus, have proved dXuT = 0. Since uT satisfies (3.28), we deduce
that uT itself satisfies

(dXαδXα− σ2)uT = 0,

thus, repeating the above argument shows that this implies uT = 0,
hence, u = 0, and the proof is complete. q.e.d.

3.3. Analysis of the zero resonance. We have shown now that the
only potential resonance for d+δ in Imσ ≥ 0 is σ = 0, and we proceed to
study the zero resonance in detail, in particular, giving a cohomological
interpretation of it in Section 3.4.

We begin by establishing the order of the pole of (d̃(σ) + δ̃(σ))−1:

Lemma 3.7. (d̃(σ) + δ̃(σ))−1 has a pole of order 1 at σ = 0.

Proof. Since d̃(0) + δ̃(0) annihilates constant functions (which are,

indeed, elements of C∞(0)), (d̃(σ) + δ̃(σ))−1 does have a pole at 0. Denote

the order of the pole by N . Then there is a holomorphic family ũ(σ) ∈
C∞(X̃) with ũ(0) 6= 0 such that (d̃(σ) + δ̃(σ))ũ(σ) = σN ṽ, where ṽ ∈
C∞(X̃). Define u(σ) = eiFσũ(σ)|X ∈ C∞(σ) and v(σ) = eiFσṽ|X ∈ C∞(σ),

then (d̂(0) + δ̂(0))u(σ) = σNv(σ). Moreover, since (d̃(0) + δ̃(0))ũ(0) = 0
and ũ(0) is non-zero, Lemma 2.2 shows that u(0) 6= 0.

Let us assume now that N ≥ 2. For σ ∈ i(0,∞) close to 0, the
quantitative estimate in Proposition 3.5 now gives

(3.33) ‖u(σ)‖ . |σ|−1+N‖v(σ)‖ ≤ |σ|‖v(σ)‖,

where we use the norm of L2(α|dh|;H⊕H).18 Notice that this does not
immediately give u(0) = 0 since v(0) /∈ L2(α|dh|;H ⊕H). However, we
can quantify the degeneration of the L2-norm of v(σ) as σ → 0. To see
this, we first observe that the L2-norm of v(σ) restricted to the comple-
ment of any fixed neighborhood of Y does stay bounded, so it remains to
analyze the L2-norms of the four components of v(σ) near Y in the nota-
tion of (3.7); denote these components by α−iβσṽTT (σ), α−iβσ−1ṽTN (σ),
α−iβσ−1ṽNT (σ), and α−iβσṽNN (σ), so that ṽ••(σ) ∈ C∞(Xeven; ΛY ) uni-
formly. Since the fiber metric in this basis has a block diagonal form and
any C∞(Xeven)-multiple of α−iβσ is uniformly square-integrable with re-
spect to the volume density α|dh|, the degeneration of the L2-norm of v
is caused by the (TN) and (NT ) components. For these, we compute,

18Observe that in the notation of Section 3.1, we have δ̂0(0) = −δ̂(0), hence,
using the Riemannian fiber inner product H ⊕H is natural when studying the zero
resonance.
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with w̃(σ) ∈ C∞(Xeven; ΛY ) denoting any continuous family supported
near Y , ∫

Y

∫
α2(−iβσ−1)‖w̃‖2K αdα|dk|

= ‖w̃(0)‖2L2(Y,|dk|;K)

∫
α−2iβσ−1χ(α) dα+O(1),

where χ ∈ C∞(X) is a cutoff, equal to 1 near α = 0. We can rewrite
the integral using an integration by parts, which yields∫

α−2iβσ−1χ(α) dα =
1

2iβσ

∫
α−2iβσχ′(α) dα = O(|σ|−1).

Therefore, we obtain the bound ‖v(σ)‖ = O(|σ|−1/2). Plugging this
into (3.33), we conclude using Fatou’s Lemma that u(0) = 0, which
contradicts our assumption that u(0) 6= 0. Hence, the order of the pole
is N ≤ 1, but since it is at least 1, it must be equal to 1. q.e.d.

Next, we identify the resonant states. For brevity, we will write d̂ =

d̂(0), δ̂ = δ̂(0) and �̂ = �̂g(0).

Proposition 3.8. kerC∞
(0)

(d̂+ δ̂) is equal to the space

(3.34) H = {u ∈ C∞(0) : d̂u = 0, δ̂u = 0}.

Proof. Given u ∈ C∞(0) with (d̂ + δ̂)u = 0, we conclude that �̂u = 0.

We observe now that �̂ is symmetric on L2(α|dh|;H⊕H): indeed, d̂(σ)

and δ̂(σ) are block diagonal for σ = 0, see (3.5), hence, are adjoints
of one another with respect to ±H ⊕ ±H for any choice of signs, with
opposite signs giving the natural inner product (3.3), and both signs
positive giving the Riemannian fiber metric H⊕H. Thus, we can obtain
information about u by a boundary pairing type argument: concretely,
for a cutoff χ ∈ C∞(X) as in the proof of Proposition 3.6, identically 0
near Y , identically 1 outside a neighborhood of Y and a function of α in
a collar neighborhood of Y , and with χε(α) = χ(α/ε), χ′ε(α) = χ′(α/ε),
we have19

0 = − lim
ε→0
〈χε(d̂ δ̂ + δ̂ d̂)u, u〉 = lim

ε→0
(〈δ̂u, δ̂χεu〉+ 〈d̂u, d̂χεu〉)

= lim
ε→0

(‖χ1/2
ε δ̂u‖2 + ‖χ1/2

ε d̂u‖2) + lim
ε→0

(〈δ̂u, [δ̂, χε]u〉+ 〈d̂u, [d̂, χε]u〉).
(3.35)

Since the commutators are supported near Y , we can compute them in
the basis (3.7). Let us write u = C ũ as in (3.10) with σ = 0, then in

19The minus sign disappears after the second equality sign due to the change of
signs in the used inner product, cf. the discussion around (3.4).
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view of (3.14), we have

[δ̂C , χε]

= ε−1χ′ε


0 β−2α+O(α3) β−1α−1 +O(α) 0
0 0 0 0
0 0 0 −β−2 +O(α2)
0 0 0 0

 ,

(3.36)

and since, therefore, only the (TT ) and (NT ) components of [δ̂C , χε]ũ
are non-zero, we merely compute

(δ̂C ũ)TT = −δY ũTT − α−1∂∗αα
2ũTN − βα−1∂∗αũNT

∈ −δY ũTT + 2β−2ũTN − βα−1∂∗αũNT + α2C∞(Xeven; ΛY ),

(δ̂C ũ)NT = α−1δY ũNT + ∂∗αũNN ∈ α−1δY ũNT + α C∞(Xeven; ΛY ).

Notice here that α−1∂α = 2∂µ, indeed, preserves elements of the space

C∞(Xeven; ΛY ). Now in (3.35), the pairing corresponding to the (1, 2)-
component of (3.36) is of the form (3.30) (recall that the volume density

is α|dh| = αβ̃ dα|dk|) and, hence, vanishes in the limit ε → 0, and we
conclude that

lim
ε→0
〈δ̂u, [δ̂, χε]u〉

= −〈δY ũTT |Y , ũNT |Y 〉+ 2β−2〈ũTN |Y , ũNT |Y 〉
− β〈(α−1∂∗αũNT )|Y , ũNT |Y 〉 − β−1〈δY ũNT |Y , ũNN |Y 〉,

(3.37)

where we use the L2(Y, |dk|;K) inner product on the right hand side;20

we absorbed the factor β̃|Y = β from the volume density αβ̃ dα|dk| into
the functions in the pairings.

In a similar vein, we can use (3.13) to compute

(3.38) [d̂C , χε] = ε−1χ′ε


0 0 0 0
1 0 0 0
0 0 0 0
0 0 −α−1 0

 ,

and

(d̂C ũ)TN = ∂αũTT − αdY ũTN − α−1dY βũNT

∈ −βα−1dY ũNT + C∞(Xeven; ΛY ),

(d̂C ũ)NN = −α−1∂αũNT + dY ũNN .

20Recall here that H ⊕ H = K ⊕ β̃−2K ⊕ K ⊕ β̃−2K, so the (TT ) and (NT )
components which we are concerned with here do not come with an extra factor of

β̃−2.
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Correspondingly,

lim
ε→0
〈d̂u, [d̂, χε]u〉 = −〈dY ũNT |Y , ũTT |Y 〉+ β−1〈(α−1∂αũNT )|Y , ũNT |Y 〉

− β−1〈dY ũNN |Y , ũNT |Y 〉,

(3.39)

where we again use the L2(Y, |dk|;K) inner product on the right hand
side; notice with regard to the powers of β that on the (TN) and (NN)
components, the fiber inner product is β−2K.

As a consequence of these computations, we conclude that the pair-

ings in (3.35) stay bounded as ε→ 0, hence, d̂u, δ̂u ∈ L2(α|dh|;H ⊕H)

by Fatou’s Lemma. Looking at the most singular terms of d̂C ũ and

δ̂C ũ (again using (3.13) and (3.14)), this necessitates

(3.40) dY ũNT |Y = 0, δY ũNT |Y = 0.

Therefore, taking (3.37) and (3.39) into account, (3.35) simplifies to

0 = ‖δ̂u‖2+‖d̂u‖2 + β−1〈(α−1∂αũNT )|Y , ũNT |Y 〉
− β〈(α−1∂∗αũNT )|Y , ũNT |Y 〉+ 2β−2〈ũTN |Y , ũNT |Y 〉.

(3.41)

Moreover, the fourth component of the equation (d̂+ δ̂)C ũ = 0 yields

−(α−1∂αũNT )|Y + dY ũNN |Y − δY ũNN |Y = 0,

which we can pair with ũNT |Y relative to L2(Y, |dk|;K), and then an
integration by parts together with (3.40) shows that the first boundary

pairing in (3.41) vanishes. Likewise, the first component of (d̂+δ̂)C ũ = 0
gives

dY ũTT |Y − δY ũTT |Y + 2β−2ũTN |Y − β(α−1∂∗αũNT )|Y = 0,

which we can again pair with ũNT |Y , and in view of (3.40), we conclude
that the second line of (3.41) vanishes as well. Thus, finally, (3.41)

implies that d̂u = 0 and δ̂u = 0.

Conversely, every u ∈ C∞(0) satisfying d̂u = 0 and δ̂u = 0 trivially lies

in the kernel of d̂+ δ̂. q.e.d.

The above proof, in particular, shows:

Corollary 3.9. Let u = C ũ ∈ C∞(0) be such that d̂ δ̂u = 0 (resp.

δ̂ d̂u = 0), and assume that ũNT |Y = 0.21 Then δ̂u = 0 (resp. d̂u = 0).

In particular, kerC∞
(0)
∩L2 �̂ = H ∩ L2.

21The latter is equivalent to assuming u ∈ L2(α|dh|).
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Proof. Suppose d̂ δ̂u = 0. With a cutoff function χε as above, we
obtain

0 = − lim
ε→0
〈χεd̂ δ̂u, u〉 = lim

ε→0
‖χ1/2

ε δ̂u‖2 + lim
ε→0
〈δ̂u, [δ̂, χε]u〉.

In view of (3.37) and ũNT |Y = 0, the second term on the right hand

side vanishes, and we deduce δ̂u = 0. The proof that δ̂ d̂u = 0 implies

d̂u = 0 is similar and uses (3.39). q.e.d.

Corollary 3.10. We have ker �̂ = ker d̂ δ̂ ∩ ker δ̂ d̂.

Proof. If u ∈ ker �̂, then (d̂ + δ̂)u ∈ H, thus, δ̂(d̂ + δ̂)u = δ̂ d̂u = 0

and d̂ δ̂u = 0. q.e.d.

We record another setting in which the boundary terms in the proof
of Proposition 3.8 vanish:

Lemma 3.11. Suppose v ∈ C∞(0) is a solution of δ̂ d̂ δ̂v = 0. Then

d̂ δ̂v = 0. Likewise, if v ∈ C∞(0) is a solution of d̂ δ̂ d̂v = 0, then δ̂ d̂v = 0.

Proof. Write w = δ̂v ∈ C∞(0). Then δ̂ d̂w = 0 implies, by the proof of

Proposition 3.8, that d̂w ∈ L2(α|dh|;H ⊕H). Writing w = C w̃, this, in
particular, implies dY w̃NT |Y = 0; but writing v = C ṽ, we have

w̃NT = (C−1δ̂C ṽ)NT = δY ṽNT + α∂∗αṽNN ,

as follows from (3.16). Restricting to Y , this gives w̃NT |Y = δY ṽNT |Y ,
and, hence, 0 = dY δY ṽNT |Y . We pair this in L2(Y, |dk|;K) with ṽNT
and integrate by parts, obtaining δY ṽNT |Y = 0. But this implies that

w̃NT |Y = 0. By Corollary 3.9, this gives d̂w = d̂ δ̂v = 0.

For the second part, we proceed analogously: letting w = d̂v ∈
C∞(0), we have d̂ δ̂w = 0, thus, δ̂w ∈ L2. This gives δY w̃NT |Y = 0;

but by (3.15), w̃NT |Y = −dY ṽNT |Y , therefore, δY w̃NT |Y = 0 implies

dY ṽNT |Y = 0, so w̃NT |Y = 0, which in turn gives δ̂w = 0 by Corol-

lary 3.9, hence, δ̂ d̂v = 0. q.e.d.

3.4. Cohomological interpretation of zero resonant states. In
this section, we will always work with σ = 0 and, hence, simply write

d̂ = d̂(0), δ̂ = δ̂(0), d̃ = d̃(0), δ̃ = δ̃(0), �̂ = �̂(0) and �̃ = �̃(0).
The space H defined in Proposition 3.8 is graded by the form degree,

i.e.,

(3.42) H =

n⊕
k=0

Hk,

where Hk is the space of all u ∈ H of pure form degree k. In the
decomposition (3.1), this means that uT is a differential k-form on X,
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and uN is a differential (k− 1)-form. Likewise, K := ker �̂ is graded by
form degree, and we write

(3.43) kerC∞
(0)
�̂ =

n⊕
k=0

Kk.

We aim to relate the spaces Hk and Kk to certain cohomology groups
associated with X. As in the Riemannian setting, the central tool is a

Hodge type decomposition adapted to d̂ and δ̂:

Lemma 3.12. The following Hodge type decomposition holds on X:

(3.44) C∞(0) = kerC∞
(0)
�̂⊕ ranC∞

(0)
�̂.

Proof. We first claim that such a decomposition holds on X̃, i.e., we
claim that

(3.45) C∞(X̃) = ker �̃⊕ ran �̃.

First of all, recall that �̃ is Fredholm with index 0 as an operator (2.7)
for all sufficiently large s, and a complement to its range is given by an

s-independent finite-dimensional subspace of C∞(X̃), namely, the kernel

of its adjoint. Thus, the range of �̃ : C∞(X̃)→ C∞(X̃) is closed, and its

codimension equals the dimension of the kernel of �̃. Hence, in order

to show (3.45), we merely need to check that the intersection of ker �̃
and ran �̃ is trivial.

Thus, let ũ ∈ ker �̃∩ran �̃, and write ũ = �̃ṽ. Let v = ṽ|X . Then ũ ∈
ker �̃ means, restricting to X and using Corollary 3.10, that d̂ δ̂ d̂ δ̂v = 0

and δ̂ d̂ δ̂ d̂v = 0. Repeated application of Lemma 3.11, thus, implies

δ̂ d̂v = 0 and d̂ δ̂v = 0, hence, δ̃ d̃ṽ and d̃ δ̃ṽ are supported in X̃\X. (This
argument shows the uniqueness of the decomposition (3.44).) Therefore,

ũ is a solution of �̃ũ = 0 which is supported in X̃ \ X. By unique

continuation at infinity on the asymptotically de Sitter side X̃ \ X of

X̃, this implies ũ ≡ 0, as claimed.

Now if u ∈ C∞(0) is given, extend it arbitrarily to ũ ∈ C∞(X̃), apply

(3.45) and restrict both summands back to X. This establishes (3.44).
q.e.d.

Remark 3.13. The decomposition (3.44) does not hold if we replace

�̂ in (3.44) by d̂+ δ̂. Indeed, if it did hold, this would say that �̂u = 0

implies (d̂+ δ̂)u = 0, since (d̂+ δ̂)u lies both in ker(d̂+ δ̂) and ran(d̂+ δ̂)

in this case. Since certainly (d̂ + δ̂)u = 0 conversely implies �̂u = 0,

this would mean that ker �̂ = ker(d̂+ δ̂). Now by Lemmas 2.1 and 2.2,

this in turn would give ker �̃ = ker(d̃ + δ̃). Now since �̃ and d̃ + δ̃ are

Fredholm with index 0, we could further deduce ker �̃∗ = ker(d̃ + δ̃)∗,

where the adjoints act on the space Ċ−∞(X̃) of supported distributions
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at the (artificial) Cauchy hypersurface ∂X̃, see [33, Appendix B]. Since

we have ker(d̃+ δ̃)∗ ⊂ ker �̃∗ unconditionally, we can show the absurdity

of this last equality by exhibiting an element u in ker �̃∗ which does not

lie in ker(d̃ + δ̃)∗. This, however, is easy: just let u = 1X be the
characteristic function of X. Then from (3.15) and (3.16), we see that

(d̃ + δ̃)u = d̃u is a non-zero delta distribution supported at Y which is

annihilated by δ̃.

This argument shows that we always have ker �̂ ) ker(d̂ + δ̂). It
is possible though that Hk = Kk for some form degrees k (but this
must fail for some value of k). For instance, this holds for k = 0 by
Corollary 3.9. We will give a more general statement below, see, in
particular, Remark 3.18.

We now define a complex whose cohomology we will relate to the
spaces Hk and Kk: the space C∞(0) ∩ L

2(α|dh|) of smooth forms u = C ũ

with ũNT |Y = 0 has a grading corresponding to form degrees, thus,

D := C∞(0) ∩ L
2(α|dh|) =

n⊕
k=0

Dk.

Since in the above notation u ∈ L2(α|dh|) (and, thus, ũNT |Y = 0) is
equivalent to ũNT ∈ α2C∞(Xeven; ΛY ) near Y , one can easily check

using (3.15) that d̂ acts on C∞(0) ∩ L
2(α|dh|). We can then define the

complex

0→ D0 d̂−→ D1 → . . .
d̂−→ Dn → 0.

We denote its cohomology by

(3.46) HkL2,dR = ker(d̂ : Dk → Dk+1)/ ran(d̂ : Dk−1 → Dk).

There is a natural map from HkL2,dR into Hk:

Lemma 3.14. Every cohomology class [u] ∈ HkL2,dR has a unique

representative u′ ∈ Hk, and the map i : [u] 7→ u′ is injective.

Proof. Let [u] ∈ HkL2,dR, hence, d̂u = 0 and, writing u = C ũ,

ũNT |Y = 0. We first show the existence of a representative, i.e., an

element u− d̂v with v ∈ D, which is annihilated by δ̂. (Since it is clearly

annihilated by d̂, this means u − d̂v ∈ Hk.) That is, we need to solve

the equation δ̂ d̂v = δ̂u with v ∈ D. To achieve this, we use Lemma 3.12
to write

u = u1 + (d̂ δ̂ + δ̂ d̂)u2, u1 ∈ ker �̂.

By our assumption on u and Corollary 3.10, u and u1 are annihilated by

δ̂ d̂, giving δ̂ d̂ δ̂ d̂u2 = 0. By Lemma 3.11, this implies δ̂ d̂u2 = 0, hence,

(3.47) u = u1 + d̂ δ̂u2.
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Applying d̂ δ̂, we obtain

(3.48) d̂ δ̂ d̂ δ̂u2 = d̂ δ̂u ∈ L2.

Now writing u2 = C ũ2, and noting that for any w = C w̃ ∈ C∞(0),

(C−1d̂C w̃)NT |Y = −dY w̃NT |Y as well as (C−1δ̂C w̃)NT |Y = δY w̃NT |Y
by (3.15) and (3.16), the (NT ) component of C−1 times equation (3.48)
reads dY δY dY δY ũ2,NT |Y = 0, which yields δY ũ2,NT |Y = 0. As a con-

sequence of this, v := δ̂u2 ∈ L2 and, therefore, d̂ δ̂u2 ∈ L2. Hence,
(3.47) gives u1 ∈ L2; by Corollary 3.9 then, u1 ∈ H, in particular, u1 is

annihilated by δ̂. Therefore, applying δ̂ to (3.47) yields δ̂(u − d̂v) = 0,
as desired.

Next, we show that the representative is unique: thus, suppose u −
d̂v1, u − d̂v2 ∈ Hk with u, v1, v2 ∈ D, then with v = v1 − v2 ∈ D,

we have d̂v ∈ Hk, thus, δ̂ d̂v = 0, and by Corollary 3.9, we obtain

d̂v = 0. Therefore, u − d̂v1 = u − d̂v2, establishing uniqueness, which,
in particular, shows that the map i is well-defined.

Finally, we show the injectivity of i: suppose u ∈ D satisfies d̂u = 0.

There exists an element v ∈ D such that u− d̂v ∈ Hk. Now if i[u] = 0,

this precisely means that u− d̂v = 0; but then [u] = [d̂v] = 0 in HkL2,dR.

q.e.d.

From the definition of the space D, it is clear that u ∈ Hk lies in the
image of i if and only if u ∈ L2, i.e., if and only if r(u) = 0, where r is
the map

(3.49) r : C∞(0) → C
∞(Y ; ΛY ), u = C ũ 7→ ũNT |Y .

Thus, r extracts the singular part of u and thereby measures the failure
of a given form u ∈ C∞(0) to lie in D. Observe that if u = C ũ ∈ Hk, then

dY ũNT |Y = 0 and δY ũNT |Y = 0, i.e., r(u) is a harmonic form on Y .
Since the space ker(∆Y,k−1) of harmonic forms on the closed manifold

Y is isomorphic to the cohomology group Hk−1(Y ) by standard Hodge
theory, we, thus, obtain:

Proposition 3.15. The sequence

(3.50) 0→ HkL2,dR
i−→ Hk r−→ Hk−1(Y )

is exact. Here, i is the map defined in Lemma 3.14, and r is the re-
striction map (3.49) (composed with the identification ker(∆Y,k−1) ∼=
Hk−1(Y )). Moreover, the map i : HkL2,dR → H

k ∩ D is an isomorphism

with inverse Hk ∩ D 3 u 7→ [u] ∈ HkL2,dR.

Proof. We only need to check the last claim. If u ∈ Hk ∩ D, then
[u] does define a cohomology class in HkL2,dR, and i([u]) is the unique
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representative of [u] which lies in Hk. Since u itself is such a repre-
sentative, we must have i([u]) = u. For the converse, we note that

for any [u] ∈ HkL2,dR we have i([u]) = u − d̂v for some v ∈ D, hence,

[i([u])] = [u− d̂v] = [u]. q.e.d.

We can make a stronger statement: if we merely have u ∈ ker �̂,

then the proof of Proposition 3.8 shows that d̂u, δ̂u ∈ L2, hence, r(u) is
harmonic.

Proposition 3.16. We have a short exact sequence

(3.51) 0→ HkL2,dR
i−→ Kk r−→ Hk−1(Y )→ 0,

where the first map is i defined in Lemma 3.14 (composed with the in-
clusion Hk ↪→ Kk), and the second map is the restriction r, defined in
(3.49) (composed with the identification ker(∆Y,k−1) ∼= Hk−1(Y )).

Proof. The second map is well-defined by the comment preceding the
statement of the proposition. Since the range of HkL2,dR in Kk consists

of L2 forms, we have r ◦ i = 0. Moreover, if u ∈ ker r, then u is an

L2 element of ker �̂, thus, u ∈ Hk by Corollary 3.9. By the remark
following the proof of Lemma 3.14, therefore, u ∈ ran i.

It remains to show the surjectivity of r: thus, let w ∈ ker(∆Y,k−1), and

let u′ = C ũ′ ∈ C∞(0) be any extension of w, i.e., ũ′NT |Y = w. Then (d̂ +

δ̂)u′ ∈ D, since its (NT ) component vanishes, and, thus, �̂u′ ∈ D. Writ-

ing u′ = u1 +�̂u2 with u1 ∈ ker �̂, we conclude that �̂u′ = �̂2u2; taking
the (NT ) component of this equation gives 0 = ∆2

Y ũ2,NT |Y (where we
write u2 = C ũ2 as usual), hence, dY ũ2,NT |Y = 0 and δY ũ2,NT |Y = 0.

But then �̂u2 ∈ L2. Therefore, w = r(u′) = r(u1 + �̂u2) = r(u1). Since
the degree k part of u1 lies in Kk by the definition of u1, we are done.

q.e.d.

Remark 3.17. Remark 3.13, which states that Hk ( Kk for some
values of k, implies, in particular, that the last map of (3.50) is not
always onto.

Remark 3.18. Since dimY = n− 2, we have Hk−1(Y ) = 0 for k = 0
and k = n. Hence, for these extreme values of k, Propositions 3.15 and
3.16 show Hk = Kk ∼= HkL2,dR, and this holds more generally for all k

for which Hk−1(Y ) = 0.

The spaces HkL2,dR are related to standard cohomology groups asso-

ciated with the manifold with boundary X: first, notice that elements
of the space D = C∞(0) ∩ L

2 are not subject to any matching condi-

tion on singular terms, simply because the singular term (ũNT |Y in the
notation used above) vanishes. This means that we can split D into
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tangential and normal forms, D = DT ⊕DN ,22 where DT consists of all
uT ∈ C∞(X; ΛX) which are of the form

uT =

(
uTT
αuTN

)
, uTT , uTN ∈ C∞(Xeven; ΛY ),

near Y . Thus, elements uT ∈ DT are forms of the type uT = uTT +dα∧
αuTN = uTT + 1

2dµ ∧ uTN with uTT , uTN smooth ΛY -valued forms on

Xeven; hence, we simply have DT = C∞(Xeven; ΛXeven). Likewise, DN
consists of all uN ∈ C∞(X; ΛX) which are of the form

uN =

(
αuNT
uNN

)
, uNT , uNN ∈ C∞(Xeven; ΛY ),

near Y . Thus, elements uN ∈ DT are forms of the type αuN =
µuNT + 1

2dµ ∧ uNN ; therefore, αDN = C∞R (Xeven; ΛXeven) := {u ∈
C∞(Xeven; ΛXeven) : j∗u = 0}, where j : ∂Xeven ↪→ Xeven is the inclu-
sion.

Since the differential d̂ on D acts as dX ⊕ (−α−1dXα) on DT ⊕DN ,

the cohomology of the complex (D, d̂) in degree k is the direct sum of
the cohomology of (DT , dX) in degree k and of (αDN , dX) in degree
(k − 1). Since we identified DT as simply the space of smooth forms
on Xeven, the cohomology of (DT , dX) in degree k equals the absolute
cohomology Hk(Xeven) ∼= Hk(X).23 Moreover, since DN is the space
of smooth forms on Xeven which vanish at the boundary in the precise
sense described above, the cohomology of (αDN , dX) in degree k equals
the relative cohomology Hk(Xeven; ∂Xeven) ∼= Hk(X; ∂X) (see, e.g.,
[52, §5.9]). In summary:

Proposition 3.19. With HkL2,dR defined in (3.46), there is a canon-

ical isomorphism

(3.52) HkL2,dR
∼= Hk(X)⊕Hk−1(X, ∂X).

Let us summarize the results obtained in the previous sections:

Theorem 3.20. The only resonance of d + δ in Imσ ≥ 0 is σ = 0,
and 0 is a simple resonance. Zero resonant states of the extended op-

erator (d+ δ on M̃) are uniquely determined by their restriction to X,

and the space H of these resonant states on X is equal to kerC∞
(0)
d̂(0) ∩

kerC∞
(0)
δ̂(0). Also, resonant states on X̃ are elements of ker d̃(0) ∩

ker δ̃(0). Using the grading H =
⊕n

k=0Hk of H by form degrees, there
is a canonical exact sequence

(3.53) 0→ Hk(X)⊕Hk−1(X, ∂X)→ Hk → Hk−1(∂X),

22Thus, elements (uT , uN ) ∈ DT ⊕DN are identified with uT + αdt ∧ uN ∈ D.
23We use that Xeven is diffeomorphic to X, with diffeomorphism given by gluing

the map α2 7→ α near Y to the identity map away from Y .
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where the first map is the composition of the isomorphism (3.52) with the
map i defined in Lemma 3.14, and the second map is the composition
of the map r defined in (3.49) with the isomorphism ker(∆∂X,k−1) ∼=
Hk−1(∂X).

Furthermore, the only resonance of �g in Imσ ≥ 0 is σ = 0. Zero

resonant states24 of the extended operator (�g on M̃) are uniquely

determined by their restriction to X. The space K =
⊕n

k=0Kk ⊂ C∞(0) of

these resonant states on X, graded by form degree, satisfying Kk ⊃ Hk,
fits into the short exact sequence

(3.54) 0→ Hk(X)⊕Hk−1(X, ∂X)→ Kk → Hk−1(∂X)→ 0,

with maps as above. We, moreover, have

Kk ∩ L2 = Hk ∩ L2 ∼= Hk(X)⊕Hk−1(X, ∂X),

where L2 = L2(X,α|dh|;H ⊕ H). More precisely then, the summand
Hk(X) in (3.53) and (3.54) corresponds to the tangential components
(in the decomposition (3.1)) of elements of Hk ∩ L2, and the summand
Hk−1(X, ∂X) to the normal components.

Lastly, the Hodge star operator on M induces isomorphisms ? : Hk
∼=−→

Hn−k and ? : Kk
∼=−→ Kn−k, k = 0, . . . , n.

Proof. We prove the statement about resonant states for d+ δ on the

extended space M̃ : thus, if ũ ∈ ker(d̃(0) + δ̃(0)), then the restriction

of ũ to X lies in ker d̂(0) ∩ ker δ̂(0), therefore, d̃(0)ũ = −δ̃(0)ũ is sup-

ported in X̃ \ X; but then �̃(0)(d̃(0)ũ) = d̃(0)δ̃(0)d̃(0)ũ = 0 and the

asymptotically de Sitter nature of X̃ \X implies d̃(0)ũ ≡ 0, hence, also

δ̃(0)ũ ≡ 0, as claimed.
The only remaining part of the statement that has not yet been

proved is the last: viewing u ∈ Hk as a t-independent k-form on
M = Rt × X (with the metric (1.1)), we have (d + δ)u = 0, and for
any t-independent k-form u on M , we have that (d + δ)u = 0 implies
u ∈ Hk, where we view the t-independent form as a form on X valued
in the form bundle of M , as explained in Section 2. Then u ∈ Hk is
equivalent to du = 0, δu = 0, which in turn is equivalent to δ(?u) = 0,
d(?u) = 0, and, thus, ?u ∈ Hn−k. The proof for the spaces Kk is the
same and uses ?� = �?. q.e.d.

This, in particular, proves Theorem 2.

24More precisely, we mean elements of ker �̃(0); the latter space equals the space
of zero resonant states if the zero resonance is simple.
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4. Results for static de Sitter and Schwarzschild–de Sitter
spacetimes

We now supplement the results obtained in the previous section by
high energy estimates for the inverse normal operator family and deduce
expansions and decay for solutions to Maxwell’s equations as well as
for more general linear waves on de Sitter and Schwarzschild–de Sitter
backgrounds. The rather detailed description of asymptotics in the
Schwarzschild–de Sitter setting will be essential in our discussion of
Kerr–de Sitter space in Section 5.

4.1. de Sitter space. De Sitter space is the hyperboloid {|x|2−t̃2 = 1}
in (n + 1)-dimensional Minkowski space, equipped with the induced
Lorentzian metric. Introducing τ = t̃−1 in t̃ ≥ 1 and adding the bound-
ary at future infinity τ = 0 to the spacetime, we obtain the bordified
space N = [0, 1)τ × Z with Z = Sn−1, and the metric has the form

g0 = τ−2ḡ, ḡ = dτ2 − h0(τ, x, dx),

with h0 even in τ , i.e., h0 is a metric on Z which depends smoothly on
τ2; see Vasy [54, §4] for details. Thus, g0 is a 0-metric in the sense of
Mazzeo and Melrose [41]. Fixing a point p at future infinity, the static
model of de Sitter space, denoted M , is the interior of the backward
light cone from p.25 We introduce static coordinates on M , denoted
(t, x) ∈ R×X, where X = B1 ⊂ Rn−1 is the open unit ball in Rn−1 and
x ∈ Rn−1 are the standard coordinates on Rn−1, with respect to which
the induced metric on M is given by

(4.1)

g = α2 dt2 − h, α = (1− |x|2)1/2,

h = dx2 +
1

1− |x|2
(x · dx)2 = α−2 dr2 + r2 dω2

using polar coordinates (r, ω) on Rn−1
x near r = 1, and denoting the

round metric on the unit sphere Sn−2 by dω2. We compactify X to the
closed unit ball Xeven = B1 ⊂ Rn−1, and denote by X the space which
is Xeven topologically, but with α added to the smooth structure. In
order to see that the metric g fits into the framework of Theorem 3.20,
note that dr = −αr−1 dα, so

h = r−2 dα2 + r2 dω2,

and r = (1− α2)1/2, thus, h is an even metric on the space X and has
the form (1.2) with β = 1. Using Theorem 3.20, we can now easily
compute the spaces of resonances:

25Since g0 and the metric ḡ, which is smooth down to τ = 0, are conformally
related, the images of null-geodesics for both metrics agree.
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Theorem 4.1. On an n-dimensional static de Sitter spacetime, n ≥
4, the spaces of resonances of � and d+ δ are

K0 = H0 = 〈1〉, Kn = Hn = 〈rn−2 dt ∧ dr ∧ ω〉,

where ω denotes the volume form on the round sphere Sn−2. Further-
more,

K1 = 〈−α−2r dr + α−1 dt〉, H1 = 0,

Kn−1 = 〈?(−α−2r dr + α−1 dt)〉, Hn−1 = 0,

Kk = Hk = 0, k = 2, . . . , n− 2.

Proof. We compute the cohomological data that appear in (3.53) and
(3.54) using X ∼= B1 and ∂X ∼= Sn−2:

dimHk−1(∂X) =

{
0, k = 0, 2, . . . , n− 2, n,

1, k = 1, n− 1,

dimHk(X) =

{
1, k = 0,

0, 1 ≤ k ≤ n,

dimHk−1(X, ∂X) =

{
0, 0 ≤ k ≤ n− 1,

1, k = n.

Thus, we immediately deduce

dimK0 = dimK1 = dimKn−1 = dimKn = 1,

dimH0 = dimHn = 1,

dimKk = dimHk = 0, 2 ≤ k ≤ n− 2.

Now, since d + δ annihilates constants, we find 1 ∈ K0 = H0 and
?1 ∈ Kn = Hn, which in view of the 1-dimensionality of these spaces
already concludes their computation.

In order to compute K1, notice that we have K1 ∼= H0(∂X) from
(3.54), thus, an element u spanning K1 has non-trivial singular com-
ponents at α = 0. One is led to the guess u = α−1 dα + α−1 dt =
−α−2r dr + α−1 dt, which is, indeed, annihilated by �; we will give
full details for this computation in the next section when discussing
Schwarzschild–de Sitter spacetimes, which in the case of vanishing black
hole mass are static de Sitter spacetimes, with a point removed, see, in
particular, the calculations following (4.12); but since u as defined above
is smooth at r = 0, we obtain �u = 0 at r = 0 as well by continuity.
Since K1 is 1-dimensional, we, therefore, deduce K1 = 〈u〉. One can
then check that (d + δ)u 6= 0, and this implies H1 = 0. The corre-
sponding statements for Kn−1 and Hn−1 are immediate consequences
of this and the fact that the Hodge star operator induces isomorphisms
H1 ∼= Hn−1 and K1 ∼= Kn−1. q.e.d.
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In particular:

Theorem 4.2. On 4-dimensional static de Sitter space, if u is a
solution of (d + δ)u = 0 with smooth initial data, then the degree 0
component of u decays exponentially to a constant, the degree 1, 2 and 3
components decay exponentially to 0, and the degree 4 component decays
exponentially to a constant multiple of the volume form. Analogous
statements hold on any n-dimensional static de Sitter space, n ≥ 5.

Proof. The high energy estimates for d+δ required to deduce asymp-
totic expansions for solutions of (d + δ)u = 0 follow from those of its
square �, which is principally scalar and fits directly into the framework
recalled in Section 2 above, and is described in detail in [54, §2-4]: we

can apply [54, Theorem 2.14], with R(σ) = �̃(σ)−1 for the high energy
estimates and then use [54, Lemma 3.1] (with P = �, Q = 0, τ = e−t∗)
to obtain the resonance expansion. q.e.d.

By studying the space of dual resonant states, one can, in fact, eas-
ily show that the 0-resonance of � is simple and, thus, deduce expo-
nential decay of smooth solutions to �u = 0 to an element of Kk in
all form degrees k = 0, . . . , n. We give details in the next section on
Schwarzschild–de Sitter space.

In the present de Sitter setting, one can deduce asymptotics very
easily in a different manner using the global de Sitter space picture,
by analyzing indicial operators in the 0-calculus: concretely, we write
differential k-forms (by which we mean smooth sections of the k-th
exterior power of the 0-cotangent bundle of N) as

(4.2) u = τ−kuT +
dτ

τ
∧ τ1−kuN ,

where uT and uN are smooth forms on Z of form degrees k and (k− 1),
respectively. One readily computes the differential dk acting on k-forms
to be

dk =

(
τdZ 0

−k + τ∂τ −τdZ

)
.

Furthermore, by the choice of basis in (4.2), the inner product on k-
forms induced by g0 is given by

G0
k =

(
(−1)kH0

k 0
0 (−1)k−1H0

k−1

)
.

Using that the volume density is |dg0| = τ−n dτ |dh0|, we compute the
codifferential δk acting on k-forms to be

δk =

(
−τδZ −(k − 1) + τn−1τ∂∗τ τ

1−n

0 τδZ

)
=

(
−τδZ n− k − τ∂τ +OC∞(N)(τ)

0 τδZ

)
,
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where ∂∗τ is the L2(N, |dḡ|)-adjoint (suppressing the bundles in the nota-
tion) of ∂τ , and we use the even-ness of g0 in the second step to deduce
∂∗τ = −∂τ + OC∞(N)(τ). Therefore, the indicial roots of d + δ on the
degree k-part of the form bundle are k and n− k.

Next, for 0 ≤ k ≤ n, we compute the Hodge d’Alembertian:26

�k = dk−1δk + δk+1dk

=

(
−τdZτδZ − τδZτdZ − Pk τdZ

−τδZ −τdZτδZ − τδZτdZ − Pk−1

)
+ODiff1

0
(τ),

where Pk = (τ∂τ )2 − (n − 1)τ∂τ + k(n − k − 1). Thus, the indicial
polynomial of �k is

I(�k)(s)

=

(
s2 − (n− 1)s+ k(n− k − 1) 0

0 s2 − (n− 1)s+ (k − 1)(n− k)

)
.

On tangential forms, the indicial roots (IRs) of �k are, therefore, k, n−
1− k, and on normal forms, they are k − 1, n− k. We, thus, have:

form degree 0 1 2 ≤ k ≤ n− 2 n− 1 n

tgt. IRs 0, n− 1 1, n− 2 k, n− 1− k 0, n− 1 −
norm. IRs − 0, n− 1 k − 1, n− k 1, n− 2 0, n− 1

Hence, in particular, all roots are ≥ 0, and 0 is never a double root.
Thus, the arguments of [53] (which are in the scalar setting, but work
in the current setting as well with only minor modifications) show that
solutions u to the wave equation on differential k-forms on N with
smooth initial data at τ = τ0 > 0 decay exponentially (in − log τ) if
0 is not an indicial root, and decay to a stationary state if 0 is an in-
dicial root.27 Explicitly, scalar waves decay to a smooth function on
Z, 1-form waves decay to an element of dτ

τ C
∞(Z), k-form waves decay

exponentially to 0 for 2 ≤ k ≤ n− 2, (n− 1)-form waves decay to an el-
ement of C∞(Z; Λn−1Z), and n-form waves, finally, decay to an element
of dτ

τ ∧ C
∞(Z; Λn−1Z).

Since the static model of de Sitter space arises by blowing up a point
p at future infinity of compactified de Sitter space and considering the
backward light cone from p, we can find the resonant states for the static
model by simply finding the space of restrictions to p of the asymptotic
states described above; but since the fibers of Λ0(Z) and Λn−1(Z) are
1-dimensional, hence, we have reproved Theorem 4.1.

26We deal with the cases k = 0 and k = n simultaneously with 1 ≤ k ≤ n − 1
by implicitly assuming that for k = 0, only the (1, 1)-part of this operator acts on
0-forms, and for k = n, only the (2, 2)-part acts on n-forms.

27Of course, since we know all indicial roots, we could be much more precise in
describing the asymptotics, but we only focus on the 0-resonance here.
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We point out that if one wants to analyze differential form-valued
waves or solutions to Maxwell’s equations on Schwarzschild–de Sitter
space, there is no global picture (in the sense of a 0-differential problem)
as in the de Sitter case. Thus, the direct approach outlined in the
proof of Theorem 4.1 is the only possible one in this case, and it is
very instructive as it shows even more clearly how the cohomological
interpretation of the space of zero resonant states can be used very
effectively.

4.2. Schwarzschild–de Sitter space. The computation of resonant
states for Schwarzschild–de Sitter spacetimes of any dimension is no
more difficult than the computation in 4 dimensions, thus, we directly
treat the general case of n ≥ 4 spacetime dimensions. Recall that the
metric of n-dimensional Schwarzschild–de Sitter space M = Rt × X,
X = (r−, r+)r × Sn−2

ω , with r± defined below, is given by

g = µdt2 − (µ−1 dr2 + r2 dω2),

where dω2 is the round metric on the sphere Sn−2, and µ = 1− 2M•
rn−3−λr2,

λ = 2Λ
(n−2)(n−1) , where the black hole mass M• and the cosmological

constant Λ are positive. We assume that

(4.3) M2
•λ

n−3 <
(n− 3)n−3

(n− 1)n−1
,

which guarantees that µ has two unique positive roots 0 < r− < r+.
Indeed, let µ̃ = r−2µ = r−2 − 2M•r

1−n − λ. Then µ̃′ = −2r−n(rn−3 −
(n−1)M•) has a unique positive root rp = [(n−1)M•]

1/(n−3), µ̃′(r) > 0
for r ∈ (0, rp) and µ̃′(r) < 0 for r > rp; moreover, µ̃(r) < 0 for r > 0
small and µ̃(r) → −λ < 0 as r → ∞, thus, the existence of the roots
0 < r− < r+ of µ̃ is equivalent to the requirement µ̃(rp) = n−3

n−1r
−2
p −λ >

0, which leads precisely to the inequality (4.3).

Define α = µ1/2, thus, dα = 1
2µ
′α−1 dr, and

β± := ∓ 2

µ′(r±)
> 0,

then the metric g can be written as

(4.4) g = α2 dt2 − h, h = β̃2
± dα

2 + r2 dω2,

where β̃± = ∓2/µ′(r). Thus, if we let Xeven = [r−, r+]r × Sn−2
ω with

the standard smooth structure, then β̃± = β± modulo α2C∞(Xeven),
where we note that r is a smooth function of µ, thus, an even function
of α, near r = r± in view of µ′(r±) 6= 0. The manifold X is Xeven topo-

logically, but with smooth functions of α = µ1/2 added to the smooth
structure. We denote Y = ∂X = Sn−2 t Sn−2.

By the analysis in Section 2, all zero resonant states u, written in the
form (3.7) near Y , lie in the space C∞(0), defined in (3.9). In the current
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setting, it is more natural to write differential forms as

(4.5) u = uTT + α−1 dr ∧ uTN + αdt ∧ uNT + αdt ∧ α−1 dr ∧ uNN ,

since α−1 dr has squared norm −1 (with respect to the metric g). We
compute how the matching condition on the singular terms of u, encoded
in the β±α

−1 entry of the matrix C , changes when we, thus, change
the basis of the form bundle: namely, we have β±α

−1 dα = (∓1 +
α2C∞(Xeven))α−1α−1 dr; thus, for u written as in (4.5), we have

u ∈ C∞(0) ⇐⇒


uTT
uTN
uNT
uNN

 ∈ C±


C∞(Xeven; ΛSn−2)
C∞(Xeven; ΛSn−2)
C∞(Xeven; ΛSn−2)
C∞(Xeven; ΛSn−2)

 ,

near r = r±, where

(4.6) C± =


1 0 0 0
0 α ∓α−1 0
0 0 α−1 0
0 0 0 1

 .

We now proceed to compute the explicit form of the operators dp, δp
and �p, where the subscript p indicates the form degree on which the
operators act. First, we recall (3.2) and (3.4) in the form

dp =

(
dX,p 0
α−1∂t −α−1dX,p−1α

)
, δp =

(
−α−1δX,pα −α−1∂t

0 δX,p−1

)
,

and these operators act on forms u = uT + αdt ∧ uN , with uT and uN
differential forms on X. Writing forms on X as v = vT + α−1 dr ∧ vN ,
we have

(4.7) dX,p =

(
dSn−2,p 0
α∂r −dSn−2,p−1

)
.

In order to compute the codifferential, we observe that the volume den-
sity on X induced by h is given by α−1rn−2 dr|dω|, while the induced
inner product on the fibers on the bundle of p-forms is

Hp =

(
r−2pΩp 0

0 r−2(p−1)Ωp−1

)
,

where Ωp is the fiber inner product on the p-form bundle on Sn−2.
Therefore,

δX,p =

(
r−2δSn−2,p ∂∗r,p−1

0 −r−2δSn−2,p−1

)
,

∂∗r,p−1 = −αr−(n−2)r2(p−1)∂rr
−2(p−1)rn−2.

(4.8)

We obtain:
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Lemma 4.3. In the bundle decomposition (4.5), we have

(4.9) dp =


dSn−2,p 0 0 0
α∂r −dSn−2,p−1 0 0
α−1∂t 0 −dSn−2,p−1 0

0 α−1∂t −∂rα dSn−2,p−2

 ,

and
(4.10)

δp =


−r−2δSn−2,p −α−1∂∗r,p−1α −α−1∂t 0

0 r−2δSn−2,p−1 0 −α−1∂t
0 0 r−2δSn−2,p−1 ∂∗r,p−2

0 0 0 −r−2δSn−2,p−2

 .

Moreover,

−r2�p =


∆Sn−2,p −2αrdp−1 0 0
−2αr−1δp ∆Sn−2,p−1 −r2µ−1µ′∂t 0

0 −r2µ−1µ′∂t ∆Sn−2,p−1 −2αrdp−2

0 0 −2αr−1δp−1 ∆Sn−2,p−2



+


r2α−1∂∗r,pα

2∂r 0 0 0
0 r2α∂rα

−1∂∗r,p−1α 0 0
0 0 r2∂∗r,p−1∂rα 0
0 0 0 r2∂rα∂

∗
r,p−2



+


r2µ−1∂2

t 0 0 0
0 r2µ−1∂2

t 0 0
0 0 r2µ−1∂2

t 0
0 0 0 r2µ−1∂2

t

 .

(4.11)

We can now compute the spaces K and H of zero resonances for �
and d+ δ and deduce asymptotics for solutions of (d+ δ)u = 0:

Theorem 4.4. On an n-dimensional Schwarzschild–de Sitter space-
time, n ≥ 4, there exist two linearly independent 1-forms28

u± = f1,±(r)µ−1 dr + f2,±(r) dt ∈ K1 = ker �̂1 ⊂ C∞(0),

and we then have:

K0 = H0 = 〈1〉, Kn = Hn = 〈rn−2 dt ∧ dr ∧ ω〉,

where ω denotes the volume form on the round sphere Sn−2. Further-
more,

K1 = 〈u+, u−〉,H1 = 0, Kn−1 = 〈?u+, ?u−〉,Hn−1 = 0,

Kk = Hk = 0, k = 3, . . . , n− 3.

28The forms u± have a simple explicit form, see (4.12) and Footnote 29.



ASYMPTOTICS FOR DIFFERENTIAL FORMS 263

For n = 4,

K2 = H2 = 〈ω, r−2 dt ∧ dr〉,

while for n > 4,

K2 = H2 = 〈r−(n−2) dt ∧ dr〉, Kn−2 = Hn−2 = 〈ω〉.

Proof. First, we observe that

Hk(X) ∼= Hk(Sn−2), Hk−1(X, ∂X) ∼= Hn−k(X) ∼= Hn−k(Sn−2)

by Poincaré duality, and

Hk−1(∂X) ∼= Hk−1(Sn−2)⊕Hk−1(Sn−2).

Thus, the short exact sequence (3.54) immediately gives the dimensions
of the spaces Kk, and (3.53) gives the dimensions of Hk for all values of
k except k = 1 and k = n− 1.

We now compute H and K in the case n = 4. For k = 0, the
short exact sequence (3.54) reads 0 → H0(X) ⊕ 0 → K0 → 0 → 0,
and since H0(X) = 〈[1]〉, this suggests 1 as a resonant state for �
on 0-forms (i.e., functions), and, indeed, �1 = 0, hence, K0 = 〈1〉.
Theorem 3.20 also shows that H0 = K0. Then we immediately obtain
H4 = K4 = 〈?1〉 = 〈r2 dt ∧ dr ∧ ω〉.

Next, we treat the form degree k = 2. Then (3.54) reads 0→ H2(X)⊕
H1(X, ∂X) → K2 → 0 → 0. Now H2(X) = 〈[ω]〉, and a generator of
H1(X, ∂X) is given by the Poincaré dual of ω (which generates H2(X)).
This suggests the ansatz u = f(r)ω for an element ofK2 = H2 (the latter
equality following from (3.53)), and then ?u will be the second element
of a basis of K2. Now, in the decomposition (4.5), we compute using

Lemma 4.3 that δ̂2(0)u = 0 for u = f(r)ω, and

d̂2(0)u = d̂2(0)


f(r)ω

0
0
0

 =


0

αf ′(r)ω
0
0

 ,

which vanishes precisely if f(r) is constant.
The analysis of resonant states in form degree k = 1 is just a bit more

involved. Since (3.54) now reads 0 → 0⊕ 0 → K1 → H0(S2 t S2) → 0,
every non-trivial element u of K1 fails to be in L2(α|dh|), and, in fact,
the singular behavior is expected to be u = C±ũ with ũNT |r=r± = c± ∈
C, since H0(S2 t S2) is generated by locally constant functions, which
are, therefore, constant on r = r− as well as on r = r+. We, thus, make
the ansatz

(4.12) u = α−1f1(r)α−1 dr + αdt ∧ α−1f2(r).
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We then compute

−�̂1(0)u =


0

α∂rα
−1∂∗r,0f1

∂∗r,0∂rf2

0

 ,

and by definition of ∂∗r,p in (4.8), this vanishes if and only if f1 and f2

satisfy the ODEs

∂rr
−2∂rr

2f1 = 0,

r−2∂rr
2∂rf2 = 0.

The general form of the solution is29

f1(r) = f11r + f12r
−2,

f2(r) = f21 + f22r
−1,

fjk ∈ C, j, k = 1, 2. Now recall that resonant states are elements of
C∞(0) and, thus, satisfy a matching condition in the singular compo-

nents, which is captured by the matrix (4.6). Concretely, we require
f2(r−) = f1(r−) and f2(r+) = −f1(r+); in terms of fjk, j, k = 1, 2,
these conditions translate into

(
r− r−2

− −1 −r−1
−

r+ r−2
+ 1 r−1

+

)
f11

f12

f21

f22

 =

(
0
0

)
.

Since the 2 × 4 matrix on the left has rank 2, we get a 2-dimensional
space of solutions. In fact, it is easy to see that we can freely specify the
values f1(r−) and f1(r+), and f1 and f2 are then uniquely determined.
To be specific, we can, for instance, define u+ ∈ K1 to be the 1-form
with f1(r−) = 0, f1(r+) = 1, and u− ∈ K1 to be the 1-form with
f1(r−) = 1, f1(r+) = 0, and we then have K1 = 〈u+, u−〉, as claimed.

Next, since H1 ⊂ K1, computing H1 simply amounts to finding all

linear combinations of u− and u+ which are annihilated by both d̂1(0)

and δ̂1(0). But

d̂1(0)


0

α−1f1(r)
α−1f2(r)

0

 =


0
0
0

−∂rf2

 = 0

29On n-dimensional Schwarzschild–de Sitter space, the exponents 2 and −2 in
these ODEs get replaced by n− 2 and 2− n, and the general forms of the solutions
are f1(r) = f11r + f12r

2−n and f2(r) = f21 + f22r
3−n. The subsequent analysis of

the matching conditions goes through with obvious modifications.
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requires f2 to be constant, and

δ̂1(0)


0

α−1f1(r)
α−1f2(r)

0

 =


−α−1∂∗r,0f1

0
0
0

 = 0

implies r−2∂rr
2f1 = 0, hence, f1(r) = f1(r−)(r/r−)−2. The matching

condition requires f1(r+) = f1(r−)(r+/r−)−2 = −f2(r+) = −f2(r−) =
−f1(r−) and is, therefore, only satisfied if f1(r−) = 0, which implies
f1 ≡ 0 and f2 ≡ 0. This shows thatH1 = 0 and finishes the computation
of the spaces of resonances for n = 4. The computation for spacetime
dimensions n ≥ 5 is completely analogous. q.e.d.

In particular:

Theorem 4.5. On 4-dimensional Schwarzschild–de Sitter space, if
u is a solution of (d + δ)u = 0 with smooth initial data, then the de-
gree 0 component of u decays exponentially to a constant, the degree 1
and degree 3 components decay exponentially to 0, the degree 2 compo-
nent decays exponentially to a linear combination of ω and r−2 dt ∧ dr,
and the degree 4 component decays exponentially to a constant multiple
of the volume form. Analogous statements hold on any n-dimensional
Schwarzschild–de Sitter space, n ≥ 5.

Proof. This follows from the above computations combined with high
energy estimates for d+ δ, which follow from those for �, together with
Lemma 3.7.30 Once we check the normally hyperbolic nature of the
trapping and show that the subprincipal symbol of � (or a conjugated
version thereof), relative to a positive definite fiber inner product, at the
trapping is smaller than νmin/2, where νmin is the minimal expansion
rate in the normal direction at the trapped set, we can use Dyatlov’s
result [25] to obtain a spectral gap below the real line, i.e., the absence
of resonances in a small strip below the reals, which combines with
the general framework of [54] to yield the desired resonance expansion
of solutions with exponentially decaying error terms: concretely, the
semiclassical estimate [25, Theorem 1], in the microlocalized form given
in [32, Theorem 4.7], can be combined with the semiclassical estimates
at the horizons (i.e., radial points) given in [54, Propositions 2.10 and
2.11], the real principal type propagation estimates elsewhere on the
semiclassical characteristic set, as well as semiclassical elliptic estimates
away from the characteristic set; see [32, §§4.4, 5] for further details.

The dynamics of the Hamilton flow at the trapping only depend on
properties of the scalar principal symbol g of �. For easier comparison

30If (d̂(σ) + δ̂(σ))−1 had a second order pole at 0, then solutions to (d+ δ)u = 0
would generically blow up linearly; the simplicity of the pole ensures that solutions
stay bounded with the asymptotic stationary state given by an element of H.
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with [23, 54, 60], we consider the operator P = −r2�. We take the
Fourier transform in −t, obtaining a family of operators on X depending
on the dual variable τ , and then do a semiclassical rescaling, multiplying

P̂ by h2, giving a second order semiclassical differential operator Ph,
with h = |τ |−1, and we then define z = hτ . Introduce coordinates on
T ∗X by writing 1-forms as ξ dr + η dω, and let

∆r := r2µ = r2(1− λr2)− 2M•r
5−n,

then the semiclassical principal symbol p of Ph is

p = ∆rξ
2 − r4

∆r
z2 + |η|2,

and correspondingly the Hamilton vector field is

Hp = 2∆rξ∂r −
(
∂r∆rξ

2 − ∂r
( r4

∆r

)
z2
)
∂ξ +H|η|2 .

We work with real z, hence, z = ±1. We locate the trapped set: ifHpr =
2∆rξ = 0, then ξ = 0, in which case H2

pr = 2∆rHpξ = 2∆r∂r(r
4/∆r)z

2.

Recall the definition of the function µ̃ = µ/r2 = ∆r/r
4, then we can

rewrite this as H2
pr = −2∆rµ̃

−2(∂rµ̃)z2. We have already seen that
∂rµ̃ has a single root rp ∈ (r−, r+), and (r − rp)∂rµ̃ < 0 for r 6= rp.
Therefore, H2

pr = 0 implies (still assuming Hpr = 0) r = rp. Thus, the
only trapping occurs in the cotangent bundle over r = rp: indeed, define
F (r) = (r − rp)

2, then HpF = 2(r − rp)Hpr and H2
pF = 2(Hpr)

2 +

2(r − rp)H
2
pr. Thus, if HpF = 0, then either r = rp, in which case

H2
pF = 2(Hpr)

2 > 0 unless Hpr = 0, or Hpr = 0, in which case H2
pF =

2(r − rp)H
2
pr > 0 unless r = rp. So HpF = 0, p = 0 implies either

H2
pF > 0 or r = rp, Hpr = 0. Therefore, the trapped set in T ∗X is

given by

(r, ω; ξ, η) ∈ Γ~ :=
{

(rp, ω; 0, η) :
r4

∆r
z2 = |η|2

}
,

and F is an escape function. The linearization of the Hp-flow at Γ~ in
the normal coordinates r − rp and ξ equals

Hp

(
r − rp
ξ

)
=

(
0 2r4

pµ̃|r=rp
2(n− 3)r−4

p (µ̃|r=rp)−2z2 0

)(
r − rp
ξ

)
+O(|r − rp|2 + |ξ|2),

where we used ∂rrµ̃|r=rp = −2(n − 3)r−4
p , which gives ∂rµ̃ = −2(n −

3)r−4
p (r − rp) + O(|r − rp|2). The eigenvalues of the linearization are,

therefore, equal to ±νmin, where

νmin = 2rp

(
n− 1

1− n−1
n−3r

2
pλ

)1/2

> 0.
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The expansion rate of the flow within the trapped set is 0 by spheri-
cal symmetry, since integral curves of Hp on Γ~ are simply unit speed
geodesics of Sn−2. This shows the normal hyperbolicity (in fact, r-
normal hyperbolicity for every r) of the trapping.

It remains to bound the imaginary part of P = −r2�g in terms of
νmin in order to obtain high energy estimates below the real line. More
precisely, we need to show that

Q := |τ |−1σ1

(
1

2i
(P − P∗)

)
<
νmin

2

at the trapped set (cf. the discussion in [32, §5.4]), where we take the
adjoint with respect to some Riemannian inner product B, to be chosen,
on the bundle ΛpSn−2 ⊕Λp−1Sn−2 ⊕Λp−1Sn−2 ⊕Λp−2Sn−2; notice that
Q is a self-adjoint section of the endomorphism bundle of this bundle.

If one does not allow more general pseudodifferential inner products
B, one can arrange this for a restricted range of black hole parameters
in 3 + 1 dimensions. Indeed, a natural guess is to use B = H ⊕ H in
the tangential-normal decomposition (3.6), thus,

B = r−2pΩp ⊕ r−2(p−1)Ωp−1 ⊕ r−2(p−1)Ωp−1 ⊕ r−2(p−2)Ωp−2.

In this case, the expression (4.11) shows that the only parts of P that
are not symmetric with respect to B at the spacetime trapped set

Γ = {(t, rp, ω; τ, 0, η) :
r4

∆r
τ2 = |η|2}

are the (2, 3) and (3, 2) components; thus, taking adjoints with respect
to B, we compute

Q =


0 0 0 0
0 0 ±r2µ−1µ′ 0
0 ±r2µ−1µ′ 0 0
0 0 0 0


at Γ, with the sign depending on the choice of τ . Now (µ/r2)′ = 0 at
r = rp implies µ−1µ′r2

p = 2rp; the eigenvalues of Q are, therefore, ±2rp,
and they are bounded by νmin/2 if and only if

r2
pλ >

(5− n)(n− 3)

4(n− 1)
,

which in spacetime dimensions n ≥ 5 is always satisfied. In dimension
n = 4, however, the condition becomes r2

pλ > 1/12, or

9ΛM2
• >

1

4
,

while the non-degeneracy condition (4.3) requires 9ΛM2
• < 1. Therefore,

only for very massive black holes or very large cosmological constants



268 P. HINTZ & A. VASY

does the above choice of positive definite inner product B yield a suf-
ficiently small imaginary part of P.31 To overcome this problem, one
needs to allow B to be a pseudodifferential inner product on the form
bundle, introduced by Hintz [30]: such an inner product depends on
the position in phase space rather than physical space; equivalently, one
can replace P by QPQ−1, where Q, an elliptic pseudodifferential oper-
ator acting on the form bundle, is chosen in such a way that QPQ−1,
relative to a Riemannian inner product on the form bundle, e.g., B,
has (arbitrarily) small imaginary part, which is, in particular, bounded
by νmin/2. That such an inner product can be chosen is proved for
general tensor-valued waves on Schwarzschild–de Sitter spacetimes with
spacetime dimension n ≥ 4 in [30, Theorem 4.8]; see also [30, Theo-
rem 2.1] for the resulting resonance expansion of tensor-valued waves.
The point of view of pseudodifferential inner products shows precisely
which structure of the subprincipal part of � at the trapped set makes
such a choice of a pseudodifferential inner product (equivalently, a choice
of a conjugating operator Q) possible. q.e.d.

We can, in fact, prove boundedness and asymptotics for solutions of
the wave equation on differential forms in all form degrees as well. To
begin, write

(4.13) (d̃(σ) + δ̃(σ))−1 = σ−1A−1 +O(1), A−1 =

4∑
j=1

〈·, ψj〉φj ,

near σ = 0, where {φj}j=1,...,4 is a basis of the space of resonant states

and {ψj}j=1,...,4 is a basis of the space H∗ = ker(d̃(0) + δ̃(0))∗ of dual
states.32 Therefore, we need to understand the dual states of d + δ in

order to understand the order and structure of the pole of �̃(σ)−1 =(
(d̃(σ) + δ̃(σ))−1

)2
as σ = 0. Notice here that the adjoint (d̃(σ) +

δ̃(σ))∗ acts on distributions on X̃ which are supported at the Cauchy

hypersurface ∂X̃ (see [33, Appendix B] for this and related notions). In

particular, an element ũ ∈ ker(d̃(σ) + δ̃(σ))∗ satisfies ũ ∈ ker �̃(σ) and

is a supported distribution at ∂X̃, thus, by local uniqueness, ũ vanishes

in the hyperbolic region X̃ \X, hence, supp ũ ⊂ X.

Lemma 4.6. The spaces H∗ and K∗ of dual states for d+ δ and �,
respectively, on n-dimensional Schwarzschild–de Sitter space, n ≥ 4, are
graded by form degree, H∗ =

⊕n
k=0Hk∗, K∗ =

⊕n
k=0Kk∗ , and have the

following explicit descriptions:

K0
∗ = 〈1X〉,H0

∗ = 0, Kn∗ = 〈1Xrn−2 dt ∧ dr ∧ ω〉,Hn∗ = 0,

31In fact, one can check that for parameters M• and Λ with 9ΛM2
• ≤ 1/4, the

endomorphism Q is not bounded by νmin/2 for any choice of B.
32After choosing the φj , say, the ψj are uniquely determined.
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H1
∗ = 〈δr=r− dr, δr=r+ dr〉, Hn−1

∗ = 〈δr=r− dr ∧ ω, δr=r+ dr ∧ ω〉,

Hk∗ = 0, k = 2, . . . , n− 2,

where ω denotes the volume form on the round sphere Sn−2. Further-
more, K1

∗ = H1
∗, Kn−1

∗ = Hn−1
∗ and

Kk∗ = 0, k = 3, . . . , n− 3.

For n = 4,
K2
∗ = 〈1Xω, 1Xr−2 dt ∧ dr〉,

while for n > 4,

K2
∗ = 〈1Xr2−n dt ∧ dr〉, Kn−2

∗ = 〈1Xω〉.
We have 〈φ, ψ〉 = 0 for all φ ∈ H, ψ ∈ H∗.

Proof. For computing the dual resonant states, we need to compute

the form of �̃(0) near the two components of ∂X = Sn−2 t Sn−2. Since

dual states are supported in Xeven, it suffices to compute C−1
± �̂(0)C±,

since any smooth extension of this operator to X̃ agrees with �̃(0) in X
and to infinite order at ∂Xeven,33 thus, the difference annihilates dual
states. Using Lemma 4.3, we compute

−C−1
± �̂p(0)C± = r−2


∆p 0 0 0
0 ∆p−1 0 0
0 0 ∆p−1 0
0 0 0 ∆p−2



+


α−1∂∗r,pα

2∂r −2α2r−1dp−1

−2r−3δp ∂rα
−1∂∗r,p−1α

2

0 0
0 0

· · ·

· · ·

±2r−1dp−1 0
±(2(p− 1)− (n− 2))r−2 ∓2r−1dp−2

α∂∗r,p−1∂r −2α2r−1dp−2

−2r−3δp−1 ∂rα∂
∗
r,p−2

,
where the Laplace operators, differentials and codifferentials are the
operators on Sn−2. This does extend to an operator acting on smooth
functions on (r± − δ, r± + δ)× Sn−2, δ > 0 small, near r±.

Now for p = 0, clearly α−1∂∗r,0α
2∂r1X = ∓α−1∂∗r,0(µδr=r±) = 0,

hence, K0
∗ = 〈1X〉. (Observe that since �̃0(0) is Fredholm of index 0

and has a 1-dimensional kernel according to Theorem 4.4, the space of
dual 0-form resonances is 1-dimensional as well.) Likewise, for p = n,
we have

∂rα∂
∗
r,n−2(1Xr

n−2 dt ∧ dr ∧ ω) = −∂rµrn−2∂r(1X dt ∧ dr ∧ ω) = 0

33Since the Schwarzschild–de Sitter metric is analytic, we, in fact, do not have to
make any choices.
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confirming Kn∗ = 〈1Xrn−2 dt ∧ dr ∧ ω〉. By completely analogous argu-
ments, we find 1Xr

2−n dt ∧ dr ∈ K2
∗ and 1Xω ∈ Kn−2

∗ .

In order to proceed, notice that d̃(0) + δ̃(0) maps K∗ into H∗. Hence,

we can find dual states for d + δ by applying d̃(0) + δ̃(0) to the dual
states of � that we have already identified. For this computation, we
note

C−1
± d̂p(0)C± =


dSn−2,p 0 0 0
∂r −dSn−2,p−1 0 0
0 0 −dSn−2,p−1 0
0 0 −∂r dSn−2,p−2

 ,

C−1
± δ̂p(0)C± =


−r2δSn−2,p −α−1∂∗r,p−1α

2

0 r−2δSn−2,p−1

0 0
0 0

· · ·

· · ·

±α−1∂∗r,p−1 0
0 ±α−1∂∗r,p−2

r−2δSn−2,p−1 α∂∗r,p−2

0 −r−2δSn−2,p−2

.
Thus, (d̃0(0) + δ̃0(0))1X and (d̃2(0) + δ̃2(0))(1Xr

2−n dt ∧ dr) are both
linear combinations of δr=r± dr, hence, δr=r± dr ∈ H1

∗ ⊂ K1
∗, and, sim-

ilarly, (d̃n(0) + δ̃n(0))(1X ? 1) and (d̃n−2(0) + δ̃n−2(0))(1Xω) are both
linear combinations of δr=r± dr∧ω, hence, δr=r± dr∧ω ∈ Hn−1

∗ ⊂ Kn−1
∗ .

We have, therefore, identified 4 and 8 linearly independent dual states
for d + δ and �, which is equal to the dimensions of H and K, respec-

tively, and since d̃(0) + δ̃(0) and �̃(0) have index 0, all dual states are
linear combinations of these, i.e., we have, thus, identified a basis of the
spaces of dual states. The orthogonality of resonant and dual states
for d+ δ follows immediately from the explicit forms of both derived in
Theorem 4.4 and in this lemma: all dual states have form degree 1 or
n− 1, while all resonant states have form degree 0, 2, n− 2 or n. q.e.d.

The orthogonality statement in Lemma 4.6 combined with (4.13) im-
mediately gives A2

−1 = 0, hence, the coefficient of σ−2 in the Laurent

expansion of �̂(σ)−1 at σ = 0 vanishes. For precisely those form degrees

0 ≤ p ≤ n for which Kp is non-trivial, �̂(σ)−1 does have a simple pole
at σ = 0, and

�̂p(σ)−1 = σ−1
dimKp∑
j=1

〈·, ψ′j〉φ′j +O(1),

where φ′j and ψ′j run over a basis of ker �̂p(0) ∼= Kp and Kp∗ = ker �̂p(0)∗,

respectively.34

34After choosing the φ′j , the ψ′j are uniquely determined, and vice versa.
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Theorem 4.7. On 4-dimensional Schwarzschild–de Sitter space, if
0 ≤ p ≤ 4 and u is a differential form of degree p which solves �u = 0
with smooth initial data, then u decays exponentially to

• a constant for p = 0,
• a linear combination of u+ and u−, defined in the statement of

Theorem 4.4, for p = 1,
• a linear combination of ω and r−2 dt ∧ dr for p = 2,
• a linear combination of ?u+ and ?u− for p = 3, and
• a constant multiple of r2 dt ∧ dr ∧ ω for p = 4.

Analogous statements hold on any n-dimensional Schwarzschild–de Sit-
ter space, n ≥ 5.

5. Results for Kerr–de Sitter space

We now prove that some of the results obtained in the previous sec-
tion for the 4-dimensional Schwarzschild–de Sitter spacetime are stable
under perturbations which do not respect the warped product structure
imposed in §2, which, in particular, allows us to draw conclusions about
asymptotics for solutions of (d + δ)u = 0 or �u = 0 on Kerr–de Sitter
space with very little effort, even though the latter does not satisfy the
requirements of Section 2. Thus, fixing the black hole mass M• and the
cosmological constant Λ > 0, denote by ga the Kerr–de Sitter metric
with angular momentum a; thus, g0 is the Schwarzschild–de Sitter met-
ric.35 Only very basic facts about the metric will be used; we refer the
reader to [54, §6] for details and further information. We will write δga
for the codifferential with respect to the metric ga. We, furthermore,
denote by M = Rt × X the domain of exterior communications, and

by M̃ = Rt∗ × X̃ the ‘extended’ spacetime, with t∗ defined in36 [54,
Equation (6.4) and beginning of §6.4].

To begin, recall that the scalar wave equation (and by essentially
the same arguments the wave equation on differential forms, since the
principal symbol of the Hodge d’Alembertian is scalar, see also [56,
§4] for a discussion in a related context) on the Kerr–de Sitter space-
time fits into the microlocal framework developed in [54]. In particu-
lar, asymptotics for waves follow directly from properties of the Mellin
transformed normal operator family, and, moreover, the analysis of the
latter is stable under perturbations. In the present context, this con-
cretely means that for any ε > 0, there exists aε > 0 such that for all
angular momenta a with |a| < aε, the meromorphic family of operators

35Assuming the non-degeneracy condition (4.3), which ensures that the cosmolog-
ical horizon lies outside the black hole event horizon, the same will be true for small
|a|, which is the setting in which work here. In general, one would need to assume
that Λ, M• and a are such that the non-degeneracy condition [54, (6.2)] holds.

36Our t, t∗ are denoted t̃, t, respectively, in the reference.
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Ra(σ) := (d̃(σ) + δ̃ga(σ))−1 has no poles in |σ| ≥ ε, Imσ ≥ 0, and such
that, moreover, all poles in |σ| < ε are perturbations of the pole ofR0(σ)
at 0, in the sense the sum of the ranks of the resonances (i.e., poles of
Ra(σ)) in |σ| < ε equals the corresponding sum for the Schwarzschild–de
Sitter metric, which equals 4 by Theorem 4.4; we refer the reader to [28,
Appendix A] (which extends the perturbative discussion of [54, §2.7]) for
definitions and details, and here merely point out the presently relevant

consequence that sum of the dimensions of the kernels of d̃(σ) + δ̃ga(σ)
for |σ| < ε is at most 4-dimensional. Now, Lemma 4.6 suggests consider-
ing dual resonant states instead (which have a simpler form); the same

stability result as for Ra(σ) holds for R∗a(σ) := ((d̃(σ) + δ̃ga(σ))∗)−1.
However, just as in the case of Schwarzschild–de Sitter space, we can
immediately write down 4 linearly independent dual 0-resonant states

for d + δga : namely, apply d̃(0) + δ̃ga(0) to 1X (this is a dual resonant
state for �ga), which produces a sum of δ-distributions supported at
the horizons r = r±, and splitting this up into the part supported at
r− and the part supported at r+, we obtain 2 linearly independent dual
resonant states for d+ δ in form degree 1. The same procedure can be
applied to ?ga1X , yielding 2 linearly independent dual resonant states
for d+δ in form degree 3 (which are simply the Hodge duals of the dual
states in form degree 1). Hence,

(5.1) Ha := ker(d̃(0) + δ̃ga(0)),

which has the same dimension as

(5.2) Ha,∗ := ker(d̃(0) + δ̃ga(0))∗

is at least 4-dimensional for small |a|, but it is also at most 4-dimensional
by the above perturbation stability argument! Hence, for small |a|, we
deduce that 0 is the only pole ofRa(σ), i.e., the only resonance of d+δga ,
in Imσ ≥ 0 (and also the only pole of R∗a(σ) in this half space), and is
simple.

We can use this in turn to prove the stability of the zero resonance for

�ga in all form degrees. Let πk : C∞(M̃ ; ΛM̃)→ C∞(M̃ ; ΛM̃) denote the
projection onto differential forms with pure form degree k ∈ {0, . . . , 4},
which induces a map on C∞(X̃; ΛX̃ ⊕ ΛX̃). Let

(5.3) Ka := ker �̃ga(0) =
4⊕

k=0

Kka

be the grading of the zero resonant space of �ga by form degree, likewise

(5.4) Ka,∗ := ker �̃ga(0)∗ =

4⊕
k=0

Kka,∗,
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for the space of dual resonant states. Observe that πkHa ⊆ Kka, since
u ∈ Ha implies 0 = πk�gau = �gaπku. Now, since �ga1 = 0, we have
K0
a = 〈1〉 for small |a| by stability, likewise K4

a = 〈?ga1〉. Furthermore,
K2
a is at most 2-dimensional for small |a| (since K2

0 is 2-dimensional),
but also K2

a ⊇ π2Ha; now π2H0 is 2-dimensional by Theorem 4.4 and
Ha depends smoothly on a, thus, K2

a = π2Ha is 2-dimensional for small
|a|; therefore, K2

a = π2Ha is 2-dimensional. Finally, we have H1
a,∗ ⊆

K1
a,∗, hence, by the analysis of d + δga above, K1

a,∗, hence, K1
a, is at

least 2-dimensional, but since K1
0 is 2-dimensional, we must, in fact,

have dimK1
a = 2 for small |a|; likewise dimK3

a = 2. Hence, we have
dimKka = dimKk0 for k = 0, . . . , 4, which, in particular, means that
the zero resonance of �ga is the only resonance in Imσ ≥ 0, and the
resonance is simple.

We now summarize the above discussion, including a small improve-
ment. The following theorem is completely parallel to Theorem 4.4,
Lemma 4.6 and Theorem 4.7 for Schwarzschild–de Sitter spacetimes,
extending these to Kerr–de Sitter spacetimes with small angular mo-
mentum:

Theorem 5.1. For small |a|, the only resonance of d+δga in Imσ ≥
0 is a simple resonance at σ = 0, likewise for �ga. The spaces Ha
and Ha,∗ of resonant and dual resonant states for d + δga are graded

by form degree as Ha =
⊕4

k=0Hka, Ha,∗ =
⊕4

k=0Hka,∗, in particular,

Hka = ker d̃k(0) ∩ ker(δ̃ga)k(0),37 with

H0
a = 〈1〉, H1

a = 0, H2
a = 〈ua,1, ua,2〉, H3

a = 0, H4
a = 〈?ga1〉,

for some 2-forms ua,1, ua,2, which can be chosen to depend smoothly on
a,38 with u0,1 = r−2 dt ∧ dr, u0,2 = ω in the notation of Theorem 4.4,
and

H0
a,∗ = 0, H1

a,∗ = 〈δr=r− dr, δr=r+ dr〉,
H2
a,∗ = 0, H3

a,∗ = ?gaH1
a,∗, H4

a,∗ = 0.

For the spaces Ka and Ka,∗ of resonant and dual resonant states for
�ga, we have

K0
a = H0

a, K1
a = 〈ua,+, ua,−〉, K2

a = H2
a, K3

a = ?gaK1
a, K4

a = H4
a,

for some 1-forms ua,±, which can be chosen to depend smoothly on a,
with u0,± = u± in the notation of Theorem 4.7, and

K0
a,∗ = 〈1X〉, K1

a,∗ = H1
a,∗,

K2
a,∗ = 〈1Xua,1, 1Xua,2〉, K3

a,∗ = H3
a,∗, K4

a,∗ = 〈?ga1X〉.

37The subscript denotes the degree of differential forms on which the respective
operator acts.

38We derive an explicit expression in Remark 5.4 below.
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In particular, the form degree k part of a solution u to (d + δga)u = 0,
resp. �gau = 0, with smooth initial data decays exponentially to an

element of Hka, resp. Kka, for k = 0, . . . , 4.

Remark 5.2. Since for all k = 0, . . . , 4, either Hka = 0 or Hka,∗ = 0,
hence, Ha and Ha,∗ are orthogonal, we obtain another proof, as in the
Schwarzschild–de Sitter case, of the fact that �ga acting on differential
forms only has a simple resonance at 0.

Proof of Theorem 5.1. We only need to prove that the space Ha is
graded by form degree: let πeven = π0 + π2 + π4 denote the projection
onto even form degree parts, then since d+ δga maps even degree forms
to odd degree forms and vice versa, πeven maps Ha into itself. Now
suppose u ∈ πevenHa, and write u = u0 + u2 + u4 with uk = πku,
k = 0, 2, 4. Then 0 = π1(d + δga)u = du0 + δgau2,39 and applying δga
to this equation gives 0 = �gau0, which implies u0 ∈ K0

a, i.e., u0 is a
constant, as discussed before the statement of the theorem. Likewise,
u4 ∈ K4

a, so u4 is the Hodge dual of a constant. Therefore, d + δga
annihilates both u0 and u4, hence, u2 ∈ Ha. This argument shows that,
in fact, π2Ha ⊂ Ha. Since π2Ha is 2-dimensional, as noted above, we
have

〈1〉 ⊕ π2Ha ⊕ 〈?ga1〉 ⊆ Ha,
with both sides having the same dimension (namely, 4), and, thus, equal-
ity holds, providing the grading of Ha by form degree. q.e.d.

This, in particular, proves Theorem 1.

Remark 5.3. Observe that all ingredients in the Fredholm analysis of
the normal operator family, which here, in particular, involves estimates
at normally hyperbolic trapping, as well as all of the above arguments
which lead to a characterization of the spaces of resonances are stable
in the sense that they apply to any stationary perturbation of a given
Schwarzschild–de Sitter spacetime (4-dimensional for the above, but
similar arguments apply in all spacetime dimensions ≥ 4), not only to
slowly rotating Kerr–de Sitter black holes.

In fact, using the analysis of operators with non-smooth coefficients
developed in [29] and extended in [32], we can deduce decay and ex-
pansions in the exact same form as in the above theorem for waves on
spacetimes which are merely ‘asymptotically stationary’ and close to
Schwarzschild–de Sitter, i.e., for which the metric tensor differs from a
stationary metric close to Schwarzschild–de Sitter by an exponentially
decaying symmetric 2-tensor (with suitable regularity). This shows at
once that quasilinear wave equations on differential forms of the form
�g(u,∇u)u = q(u,∇u) with small initial data can be solved globally,

39We use the identification of resonant states with t∗-independent forms as in the
proof of Theorem 3.20.
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provided g(0, 0) is close to the Schwarzschild–de Sitter metric, and the
non-linearity q annihilates 0-resonant states; to give an (artificial) ex-
ample, on 2-forms, one could take q(u,∇u) = |du|2u.

Remark 5.4. In the case of the Kerr–de Sitter metric, we can, in
fact, explicitly write down ua,1 ∈ H2

a (and then take ua,2 = ?gaua,1 to
obtain a basis of H2

a). Indeed, on the Kerr spacetime, Andersson and
Blue [2] give the values of the spin coefficients of the Maxwell field for
the Coulomb solution in [2, §3.1], and reconstructing the Maxwell field
itself (in the basis given by wedge products of differentials of the Boyer–
Lindquist coordinates t, r, θ, φ) is then an easy computation using the
explicit form of the null tetrad given in [2, Introduction, §2.4].40 A
tedious but straightforward calculation shows that the resulting 2-form

ua,1 := Fa,TR(r,θ) (dt− a sin2 θ dφ) ∧ dr
+ Fa,ΘΦ(r, θ) sin θ dθ ∧ (a dt− (r2 + a2) dφ),

with

Fa,TR(r, θ) =
r2 − a2 cos2 θ

(r2 + a2 cos2 θ)2
, Fa,ΘΦ(r, θ) =

2ar cos θ

(r2 + a2 cos2 θ)2

is a solution of Maxwell’s equations on Kerr–de Sitter space as well, i.e.,
when the cosmological constant is positive.
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1100.83004.

[2] Lars Andersson and Pieter Blue. Uniform energy bound and asymptotics for the
Maxwell field on a slowly rotating Kerr black hole exterior. Journal of Hyperbolic
Differential Equations, 12(04):689–743, 2015, MR3450059, Zbl 1338.83094.

[3] Alain Bachelot. Gravitational scattering of electromagnetic field by
Schwarzschild black-hole. In Annales de l’IHP Physique théorique, volume 54,
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