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RIGIDITY OF EQUALITY OF LYAPUNOV
EXPONENTS FOR GEODESIC FLOWS

Clark Butler

Abstract

We study the relationship between the Lyapunov exponents of
the geodesic flow of a closed negatively curved manifold and the
geometry of the manifold. We show that if each periodic orbit of
the geodesic flow has exactly one Lyapunov exponent on the un-
stable bundle then the manifold has constant negative curvature.
We also show under a curvature pinching condition that equality
of all Lyapunov exponents with respect to volume on the unstable
bundle also implies that the manifold has constant negative cur-
vature. We then study the degree to which one can emulate these
rigidity theorems for the hyperbolic spaces of nonconstant negative
curvature when the Lyapunov exponents with respect to volume
match those of the appropriate symmetric space and obtain rigid-
ity results under additional technical assumptions. The proofs
use new results from hyperbolic dynamics including the nonlinear
invariance principle of Avila and Viana and the approximation
of Lyapunov exponents of invariant measures by Lyapunov expo-
nents associated to periodic orbits which was developed by Kalinin
in his proof of the Livsic theorem for matrix cocycles. We also
employ rigidity results of Capogna and Pansu on quasiconformal
mappings of certain nilpotent Lie groups.

1. Introduction

A central question in geometric rigidity theory is the following: Sup-
pose that a negatively curved Riemannian manifold M shares some
property P with a negatively curved locally symmetric space N . Is M
isometric to N? The most famous example of such a rigidity theorem is
the Mostow rigidity theorem: if M and N are real hyperbolic manifolds
with isomorphic fundamental groups, then M and N are isometric.

We can ask a different, more dynamical rigidity question: Suppose
that the geodesic flow of a negatively curved Riemannian manifold M
shares some property P with the geodesic flow of a negatively curved
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locally symmetric space N . Is there a C1 time-preserving conjugacy
between the geodesic flows of M and N? A remarkable consequence of
the minimal entropy rigidity theorem of Besson, Courtois, and Gallot
[6] is that dynamical rigidity implies geometric rigidity, in the sense that
if there is a C1 time preserving conjugacy between the geodesic flows of
M and N , then M and N are homothetic. Recall that two Riemannian
manifolds (M,d) and (N, ρ) with distances d and ρ, respectively, are
homothetic if there is a constant c > 0 such that (M,d) is isometric to
(N, cρ). This implies that it is possible to characterize the geometry of
a locally symmetric space N purely by the dynamics of its geodesic flow.
For some examples of the numerous rigidity problems to which this has
been applied, see [5],[4], and [15] as well as the survey articles [7],[34].
There are other more geometric methods of using dynamically defined
invariants of the geodesic flow to prove rigidity theorems in negative
curvature without passing through the step of constructing a C1 time
preserving conjugacy between the geodesic flows of M and N ; we refer
to the work of Hamenstädt [16] on hyperbolic rank rigidity as well as
the work of Ledrappier and Wang [28] for examples of some of these
techniques.

The particular property we will be interested in studying is the con-
formal geometry and dynamics of the geodesic flow of M acting on the
unstable foliation of the unit tangent bundle of M . We will show that
if this action of the geodesic flow sufficiently resembles that of the cor-
responding action for the geodesic flow of a negatively curved locally
symmetric space then M is actually homothetic to a negatively curved
locally symmetric space. Here “sufficiently resembles” will be measured
by the Lyapunov exponents of the geodesic flow and, in the case of neg-
atively curved locally symmetric spaces of nonconstant negative curva-
ture, the regularity of certain dynamically defined subbundles of the
unstable bundle. Lyapunov exponents have previously been considered
by Connell [12] as a means of characterizing negatively curved locally
symmetric spaces, however, our methods are quite different as Connell
builds on the work of Hamenstädt [16] to establish rigidity while we use
the work of Besson, Courtois, and Gallot [6].

Before proceeding further, we fix some notation. Throughout this
paper M will denote an m-dimensional closed Riemannian manifold

of negative curvature with universal cover M̃ . We will always assume
m ≥ 3. We write SM for the unit tangent bundle of M . The time-t
map of the geodesic flow on SM will be denoted by gt. We endow SM
with the Sasaki metric, giving SM the structure of a closed Riemannian
manifold with norm ‖·‖ and distance d. We let θ be the canonical contact
1-form on SM preserved by gt. The letter C will be used freely as a
multiplicative constant which is independent of whatever parameters
are under consideration.
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Since M is negatively curved, gt is an Anosov flow: there is a Dgt-
invariant splitting TSM = Eu⊕Ec⊕Es with Ec tangent to the vector
field generating gt, and there exist 0 < ν < 1, C > 0 such that for
vu ∈ Eu, vs ∈ Es, and t > 0,

‖Dgt(vs)‖ ≤ Cνt‖vs‖, ‖Dg−t(vu)‖ ≤ Cνt‖vu‖,

Eu, Es, and Ec are called the unstable, stable, and center subbundles,
respectively. We write Ecu := Eu ⊕ Ec and Ecs := Ec ⊕ Es for the
center unstable and center stable subbundles, respectively. Each of the
distributions Eu, Ec, Es, Ecu, Ecs is uniquely integrable; we denote the
corresponding foliations by W ∗, ∗ = u, c, s, cu, cs, with W ∗(x) being
the leaf containing x. We consider each leaf of these foliations to carry
the induced Riemannian metric from the Sasaki metric on SM . We
let W ∗r (x) be a ball of radius r centered at x in the leaf W ∗(x). For a
gt-invariant subbundle E of TSM , we write Dgt|E for the restriction of
Dgt to E .

Let K = R,C,H, or O be the division algebra of real numbers, com-
plex numbers, quaternions, and octonions, respectively. Associated to
each of these are the complex, quaternionic, and Cayley hyperbolic
spaces Hk

K of dimension k, 2k, 4k, and 8, respectively. These give
the complete list of negatively curved Riemannian symmetric spaces.
We normalize the metrics of these spaces so that they have maximal
curvature −1. Define rK := dimRK.

We say that Dgt|Eu is uniformly quasiconformal if there is a constant
C > 0 independent of the point p ∈ SM and t such that for any pair of
unit vectors v, w ∈ Eup ,

‖Dgt(v)‖ · ‖Dgt(w)‖−1 ≤ C.

For closed negatively curved Riemannian manifolds of dimension at
least 3, combined work of Gromov, Kanai, Sullivan and Tukia shows
that if the sectional curvatures K of M satisfy −4 < K ≤ −1 and the
action of the geodesic flow on Eu is uniformly quasiconformal, then M
is homotopy equivalent to a real hyperbolic manifold N , and there is a
C1 time preserving conjugacy between the geodesic flows of M and N
([14],[25],[35],[37]). When combined with the minimal entropy rigid-
ity theorem of Besson, Courtois, and Gallot [6], this implies that M is
homothetic to N .

Our first theorem is an improvement of this result. For a periodic

point p of gt, let `(p) be the period of p. Let χ
(p)
1 , . . . , χ

(p)
m−1 be the

complex eigenvalues of Dg
`(p)
p : Eup → Eup , counted with the multiplicity

of their generalized eigenspaces.

Theorem 1.1. Let M be an m-dimensional closed negatively curved
Riemannian manifold. Suppose that
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i

∣∣∣ =
∣∣∣χ(p)
j

∣∣∣ , 1 ≤ i, j ≤ m− 1,

for every periodic point p of the geodesic flow on SM . Then M is
homothetic to a compact quotient of Hm

R .

Theorem 1.1 implies that we can characterize a real hyperbolic man-

ifold by the behavior of a countable collection of linear maps Dg
`(p)
p :

Eup → Eup associated to its geodesic flow. Furthermore, we do not even
require these linear maps to be conformal; we only require that for each

map Dg
`(p)
p , all of its eigenvalues have the same absolute value. We’ve

also removed the curvature assumption on M .
We next state a more ergodic theoretic formulation of Theorem 1.1.

Let E be a vector bundle over SM carrying a norm ‖ · ‖ and let π :
E → SM be the projection map. A linear cocycle over gt is a map
A : E × R→ E satisfying for every t ∈ R,

π(A(v, t)) = gt(π(v)),

A(−, t)|Ex : Ex → Egt(x) is a linear isomorphism,

and for any t, s ∈ R,

A(A(v, s), t) = A(v, t+ s).

We adopt the notation At for the map A(−, t). We will principally
be concerned with the linear cocycles obtained by restricting Dgt to
invariant subbundles E of T (SM). For a linear cocycle At over gt and
an ergodic gt-invariant measure µ, we define the extremal Lyapunov
exponents of At with respect to µ to be

λ+(At, µ) := inf
t>0

1

t

∫
log ‖At‖dµ(x),

λ−(At, µ) = sup
t>0

1

t

∫
log ‖A−t‖−1dµ(x).

We next introduce our hypotheses on the gt-invariant measures that we
will consider. For each point x ∈ SM there is an open neighborhood
Ux of x such that there is a homeomorphism

ιx : W cu
r (x)×W s

r (x)→ Ux,

for some r > 0 given by mapping a pair (y, z) ∈ W cu
r (x) × W s

r (x)
to the unique intersection point of W s(y) and W cu(z). A gt-invariant
probability measure µ has local product structure if for each x ∈ SM
there are measures µcux and µsx on W cu

r (x) and W s
r (x), respectively, and

a continuous function ψx : Ux → (0,∞) such that

(ιx)∗(dµ
cu
x × dµsx) = ψxdµ|Ux .

This says that locally µ may be expressed as the product of measures
on the stable and center-unstable manifolds. Any equilibrium state as-
sociated to a Hölder continuous potential for the geodesic flow has local
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product structure [8]; these include the Liouville volume on SM , the
Bowen–Margulis measure of maximal entropy for the geodesic flow, and
the harmonic measure corresponding to the hitting probability of Brow-

nian motion inside the universal cover M̃ of M on the visual boundary

∂M̃ .
A negatively curved Riemannian manifold M has relatively

1/4-pinched sectional curvatures if for each p ∈ M and each quadru-
ple of tangent vectors X,Y,W,Z ∈ TpM such that X and Y are linearly
independent and W and Z are linearly independent, we have

K(X,Y ) > 4K(W,Z),

where K(X,Y ) is the sectional curvature of the plane spanned by X
and Y .

Theorem 1.2. Let M be a closed negatively curved Riemannian
manifold with relatively 1/4-pinched sectional curvatures. Let µ be an
ergodic, fully supported gt-invariant measure with local product struc-
ture. If λ+(Dgt|Eu, µ) = λ−(Dgt|Eu, µ), then M is homothetic to a
compact quotient of Hm

R .

A natural follow-up question to Theorem 1.2 is the following,
Question: Is M homothetic to a compact quotient of Hm

R if we only
assume that λ+(Dgt|Eu, µ) = λ−(Dgt|Eu, µ)?

A result related to this question was proven by Yue [39], who showed
that if Eu has no measurable subbundles invariant under Dgt then M
is homothetic to a real hyperbolic manifold, without any pinching as-
sumptions on the curvature of M . However, the proof presented in [39]
appears to have a significant gap which is discussed in Remark 3.2 at
the end of Section 3. In a recent preprint [10] we corrected this gap to
recover Yue’s original result.

Our final two theorems are extensions of Theorem 1.2 to the nega-
tively curved symmetric spaces of nonconstant negative curvature. We

first recall the structure of the geodesic flow on H
m/rK
K for K = C,H,O.

The horospheres in H
m/rK
K naturally have the structure of an (m − 1)-

dimensional 2-step nilpotent Lie group GmK . We fix a left-invariant
(m− rK)-dimensional distribution T mK on GmK which is transverse to the
tangent distribution of the center (as a Lie group) of GmK . We denote
the tangent distribution of the center of GmK by VmK .

When we identify the horospheres ofH
m/rK
K withGmK the geodesic flow

gtK of the symmetric metric dK acts by an expanding automorphism of
GmK which leaves the splitting TGmK = T mK ⊕VmK invariant, expands T mK
by a factor of et, and expands VmK by a factor of e2t.

We next need an additional dynamical definition: a dominated split-
ting for a linear cocycle A : E → E over gt is an A-invariant direct sum
splitting E = E1 ⊕ E2 such that there is some norm ‖ · ‖ on E , some
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C > 0 and some 0 < λ < 1 satisfying for every p ∈ SM ,

‖Atp|E2
p‖ ≤ Cλt‖A−tgtp|E

1
p‖−1, t > 0.

Dominated splittings are stable under C0-perturbations of A [33]. As
we saw in the previous paragraph, the geodesic flow of the symmetric

metric dK on Hm/rK
K admits a dominated splitting of the unstable bundle

given in horospherical coordinates by TGmK = T mK ⊕VmK . Hence there is
a C2-open neighborhood O of the symmetric metric dK on a cocompact

quotient M = Hm/rK
K /Γ such that if d ∈ O then the geodesic flow gt

of d also admits a dominated splitting on the unstable bundle, Eu =
Hu ⊕ V u, where Hu is the weaker of the two expanding directions.

The Lie group GmK carries a natural left-invariant sub-Riemannian
metric which is the Carnot–Caratheodory metric defined by the distri-
bution T mK . With respect to this metric the expanding automorphism
gtK is conformal. Conformal mappings with respect to this metric exhibit

strong rigidity properties much like the conformal maps of Rk for k ≥ 3;
all conformal maps from one domain of GmK to another are the restric-
tions of a projective automorphism of the group. For further discussion
and details we refer to [30].

In order to apply the rigidity of conformal maps of GmK to the study of
the rigidity of the geodesic flow gt of metrics close to dK, there are two
requirements: we need that Dgt|Hu is conformal we also need charts
which identify Hu with the left-invariant distribution T mK in GmK . Our
next theorem states that these two requirements are sufficient to ob-
tain a rigidity theorem. As in Theorem 1.2, it’s sufficient to require
only that the extremal Lyapunov exponents of Dgt|Hu with respect to
a sufficiently structured measure µ are equal in order to guarantee con-
formality of Dgt|Hu. Recall that O is a C2 open neighborhood of dK
such that a dominated splitting Eu = Hu ⊕ V u exists for the geodesic
flow of all Riemannian metrics d in this neighborhood.

Theorem 1.3. Let M = Hm/rK
K /Γ be a cocompact quotient of a sym-

metric space of nonconstant negative curvature with symmetric metric
dK. There is a C2 open neighborhood U ⊂ O of dK in the space of Rie-
mannian metrics on M such that if d ∈ U has geodesic flow gt which
satisfies

1) λ+(Dgt|Hu, µ) = λ−(Dgt|Hu, µ) for some ergodic, fully supported
gt-invariant measure µ with local product structure; and

2) There is an r > 0 such that for every p ∈ SM there is a C1

embedding Ψp : W u
r (p)→ GK with DΨp(H

u
q ) = (T mK )Ψp(q).

Then d is homothetic to dK.

It is possible to give an explicit description of the set U in terms
of norm bounds on Dgt|Hu and Dgt|V u; this is discussed in detail at
the beginning of Section 5. A natural question which is important for
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potential applications is whether Assumption (2) of Theorem 1.3 follows
from Assumption (1). We are able to show in the case of complex
hyperbolic space that if one assumes that the bundle Hu has sufficiently
high regularity along the unstable foliation W u then Assumption (2)
follows from Assumption (1).

Theorem 1.4. Let M = Hm/2
C /Γ be a cocompact quotient complex

hyperbolic space with symmetric metric dC. There is a C2 open neigh-
borhood U ⊂ O of dC in the space of Riemannian metrics on M such
that if d ∈ U has geodesic flow gt which satisfies

1) λ+(Dgt|Hu, µ) = λ−(Dgt|Hu, µ) for some ergodic, fully supported
gt-invariant measure µ with local product structure; and

2) The restriction of Hu to unstable leaves W u is C1 with Hölder
continuous derivative.

Then Assumption (2) of Theorem 1.3 holds and, consequently, d is ho-
mothetic to dC.

The high regularity assumption on Hu is likely too strong; on the
open neighborhood U of dC given in Theorem 1.4, Hu will typically be
no better than Hölder continuous along W u with exponent 1/2− ε for
some ε > 0. We expect that Theorem 1.4 also holds for perturbations
of the geodesic flow quaternionic hyperbolic and octonionic hyperbolic
manifolds. Lastly we make the important remark that verifying As-
sumption (2) of Theorem 1.3 does not require proving higher regularity
of Hu as assumed in Theorem 1.4.

The proofs of these theorems make use of two powerful tools recently
developed in smooth dynamics. The first is the method of approxima-
tion of Lyapunov exponents of invariant measures over a system by Lya-
punov exponents of periodic points developed by Kalinin in his recent
solution of the Livsic problem for GL(n,R)-cocycles over hyperbolic
systems [21]. We use this to transfer information about the periodic
exponents of gt to exponents of any invariant measure for gt.

The second is a far-reaching nonlinear generalization of Furstenberg’s
theorem on nonvanishing Lyapunov exponents for random GL(n,R)-
cocycles which characterizes when the Lyapunov exponents of a cocycle
over a partially hyperbolic system vanish under suitable hypotheses.
Inspired by an alternative proof by Ledrappier [27] of Furstenberg’s
theorem, Avila and Viana proved a nonlinear generalization [2], and
then later with Santamaria showed how this nonlinear generalization
could be applied to cocycles over partially hyperbolic systems [1]. We
apply a further distillation of this tool by Kalinin and Sadovskaya in
[24] which is adapted to the study of cocycles which are close to be-
ing conformal. They have applied this to the study of linear cocycles
with uniformly quasiconformal behavior and asymptotically conformal
Anosov diffeomorphisms [23],[22].
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In Section 2, we adapt the main results of Kalinin and Sadovskaya
[24] regarding conformal structures for linear cocycles to our setting.
We also review the concepts of fiber bunching and stable and unstable
holonomies from partially hyperbolic dynamics. In Section 3, we prove
Theorem 1.1 and Theorem 1.2. In Section 4, we analyze the case of a
dominated splitting Eu = Hu ⊕ V u and develop the dynamical tools
needed for the proofs of the remaining results. In Section 5, we use
these tools to prove Theorem 1.3. In Section 6, we prove Theorem 1.4.

Acknowledgments. We thank Amie Wilkinson for numerous discus-
sions which improved the paper greatly, as well as continued guidance
and support. We thank Boris Kalinin for bringing to our attention the
gap in [39] discussed in Remark 3.2. We thank Ursula Hamenstädt for
providing the closing argument in the last paragraph of the proof of
Theorem 1.3. We are grateful to Alex Eskin for pointing out an error
in the proof of Lemma 2.5 in an earlier draft of the paper.

2. Background on linear cocycles over Anosov flows

For this section we take gt to be an Anosov flow on a Riemannian
manifold X. We will specialize when necessary to the case that X =
SM is the unit tangent bundle of a Riemannian manifold and gt is the
geodesic flow.

A d-dimensional vector bundle π : E → X is β-Hölder continuous if
there is an open cover of X by open sets Ui which admit linear trivializa-
tions ϕi : π−1(Ui)→ Ui×Rd such that the transition maps ϕi ◦ϕ−1

j are
β-Hölder continuous with respect to the Riemannian metric on X and
the Euclidean metric on Rd. A cocycle At : E → E over gt is β-Hölder
if E is a β-Hölder vector bundle and At is β-Hölder in any β-Hölder
family of trivializations. A standard example of a linear cocycle defined
on a Hölder continuous vector bundle is the restriction of Dgt to the
unstable bundle Eu.

2.1. Holonomies for linear cocycles. We begin with a definition,

Definition 2.1. A β-Hölder continuous cocycle At is α-fiber bunched
if α ≤ β and there is some T > 0 such that

‖Atp‖ · ‖A−tp ‖ · ‖Dgtp|Es‖α < 1, p ∈ SM, t ≥ T,

‖Atp‖ · ‖A−tp ‖ · ‖Dg−tp |Eu‖α < 1, p ∈ SM, t ≥ T.

Fiber bunching guarantees the existence of At-equivariant identifica-
tions of the fibers of E along stable and unstable manifolds of gt known
as holonomies. These identifications are essential for everything that
follows in this paper.

We define here unstable holonomies. Stable holonomies are defined
similarly. Stable holonomies could also be defined as the unstable
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holonomies of the inverse cocycle A−t over g−t. The definition below is
from [24], adapted to the setting of flows.

Definition 2.2. An unstable holonomy for a linear cocycle A : E ×
R → E over gt is a continuous map hu : (x, y) → huxy, where x ∈ X,
y ∈W u

r (x), such that

1) huxy is a linear map from Ex to Ey;
2) huxx = Id and huyz ◦ huxy = huxz;

3) huxy = (Aty)
−1 ◦ hugtxgty ◦A

t
x for every t ∈ R.

The next proposition gives a sufficient condition for the existence of
holonomies. For a β-Hölder vector bundle E , it is always possible to
find a β-Hölder continuous system of linear identifications Ixy : Ex → Ey
with Ixx = IdEx and d(x, y) ≤ r for some constant r > 0 [24].

Proposition 2.3. Suppose that A is β-Hölder and fiber bunched.
Then there is an unstable holonomy hu for A which satisfies

(1) ‖huxy − Ixy‖ ≤ Cd(x, y)β,

for x ∈ SM , y ∈ W u
r (x), and some C > 0. Furthermore, the unstable

holonomy satisfying (1) for some C > 0 is unique.

The proof of Proposition 2.3 for fiber bunched cocycles over par-
tially hyperbolic maps is given in [24]; an identical proof works for fiber
bunched cocycles over Anosov flows instead.

Let r > 0 be small enough that for every x ∈ X, all of the foliations
W ∗r are trivial on the ball of radius r. Given an unstable holonomy
hu for a linear cocycle A over gt, we can locally extend it to a center
unstable holonomy hcu by defining for y ∈W cu

r (x),

hcuxy = Aτ
g−τy
◦ huxg−τy = hugτxy ◦Aτx,

where τ = τ(x, y) is the unique real number such that g−τy ∈W u
r (x). It

is easily checked using the properties in Definition 2.2 that hcu satisfies
properties analogous to those of hu on a ball of radius r. In particular,
for y ∈W cu

r/2(x) and z ∈W cu
r/2(y), we have that hcuyz ◦hcuxy = hcuxz. We also

see that if y ∈W cu
r (x) and d(gty, gtx) ≤ r, then hcuxy = (Aty)

−1 ◦hcugtxgty ◦
Atx.

We specialize to the case X = SM and gt a geodesic flow for the
rest of this subsection. It is not immediately clear from the formula
defining the center unstable holonomies that these extend to be glob-
ally defined on a center unstable leaf W cu(x); to prove this we use
some of the special structure of the geodesic flow. Since m ≥ 3, the

universal cover of SM is the unit tangent bundle SM̃ of the universal

cover M̃ of M , and π1(SM) is canonically isomorphic to π1(M) by the

projection SM → M . The foliations W ∗ lift to foliations W̃ ∗ of SM̃
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which have global product structure: for each x, y, z ∈ SM̃ , the leaves

W̃ c(x), W̃ u(y), W̃ s(z) intersect in exactly one point.

Let Ẽ be the lift of the vector bundle E to a vector bundle over SM̃ .
For two points x ∈ SM̃ , y ∈ W̃ cu(x), the center unstable holonomy map

hcuxy : Ẽx → Ẽy is defined by the formula

hcuxy = Ãτ
g̃−τy
◦ huxg̃−τy = hug̃τxy ◦ Ã

τ
x,

where τ = τ(x, y) is the unique time τ ∈ R such that g̃−τy ∈ W̃ u(x).
It’s easy to check that this locally agrees with the previously defined
center unstable holonomy, and gives a global extension of hcu satisfying
the analogous properties in Definition 2.2.

Let ∂M̃ be the visual boundary of M̃ . This global product structure
corresponds to the Hopf parametrization,

SM̃ = R× ∂M̃ × ∂M̃\∆(∂M̃ × ∂M̃),

given as follows: Fix a basepoint x ∈ M̃ . Let v ∈ SM̃ . v is tangent to a

geodesic γv which has endpoints v+, v− ∈ ∂M̃ , where v+ corresponds to
the forward endpoint of γv, and v− the backward endpoint. Let xv be
the orthogonal projection of x onto γv, and let s be the distance from xv
to P (v), where P : SM̃ → M̃ is projection. Then the identification is
given by v → (s, v+, v−). In this identification, the action of the geodesic
flow is given by translation in the R-coordinate. This parametrization

of SM̃ will be important in Sections 3 and 4.

2.2. Continuous amenable reduction. We now adapt the main re-
sults of [24] to our setting. Let E be a d-dimensional Hölder continuous
vector bundle over a Riemannian manifold X with an Anosov flow gt.
We let µ be a fully supported ergodic gt-invariant measure with local
product structure. For the results in this section we will assume that
the stable and unstable distributions Es and Eu for gt are not jointly
integrable; this is true for the geodesic flow because the geodesic flow is
a contact Anosov flow.

Two Riemannian metrics τ and σ on E are conformally equivalent
if there is a function a : X → R such that τp = a(p)σp. A conformal
structure on E is a conformal equivalence class of Riemannian metrics on
E . At transforms a conformal structure by pulling back the associated
Riemannian metric. A conformal structure represented by a Riemann-
ian metric τ is invariant under A if for each t ∈ R there is a map
ψt : X → R satisfying

(At)∗τ = ψtτ.

In this case we say that ψt is the multiplicative cocycle associated to
the invariant conformal structure τ . ψt satisfies the cocycle property

ψt+s(p) = ψt(p)ψs(gt(p)),

for any t, s ∈ R.
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Two multiplicative cocycles ψt and ϕt are cohomologous if there is a
map ζ : X → R such that

ψt

ϕt
=
ζ ◦ gt

ζ
,

for every t ∈ R.
If a cocycle A over X admits stable and unstable holonomies, we say

that a subbundle V ⊂ E is holonomy invariant if for y ∈ W ∗(x) we
have h∗xy(Vx) = Vy for ∗ = u or s. Similarly, we say that a conformal
structure is holonomy invariant if it is invariant under pulling back by
stable and unstable holonomies.

Lemma 2.4. Let A be a fiber bunched cocycle over an Anosov flow
gt for which Eu and Es are not jointly integrable. Suppose that

λ+(A, µ) = λ−(A, µ).

Then any measurable A-invariant subbundle V ⊆ E coincides µ-a.e.
with a A-invariant holonomy invariant continuous subbundle. Under
the same hypotheses, any A-invariant measurable conformal structure τ
on E coincides µ-a.e. with a A-invariant holonomy invariant continuous
conformal structure.

Proof. The cocycle generated by A1 is a fiber bunched cocycle over
the partially hyperbolic diffeomorphism g1. Since Eu and Es are not
jointly integrable, g1 is accessible as a partially hyperbolic diffeomor-
phism [9]. In the first case V is a measurable invariant subbundle for
A1; in the second case, τ is an invariant measurable conformal struc-
ture for A1. Theorem 3.3 and Theorem 3.1, respectively, from [24] then
apply to give the desired result. q.e.d.

Lemma 2.5. Let A be a fiber bunched cocycle over an Anosov flow
gt such that Eu and Es are not jointly integrable. Suppose that

λ+(A, µ) = λ−(A, µ).

Then there is a finite cover X of X and a flag

0 ( E1 ( E2 ( · · · ( Ek = Ẽ ,
of continuous holonomy-invariant subbundles E i which are invariant un-

der the action of the lifted cocycle Ã on the lifted bundle Ẽ over X .

Furthermore, the induced action of the cocycle Ãi on E i/E i−1 preserves
a continuous holonomy invariant conformal structure.

Proof. The vector bundle E admits a measurable trivialization on a
set of full µ-measure by Proposition 2.12 in [3]. Since µ is fully supported
on X, this implies that there is a measurable map P : E → X × Rd
commuting with the projections onto X and which is linear on the
fibers. B = PAP−1 is a measurable linear cocycle over gt on the trivial
vector bundle X × Rd. We can apply Zimmer’s amenable reduction
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theorem [40] for R-cocycles to conclude that there is a measurable map
C : X → GL(d,R) such that the cocycle F = CBC−1 takes values in
an amenable subgroup G of GL(d,R).

The maximal amenable subgroups of GL(d,R) are classified in [29].
Any such group G contains a finite index subgroup K which is conjugate
to a subgroup of a group of the form

H(d1, . . . , dk) =


A1 ∗ ∗ ∗
0 A2 ∗ ∗

0 0
. . . ∗

0 0 0 Ak

 ,
where

∑k
i=1 di = d and Ai ∈ R · SO(di,R). Thus, by conjugating the

cocycle F if necessary, we may assume that F takes values in a group
G which contains a finite index subgroup K that is contained in one
of the groups H(d1, . . . , dk). Let G∗ be the stabilizer in G of the flag
V 1 ⊂ V 2 ⊂ · · · ⊂ V k = Rd corresponding to the group H(d1, . . . , dk)

containing K. Thus V j is the span of the first
∑j

i=1 di coordinate axes

in Rd. Let ` be the index of G∗ in G, which is finite since K has finite
index in G and K ⊂ G∗.

Let V i,j , j = 1, . . . , ` be the at most ` distinct images of the subspace

V i under the action of G. Let U i =
⋃`
j=1 V

i,j . Then let Ê i,jx = (C ◦
P )−1(x) ·V i,j , Û i = (C ◦P )−1(x) ·U i. The proof of Theorem 3.4 in [24]

shows that if the union of measurable subbundles Û i is invariant under a
fiber bunched cocycle with equal extremal exponents over an accessible
partially hyperbolic system (which we can take to be the time 1 map A1

of the cocycle A over g1), then there is a finite cover X of X such that

the individual subbundles Ê i,jx lift to subbundles E i,j of the lifted bundle
Ẽ over X which agree µ-a.e. with continuous subbundles which we will
also denote E i,j . By construction the lifts U i are invariant µ-a.e. under

the action of the lift Ã of the cocycle A. This is because we constructed
these unions of subbundles using amenable reduction over the R action
given by A, and under our measurable trivialization A takes values in
the group G. Since A is continuous and the lifts U i are continuous after
modification on a µ-null set, we conclude that each U i is everywhere
invariant under A.

For each i ∈ {1, . . . , k}, x ∈ X , t ∈ R, and j ∈ {1, . . . , `}, there is

thus an integer Si(x, t, j) such that At(E i,jx ) = E i,S(x,t,j)
gtx . For a fixed i

and j, Si(x, t, j) depends continuously on x and t since both Ãt and
all of the subbundles E i,j are continuous. Since for a fixed i and j we
have that Si(x, t, j) is continuous, integer valued, and has connected
domain X ×R, we conclude that Si(x, t, j) := Si(j) is constant in x and
t. Furthermore, since Si(x, 0, j) = j, we conclude that Si(j) = j. Hence
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all of the subbundles E i,j are invariant under Ã as well. In particular, A
preserves the flag E1 ⊂ · · · ⊂ Ek which arises as the continuous extension
of the lift of the flag coming from the standard flag V 1 ⊂ V 2 ⊂ · · · ⊂ V k.

To prove the second claim, note that for any r ≥ 1, the induced

action of the cocycle F on V
∑r
i=1 di/V

∑r−1
i=1 di = Rdr preserves the stan-

dard Euclidean conformal structure on Rdr . This immediately implies

that Ã preserves a measurable conformal structure on the correspond-
ing quotient bundle Ej/Ej−1. By Lemma 2.4, this measurable conformal
structure coincides µ-a.e. with a holonomy invariant continuous confor-
mal structure. q.e.d.

Lemma 2.6. Suppose that there is a finite cover X of X such that the

lifted cocycle Ã on the lifted bundle Ẽ preserves a continuous holonomy-
invariant conformal structure. Then A also preserves a continuous
holonomy-invariant conformal structure.

Proof. Let C̃x be the space of conformal structures on the vector

space Ẽx. C̃x can be identified with the Riemannian symmetric space
SL(d,R)/SO(d,R) and, in fact, carries a canonical Riemannian metric

of nonpositive curvature for which the induced map C̃x → C̃gtx over the

cocycle Ã is an isometry [24]. In particular, for compact subsets K ⊂ C̃x
there is a natural barycenter map K → bar(K) mapping K to its center
of mass.

Let τ be the continuous holonomy-invariant conformal structure pre-

served by Ã. Let H be the group of covering transformations for X over

X, which also acts as the group of covering transformations for Ẽ over

E . Let Kx =
⋃
ρ∈H{ρ · τρ−1(x)} ⊂ C̃x. The collection of compact subsets

Kx depends continuously on x, is holonomy-invariant, and is invariant
under A. Hence all of the same is true of the family of barycenters
σx := bar(Kx). We thus get a conformal structure σ that is continuous,

holonomy-invariant, invariant under Ã, and also invariant under the ac-
tion of the deck group H. σ then descends to the desired conformal
structure on E . q.e.d.

In subsequent sections we will use Lemmas 2.5 and 2.6 together to
construct invariant conformal structures for our cocycles of interest.
We will first use Lemma 2.5 to construct an invariant flag on a finite
cover, then we will show this flag must be trivial, then lastly we will use
Lemma 2.6 to push the invariant conformal structure back down to our
original bundle.

Remark 2.7. The assumption that the stable and unstable distribu-
tions Eu and Es of gt are not jointly integrable is likely unnecessary in
Lemmas 2.4 and 2.5. Different arguments are needed in the case that Eu

and Es are jointly integrable, however, as one cannot use accessibility
of the time one map g1 in this case.
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2.3. Lyapunov exponents and periodic approximation. For a co-
cycle A : E ×R→ E over gt and an ergodic gt-invariant measure µ, the
multiplicative ergodic theorem [3] implies that there is a gt-invariant
subset Λ ⊂ X with µ(Λ) = 1 such that over Λ there is a measurable
gt-invariant splitting

E = E1 ⊕ E2 ⊕ . . . Ek,
and numbers λ1 < λ2 < · · · < λk such that

lim
t→∞

1

t
log ‖At(v)‖ = λi, v ∈ E i.

The numbers λi are the Lyapunov exponents of A. The extremal Lya-
punov exponents λ+ and λ− of A with respect to µ correspond to the
top and bottom exponents λk and λ1, respectively.

For each periodic point p, we let µp denote the unique gt-invariant
probability measure supported on the orbit of p, which may be obtained
as the normalized pushforward of Lebesgue measure on R by the map
t→ gt(p). The following theorem of Kalinin enables us to approximate
the Lyapunov exponents of any gt-invariant measure by the Lyapunov
exponents of measures concentrated on a periodic orbit. This theorem
is the essential new tool needed for the proof of the Livsic theorem
in the case of matrix cocycles. The fact that gt satisfies the closing
property necessary in the hypothesis of the theorem as stated in [21]
is the well known Anosov closing lemma for flows which can be found
in Chapter 18 of [26]. The statement of Theorem 2.8 in [21] assumes
that the vector bundle E over X is trivial, but as remarked by Kalinin
in the paper, this hypothesis is easily removed since the proof of the
theorem only uses local comparisons between fibers. When we say that
the Lyapunov exponents are counted with multiplicity, we mean that
each exponent appears a number of times equal to the dimension dim E i
of its corresponding measurable invariant subbundle.

Theorem 2.8. [21] Let E be a d-dimensional Hölder continuous vec-
tor bundle over X, and A a Hölder continuous cocycle on E over gt. Let
µ be an ergodic gt-invariant measure, and let λ1 ≤ λ2 ≤ · · · ≤ λd be the
Lyapunov exponents of A with respect to µ, counted with multiplicity.
Then for every ε > 0, there is a periodic point p of gt such that the

Lyapunov exponents λ
(p)
1 ≤ λ

(p)
2 ≤ · · · ≤ λ

(p)
d of A with respect to µp

satisfy

|λi − λ(p)
i | < ε,

for each 1 ≤ i ≤ d.

For a periodic point p there is a simple relationship between the Lya-

punov exponents λ
(p)
i associated to µp and the complex eigenvalues χ

(p)
i

of the map A
`(p)
p : Ep → Ep. Let Ep = E1

p ⊕ · · · ⊕ Ekp be the direct
sum decomposition of Ep from the multiplicative ergodic theorem and
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let Ep = V1 ⊕ . . .Vr be the primary decomposition of the linear trans-

formation A
`(p)
p : Ep → Ep, where each V i corresponds to an irreducible

factor of the minimal polynomial A
`(p)
p . An easy linear algebra exercise

shows that the primary decomposition is subordinate to the Oseledec
decomposition, i.e., for each 1 ≤ i ≤ k,

E i = V i1 ⊕ · · · ⊕ V in ,

for some integers 1 ≤ i1, . . . , in ≤ r. Furthermore, we have the relation-
ship

1

`(p)
log |χ(p)

ij
| = λ

(p)
i , 1 ≤ j ≤ n,

for the real eigenvalues (or conjugate pairs of complex eigenvalues) cor-
responding to the subspaces V ij . Thus the Lyapunov exponents of µp
are given by the logarithms of the absolute values of the eigenvalues of

A
`(p)
p , normalized by the period of p.

3. Proof of Theorems 1.1 and 1.3

We are now ready to prove Theorem 1.1 and Theorem 1.2. A sub-
bundle V ⊂ E is proper if 0 < dimV < dim E . For 0 < α < 2 we say
that gt is α-bunched if there is some T > 0 such that for t ≥ T

‖Dgtp|Eup ‖α · ‖Dgtp|Esp‖ · ‖(Dgtp)−1|Eugt(p)‖ < 1, t ≥ T, p ∈ SM.

For an in-depth discussion of the relationship between α-bunching and
the regularity of the Anosov splitting T (SM) = Eu⊕Ec⊕Es, see [18].

Lemma 3.1. Let gt be the geodesic flow on the unit tangent bundle
of a closed negatively curved manifold. Suppose that gt is 1-bunched and
that there is a gt-invariant fully supported ergodic probability measure µ
with local product structure such that λ+(Dgt|Eu, µ) = λ−(Dgt|Eu, µ).
Then Eu has no proper measurable gt-invariant subbundles.

Proof. Let V ⊂ Eu be a k-dimensional measurable invariant subbun-
dle. Since gt is 1-bunched the Anosov splitting of gt is C1 [18] and thus
Eu is a C1-subbundle of T (SM). 1-bunching of gt also implies that
the cocycle Dgt|Eu is fiber bunched. By Lemma 2.4, V thus coincides
µ-a.e. with a continuous holonomy invariant subbundle which we will
still denote by V .

We now describe an alternative realization of the holonomies for
Dgt|Eu. Recall that θ denotes the invariant contact form for gt. Since
the Anosov splitting of gt is C1, and gt preserves θ, there is a unique
gt-invariant connection ∇ on SM such that the torsion of ∇ is given by
θ⊗ ġ, where ġ is the vector field generating gt on SM . This connection
is called the Kanai connection and was constructed for contact Anosov
flows with C1 Anosov splitting in [25].
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In Lemma 1.1 of [25], it is shown that the unstable foliation W u is
totally geodesic for ∇, and that ∇ is C1 when restricted to the leaves
of the unstable foliation, and further that ∇ is flat when restricted to
W u leaves. The parallel transport induced by ∇ on unstable leaves is
thus a C1 unstable holonomy for gt. From the uniqueness clause of
Proposition 2.3, parallel transport by ∇ coincides with the unstable
holonomy constructed in Proposition 2.3, and thus V is parallel with
respect to ∇ along unstable leaves.

For a given unstable leaf W u(p) we can then find parallel vector
fields X1, . . . , Xk spanning the restriction of V to W u(p). These vector
fields are C1 since ∇|W u(p) is C1. The restriction of ∇ to W u(p) is
torsion-free since η vanishes on W u. For C1 vector fields, there is still
a well-defined Lie bracket, and the Frobenius theorem characterizing
integrability of a distribution remains true [32]. Since

0 = ∇XiXj −∇XjXi = [Xi, Xj ], 1 ≤ i, j ≤ k,

we then conclude via the C1 Frobenius theorem that V is a uniquely
integrable subbundle of TW u. Hence there is a C2 foliation V of SM
which is tangent to V , such that each of the leaves V(p) is contained
within the corresponding unstable leaf W u(p).

Then V lifts to a foliation Ṽ of SM̃ which is invariant under the lifted
action of gt and the action of π1(M). We adopt the notation of the

Hopf parametrization described in Section 2. For each x ∈ SM̃ there is

a homeomorphism πx : W̃ u(x)→ ∂M̃\{x−} given by projection, where

x− is the negative endpoint of the geodesic through x on ∂M̃ . Then for

a pair of points x, y ∈ SM̃ , we consider the homeomorphism

π−1
y ◦ πx : W̃ u(x)\{π−1

x (y−)} → W̃ u(y)\{π−1
y (x−)}.

The homeomorphism π−1
y ◦ πx is easily described in terms of the global

product structure of SM̃ : for a point z ∈ W̃ u(x)\{π−1
x (y−)}, π−1

y (πx(z))

is the unique intersection point of W̃ cs(z) and W̃ u(y).
Since the Anosov splitting of gt is C1, the map π−1

y ◦ πx is C1 and
the derivative is given by parallel transport with respect to the Kanai
connection ∇, which coincides with the global center stable holonomy
map hcs for Dgt|Eu by the uniqueness statement in Proposition 2.3.

Since Ṽ is invariant under the action of gt and stable holonomy, Ṽ is

invariant under center stable holonomy and, therefore, D(π−1
y ◦πx)(Ṽ ) =

Ṽ . Since Ṽ is uniquely integrable, this implies for every z ∈ W̃ u(x) that

π−1
y (πx(Ṽ(z))) = Ṽ(π−1

y (πx(z))).

The homeomorphisms {πx : x ∈ SM̃} form a system of charts for

∂M̃ which give ∂M̃ the structure of a C1 manifold. The equivariance

property of the foliation Ṽ with respect to these charts implies that Ṽ
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descends to a C1 foliation F of ∂M̃ . Furthermore, since Ṽ is equivariant
under the action of π1(M) (as it was lifted from a foliation V on SM),

the foliation F is invariant under the action of π1(M) on ∂M̃ . But every

π1(M)-invariant continuous foliation of ∂M̃ must be trivial, i.e., either

for every ξ ∈ ∂M̃ we have F(ξ) = {ξ} or for every ξ ∈ ∂M̃ we have

F(ξ) = ∂M̃ . This is proved in Section 4 of [16]; see also [13]. This
implies that V = {0} or V = Eu, which completes the proof. q.e.d.

Proof of Theorem 1.1. Since gt is a contact Anosov flow preserving
the contact form θ with ker θ = Eu ⊕ Es and dθ| ker θ being nondegen-
erate, the hypotheses of Theorem 1.1 imply that for any periodic point

p, the eigenvalues of Dg
`(p)
p : Esp → Esp are all equal in absolute value,

and their common absolute value is the reciprocal of the absolute value

of the eigenvalues of Dg
`(p)
p : Eup → Eup . As a consequence, for any pe-

riodic point p, gt is α-bunched along the orbit of p for any α < 2. The
main result of Hasselblatt in [17] then implies that gt is 1-bunched, so
that the Anosov splitting of gt is C1.

Theorem 2.8 implies that for every ergodic gt-invariant measure µ,
λ+(Dgt|Eu, µ) = λ−(Dgt|Eu, µ). In particular, this holds when µ is
the Liouville measure on SM , which as remarked earlier, is a fully sup-
ported ergodic invariant measure with local product measure for gt. As
remarked in Lemma 3.1, Dgt|Eu is fiber bunched and so we can apply

Lemma 2.5: there is a finite cover SM̃ of SM for which the conclusions
of Lemma 2.5 are satisfied. Since any lift of gt to a finite cover of SM is
itself the geodesic flow of a closed negatively curved manifoldM, we see
that by Lemma 3.1, the invariant flag constructed in Lemma 2.5 must
be trivial, and thus by Lemma 2.6 there must be a continuous holonomy
invariant conformal structure on Eu preserved by Dgt. By Theorem 1
of [25], if Dgt|Eu preserves a continuous conformal structure then M
is homotopy equivalent to a real hyperbolic manifold N and there is a
C1 time-preserving conjugacy of the geodesic flow of M to the geodesic
flow of N . The minimal entropy rigidity theorem from [6] then implies
that M is homothetic to N . q.e.d.

Proof of Theorem 1.2. Hasselblatt [18] proved that if the sectional
curvatures of M are relatively 1/4-pinched, then gt is 1-bunched and so
the Anosov splitting of gt is C1. The hypothesis that λ+(Dgt|Eu, µ) =
λ−(Dgt|Eu, µ) for the measure µ together with Lemma 3.1 then im-
plies that Dgt preserves a conformal structure on Eu. The proof then
concludes in the same manner as the proof of Theorem 1.1 above. q.e.d.

Remark 3.2. In this remark we explain the gap in [39] mentioned
in the introduction. First we recall the setting of the paper. The claim
is that if M is a closed m-dimensional negatively curved manifold and
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Dgt|Eu is measurably irreducible in the sense that there are no Dgt-
invariant measurable subbundles of Eu, then Dgt|Eu preserves a con-
tinuous conformal structure and, therefore, M is homothetic to a real
hyperbolic manifold by the same proof as given in Theorem 1.1. In
the first part of the remark we explain some flaws in the definition of
boundedness for a conformal structure that is given in [39], and in the
second part we explain how, even after correcting these flaws in the
definition, the proof still appears to have a gap in proving boundedness
at a critical step.

As mentioned in Section 2.2, the conformal structures on Eu can be
topologized as a fiber bundle C over SM . Each fiber Cx may be identi-
fied with the nonpositively curved symmetric space S(n) := SL(n,R)/
SO(n,R), where n = dimEu = m − 1. If we take this identification
to be induced by a linear trivialization Eux → Rn, then it is unique up
to an isometry of S(n) and, therefore, Cx carries a canonical metric ρx
of nonpositive curvature. The bundle C over SM has no distinguished
section SM → C and, therefore, in order to say that a conformal struc-
ture τ is “bounded” we thus have to compare it to a specific conformal
structure τ0 : SM → C which we have chosen beforehand. This is han-
dled properly in [23], in which a conformal structure τ is defined to be
bounded if there is a continuous conformal structure τ0 : SM → C and
a constant C > 0 such that

ρx(τ(x), τ0(x)) < C for every x ∈ SM.

In [39], a measurable trivialization Eu → SM × Rn is fixed and a
conformal structure on Eu is then defined to be a measurable map
τ : SM → S(n). A measurable conformal structure is defined to be
“bounded” if there is a constant C > 0 such that ρ(τ(x), I) < C, where
ρ is the nonpositively curved metric on S(n) and I is the image of
the identity matrix in S(n). In the definition of boundedness in [23],
this corresponds to taking τ0 to be the section defined by pulling back
the standard Euclidean metric on Rn via the measurable trivialization
Eu → SM → Rn. This is problematic because on page 747 of [39] it is
claimed that boundedness of the invariant conformal structure implies
that Dgt|Eu is uniformly quasiconformal with respect to the continuous
conformal structure on Eu defined by restricting the Riemannian metric
on T (SM) to Eu. But τ being a bounded distance from the measur-
able section τ0 ≡ I does not imply it is a bounded distance from any
continuous conformal structure.

Even after repairing this issue with the definition of boundedness,
there is still an apparent gap in the argument which occurs on page
747 of [39]. At this point measurable gt-invariant affine connections
Ds and Du along the W s and W u foliations, respectively, have been
constructed which are continuous when restricted to an individual W s

and W u leaf, respectively, but are only measurable in the transverse
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direction. We let µ denote the Liouville measure on SM . For y ∈W u(x)
we let P uxy : Eux → Euy be the parallel transport map with respect to
Du, and let P sxy : Eux → Euz be the analogous parallel transport map
for Ds with z ∈ W s(x) instead. A measurable conformal structure σu

has also been constructed on the unstable bundle Eu which is µ-a.e.
parallel with respect to Ds and Du in the following sense: for µ-a.e.
pair x, y ∈ SM with y ∈ W u(x), there is a constant ξu(x, y) such that
for every v, w ∈ Eux

ξu(x, y)σu(v, w) = σs(P sxy(v), P sxy(w)).

An analogous statement is true for parallel transport of σu with respect
to P uxy. It is claimed that this data implies that σu is “locally essentially
bounded” which as we’ve seen must be interpreted to mean that for
each p ∈ SM , there is a neighborhood U of p, a constant C > 0, and a
continuous section τ0 : U → C|U such that

ρx(σu(x), τ0(x)) < C for µ-a.e. x ∈ U.

The invariance of σu under Du and Ds together with the fact that P u

and P s induce isometries between the fibers of C gives, for y ∈ W u(x),
z ∈W s(x),

ρy(σ
u(y), (P uyx)∗τ0(x)) = ρx(σu(x), τ0(x)) = ρz(σ

u(z), (P szx)∗τ0(x)).

This does not allow us to compare ρx(σu(x), τ0(x)) to ρy(σ
u(y), τ0(y))

unless we also have uniform bounds on ρy(τ0(y), (P uyx)∗τ0(x)). But the
parallel transport maps P uxy and P sxz depend only measurably on x, y, z
and so, for instance, ρy(τ0(y), (P uyx)∗τ0(x)) could grow arbitrarily large
as x, y vary through the neighborhood U of p. In particular, there is no
reason for P u and P s to behave nicely with respect to some continuous
conformal structure on Eu over U . This point is not addressed in [39]
and the proof appears incomplete as a result.

4. Horizontal subbundles

In this section, we assume that gt : X → X is an Anosov flow de-
fined on a Riemannian manifold X and that there exists a dominated
splitting Eu = Hu ⊕ V u of the unstable bundle for which V u is the
most expanding bundle. We will refer to Hu as the horizontal unstable
bundle and V u as the vertical unstable bundle.

Proposition 4.1. V u is uniquely integrable with smooth leaves. The
resulting foliation W vu is smooth when restricted to W u leaves.

Proof. Consider f := g1 as a partially hyperbolic map with invariant
splitting Euf ⊕Ecf ⊕Esf , where Euf = V u, Ecf = Hu ⊕Ec, and Esf = Es.
The statements of the proposition then follow from standard results in
the theory of partially hyperbolic diffeomorphisms [19]. q.e.d.
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For each p ∈ X, we define an equivalence relation ∼ on points x, y ∈
W u(p) by x ∼ y if x ∈W vu(y). We let Qu(p) be the quotient of W u(p)
by this equivalence relation, which can be identified with the space of
W vu leaves inside of W u(p), and we let Π : W u → Qu be the projection
map. The next proposition verifies that the leaves of the W vu foliation
are properly embedded in W u, which implies that Qu(p) is a smooth
manifold diffeomorphic to Rk, k = dimHu.

Proposition 4.2. For each p ∈ X, there is a smooth embedding
ιp : Rk → W u(p) with ιp(0) = p such that ιp(Rk) meets each W vu leaf
inside of W u(p) in exactly one point.

Proof. Let f = g1 and consider this as a partially hyperbolic map as
in Proposition 4.1. The theory of partially hyperbolic diffeomorphisms
then tells us that there is some r > 0 such that on any ball of radius r
in SM , the foliation tangent to Euf is trivial [19]. Furthermore, since
there is a foliation tangent to Euf ⊕ Ecf , and the unstable foliation W u

f

tangent to Euf always smoothly subfoliates Euf ⊕Ecf , we can choose this
trivialization to be smooth along W u leaves. Choose a sequence of times
tn → ∞ such that g−tn(p) → p in X. For each n ∈ N, let Dn,r be the

disk of radius r centered at g−tn(p) in W u(g−tn(p)).
By shrinking r if necessary, we can assume that g−t is a contracting

map on Dn,r for each n in the induced Riemannian metric on W u, which
implies that gtn−ts(Dn,r) ⊂ Ds,r for s > n. For each n, choose a compact
transversal submanifold Kn ⊂ Dn,r to the W vu foliation which contains
g−tn(p) and is tangent to Hu

g−tn (p) at g−tn(p). Kn meets each leaf of the

induced foliation of Dn,r by W vu in exactly one point.
Consider the collection of k-dimensional submanifolds gtn(Kn) of

W u(p). We make three claims. First we claim that if a W vu leaf in-
tersects gtn(Kn), then it intersects gts(Ks) for any s > n. Second, we
claim that each W vu leaf meets each submanifold gtn(Kn) in at most
one point. Lastly, we claim that for each W vu leaf in W u(p), there is
an n ∈ N such that gtn(Kn) intersects this leaf.

For the first claim, if s > n, then g−ts(gtn(Kn)) ⊂ Ds,r by con-
struction. Since Ks is a full transversal inside of Ds,r, any W vu leaf
intersecting g−ts(gtn(Kn)) also intersects Ks. By gt-invariance of the
W vu foliation, any W vu leaf intersecting gtn(Kn) thus also intersects
gts(Ks).

For the second claim, suppose that W vu(q) intersects gtn(Kn) in the
points q and q′, for q 6= q′. W u(p) is exponentially contracted under
g−t, so for large enough s, there will be a curve contained entirely in
g−ts(W vu(q))∩Ds,r which joins g−ts(q) to g−ts(q′). On the other hand,
since the splitting Eu = V u ⊕Hu is dominated, as s→∞, the tangent
spaces to gtn−ts(Kn) are uniformly asymptotic to the sequence of planes
Hu
gts (p). Thus for large enough s, gtn−ts(Kn) will be a small disk that is
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almost parallel to Hu
gts (p); in particular, it will meet each leaf of W vu ∩

Ds,r in at most one point. But this contradicts the existence of the
segment joining g−ts(q) to g−ts(q′) inside of g−ts(W vu(q)) ∩Ds,r.

For the last claim, recall that W u(p) is defined as the set of points in
X asymptotic to the orbit of p under g−t. Since g−tn(p)→ p, it follows
that for any q ∈ W u(p), there is some n > 0 such that g−tn(q) ∈ Dn,r;
the last claim follows.

Having proven those three claims, we now construct the desired em-
bedding inductively. Set U1 := gt1(K1). To construct Un from Un−1,
take the submanifold gtn(Kn) of W u(p) and use the smoothess of the
W vu foliation of W u to map gtn(Kn) smoothly onto a submanifold of
W u(p) which contains q ∈ Un−1 for each q such that W vu(q) ∩ gtn(Kn)
is nonempty. By the first claim Un ⊂ Us for s ≥ n. By the second
and third claim, the submanifold U :=

⋃∞
n=1 Un meets each W vu leaf in

exactly one point. Properness of the embedding follows from the fact
that the W vu foliation is locally trivial and that U meets each W vu leaf
in only one point. q.e.d.

Next we build a C1 gt-invariant connection ∇ on the tangent bundle
TQu to Qu which will correspond to a gt-invariant connection on the
bundle Eu/V u over SM . ∇ will play the same role in the proof of
Lemma 5.1 below as the Kanai connection in the proof of Lemma 3.1.

Lemma 4.3. Suppose that Dgt|Hu is fiber bunched. Then there is
a C1, flat, torsion-free gt-invariant connection ∇ on Qu. For points p,
q ∈W u(p) and w ∈ Hu

p ,

DΠ−1
q ◦ PΠv(p)Πv(q) ◦DΠp = hupq(w),

where P is parallel transport with respect to ∇.

Proof. Since V u is a smooth subbundle of Eu when restricted to
W u, the quotient bundle Eu/V u over W u is smooth. The projection
Eu → Eu/V u induces a bundle isomorphism Hu → Eu/V u which is
equivariant with respect to the action of Dgt on Hu and the induced
action of Dgt on Eu/V u. We push forward the Riemannian metric on
Hu to a Riemannian metric on Eu/V u, with respect to which the in-
duced action of Dgt is fiber bunched. The isomorphism Hu → Eu/V u

also induces an unstable holonomy h̄u for the action of Dgt on Eu/V u.
Since Eu/V u has a smooth structure along W u leaves with respect to
which Dgt is smooth and the action of Dgt on Eu/V u is 1-fiber bunched,
the unstable holonomy h̄u is C1 along W u leaves.

By the uniqueness of this unstable holonomy, we have the following
alternative construction of h̄u. Take two compact transversals K1 and
K2 to theW vu foliation which meet the same collection ofW vu leaves (or
equivalently, they have the same projection to Qu(p)). The projection
Eu → Eu/V u induces natural bundle isomorphisms TKi → Eu/V u over



60 C. BUTLER

each of these transversals. Then the derivative of the chart transition
map (Π|K2)−1 ◦ Π|K1 is the unstable holonomy h̄u when we make the
identifications TKi

∼= Eu/V u

The projection Π : W u(p) → Qu(p) is smooth and hence induces a
derivative map DΠ : Eu → TQu with V u = kerDΠ. Hence for each
x ∈W u(p) the induced map DΠ : Eux/V

u
x → TQuΠ(x) is an isomorphism.

For w, z ∈ Qu(p) which are the image of x and y ∈W u(p), respectively,

we define Pwz : TQuw → TQuz by Pwz = DΠy ◦ h̄xy ◦ DΠ
−1
x . We claim

that Pwz does not depend on the preimages x and y of w and z which
were chosen. Suppose that x′ and y′ are two other points projecting to
w and z, respectively. Then

DΠy′ ◦ h̄x′y′ ◦DΠ
−1
x′ = DΠy ◦ h̄y′y ◦ h̄x′y′ ◦ h̄xx′ ◦DΠ

−1
x

= DΠy ◦ h̄xy ◦DΠ
−1
x ,

where we have used the observation that the derivatives of the transi-
tion maps for Π are given by the unstable holonomy h̄u, and also the
properties of the unstable holonomy h̄u itself.

It’s straightforward to check that Pwz is equivariant with respect to
the induced derivative action Dgt : TQu(p) → TQu(gt(p)), using the
equivariance property of h̄u. Pwz is also C1 in the variables w and z
and has the property that for x, y, z ∈ Qu(p), Pyz ◦ Pxy = Pxz. This
implies that for each X ∈ TQu(p),

P(X) = {Y ∈ TQu : Pxy(X) = Y for some x, y ∈ Qu(p)}

is a C1 submanifold of TQu which is transverse to the tangent spaces
TQux. The tangent spaces to the foliation of TQu by these subfoliations
define an Ehresmann connection on Qu(p) which we can then use to
define a connection ∇ on Qu(p). The parallel transport of a vector by
∇ is given by the linear maps Pwz. Thus ∇ is a C1 flat affine connection
on Qu(p). Since the maps Pwz are equivariant with respect to Dgt, ∇ is
also gt invariant. The definition of P immediately implies the equation
stated in the lemma.

It only remains to show that ∇ is torsion-free. Let T be the torsion
tensor of ∇. T is a mixed tensor of type (2, 1) on TQu which is invariant
under gt. But the fact that Dgt|Hu is fiber bunched implies that Dgt

acts by exponential contraction on tensors of type (2, 1) on TQu. This
forces T ≡ 0 so that ∇ is torsion-free. q.e.d.

The following lemma is fundamental to everything that follows in this
paper. Recall that in the proof of Theorem 3.1, one of the critical steps
was to establish that the stable holonomy of the cocycle Dgt|Eu could
be represented as the derivative of the holonomy map between unstable
leaves induced by the center stable foliation. Lemma 4.4 establishes the
analogous property in our situation.



RIGIDITY OF EQUALITY OF LYAPUNOV EXPONENTS 61

Let r > 0 be small enough that all of the foliations W ∗ under con-
sideration are trivial on a ball of radius r. Given two points x, y ∈ X
with y ∈W cs

r (x), there is then a well-defined W cs-holonomy map Lxy :
W u
r (x) → W u

r (y). For z ∈ W u
r (x), Lxy(z) is defined to be the unique

point in the intersection W cs
r (z)∩W u

r (y). In general this holonomy map
is only Hölder continuous [31]. We establish under proper fiber bunch-
ing assumptions on Dgt|Hu that Lxy is differentiable when restricted to
curves tangent to Hu. If we think of g1 as a partially hyperbolic diffeo-
morphism as in Proposition 4.1 with center bundle Hu⊕Ec, Lemma 4.4
can be viewed as an extension of Theorem B in [31] to the case in which
there may not be a foliation tangent to the center distribution.

Lemma 4.4. Suppose that Eu and Hu are β-Hölder continuous and
that Dgt|Hu is β-fiber bunched. Then the W cs holonomy map Lxy :
W u
r (x) → W u

r (y) maps C1 curves tangent to Hu to C1 curves tangent
to Hu and, therefore, Lxy is differentiable along Hu. For z ∈ W u

r (x),
the derivative of Lxy along Hu is given by

DzLxy|Hu = hcszLxy(z).

Proof. Let x, y be two points in X such that x ∈ W cs
r (y). Set xn =

gnx and yn = gny. For each n ≥ 0, choose a hypersurface Sn of uniform
size and biLipschitz to an open subset of R2m with Lipschitz constants
independent of n that is transverse to the direction of the flow Ec, and
contains W u

r (xn) and W u
r (yn). Let fn : Sn−1 → Sn be the smooth map

defined by fn(r) = gt(r)(r), where t(r) is the unique time, smoothly

depending on r, with t(xn−1) = 1 and such that gt(r)(r) ∈ Sn. fn is
defined on a neighborhood of xn−1 of uniform size, independent of n.
Further, fn is uniformly hyperbolic on the interior of this neighborhood
with the same contraction and expansion estimates (up to multiplicative
constants) as g1 on the stable and unstable bundles Eu and Es. Set
Fn = fn ◦ fn−1 ◦ · · · ◦ f1. Note that Fn is defined on increasingly small
neighborhoods of x as n → ∞; the only points for which Fn is defined
for all n ≥ 1 are the points on the intersection of W cs

r (x) with S := S0.
Let β be the minimum of the Hölder exponents of Hu and Eu viewed

as subbundles of TX. As remarked in the Introduction, there is a β-
Hölder system of linear identifications Ipq : Eup → Euq defined for p near
q with Ipp being the identity on Eup . We can choose these identifications
so that Ipq(H

u
p ) = Hu

q . For each n, let An : W u
r (xn) → W u

r (yn) be a
diffeomorphism with An(xn) = yn. Since the unstable foliation is Hölder
continuous in the C1 topology with Hölder exponent β, we can choose
An such that

‖Iqp ◦DAn − Id‖ ≤ Cd(p, q)β,

‖DAn ◦ Ipq − Id‖ ≤ Cd(p, q)β,
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for some constant C > 0 and p ∈ W u
r (xn), q ∈ W u

r (yn). For z ∈ Sn, let

Ŵ s(z) denote the smooth projection of W s
r (z) onto Sn along the orbit

foliation Ec, given by using gt to flow these leaves onto Sn. Let Ĥu, Êu,

and Ês denote the projection of these subbundles onto TSn by flowing
along the orbit foliation.

Let ϕ be the holonomy map between W u
r (x) and W u

r (y) induced by

the projected stable foliation Ŵ s. Let ϕn = F−n ◦ An ◦ Fn, which is
defined on a neighborhood of x (dependent on n) inside of W u

r (x). Let
γ : [−1, 1] be a C1 curve tangent to Hu inside of W u

r (x) with γ(0) = x.
Our first goal is to prove that ϕ ◦ γ is differentiable at 0, i.e., that the

image of the curve γ under Ŵ s-holonomy along the transversal S is
differentiable at p.

We first claim that the sequence of linear maps{
(DF−ny ◦DAn ◦DFnx )|Hu

x : n ∈ N
}

is Cauchy (note that we have restricted the domain of these maps to
Hu
x ). We closely follow the proof of Proposition 2.3 given in [24]. We

begin with the formula

(DFny )−1 ◦DAn ◦DFnx = DA0 +

n−1∑
i=0

(DF iy)
−1 ◦Ri ◦DF ix,

where Ri = (Dyifi+1)−1 ◦DAi+1 ◦Dxifi+1 −DAi. For the rest of the

proof we will consider all linear maps as restricted to Êu for the purpose
of calculating norms. We want to estimate the product

‖(DFny )−1‖ · ‖DFnx |Ĥu‖ ≤
n−1∏
i=0

‖(Dyifi)
−1‖ · ‖Dxifi|Ĥu‖

=

(
n−1∏
i=0

‖(Dyifi)
−1‖ · ‖(Dxifi)

−1|Ĥu‖−1

)

·

(
n−1∏
i=0

‖(Dxifi)
−1|Ĥu‖ · ‖Dxifi|Ĥu‖

)
.

To bound the first factor, we observe that ‖(Dxifi)
−1|Ĥu‖= ‖(Dxifi)

−1‖
since Ĥu is the less expanded term of the dominated splitting Êu =

V̂ u ⊕ Ĥu. We then use the estimate

‖(Dyifi)
−1‖

‖(Dxifi)
−1‖
≤
‖(Dyifi)

−1 − Ixiyi ◦ (Dxifi)
−1 ◦ I−1

xi+1yi+1
‖

‖(Dxifi)
−1‖

+
‖Ixiyi ◦ (Dxifi)

−1 ◦ I−1
xi+1yi+1

‖
‖(Dxifi)

−1‖
≤ C ′d(xi, yi)

β + 1,
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for some constant C ′. Here we use the fact that ‖Ipq‖ is uniformly
bounded when p and q are close (say d(p, q) ≤ r), and that the derivative
Dpfi is smooth as a function of p, hence when we use the identifications
Ipq, it becomes Hölder with Hölder exponent β.

To bound the second factor, we note that Dfi|Ĥu is fiber bunched
since the cocycle Dgt|Hu we derived it from was fiber bunched. Hence
there is a constant δ < 1 such that

‖(Dpfi)
−1|Ĥu‖ · ‖Dpfi|Ĥu‖ ≤ ‖Dpfi|Ês‖−βδ,

for all p ∈ Si, where δ is independent of i.
Putting these two bounds together, we obtain

‖(DFny )−1‖ · ‖DFnx |Ĥu‖ ≤
n−1∏
i=0

(C ′d(xi, yi)
β + 1)

n−1∏
i=0

δ‖Dxifi|Ês‖−β.

The first product is uniformly bounded since d(xi, yi)→ 0 exponentially
in i, so we get a constant C ′′ such that

‖(DFny )−1‖ · ‖DFnx |Ĥu‖ ≤ C ′′δn
n−1∏
i=0

‖Dxifi|Ês‖−β.

Now we can also estimate

‖Ri‖ ≤ ‖(Dyifi+1)−1 ◦DAi+1‖ · ‖Dxifi+1 −DA−1
i+1 ◦Dyifi+1 ◦DAi‖

≤ Cd(xi, yi)
β

≤ Cd(x, y)β
n−1∏
i=0

‖Dxifi|Ês‖β,

for some constant C. In the first inequality we used the Hölder closeness
of DAi to the identity, together with uniform bounds on the norms of
all of the linear maps involved. In the second inequality we use the fact
that x and y lie on the same stable manifold in S. We have the basic
bound

‖(DFny )−1 ◦DAn ◦DFnx −DA0|Ĥu‖

≤
n−1∑
i=0

‖(DF iy)−1 ◦Ri ◦DF ix|Ĥu‖≤
n−1∑
i=0

‖(DF iy)−1‖ · ‖DF ix|Ĥu‖ · ‖Ri‖.

We replace the right side with the previously obtained bounds on the

factors ‖(DF iy)−1‖ · ‖DF ix|Ĥu‖ and ‖Ri‖. This gives an upper bound of

n−1∑
i=0

C ′′δi i−1∏
j=0

‖Dxifi|Ês‖−β · Cd(x, y)β
i−1∏
j=0

‖Dxifi|Ês‖β
≤C∗d(x, y)β,

for some constant C∗. Also note that
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‖(DFn+1
y )−1 ◦DAn+1 ◦DFn+1

x − (DFny )−1 ◦DAn ◦DFnx |Ĥu‖

= ‖(DFny )−1 ◦Rn ◦DFnx |Ĥu‖

≤ C∗δnd(x, y)β.

This second inequality immediately implies that the sequence of linear
maps {

(DFny )−1 ◦DAn ◦DFnx |Hu
x : n ∈ N

}
is Cauchy. Hence this sequence converges to a linear map Txy : Ĥu

x →
Êuy . However, for any given vector v ∈ Ĥu

x , DAn ◦DFnx (v) is a vector

which makes an angle θn with Ĥu
y , where θn is uniformly bounded away

from π/2, independent of n. Applying DF−ny exponentially contracts

this angle since the splitting Êu = V̂ u ⊕ Ĥu is dominated, so letting

n→∞, we conclude that Txy must have image in Ĥu
y .

For each j ≥ 0, we can also consider the sequence of linear maps{
(DFn+j

y ◦ (DF jy )−1)−1 ◦DAn+j ◦DFn+j
x ◦ (DF jx)−1|Hu

x : n ∈ N
}
.

For the same reasons as for the original sequence, this sequence is
Cauchy and converges to a limit that we denote Txjyj which is a linear

map from Ĥu
xj to Ĥu

yj . It is straightforward to check that for each n we

have (DFny )−1 ◦ Txnyn ◦DFnx = Txy by writing out the limiting expres-
sion for Txnyn . Since we chose the transversal S to contain W u

r (x) and

W u
r (y), we have Ĥu

x = Hu
x and the same for y. We now consider the

center stable holonomy map hcsxy : Hu
x → Hu

y . This is equivariant with
respect to DFn as well and also depends in a β-Hölder manner on the
points x and y. Then

‖hcsxy − Pxy‖ = ‖(DFny )−1 ◦ (hcsxnyn − Txnyn) ◦DFnx |Hu
x‖

≤ ‖(DFny )−1‖ · ‖DFnx |Hu
x‖ · ‖hcsxnyn − Txnyn‖

≤ Cδn
n−1∏
i=0

‖Dxifi|Ês‖−βd(xn, yn)β

≤ C∗δn,

for some constant C∗. As n→∞, δn → 0, so hcsxy = Txy.
To prove differentiability of ϕ ◦ γ, take a coordinate chart on S (as

well as each of the transversals Sn) so that we can work with the linear
structure on R2m. Let y correspond to the origin. We will not change
the notation for the maps, so they should be understood in this chart.
Let v = γ′(0). We need to show that ϕ(γ(s)) agrees with its claimed
linearization s ·hcsxy(v) to first order at the origin. First observe that the
calculations above are valid if we replace x and y by any two points x′, y′

in S such that y′ ∈ Ŵ s
loc(x

′), whenever n is small enough (relative to x′
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and y′) that the iterates F, F 2, . . . , Fn are all defined on a neighborhood
of x′ and y′. This implies that

‖(DFn)−1 ◦DAn ◦DFnγ(s)(γ
′(s))−DA0(γ′(s))‖ ≤ C|s|β,

whenever s is small enough that Fn is defined on a neighborhood of
γ(s) and An(Fn(γ(s))) lies in the image of Fn. The constant C is inde-
pendent of n, so (DFn)−1 ◦DAn ◦DFnγ(s)(γ

′(s)) is a Hölder continuous

function of s with Hölder exponent and constant independent of n for |s|
small. Note that An(Fn(γ(s))) will not necessarily lie on Ŵ s(Fn(γ(s))),

but it will be β-Hölder close to the intersection of Ŵ s(Fn(γ(s))) with
W u
r (yn), so our estimates remain valid. By the mean value inequality,

we thus obtain

‖ϕn(γ(s))− s ·Dϕn(γ′(0))‖ ≤ C|s|1+β,

for a constant C.
We next estimate the difference between ϕ and ϕn near γ(0). Observe

that ϕ = (Fn)−1 ◦ ψn ◦ Fn, where ψn is the Ŵ s-holonomy map from

Ŵ u
r (xn) to W u

r (yn). Hence for s small enough that γ(s) is in the domain
of definition of the expressions below,

‖ϕn(γ(s))− ϕ(γ(s))‖
= ‖((Fn)−1 ◦An ◦ Fn − (Fn)−1 ◦ ψn ◦ Fn)(γ(s))‖
≤ C‖(DFn)−1|Eu‖ · ‖An ◦ Fn(γ(s))− ψn ◦ Fn(γ(s))‖,

since F−n exponentially contracts distances on unstable leaves. Next
we note that ψn and An are β-Hölder close in the C0 topology. As a
consequence, since they both map x to y,

C‖(DFn)−1|Eu‖ · ‖An ◦ Fn(γ(s))− ψn ◦ Fn(γ(s))‖

≤ C‖(DFn)−1|Eu‖d(Fn(x), Fn(y))β‖Fn(γ(s))‖

≤ C‖(DFn)−1|Eu‖ · ‖DFn|Es‖β · ‖Fn(γ(s))‖

≤ C‖(DFn)−1|Eu‖ · ‖DFn|Es‖β · ‖DFn|Ĥu‖ · |s|
≤ Cδn|s|,

where we have not paid much attention to the constant C in front (which
will change from line to line). In the third line we use the exponential
contraction of stable leaves by Fn, and in the fourth line we use the

fiber bunching property on Hu transferred to the induced bundle Ĥu,

noting that ‖(DFn)−1|Eu‖ = ‖(DFn)−1|Ĥu‖.
We now compare ϕ ◦ γ to the linearization hcsxy(v) · s at 0. Fix n ∈ N.

For |s| small enough that all of the expressions above are defined for
this n, we obtain
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‖ϕ(γ(s))− hcsxy(v) · s‖ ≤ ‖ϕ(γ(s))− ϕn(γ(s))‖
+ ‖ϕn(γ(s))− s ·Dϕn(v)‖
+ |s| · ‖Dϕn(v)− hcsxy(v)‖

≤ C(δn|s|+ |s|1+β + |s| · ‖Dϕn(γ′(0))− hcsxy(v)‖).

Dividing through by |s|, we obtain

‖ϕ(γ(s))− hcsxy(v) · s‖
|s|

≤ C(δn + |s|β + ‖Dϕn(v)− hcsxy(v)‖).

We can consider n := n(s) as an integer function of s such that n(s)→
∞ as s → 0. Then as s → 0, the right side converges to 0. We thus
obtain that ϕ◦γ agrees to first order with its linearization at 0, i.e., ϕ◦γ
is differentiable at 0, and, furthermore, (ϕ ◦ γ)′(0) = hcsγ(0)ϕ(γ(0))(γ

′(0)).

Now observe that holonomy from W u
r (x) to W u

r (y) along the pro-

jected stable foliation Ŵ s corresponds precisely to W cs-holonomy in X.
Hence the curve ϕ ◦ γ is also the image of γ under the W cs-holonomy
Lxy. We can apply our calculations to the other points of γ by recen-
tering at each pair of points x′, y′ lying on γ and ϕ ◦ γ, respectively,
with y′ ∈ W cs

r (x′). This proves that ϕ ◦ γ is differentiable for every
t ∈ [−1, 1], and, furthermore, we have the derivative formula

(ϕ ◦ γ)′(t) = hcsγ(t)ϕ(γ(t))(γ
′(t)),

which completes the proof. q.e.d.

5. Proof of Theorem 1.3

In this section, we prove Theorem 1.3 using the results of Section 4.
We first give a description of the neighborhood U of the symmetric
metric dK referred to in the hypotheses of Theorems 1.3 and 1.4. As
described in the Introduction there is a C2 open neighborhood U∗ of dK
such that for any d ∈ U∗ the geodesic flow gt of d admits dominated
splittings Eu = Hu ⊕ V u and Es = Hs ⊕ V s of the stable and unstable
bundles. For each metric d there is a constant C ≥ 1 and a < b < c < `
such that for every t ≥ 0,

C−1e−bt ≤ ‖Dg−t|Hu‖ ≤ Ce−at,

C−1e−`t ≤ ‖Dg−t|V u‖ ≤ Ce−ct,
with C → 1, a, b → 1, and c, ` → 2 as d → dK in the C2 topology on
Riemannian metrics. Using the flip map p → −p which is an isometry
for the Sasaki metric on SM we conclude that the above inequalities
also hold with Hs and V s replacing Hu and V u and taking t ≥ 0 instead.

We want to show that for a, b close enough to 1 and c, ` close enough
to 2 there is a β > 0 such that both Eu and Hu are β-Hölder continuous
subbundles of T (SM) and Dgt|Hu is β-fiber bunched. This then implies
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that we can apply the results of Section 4 to the geodesic flow of metrics
d in a small enough C2-neighborhood U ⊂ U∗ of dK.

First we compute the Hölder regularity of Eu using results of Has-
selblatt [18] on the regularity of the stable and unstable bundles for
Anosov flows. Recall from the beginning of Section 3 that for 0 < α < 2
we say that gt is α-bunched if there is some T > 0 such that for t ≥ T

‖Dgtp|Eup ‖α · ‖Dgtp|Esp‖ · ‖(Dgtp)−1|Eugt(p)‖ < 1, t ≥ T, p ∈ SM.

The results of [18] imply that if gt is α-bunched then Eu is Cα−ε for
any ε > 0. Plugging in the bounds on Dgt|Eu and Dgt|Es described
above, we see that for t ≥ 0,

‖Dgtp|Eup ‖α · ‖Dgtp|Esp‖ · ‖(Dgtp)−1|Eugt(p)‖ ≤ C
3e(`α−2a)t.

Thus gt is α-bunched if and only if α < 2a
` . As a → 1 and ` → 2,

we see that 2a
` → 1, so given any 0 < α < 1 we can always take the

neighborhood U small enough that Eu is Cα for d ∈ U .
For the regularity of Hu we refer to the Cr section theorem in [33].

From this theorem we deduce that Hu is β-Hölder continuous for any
β < b

c . The ratio b
c converges to 1

2 as b→ 1, c→ 2, so by taking d close

enough to dK we can assume Hu is β-Hölder for any given β < 1
2 . It

is then clear that if a, b are close enough to 1 then Dgt|Hu is β-fiber
bunched for β close to 1

2 .
We take d to lie in the neighborhood U of dK described above. We

assume that there is a gt-invariant ergodic, fully supported measure µ
with local product structure such that λ+(Dgt|Hu, µ) = λ−(Dgt|Hu, µ).
We will not need Assumption (2) of 1.3 until the proof of
Lemma 5.4.

The first lemma we prove is the analogue of Lemma 3.1 for the hori-
zontal bundle Hu. For a continuous subbundle E of T (SM) and a point
p ∈ SM , we define the E-accessibility class A (p; E) of p to be the set of
all points q ∈ SM which can be joined to p by a piecewise C1 curve γ
tangent to E .

Lemma 5.1. Let E ⊂ Hu be a nonzero measurable gt-invariant sub-
bundle. Then E = Hu.

Proof. By Lemma 2.4, E coincides µ-a.e. with a continuous gt-in-
variant, holonomy invariant subbundle of Hu, which we will also denote
by E . We claim that A (p; E) is dense in W u(p) for every p ∈ SM .
Since E is gt-invariant, A (gtp; E) = gt(A (p; E)) for every t ∈ R. Pass

to the universal cover SM̃ and note that for every γ ∈ Γ := π1(M),

we also have A (Dγ(p); E) = Dγ(A (p; E)) for p ∈ SM̃ , since the lifted

bundle Ẽ is invariant under Γ. As in the proof of Lemma 3.1, we let

πx : W̃ u(x) → ∂M̃\{x−} be the projection homeomorphism onto the
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boundary. For x, y ∈ SM̃ , consider as before the transition homeomor-
phism

π−1
y ◦ πx : W̃ u(x)\{π−1

x (y−)} → W̃ u(y)\{π−1
y (x−)}.

Lemma 4.4 implies that π−1
y ◦ πx is differentiable when restricted to C1

curves tangent to Hu, and that the derivative is given by the global
center stable holonomy map hcs for Hu. Since E is invariant under hcs,
this implies that

(π−1
y ◦ πx)(A (p; E)) = A (π−1

y (πx(p)); E),

for any p ∈ W̃ u(x). We thus conclude that for each ξ ∈ ∂M̃ , there

is a well defined subset A (ξ) of ∂M̃ consisting of all points ζ ∈ ∂M̃

which can be joined to ξ by a curve γ in ∂M̃ which is piecewise C1 and
tangent to E in some πx coordinate chart (and, therefore, is tangent to
E in any such coordinate chart). Furthermore, the Γ-equivariance of E
accessibility classes translates into the relation γ(A (ξ)) = A (γ(ξ)).

We would like to show that A (ξ) is dense in ∂M̃ . Let U be an open

set in ∂M̃ which does not contain ξ. Let x be the image of ξ in an

unstable leaf W̃ u(x). Take a small open neighborhood A of x which is

disjoint from the image of U in W̃ u(x). We claim that if A is small
enough, then A (y; E) intersects the topological boundary ∂A of A for
every y ∈ A. We begin by reducing this to an equivalent 2-dimensional

problem. Take a coordinate chart on W̃ u(x) mapping x to the origin
of Rm−1 and Ex to the coordinate plane corresponding to the first k
coordinates, where k = dim E . Let Cε be the cube [−ε, ε]m−1 centered
at p. Take some q ∈ Cε and consider the projected image q̄ of q in
Rk = Ex, the first k coordinates. Let Lq be the line through q̄ parallel
to the first coordinate axis. Choose a direction among the last m−k−1
coordinates (for definiteness, the (k + 1)st coordinate). Let Pq be the
plane spanned by Lq and the (k+ 1)st coordinate. As long as ε is small
enough (uniformly in q), for every p ∈ Cε the intersection of Ep with Pq
will be a line. Fix this ε from now on. Identify Pq with R2. We see
then that it suffices to solve the following equivalent problem: Given an
ODE y′ = f(x) with f continuous and |f | ≤ K everywhere on [−ε, ε]2
(note this K > 0 is uniform in q) show that there is a C1 solution σ
with σ(0) = 0 such that either σ(t) is defined on [0, ε] or else there is
some t ∈ [0, ε) such that |σ(t)| > ε.

By the Cauchy–Peano existence theorem for ODEs with continuous
coefficients the uniform bound |f | ≤ K ensures that there is a uniform
δ > 0 such that a solution to the initial value problem σ(t0) = y0,
σ′(t) = f(σ(t)) exists on [t0, t0 +δ] provided |σ(t)| ≤ ε on [t0, t0 +δ] and
t ≤ ε (Theorem 2.19 of [36]). Thus, starting at σ(0) = 0, construct a
solution existing on [0, δ], then concatenate this with a solution existing
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on [δ, 2δ] and so on. This process ends when either kδ > ε (which
happens after a finite number ε/δ of steps) or when a solution exceeds
ε in absolute value. In either case, we are done.

Thus A (ξ) intersects ∂A for A small enough. The pairs of endpoints

of axes of the isometries γ ∈ Γ of M̃ are dense in ∂M̃×∂M̃ , hence we can
find an isometry γ with the forward endpoint γ+ ∈ U of the axis lying in
U , and the backward endpoint γ− ∈ A. Since γ gives rise to north-south

dynamics on the sphere ∂M̃ there is some k > 0 such that A ⊂ γkA
and γk(∂A) ⊂ U . There is thus some ζ ∈ A such that γkζ = ξ. But we
know that A (ζ) intersects ∂A and thus γk(A (ζ)) = A (ξ) intersects U .
This implies the desired conclusion.

Fix a periodic point p ∈ SM of period T . Since the bundle E is a
holonomy-invariant subbundle of Hu, it descends to a subbundle DΠ(E)
of TQu(p). DΠ(E) is parallel with respect to the connection ∇ con-
structed in Lemma 4.3, hence since ∇ is torsion-free (as in Lemma 3.1),
DΠ(E) is uniquely integrable and there is thus a foliation F tangent to

DΠ(E) inside of Qu. Let p̄ be the projection of p in Qu(p) and let F̃(p)
be the inverse images of all points in the leaf F(p̄) through p̄ of F inside

of Qu(p). It is clear that A (p; E) ⊂ F̃(p), since any piecewise C1 curve
tangent to E and passing through p must project to a piecewise C1 curve
contained entirely inside of F(p). On the other hand, as shown above,
A (p; E) must be dense in W u(p).

We thus conclude that F̃(p) is dense in W u(p), and, therefore, F(p̄)
is dense in Qu(p). But this is absurd unless F(p̄) = Qu: let U be
a neighborhood of p̄ on which g−T acts as an exponential contraction
and such that the foliation F can be trivialized as slices Rk × {a}.
Two different slices of the foliation in U have the property that they
cannot be connected by a C1 curve σ lying entirely in U . If F(p̄) is
dense in Qu(p), we can find some slice of F in U that does not pass
through p̄ and a unit speed curve σ : [0, `] → Qu(p) with σ(0) = p̄ and
σ(`) = q ∈ U lying in a different slice. Consider g−kT ◦σ for k > 0 large.
By the definition of the unstable leaf, for k large enough the entire curve
g−kT ◦σ is contained inside of U , and by the gt-invariance of F , g−kT ◦σ
is always contained inside of F(p̄). This implies that g−kT (σ(`)) lies in
the slice through p̄ of F in U . The contraction property of g−T on U
implies that g−kT (U) ⊂ U is an open connected subset containing p̄,
and the foliation can be trivialized on this open subset, so we can join
g−kT (σ(`)) to p̄ by a curve τ lying entirely inside of g−kT (U). But then
gkT ◦ τ is a curve joining p̄ to σ(`) lying entirely inside of the slice of
F through p̄ inside of U , which is the contradiction that completes the
proof. q.e.d.

We isolate a corollary of the arguments in the proof of Lemma 5.1
which is of independent interest, obtained by taking E = Hu and ig-
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noring the assumptions on extremal Lyapunov exponents in the above
argument.

Corollary 5.2. Let gt be the geodesic flow of a closed negatively
curved manifold M . Suppose that there is a dominated splitting Eu =
Hu ⊕ V u, that Eu and Hu are β-Hölder continuous, and Dgt|Hu is
β-fiber bunched. Then A (p;Hu) is dense in W u(p) for every p ∈ SM .

Remark 5.3. Given two small disjoint open sets U and V in W u(p),
the piecewise C1 curve γ constructed in Corollary 5.2 which starts in U
and ends in V will typically take a long, winding route through W u(p)
which increases exponentially in length as U and V shrink in size, re-
gardless of how close U and V are in W u(p). Thus it is not immedi-
ately clear whether the conclusion in Corollary 5.2 can be improved to
A (p;Hu) = W u(p).

By combining Lemma 2.5, Lemma 2.6, and Lemma 5.1, we see that
Dgt|Hu preserves a conformal structure which we represent by a Rie-
mannian metric τ with associated multiplicative cocycle ψt. We will use
this conformal structure together with the charts {Ψp}p∈SM given by
Assumption (2) of Theorem 1.3 to complete the proof of the theorem.
Let r > 0 given by Assumption (2) of Theorem 1.3.

Lemma 5.4. Let p ∈ SM , q ∈W cs
r (p). In the coordinates on W u

r (p)
and W u

r (q) given by Ψp and Ψq, respectively, the center stable holonomy
W u
r (p) → W u

r (q) is a projective automorphism of GmK . Consequently,
the Anosov splitting of gt is C1.

Proof. Let p ∈ SM and q ∈ W cs
r (p). We claim that the center

stable holonomy map ϕ : W u
r (p) → W u

r (q) is C1. Consider the map
F := Ψq ◦ ϕ ◦ Ψ−1

p defined on a neighborhood of the identity in GmK .
By Lemma 4.4 and the assumption that the charts Ψp map Hu to the
left-invariant distribution T mK , F maps C1 curves tangent to T mK to C1

curves tangent to H. It follows that F is differentiable on the distri-
bution T mK , with derivative given by the center stable holonomy hcs in
these local coordinates.

This implies that F is Pansu differentiable as a map from GmK into
itself [30]. The Pansu derivative at each point of G is a homomorphism
DFHp : GmK → GmK uniquely determined by the derivative action of F
on T mK . Furthermore, since the center stable holonomy preserves the
conformal structure τ on Hu, this derivative action on T mK is conformal
in the induced norm of τ on the horizontal distribution T mK . This implies
that F is 1-quasiconformal in the Carnot–Caratheodory metric on GmK
associated to the metric τ on the horizontal distribution. But all such
1-quasiconformal maps on any domain in G are given by projective
automorphisms of GmK : for K = C this is a theorem of Capogna [11],
and for K = H or O, Pansu showed that any quasiconformal map of
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GK into itself is a projective automorphism [30]. Thus Ψq ◦ ϕ ◦Ψ−1
p is

smooth and so since Ψq and Ψp are C1, we conclude that ϕ is C1.
This proves that the center stable holonomy between unstable leaves

is C1. It follows that the center stable bundle Ecs is C1 along the
unstable foliation, and since Es is smooth along the W cs foliation, it
follows from Journe’s lemma [20] that Es is C1. Applying the same
reasoning with the roles of Es and Eu reversed and using the flip map
p→ −p for the geodesic flow, we can interchange the role of Es and Eu

and apply all of the results of this section to Eu as well. It follows that
Eu is C1 as well and, therefore, the Anosov splitting of gt is C1. q.e.d.

We can find a finite collection of points p1, . . . , pk ∈ SM̃ such that

the image neighborhoods Ui := πpi(W̃
u
r (pi)) ⊂ ∂M̃ cover ∂M̃ . For each

Ui we have a map to the one point compactification GmK ∪ {∞} = ∂Hm
K

given by Ψpi ◦ π−1
pi . By Lemma 5.4 the transition maps Ψpj ◦ π−1

pj ◦
(Ψpi ◦ π−1

pi )−1 are given by projective automorphisms of GmK . Hence

the visual boundary ∂M̃ of M̃ carries a natural C1 structure for which
Γ = π1(M) acts by C1 maps. In fact, in the coordinates Ψpi ◦π−1

pi on Ui,
Γ acts by projective automorphisms since Γ leaves invariant the lift of
the Riemannian metric τ̃ on Hu and so we can apply the same rigidity
theorems used in the proof of Theorem 5.4 for conformal maps on GmK .

We conclude that the natural map F : ∂M̃ → ∂Hm
K given by the

quasi-isometry between the lift d̃ of the metric d to M̃ and the symmetric
metric on Hm

K is C1 and Γ-equivariant. Since F is a diffeomorphism

it maps the Lebesgue measure class on ∂M̃ to the Lebesgue measure
class on ∂Hm

K . Corollary 4.6 of [15] implies that there is a C1 time-
preserving (up to scaling) conjugacy between the geodesic flows of (M,d)
and (M,dK), and, therefore, by the minimal entropy rigidity theorem
of Besson–Courtois–Gallot [6] the metric d on M is homothetic to the
symmetric metric dK.

6. Proof of Theorem 1.4

In this final section we assume that K = C and that d is a met-
ric in the neighborhood U of dC described at the beginning of Sec-
tion 5. We assume that there is a gt-invariant ergodic, fully supported
probability measure µ on SM with local product structure such that
λ+(Dgt|Hu, µ) = λ−(Dgt|Hu, µ). We will show that if Hu has C1 reg-
ularity along W u leaves with Hölder continuous derivatives then there
is an r > 0 such that we can find C1 charts Ψp : W u

r (p) → GmC which
map Hu to T mC . Hence by Theorem 1.3 we conclude that (M,d) is
homothetic to (M,dK).

We first note that the C1 regularity of Hu along W u implies C1

regularity for the unstable holonomies of W u.
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Lemma 6.1. On a fixed unstable leaf W u(p), the unstable holonomy
(x, y) → huxy, x, y ∈ W u(p) is C1 as a function of x and y. The de-
rivative of the unstable holonomy is uniformly Hölder continuous in x
and y.

Proof. Since Hu is C1 along W u leaves and Eu/V u is smooth along
these leaves, the projection Hu → Eu/V u is C1. As remarked in
Lemma 4.3, the unstable holonomy of the action of Dgt on Eu/V u is
induced by the unstable holonomy of Dgt|Hu by this projection. Since
the unstable holonomy on Eu/V u is C1, this implies that the unstable
holonomy for Hu is C1. q.e.d.

By applying the arguments of Section 5 prior to Lemma 5.4 which do
not use the existence of the charts Ψp, we conclude that there is a Rie-
mannian metric τ on Hu whose conformal class is invariant under stable
and unstable holonomies as well as the action of Dgt. By Lemma 6.1,
we can choose a representative of the conformal class of τ which is C1

along W u. We will fix this representative from now on. We let ψt be
the multiplicative R-cocycle such that (gt)∗τ = ψtτ .

We claim we may assume that the line bundle V u is orientable. If V u

is not orientable, pass to a double cover of SM in which V u is orientable.
This corresponds to the geodesic flow on a Riemannian double cover
M∗ of M . If we prove that M∗ is isometric to a complex hyperbolic
manifold, it then follows immediately that M is as well. Hence it suffices
to assume V u is orientable.

Extend τ to a Riemannian metric on Eu by setting V u and Hu to be
orthogonal and taking some continuous section Z of V u which is smooth
along W u leaves to define the unit length on V u. τ remains C1 since Hu

is a C1 subbundle of Eu. Let α be the 1-form on W u defined by taking
the inner product using τ with Z. It’s clear that kerα ∩ Eu = Hu and
that α is C1. Since V u and Hu are Dgt-invariant, for each t ∈ R there
is some C1 (along W u leaves) function ϕt such that (gt)∗α = ϕtα. ϕt is
a multiplicative R-cocycle.

Lemma 6.2. dα|Hu is nondegenerate on all of SM .

Proof. Observe first that for every t ∈ R,

(gt)∗(dα) = d((gt)∗(α)) = d(ϕtα) = dϕt ∧ α+ ϕtdα,

and hence (gt)∗dα|Hu = ϕtdα|Hu. It follows that

Rk = {p ∈ SM : dim{v ∈ Hu
p : ιvdα = 0} = k}

is a gt-invariant subset of SM . Since µ is ergodic with respect to the
action of gt and

⋃m−2
k=0 Rk = SM , µ(Rk) = 1 for some k. If 0 < k <

m − 2, then p → {v ∈ Hu
p : ιvdα = 0} is a proper measurable gt

invariant subbundle of Hu, which is impossible by Lemma 5.1.
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Suppose now that µ(R0) = 1. Then dα|Hu = 0 for a dense set
of points in SM since µ has full support in SM , hence dα|Hu = 0
for every p ∈ SM since dα is continuous. This implies by the C1

Frobenius theorem that Hu is uniquely integrable as a subbundle of Eu

over W u. We claim that this contradicts Corollary 5.2. Fix a periodic
point p ∈ SM of period T and let F be the C1 foliation tangent to Hu

inside W u(p). By Corollary 5.2, each leaf of F is dense in W u(p).
But this is absurd, for reasons similar to those given in the proof of

Lemma 5.1. Let U be a neighborhood of p on which g−T acts as an
exponential contraction and such that the foliation F can be trivialized
as plaques Rm−2 × {a}. Two different plaques of the foliation in U
have the property that they cannot be connected by a C1 curve σ lying
entirely in U . If F(p) is dense in W u(p), we can find some slice of F in U
that does not pass through p and a unit speed curve γ : [0, `]→W u(p)
with γ(0) = p and γ(`) = q ∈ U lying in a different plaque. Consider
g−kT ◦ γ for k > 0 large. By the definition of the unstable leaf, for k
large enough the entire curve g−kT ◦ σ is contained inside of U , and
by the gT -invariance of F , g−kT ◦ σ is always contained inside of F(p).
This implies that g−kT (σ(`)) lies in the local leaf through p of F in U .
The contraction property of g−T on U implies that g−kT (U) ⊂ U is an
open connected subset containing p, and the foliation can be trivialized
on this open subset, so we can join g−kT (σ(`)) to p by a curve σ lying
entirely inside of g−kT (U). But then gkT ◦ σ is a curve joining p to γ(`)
lying entirely inside of the local leaf of F through p inside of U , which
is a contradiction.

The only remaining possibility is µ(Rm−2) = 1. Hence dαp|Hu
p is

nondegenerate for µ-a.e. p ∈ SM . We conclude that m is even. Let ζp
denote the volume element on Hu

p induced by the inner product τ on
Hu
P . Then since dα|Hu is nondegenerate µ-a.e. and the vector space∧m−2Hu is 1-dimensional, there is a continuous function F : SM → R

such that

F · ζ = dαm/2,

and F is nonzero on a set of full µ-measure. Note that (gt)∗ζ = (ψt)
m
2 ζ

and, therefore, we conclude upon applying (gt)∗ to both sides of the
above equation that

F (gt(p))(ψt(p))
m
2 ζp = (ϕt(p))

m
2 dα

m
2
p = F (p)(ϕt(p))

m
2 ζp,

and, therefore, at every p ∈ SM for which F (p) 6= 0 and every t ∈ R,

2

m

(
log(|F |(gt(p)))− log(|F |(p))

)
= log(ϕt(p))− log(ψt(p)).

This equation holds on a set of full µ-measure (in fact, on an open and
dense subset of full volume in SM) and thus implies that 2

m log |F | is a

measurable solution to the cohomological equation for the cocycle ϕt(p)
ψt(p) .
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Since ϕt and ψt are Hölder continuous cocycles, this implies by the
measurable rigidity of the cohomological equation over Anosov flows
[38] that 2

m log |F | coincides µ-a.e. with a continuous solution of the

cohomological equation. But since 2
m log |F | is continuous on the set R0

of points at which dα is nondegenerate, and this is an open and dense
subset of SM , this then implies that log |F | extends to a continuous
function on SM . It follows that |F | > 0 on SM and, therefore, that
dα|Hu is nondegenerate on all of SM . q.e.d.

Put the standard coordinates (x1, . . . , xk, y1, . . . , yk, z) on Rm−1,
where k = (m− 2)/2. Let

ν = dz +
1

2

k∑
i=1

xidyi − yidxi

be the standard contact 1-form on Rm−1. If we identify Rm−1 with the
Heisenberg group GmC , then ker ν gives the left-invariant distribution
T mC . The following final lemma constructs the desired charts {Ψp}p∈SM
which completes the proof of Theorem 1.4.

Lemma 6.3. For each p ∈ SM , there is an r > 0 such that there
is a C1 function ξp : W u

r (p) → (0,∞) and a C2 diffeomorphism Ψp :
W u
r (p) → U , U a neighborhood of the identity in Rm−1, with Ψ∗p(ν) =

ξpα.

Proof. The line bundle spanned by dα|Hu inside of Λ2Hu is invari-
ant under gt and, therefore, by Lemma 2.4 is invariant under unsta-
ble holonomy. Hence for every point p ∈ SM there is a C1 function
ξp : W u(p)→ (0,∞) defined by

(hupq)
∗dα = ξp(q)dα,

where dα is restricted to Hu (here we again use Lemma 6.1 for the C1

regularity assertion). The holonomy relation Dgtq ◦ hupq = hugtpgtq ◦Dg
t
q

implies that ϕt(q)ξp(q) = ξgt(p)(g
t(q))ϕt(p), since dα|Hu scales by ϕt

when acted on by Dgt.
Consider the C1 1-form ξpα on W u

r (p). For q ∈W u(g−tp), X ∈ Euq ,

ξp(g
t(q))α(DgtX) = ξp(g

t(q))ϕt(q)α(X) = ξg−tp(q)ϕ
t(g−t(p))α(X).

Hence (gt)∗(ξpα) = ϕt(g−t(p))ξg−t(p)α. Taking the exterior derivative
of each side, we get

(gt)∗(d(ξpα)) = ϕt(g−t(p))d(ξg−t(p)α).

Let Zp be the Reeb vector field for ξpα on W u(p) defined by

ξpα(Zp) = 1,

d(ξpα)(Zp, X) = 0 for every X ∈ Hu.
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From the exterior derivative relation we obtain

Dgt(Zp) = ϕt(p)Zgt(p),

and thus we can write

Zp = ϕ−t(p)Dgt(Zg−t(p)).

We claim that there is a small δ > 0 such that there is a constant
γ > 0 independent of p such that Zp makes an angle of at least γ with
Hu on W u

δ (p). Note that for every p ∈ SM we have Zp /∈ Hu since
d(ξpα)|Hu = dα|Hu is nondegenerate.

We first show that there is some γ > 0 such that Zp(p) makes an angle
of at least 2γ with Hu. If this did not hold, then we could find a sequence
of points pn ∈ SM converging to p ∈ SM with Zpn/‖Zpn‖ → Y ∈ Hu

p .
Let δ > 0 be small enough that the unstable holonomy hu of Hu has
uniformly Hölder continuous derivative on W u

δ (q) for every q ∈ SM .
Then the unstable holonomies and their derivatives on W u

δ (pn) con-
verge uniformly to the unstable holonomy and its derivative on W u

δ (p).
It follows that the C1 1-forms ξpnα on W u

δ (pn) converge uniformly in
the C1 topology to the 1-form ξpα on W u

δ (p). In particular, d(ξpnα)
converges uniformly to d(ξpα). Hence Zpn → Zp uniformly in n. But
the assumption that Zpn/‖Zpn‖ → Y ∈ Hu

p implies that Zp ∈ Hu
p , which

is impossible.
We first show that there is some γ > 0 such that Zp(p) makes an

angle of at least 2γ with Hu. Hence, since the unstable holonomy has
uniformly Hölder derivative on W u

δ (p), there is some r > 0 independent
of p such that Zp makes an angle of at least γ with Hu on W u

r (p). Since
for t > 0 large enough g−t(W u

r (p)) ⊂W u
r (g−tp), Zg−t(p) makes an angle

of at least γ with Hu on g−t(W u
r (p)). Thus the expression

Zp = ϕ−t(p)Dgt(Zg−t(p))

implies that Zp is parallel to V u, since as t→∞ the angle between V u

and Dgt(Zg−t(p)) converges uniformly to zero on W u
r (p). Here we need

that the angle of Zg−t(p) with Hu is uniformly bounded away from zero

on g−t(W u
r (p)).

Thus Zp is parallel to V u and so d(ξpα) vanishes on V u. Since
d(ξpα)|Hu = ξpdα, we conclude that d(ξpα)|Hu is invariant under unsta-
ble holonomy. In particular, it is C1. Since the splitting Eu = Hu⊕V u

is C1, we get that d(ξpα) itself is C1.
We conclude that ξpα is a C1 contact form on W u

loc(p) with d(ξpα)
also being C1. The foliation associated to the Reeb vector field Zp is
the strong unstable foliation W vu, which is smooth. d(ξpα) descends to
a C1 closed 2-form ω on the quotient Qu(p) of W u by the W vu foliation.

Recall that Π : W u(p)→ Qu(p) denotes projection. Darboux’s theo-
rem for symplectic forms implies that there is a neighborhood U of Π(p)
and a C2 diffeomorphism F : U → L onto a neighborhood L ⊂ Rm−2
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of 0 which pulls back the standard symplectic form dν on L to ω on
U . Choose a smooth transversal K to the W vu foliation of W u(p) with

Π(K) = U and p ∈ K. Let Ũ be the open neighborhood of p given
by taking, for each q ∈ K, an open neighborhood of q in W vu(q). Put

coordinates on Ũ by smoothly identifying K with a neighborhood of 0
in Rm−2, and smoothly trivializing the W vu foliation to the map to the
z coordinate axis (the last coordinate) in a neighborhood of 0 in Rm−1.

Using these coordinates we lift F to a C1 diffeomorphism Ψp : Ũ → L̃

of a neighborhood Ũ of p ∈ W u(p) to a neighborhood L̃ of 0 in Rm−1.
Since a contact form is invariant under its Reeb flow, the coordinate

representation of ξpα in the above defined coordinates on Ũ is constant
along the z-axis. It follows that d(ξpα) is also constant along the z-axis.

Define φ : Ũ → L̃ in these coordinates by φ(x, z) = (F (x), z), where
x ∈ U . Then φ∗(dν) = d(ξpα) and, therefore, the 1-form β = φ∗(ν)−ξpα
is closed. Define for x ∈ U ,

f(x) =

∫ 1

0
β(tx) dt.

Note that the z-component of β is 0 since ξpα is independent of the
z-coordinate and φ is the identity on the z-coordinate. Note also that
f does not depend on z.

Set Ψp(x, z) = (φ(x), z − f(x)). We claim that Ψ∗p(ν) = ξpα. Let

γ : [0, 1] → Ũ and let σt, t ∈ [0, 1], be the unique radial curve (when
projected to U) tangent to kerα joining a point on the z-axis to γ(1).

We thus obtain a continuous map (t, s)→ σt(s) of [0, 1]2 into Ũ , which
we will denote by σ.

Now consider the lift of a radial curve η : s → sx (x ∈ U) to
a curve η̃ tangent to kerα. The z-coordinate of η̃ is then given by∫ t

0 −ξp(sx)α(sx) ds. Then

Ψ(η̃(t)) =

(
φ(tx),

∫ t

0
−ξp(sx)α(sx) ds− f(tx)

)
=

(
φ(tx),

∫ t

0
−φ∗ν(sx) ds

)
,

which is the lift of the curve s → φ(sx) in B(r) to a curve tangent
to ker ν. We thus conclude that Ψ maps lifts of radial curves tangent
to kerα to curves tangent to ker ν. We also note that we still have
Ψ∗p(dν) = d(ξpα): both dν and d(ξpα) vanish on vectors parallel to the
z-axis, and DΨp has the same action as Dφ on the components of the
vectors lying in U . As a consequence, the 1-form κ = Ψ∗p(ν) − ξpα is
closed. This implies that the path integral of σ∗κ around the boundary
of [0, 1]2 is zero. We just showed that on radial curves, ker Ψ∗pν = kerα,
so that the path integral of κ over σ0 and σ1 is zero. The curve t→ σt(0)
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is tangent to the z-axis, and Ψ∗(ν) − ξpα vanishes on the z-axis, since
Ψ restricts to the identity on the z-axis and ξpα(∂z) = ν(∂z) = 1, where
∂z is the coordinate vector field parallel to the z-axis. Thus we conclude
that ∫

γ
κ = 0.

Since this holds for every curve γ in Ũ , we conclude that κ = 0, so that
Ψ∗p(ν) = ξpα. q.e.d.
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