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MINKOWSKI FORMULAE AND ALEXANDROV
THEOREMS IN SPACETIME

Mu-TA0o WANG, YE-KAT WANG & XIANGWEN ZHANG

Abstract

The classical Minkowski formula is extended to spacelike co-
dimension-two submanifolds in spacetimes which admit “hidden
symmetry” from conformal Killing-Yano two-forms. As an ap-
plication, we obtain an Alexandrov type theorem for spacelike
codimension-two submanifolds in a static spherically symmetric
spacetime: a codimension-two submanifold with constant normal-
ized null expansion (null mean curvature) must lie in a shear-free
(umbilical) null hypersurface. These results are generalized for
higher order curvature invariants. In particular, the notion of
mized higher order mean curvature is introduced to highlight the
special null geometry of the submanifold. Finally, Alexandrov type
theorems are established for spacelike submanifolds with constant
mixed higher order mean curvature, which are generalizations of
hypersurfaces of constant Weingarten curvature in the Euclidean
space.

1. Introduction

For a smooth closed oriented hypersurface X : ¥ — R", the k-th
Minkowski formula reads

(1.1) (n—k)/zak_ld,u:k/20k<X,l/>d,u,

where o is the k-th elementary symmetric function of the principal
curvatures and v is the outward unit normal vector field of ¥. (1.1) was
proved by Minkowski [23] for convex hypersurfaces and generalized by
Hsiung [18] to all hypersurfaces stated above. There are also generaliza-
tions for various ambient spaces and higher codimensional submanifolds
(14, 21, 33].

The Minkowski formula is closely related to the conformal symmetry
of the ambient space. Indeed, the position vector X in (1.1) should be
regarded as the restriction of the conformal Killing vector field 7‘% on
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the hypersurface X. In this paper, we make use of the conformal Killing—
Yano two-forms (see Definition 2.1) and discover several new Minkowski
formulae for spacelike codimension-two submanifolds in Lorentzian man-
ifolds. Unlike conformal Killing vector fields, conformal Killing—Yano
two-forms are the so-called “hidden symmetry” which may not corre-
spond to any continuous symmetry of the ambient space.

In the introduction, we specialize our discussion to the Schwarzschild
spacetime and spacetimes of constant curvature. Several theorems
proved in this article hold in more general spacetimes. The (n + 1)-
dimensional Schwarzschild spacetime with mass m > 0 is equipped with
the metric

2 1
(12) E_] = — <1 — TnTil2> dt2 + 1_ﬁd"’z + T2gsn—1, T‘n_z > 2m

rn—2

It is the unique spherically symmetric spacetime that satisfies the vac-
uum Einstein equations. Let () = rdrAdt be the conformal Killing—Yano
two-form (see Definition 2.1) on the Schwarzschild spacetime. The cur-
vature tensor of g can be expressed in terms of the conformal Killing—
Yano two-form @ (see Appendix C). We also denote the Levi-Civita
connection of g by D.

Let X be a closed oriented spacelike codimension-two submanifold and
{€a}a=1,. n—1 be an oriented orthonormal frame of the tangent bundle.
Let H denote the mean curvature vector of ¥. We assume the normal
bundle of ¥ is also equipped with an orientation. Let L be a null normal
vector field along ¥. We define the connection one-form (7, with respect
to L by

1
(1.3) (V) = §<DvL,L> for any tangent vector V € T'Y,

where L is another null normal such that (L, L) = —2. 3 is said to be
torsion-free with respect to L if (; = 0, or equivalently, (DL)* = 0 on
¥, where (-)* denotes the normal component.

We prove the following Minkowski formula in the Schwarzschild space-
time.

Theorem A (Theorem 2.2). Consider the two-form Q = rdr A dt
on the Schwarzschild spacetime. For a closed oriented spacelike codi-
mension-two submanifold 3 in the Schwarzschild spacetime and a null
normal vector field L along ¥, we have

8 . n—1
—(n-1) /E (O Lydut /E QU L)+ 3 /Z Qcas (Do, L)) dpt = 0.
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If ¥ is torsion-free with respect to L for a null frame L, L that satisfies
(L, L) = —2, the formula takes the form:

a9 -1 [ Ldi [ DAL =0,

This formula corresponds to the & = 1 case in (1.1) (see (4.17)) and
is proved in a more general setting, see Theorem 2.2. The quantity
—(H, L) for a null normal L corresponds to the null expansion of the
surface in the direction of L. Codimension-two submanifolds play a spe-
cial role in general relativity and their null expansions are closely related
to gravitation energy as seen in Penrose’s singularity theorem [27].

The Minkowski formula has been applied to various problems in
global Riemannian geometry (see, for example, the survey paper [28]
and references therein). One important application is a proof of Alexan-
drov theorem which states that every closed embedded hypersurface of
constant mean curvature (CMC) in R™ must be a round sphere. For the
proof of Alexandrov Theorem and its generalization to various ambient
manifolds using the Minkowski formula, see [4, 24, 25, 29, 30].

In general relativity, the causal future or past of a geometric object is
of great importance. It is interesting to characterize when a surface lies
in the null hypersurface generated by a “round sphere.” These are called
“shear-free” null hypersurfaces (see Definition 3.11) in general relativity
literature, and are analogues of umbilical hypersurfaces in Riemannian
geometry.

As an application of the Minkowski formula in the Schwarzschild
spacetime, we give a characterization of spacelike codimension-two sub-
manifolds in a null hypersurface of symmetry in terms of constant null
expansion.

Theorem B (Theorem 3.16). Let 3 be a future incoming null embed-
ded (see Definition 3.10) closed spacelike codimension-two submanifold
in the (n+ 1)-dimensional Schwarzschild spacetime. Suppose there is a
future incoming null normal vector field L along ¥ such that <ﬁ,L> 18
a positive constant and (DL)* = 0. Then X lies in a null hypersurface
of symmetry.

A natural substitute of CMC condition for higher codimensional sub-
manifolds is to require the mean curvature vector field to be parallel as
a section of the normal bundle. Yau [38] and Chen [7] proved that a
closed immersed spacelike 2-sphere with parallel mean curvature vector
in the Minkowski spacetime must be a round sphere. We are able to
generalize their results to the Schwarzschild spacetime.

Corollary C (Corollary 3.17). Let ¥ be a closed embedded spacelike
codimension-two submanifold with parallel mean curvature vector in the
(n + 1)-dimensional Schwarzschild spacetime. Suppose 3 is both future
and past incoming null embedded. Then Y is a sphere of symmetry.
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Besides the Minkowski formula mentioned above, another important
ingredient of the proof for Theorem B is a spacetime version of the
Heintze—Karcher type inequality of Brendle [4]. Brendle’s inequality
was used to prove the rigidity property of CMC hypersurfaces in warped
product manifolds including the important case of a time slice in the
Schwarzschild spacetime. Following his approach and generalizing a
monotonicity formula of his, we establish a spacetime version of this
inequality (see Theorem 3.12) in Section 3.

Formula (1.4) can be viewed as a spacetime version of the Minkowski
formula (1.1) with £ = 1. In the second part of this paper, we take care
of the case for general k. We introduce the notion of mixed higher order
mean curvature P, (x,x) for codimension-two submanifolds in space-
time, which generalizes the notion of Weingarten curvatures for hyper-
surfaces in the Euclidean space. The mixed higher order mean curvature
is derived from the two null second fundamental forms y and x of the
submanifold with respect to the null normals L and L, respectively. In
the hypersurface case, there is only one second fundamental form A
and the Weingarten curvatures are defined as the elementary symmet-
ric functions of A, oj(A). Here, motivated by an idea of Chern [9] (see
also [15]) in his study of Alexandrov’s uniqueness theorem, we define the
mixed higher order mean curvature P, s(x, x), with 1 <r+s <n—1, see
Definition 4.1. It turns out that those quantities share some nice prop-
erties of o;(A). First, we establish the following spacetime Minkowski
formulae.

Theorem D (Theorem 4.3). Let X be a closed spacelike codimension-
two submanifold in a spacetime of constant curvature. Suppose X is
torsion-free with respect to the null frame L and L. Then

(1.5)
0 r+s
2/ P_1s(x, xX)(L, §>du +
)

m/zpns(x,x)Q(L,L)du =0,

and

(1.6)
r+s
2 [ P 0@ = [ PGe0Q(E D=0,
(1.4) is a special case of (1.6) for torsion-free submanifolds (r =
0,s = 1) in a spacetime of constant curvature. Moreover, the clas-
sical Minkowski formulae (1.1) for hypersurfaces in Riemannian space
forms (Euclidean space, hemisphere, hyperbolic space) can be recovered
by (1.5) and (1.6), see (4.17). As applications of these Minkowski formu-
lae, we obtain Alexandrov type theorems with respect to mixed higher
order mean curvature for torsion-free submanifolds in a spacetime of
constant curvature, as a generalization of Theorem B.
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Theorem E (Theorem 5.1). Let ¥ be a past (future, respectively)
coming null embedded, closed spacelike codimension-two submanifold
in an (n + 1)-dimensional spacetime of constant curvature. Suppose 3
18 torsion-free with respect to L and L and the second fundamental form
x € I (—x € T, respectively). If Pro(x,x) = C (Pos(x,x) = (~1)°C,
respectively) for some positive constant C' on X, then X lies in a null
hypersurface of symmetry.

Moreover, we show that a codimension-two submanifold in the Min-
kowski spacetime with P, s(x, x) = constant for r > 0,s > 0, satisfying
other mild conditions, must be a sphere of symmetry. See Theorem 5.5
for details.

In the proof of the spacetime Minkowski formulae (1.5) (1.6), we make
crucial use of a certain divergence property of P, s(x,x) for torsion-
free submanifolds in spacetimes of constant curvature. Unfortunately,
this property no longer holds for codimension-two submanifolds in the
Schwarzschild spacetime because of non-trivial ambient curvature. How-
ever, under some assumption on the restriction of the conformal Killing—
Yano two-form () to the submanifold, we establish integral inequali-
ties (see Theorem 6.2) that imply Alexandrov type theorems in the
Schwarzschild spacetime (see Corollary 6.3).

For 2-surfaces in the 4-dimensional Schwarzschild spacetime, we ob-

tain a clean integral formula involving the total null expansion of 3.

Theorem F (Theorem 6.5). Consider the two-form Q = rdr Adt on
the 4-dimensional Schwarzschild spacetime with m > 0. For a closed
oriented spacelike 2-surface 3, we have

(1.7) Z/E(ﬁ,LML,;)du = —167rm—|—/2{ <R+ iRLLLL> Q(L, L)

2
T Z (%RbcLL - Q(dCL)bc> ch}du,

b,c=1
where (g, is the connection 1-form of the normal bundle with respect to

L, R is the curvature tensor of the Schwarzschild spacetime, R is the
scalar curvature of X, and Qpe = Q(ep, ec), (dCr)pe = (dCr)(ep, €c), ete.

The total null expansion — [, (ﬁ , LY(L, %)d,u appears in the Gibbons—
Penrose inequality, see, for example, [6].

The rest of the paper is organized as follows. In Section 2, we de-
rive a simple case of spacetime Minkowski formula and give the proof
of Theorem A. In Section 3, we study a monotonicity formula and the
spacetime Heintze-Karcher inequality. As an application, we prove the
Alexandrov type theorems, Theorem B and Corollary C. In Section 4, we
introduce the notion of mized higher order mean curvatures and estab-
lish spacetime Minkowski formulae for closed spacelike codimension-two
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submanifolds in constant curvature spacetimes, Theorem D. Moreover,
we show the classical Minkowski formula (1.1) is recovered. As an ap-
plication of Theorem D, Alexandrov type theorems for submanifolds of
constant mixed mean curvature in a spacetime of constant curvature are
proved in Section 5. In Section 6, we generalize the integral formulae
to the Schwarzschild spacetime. In particular, Theorem F is proved.
At last, the Appendix contains some computations used throughout the
paper.
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2. A Minkowski formula in spacetime

Let F: X"t — (V™1 () be a closed immersed oriented spacelike
codimension-two submanifold in an oriented (n+1)-dimensional
Lorentzian manifold (V"*1 (,)). Denote the induced metric on ¥ by
0. We assume the normal bundle is also orientable and choose a coordi-
nate system {u?| a =1,2,--- ,n —1}. We identify gTIZ with %, which
is abbreviated as 9,. Let D and V denote the Levi-Civita connection
of V and X, respectively.

We recall the definition of conformal Killing—Yano two-forms.

Definition 2.1. [19, Definition 1] Let @ be a two-form on an (n +
1)-dimensional pseudo-Riemannian manifold (V(,)) with Levi-Civita
connection D. @ is said to be a conformal Killing—Yano two-form if

21 (DxQ)Y,2)+ (DyQ)(X,2)

= 2 (e z) - 2 y) - v 2 X))

for any tangent vectors X, Y and Z, where £ = divy Q.

In mathematical literature, conformal Killing—Yano two-forms were
introduced by Tachibana [34], based on Yano’s work on Killing forms.
More generally, Kashiwada introduced the conformal Killing—Yano p-
forms [20].

It is well-known that there exists a conformal Killing—Yano two-form
Q@ on the Kerr spacetime with £ being a multiple of the stationary Killing
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vector %, see [19]. We also show the existence of conformal Killing—
Yano forms on a class of warped product manifolds in Appendix B.

As mentioned in the introduction, we make use of the conformal
Killing—Yano two-forms in Lorentzian manifolds to discover some new
Minkowski formulae for the spacelike codimension-two submanifolds.

Theorem 2.2. Let X be a closed immersed oriented spacelike co-
dimension-two submanifold in an (n + 1)-dimensional Riemannian or
Lorentzian manifold V' that possesses a conformal Killing—Yano two-
form Q. For any null normal vector field L of X, we have

[enau+ [ Qui.Lydu+ [ Qn 0Ly )du—o,
> b} >
where £ = divy Q.

Proof. Let X, = (D,L,0p). Consider the one-form Q = Q(9,, L)du®
on Y. We derive
divy,Q = V?Q, — Q(V?0q, L)

= (D"Q)(0u, L) + Q(H, L) + Q(9u, D"L)

(2.2) "1

2‘ n — 1 oy al a
(2:3) = e 1) + QU L) + X, + Q0. (D°L))
n—1 ~
= "6, L)+ QU L) + Q@ (DL)Y),
The assertion follows by integrating over X. q.e.d.

In the case of the Schwarzschild spacetime, we take Q = rdr A dt,
then £ = —n% and Theorem A follows from the general formula (2.2).

3. An Alexandrov theorem in spacetime

3.1. A monotonicity formula. In this section, we assume that ¥ is a
spacelike codimension-two submanifold with spacelike mean curvature
vector in a Lorentzian manifold V' that possesses a conformal Killing—
Yano two-form ). We fix the sign of @) by requiring £ := divy @ to be
past-directed timelike. Let L be a future incoming null normal and L
be the null normal with (L, L) = —2. We note that the choice of L, L is
unique up to the scaling L — aL, L — %L by a function a on ¥. Define
the null second fundamental forms with respect to L, L by

Xab = (Do, L, ), X, = (Do, L, ).
Suppose (ﬁ ,L) # 0 on X, define the functional
n—1 [ (L) 1 /
3.1 F,[L]) = / SEAN L, L)dy.
ey Fe =" [ [ e pa

Note that F is well-defined in that it is invariant under the change
L—aL,L— 1L
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Let C|, denote the future incoming null hypersurface of X. Cp is
obtained by taking the collection of all null geodesics emanating from 3
with initial velocity L. We also extend L arbitrarily to a future-directed
null vector field along C|), still denoted by L. Consider the evolution of
¥ along C by a family of immersions F' : ¥ x [0,7") — C, satisfying

875(:177 8) = (10(33’ S)Lv
2 L - R

for some positive function p(z, s).
We recall the following spacetime curvature condition [16, page 95]
which plays an important role in the monotonicity formula.

Definition 3.1. A Lorentzian manifold is said to satisfy the null
convergence condition if

(3.3) Ric(L,L) >0 for any null vector L.

This is exactly the curvature assumption made in Penrose’s celebrated
singularity theorem [16, page 263, Theorem 1].
We prove the following monotonicity formula along the flow F":

Theorem 3.2. Let Fy : X — V be an immersed closed oriented
spacelike codimension-two submanifold in a Lorentzian manifold V' with
a conformal Killing—Yano two-form Q that satisfies either one of the
following assumptions

(1) V is vacuum (possibly with cosmological constant).

(2) & = divyQ is a Killing field and V' satisfies the null convergence

condition.
Suppose that (ﬁ,L> > 0 on X for some future-directed incoming null

normal vector field L. Then F(F(3,s), [L]) is monotone decreasing along
the flow.

Proof. We start with the evolution of the first term of F. Suppose
DL = wL for a function w. The Raychaudhuri equation [35, (9.2.32)]
implies

40,y = o (I” + i, 1) + Rie(L. L))
> <|X|2 +£<ﬁaL>) )

where |x|? = X“bxab. On the other hand,

(3.4)

%<§7L> = ((DL§7L> +£<§=L>) :

If V satisfies assumption (1), by [19, equation (19)], we have
noo_. "
<DL£,L> = ERZCGLQ L =0.
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If V satisfies assumption (2), (D&, L) also vanishes since ¢ is a Killing
vector. Recall that ¢ is past-directed timelike. Hence (¢, L) > 0 and by
the Cauchy—Schwartz inequality,

g <§7L> _ <§7L> 2
(3.5) 8s/z(ﬁ,L>dM§ /Zso[(trx)2|x| +(&, L) | du

< —

/E¢<£,L>du-

The evolution of the second term of F is given by
0
o o= [ [¢(01Q) LD

Sy p)

+Q(Do, L, L) + Q(L, Dy, L) = Q(L, L){H, L) dp.

n—1

From the conformal Killing—Yano equation (2.1), we derive

(D2Q) (L, L) = (€ L) (L.L) = — (€. L),
On the other hand, by standard computation
(Do, L, L) = —(L, pwL),

(Do,L,0a) = —(L,Da(pL)) = 2Vap — (L, Do L),

we have
Dy, L = (2V*p — (L, D*L)) 92 — pwL.

The computations together yield

Q(Do.L, L) +Q(L, Dy, L) = ¢Q(L, L){H . L)

= 2V°0Q(0a, L) + 20Q(0a, (Dal)*) + 20Q(H, L)

= 29" (Q(0n, 1)) ~ e, 1),

In the last equality, we make use of (2.3). Consequently, we obtain

0
(3.6) o | Lidn =2 [ e, Lydn.
S$Jxn by
Then, the assertion follows from (3.5) and (3.6). q.e.d.

3.2. A spacetime CMC condition. Hypersurfaces of constant mean
curvature (CMC) provide models for soap bubbles, and have been stud-
ied extensively for a long time. A common generalization of this condi-
tion for higher codimensional submanifolds is the parallel mean curva-
ture condition. In general relativity, the most relevant physical phenom-
enon is the divergence of light rays emanating from a codimension-two
submanifold. This is called the null expansion in physics literature. We
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thus impose constancy conditions on the null expansion of codimension-
two submanifolds. More precisely, we are interested in the codimension-
two submanifold that admits a future null normal vector field L such
that

(1) (H,L) is a constant, and

(2) (DL)* =0on X.

We review the definition of connection one-form of mean curvature
gauge from [37] and relate it to the condition introduced above.

Definition 3.3. Let H denote the mean curvature vector of 3. Let
{en, ent1} be an oriented orthonormal frame of the normal bundle such
that e, is spacelike and e,y is future timelike. We define the normal
vector field J by reflecting H along the incoming light cone:

j: <ﬁ7 en+1>en - <ﬁ7 en>en+17

as in [37]. The connection one-form (., of the normal bundle with
respect to e, and e, is defined by

(3.7) Ce, (V) = (Dven,eny1) for any tangent vector V € T'X.

Suppose the mean curvature vector is spacelike, we take el = —% and
el | = l—l‘% and write a; for the connection one-form with respect to

this mean curvature gauge:
H H
ag(V) = (Dvey,,e,p1).
This is consistent with the notation in [8]. We note that {ef ,ef 1)
determines the same orientation as {e,, €,+1}.

Recall the connection one-form with respect to L is given by
1
(3.8) (V)= §<DvL,L> for any tangent vector V € TX.
The two definitions in (3.7) and (3.8) give the same connection one-
form if we choose L = e,41 + €, and L = e,41 — €.

Proposition 3.4. Suppose the mean curvature vector field H of ¥ is
spacelike.
(1) If (H,L) = —¢ < 0 and (DL)* = 0 for some future outward null
normal L and some positive constant ¢, then az = —dlog |ﬁ|
(2) If (H,L) = ¢ > 0 and (DL)* = 0 for some future inward null
normal L and some positive constant ¢, then a gz = dlog ]ﬁ]

Proof. Recall that the dual mean curvature vector J is future time-
like. For (1), the condition (H,L) = —c < 0 is equivalent to

¢ < i f)
[H|\ [H|] |H]
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Choose L = ‘—f' (% + l—j‘;) such that (L, L) = —2. Since (DL)* =0,
we have

0:1<DaL7L>:18a i—» @(—2)“‘ D, —i—» ,L_»
2 2 "\ |H|) ¢ |H|) |H]

. H\ J
:8a10g|H|+<Da <—_,>,_,>.
\H|) [H|

Hence o = —dlog |H|. (2) can be proved in a similar way. q.e.d.

REMARK 3.5. We remark that when X lies in a totally geodesic time
slice of a static spacetime (see [35, page 119] for the definition), the
condition (1) and (2) reduces to the CMC condition.

3.3. A Heintze—Karcher type inequality. In this and the next sub-
sections, we focus our discussion on a class of spherically symmetric
static spacetimes which includes the Schwarzschild spacetime.

Assumption 3.6. We assume V is a spacetime that satisfies the null
convergence condition (3.3) and the metric g on V' = R x M is of the
form

1
3.9 g= —f2 r)dt? + dr? + r2gN,
(39) ) + s
where M = [r1,79) X N equipped with metric
1
1 = dr® +r?
(3 0) g f2(7’) T + r gN7

and (N, gn) is a compact n-dimensional Riemannian manifold. We con-
sider two cases:
(i) f:]0,00) = R with f(0) =1, f/(0) =0, and f(r) > 0 for r > 0.
(ii) f: [ro,00) = R with f(r¢9) =0 and f(r) > 0 for r > 7.

In case (i), (V, g) is complete. In case (ii), V contains an event horizon
H = {r =ro}. We note that the warped product manifolds considered
in [4] are embedded as totally geodesic slices in these spacetimes.

REMARK 3.7. For a spacetime V that satisfies Assumption 3.6, a
simple calculation shows that ) = rdr A dt is a conformal Killing—Yano
two-form and divy Q = £ = —n% is a Killing field.

Lemma 3.8. Let (M,g) be a time slice in V. The null convergence
condition of (V,g) is equivalent to

(3.11) (Agf)g — Hessyf + fRic(g) > 0,
on M.
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Proof. O’Neill’s formula in our case reduces to (see [10, Proposition
2.7))

Ric(g) (v, w) = Ric(g)(v, w) — 1e50f (0:0)

f )
0

Ric(g — ] =0

lc(g) <U7 at> 9
o 0 A,f_ 0 0
Ric(o) | = = | = = 9L (= =

for any tangent vectors v and w on M.
Note that g (%, %) = —f2. Hence, a unit tangent vector v on M

gives rise to a null vector L = %% + v in the spacetime and any null

vector along M is a multiple of %% + v for some unit tangent vector v
on M. As a result,

A H
Ric(g)(L,L) and Tgf + Ric(g)(v,v) — %@7@)
have the same sign. Therefore, the null convergence condition is equiv-
alent to (3.11). q.e.d.

In [4], Brendle proved a Heintze-Karcher-type inequality for mean
convex hypersurfaces in (M, g). In our context, it is as in the following
theorem.

Theorem 3.9. [4] Let S be a smooth, closed, embedded, orientable
hypersurface in a time slice of a spacetime V' that satisfies Assumption

3.6. Suppose that S has positive mean curvature H > 0 in the slice.
Then

(3.12) (n—l)/slj;d,uz /S(X, v)du,

where v is the outward unit normal of S in the slice and X = rf% 1
the conformal Killing vector field on the slice. Moreover, equality holds
if and only if S is umbilical.

Proof. We first remark that since S is embedded and orientable, S
is either null-homologous or homologous to {r¢} x N. Hence 92 = S
or 0 = S — {rg} x N for some domain Q C M. Inequality (3.12) is
equivalent to the one in Theorem 3.5 and the one in Theorem 3.11 of
Brendle’s paper in the respective cases. For the reader’s convenience,
we trace Brendle’s argument leading to (3.12).

The assumptions on (M, g) are listed in page 248 [4]:

(3.13) Ricy > (n —2)pgn,
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and (H1)-(H3) (note that condition (H4) is not used in the proof of
(3.12)). While Brendle writes the metric in geodesic coordinates

dr @ di + h*(F)gn,

it is equivalent to (3.10) by a change of variables r = h and f = %.

Moreover, as explained in the beginning of Section 2 (page 252 of [4]),
(H1) and (H2) are equivalent to our assumptions (i) and (i) on f. In
Proposition 2.1, (3.13) and (H3) together imply that (3.11) holds on
(M, g).

The condition (3.11) turns out to be the only curvature assumption
that is necessary in proving (3.12). More precisely, (3.11) is used to
prove the key monotonicity formula, Proposition 3.2 (page 256). In-
equality (3.12) is a direct consequence of Proposition 3.2 up to several
technical lemmata, Lemma 3.6 to Corollary 3.10, in which only assump-
tions (H1) and (H2) are used.

Finally, the inequalities appeared in Theorem 3.5 and Theorem 3.11
in [4] are equivalent to (3.12) by the divergence theorem. q.e.d.

Before stating the spacetime Heintze-Karcher inequality, we define
the notions of future incoming null embeddedness and shear-free null
hypersurface.

Definition 3.10. A closed embedded spacelike codimension-two sub-
manifold ¥ in a static spacetime V' is future (past, respectively) incoming
null embedded if the future (past, respectively) incoming null hypersur-
face of 3 intersects a totally geodesic time-slice Mp ={t =T} C V at
a smooth, embedded, orientable hypersurface S.

Definition 3.11. An incoming null hypersurface C is shear-free if
there exists a spacelike hypersurface > in C such that the null second
fundamental form X, = (D, L, 0p) of ¥ with respect to some null normal
L satisfies x , = thogy for some function . A shear-free outgoing null
hypersurface is defined in the same way.

Note that being shear-free is a property of the null hypersurface, see
[31, pages 47-48]. The spacetime Heintze—Karcher inequality we prove
is the following:

Theorem 3.12. Let V be a spacetime as in Assumption 3.6. Let
> C V be a future incoming null embedded closed spacelike codimension-
two submanifold with (ﬁ ,L) > 0 where L is a future incoming null
normal. Then

(3.14) —(n—l)/ <%’L>du—1/Q(L L)du >0
» (H,L) 2 s R
for a future outgoing null normal L with (L,L) = —2 and Q = rdr A\ dt

1s the conformal Killing—Yano two-form on V. Moreover, the equality
holds if and only if 3 lies in an incoming shear-free null hypersurface.
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Proof. We arrange ¢ in (3.2) such that w > 0 and that F(X,1) = S,
the smooth hypersurface defined in Definition 3.10. We first claim that
S C My has positive mean curvature, H > 0. Recall that Raychaudhuri
equation implies

(3.15)

888<H L) = <|X|2 +w(H, L)+ Ric(L, L) > <|X|2 +Q(ﬁ,L>> ’
1
7
0

and hence <ﬁ, L) > 0on S. We choose L =
the outward unit normal of S with respect t

- 18

The claim follows since the pOSlthlty of (ﬁ , L) is independent of the
scaling of L. Next we choose L = f m + e, on S and compute

0 10
(o) =F
Q <lg +envlé _en> :2<X7en>

% — e, on S, where e, is

), and compute

fot fot

Remark 3.7 implies the monotonicity formula (Theorem 3.2) holds
with £ = —n% and thus

(2 L)
o . ata_
(3.16) (n—1) 1L /QLL

i (GrL) 1
> (n—1) /F o /F oy QL)

As F(3,1) = S, the above calculation on S shows the last expression

is equal to
n—l/Hdu /Xen>du>0

by (3.12). Moreover, S is umbilical if the equality holds. Hence the
future incoming null hypersurface generated from ¥ is shear-free. q.e.d.

By reversing the time orientation, we also obtain the Heintze-Karcher
inequality for past incoming null smooth submanifolds.

Theorem 3.13. Let V' be a spacetime as in Assumption 3.6. Let X C
V' be a past incoming null embedded, closed spacelike codimension-two
submanifold such that (ﬁ,L) < 0 with respect to some future outgoing
null normal L. Then

0
(3.17) -1 [ i;g =3 [ QL0
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for a future incoming null normal L with (L,L) = —2 and Q = rdr A\ dt
1s the conformal Killing—Yano two-form on V. Moreover, the equality
holds if and only if ¥ lies in an outgoing shear-free null hypersurface.

Proof. When we reverse the time orientation, we replace % by —%,

Q@ by —Q, L by —L, and L by —L. Plug these into (3.14) and we obtain
(3.17). q.e.d.

3.4. A spacetime Alexandrov theorem. Together with the space-
time Heintze—Karcher inequality proved in the previous subsection, the
Minkowski formula (2.2) implies the following spacetime Alexandrov
type theorem.

Theorem 3.14. Let V be a spherically symmetric spacetime as in
Assumption 3.6 and X be a future incoming null embedded, closed em-
bedded, spacelike codimension-two submanifold in V. Suppose there is a
future incoming null normal vector field L along 3 such that (ﬁ,L> 18
a positive constant and (DL)* = 0 on ¥. Then X lies in a shear-free
null hypersurface.

Proof. Write H = —%(ﬁ,L>L - %(ﬁ,L>L. From the assumption,
(D,L)* = 0, the spacetime Minkowski formula (2.2) becomes
0 1 -
-1 [ (g Ddn 5 [ E.DQ(L.L) =0,
5 Ot 2 Jx
Again from the assumption, <ﬁ ,L) is a positive constant function
and we can divide both sides by (H, L) to get
(2,L) 1
—n—l/ L d,u—/QL,L dp = 0.
) [ S [ @)

Hence the equality is achieved in the spacetime Heintze—Karcher in-
equality (3.14) and we conclude that ¥ lies in a shear-free null hyper-
surface. q.e.d.

Definition 3.15. A null hypersurface in an (n + 1)-dimensional
spherically symmetric spacetime is called a null hypersurface of symme-
try if it is invariant under the SO(n) isometry that defines the spherical
symmetry. In other words, it is generated by a sphere of symmetry.

We remark that in the Lorentzian space forms, the additional boost
isometry sends a null hypersurface of symmetry into another one defined
by a conjugate SO(n)-action.

An important example of the spacetime satisfying Assumption 3.6
is the exterior Schwarzschild spacetime for which the metric has the
form (1.2). Since the spheres of symmetry are the only closed umbilical
hypersurfaces in the totally geodesic time slice of the Schwarzschild
spacetimes [4, Corollary 1.2], as a direct corollary of the above spacetime
Alexandrov theorem, we obtain:
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Theorem 3.16 (Theorem B). Let ¥ be a future incoming null em-
bedded (see Definition 3.10) closed embedded spacelike codimension-two
submanifold in the (n + 1)-dimensional Schwarzschild spacetime. Sup-
pose there is a future incoming null normal vector field L along X such
that (H,L) is a non-zero constant and (DL)+ = 0. Then S lies in a
null hypersurface of symmetry.

As observed in Proposition 3.4, the condition in the above theorem
can be characterized in terms of the norm of the mean curvature vector
and the connection one-form in the mean curvature gauge.

Theorem B’. Let ¥ be a future incoming null embedded (see Defi-
nition 3.10) closed embedded spacelike codimension-two submanifold in
the Schwarzschild spacetime with spacelike mean curvature H. Suppose
ap = dlog \ﬁ\ on . Then X lies in a null hypersurface of symmetry.

Finally, we generalize a result of Yau [38] and Chen [7] to the
Schwarzschild spacetime.

Corollary 3.17 (Corollary C). Let X be a closed embedded spacelike
codimension-two submanifold with parallel mean curvature vector in the
Schwarzschild spacetime. Suppose % is both future and past incoming
null embedded. Then X is a sphere of symmetry.

Proof. The condition of parallel mean curvature vector implies |H| is
constant and a7 vanishes. The previous theorem implies X is the inter-
section of one incoming and one outgoing null hypersurface of symmetry.
Therefore, 3 is a sphere of symmetry. q.e.d.

4. General Minkowski formulae for mixed higher order mean
curvature

In this section, we introduce the notion of mixed higher order mean
curvature of a codimension-two submanifold 3 in a spacetime V of di-
mension (n + 1). Let R denote the curvature tensor of V. Let L and L
be two null normals of ¥ such that (L, L) = —2. Recall the null second
fundamental forms with respect to L, L:

Xab = <D8GL78b>7
X, = (Do, L, ),

and write ( = (g, for the connection 1-form with respect to L:
1
Ca — §<D8GL7L>'

Definition 4.1. For any two non-negative integers r and s with 0 <
r+s < n — 1, the mixed higher order mean curvature P, ,(x,x) with



MINKOWSKI FORMULAE AND ALEXANDROV THEOREMS 265

respect to L and L is defined through the following expansion:

r+s)!
(4.1) det(c+yx+y0) = 3. ( =N Ly Py,
0<r+s<n—1

where y and y are two real variables and o is the induced metric on X.
We also define symmetric 2-tensors T,ffg( X) and T (x, X) on ¥ by

—Tr,s
0Prs (X, X) 05 (X x)
0Xab OX p
In the following, we write P, for P.s(x, X), T“b for T“b(x, X), etc.
when there is no confusion. Note that P; g = try and Py,1 = try, and a
simple computation yields

ab

Tl 0= To 1=0 .
Moreover, when n = 3, it is easy to check that
2T1“ﬁ = aabtrx — X“b
QI‘ff’l = o%try — x@

T;L’I;(X’X) — and I?,Z(Xai)

(4.2)

It is worth remarking that the quantities P, T“bL T“b L, T® i1, and

7% r+1 are all independent of the scaling of L and L asL —aL, L — L.

In the rest of this section, we focus on spacelike codimension-two sub-
manifolds in a spacetime of constant curvature such as the Minkowski
spacetime R™!, the de-Sitter spacetime, or the anti de-Sitter spacetime.
Before proving the Minkowski formulae for those mixed higher order
mean curvatures, we observe that P, ¢(x,x) shares the divergence free
property as o. B

Lemma 4.2. Let X be a spacelike codimension-two submanifold in a
spacetime of constant curvature. Suppose ¥ is torsion-free with respect

to L and L. Then T“b and T?bs are divergence free for any (r,s), that
is,

(4.3) VI = v, T, = 0.

Proof. We denote G4, = (00 + yX + yX)ap and its inverse by (6 1)ab,
Formally differentiating (4.1) with respect to x4 and X, We obtain

(4.4) y(6 )P det(s) =3 CHElyryTal,
and
(4.5) y(a H®Pdet(5) = CHlyrysTan,

Next, taking a covariant derivative on both sides of equation (4.4),
the left-hand side becomes

—y(6™HVp(yx + yx)ea(6 )P det(5),
+y(67 )V (yx + yx)ea(6 1) det(5).
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Switching indices b and ¢ in the second summand, we arrive at
(4. 6)
{ Vexea = Voxea) +y(Vex,, — VX, )] (6~ ) det(q)

"gstT,?jg.

Similar computation applied to (4.5) yields
(4.7)
~_1\ac ~_—1\db ~
y (67 [y(chbd = Vixed) +y(Vex,, — Vbzcd)] (6717 det ()

7‘ + s
= Z Tgsvbszbs-

For submanifolds in spacetime, the Codazzi equations give

Vexvd — VoXed = (R(0e, O) L, 8a) + CpXed — CeXbds
Since X is assumed to be torsion-free and the ambient space is of

constant curvature, the left hand side of both (4.6) and (4.7) are zero.
Then, the assertion follows by comparing the coefficients of the term

yy®. q.e.d.

(4.8)

We now derive the Minkowski formulae for the mixed higher or-
der mean curvatures of torsion-free submanifolds in constant curvature
spacetimes.

Theorem 4.3 (Theorem D). Let X be a closed spacelike codimension-
two submanifold in a spacetime of constant curvature. Suppose X is
torsion-free with respect to the null frame L and L. Then

0 r+s
/Pr 1,5 (06 04 a >du+ (T+S)/Pr,s(x,x)Q(L,L)du—O,

(4.10)
0 r+s

Q/EPr,s—l(XvXXLa a>dﬂ - n_ (7‘ T S) /EPT,S(X7X)Q(L7L)d:u =0.

Proof. By the divergence theorem, we have

(4.11) /E V[TQ(L, Oy = 0,
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where T% is one of T, ,?I; Since X is torsion-free, direct computation
shows

V(L 0)] = (Du@)(1.0) + X3 Qe + Y Q(L L),

By (2.1), we derive

(DaQ)(L,0) + (D)L, 00) = 2L, 2o

Therefore, we obtain
0
ot
1 ba . c ca. b 1 ab
+ i(T Xa — T Xa)ch + i(T Xab)Q(L7L)7

where the second term on the right hand side comes from anti-sym-
metrization of the indices. Recall the Ricci equation

Vo lT™Q(L, )] = T%0 (L,

1 1 1, =
(412) §Xacﬁcb o ixbczca + (dC)ab = §<R(aa7 ab)L7L>

Since Y is torsion-free and the ambient space is of constant curvature,
the equation implies x and x commute. Note that T’ ba is a polynomial
of x and yx, and thus also commutes with x and x. It follows that

TbayC — Tyt =0,
Putting these together, (4.11) implies
0 1
[ (owt) o gaucs ;[ (xarZit) @z Lydn =0,
5 ot 2 Jx

(4.9) follows from (A.5) and (A.3) in the appendix.
The second formula is derived similarly by considering

(4.13) /Z VaTQ(L, d)]du = 0,

and using

ValQUL )] = (Da@)(L: ) + X: Qo — 33, QL L). e

From the above proof, we see that the spacetime Minkowski formulae
(4.9) and (4.10) follow from

/ V[T Q(L, d)]dpt = 0, and / V[T Q(L, 3))]dp = 0.
Y by
In fact, we have two more possible identities:

/ V[T Q(L, 8,))dy = 0, and / VL [TQ(L, 8,)]dp = 0.
> >
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Following the same line, one can prove another two spacetime Minkowski
formulae:

0
(4'14) 2/2Pr—1,5(X7X)<L7 a>du
%/Pr Ls+1 (X X)Q(L, L)dp = 0,
and
0
(4.15) 2/2Prs 106(L, 5 )dn
r+s
+ m /Z Pr+1,s—1(X,X)Q(L,L)d/L =0.

We finish this section by showing that (4.9) and (4.10) recover the
classical Minkowski formulae for hypersurfaces in Riemannain space
forms — Euclidean space, hemisphere, and hyperbolic space.

It is well known that these space forms S, can be embedded as
totally geodesic time-slices in the Minkowski spacetime, the de Sitter
spacetime, and the anti-de Sitter spacetime, respectively. We write the
spacetime metric in static coordinates:

g=—(1+xrt)dt* + dr? +r2ggn-1.

1+ kr?
Given a hypersurface ¥ C S”,., we view it as a spacelike codimension-
two submanifold lying in a totally geodesic time-slice. Let v denote
the outward unit normal of ¥ in the totally geodesic slice. We take
1 o] 1 0

L:7¢W§+yandL: WE—I/togetX:—X:handCzo.
Here h is the second fundamental form of X in the totally geodesic
time-slice. Therefore, according to the definition (4.1),

r+s)! .
ao+-wm = > e o,
0<r+s<n—1 o

and thus P (x,x) = (—1)%0,4s(h). Moreover, (L, 2) = —V/1+ rr?
and standard computation gives

(4.16) Q(L,L) =2(X,v), with X =71+ m"zg.
r

Putting these expressions into the spacetime Minkowski formula (1.5),
it reduces to

(4.17)

(n—r— s)/ V1+kr? opps_1(h)dp = (r+ s)/ orts(h) - (X, v)dp.
b b

We thus recover the classical Minkowski formula (1.1) in the Eu-
clidean space by letting k = r + s and x = 0. For the remaining cases,
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we view the hemisphere as the hypersurface defined by
(@) + -+ (@")? = 1,2° >0,

in the Euclidean space and the hyperbolic space as the hypersurface
defined by

~(@)? + @) 4 @) = -1 2 >0,

in the Minkowski spacetime. After making a change of variable r = sin
(r = sinh @, resp.) and noting that X is the tangential component of
—% (6%0, resp.) for hemisphere (hyperbolic space, resp.), it is not

difficult to see that (4.17) recovers [2, Corollaries 3(b), 3(c)] (see also
(14, 25, 33)).

5. Alexandrov theorems for submanifolds of constant mixed
higher order mean curvature in a spacetime of constant
curvature

In Section 3, the simplest case of the spacetime Minkowski formula
(Theorem A) was applied to establish the spacetime Alexandrov type
theorems concerning codimension-two submanifolds with (ﬁ L) =
constant. It is interesting to replace the mean curvature by other in-
variants from the second fundamental form. In the hypersurface case,
Ros [30] showed that any closed, embedded hypersurface in R™ with
constant o} curvature is a round sphere. This result was generalized to
the hyperbolic space by Montiel and Ros [25] and to the Schwarzschild
manifold by Brendle and Eichmair [5].

In this section, we consider codimension-two submanifolds in a space-
time of constant curvature. More precisely, using the spacetime
Minkowski formulae established in the previous section, we prove two
Alexandrov-type theorems for submanifolds of constant mixed higher
order mean curvatures. The first one assumes constancy of P,.q or Fp s
and concludes that the submanifold lies in a null hypersurface of sym-
metry. The second one assumes the stronger condition of constancy of
P, s for r > 0,5 > 0, which forces ¥ to be a sphere of symmetry.

To state our first Alexandrov theorem, we recall the definition of
I’y cone (also see Definition A.4 in Appendix A). For 1 < k < n —1,
[ is a convex cone in R®~! such that T, = {A € R*1 : o;(\) >
0,---,0(A) > 0} where

or(\) = Z Aiy - Ny
i< <lig

is the k-th elementary symmetric function. An (n—1)x(n—1) symmetric
matrix W is said to belong to I'y if its spectrum A(W) € I'.
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Theorem 5.1. Let ¥ be a past (future, respectively) incoming null
embedded, closed spacelike codimension-two submanifold in an (n + 1)-
dimensional spacetime of constant curvature. Suppose X is torsion-
free with respect to L and L and the second fundamental form x € T,
(—x € T's, respectively). If P.o = C (Pys = (—1)°C, respectively) for
some positive constant C' on X, then ¥ lies in a null hypersurface of
symmetry.

Proof. By the assumption that P,y = C, the Minkowski formula (1.5)

becomes
Pr—lO 8 r /
UL, Zydp+ =——— | Q(L,L)du = 0.

Applying the Newton—-Maclaurin inequality (A.9) repeatedly and noting
that (L, %> < 0, we obtain

(L, 5) 1
/z trxt dp+ 2(n — 1) /ZQ(L7L)dM > 0.

Comparing this with the spacetime Heintze—Karcher inequality (3.17),
we see that the equality is achieved. Theorem 3.13 implies that X lies
in a null hypersurface of symmetry.

For the corresponding statement for y, note that under the assump-
tion the Minkowski formula becomes

PO s—1 a S
SSNL, Y — | Q(L,L)dp = 0.

Applying the Newton—Maclaurin inequality repeatedly, we obtain

Posabex) p 0, Prenio=9) ) 0,
Po,s(Xyz) ot PO’S(X’ _X) o
2_s(n—l) 1 (L 8>‘

n—s Poi(x,—x) ot

As Py1(x,—x) = <ﬁ , L), the equality of the spacetime Heintze-Karcher
inequality is achieved again and X lies in a null hypersurface of symme-
try by Theorem 3.12. q.e.d.

In the rest of this section, we prove a rigidity result for submanifolds
with constant P, ; for » > 0,s > 0. We start with an algebraic lemma.

Lemma 5.2. Suppose x,x € U'rys. If

Xab(zovs)bc Xca > S
Pos  Pio~ n—1

then x and x satisfy the following inequality

(5.1)

Pr—l,s(X,X) > r+s n—1
Prs(,x) ~—n—(r+s) trx

(5.2)
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The equality holds if and only if x is a multiple of the identity ma-
triz.

Proof. Since x € I'rqs and x € T'yys, P s(x,x) > 0 for any 7" with
1 <¢' <r by (A.7) and the fact that I', s C I';v1 5. We apply Newton—
MacLaurin inequality (A.9) repeatedly to get
(n—(r+s)) P—1,s(x, %) L (n—1-5) Po.s(X, x)
(r+5)Prs(x, x) s+l POox)
It suffices to show that
(n—1—s5) Pos(x
s+ 1 PI,S(X7

) n—1
> .
) T trx
Let x, (¢=1,2,--- ,n—1) be the eigenvalues of x. By the definition of
completely polarized elementary symmetric function in (A.2) and (A.6),

(5.3)

X
X

PO,S(X?X) = U(S)(Kv e 7&) = Us(X)v

and

Prs(X, X) = 0sx1) 06X 5 X)

—_——
s
80'5—4—1 1 -l .
= s+ 1 ZXab aX » = s+1 ZXiiO's(Xh)'
i

Here x;; is the (4,7) entry of matrix x, os(x|i) = szl X and we
sum over distinct jp £ ¢,jp = 1,...,n — 1.
On the other hand, the assumption (5.1) is equivalent to

s
Us 1 X’ Xu = trx.
X — n—1
Hence
n—1 n—1 n—s—1
> xiios(xli) = os(0trx = Y Xiix;os-1(xli) € ———F—o()trx.
i=1 i=1

Again, by the cone condition on x and x, we have try > 0,
> xiios(x|i) = (s +1)P1s > 0, and thus
(n—1-35)Pos06x) _ (n=1-8)os()  n—1

s+1  Prs(x.x) Zﬂ_IXiiUs(XW) -ty

7

(5'4) )

which gives us the desired inequality. Moreover, by tracing back the
proof, we notice that the equality in (5.2) holds only if this is the case
in both the Newton-MacLaurin inequality and (5.1). The former one
tells us that y is a multiple of I,_1. And this also implies the equality
for (5.1) by the elementary identity >, x,05-1 (xli) = sos (x)- On the
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other hand, it is easy to see that if y is a multiple of I,,_1, the equality
n (5.2) is achieved. q.e.d.

Before moving to the Alexandrov type theorem, we make a remark
on the conditions in the previous algebraic lemma.

REMARK 5.3. The above algebraic lemma still holds if we replace the
cone condition by x € I'; s and —x € I';4, since the left hand sides of
both (5.1) and (5.2) are homogeneous of degree zero in .

REMARK 5.4. The technical condition (5.1) can be interpreted as

follows. Consider @ = (ug, - ,up—1) with u; = M;s%x()ﬁz) as a vector
determined by x and ¢ = (vi, -+ ,v,-1) with v; = 3&) as a vector

determined by x, (5.1) imposes a restriction on the angle between the
vectors u and v.

Theorem 5.5. Let X be a past incoming null embedded (see Defi-
nition 3.10) closed embedded spacelike codimension-two submanifold in
a spacetime of constant curvature. Suppose X is torsion-free with re-
spect to the null frame L and L and that the second fundamental forms
X € I'rys and —x € T'r 15 satisfy
(5.5)  Prs(x,x) = (=1)°C, where C is a positive constant,
and
be
Xab (IO s) a S

P(],s Xe = n—1 10

Then X is a sphere of symmetry.

(5.6)

Proof. For submanifolds with P, = constant, the Minkowski for-
mula (1.5) becomes

P_1s 0 r—+s
— = (L, —)du (L,L)d
/2 P, s < ’8t> 2n— (r+s) /Q

) =0,

It follows from Lemma 5.2 and the fact that —(L, &

Kol
—(n - 1)/2%@1 < %/ZQ(L,L)du

This together with the spacetime Heintze—Karcher inequality (Theo-
rem 3.13) imply

5 2
o0 - [ Tas ) o nmes - [

Thus, the equality must hold. Note that the first inequality comes from
the Newton-MacLaurin inequality (A.9) and the equality case implies
X = c1o. And the second inequality is from the Heintze-Karcher in-
equality and equality holds if y = ¢;0.
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On the other hand, equation (5.5) together with y = ¢yo imply that
Pos(x,x) = (=1)*C, where C is a positive constant,

which falls in the setting of Theorem 5.1. Follow the same line of the
proof there and apply Minkowski formula

PO s—1 a S
(L, )dp — 5 | Q(L L)dp =
/E PO75 <_7 8t>diu’ 2(n _ S) /ZQ( 77)d# 0,

we can arrive the equality case for the Heintze-Karcher inequality (3.14)
by using the Newton—MacLaurin inequality. Then, we conclude that
X = c20. q.e.d.

As remarked above, (5.6) seems to be a technical condition. However,
we believe that, certain reasonable condition on x and x in addition
to Prs(x,x) = C is necessary in order to conclude both of them are
proportional to o.

To finish this section, we present two settings in which condition (5.6)
is automatically satisfied.

The first example is: y = —x. From the discussion at the end of
Section 4, we see that the classical hypersurfaces cases fall in this setting.
In this special situation, (5.6) is equivalent to

Lo (=D o (X01) (=X0axi _ (= 1) S5 owa (X[

B 501(x)os(—X) so1(x)os(X)

_ (n=1[os(x)o1(x) — (s + Dos1(x)]

s01(x)os(X)
where x; denote the eigenvalues of y. However, this inequality follows
from the standard Newton-MacLaurin inequality for symmetric func-
tions: (n — s — 1)os(x)o1(x) > (n —1)(s + 1)os+1(x). In view of the
remark at the end of the previous section, Theorem 5.5 generalizes the
classical Alexandrov theorem in Riemannian space forms [25, Theo-
rem 7 and Theorem 10].

The second example is: one of x and y is already known to be a
multiple of I,_;. One can easily check that (5.6) is trivial by using the
elementary formula »; x.0s-1(x[i) = s0s(X)-

)

6. Generalization in the Schwarzschild spacetime

In this section, we discuss Minkowski type formulae and Alexandrov
theorems in the Schwarzschild spacetime. The divergence equations
(4.3) of T;,fg and I?,Z play crucial roles in the proof of the Minkowski
formula in a spacetime of constant curvature. Those equations no longer
hold in the Schwarzschild spacetime due to the presence of a non-trivial
ambient curvature contribution. However, it turns out the divergences of
T ﬁg and I?Z still posses favorable properties under natural assumptions

on X when either r =0 or s = 0.
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Lemma 6.1. Let X be a spacelike codimension-two submanifold in
the Schwarzschild spacetime. Suppose Y is torsion-free with respect to
a null frame L, L. Then the following statements are true:

(1) If QL,L) > 0, then Y, ,(ViT53)Q(L,0,) < 0 and
2ap(VoT52)Q(L; 0a) < 0

(2) Suppose x is positive definite and (Q?)(L,v)Q(L,v) < 0 for any
vector v tangent to X, then zmb(VbT,ffg)Q(L, 0a) <0 ifr>3.

(3) Suppose —y is positive definite and (Q?)(L,v)Q(L,v) >0 for any
vector v tangent to X, then Zmb(vbT&g)Q(L, 04) <0 ifs>3.

Proof. Denote the radial coordinate in the Schwarzschild metric by p
and write the metric as

_ 2m 1
g=— < = > dtz 1_72mdp2 + nggnfl.

pn72

We only deal with case (2), and the other cases can be derived by the
same argument. Denote 6 = o +yx and write T} for T.o. Setting y =0
n (4.6) and (4.8), we obtain

Zyrv T = y?* Ripae(57 1) (671)™ det(5).

From the curvature expression (C.2), we have

_ _ onn—1)m (2 1 1
Rppde = P <3QLdec 3QLdch 3QLchd>
nm
s (@) Laobe — (Q%)LeOba) »
and thus

nm

S YT Qra = - p= [(n = 1)QLyQue

+(Q%) La0be — (Q%)1c0ba) QLa(67 ) (67 )™ det(5).

Now, suppose that y is diagonal with eigenvalues x1,...,xn_1. Write
the eigenvalues of & as p, = 1+ yxq. We obtain

S UV Qe = 5 [y N (Q)1aQ1a
T
On the other hand, by standard computation, we have

Za'n 1 ZO’ng \ab

ab Na,ub ath

n—

n—3 n—3 1
=2yl ab) = 39" Y (n - = 2)oyxa)

a#b q=0 q=0 a=1
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To get the last equality, we use the property of elementary symmetric
function that > ", o (A | ) = (m — k)og(X). Thus,

(6.1)
n—1n—3
> YV QL. = P> Z Dy (n — g = 2)0y(x]a)(Q*)£aQrLa
r a=1 q=0
n—1n—3
n+2 Zzy n —p)op-2(x|a)(Q®) LaQrLa-
a=1 p=2
By comparing the coefficients of y", we obtain
(6.2)
> (VT Qra = n+2 Zar 2(x10)(Q*) £aQLa, for 7 > 2,
a,b

which is negative by the assumptions that y is positive definite and
(Q*)(L,v)Q(L,v) < 0 for any vector v tangent to 3. This proves the
second statement. The third one is proved along exactly the same line.

For r = 2 (or s = 2) case, by comparing the coefficients of 4 on both
sides of (6.1), we get

> (VT5")Qra = n(n ;j Z )LaQLa

a,b a=1
nn—2)m 1
= % Z QLCQcaQLa - iQLL Z(QLa)2
p a,c a
1n
= _§(pn+2QLLZ QLa )
which is non-positive by the assumption that Q(L, L) > 0. q.e.d.

Notice that no condition is needed for r = 1 or s = 1 since T{% 0 =

T&Ii = o% is always divergence free. Thus, we can prove a clean
Minkowski formula for (r, s) = (1,0) or (0,1) in the Schwarzschild space-
time, see Theorem A or Theorem 2.2. For r, s > 2, the divergence prop-
erty of T;.o and Tp s no longer holds. Fortunately, based on the above
lemma, we can still establish certain inequalities for those higher order
cases in the Schwarzschild spacetime.

Theorem 6.2. Let X be a closed spacelike codimension-two subman-
ifold in the Schwarzschild spacetime. Suppose that 3 is torsion-free.

If ¥ satisfies assumption (1) or (2) in Lemma 6.1, then for any 1 <
r<n-—1,

63) [ Prosoe 0L gl + 5 [ PoGe 0L, Lid = o
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If ¥ satisfies assumption (1) or (3) in Lemma 6.1, then for any 1 <
s<n-—1,
(6.4) /P a)d /P X)Q(L, L)du > 0.
0,s— 1X7 ,at 14 27’L—S OSX7 L
Proof. Note that Tﬂg is a polynomial in x only and thus 7T OXa

Tf’%xa = 0. By the above lemma, we can proceed as in Theorem 4.3.
q.e.d.

In [5], Brendle and Eichmair considered the case that 3 is a closed
embedded hypersurface contained in a totally geodesic time-slice M of
the Schwarzschild spacetime. Assume Y to be star-shaped and convex,
they derived an interesting integral inequality

(6.5) (n— ) /E forrdu <k /2 ok(X, v},

where f = ,/1— p?fi”z, X =pf 6% is the conformal Killing vector and v

is the outward unit normal vector field of 3.

In fact, (6.5) can be recovered by (6.3) or (6.4). The argument is
similar as the discussion at the end of Section 4 where we recover the
classical Minkowski formulae (1.1) by (1.5) or (1.6) except that one
needs to check the assumption in Theorem 6.2. First, it is easy to see
that being star-shaped is equivalent to Q(L, L) > 0 because of identity
(4.16). On the other hand, the convexity of ¥ implies x is positive
definite.

For a submanifold ¥ on a totally geodesic slice My, the term (6.2)
can be compared with the Ricci curvature term in Brendle-Eichmair’s
formula [5] (at the end of the proof of Proposition 8). Indeed, given two
vectors v, w tangent to M;, the Ricci curvature satisfies

Ricyr, (v, w) = R(v, €pg1, W, €p11)
=2 gtow) - " " Q). )

o % (g(vv ’LU)Q2(€”+1, en+1) - Q2(U, w)) ,

by the Gauss equation and (C.2). Let v be the outward normal of 3.
We note that

QZ(eiu V) - Q2(L7 ei) - Q(Va en+1)Q(ei7 en+1)
where L = e,,41 + v. Hence, Ricyy,(e;,v) = n+2 mQ%(L,e;).
On the other hand, we claim that the condltlon in Lemma 6.1
(Q*)(L,v)Q(L,v) <0 for any vector v tangent to X

is automatically satisfied under the star-shaped condition. Indeed, the

main ingredient is that the tangent vector v does not have % component
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if ¥ lies in a totally geodesic time-slice. By the definition of Q?, (C.1),
and noting that Q(9y,v) = pdp A dt(dp,v) = 0 for any tangent vector
0Oy, we expand

(@*)(L,v) = g*Q(L, L)Q(L, v).

Therefore,

(@)(L,0)Q(L,v) = ~5Q(L, L) (Q(L,v))* <0,

provided that 3 is star-shaped.

Again, once we have the Minkowski formulae at hand, the spacetime
Alexandrov theorems follow by the spacetime Heintze—-Karcher inequal-
ity as in Theorem 5.1.

Corollary 6.3. Let X be a past (future, respectively) incoming null
embedded (see Definition 3.10) closed spacelike codimension-two sub-
manifold in the Schwarzschild spacetime. Suppose that ¥ is torsion-
free. If ¥ satisfies the assumptions in either (1) or (2) ((1) or (3),
respectively) in Lemma 6.1 and

(6.6)  Polux)=C (Po,s(x; x) = (—=1)°C, respectively) ,

for some positive constant C, then X lies in a null hypersurface of sym-
metry.

REMARK 6.4. In [22], Li-Wei—Xiong show that the convexity assump-
tion in Brendle-Eichmair’s result can be removed. The same argument
works here if we assume x (or x) is positive definite at a point.

The above discussion on the Schwarzschild spacetime indicates that
it is not easy to get a clean general form of Minkowski formulae with
nontrivial curvature and torsion. In the rest of this section, we focus on a
closed spacelike 2-surface in the 4-dimensional Schwarzschild spacetime
which carries the two-form @ = rdr A dt. With the same notations as
in Section 4, we have

T2 0= (trx)a“b — X“ , and To y = (trx)o” X“b.
Recall the Codazzi equations
(6.7) VaXbe = VoXae = Raber, + XacCh = XbeCa;
(6.8) VaX,, = VX, = RabeL = X,,$6 + X, Ca-

Taking trace of (6.7), (6.8), and using the Ricci-flatness of 4-dimensional
Schwarzschild spacetime, we get

1.
(6.9) VT3 o =—0"“R,’.; — T;,%Ca = —*RLb LL — Tsh ,0Ga;

(6.10) vTozz—f”ac}?bL*‘T(ma——*RL LL+T02a



278 M.-T. WANG, Y.-K. WANG & X. ZHANG

Now, we run the same proof as Theorem 4.3 (Theorem D) by considering

/ Va[TQ(L, 8y)ld = 0, and / V[T Q(L. )]s = 0,
> >

and get
0
010 0= [ GRL QUG + il )~ XN
1 ab .
b (trxtrx - x"x, ) Q(L, L)dy;
0
012 0= [ SGRL QLG + ek )~ XN
1
+ 5 (tI‘XtI‘X — XabXab> Q(L,L)d,u

Since % is a Killing field and H= %trzL + %trxL,

0=/<H gt>d“_ ;/Etrx( §t>du+;/trx@,%>dﬂ,
Subtracting (6.12) from (6.11), we obtain
2 [ trL. )
N /Z% (R QL. 3) = Ry 11 QL3 ) + (x"XE = X™%5 ) Qo
+ (trxtrl — Xﬂbl@) Q(L,L)du
- /2 % <RLbLLQ(L= Op) — RLb LLQ(L, (%)) + (Rperr — 2(dC)be) Q%
+ <%RLLLL - R) Q(L, L)dp,

where we use the following Gauss and Ricci equations to get the last
equality.

L 1_
(6.13) R+ Rrr + §RLLLL = R+ trxtry — Xabxab,
1= 1
(614) §RabLL = (dC)ab + 5 (Xaczcb - XGCXCb) .
Next, from

_ _ _ _ 1
RaprrQ®” = Rper1 Q™ — Rpppr@r — Roorr Q" + §RLLLLQ(L7L)7

we have

(RLb QL. 0y) — R, 11 Q(L, ab))

DO | =

1 1 14
= —iRaBLLQaﬁ + incLLQbC + ERLLLLQ(L’L)’
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where a, 6 = 1,--- ,n + 1 represent the indices of the ambient space.
Therefore,

0 1_ 1-
2/ tTX@’EW,U = / _§RQBLLQaﬁ + <§RbcLL — Q(dC)bc> Qe
> >
1.
+ <ZRLLLL - R) Q(L,L)dpu.

Consider the two-form n = ROCB;WQO‘Bd:E”d:EV on the spacetime. In
[19, Section 3.3], it is shown that dn = d*n = 0. So [y Roprr Q% is the
same for any 2-surface bounding a 3-volume. Evaluating the integral on
a sphere with ¢t = constant and r = constant, we have [19, (53)]

/ RagéLQaﬁdu = —32mm.
5

As a result, we reach the following Minkowski formula on the 4-
dimensional Schwarzschild spacetime.

Theorem 6.5 (Theorem F). Consider the two-form Q = rdr Adt on
the 4-dimensional Schwarzschild spacetime with m > 0. For a closed
oriented spacelike 2-surface 3, we have

2/E<FI,L><L %> = —167rm+/E <R+iRLLLL> Q(L,L)

2
+ Z <;RbcLL - 2(d<L)bc> Qpedyt,

b,c=1

where (p, is the connection 1-form of the normal bundle with respect to
L, R is the curvature tensor of the Schwarzschild spacetime, R is the
scalar curvature of 3, and Qp. = Q(ep, €c), (dCr)pe = (dCr)(ep, ), ete.

Appendix A. Proof of some algebraic relations

In this section, Garding’s theory for hyperbolic polynomials, in par-
ticular for elementary symmetric functions oy, is reviewed and applied
to prove several algebraic relations for mixed higher order mean cur-
vatures. For more detailed discussion about polarized o), functions, we
refer to the Appendix in the lecture notes by Guan [12, 13].

Definition A.1. Let Wt ... W™ ! be (n — 1) x (n — 1) symmet-
ric matrices define the mized determinant o, _1) (Wl, e ,W"‘l) such
that = ),a(n 1) (Wl, s W"‘l) is the coefficient of the term ¢1 - - - ¢,
in the polynomial

det (W' + -+t W)
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In general, for 1 < k < n — 1, we define the complete polarization of the
symmetric function o by

(A1) ow (W W)

where the identity matrix I,,_; appears (n — 1 — k) times.

Higher order mixed mean curvatures can be expressed in terms of
complete polarizations of the elementary symmetric functions, oy:

Lemma A.2. The following identity holds:

A2 P ’ = O(r+s s X Xty X
(A2) s 06X =009 (X5 X)
Proof. Notice that = ),a(n DOG XX s X In—15 0 5 In—1) 8
—_— o—
r s (n=1)—=(r+s)

the coefficient of the term ¢y ---t,_1 in the polynomial
On—1 (tlx +-+tx+ tr-i—ll +o 4+ tr-i—sl +lrgsy1+--- tn—l) .

Denote t =ty + -+ +tp, t =tpry1+ -+ +trgs, to=trysy1+ - +tn1
and use the equation (4.1), we get

On—1 (tlx +-+tx+ tr-i—lX + o+ tr-i—sl +lrgsy1+-- F tn—l)
= det (tx + tx +toln1)

(k+1)! e
n—1
=17 E il <t0> <t0> Pri(x,x)

k‘+l (- 1—(k+1
= Z o 08P (v, x)

(k +1)!
= Z ];,rl, (trasr+ -+ b)) T ED @ 4 )

X (tr+1 + -+ tr+s)lPk,l(X7X)'

For fixed r, s, the term ¢y ---t,_1 appears in the last expression only
when k£ = r and [ = s, and the coefficient is

(r+s)!
rls!

(n=1—=(r+s)rts! By x)-
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Thus,
U(n—l)(Xv XX X In—1,--- 7In—1)
—_——
r s (n=1)=(r+s)
r+s)!l(n—1—(r+s))! 1
N ( ) ((Tl — 1)'( ) r,s()@&) = ﬁpﬂs(%X)'
’ (T’—I—s)

(A.2) follows from this and the definition of complete polarization (A.1).
q.e.d.

From (A.2) and the definition of P, ¢ and Tﬁg,
basic identities:

. OPs (X, X)
(Ag) Z XabTr,I; = Z Xab— %5 TPT’,S(X7 X)v

we have the following

OXab
. O s(x; x)
(A4) Z Xabzrvl?g - Z XabT_ = SPﬁS(X? X)
a,b a,b Zab

Indeed, the equalities (A.3) and (A.4) follow from the fact that P, s(x, x)
is a polynomial in y and y, homogeneous of degrees r and s, respec-
tively. B

In addition, the following equation (A.5) can be deduced from the
definition of complete polarized symmetric function and (A.2):

Lemma A.3.
8P7"s X7 ) T(Tl—(T+S))
aTab a - Pr— s\ X .
;Ubr Zab v e 1,5 (¢ X)

Proof of (A.5). Indeed, we have the standard definition of completely
polarized symmetric function as

0 o, (W)
wlw?... E wiw2...whk_Z 9% )
O'(k) ( 9 9 > 71 12 (% 611721 aIIer 9

Zkl

oy (W)

where W RN w? 1 are the eigenvalues of WJ. We note that W, oW,

—
is a combinatorial constant depending only on £ and W can be replaced
by any symmetric matrix. Thus

o Uk(X)
(AG) O (k) (X7X7 s X Z Xi1 X X " _z A, a.
\_k\—/l—J Zl =1 ’ ’ aX azlk
1 d
5k Z b dtho (T
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More generally, we have

PT,S(X?X) = J(r+s)(X7"' ' X Xo e 7X)
——

[

r s
s! d"
(r+s)! dt" li=o

_L lﬁ (t + )
N GRRCIAERE ,

Equation (A.5) is verified by a sequence of direct computations:

Orts (X + X)

P, (X, x) 1 1d oy s(tx + X)
S Ly el

Mxa (7T rldt = - OXab
1 1d
— m;@ a [(n —(r+8)) orys—1(tx + X)t]
11 dr—1

RS VIl g e

_n-(r+s) (T e 1) P10 0)

(T+s) r—1
r
(n—(r+s))r
= mES)Tp
r+s & 1,s(X7X)y
where we use equation Y7} acg“)\(i ) = = (n—k)ok_1(X) to get the second
identity above. q.e.d.

We now briefly review Garding’s inequality for polarized elemen-
tary symmetric functions and apply it to deduce a version of Newton—
MacLaurin inequality for P, (x,x) which is used several times in the
previous sections. First, we recall the definition of the positive cone
for oy:

Definition A.4. For 1 <k <n—1, let I';, be a cone in R”~! defined
by

In={AeR" : 6;(\) >0,---,0,(N\) >0},

Z Aiy o Ay

i1 <<,

where

is the k-th symmetric function. An (n — 1) x (n — 1) symmetric matrix
W is said to belong to I'y if its spectrum A\(W) € T'y.

According to the standard theory for elementary symmetric functions
from the hyperbolic polynomials point of view (see Corollary 13.1 and
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Proposition 13.3 in [12]), we know that I' is the positive cone for both
o and its polarization oy, i.e.,

a(k)(Wl,--- WY >0, for WieTl withi=1, -, k.
In view of the relation (A.2), we also have
(A.7) P.s(x,x) >0,, for x,x € I'nys.

The following lemma is a special case of a theorem of Garding for
hyperbolic polynomials, which can be found in [11] (or see Appendix of
[13] or [17]).

Lemma A.5. For any W' € T, or —I'*, i =1,--- |k, we have
(A.8)

o2 <W1,W2,W3,--- ,Wk)
> o) (Wl,Wl,W?’,--- ,Wk) o) (W2,W2,W3,--- ,Wk> .
The equality holds if and only if W' and W? are multiples of each other.

Proof. We may assume W' € T, for all i because changing W' to
—W?" does not change the desired inequality. Since W3,... , W* € I'},
the homogeneous polynomial p(z) = a(k)(x,x,Wg, ...,W¥) is hyper-
bolic with respect to every element in 'y (see Appendix of [13]). The
assertion follows by applying the usual Garding’s inequality to the com-
plete polarization of p. q.e.d.

The above Garding’s inequality yields the following Newton—Mac-
Laurin inequality for P (X, x)-

Lemma A.6. If x and x are both in I'.ys_1 cone, we have

(AQ) P7~2—175(X’X) > C(TL, T, S)Pr,s(Xa X)PT—ZS(Xa X)a

n—1 \2
where c¢(n,r,s) = (T’S;ij(s’ii) = Trsrfl . n;ﬁr(ti)sl. The equality holds if

and only if x = cl,_1 for some constant c.

Proof. When P, s(x,x) < 0, the inequality (A.9) is trivial. We thus
assume P, 5(x,x) > 0. Replacing k by (r + s) in the above Garding’s

inequality (A.8), we obtain
0(27,+8) (Wl, W2 w3, ... W wrt L ’WH-S)
> O(ris) (Wl, le Wg, - WT, VV?“—i—l7 L 7w7“+s)
X U(?‘—i-s) (W27 W27 W37 T 7WT7 WT+17 ) WT+S) .
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Setting Wl = I, 1, W?=... =W "=y and Wl =... = W"+s =
X and rewriting in terms of the complete polarization (A.1), we derive
2
n—1 9
XX o X Ity Ly
<r n s) 01y (X X X X In—1 n—1)
r—1 s (n—1)—(r—1+s)
n—1\?
> <T+S> U(n—l)(X7"' Y Xo Xo ot 7&7[71—17"' 7In—1)
— < A
r—2 s (n—1)—(r—2+s)
X U(n—l)(X? XX X Ipq,--- 7In—1)-
—— < ) ————
r s (n=1)=(r+s)

From Garding’s inequality, we also see that the equality holds if and
only if y and [,,_1 are proportional.
On the other hand, using (A.1) and (A.2) again,

U(n—l)(Xv XX X In1,--- 7In—1)
_— Y
r—1 s (n—=1)—(r—1+s)

1
?U(r—us)(xy”’ Y Xo X0t 75)
r—1+s 1 s
1
= 7oty el
r—1+s
U(n—l)(X? XX X In1,--- 7In—1)
— < > e’
r—2 s (n—=1)—(r—2+s)

= %U(r—2+s)(>ﬁ XX 7&)
<r -2+ s> T2 s
1
= ?Pr—zs(x’g),
<T -2+ s>
Ty (s Xo Xo 5 Xo Ints o+ 5 Int)
—_—
r s (n—1)—(r+s)
1 1

= ﬁa(r—ks)(){a"' s X Xt 7&) = ﬁPT,SOOX)'
r+s " 5 r+s

Thus, we reach that
(")’
P7“2—173(X7X) 2 nizl'i‘sn_l PT—278(X7X) : PT’,S(Xa X) qed
(r—2+s) (r+s)
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Appendix B. The existence of conformal Killing—Yano forms

In this appendix, we show the existence of conformal Killing—Yano
form for a class of warped-product manifold. We recall the follow-
ing equivalent definition of conformal Killing—Yano p-forms using the
twistor equation [32, Definition 2.1].

Definition B.1. A p-form @ on an n-dimensional pseudo-Riemannian
manifold (V g) is said to be a conformal Killing—Yano form if () satisfies
the twistor equation

1 1
B.1 D -—X —g(X Q=
(BY)  DxQ- o XadQ+ — —a(X) nd'Q =0,

+1

for all tangent vector X.
The main result of the appendix is the following existence theorem.

Theorem B.2. Let U C R™ and V C R™ be two open sets. Let G
be a warped-product metric on U x V' of the form

R*(y)oap(x)dxdz’ + gij(y)dy'dy’.

Then Q@ = R" " (y)y/det ogpdzt A---Ada™ and *Q = R(y)\/det gijdy* A

-« ANdy™ are both conformal Killing—Yano forms.

Proof. By [32, Lemma 2.3], the Hodge star-operator * maps confor-
mal Killing—Yano p-form into conformal Killing—Yano (n+m — p)-form.
It suffices to verify that () satisfies the twistor equation. Let w®, a =
1,...,n+m be a local orthonormal coframe for G such that w!,...,w"
is an orthonormal coframe for R?(y)oqp(x)dz®dz® on each slice U x {c1 }
and w1l ... W™ is an orthonormal coframe for g,-j(y)dyi A dy’ on
each slice {co} x V. Let E, be the dual frame to w®. If we write
Q=w!'A---Aw", then Q = RO. From the structure equations

dw® = —w AW — W AW =dR Ao — Ry A a®,
nt+i ., nti b niti n+j
dw =-wiyrAW —w -t Aw"™

we solve for the connection 1-forms

Eni(R
wan—i-i _ n‘i:é( )wa’ o‘)ab _ ’Yaba
where ~% are the connection 1-forms with respect to the metric

oap(x)drdzb.
We compute each term in the twistor equation.

DxQ=X(R)Q+RVxQ=X(R)Q - > Eppi(R)w" A (X1Q).
i=1
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m
X_ldQ:X_lZ(—w1n+i/\w"+i/\w2/\---/\w"
i=1
+w AW AW A AW — )
m
E, .
:XJZn<WE(R)w"+’/\Q>
i=1

m

En 7 i
= nz #X_J (W' A Q)
i=1

= nf: En—z(R) (wn”(X)Q — WA (X Q)) .
i=1

This implies that
X.1dQ = X (dRNQ+ RAQ)
=X(R)Q—dRA (X19Q)

+n Em: Eppi(R) (W"T(X)Q — ™A (XL0Q)) .
=1

On the other hand, d*@Q = 0 since R only depends on y. Putting these
facts together, we verify that () satisfies the twistor equation
1 1
DxQ — ———X.id ——g(X)ANd*
Q= — XdQ + ——9(X) A dQ

m—+1
m

=X(R)Q =Y Enpi(R)w™ A (XLQ)
i=1

—(X(R)Q —dR A (X19)

n+1

1Y Epi(R) (W"H(X0Q - wHX L) )
i=1

__n 1 , n+i
= 1X(R)Q p— 1En+,(R)w AN(XLQ)
1 n .
e X1Q) — Eo X0
+n+1dR/\( 1) il +i(R)w"T(X)

=0.
We use the fact that R only depends on y in the last equality.  q.e.d.

We have the following existence result, generalizing the fact that
rdr A dt is a conformal Killing—Yano two-form on the Minkowski and
Schwarzschild spacetime.

Corollary B.3. Let (V,g) be a warped product manifold with
(B.2) g = gu(t,r)dt® + 2g4, (t,7)dtdr + gpr(t,7)dr? + 2 (gn)apdar®da®,
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where (N, gn) is an (n — 1)-dimensional Riemannian manifold. Then

the two-form
owr)

is a conformal Killing—Yano two-form on (V,g).

det( gt Ger >‘ dr A dt
grt  Grr

Appendix C. Curvature tensors of the Schwarzschild
spacetime

We consider the (n + 1)-dimensional (exterior) Schwarzschild space-
time with the metric (1.2). The spacetime admits a conformal Killing—
Yano tensor @Q = rdr A dt. Let Q? be the symmetric 2-tensor given
by

(C.1) (Q%)as = Qa"Qyp-

Lemma C.1. The curvature tensor of Schwarzschild spacetime can
be expressed as

_ 2m

(C.Q) Rag»yg = 7‘7 (g_]a»yéﬁa - gaégﬁ'y)

n(n—1)m

2 1 1
_ W <3QaﬁQ~/5 - gQa’yQéﬁ - 3Qa5Qﬁfy>

_onm o 2)
r,'»’fl+2 (‘g © Q aﬁ’yé’

where (g © Q2)a576 = ga'y(Q2)56 - gaé(Q2)B'y + gﬁé(@%av - gﬁ'y(Q2)a6-
Proof. Denote f2=1— 22 Let Fy, F,... , En+1 be the orthonor-

rn—2"

mal frames for g with F, 1 = %%,En = f% and F;,i=1,...,n—1
tangent to the sphere of symmetry. We have

R m(n —1)(n —2
R(En+17En7En+1,En) = — ( )( )

I

TTL
_ m(n — 2
R(Eny1, Bi, Enya, Ej) = (rn)&'j,
_ m(n — 2
R(EH7EZ7EH7E]) - _%6’07
_ 2m

R(E;, Ej, By, ) = T—n(5ik5jl — 0i0jk)-

Except for the symmetries of the curvature tensors, the other compo-
nents are zero.

On the other hand, we have Q(E,, Eni1) = 7, (Q?)(Epi1, Bny1) =
—7‘2, and (Q2)(EmEn) = 72 Let b(Q) = %Qaﬁ@'yé - %Qa’y@éﬁ -
%QQ(SQBV. The following table lists the nonzero components for the
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(0,4)-tensors involved.

T | Gor 385 — Gasdsy D(Q) (g0 Q*)apys
T(En+1,En,En+1,En) —1 7"2 —27"2
T(ETL+17Ei7ETL+17Ej) _5U 0 _r25ij

T(En, E;i, By, E;) 8ij 0 725,
T(Ei,Ej, B, Er) | Owdji — 6udji 0 0

Suppose Raﬁ'\/é = Armn (gavgﬁé - gaégﬁ'y)"i'Brn%(%Qaﬁ@'yé_%Qanéﬁ_
%QQ(SQBV) —I—C'M%(g?OQQ)aBM;. We can solve for A =2, B = —n(n—1),
and C' = —n. q.e.d.
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