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Abstract

We prove that Ruan’s Cohomological Crepant Resolution Con-
jecture holds for the Hilbert–Chow morphisms. There are two
main ideas in the proof. The first one is to use the representa-
tion theoretic approach proposed in [QW] which involves vertex
operator techniques. The second is to prove certain universality
structures about the 3-pointed genus-0 extremal Gromov–Witten
invariants of the Hilbert schemes by using the indexing techniques
from [LiJ], the product formula from [Beh2] and the co-section
localization from [KL1, KL2, LL]. We then reduce Ruan’s Con-
jecture from the case of an arbitrary surface to the case of smooth
projective toric surfaces which has already been proved in [Che].

1. Introduction

In [ChR], Chen and Ruan defined the orbifold cohomology ring
H∗

CR(Z) for an orbifold Z. Motivated by orbifold string theory from
physics, Ruan [Ruan] proposed the Cohomological Crepant Resolution
Conjecture. It eventually evolved into the Crepant Resolution Conjec-
ture after the work of Bryan–Graber, Coates–Corti–Iritani–Tseng and
Coates–Ruan [BG, CCIT, CoR]. Roughly speaking, assuming that
an orbifold Z has a crepant resolution W , then the Crepant Resolu-
tion Conjecture predicts that the orbifold Gromov–Witten theory of Z
is ring isomorphic (in the sense of analytic continuations, symplectic
transformations and change of variables of type q = −eiθ) to the ordi-
nary cohomology ring of W plus those quantum corrections on W which
are related to curves contracted by the crepant resolution. We refer to
[BG, Che, Coa] and the references there for other excellent examples
confirming the Crepant Resolution Conjecture.

In this paper, we prove that Ruan’s Cohomological Crepant Resolu-
tion Conjecture holds for the Hilbert–Chow morphisms. Let X be a
smooth projective complex surface, and X [n] be the Hilbert scheme of
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points in X. Sending an element in X [n] to its support in the symmetric
product X(n), we obtain the Hilbert–Chow morphism ρn : X [n] → X(n),
which is a crepant resolution of singularities. Let H∗

ρn(X
[n]) be the

quantum corrected cohomology ring (see Sect. 4 for details).

Theorem 1.1. Let X be a simply connected smooth projective sur-
face. Then, Ruan’s Cohomological Crepant Resolution Conjecture holds
for the Hilbert–Chow morphism ρn, i.e., the two rings H∗

ρn(X
[n]) and

H∗
CR(X

(n)) are isomorphic.

This theorem has been proved earlier when n = 2, 3 [ELQ, LQ],
when KX is trivial [FG, LS], and when X is a smooth toric surface
[Che]. We also refer to [LQW4, MO, OP, QW, Zho] for discussions
when X is quasi-projective.

There are two main ingredients in our proof of Theorem 1.1. The first
one is the axiomatization approach originated from [Leh, LQW1] and
formulated in [QW]. This approach involves Heisenberg algebra actions
and vertex operator techniques pioneered in [Gro, Nak]. We recall
that a graded Frobenius algebra over a field k is a finite dimensional
graded vector space A with a graded associative multiplication A⊗A→
A and unit element 1A together with a linear form T : A → k such
that the induced bilinear form 〈a, b〉 := T (ab) is nondegenerate. For
k ≥ 1, the k-th co-product τk∗ : A → A⊗k is defined by requiring
〈τk∗(a), b1 ⊗ · · · ⊗ bk〉 = T (ab1 · · · bk). Now the axiomatization in [QW]

states that the algebra structure on each A[n] in a sequence of graded
Frobenius algebras A[n] (n ≥ 0) is determined if

(A1) the direct sum
⊕

nA
[n] affords the structure of the Fock space of

a Heisenberg algebra modeled on A := A[1].

(A2) There exists a sequence of elements G̃k(α, n) ∈ A[n] depending
on α ∈ A (linearly) and a non-negative integer k. Define the

operators G̃k(α) on
⊕

nA
[n] which act on the component A[n] via

multiplication by G̃k(α, n) ∈ A[n]. The operators G̃k(α) and the
Heisenberg generators satisfy:

G̃1(1A) = −1

6
: a3 :0 (τ3∗1A),(1.1)

[G̃k(α), a−1(β)] =
1

k!
a
{k}
−1 (αβ),(1.2)

where : a3 :0 is the zero mode in the normally ordered prod-

uct : a3 :, and a
{k}
−1 (α) denotes the k-th derivative with a

{0}
−1 (α) =

a−1(α) and a
{k}
−1 (α) = [G̃1(1A), a

{k−1}
−1 (α)] for k ≥ 1.

When (A1) and (A2) are satisfied, the algebra A[n] is generated by
the elements

G̃k(α, n) ∈ A[n], α ∈ A, k ≥ 0.
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In addition, the product is determined by (1.1) and (1.2). On one hand,

with A[n] = H∗
CR(X

(n)) (viewed as an algebra over C), the results in
[QW] (see Theorem 3.1 below) indicate that (A1) and (A2) hold for
the rings H∗

CR(X
(n)). On the other hand, by [Gro, Nak] and [LL], the

rings A[n] = H∗
ρn(X

[n])(= H∗(X [n]) as vector spaces) also satisfy (A1)
and (1.1). Moreover, using [Che], we prove that (1.2) holds when X is
a smooth projective toric surface.

To prove that the rings A[n] = H∗
ρn(X

[n]) satisfy (1.2) for an arbitrary
surface X, our second main ingredient comes into play. It involves finer
analysis of the virtual fundamental cycle using the method in [LiJ] and

the co-section localization technique in [KL1, KL2, LL]. Let X [n,d]

be the moduli space of 3-pointed genus-0 degree-d stable maps to X [n].
By [LL], every stable map (ϕ,C) ∈ X [n,d] has a standard decomposi-

tion ϕ = (ϕ1, . . . , ϕl) ∈ X [n,d] where the stable reduction ϕst
i is con-

tained in X [ni,di] for some ni and di, ρni(Im(ϕi)) = nixi, the points
x1, . . . , xl are distinct, and ϕ(p) =

∑
i ϕi(p) for all p ∈ C. We use the

ideas from [LiJ] to index the support of ρn(Im(ϕ)) =
∑

i nixi ∈ X(n).
This is done by introducing the notion of 3-pointed genus-0 degree-δ
α-stable maps to X [n], where α = (α1, · · · , αl) denotes a partition of
the set [n] = {1, . . . , n} and δ = (δ1, · · · , δl) with δi’s being nonnega-
tive integers. The set of such pairs (α, δ) with

∑
i δi = d is denoted

by P[n],d. The techniques in [LiJ] and the product formula in [Beh2]
for Gromov–Witten invariants enable us to express the virtual funda-
mental cycle [X [n,d]]vir in terms of certain discrepancy cycles [Θ[[α,δ]]],
(α, δ) ∈ P[n],d. In fact, one of the key points in the paper is to study

such decomposition of [X [n,d]]vir as a sum of cycles indexed by the par-

tition type of ρn(Im(ϕ)) ∈ X(n). However, this cannot be done on the

moduli space X [n,d]. The technique to overcome this impasse is to intro-
duce the Hilbert scheme of α-points X [[n]] and an non-separated space
X [[≤n]] following [LiJ]. Then the cycle ev∗([X

[[n,d]]]vir) is a sum of various

[Θ[[α,δ]]] in (X [[≤n]])3. Even though the space X [[≤n]] is not Hausdorff in

analytic topology, all the operations involving X [[≤n]] in this paper are
all algebraic topological, such as pullbacks of cohomology classes and
cap products, which are defined on any topological spaces. Combining
with the co-section localization theory in [KL1, KL2, LL], pairings

with [Θ[[α,δ]]] can be studied via C∞-maps from X to the Grassmanni-
ans. For d ≥ 1, we assemble those [Θ[[α,δ]]], (α, δ) ∈ P[n],d with δi > 0

for every i into a homology class Zn,d ∈ H∗((X
[n])3). Note that we are

back to the original Hilbert scheme X [n]. Now the structure of the
3-pointed genus-0 extremal Gromov–Witten invariants of X [n] is given
by the following two theorems.
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Theorem 1.2. Let A1, A2, A3 ∈ H∗(X [n]) be Heisenberg monomial

classes, and πm,i be the i-th projection on (X [m])3. Then, 〈A1, A2,
A3〉0,dβn is equal to

∑
m≤n

∑
A1,1◦A1,2=A1
A2,1◦A2,2=A2
A3,1◦A3,2=A3

〈A1,1, A2,1, A3,1〉 ·
〈
Zm,d,

3∏
i=1

π∗
m,iAi,2

〉
.(1.3)

Theorem 1.3. Let A1, A2, A3 ∈ H∗(X [n]) be Heisenberg monomial
classes.

(i) If Ai contains a factor a−j(x) for some i, then〈
Zn,d,

3∏
i=1

π∗
n,iAi

〉
= 0.

(ii) For 1 ≤ i ≤ 3, let Ai = a−λ(i)(1X)a−ni,1(αi,1) · · · a−ni,ui
(αi,ui)|0〉

where ui ≥ 0 and |αi,1| = . . . = |αi,ui | = 2. Then,〈
Zn,d,

3∏
i=1

π∗
n,iAi

〉
=

3∏
i=1

ui∏
j=1

〈KX , αi,j〉 · p,(1.4)

where p is a polynomial in 〈KX ,KX〉 whose degree is at most (n−∑
i,j ni,j)/2, and whose coefficients depend only on d, n, λ(i), ni,j

(and hence are independent of the surface X and the classes αi,j).

We refer to Definition 2.9 for the operation ◦ appearing in (1.3),
and to Definition 2.2 for the notation a−λ(i)(1X) appearing in Theo-
rem 1.3 (ii). Geometrically, we may think of the pairing〈

Zm,d,
3∏

i=1

π∗
m,iAi,2

〉
,

in (1.3) as the contributions of the non-constant components ϕi in the

standard decomposition of ϕ = (ϕ1, . . . , ϕl) ∈ X [n,d], while those con-
stant components ϕi contribute to the factor 〈A1,1, A2,1, A3,1〉 in (1.3).

Using Theorem 1.2 and Theorem 1.3, we are able to reduce the proof
of (1.2) for A[n] = H∗

ρn(X
[n]) from an arbitrary surface X to the case

when X is a smooth projective toric surface. This proves (1.2) for

A[n] = H∗
ρn(X

[n]) and hence completes the proof of Theorem 1.1.
Finally, this paper is organized as follows. In Sect. 2, we review

the Hilbert schemes of points on surfaces and Heisenberg algebras. In
Sect. 3, we recall from [QW] the results regarding H∗

CR(X
(n)). In

Sect. 4, we review Ruan’s Cohomological Crepant Resolution Conjec-
ture. In Sect. 5, we prove Theorem 1.2 and Theorem 1.3. In Sect. 6, we
verify (1.2) and Theorem 1.1.
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Conventions: All the homology and cohomology groups are in C-
coefficients unless otherwise specified. For a subvariety Z of a smooth
projective variety Y , we will use Z or [Z] to denote the corresponding
cycle/cohomology class, and use 1Y to denote the fundamental cohomol-
ogy class of Y . The symbol A · B denotes the cup product for A,B ∈
H∗(Y ). For A1, . . . , Ak ∈ H∗(Y ), let 〈A1, . . . , Ak〉 =

∫
Y A1 · · ·Ak. By

abuse of notation, for A ∈ H∗(W ) and B ∈ H∗(W ) of an arbitrary
topological space W , 〈A,B〉 also stands for the natural paring between
the homology group and the cohomology group. For subsets A and B
of W , A ∩ B ⊂ W stands for the intersection of the two subsets; for
A ∈ H∗(W ) and B ∈ H∗(W ), A∩B ∈ H∗(W ) denotes the cap product.

Acknowledgment. The authors thank Professor Jun Li for offering
enormous helps and suggesting valuable ideas, without which this paper
would be impossible to complete. In particular, the crucial Lemma 5.5,
Lemma 5.9 and their proofs are due to him. The authors also thank
Professors Wan Keng Cheong, Yongbin Ruan and Weiqiang Wang for
stimulating discussions. In addition, the authors thank the referee for
carefully reading the manuscript and for providing valuable suggestions
which have greatly improved the exposition of the paper.

2. Hilbert schemes of points on surfaces

LetX be a smooth projective complex surface with the canonical class
KX and the Euler class eX , and X [n] be the Hilbert scheme of points
in X. An element in X [n] is represented by a length-n 0-dimensional
closed subscheme ξ of X. It is well known that X [n] is smooth. For a
subset Y ⊂ X, define

Mn(Y ) = {ξ ∈ X [n]|Supp(ξ) = {x} for some x ∈ Y }.
Let Zn = {(ξ, x) ⊂ X [n] ×X |x ∈ Supp(ξ)} be the universal codimen-

sion-2 subscheme of X [n] ×X. Let p1 and p2 be the two projections of
X [n] ×X. Let

HX =

+∞⊕
n=0

H∗(X [n])

be the direct sum of total cohomology groups of the Hilbert schemes
X [n].

For m ≥ 0 and n > 0, let Q[m,m] = ∅ and define Q[m+n,m] to be the
closed subset:

{(ξ, x, η) ∈ X [m+n] ×X ×X [m] | ξ ⊃ η and Supp(Iη/Iξ) = {x}}.
We recall Nakajima’s definition of the Heisenberg operators [Nak].

Let n > 0. The linear operator a−n(α) ∈ End(HX) with α ∈ H∗(X) is
defined by

a−n(α)(a) = p̃1∗([Q
[m+n,m]] · ρ̃∗α · p̃∗2a),
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for a ∈ H∗(X [m]), where p̃1, ρ̃, p̃2 are the projections of X [m+n] × X ×
X [m] toX [m+n],X,X [m] respectively. Define the linear operator an(α) ∈
End(HX) to be (−1)n times the operator obtained from the definition
of a−n(α) by switching the roles of p̃1 and p̃2. We also set a0(α) = 0.

For n > 0 and a homogeneous class α ∈ H∗(X), let |α| = s if α ∈
Hs(X), and let Gi(α, n) be the component in H |α|+2i(X [n]) of

G(α, n) = p1∗(ch(OZn) · p∗2td(X) · p∗2α) ∈ H∗(X [n]),

where ch(OZn) denotes the Chern character of OZn and td(X) denotes
the Todd class. Set Gi(α, 0) = 0. We extend the notion Gi(α, n) lin-
early to an arbitrary class α ∈ H∗(X). The Chern character operator
Gi(α) ∈ End(HX) is defined to be the operator acting on the com-

ponent H∗(X [n]) by the cup product with Gi(α, n). It was proved in

[LQW1] that the cohomology ring of X [n] is generated by the classes
Gi(α, n) where 0 ≤ i < n and α runs over a linear basis of H∗(X).
Let d = G1(1X ) where 1X is the fundamental cohomology class of X.
The operator d was first introduced in [Leh]. For a linear operator
f ∈ End(HX), define its derivative f′ by f′ = [d, f]. The k-th derivative
f(k) is defined inductively by f(k) = [d, f(k−1)].

Let : am1am2 : be am1am2 whenm1 ≤ m2 and am2am1 whenm1 > m2.
For k ≥ 1, τk∗ : H∗(X) → H∗(Xk) is the linear map induced by the
diagonal embedding τk : X → Xk, and am1 · · · amk

(τk∗(α)) denotes∑
j am1(αj,1) · · · amk

(αj,k) when τk∗α =
∑

j αj,1 ⊗ · · · ⊗ αj,k via the

Künneth decomposition of H∗(Xk).
The following is a combination of various theorems from [Nak, Gro,

Leh, LQW1]. Our notations and convention of signs are consistent
with [LQW2].

Theorem 2.1. Let k ≥ 0, n,m ∈ Z and α, β ∈ H∗(X). Then,

(i) the operators an(α) satisfy a Heisenberg algebra commutation re-
lation:

[am(α), an(β)] = −m δm,−n · 〈α, β〉 · IdHX
.

The space HX is an irreducible module over the Heisenberg algebra
generated by the operators an(α) with a highest weight vector |0〉 =
1 ∈ H0(X [0]) ∼= C.

(ii) G1(α) = −1

6
: a3 :0 (τ3∗α)−

∑
n>0

n− 1

2
: ana−n : (τ2∗(KXα)).

(iii) [Gk(α), a−1(β)] =
1

k!
· a(k)−1(αβ).

The Lie brackets in Theorem 2.1 are understood in the super sense ac-
cording to the parity of the degrees of the cohomology classes involved.
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Also, Theorem 2.1 (i) implies that HX is linearly spanned by the coho-
mology classes a−n1(α1) · · · a−nk

(αk)|0〉 where k ≥ 0 and n1, . . . , nk > 0.
These classes are called Heisenberg monomial classes.

Definition 2.2. Let α ∈ H∗(X), and

λ = (· · · (−2)m−2(−1)m−11m12m2 · · · )

be a generalized partition of the integer n =
∑

i imi whose part i ∈ Z

has multiplicity mi. Define �(λ) =
∑

imi, |λ| =
∑

i imi = n, s(λ) =∑
i i

2mi, λ
! =

∏
i mi!, and

aλ(α) =
∏
i

(
ai(α)

)mi , aλ(τ∗α) =

(∏
i

(ai)
mi

)
(τ
(λ)∗α),

where
∏

i(ai)
mi is understood to be · · · am−2

−2 a
m−1

−1 am1
1 am2

2 · · · . A general-
ized partition becomes a partition in the usual sense if mi = 0 for every
i < 0. A partition λ of n is denoted by λ � n.

The next three theorems were proved in [LQW3].

Theorem 2.3. Let k ≥ 0, n ∈ Z, and α ∈ H∗(X). Then, a
(k)
n (α) is

equal to

(−n)kk!

⎛⎜⎝ ∑
�(λ)=k+1

|λ|=n

1

λ!
aλ(τ∗α)−

∑
�(λ)=k−1

|λ|=n

s(λ)− 1

24λ!
aλ(τ∗(eXα))

⎞⎟⎠
+

∑
ε∈{KX ,K2

X}

∑

(λ)=k+1−|ε|/2,|λ|=n

f|ε|(λ)

λ!
aλ(τ∗(εα)),

where all the numbers f|ε|(λ) are independent of X and α.

Theorem 2.4. Let k ≥ 0 and α ∈ H∗(X). Then, Gk(α) is equal to

−
∑


(λ)=k+2,|λ|=0

1

λ!
aλ(τ∗α) +

∑

(λ)=k,|λ|=0

s(λ)− 2

24λ!
aλ(τ∗(eXα))

+
∑

ε∈{KX ,K2
X}

∑

(λ)=k+2−|ε|/2,|λ|=0

g|ε|(λ)

λ!
aλ(τ∗(εα)),

where all the numbers g|ε|(λ) are independent of X and α.
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Theorem 2.5. Let n ≥ 1, k ≥ 0, and α ∈ H∗(X). Then, Gk(α, n)
is equal to∑

0≤j≤k

∑
λ�(j+1)

�(λ)=k−j+1

(−1)|λ|−1

λ! · |λ|! · 1−(n−j−1)a−λ(τ∗α)|0〉

+
∑

0≤j≤k

∑
λ�(j+1)

�(λ)=k−j−1

(−1)|λ|
λ! · |λ|! ·

|λ|+ s(λ)− 2

24
· 1−(n−j−1)a−λ(τ∗(eXα))|0〉

+
∑

ε∈{KX,K2
X

}

0≤j≤k,λ�(j+1)
�(λ)=k−j+1−|ε|/2

(−1)|λ|g|ε|(λ+ (1j+1))

λ! · |λ|! · 1−(n−j−1)a−λ(τ∗(εα))|0〉,

where 1−(n−j−1) denotes a−1(1X)n−j−1/(n− j − 1)! when (n− j − 1) ≥
0 and is 0 when (n − j − 1) < 0, the universal function g|ε| is from

Theorem 2.4, and λ+ (1j+1) is the partition obtained from λ by adding
(j + 1) to the multiplicity of 1.

Lemma 2.6. [an1 · · · ank
(τk∗α), am1 · · · ams(τs∗β)] is equal to

−
k∑

t=1

s∑
j=1

ntδnt,−mj ·
⎛⎝j−1∏

l=1

aml

∏
1≤u≤k,u �=t

anu

s∏
l=j+1

aml

⎞⎠ (τ(k+s−2)∗(αβ)).

The above lemma was proved in [LQW2], and will be used implicitly
in many proofs throughout the paper. The following geometric result
was proved in [LQW5].

Proposition 2.7. Let the classes α1, . . . , αk ∈ ⊕4
i=1H

i(X) be respec-
tively represented by the cycles X1, . . . ,Xk ⊂ X in general position.
Then, the Heisenberg monomial class(

t∏
i=1

a−i(1X )si

si!

)⎛⎝ k∏
j=1

a−nj (αj)

⎞⎠ |0〉
is represented by the closure of the subset consisting of the elements

t∑
i=1

(ξi,1 + . . .+ ξi,si) +

k∑
j=1

ξj,(2.1)

where ξi,m ∈ Mi(xi,m) for some xi,m ∈ X, ξj ∈ Mnj(xj) for some
xj ∈ Xj , and all the points xi,m, 1 ≤ i ≤ t, 1 ≤ m ≤ si and xj,
1 ≤ j ≤ k are distinct.

Theorem 2.9 in [LQW4] expresses a Heisenberg monomial class in
terms of a polynomial of the classes Gk(γ, n). The following lemma is
a special case.
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Lemma 2.8. Let λ � n0, α ∈ H∗(X) with |α| = 2, and m ≥ 1.

(i) Then, the class 1−(n−n0)a−λ(x)|0〉 ∈ H∗(X [n]) can be written as
a polynomial of the classes Gk(x, n), k ≥ 0. Moreover, the coeffi-
cients and the integers k depend only on λ (hence, are independent
of n and X);

(ii) If the odd Betti numbers of the surface X are equal to zero, then

1−(n−n0−m)a−λ(x)a−m(α)|0〉 = 〈KX , α〉 · F1(n) +
∑
i

Gki(α, n) · F2,i(n),

where F1(n) and F2,i(n) are polynomials of the classes Gk(x, n),
k ≥ 0. Moreover, the coefficients of F1(n), F2,i(n) and the integers
k, ki depend only on λ and m (hence, are independent of n, α and
X).

Proof. Follow from the proof of Theorem 2.9 in [LQW4] by setting
I = C · x ⊂ H∗(X) and I = C · x+ C · α ⊂ H∗(X) respectively. q.e.d.

Next, we define some operations which will be used intensively.

Definition 2.9. Let A = a−n1(α1) · · · a−nl
(αl)|0〉 where ni > 0.

(i) If B = a−m1(β1) · · · a−ms(βs)|0〉 with m1, . . . ,ms > 0, then define

A ◦B = a−n1(α1) · · · a−nl
(αl)a−m1(β1) · · · a−ms(βs)|0〉.(2.2)

(ii) We use the symbol B ⊂ A if B = a−ni1
(αi1) · · · a−nis

(αis)|0〉 with
1 ≤ i1 < . . . < is ≤ l. In this case, we use A/B or AB−1 or

A

B
to denote the cohomology class obtained from A by deleting the
factors a−ni1

(αi1), . . . , a−nis
(αis).

3. The ring H∗
CR(X

(n))

For an orbifold Z, the ring H∗
CR(Z) was defined by Chen and Ruan

[ChR]. For a global orbifold M/G where M is a complex manifold with
a finite group G action, the ring structure of H∗

CR(M/G) was further
clarified in [FG, Uri].

Next, let X be a closed complex manifold, and let X(n) = Xn/Sn

be the n-th symmetric product of X. An explicit description of the
ring structure of H∗

CR(X
(n)) has been obtained in [FG]. An alterna-

tive approach to the ring structure of H∗
CR(X

(n)) is given in [QW] via
Heisenberg algebra actions. Put

FX =

+∞⊕
n=0

H∗
orb(X

(n)).

In [QW], for α ∈ H∗(X) and n ∈ Z, the Heisenberg operators pn(α) ∈
End(FX) were defined via the restriction and induction maps. More-

over, for k ≥ 0, the elements Ok(α, n) ∈ H∗
CR(X

(n)) were introduced via
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the Jucys–Murphy elements in the symmetric groups. Put Ok(α, n) =
1/k! · Ok(α, n). Let the operator Ok(α) ∈ End(FX) be the orbifold

ring product with Ok(α, n) in H∗
CR(X

(n)) for every n ≥ 0. The opera-
tor O1(1X) plays the role of the boundary operator d = G1(1X ) for the

Hilbert schemes. Define p
{k}
m (α) inductively by putting p

{0}
m (α) = pm(α)

and p
{k}
m (α) = [O1(1X), p

{k−1}
m (α)] for k ≥ 1. The following result was

proved in [QW].

Theorem 3.1. Let X be a closed complex manifold. Then,

(i) the operators pn(α) ∈ End(FX) (n ∈ Z, α ∈ H∗(X)) generate a
Heisenberg (super)algebra with commutation relations given by

[pm(α), pn(β)] = mδm,−n · 〈α, β〉 · IdFX
,

where n,m ∈ Z, α, β ∈ H∗(X), and FX is an irreducible repre-
sentation of the Heisenberg algebra with the vacuum vector |0〉 =
1 ∈ H∗(pt) ∼= C.

(ii) O1(1X) = −1

6
: p3 :0 (τ∗1X). In general, Ok(α) is equal to

(−1)k ·
⎛⎝ ∑


(λ)=k+2,|λ|=0

1

λ!
pλ(τ∗α) +

∑

(λ)=k,|λ|=0

s(λ)− 2

24λ!
pλ(τ∗(eXα))

⎞⎠ .

(iii) [Ok(α), p−1(β)] =
1

k!
p
{k}
−1 (αβ), and both sides are equal to

(−1)k ·

⎛⎜⎝ ∑
�(λ)=k+1
|λ|=−1

1

λ!
pλ(τ∗(αβ)) +

∑
�(λ)=k−1
|λ|=−1

s(λ)− 1

24λ!
pλ(τ∗(eXαβ))

⎞⎟⎠ .

Note that there is a fundamental sign difference in the two commu-
tators of Theorems 2.1 (i) and Theorems 3.1 (i). Since Ok(α, n) =
Ok(α)p−1(1X)n|0〉/n!, we see from Theorem 3.1 (ii) that Ok(α, n) is
equal to

(−1)k ·

⎛⎜⎝ ∑
0≤j≤k,λ�(j+1)
�(λ)=k−j+1

1

λ! · |λ|! · 1−(n−j−1)p−λ(τ∗α)|0〉(3.1)

+
∑

0≤j≤k

∑
λ�(j+1)

�(λ)=k−j−1

1

λ! · |λ|! ·
|λ|+ s(λ)− 2

24
· 1−(n−j−1)p−λ(τ∗(eXα))|0〉

⎞⎟⎠.

Moreover, as noted in [QW], the ring H∗
CR(X

(n)) is completely deter-
mined by Theorem 3.1 (i), the formula of O1(1X) in Theorem 3.1 (ii),

and Theorem 3.1 (iii). In particular, the ring H∗
CR(X

(n)) is generated
by the classes Ok(α, n) where k ≥ 0 and α runs over a fixed linear basis
of H∗(X).
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4. Ruan’s Cohomological Crepant Resolution Conjecture

In this section, we briefly review the definition of Gromov–Witten
invariants, and recall Ruan’s Cohomological Crepant Resolution Con-
jecture for the Hilbert–Chow morphisms.

Let Y be a smooth projective variety. For a fixed homology class
β ∈ H2(Y,Z), let Mg,k(Y, β) be the coarse moduli space parameterizing
all the stable maps [μ : (D; p1, . . . , pk)→ Y ] such that μ∗[D] = β and the
arithmetic genus of D is g. The i-th evaluation map evi : Mg,k(Y, β)→
Y is defined by evi([μ : (D; p1, . . . , pk) → Y ]) = μ(pi) ∈ Y . It is
known [FP, LT1, LT2, Beh1, BF] that Mg,k(Y, β) is projective and

has a virtual fundamental cycle [Mg,k(Y, β)]
vir ∈ Ad0(Mg,k(Y, β)) where

d0 = −(KY · β) + (dim(Y ) − 3)(1 − g) + k. Let α1, . . . , αk ∈ H∗(Y ),
and ev = ev1 × · · · × evk : Mg,k(Y, β) → Y k. Then, the k-pointed
Gromov–Witten invariant is defined by

〈α1, . . . , αk〉g,β =

∫
[Mg,k(Y,β)]vir

ev∗(α1 ⊗ . . .⊗ αk).(4.1)

Next, let X be a smooth complex projective surface. Define the
homology class

βn = M2(x1) + x2 + . . . + xn−1 ∈ H2(X
[n];Z),(4.2)

where x1, . . . , xn−1 are fixed distinct points in X. An irreducible curve
C ⊂ X [n] is contracted to a point by ρn if and only if C ∼ dβn for some
integer d > 0. Let q be a formal variable. For w1, w2, w3 ∈ H∗(X [n]),
define a function of q:

〈w1, w2, w3〉ρn(q) =
∑
d≥0

〈w1, w2, w3〉0,dβn qd.

Definition 4.1. The quantum corrected cohomology ring H∗
ρn(X

[n])

is the groupH∗(X [n]) together with the quantum corrected product w1·ρn
w2 defined by

〈w1 ·ρn w2, w3〉 = 〈w1, w2, w3〉ρn(−1).(4.3)

Conjecture 4.2. (Ruan’s Cohomological Crepant Resolution Con-
jecture) The quantum corrected cohomology ring H∗

ρn(X
[n]) is ring iso-

morphic to H∗
CR(X

(n)).

Our idea to deal with Conjecture 4.2 is to use the axiomatization
approach mentioned in the Introduction. On one hand, letting A[n] =

H∗
CR(X

(n)) and G̃k(α, n) = Ok(α, n), we see from Theorem 3.1 that

both (A1) and (A2) in the Introduction hold for the rings H∗
CR(X

(n)).

On the other hand, by [Gro, Nak], the rings A[n] = H∗
ρn(X

[n]) also

satisfy (A1) with A = A[1] = H∗(X). To deal with Axiom (A2) for

H∗
ρn(X

[n]), we now define the elements G̃k(α, n) ∈ H∗
ρn(X

[n]).



510 W.-P. LI & Z. QIN

Definition 4.3. Let k ≥ 0 and α ∈ H∗(X). Define G̃k(α, n) ∈
H∗

ρn(X
[n]) to be∑

0≤j≤k

∑
λ�(j+1)

�(λ)=k−j+1

(−1)|λ|−1

λ! · |λ|! · 1−(n−j−1)a−λ(τ∗α)|0〉(4.4)

+
∑

0≤j≤k

∑
λ�(j+1)

�(λ)=k−j−1

(−1)|λ|
λ! · |λ|! ·

|λ|+ s(λ)− 2

24
· 1−(n−j−1)a−λ(τ∗(eXα))|0〉.

Remark 4.4. We have G̃0(α, n) = 1−(n−1)a−1(α)|0〉 = G0(α, n) and

G̃1(α, n) = −1

2
1−(n−2)a−2(α)|0〉 = G1(α, n).

In general, we see from Theorem 2.5 that the class G̃k(α, n) consists of
those terms in Gk(α, n) which do not contain the canonical divisor KX .

Note from the definition of the operator G̃k(α) on ⊕nH
∗
ρn(X

[n]) that

〈G̃k(α)w1, w2〉 = 〈G̃k(α, n) ·ρn w1, w2〉 = 〈G̃k(α, n), w1, w2〉ρn(−1),
for w1, w2 ∈ H∗

ρn(X
[n]). For convenience, we introduce the operator

G̃k(α; q) by

〈G̃k(α; q)w1, w2〉 =
∑
d≥0

〈G̃k(α, n), w1, w2〉0,dβn qd.(4.5)

In the rest of this section, let the surface X be simply connected. By

Remark 4.4, G̃1(1X , n) = G1(1X , n). Thus by [LL],

G̃1(1X) = −1

6
: a3 :0 (τ3∗1X).(4.6)

So (1.1) holds for the rings H∗
ρn(X

[n]) as well. To verify Ruan’s conjec-

ture for ρn, it remains to show that (1.2) holds for H∗
ρn(X

[n]). For the
right-hand-side of (1.2), we have the following which follows from (4.6)
and the same proof of Theorem 2.3 (i.e., Theorem 4.4 in [LQW3]).

Lemma 4.5. Let k ≥ 0, m ∈ Z, and α ∈ H∗(X). Then, a
{k}
m (α) is

equal to

(−m)kk!

⎛⎜⎝ ∑
�(λ)=k+1
|λ|=m

1

λ!
aλ(τ∗α)−

∑
�(λ)=k−1
|λ|=m

s(λ)− 1

24λ!
aλ(τ∗(eXα))

⎞⎟⎠. q.e.d.

Comparing with Theorem 2.3, we see that a
{k}
m (α) consists of those

terms in a
(k)
m (α) which do not contain the canonical divisor KX .

Lemma 4.6. Let X be a smooth toric surface. Then (1.2) holds for

X [n].
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Proof. Recall that P2 and the Hirzebruch surfaces Fa are smooth
toric surfaces, and admit T = (C∗)2-actions. By the Proposition in
Subsection 2.5 of [Ful], X is obtained from P2 or Fa by a succession of
blow-ups at T-fixed points.

Now let aTm(α),H∗,T
ρn (X [n]) and pTm(α),H∗,T

CR(X
(n)) be the equivariant

versions of am(α),H∗
ρn(X

[n]) and pm(α),H∗
CR(X

(n)) respectively. By
[Che], the equivariant version of Conjecture 4.2 holds for X, i.e., there
exists a ring isomorphism

ΨT
n : H∗,T

CR(X
(n))→ H∗,T

ρn (X [n])

sending
√−1n1+...+ns−s

pT−n1
(α1) · · · pT−ns

(αs)|0〉 to
aT−n1

(α1) · · · aT−ns
(αs)|0〉.

Note that up to a scalar factor which depends only on the partition
λ = (n1, . . . , ns) and the tuple −→α = (α1, . . . , αs), our notation

pT−n1
(α1) · · · pT−ns

(αs)|0〉
coincides with the notation λ

(−→α ) used in [Che]. Also, our notation

aTm(α) coincides with the notation pm(α) used in [Che]. The integer
n1 + . . . + ns − s is the age. Passing the map ΨT

n to the ordinary
cohomology, we obtain a ring isomorphism

Ψn : H∗
CR(X

(n))→ H∗
ρn(X

[n]),

which sends
√−1n1+...+ns−s

p−n1(α1) · · · p−ns(αs)|0〉 to
a−n1(α1) · · · a−ns(αs)|0〉.

Using (3.1) and (4.4), we see that Ψn(
√−1kOk(α, n)) = G̃k(α, n).

Next, let A = a−n1(α1) · · · a−ns(αs)|0〉 ∈ H∗(X [n−1]). By definition,

[G̃k(α), a−1(β)]A = G̃k(α)a−1(β)A− a−1(β)G̃k(α)A

= G̃k(α, n) · a−1(β)A− a−1(β)
(
G̃k(α, n − 1) · A).

Put P = p−n1(α1) · · · p−ns(αs)|0〉 and a = n1 + . . . + ns − s. Let •
denote the orbifold ring product. Then, Ψn(p−1(β)(

√−1kOk(α, n−1)•√−1aP )) equals

a−1(β)Ψn

(√−1kOk(α, n − 1) • √−1aP
)
= a−1(β)

(
G̃k(α, n − 1) · A),

and Ψn

(√−1ap−1(β)P
)
= a−1(β)A. So [G̃k(α), a−1(β)]A is equal to

Ψn

(√−1kOk(α, n) •
√−1ap−1(β)P

)
− Ψn

(
p−1(β)

(√−1kOk(α, n − 1) • √−1aP )).
Since Ok(α, n) • p−1(β)P = Ok(α)p−1(β)P , we obtain

[G̃k(α), a−1(β)]A =
√−1k+a ·Ψn

(
[Ok(α), p−1(β)]P

)
.
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By Theorem 3.1 (iii), we conclude that [G̃k(α), a−1(β)]A is equal to

√−1k+a · (−1)k ·Ψn

⎛⎜⎝ ∑
�(λ)=k+1
|λ|=−1

1

λ!
pλ(τ∗(αβ))P

+
∑

�(λ)=k−1
|λ|=−1

s(λ)− 1

24λ!
pλ(τ∗(eXαβ))P

⎞⎟⎠ .

Finally, by the definition of Ψn and Lemma 4.5, [G̃k(α), a−1(β)]A is
equal to ∑

�(λ)=k+1
|λ|=−1

1

λ!
aλ(τ∗(αβ))A −

∑
�(λ)=k−1
|λ|=−1

s(λ)− 1

24λ!
aλ(τ∗(eXαβ))A

=
1

k!
a
{k}
−1 (αβ)A.

Therefore, [G̃k(α), a−1(β)] = 1/k! · a{k}−1 (αβ). Hence (1.2) holds. q.e.d.

5. Extremal Gromov–Witten invariants of Hilbert schemes

In this section, we study the structure of extremal Gromov–Witten
invariants of X [n] for a smooth projective surface X. We will use the
ideas and approaches in [LiJ], and adopt many presentations, notations
and results directly from [LiJ]. In addition, the product formula in
[Beh2] and the co-section localization in [KL1, KL2, LL] for Gromov–
Witten theory will play important roles. For convenience, we assume
that X is simply connected.

5.1. Hilbert schemes of α-points and partial equivalence. In this
subsection, we introduce some new spaces related to Hilbert schemes
to provide a platform where, in the subsequent subsections, we can
construct cycles Zn,d ∈ H∗((X

[n])3) derived from various virtual cycles
of moduli spaces of stable maps to these new spaces.

Let Y → T be a smooth family of projective surfaces over a smooth,
projective base T . The relative Hilbert scheme of length-n 0-dimensional

closed subschemes is denoted by Y
[n]
T . It is over T and for any t ∈ T ,

Y
[n]
T ×T {t} = (Yt)

[n]. Define its relative fiber product Y n
T = Y ×T · · ·×TY

(n times), and its relative symmetric product Y
(n)
T = Y n

T /Sn.

Let Λ be a finite set with |Λ| = n. We define Y
[Λ]
T = Y

[n]
T , Y

(Λ)
T = Y

(n)
T ,

and for accounting purpose, denote

Y Λ
T = {(xa)a∈Λ|xa ∈ Yt for some t ∈ T}.
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Using the Hilbert–Chow morphism ρΛ := ρn : Y
[Λ]
T → Y

(Λ)
T , we define

the Hilbert scheme of Λ-points to be

Y
[[Λ]]
T = Y

[Λ]
T ×

Y
(Λ)
T

Y Λ
T .(5.1)

These spaces Y
[[Λ]]
T can be thought of as Hilbert schemes of ordered

points.
Let PΛ be the set of partitions or equivalence relations on Λ. When

α ∈ PΛ consists of l equivalence classes α1, . . . , αl, write α = (α1, . . . , αl).
For such α, we form the relative Hilbert scheme of α-points as follows:

Y
(α)
T =

l∏
i=1

Y
(αi)
T , Y

[α]
T =

l∏
i=1

Y
[αi]
T , Y

[[α]]
T =

l∏
i=1

Y
[[αi]]
T ,(5.2)

where the products are taken relative to T . Note that Y
[[α]]
T = Y

[α]
T ×

Y
(α)
T

Y Λ
T . The “indexing” morphism is defined to be the second projection

(5.3) in : Y
[[α]]
T −→ Y Λ

T .

The spaces Y
[[α]]
T and Y

[[β]]
T are birational. To make this precise, we

first fix our convention on a partial ordering on PΛ. We agree

“α ≥ β”⇐⇒ “a ∼β b⇒ a ∼α b”.

Namely, α ≥ β if β is finer than α. When β = (β1, . . . , βr), we put

α ∧ β = (α1 ∩ β1, . . . , αl ∩ βr),

which is the largest element among all that are less than or equal to
both α and β. Note that PΛ contains a maximal and a minimal element.
The maximal element is Λ consisting of a single equivalence class Λ; the
minimal element is 1Λ whose equivalence classes are single element sets.

For α > β ∈ PΛ, define

Ξα
β = {x ∈ Y Λ

T | ∃ a, b ∈ Λ so that xa = xb, a ∼α b, a �∼β b}.
For α �= β ∈ PΛ, define Ξα

β = Ξα
α∧β ∪ Ξβ

α∧β. The discrepancy between

Y
[[α]]
T and Y

[[β]]
T (in Y

[[α]]
T ) and its complement are defined to be

(5.4) Ξ
[[α]]
β = Y

[[α]]
T ×Y Λ

T
Ξα
β , and Y

[[α]]
β = Y

[[α]]
T − Ξ

[[α]]
β .

More precisely, by Lemma 1.2 in [LiJ], there exists a functorial open

embedding ζβα : Y
[[α]]
β → Y

[[β]]
T induced by the universal property of the

respective moduli spaces such that Im(ζβα) = Y
[[β]]
α . Thus we obtain an

isomorphism (equivalence) ζβα : Y
[[α]]
β

∼=−→Y
[[β]]
α . We define

Y
[[≤α]]
T =

(∐
β≤α

Y
[[β]]
T

)
/ ∼,(5.5)
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where the equivalence is by identifying Y
[[β]]
γ ⊂ Y

[[β]]
T and Y

[[γ]]
β ⊂ Y

[[γ]]
T

via ζγβ for all β, γ ≤ α. Note that Y
[[≤α]]
T is non-separated (except when

α = 1Λ), and contains the spaces Y
[[≤β]]
T , β ≤ α, as open subschemes.

Even though the non-separated space Y
[[≤β]]
T comes into the picture,

in later subsections, we only perform standard algebraic topological op-
erations on these non-Hausdorff spaces such as pull-backs of cohomology
classes and cap products. These operations are allowed on any topolog-
ical spaces (see [GH, Iv, Sp]).

5.2. Stable maps to Hilbert schemes of ordered points. We in-
corporate stable maps into the above constructions. This is motivated
by the standard decompositions of stable morphisms introduced in [LL].
For d ≥ 0, we let

Y
[n,d]
T := M0,3(Y

[n]
T , dβn)

be the relative moduli space of 3-pointed genus-0 stable maps to Y
[n]
T of

class dβn.

We study the standard decomposition of [u,C] ∈ Y
[n,d]
T . Given

[u,C] ∈ Y
[n,d]
T , composed with the Hilbert–Chow morphism ρn, we ob-

tain ρn◦u : C → Y
(n)
T . Since the fundamental class of u(C) is a multiple

of the null class βn, and C is connected, ρn ◦ u is a constant map. We

express ρn ◦ u(C) =
∑l

i=1 nixi, where ni ∈ N+ such that
∑

ni = n,
and xi are distinct. With such data, for p ∈ C, we can decompose

u(p) = z1(p) ∪ · · · ∪ zl(p) such that zi(p) ∈ Y
[ni]
T , and ρni(zi(p)) = nixi.

Because xi are distinct, such decomposition is unique. We define

(5.6) ui : C → Y
[ni]
T , ui(p) = zi(p).

Because of the uniqueness of the decomposition, one checks that ui are
morphisms; since u∗[C] = dβn, we have ui∗[C] = diβni for some di ≥ 0
such that

∑
di = d. Using such data, we can define the Hilbert–Chow

map from Y
[n,d]
T to the weighted symmetric product of Y .

For the pair (n, d), we define the weighted symmetric product of Y
to be

Y
(n,d)
T =

{
l∑

i=1

di[nixi]
∣∣1 ≤ l ≤ n, x1, · · · , xl ∈ Yt distinct, for a t ∈ T

}
.

Here the formal summation
∑

di[nixi] is subject to the constraints
di ∈ N,

∑
di = d, ni ∈ N+ and

∑
ni = n. Also, [nixi] represents

the multiplicity-ni 0-cycle supported at xi, and di is its weight. Thus

di[nixi] �= [dinixi] and 0[xi] is non-trivial. Endow Y
(n,d)
T with the obvi-

ous topology so that it is a stratified space such that the forgetful map

Y
(n,d)
T → Y

(n)
T is continuous, proper and having finite fibers.
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We define the Hilbert–Chow map:

(5.7) hc : Y
[n,d]
T −→ Y

(n,d)
T , [u] �→

l∑
i=1

di[nixi],

where (di, ni, xi) are data associated to (ui) from (5.6). Define hc1 :

Y
[n,d]
T → Y

(n)
T to be the composite of hc with the forgetful map Y

(n,d)
T →

Y
(n)
T . For a finite set Λ (of order n), define

Y
[Λ,d]
T = Y

[n,d]
T ,

Y
[[Λ,d]]
T = Y

[Λ,d]
T ×

Y
(n)
T

Y Λ
T = Y

[n,d]
T ×

Y
(n)
T

Y Λ
T .(5.8)

To simplify notations, the composition of Y
[[Λ,d]]
T → Y

[Λ,d]
T and hc1 :

Y
[Λ,d]
T → Y

(n)
T will again be denoted by hc1.

Definition 5.1. We call (α, δ) a weighted partition of Λ if α =
(α1, . . . , αl) ∈ PΛ and δ = (δ1, . . . , δl), δi ≥ 0 for every i. We define∑

i δi to be the total weight of (α, δ). For (Λ, d), we denote by PΛ,d the
set of all weighted partitions of Λ with total weight d. We say that
(α, δ) ≥ (β, η) if α ≥ β and

∑
βi⊂αj

ηi = δj for every j.

For (α, δ) ∈ PΛ,d, define

Y
[α,δ]
T = Y

[α1,δ1]
T ×T · · · ×T Y

[αl,δl]
T .

We form the relative moduli space of 3-pointed genus-0 degree-δ α-stable
morphisms to the Hilbert scheme of points:

(5.9) Y
[[α,δ]]
T = Y

[[α1,δ1]]
T ×T · · · ×T Y

[[αl,δl]]
T .

5.3. Birationality. The key result Lemma 5.3 provides the comparison

between Y
[[α,δ]]
T and Y

[[β,η]]
T , which will be used in later subsections for

the comparison of normal cones for Y
[[α,δ]]
T and Y

[[β,η]]
T .

For (α, δ) > (β, η),1 the pair Y
[[α,δ]]
T and Y

[[β,η]]
T are “birational”. To

make this more precise, we introduce some notations. Given an element

ξ = ([u,C], (ya)) ∈ Y
[[Λ,d]]
T = Y

[n,d]
T ×

Y
(n)
T

Y Λ
T ,

where hc([u]) =
∑l

i=1 di[nixi] and such that
∑

nixi =
∑

a ya (as 0-cycles

in Y
(n)
T ), we define a pair (a(ξ), d(ξ)) ∈ PΛ,d by

a(ξ) = (a1, · · · , al), ai = {a ∈ Λ | ya = xi}; d(ξ) = (d1, · · · , dl).
Definition 5.2. For (β, η) ∈ PΛ,d, we define

Y
[[Λ,d]]
(β,η) =

{
ξ ∈ Y

[[Λ,d]]
T | (a(ξ), d(ξ)) ≤ (β, η)

}
,

Y
[[β,η]]
(Λ,d) = {(ξ1, · · · , ξr) ∈ Y

[[β,η]]
T | hc1(ξ1), · · · , hc1(ξr) mutually disjoint}.

1Without further mentioning α = (α1, . . . , αl) and β = (β1, · · · , βr).
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For (β, η) ≤ (α, δ), we define (as fiber products over T )

Y
[[α,δ]]
(β,η) =

l∏
i=1

Y
[[αi,δi]]
(β∩αi,η∩δi)

and Y
[[β,η]]
(α,δ) =

l∏
i=1

Y
[[β∩αi,η∩δi]]
(αi,δi)

.

Lemma 5.3. For (α, δ) > (β, η), we have a natural, proper surjective
morphism

(5.10) ζβ,ηα,δ : Y
[[α,δ]]
(β,η) −→ Y

[[β,η]]
(α,δ) .

Proof. By definition, we only need to prove the case (α, δ) = (Λ, d).

Let ξ = ([u,C, pi], (ya)) ∈ Y
[[Λ,d]]
(β,η) , with hc([u]) =

∑l
i=1 di[nixi]. Let

ui : C → Y
[ni]
T be as in (5.6). Denote a(ξ) = (a1, · · · , al) and d(ξ) =

(d1, · · · , dl). Since ξ ∈ Y
[[Λ,d]]
(β,η) , we have (a(ξ), d(ξ)) ≤ (β, η). Thus we

can form

uβi
: C −→ Y

[ηi]
T ; uβi

(p) = ∪aj⊂βi
uj(p) ∈ Y

[ηi]
T .

Because the degree of uj is dj , and (a(ξ), d(ξ)) ≤ (β, η), the degree of

uβi
is ηi. For 1 ≤ i ≤ r, let ustβi

: Cβi
−→ Y

[ηi]
T be the stabilization

of [uβi
, C, pi]. Then (ustβ1

, · · · , ustβr
) ∈ Y

[[β,η]]
T . It is routine to check

that

ζβ,ηΛ,d : Y
[[Λ,d]]
(β,η) −→ Y

[[β,η]]
T ; ([u,C], (ya)Λ) �→ (ustβ1

, · · · , ustβr
)

defines a morphism. By the definition of Y
[[β,η]]
(Λ,d) , we have Im(ζβ,ηΛ,d) ⊂

Y
[[β,η]]
(Λ,d) .

We now show that Im(ζβ,ηΛ,d) = Y
[[β,η]]
(Λ,d) . Note that a closed point in

Y
[[β,η]]
(Λ,d) is an r-tuple (ξ1, · · · , ξr) with ξi ∈ Y

[[βi,ηi]]
T such that

hc1(ξ1), · · · hc1(ξr)
are mutually disjoint. Let ξi = [ui, Ci, pi,j]. Since [Ci, pi,j ] are 3-pointed
genus-0 nodal curves, we can find a 3-pointed genus-0 [C, pj ] and con-
traction morphisms φi : C → Ci so that φi(pj) = pi,j, j = 1, 2, 3. Since
hc1(ξ1), · · · hc1(ξr) are mutually disjoint, the assignment p �→ u(p) =

u1 ◦ φ1(p) ∪ · · · ∪ ur ◦ φr(p) ∈ Y
[n]
T defines a morphism u : C → Y

[n]
T .

We let ξ = [u,C, pj ]
st be its stabilization. Then ξ ∈ Y

[[Λ,d]]
(β,η) , and

ζβ,ηΛ,d(ξ) = (ξ1, · · · , ξr). Hence Im(ζβ,ηΛ,d) = Y
[[β,η]]
(Λ,d) .

We check that ζβ,ηΛ,d is proper. Let s0 ∈ S be a pointed smooth curve

over T ; let S∗ = S − s0. Suppose ξ∗ is an S∗-family in Y
[[Λ,d]]
(β,η) so that

ζβ,ηΛ,d(ξ
∗) = (ξ∗1 , · · · , ξ∗r ) extends to an S-family (ξ1, · · · , ξr), we need
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to show that, possibly after a base change, ξ∗ extends to ξ so that

ζβ,ηΛ,d(ξ) = (ξ1, · · · , ξr).
Since Y

[[Λ,d]]
T is T -proper, possibly after a base change, we can extend

ξ∗ to an S-family ξ in Y
[[Λ,d]]
T . Let ξ be given by ([u,C, pj ], (ya)), where

each term implicitly is an S-family. Let yβi
=
∑

a∈βi
ya : S → Y

(βi)
T .

By definition, ξ(s0) = ξ ×S {s0} ∈ Y
[[Λ,d]]
(β,η) if yβ1(s0), · · · , yβr(s0) are mu-

tually disjoint. Since ζβ,ηΛ,d(ξ
∗) = (ξ∗1 , · · · , ξ∗r ), we have yβi

|S∗ = hc1 ◦ ξ∗i .
Since Y

(n)
T is separated, we have yβi

(s0) = hc1(ξi(s0)). Further, since

(ξ1(s0), · · · , ξr(s0)) ∈ Y
[[β,η]]
(Λ,d) , hc1(ξ1(s0)), · · · , hc1(ξr(s0)) are mutually

disjoint. This proves that ξ(s0) ∈ Y
[[Λ,d]]
(β,η) . Then ξ lies in Y

[[Λ,d]]
(β,η) , and by

the separatedness of Y
[[Λ,d]]
T , we have ζβ,ηΛ,d(ξ) = (ξ1, · · · , ξr). This proves

the properness. q.e.d.

The morphism ζβ,ηα,δ fits into a fiber diagram that will be crucial for our

virtual cycle comparison. As we only need the case where (β, η) < (α, δ)
is derived by a single splitting, meaning that r = l + 1, we will state it
in the case (α, δ) = (Λ, d), and (β, η) = ((β1, β2), (d1, d2)).

We first introduce necessary notation, following Behrend [Beh2].
Given a semi-group G = N or N2, we call a triple (C, pj , τ) a pointed
G-weighted nodal curve if (C, pi) is a pointed nodal curve and τ is a map
from the set of irreducible components of C to G. We say (C, pj , τ) is
stable if for any C0

∼= P1 ⊂ C, either τ([C0]) �= 0 or C0 contains at
least three special points of (C, pj). (A special point of (C, pj) is either
a node or a marked point.)

We denote by M0,3(d) the Artin stack of stable total weights d N-
weighted 3-pointed genus-0 nodal curves. We denote by D(d1, d2) the
Artin stack of the data{

(C, pj , τ)→ (C1, p1,j, τ1), (C, pj , τ)→ (C2, p2,j , τ2)
}
,

so that (C, pj , τ) is a stable total weight (d1, d2) N
2-weighted 3-pointed

genus-0 nodal curve, (Ci, pi,j, τi) ∈ M0,3(di), and the two arrows induce
isomorphisms (C, pj ,pri ◦ τ)st ∼= (Ci, pi,j, τi), where pri : N2 → N is
the i-th projection. (See the diagram (3) in [Beh2] for details.) For
i = 1, 2, define εi : D(d1, d2) → M0,3(di) to be the map sending the
element

ξ :=
{
(C, pj , τ)→ (C1, p1,j, τ1), (C, pj , τ)→ (C2, p2,j , τ2)

}
,

to (Ci, pi,j, τi) which is indeed stable by the definition of the data ξ.

Lemma 5.4. Let β = (β1, β2) be a partition of length two, and let
η = (d1, d2) with d = d1 + d2. We have a Cartesian diagram
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Y
[[Λ,d]]
(β,η) −−−−→ Y

[[β,η]]
(Λ,d)⏐⏐ ⏐⏐ 

D(d1, d2)
(ε1,ε2)−−−−→ M0,3(d1)×M0,3(d2)

Further, (ε1, ε2) is proper and birational.

Proof. The proof is a direct application of Proposition 5 in [Beh2]

plus the definition of Y
[[Λ,d]]
(β,η) . Note that the second vertical arrow is

induced by Y
[[β,η]]
(Λ,d) ⊂ Y

[[β1,d1]]
T ×T Y

[[β2,d2]]
T and the forgetful morphism

Y
[[βi,di]]
T →M0,3(di). q.e.d.

5.4. Virtual classes and comparison of normal cones. As Y n
T →

Y
(n)
T is a finite quotient map by a finite group, it is flat. So the tauto-

logical projection ρα,δ : Y
[[α,δ]]
T −→ Y

[α,δ]
T is flat as well. Let [Y

[α,δ]
T ]vir

be the virtual class of Y
[α,δ]
T . We define [Y

[[α,δ]]
T ]vir to be the pullback

of [Y
[α,δ]
T ]vir via ρα,δ. Our goal is to inductively construct cycle repre-

sentatives of the virtual classes of Y
[[α,δ]]
T that are compatible via the

comparison ζβ,ηα,δ .

We recall the construction of virtual cycles in [BF, LT1]. Let

(E[α,δ])
∨ → L

Y
[α,δ]
T /T×(M0,3)l

be the standard perfect relative obstruction theory2 of Y
[α,δ]
T → T ×

(M0,3)
l; let C[α,δ] ⊂ F[α,δ] := h1/h0(E[α,δ]) be its intrinsic normal cone.

To use analytic Gysin map, we put it in a vector bundle. Following [BF,

LT1], we can find a vector bundle (locally free sheaf) E[α,δ] on Y
[α,δ]
T and

a surjection of bundle-stack E[α,δ] → h1/h0(E[α,δ]). Let C[α,δ] ⊂ E[α,δ] be

the flat pullback of C[α,δ]. Then [Y
[α,δ]
T ]vir = 0!E[α,δ]

[C[α,δ]], the image of

the Gysin map of the zero-section of E[α,δ]. Let E[[α,δ]] = ρ∗α,δE[α,δ] where

ρα,δ : Y
[[α,δ]]
T −→ Y

[α,δ]
T is the tautological projection, and C[[α,δ]] ⊂ E[[α,δ]]

be the flat pullback of C[α,δ] via E[[α,δ]] → E[α,δ]. The virtual class of

Y
[[α,δ]]
T is equal to[
Y

[[α,δ]]
T

]vir
= (ρα,δ)

∗[Y
[α,δ]
T ]vir = 0∗E[[α,δ]]

[C[[α,δ]]] ∈ H∗(|Y [[α,δ]]
T |;Q),

where 0∗E[[α,δ]]
is the Gysin homomorphism of the zero section of E[[α,δ]],

and |Y [[α,δ]]
T | is the coarse moduli space of Y

[[α,δ]]
T . Also, put E[[α,δ]] =

ρ∗α,δE[α,δ], and let F[[α,δ]] = h1/h0(E[[α,δ]]) = ρ∗α,δF[α,δ] be the flat pullback.
Let C[[α,δ]] ⊂ F[[α,δ]] be the flat pullback of C[α,δ] via F[[α,δ]] → F[α,δ].

2Here E[α,δ] is a derived object locally presented as a two-term complex of locally

free sheaves placed at [0, 1].
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We now compare the cycles C[[α,δ]] using ζβ,ηα,δ . The tricky part is that

the vector bundles E[[α,δ]] are not comparable. Thus we will state the
comparison using cycles in F[[α,δ]], and later will use the obstruction
sheaf for accounting purpose.

Lemma 5.5. For pairs (α, δ) > (β, η), we have canonical isomor-
phisms

ϕβ,η
α,δ : (ζβ,ηα,δ )

∗(F[[β,η]]|Y [[β,η]]
(α,δ)

)
∼=−→F[[α,δ]]|Y [[α,δ]]

(β,η)

,

that satisfy the cocycle condition: we have ϕβ,η
α,δ ◦(ζβ,ηα,δ )

∗(ϕγ,ε
β,η) = ϕγ,ε

α,δ for

any triple (α, δ) > (β, η) > (γ, ε). Further, let ϕ̄β,η
α,δ : F[[α,δ]]|Y [[α,δ]]

(β,η)

−→
F[[β,η]]|Y [[β,η]]

(α,δ)

be the projection induced by ϕβ,η
α,δ , which is proper by Lemma

5.3. Then

(ϕ̄β,η
α,δ)∗[C[[α,δ]]|Y [[α,δ]]

(β,η)

] = [C[[β,η]]|Y [[β,η]]
(α,δ)

].

Proof. By induction, we only need to prove the case where �(β) =
�(α) + 1; by definition this follows from the case (α, δ) = (Λ, d) and
β = (β1, β2) with η = (d1, d2), which we suppose in the remainder of
this proof.

Let y = (ya) ∈ Y Λ
T be a closed point so that yβ1 = ρβ1((ya)a∈β1) ∈

Y
(β1)
T and yβ2 ∈ Y

(β2)
T (defined similarly) are disjoint. We then form

Vi = Y
[βi]
T ×

Y
(βi)
T

{yβi
} and V = Y

[Λ]
T ×

Y
(Λ)
T

{ρΛ(y)}.

Note that yβ1 ∩ yβ2 = ∅ implies that V1×T V2 ⊂ Y
[β]
T . Also, there exists

a canonical isomorphism ζΛβ : V1×T V2 → V . Let V̂i (respectively, V̂ ) be

the formal completion of Y
[βi]
T (respectively, Y

[Λ]
T ) along Vi (respectively,

V ). The isomorphism ζΛβ induces

ζ̂Λβ : V̂1 ×T V̂2 −→ V̂ ,

which is injective and smooth.
For notational simplicity, we denote M(V̂i) = M0,3(V̂i, di) with ι2 in

(5.11) being the tautological morphism induced by V̂i → Y
[βi]
T ; we let

M(V̂1 ×T V̂2) = M0,3(V̂1 ×T V̂2, (d1, d2)),

with ι1 in (5.11) being the tautological morphism induced by V̂1×T V̂2 →
Y

[Λ]
T .
We consider the following commutative diagram of arrows, where φ

is defined by sending [u,C, pj ] ∈ M(V̂1 ×T V̂2) to (ξ1, ξ2) with ξi =
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[πi ◦ u,C, pj ]st for πi : V̂1 ×T V̂2 → V̂i the projection; φ′ is induced by φ.

(5.11)

Y
[[Λ,d]]
(β,η)

ζβ,η
Λ,d−−−−→ Y

[[β,η]]
(Λ,d)#⏐⏐ϕ1

#⏐⏐ϕ2

M(V̂1 ×T V̂2)×Y
(β)
T

Y β
T

φ′

−−−−→ (
M(V̂1)×T M(V̂2)

)×
Y

(β)
T

Y β
T⏐⏐ ψ1

⏐⏐ ψ2

M(V̂1 ×T V̂2)
φ−−−−→ M(V̂1)×T M(V̂2)⏐⏐ ι1

⏐⏐ ι2

Y
[Λ,d]
T Y

[β,η]
T

We let C1 ⊂ F1 be the intrinsic normal cone in the bundle stack
of the obstruction complex of the prefect relative obstruction theory of

M(V̂1 ×T V̂2) → T ×M0,3. Because V̂1 ×T V̂2 → Y
[Λ,d]
T is injective and

smooth, we have ι∗1(C[Λ,d] ⊂ F[Λ,d]) = (C1 ⊂ F1). Since C[[Λ,d]] ⊂ F[[Λ,d]]

is the pullback of C[Λ,d] ⊂ F[Λ,d], we conclude ϕ∗
1(C[[Λ,d]] ⊂ F[[Λ,d]]) =

ψ∗
1(C1 ⊂ F1).
Similarly, letting C2 ⊂ F2 be the intrinsic normal cone in the bundle

stack of the obstruction complex of the prefect relative obstruction the-
ory of M(V̂1)×T M(V̂2)→ T × (M0,3)

2, we have ϕ∗
2(C[[β,η]] ⊂ F[[β,η]]) =

ψ∗
2(C2 ⊂ F2). Since ϕ1 and ϕ2 are injective and smooth, since φ′ is

proper, since the top square is commutative, and since the image of

ϕ1 (respectively, of ϕ2) covers Y
[[Λ,d]]
(β,η) (respectively, Y

[[β,η]]
(Λ,d) ) for y varying

through Y Λ
T satisfying yβ1 ∩yβ2 = ∅, to prove that F[[Λ,d]] = (ζβ,ηΛ,d)

∗F[[β,η]]

and (ζβ,ηΛ,d)∗[C[[Λ,d]]] = [C[[β,η]]], it suffices to show that we have the canon-
ical isomorphism and identity

(5.12) F1
∼= φ∗F2 and φ̃∗[C1] = [C2],

where φ̃ : F1 → F2 is the induced projection. But this follows from the
Cartesian square

M(V̂1 ×T V̂2)
φ−−−−→ M(V̂1)×T M(V̂2)⏐⏐ ⏐⏐ 

T ×D(d1, d2) −−−−→ T ×M0,3(d1)×M0,3(d2),

similar to the one stated in Lemma 5.4 (originally constructed in Propo-
sition 5 of [Beh2]). Since the lower horizontal line is birational, and T
is smooth and projective, by Theorem 5.0.1 in [Cos], we have the iso-
morphism and identities in (5.12). This proves the lemma. q.e.d.
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5.5. Multi-sections and pseudo-cycle representatives. In this
subsection, we use multi-sections to intersect the cycles C[[α,δ]] to ob-

tain pseudo-cycle representatives of [Y
[[α,δ]]
T ]vir.

In the remainder of this section, we will work with analytic topol-
ogy and smooth (C∞) sections. Let V be a vector bundle over a DM
stack W . In case W is singular, we stratify W into a union of smooth lo-
cally closed DM stacks W =

∐
Wα, and use continuous sections that are

smooth when restricted to each stratumWα. Without further comment-
ing, all sections used in this section are stratified sections; we denote
the space of such sections by C(W,V ). Also, we will use |W | and |V | to
denote the coarse moduli of W and V .

We recall the notion of multi-sections, following [FO, LT2]. We
first consider the case where W = U/G is a quotient stack and V
is a G-vector bundle on U . Let Sn(V ) → U be the n-th symmetric
product bundle of V . A liftable multi-section s of V (of multiplicity
n) is a G-equivariant section s ∈ C(U,Sn(V ))G such that there are n
sections s1, · · · , sn ∈ C(U, V ) so that s is the image of (s1, · · · , sn).
For a multi-section s ∈ C(U,Sn(V ))G that is the image of (s1, · · · , sn),
we define its integer multiple ms ∈ C(U,Smn(V ))G be the image of
(s1, · · · , s1, · · · , sn, · · · , sn), where each si is repeated m times. Given
two multi-sections s and s′ of multiplicities n and n′, we say that s and
s′ are equivalent, denoted by s ≈ s′, if n′s = ns′ as multi-sections.

In general, since W is a DM-stack, it can be covered by (analytic)
open quotient stacks Uα/Gα ⊂W , and the restriction V |Uα/Gα

= Vα/Gα

for Gα-vector bundles Vα on Uα. A multi-section s of V consists of an
analytic open covering Uα/Gα of W and a collection of liftable multi-
sections sα of V |Uα/Gα

so that for any pair (α, β), the pullbacks of sα and
sβ to Uα×W Uβ are equivalent. We denote the space of multi-sections of
V by Cmu(W,V ). (Thus multi-sections in this paper are always locally
liftable.)

The space of multi-sections of V has the same extension property as
the space of sections of a vector bundle on a manifold. The usual ex-
tension property of vector bundles on manifolds is proved by using the
partition of unity and the addition structure of the vector bundles. For
multi-sections, over a chart Uα/Gα, we define the sum of two (liftable)
multi-sections s and s′ (with lifting (si)

n
i=1 and (s′j)

m
j=1, respectively) be

the multiplicity nm multi-section that is the image of s+ s′ = (si+ s′j).
This local sum extends to sum of two multi-sections on W . Thus com-
bined with the partition of unity of |W |, we conclude that the mentioned
extension property holds for Cmu(W,V ).

We also have the following transversality property. Given a closed
integral substack C ⊂ V and a multi-section s ∈ Cmu(W,V ), we say
that s intersects C transversally if there is a stratification of C so that
each strata Cα of C lies over a strata of W , say Wα′ , and the section
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s|Wα′ intersects Cα transversally, meaning that the local liftings of s|Wα′

intersect Cα transversally. Given a cycle [C] =
∑

ni[Ci] with Ci closed
integral algebraic substacks, we say s intersects [C] transversally if it
intersects each Ci transversally.

Lemma 5.6. Let p : W ′ → W be a proper morphism of DM-stacks;
let V be a vector bundle on W and p̃ : p∗V → V be the induced pro-
jection. Suppose [C ′] ∈ Z∗(p

∗V ) is an algebraic cycle and [C] = p̃∗[C
′].

If s ∈ Cmu(W,V ) intersects [C] transversally, then p∗s ∈ Cmu(W
′, p∗V )

intersects [C ′] transversally.

Proof. We pick stratifications W =
∐

Wα and W ′ =
∐

W ′
α so that

p(W ′
α) = Wα and pα = p|W ′

α
: W ′

α → Wα are smooth. We then pick
a stratification C ′ =

∐
C ′
β so that each C ′

β lies over a stratum of W ′,

and that p̃|C′
β
: C ′

β → p̃(C ′
β) is smooth. Therefore, by the definition

of transversal to C, we are reduced to check when p : W ′ → W and
C ′ → p̃(C ′) are smooth. In this case, the statement of the lemma holds
by direct local coordinate checking. This proves the lemma. q.e.d.

We now construct pseudo-cycle representatives of the topological
Gysin map

(5.13) 0!V : Z∗V −→ H∗(|W |,Q),

via intersecting with multi-sections [FO, LT2, LT3, McD, Zin].
We assume W is proper. Let π : V → W and π̄ : |V | → |W | be

the projections. Given a closed integral algebraic substack C ⊂ V , we
find a multi-section s of V so that it intersects C transversally. Let
k = 2(rank V − dimC). By slightly perturbing s if necessary, we can
assume that there is a closed (stratifiable) subset R ⊂ |V | of dimRR ≤
k − 2 and an (analytic) open covering of W by quotient stacks Uα/Gα

so that, letting qα : Vα → |V | be the projections,

1) s|Uα/Gα
are images of sα,1, · · · , sα,mα in C(Uα, Vα);

2) there are topological spaces Sα,i and proper embeddings fα,i :
Sα,i → Vα such that
a) there are dense open subsets S◦

α,i ⊂ Sα,i so that S
◦
α,i are smooth

manifolds and fα,i|S◦
α,i

: S◦
α,i → Vα are smooth embeddings;

b) sα,i ∩ (C ×V Vα − q−1
α (R)) = fα,i(S

◦
α,i);

c) fα,i(Sα,i − S◦
α,i) ⊂ q−1

α (R).

Since s ∈ Cmu(W,V ), by definition,
∑mα

i=1 fα,i(S
◦
α,i) is Gα-equivariant.

Define

(5.14) (C ∩ s)||Vα| =
1

mα

(
mα∑
i=1

fα,i(Sα,i)

)
/Gα,

viewed as a sum of piecewise smooth k-dimensional Q-currents away
from a (k− 2)-dimensional subset. Since (sα,i) are local lifts of a global
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multi-section s, the Q-currents (5.14) patch to form a piecewise smooth
Q-currents with vanishing boundary in |V |−R. We denote this current
by C∩s. Since |W | is compact, the current C∩s defines a homology class
in Hk(|V |, R;Q) = Hk(|V |;Q). Applying the projection π̄ : |V | → |W |,
we obtain the image Q-current π̄(C ∩ s) and its associated homology
class [π̄(C ∩ s)] ∈ Hk(|W |;Q). Following the topological construction of
Gysin map of intersecting with the zero-section of V ,

0!V [C] = [π̄(C ∩ s)] ∈ H∗(|W |;Q)

is the image of [C] under the topological Gysin map 0!V . By the linearity

of Gysin map, this defines the topological 0!V in (5.13). The current
π̄(C ∩ s) is called a pseudo-cycle representative of the Gysin map.

We now assume in addition that F is a quotient sheaf φ : OW (V )→ F,
and the cycle [C] =

∑
ni[Ci] ∈ Z∗W has the property

(P) for each Ci, and any closed z ∈ W and a ∈ F|z, letting φz :
Vz → F|z be φ restricting to z, we have either φ−1

z (a) ∩ Ci = ∅ or
φ−1
z (a) ∩ Ci = φ−1

z (a).3

Definition 5.7. Two multi-sections s and s′ of V are F-equivalent,
denoted by s ∼F s′, if for any x ∈ W , as Q-zero-cycles, we have
(φx)∗(s(x)) = (φx)∗(s

′(x)). A multi-section of F is an ∼F equivalence
class of multi-sections of V . We say a multi-section s of F intersects
C ⊂ V transversally if a representative s of s intersects C transversally.

We comment that when C satisfies property (P), the notion that a
multi-section of F intersects C transversally is well-defined, after we
pick the stratification of W so that F restricts to each stratum is locally
free, which we always assume in the remaining discussion.

We apply this discussion to C[[α,δ]] ⊂ E[[α,δ]]. Let F[α,δ] = H1(E[α,δ]), a

coherent sheaf on Y
[α,δ]
T , and let F[[α,δ]] = ρ∗α,δF[α,δ], the pullback sheaf

on Y
[[α,δ]]
T . (Note that F[α,δ] is the obstruction sheaf of the relative ob-

struction theory of Y
[α,δ]
T .) Then F[[α,δ]] is the quotient sheaf of E[[α,δ]]

via

φ[[α,δ]] : E[[α,δ]] −→ F[[α,δ]] = h1/h0(ρ∗α,δE[α,δ]) −→ H1(ρ∗α,δE[[α,δ]]) = F[[α,δ]].

Since C[[α,δ]] is the pullback of the cycle C[[α,δ]] in F[[α,δ]], the cycle C[[α,δ]]

satisfies property (P) for the pair E[[α,δ]] → F[[α,δ]]. Thus we can speak
of multi-sections s of F[[α,δ]] intersecting C[[α,δ]] ⊂ E[[α,δ]] transversally.

In the future, we will call a multi-section of F[[α,δ]] intersecting C[[α,δ]]

transversally a good multi-section. Let k[α,δ] be the virtual dimension of

Y
[α,δ]
T . For a good multi-section s[[α,δ]] of F[[α,δ]], we denote

D(s[[α,δ]]) = π̄(C[[α,δ]] ∩ s[[α,δ]]),

3As argued in [CL], this means that C is a pull back of a “substack” of F.
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where s[[α,δ]] is a representative of s[[α,δ]], and D(s[[α,δ]]) is a piecewise
smooth k[α,δ]-dimensional Q-current away from a subset of dimension
at most k[α,δ] − 2. (Note that D(s[[α,δ]]) is independent of the choice of
s[[α,δ]].) We denote

[D(s[[α,δ]])] ∈ Hk[α,δ]
(|Y [[α,δ]]

T |;Q),

the homology class it represents.
Applying the pseudo-cycle representative of Gysin maps, we obtain:

Proposition 5.8. Given a good multi-section s[[α,δ]] of F[[α,δ]], we have

[D(s[[α,δ]])] = [Y
[[α,δ]]
T ]vir ∈ H∗(|Y [[α,δ]]

T |;Q).

5.6. Comparison of virtual cycles. Our goal in this subsection is to
compare the virtual cycles in terms of pseudo-cycle representatives. We
will prove the analogue of Lemma 5.6 in [LiJ].

To begin with, we recall α-diagonals, their tubular neighborhoods,
and the associated partitions from [LiJ]. For α ∈ PΛ, we form the
strict α-diagonal:

(5.15) Δα = ΔY
α = {x ∈ Y Λ

T | a ∼α b⇒ xa = xb};
it is closed in Y Λ

T and isomorphic to Y l
T when α = (α1, . . . , αl). Fix a

sufficiently small number c > 0 and a large real N , and pick a function
ε : PΛ → (0, c) whose values on any ordered pair α > β satisfy ε(α) >
N · ε(β). After fixing a Riemannian metric on Y , we define the ε-
neighborhood of Δα ⊂ Y Λ

T to be

(5.16) Δα,ε = ΔY
α,ε = {x ∈ Y Λ

T | dist(x,Δα) < ε(α)}.
For a pair α ≥ β, we define Δα

β,ε = ∪α≥γ≥βΔγ,ε and Qα
β,ε = Δβ,ε −

∪α≥γ>βΔ
α
γ,ε = Δβ,ε−∪α≥γ>βΔγ,ε. Then, Q

α
β,ε is a closed subset of Δβ,ε.

By Lemma 5.5 of [LiJ], if Δβ1,ε ∩Qα
β2,ε

�= ∅ for some β1, β2 ≤ α, then

(5.17) β1 ≤ β2.

It follows that Δα
β,ε =

∐
α≥γ≥β Q

α
γ,ε. In particular, for any α, by taking

β = 1Λ, we get Y Λ
T =

∐
γ≤α Q

α
γ,ε. Further, letting Q[[α,δ]]

β,ε = Y
[[α,δ]]
T ×Y Λ

T

Qα
β,ε, we obtain Y

[[α,δ]]
T =

∐
β≤αQ[[α,δ]]

β,ε . Note that for fixed β with β ≤ α,

we have Q[[α,δ]]
β,ε ⊂∐

(β,η)≤(α,δ) Y
[[α,δ]]
(β,η) . Define Q[[α,δ]]

(β,η),ε = Q
[[α,δ]]
β,ε ∩Y [[α,δ]]

(β,η) for

(β, η) ≤ (α, δ). Then, we obtain a partition:

Y
[[α,δ]]
T =

∐
(β,η)≤(α,δ)

Q[[α,δ]]
(β,η),ε.(5.18)

Lemma 5.9. For sufficiently small ε, we can find a collection of good
multi-sections s[[α,δ]] of F[[α,δ]] that satisfy the properties

(i) each s[[α,δ]] intersects transversally with the cycle C[[α,δ]] ⊂ E[[α,δ]];
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(ii) for (β, η) < (α, δ), the pseudo-cycles (as Q-currents)

(ζβ,ηα,δ )∗
(
D(s[[α,δ]]) ∩Q[[α,δ]]

(β,η),ε

)
= D(s[[β,η]]) ∩ ζβ,ηα,δ

(Q[[α,δ]]
(β,η),ε

)
.

Proof. We follow the proof of [LiJ, Lemma 5.6] line by line, with Qα
β,ε

(respectively, sα) in [LiJ, p. 2156] replaced by Q[[α,δ]]
(β,η),ε (respectively,

s[[α,δ]]).
To carry the argument in [LiJ, p. 2156] through in the current situ-

ation, two modifications are necessary. The first is using multi-sections
of F[[α,δ]], etc. The two properties of sections we used in the proof of
[LiJ, Lemma 5.6] are the existence of extensions and general position
results. For multiple-sections, similar results hold as we have mentioned
before.

The other is to choose multi-section s[[α,δ]]|[[β,η]] of F[[α,δ]]|Q[[α,δ]]
(β,η),ε

to be

the pullback

s[[α,δ]]|[[β,η]] = (ζβ,ηα,δ )
∗
(
s[[β,η]]|ζβ,η

α,δ (Q
[[α,δ]]
(β,η),ε

)

)
.

(Compare the construction of sα|β = sβ|Qα
(β,α)

in [LiJ, p. 2156].) Since

F[[α,δ]]|Y [[α,δ]]
(β,η)

= (ζβ,ηα,δ )
∗
F[[β,η]], such pullback is well-defined.

What we need to make sure is that the section s[[α,δ]]|[[β,η]] intersects
transversally with the cycle C[[α,δ]]; this is true, following Lemma 5.5 and
Lemma 5.6. This completes the proof of the lemma. q.e.d.

5.7. Approximating virtual cycles. In this subsection, we define
the pseudo-cycle Θ[[α,δ]] and study its properties. The formula (5.21)
below can be roughly thought of as a decomposition of the virtual cycle

ev∗
[
Y

[[α,δ]]
T

]vir
as a sum of cycles Θ[[β,η]] supported near α-diagonals. The

ideal situation is that we have a similar decomposition for ev∗
[
Y

[n,d]
T

]vir
in (Y

[n]
T )3. Unfortunately, such a decomposition doesn’t exist. However,

the decomposition (5.21) works equally well as if we had a decomposition

for ev∗
[
Y

[n,d]
T

]vir
. This is carried out in subsections 5.11 and 5.12. In

fact, the main reason for introducing Hilbert schemes of α-points Y
[[α]]
T ,

non-separated spaces Y
[[≤α]]
T , and moduli spaces Y

[[α,δ]]
T of α-stable maps

to Hilbert schemes is to provide appropriate spaces where we can define
Θ[[α,δ]].

Let (β, η) ≤ (α, δ) ∈ PΛ,d. Define

φβ,α : Y
[[β]]
T → Y

[[≤α]]
T , φ̃β,α : Y

[[≤β]]
T → Y

[[≤α]]
T

to be the open immersions induced from the construction (5.5). The

evaluation map evi : Y
[Λ,d]
T → Y

[Λ]
T induces an evaluation map Y

[[α,δ]]
T →

Y
[[α]]
T which will be denoted again by evi. Let ev = ev1 × ev2 × ev3 :
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Y
[[α,δ]]
T → (Y

[[α]]
T )3. Since evi : Y

[[α,δ]]
T = Y

[α,δ]
T ×

Y
(α)
T

Y Λ
T → Y

[[α]]
T =

Y
[α]
T ×

Y
(α)
T

Y Λ
T does not affect the factor Y Λ

T , we have ev(Y
[[α,δ]]
T ) ⊂

(Y
[[α]]
T )3 ×(Y Λ

T )3 ιΛ(Y
Λ
T ) where

ιΛ : Y Λ
T → (Y Λ

T )3

is the diagonal embedding. Define the indexing morphism to be

in :
⋃

(β,η)≤(α,δ)

(φ3
β,α)ev(Y

[[β,η]]
T ) −→ ιΛ(Y

Λ
T ) ∼= Y Λ

T .(5.19)

Definition 5.10. Define the pseudo-cycle Θ[[α,δ]] ⊂ (Y
[[≤α]]
T )3 induc-

tively by

Θ[[α,δ]] = (φ3
α,α)∗ev∗D(s[[α,δ]])−

∑
(β,η)<(α,δ)

(φ̃3
β,α)∗Θ

[[β,η]].(5.20)

By Proposition 5.8, we obtain

(φ3
α,α)∗ev∗

[
Y

[[α,δ]]
T

]vir
=

∑
(β,η)≤(α,δ)

(φ̃3
β,α)∗[Θ

[[β,η]]].(5.21)

Further properties of the pseudo-cycles Θ[[α,δ]] are contained in the next
two lemmas which are the analogues of Lemmas 5.7 and 5.9 in [LiJ].

Lemma 5.11. Θ[[α,δ]] ⊂ (Y
[[≤α]]
T )3×(Y Λ

T )3ιΛ(Δα,ε) for sufficiently small

c > 0.

Proof. We use induction on the order of (α, δ) ∈ PΛ,d. Assume that
(α, δ) is minimal. Then for each i, we have either (αi, δi) = (1, 0), or

αi = 2 and δi > 0. So Y
[[α,δ]]
T = Y

[[α,δ]]
T ×Y Λ

T
Δα = Y

[[α,δ]]
T ×Y Λ

T
Δα,ε. Thus,

Θ[[α,δ]] = (φ3
α,α)∗ev∗D(s[[α,δ]]) ⊂ (Y

[[≤α]]
T )3 ×(Y Λ

T )3 ιΛ(Δα,ε).

Next, we assume that our lemma is true for every (γ, ρ) with (γ, ρ) <
(α, δ). Recall that Y Λ

T =
∐

β≤αQ
α
β,ε and Qα

α,ε = Δα,ε. So to prove

the lemma, it suffices to verify Θ[[α,δ]] ∩ ((Y
[[≤α]]
T )3 ×(Y Λ

T )3 ιΛ(Q
α
β,ε)) = ∅

for every β < α. By (5.20), this is equivalent to proving that the
intersection

(φ3
α,α)∗ev∗D(s[[α,δ]]) ∩

(
(Y

[[≤α]]
T )3 ×(Y Λ

T )3 ιΛ(Q
α
β,ε)

)
(5.22)

=
∑

(γ,ρ)<(α,δ)

(φ̃3
γ,α)∗Θ

[[γ,ρ]] ∩ ((Y [[≤α]]
T )3 ×(Y Λ

T )3 ιΛ(Q
α
β,ε)

)
.

On one hand, if (γ, ρ) < (α, δ), then Θ[[γ,ρ]] ⊂ (Y
[[≤γ]]
T )3×(Y Λ

T )3 ιΛ(Δγ,ε) by

induction. Thus, a nonempty (φ̃3
γ,α)∗Θ

[[γ,ρ]] ∩ ((Y
[[≤α]]
T )3 ×(Y Λ

T )3 ιΛ(Q
α
β,ε))
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forces Δγ,ε∩Qα
β,ε �= ∅ which in turn implies γ ≤ β by (5.17). Therefore,

the right-hand-side of (5.22) equals∑
(γ,ρ)<(α,δ),γ≤β

(φ̃3
γ,α)∗Θ

[[γ,ρ]] ∩ ((Y [[≤α]]
T )3 ×(Y Λ

T )3 ιΛ(Q
α
β,ε)

)
(5.23)

=
∑

(β,η)≤(α,δ)

∑
(γ,ρ)≤(β,η)

(φ̃3
β,α)∗(φ̃

3
γ,β)∗Θ

[[γ,ρ]] ∩ ((Y [[≤α]]
T )3 ×(Y Λ

T )3 ιΛ(Q
α
β,ε)

)
.

Since (φ3
β,β)∗ev∗D(s[[β,η]]) =

∑
(γ,ρ)≤(β,η)(φ̃

3
γ,β)∗Θ

[[γ,ρ]], (5.23) is equal to∑
(β,η)≤(α,δ)

(φ̃3
β,α)∗(φ

3
β,β)∗ev∗D(s[[β,η]]) ∩

(
(Y

[[≤α]]
T )3 ×(Y Λ

T )3 ιΛ(Q
α
β,ε)

)
(5.24)

=
∑

(β,η)≤(α,δ)

(φ3
β,α)∗ev∗D(s[[β,η]]) ∩

(
(Y

[[≤α]]
T )3 ×(Y Λ

T )3 ιΛ(Q
α
β,ε)

)
.

Since Qα
β,ε = Δβ,ε − ∪α≥γ>βΔ

α
γ,ε, we see that (φ3

β,α)∗ev∗D(s[[β,η]]) ∩
((Y

[[≤α]]
T )3 ×(Y Λ

T )3 ιΛ(Q
α
β,ε)) is contained in φ3

β,αev(ζ
β,η
α,δ (Q[[α,δ]]

(β,η),ε)). So

(5.24) (hence the right-hand-side of (5.22)) equals∑
(β,η)≤(α,δ)

(φ3
β,α)∗ev∗D(s[[β,η]]) ∩ φ3

β,αev
(
ζβ,ηα,δ (Q[[α,δ]]

(β,η),ε)
)

(5.25)

=
∑

(β,η)≤(α,δ)

(φ3
β,α)∗ev∗

(
D(s[[β,η]]) ∩ ζβ,ηα,δ (Q[[α,δ]]

(β,η),ε)
)
.

On the other hand, (φ3
α,α)∗ev∗D(s[[α,δ]]) is supported on

∪(γ,ρ)≤(α,δ)φ
3
α,αev(Q[[α,δ]]

(γ,ρ),ε),

by (5.18). Moreover, φ3
α,αev(Q[[α,δ]]

(γ,ρ),ε) is contained in (Y
[[≤α]]
T )3 ×(Y Λ

T )3

ιΛ(Q
α
γ,ε), and the subsets ιΛ(Q

α
γ,ε), γ ≤ α are disjoint. So the left-hand-

side of (5.22) is equal to∑
(β,η)≤(α,δ)

(φ3
α,α)∗ev∗D(s[[α,δ]]) ∩ φ3

α,αev(Q[[α,δ]]
(β,η),ε)

=
∑

(β,η)≤(α,δ)

(φ3
α,α)∗ev∗(D(s[[α,δ]]) ∩ Q[[α,δ]]

(β,η),ε)

=
∑

(β,η)≤(α,δ)

(φ3
β,α)∗ev∗

(
(ζβ,ηα,δ )∗

(
D(s[[α,δ]]) ∩ Q[[α,δ]]

(β,η),ε

))
=

∑
(β,η)≤(α,δ)

(φ3
β,α)∗ev∗

(
D(s[[β,η]]) ∩ ζβ,ηα,δ (Q[[α,δ]]

(β,η),ε)
)
,

where we have used Lemma 5.9 (ii) in the last step. Combining with
(5.25), we get (5.22). q.e.d.
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Lemma 5.12. Let (α, δ) ∈ PΛ,d with α = (α1, . . . , αl). Then,

Θ[[α,δ]] =
∏l

i=1Θ
[[αi,δi]] via the natural identification (Y

[[≤α]]
T )3 =∏l

i=1(Y
[[≤αi]]
T )3.

Proof. First of all, since Y
[[α,δ]]
T =

∏l
i=1 Y

[[αi,δi]]
T , we have

D(s[[α,δ]]) =
l∏

i=1

D(s[[αi,δi]]).(5.26)

Next, to prove the lemma, we use induction on the size |Λ| and on the
order of (α, δ) ∈ PΛ,d. Assume that (α, δ) is minimal in PΛ,d. Then
(αi, δi) is minimal in Pαi,δi . By (5.20) and (5.26),

Θ[[α,δ]] = (φ3
α,α)∗ev∗D(s[[α,δ]]) =

l∏
i=1

(φ3
αi,αi

)∗ev∗D(s[[αi,δi]]) =
l∏

i=1

Θ[[αi,δi]].

In particular, the lemma holds for |Λ| = 1 (necessarily, (α, δ) = (1, 0)).

Next, assume that Θ[[β,η]] =
∏

i Θ
[[βi,ηi]] for every (β, η) < (α, δ). By

(5.26) and (5.20),

(φ3
α,α)∗ev∗D(s[[α,δ]]) =

l∏
i=1

(φ3
αi,αi

)∗ev∗D(s[[αi,δi]])

=

l∏
i=1

∑
(β(i),η(i))≤(αi,δi)

(φ̃3
β(i),αi

)∗Θ
[[β(i),η(i)]]

=
l∏

i=1

Θ[[αi,δi]] +
∑

(β,η)<(α,δ)

(φ̃3
β,α)∗Θ

[[β,η]]

noting that induction has been used in the last step to handle those β(i)

which have length greater than 1. Applying (5.20) again, we obtain the
lemma. q.e.d.

5.8. Co-section localizations. We now apply the co-section localiza-
tion techniques from [KL1, KL2, LL] to the constructions in the pre-
vious subsections. Let θ be a meromorphic section of OX(KX), and let
D0 and D∞ be the vanishing and pole divisors of θ respectively. For
simplicity, we assume that D0 and D∞ are smooth irreducible curves

intersecting transversally. Let X
[n,d]
θ be the subset of X [n,d] consisting

of those ϕ whose standard decomposition (ϕ1, . . . , ϕl) have the prop-
erty that for each i, either ϕi is constant or the support of ϕi lies in
D0∪D∞. The meromorphic section θ induces a meromorphic section θ[n]

of Ω2
X[n]. By [KL2, LL], we obtain the localized virtual fundamental cy-

cle
[
X [n,d]

]vir
loc
∈ A∗(X

[n,d]
θ ) of X [n,d] such that ι∗

[
X [n,d]

]vir
loc

=
[
X [n,d]

]vir
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where ι∗ is the map induced by the inclusion map ι : X
[n,d]
θ ↪→ X [n,d].

For simplicity of notations, we write
[
X [n,d]

]vir
loc

=
[
X [n,d]

]vir
.

The constructions in [KL2, LL] and Subsections 5.1–5.7 are canon-
ical. Applying the constructions in [KL2, LL] to Subsections 5.1–5.7,

we obtain localized cycles
[
X [[α,δ]]

]vir
loc
∈ H∗(X

[[α,δ]]
θ ;Q), D(s[[α,δ]])loc, and

Θ
[[α,δ]]
loc ⊂ ∪(β,η)≤(α,δ)φ

3
β,αev(X

[[β,η]]
θ ) with

[
X [[α,δ]]

]vir
loc

=
[
X [[α,δ]]

]vir
and

[Θ
[[α,δ]]
loc ] = [Θ[[α,δ]]] in H∗(X

[[α,δ]];Q) and H∗

(
(X [[≤α]])3;Q

)
respectively.

Here the subset X
[[α,δ]]
θ ⊂ X [[α,δ]] is defined similarly as X

[n,d]
θ ⊂ X [n,d].

5.9. Extensions of Heisenberg monomial classes. Let (β, η) ∈
P[n],d. To study the pairings with (φ̃3

β,[n])∗[Θ
[[β,η]]], we need to extend the

classes (f [[n]])∗w ∈ H∗(X [[n]]) from X [[n]] to X [[≤n]], where f [[n]] : X [[n]] →
X [n] is the tautological map. Let f [[β]] =

∏
i f

[[|βi|]].

Lemma 5.13. Let αi ∈ H∗(X) be homogeneous with |αi| > 0, and
αi,j = 1X . Let

w =

⎛⎝ t∏
i=1

si∏
j=1

a−i(αi,j)

⎞⎠(
k∏

i=1

a−ni(αi)

)
|0〉 ∈ H∗(X [n]).(5.27)

Then there exists a class w[[≤n]] ∈ H∗(X [[≤n]]) such that (φ[n],[n])
∗w[[≤n]] =

(f [[n]])∗w, and that if β = (β1, . . . , βl) ≤ [n], then via the identification

X [[≤β]] =
∏l

i=1 X
[[≤βi]],

(φ̃β,[n])
∗w[[≤n]] =

∑
w1◦···◦wl=w

⊗l
i=1w

[[≤|βi|]]
i ,(5.28)

where each wi ∈ H∗(X [|βk|]) is a Heisenberg monomial class.

Proof. We use induction on n. The lemma is trivially true when
n = 1. In the following, assume that the lemma holds for all X [m] with
m < n.

Let S be the set consisting of all the partitions β of [n] with β �=
[n]. By (5.5), X [[≤n]] is covered by the open subsets φ[n],[n](X

[[n]]) and

φ̃β,[n](X
[[≤β]]), β ∈ S. For each β ∈ S, define

w[[≤β]] =
∑

w1◦···◦wl=w

⊗l
i=1w

[[≤|βi|]]
i ∈ H∗(X [[≤β]]) = H∗(φ̃β,[n](X

[[≤β]])),

where since |βi| < n, the existence of each class w
[[≤|βi|]]
i comes from

induction. Now we have the class (f [[n]])∗w on φ[n],[n](X
[[n]]) and the class

w[[≤β]] on φ̃β,[n](X
[[≤β]]) for each β ∈ S. We claim that these classes can

be glued into a class, denoted by w[[≤n]], on X [[≤n]]. Indeed, by applying
the Mayer–Vietoris sequence successively, we see that it suffices to prove
the following:
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(A) the restrictions of w[[≤β]], β ∈ S and w[[≤γ]], γ ∈ S to the intersection

φ̃β,[n](X
[[≤β]]) ∩ φ̃γ,[n](X

[[≤γ]]) are equal;

(B) the restrictions of (f [[n]])∗w and w[[≤γ]], γ ∈ S to the intersection

φ[n],[n](X
[[n]]) ∩ φ̃γ,[n](X

[[≤γ]]) are equal.

First of all, we verify (A). Let β, γ = (γ1, . . . , γr) ∈ S and β �= γ.
Then,

φ̃β,[n](X
[[≤β]]) ∩ φ̃γ,[n](X

[[≤γ]]) ⊂ φ̃β∧γ,[n](X
[[≤β∧γ]]).

Let βi ∧ γ = (βi ∩ γ1, . . . , βi ∩ γr) ∈ Pβi
. Then (φ̃β∧γ,β)

∗w[[≤β]] is equal
to

(φ̃β∧γ,β)
∗

∑
w1◦···◦wl=w

⊗l
i=1w

[[≤|βi|]]
i =

∑
w1◦···◦wl=w

⊗l
i=1(φ̃βi∧γ,βi

)∗w
[[≤|βi|]]
i .

Applying induction to the classes w
[[≤|βi|]]
i , we see that

(φ̃β∧γ,β)
∗w[[≤β]](5.29)

=
∑

w1◦···◦wl=w

⊗l
i=1

⎛⎝ ∑
wi,1◦···◦wi,r=wi

⊗r
j=1w

[[≤|βi∩γj |]]
i,j

⎞⎠
=

∑
w1,1◦···◦wl,r=w

⊗l
i=1 ⊗r

j=1 w
[[≤|βi∩γj |]]
i,j .

It follows immediately that (φ̃β∧γ,β)
∗w[[≤β]] = (φ̃β∧γ,γ)

∗w[[≤γ]].

Next, we verify (B). Note that X [[≤γ]] is covered by the open subsets

φβ,γ(X
[[β]]), β ≤ γ, and φ[n],[n](X

[[n]]) ∩ φβ,[n](X
[[β]]) is identified with the

images of X
[[n]]
β
∼= X

[[β]]
[n] . So it suffices to prove

(f [[n]])∗w|
X

[[n]]
β

= (ζβ
[n]
)∗
(
(φβ,γ)

∗w[[≤γ]]|
X

[[β]]
[n]

)
.(5.30)

To see this, represent each αi ∈ H∗(X) by a cycle Xi such that
X1, . . . ,Xk are in general position. By Proposition 2.7, the class w[n] :=

w/
∏t

i=1 si! is represented by the closureW of the subset consisting of el-

ements of the form (2.1). Then, (f [[n]])∗w[n] is represented by (f [[n]])−1(W ).

By Proposition 2.7 again, the closure of f [[β]](ζβ[n]((f
[[n]])−1(W ) ∩X

[[n]]
β ))

in X [β] represents the class

wβ :=
∑

w1◦···◦wl=w

⎛⎝ t∏
i=1

l∏
j=1

1

si,j!

⎞⎠·w1⊗· · ·⊗wl ∈ H∗(X [β])∼=
l⊗

i=1

H∗(X [βi]),

where each wj ∈ H∗(X [βj ]) contains exactly si,j copies of a−i(1X). Note

that
∑l

j=1 si,j = si. Also, the class (f
[[β]])∗wβ ∈ H∗(X [[β]]) is represented

by the closure of ζβ
[n]
((f [[n]])−1(W )∩X [[n]]

β ) in X [[β]]. So (f [[n]])∗w[n]|X[[n]]
β

=
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(ζβ[n])
∗
(
(f [[β]])∗wβ|X[[β]]

[n]

)
. Note that for fixed integers si,j, the number of

choices of w1, . . . , wl satisfying w1 ◦ · · · ◦ wl = w is precisely equal to∏t
i=1 si!/

∏t
i=1

∏l
k=1 si,j!. Therefore, (f

[[n]])∗w|
X

[[n]]
β

is equal to

(ζβ[n])
∗

(
(f [[β]])∗

(
t∏

i=1

si! · wβ

)
|
X

[[β]]
[n]

)
(5.31)

= (ζβ[n])
∗

(
(f [[β]])∗

∑
w1◦···◦wl=w

w1 ⊗ · · · ⊗ wl|X[[β]]
[n]

)
.

On the other hand, since φβ,γ = φ̃β,γ ◦ φβ,β, we obtain from (5.29) that

(φβ,γ)
∗w[[≤γ]] = (φβ,β)

∗
∑

w1◦···◦wl=w

⊗l
i=1w

[[≤|βi|]]
i

=
∑

w1◦···◦wl=w

⊗l
i=1(φβi,βi

)∗w
[[≤|βi|]]
i

=
∑

w1◦···◦wl=w

⊗l
i=1(f

[[|βi|]])∗wi = (f [[β]])∗
∑

w1◦···◦wl=w

⊗l
i=1wi,

where we have used induction in the third equality. Combining with
(5.31) verifies (5.30).

Finally, the properties of the class w[[≤n]] ∈ H∗(X [[≤n]]) stated in the
Lemma follow from the fact that w[[≤n]] is the gluing of the class (f [[n]])∗w

and the classes w[[≤β]], β ∈ S. q.e.d.

Our next lemma says that even though the extension w[[≤n]] may not
be unique, it does not affect the pairings with [Θ[[n,d]]]. Recall that the

tautological map ρα,δ : X
[[α,δ]] → X [α,δ] is a finite map of degree n!.

Lemma 5.14. Let A1, A2, A3 ∈ H∗(X [n]) be Heisenberg monomial
classes. Then, the pairing〈

[Θ[[n,d]]], A
[[≤n]]
1 ⊗A

[[≤n]]
2 ⊗A

[[≤n]]
3

〉
is independent of the choices of A

[[≤n]]
1 , A

[[≤n]]
2 , A

[[≤n]]
3 .

Proof. Since [X [[n,d]]]vir = ρ∗[n],d[X
[n,d]]vir, we have〈

[X [n,d]]vir, ev∗(A1 ⊗A2 ⊗A3)
〉

=
1

n!

〈
[X [[n,d]]]vir, ρ∗[n],dev

∗(A1 ⊗A2 ⊗A3)
〉

=
1

n!

〈
[X [[n,d]]]vir, ev∗

3⊗
i=1

(f [[n]])∗Ai

〉
.
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By Lemma 5.13 and (5.21),
〈
[X [n,d]]vir, ev∗(A1 ⊗A2 ⊗A3)

〉
is equal to

1

n!

〈
[X [[n,d]]]vir, ev∗

3⊗
i=1

(φ[n],[n])
∗A

[[≤n]]
i

〉
(5.32)

=
1

n!

〈
(φ3

[n],[n])∗ev∗[X
[[n,d]]]vir,

3⊗
i=1

A
[[≤n]]
i

〉

=
1

n!

∑
(α,δ)≤([n],d)

〈
(φ̃3

α,[n])∗[Θ
[[α,δ]]],

3⊗
i=1

A
[[≤n]]
i

〉
.

Next, to prove the lemma, we use induction on n. When n = 1, the

lemma is trivially true since A
[[≤n]]
i = Ai. Assume that the lemma holds

for all X [m] with m < n. Let (α, δ) < ([n], d). By Lemma 5.12 and

(5.28), 〈(φ̃3
α,[n])∗[Θ

[[α,δ]]], A
[[≤n]]
1 ⊗A

[[≤n]]
2 ⊗A

[[≤n]]
3 〉 is equal to〈

[Θ[[α,δ]]], (φ̃α,[n])
∗A

[[≤n]]
1 ⊗ (φ̃α,[n])

∗A
[[≤n]]
2 ⊗ (φ̃α,[n])

∗A
[[≤n]]
3

〉
(5.33)

=
∑

A1,1◦···◦A1,l=A1
A2,1◦···◦A2,l=A2
A3,1◦···◦A3,l=A3

l∏
i=1

〈
[Θ[[αi,δi]]], A

[[≤|αi|]]
1,i ⊗A

[[≤|αi|]]
2,i ⊗A

[[≤|αi|]]
3,i

〉
.

Now our lemma follows from (5.32) and induction. q.e.d.

Remark 5.15. Note that for A ∈ Hk(W ) and B ∈ Hk(W ) on a
topological space W , the pairing 〈A,B〉 is the degree of the 0-cycle

A ∩ B ∈ H0(W ). As 0-cycles, (φ3
[n],[n])∗(ev∗[D(s[[n,d]])] ∩ ((f [[n]])∗A1 ⊗

(f [[n]])∗A2 ⊗ (f [[n]])∗A3)) is equal to∑
(α,δ)≤([n],d)

(φ̃3
α,[n])∗

∑
A1,1◦···◦A1,l=A1
A2,1◦···◦A2,l=A2
A3,1◦···◦A3,l=A3

l∏
i=1

(
[Θ[[αi,δi]]] ∩ (A[[≤|αi|]]

1,i ⊗A
[[≤|αi|]]
2,i ⊗A

[[≤|αi|]]
3,i

))
.

Next, we extend the notation of Heisenberg monomial classes to a
smooth family Y → T of quasi-projective surfaces.

Definition 5.16. Fix integers s1, . . . , st > 0 with
∑

i isi = n. Define

wY =

t∏
i=1

aY−i(1X)si |0〉 ∈ H∗(Y
[n]
T ),(5.34)

to be the cohomology class represented by the cycle
∏t

i=1 si! · [W ] ∈
A∗(Y

[n]
T ) where W ⊂ Y

[n]
T is the closure of the subset consisting of
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elements of the form
t∑

i=1

(ξi,1 + . . .+ ξi,si) ∈ (Yu)
[n], u ∈ T,

where ξi,m ∈ Mi(xi,m) for some xi,m ∈ Yu, and all the points xi,m are
distinct.

The following is similar to Lemma 5.13, and its proof is omitted.

Lemma 5.17. Let w = wY be as in (5.34). Then there exists

w[[≤n]] ∈ H∗(Y
[[≤n]]
T ) such that (φ[n],[n])

∗w[[≤n]] = (f [[n]])∗w, and that if

β = (β1, . . . , βl) ≤ [n], then (φ̃β,[n])
∗w[[≤n]] =

∑
w1◦···◦wl=w⊗l

i=1w
[[≤|βi|]]
i

via the identification Y
[[≤β]]
T =

∏l
i=1 Y

[[≤βi]]
T .

5.10. Normal slices and universal families. This subsection mainly
provides a necessary set-up for the proof of the universality result Lemma
5.21 in the next subsection.

By Lemma 5.11, we have Θ[[α,δ]] ⊂ (Y
[[≤α]]
T )3 ×(Y Λ

T )3 ιΛ(Δα,ε). In this

subsection, with Y = X and α = [n], we will describe an analytic space,

independent of ε, which contains (X [[≤n]])3 ×(Xn)3 ιn(Δ[n],ε) whenever ε
is sufficiently small.

To begin with, let Y → T be the total space of a rank-2 vector
bundle, viewed as a smooth family of affine schemes. Define the fiber-
wise averaging morphism

av : Y
(n)
T → Y ;

∑
mi[xi] ∈ Y

(n)
t �→ 1

n

∑
mixi ∈ Yt, t ∈ T.

Here
∑

mixi is the sum using the fiber-wise linear structure of Y/T .

Using Y n
T → Y

(n)
T and Y

[n]
T → Y

(n)
T , we obtain the averaging maps

av : Y n
T and Y

[n]
T → Y . We define the relative Hilbert scheme of centered

α-points to be

(5.35) Y
[[α]]
T,0 = Y

[[α]]
T ×av,Y 0Y ,

where 0Y ⊂ Y is the zero-section of Y → T .
Next, like in [LiJ], we need to express an open neighborhood of the

diagonal Δ[2] = ΔX
[2] ⊂ X ×X a vector bundle structure, using the first

projection. As this is impossible in general, we will content to have a
C∞-vector bundle structure. For this reason, we will again work with
the analytic category. We will use differentiable map to mean a C∞-
map; and an open subset will be open in analytic topology; we will
use regular function and Zariski open subset to stand for their original
meanings in algebraic geometry.

Consider the total space of the tangent bundle TX , and its zero-
section 0X ⊂ TX . For an open U ⊂ X×X, we view it as a space over X
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via (that induced by the first projection) pr1|U : U → X. By Lemma 2.4
in [LiJ], there exists a diffeomorphism

ϕ : U −→ V,(5.36)

of a tubular neighborhood U of X[2] ⊂ X × X and a tubular neigh-
borhood V of 0X ⊂ TX , both considered as fiber bundles over X, such
that

(A-i) restricting to each fiber Ux =
(
pr1|U

)−1
(x), the map ϕx = ϕ|Ux :

Ux → Vx is a biholomorphism,
(A-ii) ϕx(x) = 0 ∈ TX,x, and dϕx : TUx,x → TVx,0 is the identity map.

Since V ⊂ TX (over X), we define

V [[α]]
X = {(ξ1, · · · , ξl) ∈ (TX)

[[α]]
X | Supp(ξi) ∈ V}.

For U over X, we define U [[α]]
X =

∐
x∈X(Ux)[[α]] endowed with the obvious

smooth structure. By Lemma 2.5 in [LiJ], ϕ induces a differentiable
isomorphism

ϕ[[α]] : U [[α]]
X −→ V [[α]]

X ,(5.37)

as stratified spaces. Both V [[α]]
X and U [[α]]

X are bundles over X:

(5.38) V [[α]]
X −→ X and U [[α]]

X −→ X.

The first is induced by the bundle V ⊂ TX → X, and the second is via

(Ux)[[α]] �→ {x}. As TX → X is a vector bundle, we obtain (TX)
[[α]]
X,0 ⊂

(TX)
[[α]]
X as in (5.35). Let V [[α]]

X,0 = V [[α]]
X ∩ (TX)

[[α]]
X,0, and let U [[α]] ⊂ X [[α]] be

the image of V [[α]]
X,0 under the composition

�α : V [[α]]
X,0

⊂−→V [[α]]
X
∼= U [[α]]

X −→ X [[α]] ×X
pr1−→X [[α]],

where the first factor of U [[α]]
X → X [[α]] × X is induced by the inclu-

sion (Ux)[[α]] ⊂ X [[α]], and the second is (5.38). By the Lemma 2.6 and

Lemma 2.7 in [LiJ], after shrinking V if necessary, U [[α]] is an open

neighborhood of X [[α]] ×Xn Δ[n] ⊂ X [[α]], and

�α : V [[α]]
X,0 −→ U [[α]](5.39)

is a smooth isomorphism of stratified spaces fibered over Δ[n], via the
map

U [[α]] ⊂ U [[α]]
X −→ X [[α]] ×X

pr2−→X,

and preserves the partial equivalences of V [[α]]
X,0 and U [[α]]. Note that

X [[≤n]] ×Xn Δ[n] =
∐
α≤[n]

φ[α],[n](X
[[α]] ×Xn Δ[n]).(5.40)
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So U [[≤n]] := ∪α≤[n]φ[α],[n](U
[[α]]) is an open neighborhood of X [[≤n]] ×Xn

Δ[n] in X [[≤n]]. Since ε is sufficiently small, X [[≤n]] ×Xn Δ[n],ε ⊂ U [[≤n]].
Thus,

(X [[≤n]])3 ×(Xn)3 ιn(Δ[n],ε) ⊂ (U [[≤n]])3(5.41)

noting that by our convention, (U [[≤n]])3 is a fibered product over Δ[n].

Since V [[α]]
X,0 ⊂ (TX)

[[α]]
X,0, we put V [[≤n]]

X,0 = ∪α≤[n]φ[α],[n](V [[α]]
X,0) ⊂ (TX)

[[≤n]]
X,0 .

Then, the smooth isomorphisms �α from (5.39) induces a smooth iso-
morphism

�[[≤n]] : V [[≤n]]
X,0 → U [[≤n]],(5.42)

of stratified spaces fibered over X ∼= Δ[n]. Combining with (5.41), we
have

((TX)
[[≤n]]
X,0 )3 ⊃ (V [[≤n]]

X,0 )3
�3
[[≤n]]−→ (U [[≤n]])3(5.43)

⊃ (X [[≤n]])3 ×(Xn)3 ιn(Δ[n],ε).

To prove universality results later on, we pick a differentiable map

g : X −→ Gr = Gr(2,CN ),(5.44)

with N � 0 so that TX
∼= g∗F as smooth vector bundles, where F → Gr

is the total space of the universal quotient rank-2 bundle over Gr. Let

F
[[αi]]
Gr,0 → Gr be the associated relative Hilbert scheme of centered αi-

points. By Lemma 2.8 in [LiJ], g induces isomorphisms (as stratified
spaces) of fiber bundles over X:

gαi : (TX)αi
X,0 → g∗Fαi

Gr,0 and g[[≤n]] : (TX)
[[≤n]]
X,0 → g∗F

[[≤n]]
Gr,0 .

5.11. Pairings with [Θ[[n,d]]] when d > 0. Here we study more prop-
erties of [Θ[[n,d]]] which are the crucial ingredients for the universality

results of extremal Gromov–Witten invariants of X [n].

Convention 5.18. Fix d > 0 and Heisenberg monomial classes

Ai = a−λ(i)(1X )a−ni,1(αi,1) · · · a−ni,ui
(αi,ui)|0〉 ∈ H∗(X [n]),(5.45)

where 1 ≤ i ≤ 3, ui ≥ 0, and |αi,j | > 0. When |αi,j| = 4, we let
αi,j = x (the cohomology class of a point). Moreover, if |αi,j| = 2, then
αi,j can be represented by a Riemann surface intersecting transversally

with D0 ∪D∞. For simplicity, put A[[≤n]] = A
[[≤n]]
1 ⊗A

[[≤n]]
2 ⊗A

[[≤n]]
3 .

Our goal is to understand the pairing
〈
[Θ[[n,d]]], A[[≤n]]

〉
when d > 0.

Lemma 5.19. Fix d > 0. Then,
〈
[Θ[[n,d]]], A[[≤n]]

〉
= 0 if one of the

following holds:

(i) |αi,j | = 4 for some (i, j);
(ii) |αi,j | = 2 for two different pairs (i, j).



536 W.-P. LI & Z. QIN

Proof. (i) We begin with d ≥ 0. Consider the 0-cycle [Θ
[[n,d]]
loc ]∩A[[≤n]]

in (X [[≤n]])3. Choose the point representation x ∈ X of αi,j such that
x �∈ D0 ∪ D∞. By Proposition 2.7, Ai can be represented by a cycle
Wi ⊂ X [n] such that x ∈ Supp(ξ1) for every ξ1 ∈ Wi. Thus for ev-

ery ξ2 contained in the 0-cycle (φ3
[n],[n])∗(ev∗[D(s[[n,d]])loc]∩ ((f [[n]])∗A1⊗

(f [[n]])∗A2 ⊗ (f [[n]])∗A3)), the point x is a component of in(ξ2) where
in is from (5.19). By the localized version of Remark 5.15 and induc-
tion, we conclude that x is a component of in(ξ) if ξ is contained in

[Θ
[[n,d]]
loc ] ∩ A[[≤n]].
Now let d > 0. By the localized version of Lemma 5.11, we have

Θ
[[n,d]]
loc ⊂

(
(X [[≤n]])3 ×(XΛ)3 ιΛ(Δ[n],ε)

)
∩

⋃
(β,η)≤([n],d)

φ3
β,[n]ev(X

[[β,η]]
θ ).

Thus, since d > 0, if ξ ∈ Θ
[[n,d]]
loc , then in(ξ) ∈ Δ[n],ε and y ∈ D0 ∪D∞ for

some component y of in(ξ). Since ε is sufficiently small, we see from the

previous paragraph that [Θ
[[n,d]]
loc ] ∩ A[[≤n]] is empty. Hence as pairings,

〈[Θ[[n,d]]], A[[≤n]]〉 = 〈[Θ[[n,d]]
loc ], A[[≤n]]〉 = 0.

(ii) Let |αi1,j1 | = |αi2,j2 | = 2 where (i1, j1) �= (i2, j2). Represent αi1,j1

and αi2,j2 by Riemann surfaces Ci1,j1 and Ci2,j2 respectively such that
Ci1,j1, Ci2,j2 and D0∪D∞ are in general position. As in the proof of (i),

we see that if ξ ∈ [Θ
[[n,d]]
loc ]∩A[[≤n]], then in(ξ) ∈ Δ[n],ε and the components

of in(ξ) contain three points x1 ∈ Ci1,j1 , x2 ∈ Ci2,j2 and x3 ∈ D0 ∪D∞.
This is impossible since ε is sufficiently small and Ci1,j1 , Ci2,j2 , D0∪D∞

are in general position. So the 0-cycle [Θ
[[n,d]]
loc ] ∩A[[≤n]] is empty. q.e.d.

Lemma 5.20. Let u1 = 1, u2 = u3 = 0, and |α1,1| = 2 in (5.45).

Then, 〈[Θ[[n,d]]], A[[≤n]]〉 = p · 〈KX , α1,1〉 where p is a constant depending

only on n1,1 and the partitions λ(i).

Proof. Represent α1,1 by a Riemann surface C1,1 intersecting transver-
sally with D0 ∪D∞. Let

C1,1 ∩D0 = {x1, . . . , xs+ , xs++1, . . . , xs++s−},
and C1,1 ∩D∞ be

{xs++s−+1, . . . , xs++s−+t+ , xs++s−+t++1, . . . , xs++s−+t++t−},
so that the points x1, . . . , xs++s−+t++t− are distinct, the intersection
of C1,1 and D0 at xi for 1 ≤ i ≤ s+ (respectively, for s+ + 1 ≤ i ≤
s+ + s−) is equal to 1 (respectively, −1), and the intersection of C1,1

and D∞ at xi for s+ + s− + 1 ≤ i ≤ s+ + s− + t+ (respectively, for
s+ + s− + t+ + 1 ≤ i ≤ s+ + s− + t+ + t−) is equal to 1 (respectively,
−1). So s+−s− = 〈D0, α1,1〉 and t+−t− = 〈D∞, α1,1〉. Let xi ∈ Xi be a
small analytic open neighborhood of xi such that X1, . . . ,Xs++s−+t++t−

are mutually disjoint. As in the proof of Lemma 5.19 (i), we see that
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the 0-cycle [Θ
[[n,d]]
loc ]∩A[[≤n]] is a disjoint union of W1, . . . ,Ws++s−+t++t−

such that in(Wi) ⊂ (Xi)
n for every i. Let ei be the contribution of each

Wi to the pairing 〈[Θ[[n,d]]
loc ], A[[≤n]]〉. Then,

〈[Θ[[n,d]]], A[[≤n]]〉 = 〈[Θ[[n,d]]
loc ], A[[≤n]]〉 = e1 + . . .+ es++s−+t++t− .

As in the proof of Lemma 4.3 in [LL], we conclude that each ei can
be computed from Xi so that e1 = . . . = es+ = −es++1 = . . . =
−es++s− and es++s−+1 = . . . = es++s−+t+ = −es++s−+t++1 = . . . =

−es++s−+t++t− depend only on n1,1 and the partitions λ(i). Since
D0 = KX +D∞,

〈[Θ[[n,d]]], A[[≤n]]〉 = (s+ − s−)e1 + (t+ − t−)es++s−+1(5.46)

= e1 · 〈D0, α1,1〉+ es++s−+1 · 〈D∞, α1,1〉
= p · 〈KX , α1,1〉+ p′ · 〈D∞, α1,1〉,

where p = e1 and p′ = e1 + es++s−+1. Note that for m � 0, there
exists a meromorphic section θm of OX(KX) such that mD∞ is the
pole divisor of θm. By (5.46),

〈[Θ[[n,d]]], A[[≤n]]〉 = p · 〈KX , α1,1〉+ p′ · 〈mD∞, α1,1〉,
for all m � 0. It follows that p′ = 0 and 〈[Θ[[n,d]]], A[[≤n]]〉 = p ·
〈KX , α1,1〉. q.e.d.

Lemma 5.21. Let d > 0 and Ai = a−λ(i)(1X)|0〉 for i ∈ {1, 2, 3}.
Then, 〈[Θ[[n,d]]], A[[≤n]]〉 = p · 〈KX ,KX〉 where the coefficient p is a con-

stant depending only on the partitions λ(i).

Proof. By Lemma 5.11, Θ[[n,d]] ⊂ (X [[≤n]])3 ×(Xn)3 ιn(Δ[n],ε). Using
(5.43) and the smooth isomorphism (5.42), we transport the 0-cycle

[Θ[[n,d]]] ∩ A[[≤n]] in (X [[≤n]])3 ×(Xn)3 ιn(Δ[n],ε) to the following 0-cycle in

(V [[≤n]]
X,0 )3 ⊂ ((TX)

[[≤n]]
X,0 )3:

(�3[[≤n]])
∗[Θ[[n,d]]] ∩ (�3[[≤n]])

∗
(
A[[≤n]]|(X[[≤n]])3×(Xn)3 ιn(Δ[n],ε)

)
.

Note that these two 0-cycles have the same degree. So as pairings,

〈[Θ[[n,d]]], A[[≤n]]〉(5.47)

=
〈
(�3[[≤n]])

∗[Θ[[n,d]]], (�3[[≤n]])
∗
(
A[[≤n]]|(X[[≤n]])3×(Xn)3 ιn(Δ[n],ε)

)〉
.

Let g from (5.44) be generic, and let F → Gr be the total space
of the universal quotient rank-2 bundle over Gr = Gr(2,CN ). Let
TX → X and F → Gr be the projectifications of TX → X and F → Gr
respectively. Then the differentiable isomorphism TX

∼= g∗F induces
a differentiable isomorphism TX

∼= g∗F . Note that the top diagonal

ΔF,0
[n] := ΔF

[n]∩Fn
Gr,0 in Fn

Gr,0 is the 0-section of Fn
Gr,0 → Gr. Put ΔF,0

[n],ε =

ΔF
[n],ε ∩Fn

Gr,0. Applying the previous constructions to the families F →
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Gr and TX → X and adopting the proof of Lemma 6.1 in [LiJ], we

conclude that there exists a cycle Θ
[[n,d]]
F ⊂ (F

[[≤n]]
Gr,0 )3 ×(Fn

Gr,0)
3 ιn(Δ

F,0
[n],ε)

such that

[Θ
[[n,d]]
F ] ∈ H∗

(
(F

[[≤n]]
Gr,0 )3 ×(Fn

Gr,0)
3 ιn(Δ

F,0
[n] )

)
,(5.48)

the intersection Θ
[[n,d]]
F ∩ (((F

[[≤n]]
Gr,0 )

3 ×(Fn
Gr,0)

3 ιn(Δ
F,0
[n],ε

))×Gr X) is trans-

versal, and

(�3[[≤n]])
−1(Θ[[n,d]])(5.49)

= Θ
[[n,d]]
F ∩

((
(F

[[≤n]]
Gr,0 )3 ×(Fn

Gr,0)
3 ιn(Δ

F,0
[n],ε

)
)×Gr X

)
,

via ((TX )
[[≤n]]
X,0 )3×((TX )nX,0)

3 ιn(Δ
TX ,0
[n],ε )

∼= ((F
[[≤n]]
Gr,0 )3×(Fn

Gr,0)
3 ιn(Δ

F,0
[n],ε))×Gr

X. Thus,

(�3[[≤n]])
∗[Θ[[n,d]]] = [(�3[[≤n]])

−1(Θ[[n,d]])](5.50)

is a homology class supported on ((TX)
[[≤n]]
X,0 )3 ×((TX )nX,0)

3 ιn(Δ
TX ,0
[n] ).

Let ATX
i = aTX

−λ(i)(1X )|0〉 ∈ H∗((TX)
[n]
X ) be defined in Definition 5.16,

and put

(ATX ,0)[[≤n]] = (ATX ,0
1 )[[≤n]] ⊗ (ATX ,0

2 )[[≤n]] ⊗ (ATX ,0
3 )[[≤n]],

where (ATX ,0
i )[[≤n]] ∈ H∗((TX)

[[≤n]]
X,0 ) is the pull-back of (ATX

i )[[≤n]] ∈
H∗((TX )

[[≤n]]
X ) via the inclusion (TX)

[[≤n]]
X,0 ⊂ (TX)

[[≤n]]
X . Let S denote

the intersection(
((TX)

[[≤n]]
X,0 )3 ×((TX)nX,0)

3 ιn(Δ
TX ,0
[n] )

)
∩ (�3[[≤n]])

−1((X [[≤n]])3 ×(Xn)3 ιn(Δ[n],ε)).

Then, S = (�3[[≤n]])
−1((X [[≤n]])3 ×(Xn)3 ιn(Δ[n])). We claim that

(�3[[≤n]])
∗
(
A[[≤n]]|(X[[≤n]])3×(Xn)3 ιn(Δ[n],ε)

)
|S = (ATX ,0)[[≤n]]|S ,(5.51)

i.e., (�3[[≤n]])
∗(A[[≤n]]|(X[[≤n]])3×(Xn)3 ιn(Δ[n])

) = (ATX ,0)[[≤n]]|S . It suffices

to prove that

�∗[[≤n]]

(
A

[[≤n]]
i |X[[≤n]]×Xn Δ[n]

)
(5.52)

= (ATX ,0
i )[[≤n]]|�−1

[[≤n]]
(X[[≤n]]×Xn Δ[n])

.

Indeed, for every α ≤ [n], we conclude from Lemma 5.13 and Lemma 5.17

that the same subvariety in �−1
[[≤n]]

(
φ[α],[n](X

[[α]] ×Xn Δ[n])
)
represents the

cohomology classes �∗[[≤n]](A
[[≤n]]
i |φ[α],[n](X

[[α]]×XnΔ[n])
) and

(ATX ,0
i )[[≤n]]|

�−1
[[≤n]]

(
φ[α],[n](X[[α]]×XnΔ[n])

).
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Since X [[≤n]]×Xn Δ[n] =
∐

α≤[n] φ[α],[n](X
[[α]]×XnΔ[n]), we obtain (5.52).

By (5.47), (5.51) and (5.50), as pairings, we have

〈[Θ[[n,d]]], A[[≤n]]〉 = 〈(�3[[≤n]])
∗[Θ[[n,d]]], (ATX ,0)[[≤n]]|S〉

= 〈[(�3[[≤n]])
−1(Θ[[n,d]])], (ATX ,0)[[≤n]]〉.

Let (g[[≤n]])3 : ((TX)
[[≤n]]
X,0 )3 → (F

[[≤n]]
Gr,0 )

3 ×Gr X be the isomorphism in-

duced by g. By Lemma 5.17, (ATX ,0)[[≤n]] can be taken to be

(g[[≤n]])3∗((AF,0)[[≤n]]|
(F

[[≤n]]
Gr,0 )3×GrX

).

So

〈[Θ[[n,d]]], A[[≤n]]〉
=

〈
[(�3[[≤n]])

−1(Θ[[n,d]])], (g[[≤n]])3∗
(
(AF,0)[[≤n]]|

(F
[[≤n]]
Gr,0 )3×GrX

)〉
.

Combining with (5.49) and putting Wε = (F
[[≤n]]
Gr,0 )

3 ×(Fn
Gr,0)

3 ιn(Δ
F,0
[n],ε),

we get

〈[Θ[[n,d]]], A[[≤n]]〉 =
〈
[(�3[[≤n]])

−1(Θ[[n,d]])], (g[[≤n]]
ε )3∗

(
(AF,0)[[≤n]]|Wε

)〉
=

〈
((g[[≤n]]

ε )3)∗[(�
3
[[≤n]])

−1(Θ[[n,d]])], (AF,0)[[≤n]]|Wε

〉
,

where (g
[[≤n]]
ε )3 : ((TX )

[[≤n]]
X,0 )3×((TX )nX,0)

3 ιn(Δ
TX ,0
[n],ε )→ Wε is the morphism

induced by g. By (5.48), [Θ
[[n,d]]
F ] is supported onW := (F

[[≤n]]
Gr,0 )

3×(Fn
Gr,0)

3

ιn(Δ
F,0
[n] ). Therefore, by (5.49), we obtain

〈[Θ[[n,d]]], A[[≤n]]〉 = 〈[Θ[[n,d]]
F ] ∩ π∗(PD−1[g(X)]), (AF,0)[[≤n]]|W 〉

= 〈[Θ[[n,d]]
F ] ∩ (AF,0)[[≤n]]|W , π∗(PD−1[g(X)])〉

=
〈
π∗

(
[Θ

[[n,d]]
F ] ∩ (AF,0)[[≤n]]|W

)
, PD−1[g(X)]

〉
,

where π : W → Gr is the tautological projection. Observe that W is
in fact a disjoint union of Hausdorff spaces. Thus all the properties of
Borel–Moore homology [Iv] such as properties of cap products [GH, Iv,
Sp] can be used.

The Poincaré dual of π∗([Θ
[[n,d]]
F ]∩ (AF,0)[[≤n]]|W ) is a polynomial P in

the Chern classes ci(F ). Hence,

〈[Θ[[n,d]]], A[[≤n]]〉 = p · 〈KX ,KX〉+ q · deg(eX),(5.53)

where p and q are constants depending only on the partitions λ(i).
Finally, it remains to prove that q = 0 in (5.53). To see this, choose

the surface X such that |KX | contains a smooth divisor D. Let θ be a
holomorphic section of OX(KX) such that the vanishing divisor of θ is

D = D0. By (5.50), (�3[[≤n]])
∗[Θ

[[n,d]]
loc ] is a homology class supported on
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(TX |D)[[≤n]]

D,0

)3×((TX |D)nD,0)
3 ιn(Δ

TX |D,0
[n] ). Repeating the above argument

and replacing g : X → Gr (respectively, TX → X) by g|D : D → Gr
(respectively, TX |D → D), we get

〈[Θ[[n,d]]], A[[≤n]]〉 = p′ · 〈KX ,KX〉 = p · 〈KX ,KX〉+ q · deg(eX ),

where p′ depends only on the partitions λ(i). Since there exist two sur-
faces X with smooth D ∈ |KX | such that the pairs (〈KX ,KX〉,deg(eX))
are linearly independent, p = p′ and q = 0. q.e.d.

5.12. Proofs of Theorem 1.2 and Theorem 1.3. In this subsection,
we introduce a new class Zn,d ∈ H∗((X

[n])3) in terms of cycles Θ[[α,δ]]

studied intensively in previous subsections. Note that now Zn,d is on

the Hilbert scheme (X [n])3, not on the non-separated spaces (X [[≤n]])3.
Let B = {β1, . . . , βb} be a basis of H2(X). Then, {1X , x, β1, . . . , βb}

is a basis of H∗(X), and H∗(X [n]) has a basis B[n] consisting of

a−λ(1X)a−μ(x)a−ν(1)(β1) · · · a−ν(b)(βb)|0〉,
where |λ|+|μ|+∑i |ν(i)| = n. Via the Künneth decomposition, a basis of

H∗((X [n])3) consists of the elements A1⊗A2⊗A3 =
∏3

i=1 π
∗
n,iAi, where

A1, A2, A3 ∈ B[n] and πn,i denotes the i-th projection (X [n])3 → X [n].

Definition 5.22. (i) Let d ≥ 1, and let P+
[n],d be the subset of

P[n],d consisting of all the weighted partitions (α, δ) such that δi >
0 for every i.

(ii) For d ≥ 1, define the class Zn,d = ZB
n,d ∈ H∗((X

[n])3) by putting〈
Zn,d,

3∏
i=1

π∗
n,iAi

〉
(5.54)

=
1

n!
·

∑
(α,δ)∈P+

[n],d

〈
(φ̃3

α,[n])∗[Θ
[[α,δ]]], A

[[≤n]]
1 ⊗A

[[≤n]]
2 ⊗A

[[≤n]]
3

〉
,

for the basis elements A1, A2, A3 ∈ B[n].

Next, we prove Theorem 1.2 and Theorem 1.3 which determine the
structure of the 3-pointed genus-0 extremal Gromov–Witten invariants
ofX [n]. Note from Theorem 1.3 that the class Zn,d = ZB

n,d is independent

of the choice of the basis B of H2(X). So from now on, the basis B of
H2(X) will be implicit in our presentation.

Proof of Theorem 1.2. By (5.32), 〈A1, A2, A3〉0,dβn is equal to

1

n!

∑
(α,δ)≤([n],d)

〈
(φ̃3

α,[n])∗[Θ
[[α,δ]]], A

[[≤n]]
1 ⊗A

[[≤n]]
2 ⊗A

[[≤n]]
3

〉
.(5.55)

Define α0 = {(αi)i| δi = 0}, and let (α0, 0) be the weighted partition
such that all the weights are equal to 0. Let (α′, δ′) be the weighted
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partition obtained from (α, δ) by deleting all the αi and δi with δi =
0. Let |α′| = m, Λα0 =

∐
i(α

0)i, and Λα′ =
∐

i(α
′)i. Then, α =

(α0, 0)
∐
(α′, δ′), |α0| = n−m, and [n] = Λα0

∐
Λα′ . By (5.33),

〈(φ̃3
α,[n])∗[Θ

[[α,δ]]], A
[[≤n]]
1 ⊗A

[[≤n]]
2 ⊗A

[[≤n]]
3 〉

=
∑

A1,1◦···◦A1,l=A1
A2,1◦···◦A2,l=A2
A3,1◦···◦A3,l=A3

l∏
i=1

〈
[Θ[[αi,δi]]], A

[[≤|αi|]]
1,i ⊗A

[[≤|αi|]]
2,i ⊗A

[[≤|αi|]]
3,i

〉

=
∑

A1,1◦A1,2=A1
A2,1◦A2,2=A2
A3,1◦A3,2=A3

〈
(φ̃3

α0,Λα0
)∗[Θ

[[α0,0]]], A
[[≤(n−m)]]
1,1 ⊗A

[[≤(n−m)]]
2,1 ⊗A

[[≤(n−m)]]
3,1

〉

·
〈
(φ̃3

α′,Λα′
)∗[Θ

[[α′,δ′]]], A
[[≤m]]
1,2 ⊗A

[[≤m]]
2,2 ⊗A

[[≤m]]
3,2

〉
.

Put Λ = Λα′ . By (5.55), 〈A1, A2, A3〉0,dβn is equal to

1

n!
·
∑
m≤n

∑
A1,1◦A1,2=A1
A2,1◦A2,2=A2
A3,1◦A3,2=A3

∑
Λ⊂[n]
|Λ|=m

∑
(α′,δ′)∈P+

Λ,d

(5.56)

∑
α0∈P[n]−Λ

〈
(φ̃3

α0,[n]−Λ)∗[Θ
[[α0,0]]], A

[[≤(n−m)]]
1,1 ⊗A

[[≤(n−m)]]
2,1 ⊗A

[[≤(n−m)]]
3,1

〉
·
〈
(φ̃3

α′,Λ)∗[Θ
[[α′,δ′]]], A

[[≤m]]
1,2 ⊗A

[[≤m]]
2,2 ⊗A

[[≤m]]
3,2

〉
.

In particular, setting d = 0 in (5.56), we see that 〈A1, A2, A3〉 equals
1

n!
·
∑

α∈P[n]

〈
(φ̃3

α,[n])∗[Θ
[[α,0]]], A

[[≤n]]
1 ⊗A

[[≤n]]
2 ⊗A

[[≤n]]
3

〉
.

Therefore, by (5.56), 〈A1, A2, A3〉0,dβn is equal to

1

n!
·
∑
m≤n

∑
A1,1◦A1,2=A1
A2,1◦A2,2=A2
A3,1◦A3,2=A3

∑
Λ⊂[n]
|Λ|=m

∑
(α′,δ′)∈P+

Λ,d

(n−m)! · 〈A1,1, A2,1, A3,1〉

·〈(φ̃3
α′,Λ)∗[Θ

[[α′,δ′]]], A
[[≤m]]
1,2 ⊗A

[[≤m]]
2,2 ⊗A

[[≤m]]
3,2 〉

=
1

n!
·
∑
m≤n

∑
A1,1◦A1,2=A1
A2,1◦A2,2=A2
A3,1◦A3,2=A3

∑
(α,δ)∈P+

[m],d

(
n

m

)
(n−m)! · 〈A1,1, A2,1, A3,1〉

·〈(φ̃3
α,[m])∗[Θ

[[α,δ]]], A
[[≤m]]
1,2 ⊗A

[[≤m]]
2,2 ⊗A

[[≤m]]
3,2 〉.

Using the definition of Zm,d, we complete the proof. q.e.d.
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Proof of Theorem 1.3. Let

Ai = a−λ(i)(1X)a−μ(i)(x)a−ni,1(αi,1) · · · a−ni,ui
(αi,ui)|0〉,

with |αi,j | = 2. By linearity, we may assume αi,j ∈ B for every i and j.
By (5.54) and (5.33),〈

Zn,d,
3∏

i=1

π∗
n,iAi

〉
(5.57)

=
1

n!
·

∑
(α,δ)∈P+

[n],d

∑
A1,1◦···◦A1,l=A1
A2,1◦···◦A2,l=A2
A3,1◦···◦A3,l=A3

l∏
i=1

〈
[Θ[[αi,δi]]], ⊗3

j=1A
[[≤|αi|]]
j,i

〉
.

So our theorem, except the degree of p in (ii), follows from Lemma 5.19,
Lemma 5.20 and Lemma 5.21. To see the degree of p in (ii), consider a
nonzero term in (5.57):

l∏
i=1

〈
[Θ[[αi,δi]]], A

[[≤|αi|]]
1,i ⊗A

[[≤|αi|]]
2,i ⊗A

[[≤|αi|]]
3,i

〉
.(5.58)

By Lemma 5.19 (ii), for each i in (5.58), the classes A1,i, A2,i, A3,i to-
gether contains at most one Heisenberg factor of the form a−nj,k

(αj,k).
By Lemma 5.20 and Lemma 5.21, the degree of (5.58) as a monomial
of 〈KX ,KX〉 is equal to |I| where I is the set consisting of the index
i ∈ {1, . . . , l} such that the classes A1,i, A2,i, A3,i together do not con-
tain any Heisenberg factor of the form a−nj,k

(αj,k). Now for each i ∈ I,
|αi| ≥ 2 since δi ≥ 1. So we conclude that

|I| ≤ 1

2

∑
i∈I

|αi| = 1

2

⎛⎝n−
∑
i �∈I

|αi|
⎞⎠ ≤ 1

2

⎛⎝n−
∑
j,k

nj,k

⎞⎠ .

Hence the degree of p as a polynomial of 〈KX ,KX〉 is at most (n −∑
i,j ni,j)/2. q.e.d.

Corollary 5.23. Let d ≥ 1, and let A1, A2, A3 ∈ H∗(X [n]) be Heisen-
berg monomial classes.

(i) If A1 = a−1(1X)n−1a−1(α)|0〉, then 〈Zn,d,
∏3

i=1 π
∗
n,iAi〉 = 0.

(ii) If A1 = a−1(1X)n−1−|λ|a−1(α)a−λ(x)|0〉 for some λ, then

〈A1, A2, A3〉0,dβn = 0.

Proof. (i) First of all, if α = x, then 〈Zn,d,
∏3

i=1 π
∗
n,iAi〉 = 0 by

Theorem 1.3 (i).
Next, let α = 1X . Use induction on n. Since d ≥ 1, the conclusion

is trivially true when n = 1. Let n > 1. Recall that 1/n! · A1 is the
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fundamental class 1X[n] of X [n]. By Theorem 1.2 and the Fundamental
Class Axiom of Gromov–Witten theory,

n∑
m=2

∑
A1,1◦A1,2=A1
A2,1◦A2,2=A2
A3,1◦A3,2=A3

〈A1,1, A2,1, A3,1〉 ·
〈
Zm,d,

3∏
i=1

π∗
m,iAi,2

〉
= 0.

Since A1 = a−1(1X)n|0〉, we have A1,2 = a−1(1X)m|0〉. By induc-

tion, 〈Zm,d,
∏3

i=1 π
∗
m,iAi,2〉 = 0 if 2 ≤ m ≤ n − 1. It follows that

〈Zn,d,
∏3

i=1 π
∗
n,iAi〉 = 0.

Now let |α| = 2. By the Divisor Axiom of Gromov–Witten the-
ory and 〈A1, βn〉 = 0, we have 〈A1, A2, A3〉0,dβn = 0. Using an argu-
ment similar to the one in the previous paragraph, we conclude that
〈Zn,d,

∏3
i=1 π

∗
n,iAi〉 = 0.

(ii) We compute 〈A1, A2, A3〉0,dβn by using (1.3). Note that the class
A1,2 in (1.3) is equal to a−1(1X)m|0〉, or is equal to a−1(1X)m−1a−1(α)|0〉,
or contains a factor a−i(x) for some i > 0. By (i) and Theorem 1.3 (i),
we get 〈A1, A2, A3〉0,dβn = 0. q.e.d.

6. Proofs of (1.2) and Theorem 1.1

Let X be a simply connected smooth projective surface. Our goal in
this section is to prove (1.2) and Theorem 1.1 for A[n] = H∗

ρn(X
[n]). The

proof of (1.2) is divided into three cases depending on the cohomology
degree of the class α in (1.2) and leading to Proposition 6.3, Proposi-
tion 6.9 and Proposition 6.12. Assuming these three propositions, we
now prove Theorem 1.1.

Proof of Theorem 1.1. The shift number of p−n1(α1) · · · p−ns(αs)|0〉 is
equal to n1 + . . .+ ns − s. Define a linear isomorphism

Ψ : FX → HX ,(6.1)

by sending
√−1n1+...+ns−s

p−n1(α1) · · · p−ns(αs)|0〉 to
a−n1(α1) · · · a−ns(αs)|0〉.

This induces a linear isomorphism Ψn : H∗
CR(X

(n))→ H∗(X [n]) for each
n. Moreover, Ψ1 is simply the identity map on the cohomology group
of the surface X.

By (4.6), Proposition 6.3, Proposition 6.9 and Proposition 6.12, the

two formulas (1.1) and (1.2) hold for A[n] = H∗
ρn(X

[n]). By the proof of
Theorem 2.4 (i.e., Theorem 4.7 in [LQW3]),

G̃k(α)(6.2)

= −
∑


(λ)=k+2,|λ|=0

1

λ!
aλ(τ∗α) +

∑

(λ)=k,|λ|=0

s(λ)− 2

24λ!
aλ(τ∗(eXα)).
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Combining this with Theorem 3.1 (ii), we check directly that

Ψn

(√−1kOk(α, n) •
√−1n1+...+ns−s

p−n1(α1) · · · p−ns(αs)|0〉
)

= Ψn

(√−1k+n1+...+ns−s
Ok(α)p−n1(α1) · · · p−ns(αs)|0〉

)
= G̃k(α)a−n1(α1) · · · a−ns(αs)|0〉
= G̃k(α, n) · a−n1(α1) · · · a−ns(αs)|0〉,

where n1 + . . .+ ns = n. In particular, letting s = n, n1 = . . . = ns = 1

and α1 = . . . = αs = 1X , we get Ψn

(√−1kOk(α, n)
)
= G̃k(α, n). So

Ψn

(√−1kOk(α, n) •
√−1n1+...+ns−s

p−n1(α1) · · · p−ns(αs)|0〉
)

= Ψn

(√−1kOk(α, n)
)
·Ψn

(√−1n1+...+ns−s
p−n1(α1) · · · p−ns(αs)|0〉

)
.

Since the classes Ok(α, n) with k ≥ 0, α ∈ H∗(X) generate the ring
H∗

CR(X
(n)), Ψn : H∗

CR(X
(n))→ H∗(X [n]) is a ring isomorphism. q.e.d.

Remark 6.1. Using Heisenberg monomial classes, one checks that
Ψn preserves the pairings on H∗

CR(X
(n)) and H∗(X [n]).

In the next three subsections, we will verify (1.2) by proving Proposi-
tions 6.3, 6.9 and 6.12 used in the proof of Theorem 1.1. For simplicity,
put 〈w1, w2, w3〉d = 〈w1, w2, w3〉0,dβn . In addition, w1, w2 and w3 will
stand for Heisenberg monomial classes.

6.1. The case α = x. We begin with a setup for the proof of (1.2) for
arbitrary α, β ∈ H∗(X). To prove (1.2), it is equivalent to verify that〈

[G̃k(α), a−1(β)]w1, w2

〉
=

1

k!

〈
a
{k}
−1 (αβ)w1, w2

〉
,(6.3)

for w1 ∈ H∗
ρn(X

[n−1]) = H∗(X [n−1]) and w2 ∈ H∗
ρn(X

[n]) = H∗(X [n]).
Put

Dα
β (w1, w2; q)(6.4)

:= 〈[G̃k(α; q), a−1(β)]w1, w2〉 − 1

k!

〈
a
{k}
−1 (αβ)w1, w2

〉
,

where k is omitted in Dα
β (w1, w2; q) as it will be clear from the context.

Lemma 6.2. The difference Dα
β (w1, w2; q) is equal to∑

0≤j≤k,λ�(j+1)
�(λ)=k−j+1

(−1)|λ|−1

λ! · |λ|!
∑
d≥1

(〈
1−(n−j−1)a−λ(τ∗α)|0〉, a−1(β)w1, w2

〉
d

− 〈1−(n−j−2)a−λ(τ∗α)|0〉, w1, a−1(β)
†w2

〉
d

)
qd

+
∑

ε∈{KX ,K2
X}

∑
�(λ)=k+1−|ε|/2

|λ|=−1

f̃|ε|(λ) ·
〈
aλ(τ∗(εαβ))w1, w2

〉
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−
∑

ε∈{KX,K2
X

}

0≤j≤k,λ�(j+1)
�(λ)=k−j+1−|ε|/2

g̃|ε|(λ) ·
(〈

1−(n−j−1)a−λ(τ∗(εα))|0〉, a−1(β)w1, w2

〉

− 〈1−(n−j−2)a−λ(τ∗(εα))|0〉, w1 , a−1(β)
†w2

〉)
,

where a−1(β)
† = −a1(β) is the adjoint operator of a−1(β), and the func-

tions f̃|ε|(λ) and g̃|ε|(λ) depend only on k, |ε| and λ.

Proof. By (4.5),
〈
[G̃k(α; q), a−1(β)]w1, w2

〉
is equal to〈

G̃k(α; q)
(
a−1(β)w1

)
, w2

〉− 〈a−1(β)G̃k(α; q)(w1), w2

〉
(6.5)

=
〈
G̃k(α; q)

(
a−1(β)w1

)
, w2

〉− 〈G̃k(α; q)(w1), a−1(β)
†w2

〉
=

∑
d≥0

(〈
G̃k(α, n), a−1(β)w1, w2

〉
d

−〈G̃k(α, n − 1), w1, a−1(β)
†w2

〉
d

)
qd.

If d ≥ 1, then we see from (4.4) and Corollary 5.23 (ii) that〈
G̃k(α, n), a−1(β)w1, w2

〉
d

(6.6)

=
∑

0≤j≤k

∑
λ�(j+1)

�(λ)=k−j+1

(−1)|λ|−1

λ! · |λ|!
〈
1−(n−j−1)a−λ(τ∗α)|0〉, a−1(β)w1, w2

〉
d
.

Similarly, if d ≥ 1, then
〈
G̃k(α, n − 1), w1, a−1(β)

†w2

〉
d
is equal to∑

0≤j≤k
λ�(j+1)

�(λ)=k−j+1

(−1)|λ|−1

λ! · |λ|!
〈
1−(n−j−2)a−λ(τ∗α)|0〉, w1, a−1(β)

†w2

〉
d
.(6.7)

Next, we study the two terms with d = 0 in (6.5). By (4.4) and

Theorem 2.5, G̃k(α, n) is equal to

Gk(α, n)−
∑

ε∈{KX,K2
X

}

0≤j≤k

∑
λ�(j+1)

�(λ)=k−j+1−|ε|/2

g̃|ε|(λ) · 1−(n−j−1)a−λ(τ∗(εα))|0〉,

where g̃|ε|(λ) depends only on k, |ε| and λ. By Theorem 2.1 (iii), Theo-
rem 2.3 and Lemma 4.5,

〈Gk(α, n), a−1(β)w1, w2〉 − 〈Gk(α, n − 1), w1, a−1(β)
†w2〉

is equal to

〈Gk(α, n) · a−1(β)w1, w2〉 − 〈Gk(α, n − 1) · w1, a−1(β)
†w2〉

= 〈Gk(α)a−1(β)w1, w2〉 − 〈a−1(β)Gk(α)w1, w2〉
=

〈
[Gk(α), a−1(β)]w1, w2〉 = 1

k!
〈a(k)−1(αβ)w1, w2〉
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=
1

k!
〈a{k}−1 (αβ)w1, w2〉+

∑
ε∈{KX,K2

X
}

�(λ)=k+1−|ε|/2
|λ|=−1

f̃|ε|(λ) ·
〈
aλ(τ∗(εαβ))w1, w2

〉
.

Thus,
〈
G̃k(α, n), a−1(β)w1, w2

〉− 〈G̃k(α, n − 1), w1, a−1(β)
†w2

〉
equals

1

k!
〈a{k}−1 (αβ)w1, w2〉+

∑
ε∈{KX,K2

X
}

�(λ)=k+1−|ε|/2
|λ|=−1

f̃|ε|(λ) ·
〈
aλ(τ∗(εαβ))w1, w2

〉
(6.8)

−
∑

ε∈{KX,K2
X

}

0≤j≤k,λ�(j+1)
�(λ)=k−j+1−|ε|/2

g̃|ε|(λ) ·
(〈

1−(n−j−1)a−λ(τ∗(εα))|0〉, a−1(β)w1, w2

〉

−〈1−(n−j−2)a−λ(τ∗(εα))|0〉, w1 , a−1(β)
†w2

〉)
.

Finally, our lemma follows from (6.5), (6.6), (6.7) and (6.8). q.e.d.

Now we deal with the simplest case when α = x and β is arbitrary.

Proposition 6.3. If α = x is the cohomology class of a point, then
(1.2) is true.

Proof. By Corollary 5.23 (ii), every term in Lemma 6.2 is equal to
zero. So Dx

β(w1, w2; q) = 0. Setting q = −1, we conclude immediately

that (1.2) is true. q.e.d.

6.2. The case |α| = 2. We begin with two lemmas about the structures

of the intersections in H∗(X [n]).

Lemma 6.4. Let λ be a partition with |λ| ≤ n. For i = 1 and 2, let

wi = a−λ(i)(x)a−μ(i)(1X )a−ni,1(αi,1) · · · a−ni,ui
(αi,ui)|0〉,(6.9)

where |αi,j| = 2 for all i and j. Then,
〈
a−1(1X)n−|λ|a−λ(x)|0〉, w1, w2

〉
is equal to

δu1,u2 ·
∑

σ∈Perm{1,...,u1}

u1∏
i=1

〈α1,i, α2,σ(i)〉 · p(σ),(6.10)

where p(σ) depends only on σ, n, λ and all the λ(i), μ(i), ni,j.

Proof. By Lemma 2.8 (i), a−1(1X)n−|λ|a−λ(x)|0〉 is a polynomial of
the classes Gk(x, n), k ≥ 0 whose coefficients are independent of X. In
addition, the integers k involved depend only on λ. Note that〈

Gk1(x, n) · · ·Gkl(x, n), w1, w2

〉
=
〈
Gk1(x) · · ·Gkl(x)w1, w2

〉
is equal to 〈

a−λ(1)(x)a−n1,1(α1,1) · · · a−n1,u1
(α1,u1)

·Gk1(x) · · ·Gkl(x)a−μ(1)(1X)|0〉, w2

〉
.
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So by Theorem 2.4 and Theorem 2.1 (i),
〈
Gk1(x, n) · · ·Gkl(x, n), w1, w2

〉
equals

δu1,u2 ·
∑

σ∈Perm{1,...,u1}

u1∏
i=1

〈α1,i, α2,σ(i)〉 · p̃(σ),(6.11)

where p̃(σ) depends only on σ, n, k1, . . . , kl and all the λ(i), μ(i), ni,j.
q.e.d.

Lemma 6.5. Let n0 ≥ 1, |α| = 2, and λ be a partition. Let w1 and
w2 be given by (6.9). Then,

〈
1−(n−|λ|−n0)a−λ(x)a−n0(α)|0〉, w1, w2

〉
is

equal to

〈KX , α〉 · δu1,u2 ·
∑

σ1∈Perm{1,...,u1}

u1∏
i=1

〈α1,i, α2,σ1(i)〉 · p1(σ1)(6.12)

+

u1∑
j=1

〈α,α1,j〉 · δu1−1,u2 ·
∑
σ2

∏
i �=j

〈α1,i, α2,σ2(i)〉 · p2(σ2)

+

u2∑
j=1

〈α,α2,j〉 · δu1,u2−1 ·
∑
σ3

u1∏
i=1

〈α1,i, α2,σ3(i)〉 · p3(σ3),

where σ2 runs over all bijections {1, . . . , u1} − {j} → {1, . . . , u2}, σ3
runs over all bijections {1, . . . , u1} → {1, . . . , u2} − {j}, and p1(σ1)
(respectively, p2(σ2), p3(σ3)) depend only on σ1 (respectively, σ2, σ3),
n, n0, λ and all the λ(i), μ(i), ni,j.

Proof. By Lemma 2.8 (ii), 1−(n−|λ|−n0)a−λ(x)a−n0(α)|0〉 is equal to
〈KX , α〉 · F1(n) +

∑
i

Gki(α, n) · F2,i(n),

where F1(n) and F2,i(n) are polynomials of Gk(x, n), k ≥ 0 whose co-
efficients are independent of n and α. Moreover, the integers k and ki
depend only on λ and n0. Thus,〈

1−(n−|λ|−n0)a−λ(x)a−n0(α)|0〉, w1, w2

〉
(6.13)

= 〈KX , α〉 · 〈F1(n), w1, w2

〉
+
∑
i

〈
Gki(α, n) · F2,i(n), w1, w2

〉
.

As in the proof of Lemma 6.4,
〈
F1(n), w1, w2

〉
is of the form

δu1,u2 ·
∑

σ1∈Perm{1,...,u1}

u1∏
i=1

〈α1,i, α2,σ1(i)〉 · p̃1,1(σ1),(6.14)

where p̃1,1(σ1) depends only on σ1, n, n0, λ and all the λ(i), μ(i), ni,j.
Also,

〈
Gki(α, n)Gs1(x, n) · · ·Gsl(x, n), w1, w2

〉
is equal to〈

Gs1(x) · · ·Gsl(x)Gki(α)w1, w2

〉
.
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By Theorem 2.4 and Lemma 2.6,
〈
Gki(α, n)Gs1(x, n) · · ·Gsl(x, n), w1,

w2

〉
equals

〈KX , α〉 · δu1,u2 ·
∑

σ1∈Perm{1,...,u1}

u1∏
i=1

〈α1,i, α2,σ1(i)〉 · p̃1,2(σ1)(6.15)

+

u1∑
j=1

〈α,α1,j〉 · δu1−1,u2 ·
∑
σ2

∏
i �=j

〈α1,i, α2,σ2(i)〉 · p̃2(σ2)

+

u2∑
j=1

〈α,α2,j〉 · δu1,u2−1 ·
∑
σ3

u1∏
i=1

〈α1,i, α2,σ3(i)〉 · p̃3(σ3),

where σ2 runs over all the bijections {1, . . . , u1}−{j} → {1, . . . , u2}, and
σ3 runs over all the bijections {1, . . . , u1} → {1, . . . , u2} − {j}. Hence∑

i

〈
Gki(α, n) · F2,i(n), w1, w2

〉
is of the form (6.15) as well. Combining

with (6.13) and (6.14), we obtain (6.12). q.e.d.

Next, we introduce the notion of universal polynomials P (KX , S1, S2)
in 〈KX ,KX〉 of degree at most m and of type (u1, u2), and prove a
vanishing lemma.

Definition 6.6. Fix three integers m,u1, u2 ≥ 0. Then a universal
polynomial P (KX , S1, S2) in 〈KX ,KX〉 of degree at most m and of type
(u1, u2) is of the form∑

1≤j1<...<js≤u1
1≤l1<...<ls≤u2

∏
i �∈{j1,...,js}

〈KX , α1,i〉 ·
∏

i �∈{l1,...,ls}

〈KX , α2,i〉(6.16)

·
∑

σ∈Perm{l1,...,ls}

s∏
i=1

〈α1,ji , α2,σ(li)〉 · p(j1, . . . , js; l1, . . . , ls;σ),

where Si = {αi,1, . . . , αi,ui} ⊂ H2(X), and p(j1, . . . , js; l1, . . . , ls;σ) is a
polynomial in 〈KX ,KX〉 whose degree is at most m and whose coeffi-
cients are independent of X and the classes αi,j .

Lemma 6.7. Fix m,u1, u2 ≥ 0. Let P (KX , S1, S2) be a universal
polynomial in 〈KX ,KX〉 of degree at most m and of type (u1, u2). As-
sume P (KX , S1, S2) = 0 for every smooth projective toric surface X.
Then P (KX , S1, S2) = 0 for every smooth projective surface X.

Proof. Let r � m + u1 + u2, and let Xr be a smooth toric surface
obtained from P2 as an r-fold blown-up. Let L0 be a line in P2, and let
e1, . . . , er be the exceptional divisors. Then, KXr = −3L0+e1+ . . .+er.
For fixed j1, . . . , js, l1, . . . , ls and σ, let{
α1,i| i ∈ {1, . . . , u1} − {j1, . . . , js}} = {−e1, . . . ,−eu1−s

}
,{

α2,i| i ∈ {1, . . . , u2} − {l1, . . . , ls}} = {−eu1−s+1, . . . ,−eu1−s+u2−s

}
,
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and α1,ji = α2,σ(li) = eu1−s+u2−s+2i − eu1−s+u2−s+2i−1 for i = 1, . . . , s.
Then,

0 = P (KXr , S1, S2) = (−2)s · p(j1, . . . , js; l1, . . . , ls;σ),(6.17)

by (6.16). It follows that p(j1, . . . , js; l1, . . . , ls;σ) = 0 for all the surfaces
Xr with r� m+u1+u2. Since p(j1, . . . , js; l1, . . . , ls;σ) is a polynomial
in 〈KXr ,KXr 〉 whose degree is at most m, we conclude that as polyno-
mials, p(j1, . . . , js; l1, . . . , ls;σ) = 0. Therefore, P (KX , S1, S2) = 0 for
every smooth projective surface X. q.e.d.

Our next lemma is about the structure of certain 3-pointed extremal
Gromov–Witten invariants, and provides the motivation for Defini-
tion 6.6.

Lemma 6.8. Let d, n0 ≥ 1 and |α| = 2. Let w1 and w2 be given by
(6.9). Then,〈

1−(n−|λ|−n0)a−λ(x)a−n0(α)|0〉, w1, w2

〉
d
= 〈KX , α〉 · P (KX , S1, S2),

where S1 = {α1,1, . . . , α1,u1}, S2 = {α2,1, . . . , α2,u2}, and P (KX , S1, S2)
is a universal polynomial in 〈KX ,KX〉 of degree at most (n−n0)/2 and
of type (u1, u2).

Proof. For simplicity, let w0 = 1−(n−|λ|−n0)a−λ(x)a−n0(α)|0〉. Also,
for i = 1 and 2, let w̃i = a−μ(i)(1X )a−ni,1(αi,1) · · · a−ni,ui

(αi,ui)|0〉. We

compute
〈
w0, w1, w2

〉
d
by using (1.3). Consider the following from (1.3):

〈B0, B1, B2〉 ·
〈
Zm,d, π∗

m,1

(
w0

B0

)
· π∗

m,2

(
w1

B1

)
· π∗

m,3

(
w2

B2

)〉
,(6.18)

where m ≤ n, B0, B1, B2 ∈ H∗(X [n−m]), B0 ⊂ w0, B1 ⊂ w1, and
B2 ⊂ w2. By Theorem 1.3 (i) and Corollary 5.23 (i), such a term
is nonzero only if B0 = a−1(1X )ja−λ(x)|0〉 with j ≤ (n − |λ| − n0),

B1 = a−λ(1)(x)B̃1 with B̃1 ⊂ w̃1, and B2 = a−λ(2)(x)B̃2 with B̃2 ⊂ w̃2.
In this situation, (6.18) can be rewritten as〈

a−1(1X)ja−λ(x)|0〉, a−λ(1) (x)B̃1, a−λ(2)(x)B̃2

〉
(6.19)

·
〈
Zm,d, π

∗
m,1

(
1−(n−|λ|−n0)a−n0(α)|0〉

a−1(1X)j |0〉
)
· π∗

m,2

(
w̃1

B̃1

)
· π∗

m,3

(
w̃2

B̃2

)〉
.

Note that B̃1 = a−ν(1)(1X)a−n1,j1
(α1,j1) · · · a−n1,js

(α1,js)|0〉 for some 1 ≤
j1 < . . . < js ≤ u1 and some sub-partition ν(1) of μ(1) (i.e., every part

of ν(1) is a part of μ(1)). Similarly,

B̃2 = a−ν(2)(1X)a−n2,l1
(α2,l1) · · · a−n2,lt

(α2,lt)|0〉,
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for some 1 ≤ l1 < . . . < lt ≤ u2 and some sub-partition ν(2) of μ(2). By
Lemma 6.4, the first factor in (6.19) equals

δs,t ·
∑

σ∈Perm{l1,...,ls}

s∏
i=1

〈α1,ji , α2,σ(li)〉(6.20)

·p1(j1, . . . , js; l1, . . . , ls;σ),
where p1 is a number independent of the surface X and the classes αi,j .
By Theorem 1.3, we see that the second factor in (6.19) is equal to

〈KX , α〉 ·
∏

i �∈{j1,...,js}

〈KX , α1,i〉

·
∏

i �∈{l1,...,ls}

〈KX , α2,i〉 · p2(j1, . . . , js; l1, . . . , ls;σ),

where p2 is a polynomial in 〈KX ,KX〉 whose degree is at most (m −
n0)/2 ≤ (n−n0)/2, and whose coefficients are independent of the surface
X and the classes αi,j . Combining this with (6.18), (6.19) and (6.20),
we complete the proof of our lemma. q.e.d.

Proposition 6.9. If |α| = 2, then (1.2) is true.

Proof. Recall that (1.2) is equivalent to (6.3), and the difference
Dα

β (w1, w2; q) from (6.4) is computed by Lemma 6.2. Let w1 and w2

be given by (6.9). Let u′1 = δ2,|β| + u1 and S2 = {α2,1, . . . , α2,u2}. Let
S1 = {α1,1, . . . , α1,u1} if |β| �= 2, and S1 = {β, α1,1, . . . , α1,u1} if |β| = 2.

By Lemma 4.6 and Lemma 6.7, it suffices to prove that

Dα
β (w1, w2;−1) = 〈KX , α〉 · P (KX , S1, S2),(6.21)

where P (KX , S1, S2) is a universal polynomial in 〈KX ,KX〉 of degree
at most (n−1)/2 and of type (u′1, u2). This follows if we can prove that

Dα
β (w1, w2; q) = 〈KX , α〉 ·

∑
d≥0

P (KX , S1, S2; d) q
d,(6.22)

where every P (KX , S1, S2; d) is a universal polynomial in 〈KX ,KX〉 of
degree at most (n−1)/2 and of type (u′1, u2). We remark that d has been
inserted into the notation P (KX , S1, S2; d) to emphasis its dependence
on d.

In the following, we will show that the contribution of every term in
Lemma 6.2 is of the form P (KX , S1, S2; d) for a suitable d ≥ 0. Note
that in H∗(Xi),

τi∗(α) = α⊗ x⊗ · · · ⊗ x+ x⊗ α⊗ x⊗ · · · ⊗ x+ . . .+ x⊗ · · · ⊗ x⊗ α.

Thus, by Lemma 6.8,
〈
1−(n−j−1)a−λ(τ∗α)|0〉, a−1(β)w1, w2

〉
d
is equal to

〈KX , α〉 · P1(KX , S1, S2; d),
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where P1(KX , S1, S2; d) is a universal polynomial in 〈KX ,KX〉 of degree
at most (n − 1)/2 and of type (u′1, u2). Similarly, since a−1(β)

†w2 =
−a1(β)w2, we see from Theorem 2.1 (i) and Lemma 6.8 that〈
1−(n−j−2)a−λ(τ∗α)|0〉, w1, a−1(β)

†w2

〉
d
= 〈KX , α〉 · P2(KX , S1, S2; d).

Next, we move to the term
〈
aλ(τ∗(εαβ))w1, w2

〉
in Lemma 6.2, where

ε ∈ {KX ,K2
X}. Such a term is zero unless ε = KX and |β| = 0. In this

case, we may assume that β = 1X . So let ε = KX and β = 1X . Then,〈
aλ(τ∗(εαβ))w1, w2

〉
= 〈KX , α〉 · 〈aλ(x)w1, w2

〉
= 〈KX , α〉 · P3(KX , S1, S2; 0),

by Theorem 2.1 (i), where P3(KX , S1, S2; 0) is a universal polynomial
in 〈KX ,KX〉 of degree 0 (i.e., 〈KX ,KX〉 does not appear) and of type
(u′1, u2).

Finally, τ∗(εα) is zero unless ε = KX . Let ε = KX . By Lemma 6.4,〈
1−(n−j−1)a−λ(τ∗(εα))|0〉, a−1(β)w1, w2

〉
= 〈KX , α〉 · 〈1−(n−j−1)a−λ(x)|0〉, a−1(β)w1, w2

〉
= 〈KX , α〉 · P4(KX , S1, S2; 0),

where P4(KX , S1, S2; 0) is a universal polynomial in 〈KX ,KX〉 of degree
0 and of type (u′1, u2). Similarly, since a−1(β)

†w2 = −a1(β)w2,〈
1−(n−j−2)a−λ(τ∗(εα))|0〉, w1, a−1(β)

†w2

〉
is equal to 〈KX , α〉 · P5(KX , S1, S2; 0). q.e.d.

6.3. The case α = 1X .

Lemma 6.10. Let d, n0 ≥ 1. Let w1 and w2 be given by (6.9). Then,〈
1−(n−|λ|−n0)a−λ(x)a−n0(1X )|0〉, w1, w2

〉
d
= P (KX , S1, S2),(6.23)

where S1 = {α1,1, . . . , α1,u1}, S2 = {α2,1, . . . , α2,u2}, and P (KX , S1, S2)
is a universal polynomial in 〈KX ,KX〉 of degree at most n/2 and of type
(u1, u2).

Proof. This follows from the proof of Lemma 6.8 by replacing α by
1X (and then by noticing that the factor 〈KX , α〉 there will not appear
here). q.e.d.

Lemma 6.11. Let d ≥ 1 and |λ| ≤ n. Let w1 and w2 be given by
(6.9). Then,〈

1−(n−|λ|)a−λ(τ∗1X)|0〉, w1, w2

〉
d
= P (KX , S1, S2),(6.24)

where S1 = {α1,1, . . . , α1,u1}, S2 = {α2,1, . . . , α2,u2}, and P (KX , S1, S2)
is a universal polynomial in 〈KX ,KX〉 of degree at most n/2 and of type
(u1, u2).
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Proof. For i = 1 and 2, let

w̃i = a−μ(i)(1X)a−ni,1(αi,1) · · · a−ni,ui
(αi,ui)|0〉.

Note that if the Künneth decomposition of τ2∗1X ∈ H∗(X2) is given by

τ2∗1X = x⊗ 1X + 1X ⊗ x+
∑
j

γj,1 ⊗ γj,2,

where |γj,1| = |γj,2| = 2, then up to permutations of factors, a typical
term in the Künneth decomposition of τi∗1X ∈ H∗(Xi) with i ≥ 3 is
either x⊗· · ·⊗x⊗1X or x⊗· · ·⊗x⊗γj,1⊗γj,2. In view of Lemma 6.10,
it suffices to verify that∑

j

〈
1−ña−λ̃(x)a−n1(γj,1)a−n2(γj,2)|0〉, w1, w2

〉
d

(6.25)

= P1(KX , S1, S2),

where ñ = n−|λ̃|−n1−n2, and P1(KX , S1, S2) is a universal polynomial
in 〈KX ,KX〉 of degree at most n/2 and of type (u1, u2). Let

w0 = 1−ña−λ̃(x)a−n1(γj,1)a−n2(γj,2)|0〉.
We see from (1.3) that to prove (6.25), it suffices to show that∑

j

〈B0, B1, B2〉(6.26)

·
〈
Zm,d, π

∗
m,1

(
w0

B0

)
· π∗

m,2

(
w1

B1

)
· π∗

m,3

(
w2

B2

)〉
is equal to P2(KX , S1, S2), where m ≤ n, B0, B1, B2 ∈ H∗(X [n−m]),
B0 ⊂ w0, B1 ⊂ w1, and B2 ⊂ w2. By Theorem 1.3 (i) and Corol-

lary 5.23 (i), such a term is nonzero only if B1 = a−λ(1)(x)B̃1 with

B̃1 ⊂ w̃1, B2 = a−λ(2)(x)B̃2 with B̃2 ⊂ w̃2, and B0 = a−1(1X)sa−λ̃(x)|0〉
or a−1(1X )sa−λ̃(x)a−n1(γj,1)|0〉 or a−1(1X)sa−λ̃(x)a−n2(γj,2)|0〉 where

s ≤ ñ. In the following, we assume that (6.26) is nonzero. By symme-
try, we need only to consider two cases for B0:

B0 = a−1(1X)sa−λ̃(x)|0〉, or B0 = a−1(1X)sa−λ̃(x)a−n1(γj,1)|0〉.
We begin with the case B0 = a−1(1X)sa−λ̃(x)|0〉. Then (6.26) is∑

j

〈
a−1(1X)sa−λ̃(x)|0〉, a−λ(1) (x)B̃1, a−λ(2)(x)B̃2

〉
·
〈
Zm,d, π

∗
m,1

(
1−ña−n1(γj,1)a−n2(γj,2)|0〉

a−1(1X)s|0〉
)
· π∗

m,2

(
w̃1

B̃1

)
· π∗

m,3

(
w̃2

B̃2

)〉
.

Applying the same arguments as in the computation of (6.19), we con-
clude that the term (6.26) is equal to∑

j

〈KX , γj,1〉 · 〈KX , γj,2〉 · P3(KX , S1, S2),
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where P3(KX , S1, S2) is a universal polynomial in 〈KX ,KX〉 of degree at
most (m−n1−n2)/2 and of type (u1, u2). Note that for β1, β2 ∈ H2(X),
we have ∑

j

〈β1, γj,1〉 · 〈β2, γj,2〉 = 〈β1, β2〉.(6.27)

Therefore, (6.26) is equal to 〈KX ,KX〉 · P3(KX , S1, S2) which is a uni-
versal polynomial in 〈KX ,KX〉 of degree at most m/2 ≤ n/2 and of
type (u1, u2).

Next, let B0 = a−1(1X)sa−λ̃(x)a−n1(γj,1)|0〉. This time, (6.26) is∑
j

〈
a−1(1X)sa−λ̃(x)a−n1(γj,1)|0〉, a−λ(1) (x)B̃1, a−λ(2)(x)B̃2

〉
·
〈
Zm,d, π∗

m,1

(
1−ña−n2(γj,2)|0〉

a−1(1X)s|0〉
)
· π∗

m,2

(
w̃1

B̃1

)
· π∗

m,3

(
w̃2

B̃2

)〉
.

Using Lemma 6.5, Theorem 1.3 and (6.27), we conclude that (6.26) is
equal to P4(KX , S1, S2) which is a universal polynomial in 〈KX ,KX〉 of
degree at most

(m− n2)/2 + 1 ≤ ((n − n1)− n2)/2 + 1 ≤ n/2,

and of type (u1, u2). This completes the proof of (6.24). q.e.d.

Proposition 6.12. If α = 1X , then (1.2) is true.

Proof. We adopt the same notations and approaches as in the proof
of Proposition 6.9. By Lemma 4.6 and Lemma 6.7, it suffices to prove

D1X
β (w1, w2;−1) = P (KX , S1, S2),(6.28)

where P (KX , S1, S2) is a universal polynomial in 〈KX ,KX〉 of degree
at most (n+1)/2 and of type (u′1, u2). This follows if we can prove that

D1X
β (w1, w2; q) =

∑
d≥0

P (KX , S1, S2; d) q
d,(6.29)

where P (KX , S1, S2; d) is a universal polynomial in 〈KX ,KX〉 of de-
gree at most (n + 1)/2 and of type (u′1, u2). In the following, we will
show that the contribution of every term in Lemma 6.2 is of the form
P (KX , S1, S2; d) for a suitable d ≥ 0.

First of all, when d ≥ 1, we conclude from Lemma 6.11 that〈
1−(n−j−1)a−λ(τ∗1X)|0〉, a−1(β)w1, w2

〉
d

− 〈
1−(n−j−2)a−λ(τ∗1X)|0〉, w1, a−1(β)

†w2

〉
d

is equal to P1(KX , S1, S2; d) which is a universal polynomial in 〈KX ,KX〉
of degree at most n/2 and of type (u′1, u2).

Next, consider

〈aλ(τ∗(εαβ))w1, w2〉 = 〈aλ(τ∗(εβ))w1, w2〉,
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from Lemma 6.2, where ε ∈ {KX ,K2
X}. It is zero unless ε = K2

X and
β = 1X (when |β| = 0, we let β = 1X), or ε = KX and |β| = 2, or
ε = KX and β = 1X . If ε = K2

X and β = 1X , then〈
aλ(τ∗(εβ))w1, w2

〉
= 〈KX ,KX〉 ·

〈
aλ(x)w1, w2

〉
= 〈KX ,KX〉 · P2(KX , S1, S2; 0),

by Theorem 2.1 (i), where P2(KX , S1, S2; 0) is a universal polynomial
in 〈KX ,KX〉 of degree 0 and of type (u′1, u2). If ε = KX and |β| = 2,
then 〈

aλ(τ∗(εβ))w1, w2

〉
= 〈KX , β〉 · 〈aλ(x)w1, w2

〉
= 〈KX , β〉 · P3(KX , S1, S2; 0),

which is a universal polynomial in 〈KX ,KX〉 of degree 0 and of type
(u′1, u2). If ε = KX and β = 1X , then we obtain

〈
aλ(τ∗(εβ))w1, w2

〉
=〈

aλ(τ∗KX)w1, w2

〉
which again is a universal polynomial in 〈KX ,KX〉

of degree 0 and of type (u′1, u2).
Finally, let ε ∈ {KX ,K2

X}. We have τ∗(εα) = τ∗ε. Let Iε be〈
1−(n−j−1)a−λ(τ∗ε)|0〉, a−1(β)w1, w2

〉
− 〈

1−(n−j−2)a−λ(τ∗ε)|0〉, w1, a−1(β)
†w2

〉
,

from Lemma 6.2. When ε = K2
X , we see from Lemma 6.4 that

Iε = 〈KX ,KX〉 ·
〈
1−(n−j−1)a−λ(x)|0〉, a−1(β)w1, w2

〉
−〈KX ,KX〉 ·

〈
1−(n−j−2)a−λ(x)|0〉, w1, a−1(β)

†w2

〉
= 〈KX ,KX〉 · P4(KX , S1, S2; 0),

where P4(KX , S1, S2; 0) is a universal polynomial in 〈KX ,KX〉 of degree
0 and of type (u′1, u2). When ε = KX , we see from Lemma 6.5 that
Iε = IKX

is a universal polynomial in 〈KX ,KX〉 of degree at most 1
and of type (u′1, u2). q.e.d.
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