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REAL ALGEBRAIC M O D U LA R  VA R IETY

MARK GORESKY & YUNG SHENG TAI

Abstract
An anti-holomorphic multiplication by the integers Od of a quadratic imag­
inary number field, on a principally polarized complex abelian variety A c  
is an action of Od on A c such that the purely imaginary elements act in 
an anti-holomorphic manner. The coarse moduli space X r of such A  (with 
appropriate level structure) is shown to consist of finitely many isomor­
phic connected components, each of which is an arithmetic quotient of the 
quaternionic Siegel space, that is, the symmetric space for the complex sym- 
plectic group. The moduli space A r is also identified as the fixed point set 
of a certain anti-holomorphic involution r  on the complex points X q of the 
Siegel moduli space of all principally polarized abelian varieties (with ap­
propriate level structure). The Siegel moduli space X c  admits a certain 
rational structure for which the involution r  is rationally defined. So the 
space X r admits the structure of a rationally defined, real algebraic variety.

1. Introduction

1.1

Let f)n =  Sp(2n,R )/U (n) be the Siegel upper half space of rank n and 
let T =  Sp(2n,Z). The quotient T\t)n has three remarkable properties:

(a) It has the structure of a quasi-projective complex algebraic variety.

(b) It is a coarse moduli space for principally polarized abelian vari­
eties.

(c) It has a natural compactification (the Baily-Borel Satake compact- 
ification) which admits a model defined over the rational numbers.
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Among the many missing ingredients in the theory of automorphic 
forms for groups of non-Hermitian type are analogues of these three 
facts. The associated locally symmetric spaces do not appear to have an 
algebraic structure; they do not appear to be associated with a natural 
class of elliptic curves or abelian varieties, and although they have many 
compactifications, there does not appear to be a canonical or “best” 
one. In the early 1970’s G. Shimura, J. Millson and M. Kuga [10] asked 
whether it might be possible to address these shortcomings by realizing 
a locally symmetric space W  for a group of non-Hermitian type as a 
subspace of a locally symmetric space X  for a group of Hermitian type; 
perhaps interpreting W  as a moduli space of a class of real abelian 
varieties. These ideas were partially investigated by A. Adler [1], H. 
Jaffee [10], S. Kudla [12], K.-Y. Shih [22], and G. Shimura [24, 26, 27]. 
In [24], Shimura showed that results of this type cannot be expected 
in general. He found a moduli space X c  (for a certain class of abelian 
varieties) which had a model defined over R, such that the locus X r. of 
real points did not represent a moduli space for the corresponding real 
abelian varieties.

1.2

We wish to revisit this question for quotients

(1.2.1) W  =  T\Yn

of the symmetric space Yn =  Sp(2n, C)/U (n, H) (the “quaternionic 
Siegel space” , cf. §10) by the principal congruence subgroup

T =  Sp(2n, Od)[M]

of Sp(2n, Od) of level M. Here, d <  0 is a square-free integer and Od 
is the ring of integers in the quadratic imaginary number field Q(\/d). 
If M  > 3 then the space W  is a smooth manifold of (real) dimension 
2 n2 +  n. It does not have an (obvious) algebraic structure. In the case 
n — 1, W  is an arithmetic quotient of the real hyperbolic 3-space, Y\.

In this paper we show, for appropriate level M, that a certain disjoint 
union X m of finitely many copies of W  admits analogs to all three of 
the above statements. That is:

(a) The smooth manifold X ^ is the set of fixed points of an anti- 
holomorphic involution r of a quasi-projective complex algebraic 
variety Xc-
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(b) The space X r may be naturally identified with the (coarse) moduli 
space of n-dimensional abelian varieties with level M  structure and 
with anti-holomorphic multiplication (see below) by Od-

(c) The complex variety X c  and the involution r  admit a model that 
is defined over the rationals Q.

1.3

The algebraic variety X c  is just the Siegel moduli space T(M)\f)2n of 
principally polarized abelian varieties with level M  structure. The in­
volution r  extends to an anti-holomorphic involution of the Baily-Borel 
Satake compactification X  of X c  and hence defines a real structure on 
X. In §9 we make use of a result of Shimura [25] to prove an analogue 
of statement (c) above by showing that X  admits a rational structure 
that is compatible with this real structure.

1.4

In this paper we introduce the concept of anti-holomorphic multiplica­
tion of the ring of integers Od on a principally polarized abelian variety 
A: it is an action of Od on A by real endomorphisms which are com­
patible with the polarization, such that the purely imaginary elements 
of Od act in an anti-holomorphic manner; see §7.3 for the precise def­
inition. If such an action exists then the (complex) dimension of A is 
even (so elliptic curves do not admit anti-holomorphic multiplication). 
The definition of anti-holomorphic multiplication extends in an obvious 
manner to more general CM fields, cf. §11.1. This appears to be a very 
interesting structure which merits further study.

1.5

The key technical tool in this paper, which appears to be a missing ingre­
dient in the earlier work on this question, is Proposition 7.7, an analog of 
the lemma of Comessatti and Silhol ([29]). It describes “normal forms” 
for the period matrix of an abelian variety with anti-holomorphic mul­
tiplication. This in turn relies on a structure theorem (Proposition 6.4) 
for symplectic modules over a Dedekind ring.
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1.6

The results in this paper, the parallel results for GL(n,R) in [8], the 
paper [14], and recent results of [2] and [31] suggest that there are 
rich, largely unexplored phenomena involving real structures and moduli 
space interpretations of arithmetic quotients of non-Hermitian symmet­
ric spaces. In this paper we have chosen particular arithmetic groups 
for which the results are (relatively) easy to state and prove, and for 
which the associated Shimura variety is defined over the rational num­
bers. Although it is possible to establish similar results for many other 
arithmetic groups, we do not know to what extent these results may be 
generalized to arbitrary arithmetic groups. (See also §11.)

1.7

We would like to thank J. van Hamel for useful conversations, and an 
anonymous referee for carefully reading the manuscript and making a 
number of useful suggestions. The first author is grateful to the Institute 
for Advanced Study for its hospitality and support during the period in 
which this research was carried out.

2. Statement of results

2.1

Throughout this paper we fix a square-free integer d <  0 and denote 
by Od the ring of integers in the quadratic imaginary number field 
Q(Vd). Let Qo be the “standard” symplectic form, whose matrix is 
J =  (_?/ o ) • For any ring R we use any of the standard notations 
Sp(2n, J2), Sp(i?2n,Qo), or Sp(i?2n, J) to denote the symplectic group 
consisting of all g E GL(2n, R) such that lgJg =  J, or equivalently, 
Qo(gx ?gy) — Qo(x ,y) for all x ,y  E R2n. It consists of matrices

-a  a
„ - i

such that

lD -  lC 
- %B *A
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Let K s C Sp(2n, C) be the maximal compact subgroup that is fixed 
under the Cartan involution 0s(g) =  \g)~l • It is isomorphic to the 
unitary group U(n,H) over the quaternions. Let Yn =  Sp(2n?C )/K s 
be the associated symmetric space. It is not compact and not Hermi- 
tian; for n =  1 it is the real hyperbolic 3-space. In §10 (which is not 
needed for the main results in this paper) we describe Yn as a certain 
quaternionic Siegel space, on which Sp(2n, C) acts by fractional linear 
transformations.

Let G =  Sp(4n,R) and let r  : G —► G be the involution r(g) =  
N gN _1 of (5.8.2). Then r  commutes with the Cartan involution 0 :
G —> G of (5.8.2) so it passes to an (anti-holomorphic) involution (also 
denoted r) on the (usual) Siegel space f)2n — G/G°, which is given by
(5.13.1), t (Z) =  bZ*b_1. In §5.8 we describe an injective homomorphism

0 =  \J) o 0  : Sp(2n, C) —► Sp(4n, R)

such that <pQs =  6<p and whose image is exactly the set of fixed points 
GT of r. It has the property that

0 - 1(Sp(4n,Z)) =  S p (2n ,0d),

an arithmetic group that we will denote by Ao-
Lemma 2 .2 . The mapping <p passes to a closed embedding <p : 

Yn —> f)2n whose image is the set \)\n of points fixed by the anti-holomorphic 
involution r.

The proof appears in §5.15. Let T C Sp(4n,Z) be a torsion-free 
arithmetic subgroup which is preserved by the involution r. If d =
1 (mod 4) then assume also that T is contained in the principal con­
gruence subgroup T(2) of level 2. Set X  =  T\f)2n and let 7r : f)2n X  
be the projection. Let A =  >̂_1(r) C Sp(2n, C) so that 0(A) =  TT is 
the r-invariants in T. Set W  =  A\l^. Then 0 also passes to a closed 
embedding 0 : W  —> X  whose image is 7r(0(l^)). If h G G we denote by 
h<KW) =  7r (^ (y „ ) ) .  Set

T =  {7  € Sp(4n, Z) | r(7 )7 -1 € T} .

Let (r) =  {1 , r }  be the group generated by r  and let H 1((t ), T) be the 
(nonabelian) cohomology of T.

Theorem 2.3. There is a canonical isomorphism

h 1({t) , y ) =  r\ r /^ (A 0).(2.3.1)
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The involution r  passes to an anti-holomorphic involution r  : X  —> X  
and hence defines a real structure on X. The set of real points X r =  X T 
is the disjoint union

(2.3.2) = H  h<KW)
h

of finitely many disjoint translations of <f{W), indexed by

/ i€ r \ f /^ (A 0) ^ i r 1((r ) ,r ) .

The proof is in §3.10. For the next two results we fix an integer 
M  > 3. If d =  1 (mod 4) then we assume also that M  is even. Denote by 
r(M ) the principal congruence subgroup of level M  in Sp(4n, Z). In the 
preceding theorem, take T =  Tm  =  T(M) D r(T(M )). Then Equation
(5.10.1) says that the arithmetic group A =  0_:L(r) is the principal 
congruence subgroup Sp(2n, Od)(M) of level M  in the symplectic group 
over Od-

Let X  denote the Baily-Borel compactification of X  =  It
carries the structure of a complex projective algebraic variety. In §9.9 
we prove the following.

Theorem 2.4. The locus X]& is the set of real points of a quasi- 
projective algebraic variety which has a model defined over the rational 
numbers. That is, there exists a holomorphic embedding in projective 
space X  —> Pm such that the image of X  is defined over the rational 
numbers Q, and such that the involution r  : X  —» X  is the restriction 
of an anti-holomorphic involution r  : Pm Pm, also defined over Q, 
which preserves X .

If A is an abelian variety with a principal polarization and a level 
M  structure, an anti-holomorphic multiplication by Od on A is a ho­
momorphism Od —> End^(A) which is compatible with the polarization 
and level structures, such that \[& acts as an anti-holomorphic mapping, 
cf. §7.3. In §8.6 we prove the following:

Theorem 2.5. The real algebraic variety X^ may be canonically 
identified with the coarse moduli space of abelian varieties with principal 
polarization, level M  structure, and anti-holomorphic multiplication by 
the ring Od.

In summary, this coarse moduli space X^ (of abelian varieties with 
anti-holomorphic multiplication) may be realized as the locus of real 
points of an algebraic variety defined over Q. It consists of finitely many
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isomorphic connected components, each of which is diffeomorphic to the 
arithmetic quotient (or locally symmetric space)

W  =  Sp(2n ,O d)(M )\Sp(2n,C)/U (n,H ).

3. Nonabelian cohomology

3.1

Let If be a group and let r : H —> H  be an involution. Let (r) be the 
group {1, r }  and let ifrl((r), H) be the first nonabelian cohomology set. 
For any 7 G H  let / 7 : (r) —> H  be the mapping / 7( 1) =  1 and / 7(r) =  
7. Then / 7 is a 1-cocycle iff yr(7) =  1, in which case its cohomology 
class is denoted [/7]. Two cocycles / 7 and f y  are cohomologous iff there 
exists h G H  so that 7' =  r(/i)7/i_1.

Let G be a reductive algebraic group defined over R, let 9 be a Car- 
tan involution with K  =  G° the maximal compact subgroup of 0-fixed 
points, and let E  =  G/K be the resulting symmetric space. Suppose 
r : G —> G is an involution which commutes with 9. Denote by Gr , iTr , 
and ET the corresponding fixed point sets in G, K , and 1? respectively. 
For notational simplicity we will often write g for r(g). The cobound­
ary 5 : ET —> JH'1((r ),K ) may be defined as follows. If g G G and if 
gK  G ET then r(gK ) — r(g )K  =  gK  so there exists k G K  so that

(3.1.1) g =  gk.

Applying r  to this equation gives g =  gkk, hence k defines a 1-cocycle 
fk =  S(gK).

Proposition 3.2. T/ie cohomology sequence

1 — ► K T — * GT — ► Er JT) - L  ^ ( ( r } , ^ )

Z5 exact Moreover:

1. T%e mapping 5 is trivial.

2. Tte mapping i is a bijection.

3. The inclusion GT C G induces a diffeomorphism

GT/KT ** E T.
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3.3 Proof

Exactness of the cohomology sequence is standard ([21] §5.4). In the 
paragraph below we will show that 5 is a locally constant mapping. Since 
r  acts by isometries, ET is connected and in fact the unique geodesic 
between any two points x, xf G ET is fixed under r. It follows that 5 takes 
ET to a single cohomology class which, taking g — 1 in Equation (3.1.1), 
is necessarily trivial. Hence ker(z) is trivial. It follows by “twisting” 
([21] §5.3) that the mapping i is injective. Part (3) also follows: clearly 
the mapping GT/KT —► ET is well-defined and injective; and part (1) 
guarantees that it is also surjective.

Now we will show that 8 is locally constant. First observe that if 
k G K  is sufficiently close to the identity and if /& is a 1-cocycle, then 
it is also a coboundary. For in this case we may write k — exp(fc) 
where k G t =  Lie(K). Let r' : t —> t be the differential of r. From 
kr(k) =  1 we obtain r f{k) =  —k. Then the element a =  exp(—\k) 
satisfies r{a)a~l =  a-2 =  k which shows that the cohomology class 
defined by k is trivial.

Now suppose that gK ,goK  G E T. Set r{g) =  gk and r(go) =  goko 
and let u — k^ k . Since k =  k~l and ko =  k$l we find that uk^uk® — 1. 
This means that u G K  defines a 1-cocycle in i f 1((/x), K ) where n : K  —* 
K  is the involution n{y) =  k^vko. By the preceding paragraph, if g,go 
are sufficiently close then this cocycle gives the trivial cohomology class 
so there exists a G K  such that

u =  /i(a)a_1 =

or k =  akoa-1 . This says that the cocycles defined by k and by ko are 
cohomologous, which completes the proof that 5 is locally constant.

Finally it remains to be shown that i is surjective. In fact there is 
a splitting j  : ^ ( ( r ^ G )  —> JT1((r), K ). Let G =  K P  be the Cartan 
decomposition of G that is determined by 6. Then P  =  exp(p) where 
p is the —1-eigenspace of 0 on g =  Lie(G), so that 9{p) =  p-1 G P  for 
all p G P. Let g =  kp G G and suppose that f g is a 1-cocycle. Then 
kpkp =  1 or

(fcfc)(fc_1pfc) =  p~l G P. 

It follows from the Cartan decomposition that

(3.3.1) kk — 1 and fc_1pA:p =  1
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so we may define j ( f g) =  fk• We claim that fk represents the same 
cohomology class as f g in H l ((r ),G ), from which it will follow that j  
is well-defined and that i is surjective. Equation (3.3.1) says that f p 
is a 1-cocycle for the involution fi of G defined by /jl(x ) — k~xxk. If 
p =  expp, set a =  exp(— p/2). If /x' : p —> p denotes the differential of 
H then p!{p) =  —p so /i(a) =  a-1 and p =  //(a)a-1 . It follows that g =  
kp =  kk~xaka~x =  aka~l which says that f g and fk are cohomologous.

q.e.d.

3.4

For the remainder of this section we assume G is a reductive algebraic 
group defined over Q, that 6 is a Cart an involution of G, and that r  is 
an involution of G that commutes with 6. We often write g for r(g). Let 
G =  G(M) denote the group of real points, K  =  G° the corresponding 
maximal compact subgroup, and E — G/K the associated symmetric 
space. Fix an arithmetic subgroup T C G(Q) and let 7r : E —> X  =  T\E 
be the projection.

To every 1-cocycle / 7 in i ? 1( (r ) ,r )  we associate the “7-twisted” 
involutions ry : E  —> E  by x 1—> r(yx) and ry : T T by 7' 1—> 
r(77/7~1). Let

(3.4.1) ET7 =  { x g £  |t (x) -  7^ }

be the fixed point set in E  of the involution T7 and let TT7 be the 
fixed group in T of the involution T7. Set X (r j )  =  ix{ET1). Recall the 
following theorem of Rohlfs ([17], [18], [19], [8]):

Theorem 3.5. Suppose T is torsion-free. Then the association 
/ 7 h-> X T1 determines a one to one correspondence between the coho­
mology set iL1((r ) ,r )  and the connected components of the fixed point 
set X T.

3.6 Proof

The twisted involution T7 : E  —> E  acts by isometries so ([11] I §13.5) 
the fixed point set E T1 is nonempty. If x ,x f E ET1 then the unique 
geodesic joining them is also fixed by T7, so E T1 is connected. Its 
image in X  is a connected subset X {r^ ) of X T which depends only 
on the cohomology class of / 7. It is easy to check that / 7 and /y  are 
cohomologous iff X (ry ) fl X (ry ') ^  <j). q.e.d.
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3.7

In general the cohomology set i71((r), T) may be difficult to compute, 
the connected component X (t j ) may be difficult to describe, and dis­
tinct connected components may fail to be isomorphic. We will intro­
duce additional hypotheses which will allow us to address these three 
issues. Let T C G(Q) be a r  stable arithmetic group that contains T. 
Let 6 : G —> G be the Cartan involution corresponding to K. Consider 
the following hypotheses:

(1) G is Zariski connected and the fixed subgroup GT — G r (M) is 
Zariski connected.

(2) H l {(r ),K )  is trivial.

(3) r  acts trivially on T\r.

(4) flrl( (r ) ,r )  -* ^ ( ( r ) , ? )  is trivial.

(5) T is torsion-free.

Lemma 3.8. Suppose r  C T c  G(Q) are r-stable arithmetic sub­
groups. Suppose the Cartan involution 0 commutes with r. Then the 
following statements hold:

(a) Under hypothesis (1) above, GT is reductive, 0 restricts to a Cartan 
involution of GT, and K T is a maximal compact subgroup of GT.

(b) Under hypothesis (2) above, the mapping GT/KT —> ET is an iso­
morphism. If ̂  E G and if / 7 is a 1-cocycle, then under hypothesis 
(2), its class in Lf1((r), G) is trivial if and only if ET1 is nonempty.

(c) Under hypothesis (3) above, the association 7 1—> 77-1 defines a 
mapping T —► T which passes to an injection

(3.8.1) r \ f / f r ^ H \ ( t),T).

Under hypotheses (3) and (4) this injection is a bijection.

(d) Under hypothesis (4), for each cohomology class

I f ^ e W d r ) ^ )

there exists h £ T  such that 7 =  r(/i)/i_1, in which case,

E T̂  =  hET and FT1 =  hTT =
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(e) Under hypotheses (4), (3), and (5) the fixed point set X T is the 
disjoint union of isomorphic copies

X T =  JJ hYT\hET
her\r/fT

of the quotient YT\ET.

In summary, if hypotheses (1) through (5) are satisfied, then the 
fixed point set X T consists of finitely many isomorphic copies of the 
arithmetic quotient YT\GT/KT indexed by iJ1((r ) ,r )  =  r\ r /T T.

3.9 Proof

Part (a) is proven in [20] Chapt. 1 Thm. 4.2 and Cor. 4.5 (pages 15 and 
17). Now consider part (b). Clearly GT/KT C ET so it suffices to show 
that GT acts transitively on E T. Let x =  gK  G ET. Then r(g )K  =  gK  
so the element k =  g~1r(g) lies in K. Moreover, /*. is a cocycle, so by 
hypothesis (2) there exists u G K  with k =  ur{u)~l =  #-1T(g). Then 
gu G GT and x =  gK  =  guK. To prove the second statement in part
(b) , let f 1 be a 1-cocycle and suppose there exists a point gK  G ET1. 
Then jg K  =  gK  so there exists (a unique) k G K  with 7g =  gk, 
or 7 =  gkg~l . Hence / 7 is cohomologous to /&, which is trivial by (2). 
Part (c) follows from the long exact cohomology sequence for the groups 
r  C T and “twisting” , however it is also easy to verify directly. Let 
7 G T. By (3) there exists a unique a G Y such that 7 =  aj. Moreover, 
f a is a 1-cocycle, so we have defined a mapping <f : Y —> i71((r), Y). 
Suppose 7; G r  determines the same cohomology class <f(7), that is, 
suppose af =  7/(7/)_1 =  bab-1 for some b G T. Let x =  7“ 15_17/. Then 
x G r r because x =  7_1^~17/ =  7_15_15a6_17/ =  7“ 1a_1a6“ 17/ =  
x. Consequently 7' G r 7 r r , which verifies the injectivity statement. 
Hypothesis (4) immediately implies that <f is surjective, which proves
(c) . Part (d) is straightforward. Part (e) follows from Rohlfs’ theorem
and parts (a)-(d). q.e.d.

3.10 Proof of Theorem 2.3

This follows from Lemma 3.8 provided we can verify hypotheses (1) 
through (5) of §3.7. Of these, (1), (3) and (5) are obvious. Hypothesis 
(2) will be proven in Proposition 5.11 and hypothesis (4) will be proven 
in Proposition 6.10. q.e.d.
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4. Remarks on involutions

4.1

Let V  be a real vector space with a symplectic form S and a nonde­
generate symmetric bilinear form R and let Sp(V, S) be the group of 
linear automorphisms of V  that preserve S. Let V * be the dual vector 
space. If g G GL(V) define g* G GL(F*) by g*(X)(v) =  X(g~1v) for 
any A G V*. Let N  G GL(V') and suppose that N 2 — dl for some real 
number d. Define automorphisms r and 9 of GL(V) by

r(g) — NgN~x and R(gu,v) =  R(u,9(g)~1v)

(for all u, v G V). Then r and 9 are involutions, and in fact 9 is a Cartan 
involution: its fixed point set is the orthogonal group 0(V,R). Define 

: V V* by ^ (n )(u ) =  S(u,v). Let : V* V be the mapping 
that is uniquely determined by the relation S(S^(X),x) — X(x) for any 
X €V*  and x € V. Then S'b =  (S#)- 1 . Define I&, i?b similarly.

Lemma 4.2. The following statements hold:

1 . If S(Nu,v) =  S(u,Nv) (all u,v & V) then r preserves Sp(V, S).

2. If R(Nu,v) =  —R(u,Nv) (all u, v G V) then rO = dr.

3. If R̂ Ŝ R̂ Ŝ  =  cl is a multiple of the identity, then the involution 
0 preserves the symplectic group Sp(V, S) and its restriction to 
Sp(F, S) is a Cartan involution.

4.3 Proof

Part (1) is straightforward. For part (2), compute

R(N9(g)N~1u, v) =  R(u, N g ^ N ^ v )  = R(9(NgN~1)u,v), 

so r9(g) = 9r(g). For part (3) consider the following diagram:

V

9

5#

■> y*

9*

■> F*

0(g)

-----► V  -----
F& 5 #

y *  ..» y

%)*

V*

g

-*• V.V V ■
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The second and fourth square commute for every g E GL(V). The first 
square commutes iff g E Sp(V, £) (which we assume). The outside rect­
angle commutes by hypothesis. It follows that the third square also com­
mutes, but this is equivalent to the statement that 0(g) E Sp(V, £). Fi­
nally, it follows from [20] I Thm. 4.2 that the restriction of 0 to Sp(V, £) 
is also a Cartan involution. q.e.d.

5. An involution on the symplectic group

5.1

In this section we construct an involution r  on Sp(4n,R) which pre­
serves a certain maximal compact subgroup K  and which passes to an 
involution r  on the Siegel space. This involution is first constructed in a 
coordinate-free manner, but with respect to a non-standard symplectic 
form (£2), and is denoted r ,̂ see Lemma 5.6. Then we change coordi­
nates so as to convert £2 to the usual symplectic form, and obtain the 
involution r. The impatient reader may skip directly to the matrix de­
scriptions (5.8.2) and (5.13.1), which could be used as an (unmotivated) 
definition of r.

5.2 The number field

Throughout this paper we fix a square-free integer d < 0 and choose a 
square root, \[d. Let Od be the ring of integers in the quadratic imag­
inary number field Q(\/d), that is, Od — Z +  "Luo where uj =  \[d if 
d ^  1 (mod4) and uo — (1 +  y/d)/2 if d =  1 (mod4). Let h : Cr R2r 
be the vector space isomorphism

h(x 1 + u y i,X 2 +  uy2, . . .  ,x r +  cvyr) =  (x i ,y i ,z 2,2/2, • • • >£r,2/r)-

Then there is a unique homomorphism

(5.2.1) 7/V : Mrxr(C) —> M2rX2r(®0-

such that h(gz) =  \jjr(g)h(z) for all 2 E Cr. It takes the matrix

(aij +  tobij)
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(1 < i , j  < r; a,ij,bij € C) to the matrix that consists of 2x2 blocks 
Zij =  V’l (aij +  uibij) where

( 5 , , )  W  +  ^ , =  (J  f )  or ( ;  £ )

when 1 (mod 4) or d =  4m +  1 respectively.
The complex linear mapping Cr —> Cr given by multiplication by \fd 

therefore corresponds to a real linear mapping Nh =  ^r{\fdl) : R2r —» 
R2r. As in §4 define the involution : GL(2r, R) —> GL(2r, R) by

(5.2.3) Th(g) =  NhgN^1.

5.3

Take r =  2n. Fix a complex symplectic form s : C2n x C2n —> C. Using 
the isomorphism h we obtain a bilinear mapping S : R4n x R4n —* R2 
whose components we denote by Si and S2, that is, =
Si(u, v) +  u)S2{u, v ) for all u, v G R2n. Then Si and S2 are (real) sym­
plectic forms on R4n and we denote by Sp(R4n,S*) the corresponding 
symplectic groups. Since s(Vdx,y) =  s(x, Vdy) =  \//ds(x,y) we have

n  ( Si(NhX, y)\ _ { S ^ N h y ) }  _  ( Si(x, y)\
1 j \S2(Nhx,y)J  ~  \S2(x ,N hy)J - p \S2(x,y)J

for all x, y G R4n, where (3 is the matrix for Nh for r =  1; see §5.7. Using
(5.3.1) it is easy to see that:

Lemma 5.4. The mapping if2n restricts to an isomorphism

(5.4.1) Sp(C2r\ s) -> Sp(R4n, Si) H Sp(R4n, S2).

For i — 1,2 the involution Th preserves the group Sp(R4n,S*). The 
subgroup of Sp(R4n,S*) that is fixed by this involution is exactly the 
intersection (5.4.1).

5.5 Choice of s and 6

Let us take s to be the standard symplectic form Qq on C2n whose 
matrix is J =  ( _°In /q ) ; we write Sp(2n, C) =  Sp(C2n, Qq). We obtain 
symplectic forms Si and S2 on R4n by §5.3. Take G =  Sp>(R4n, S2).
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Let H  be the positive definite Hermitian form on C2n given by

H(z, w) =  z • ui.

Use the isomorphism h to convert H  into a mapping M4n x M4n —> C and 
let Rh and Sh be the real and imaginary parts of this bilinear mapping, 
that is, iL(/i“ 1x, h~ly) — Rh{x,y)+iSh(x,y). By §4 the positive definite 
form Rh determines a Cartan involution 9h on GL(4n,R).

Lemma 5.6. The involutions 6h and rh commute. Both r% and 9h 
preserve the symplectic group Sp(M4n, Si) (for i =  1,2).

Consequently 9h restricts to a Cartan involution 9̂  on

Gh =  Sp(R4n,S2)

(resp. 9S on Gs — Sp(2n,C)) ([20] I, Thm. 4.2). The fixed point set 
Kh — G6̂  (resp. K s =  G°ss) is a maximal compact subgroup of Gh (resp. 
of Gs). The involution passes to an involution of the symmetric 
space Dh =  Gh/Kh.

The proof of Lemma 5.6 consists of verifying the conditions (1), (2), 
and (3) of Lemma 4.2 (for S =  Si), which amount to several calculations 
with matrices (cf. §5.7). q.e.d.

5.7 Matrix descriptions

If e is a k x k matrix let

Diagn(e) =  Diag(e, e , . . . ,  e)

be the nk x nk matrix with n identical diagonal blocks, each consisting 
of e. Let Sp(e) be the 2k x 2k matrix ( _?e §) . We shall use the following 
2 x 2  matrices.

symbol d ^  1 (mod 4) d =  4m +  1

0 ( ?S) ( -212D
(5S) ( h i )

V (?&) ( 2 ! )
r (o-°d) ( 1 V2\V 1/2 -m )
r' ( 7* ? )

( —m —1/2 \
V - 1/2 1 )
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Set b =  Diagn(/3), u =  Diagn(/u), ti =  Diagnfy), t =  Diagn(r), and 
r' =  Diagn(r'). The bilinear forms Rh,Si, and 5'2 have matrices Rh =  
Diag(r,t), S\ — Sp(u), and S2 =  Sp(o). The matrix for Nh is Nfl =  
Diag(b, b). The Cartan involution on GL(4n, R) is 9h(g) =  R^1 tg~1Rh- 
To prove Lemma 5.6 it is necessary to verify condition (3) of Lemma 4.2, 
which amounts to checking that R~̂ 1 S-, =  const • R n for i =  1,2,
a task which may be safely assigned to the undergraduate assistant.

The symplectic form S2 is integrally equivalent to the standard sym- 
plectic form Qq whose matrix is

Using the isomorphism 4/ the involutions 77,, 0yl become the following 
involutions r, 9 on Sp(4n, M) =  Sp(R4n, Qo)-

5.8

which is easier to compute with. An isomorphism

*  : Sp(M4n,5 2) Sp(4n,M) =  Sp(M4n,Q 0)

is given by xi(g ) =  TgT~l where

so that

(5.8.1) Qo(Tx,Ty) =  S2(x ,y) for all x, y € M4n.

(5.8.2) r(g ) =  NgN  1 and 9(g) =  R ltg XR

where

(5.8.3)

In particular, it follows from (5.3.1) that

(5.8.4) Qo(Nx, y) =  Qo(x, Ny) for all x ,y  e R 4n.
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The involution r  preserves the maximal compact subgroup K  that 
is fixed by the Cartan involution 6 on Sp(4n, R). The induced mappings 
on the symmetric space can also be explicitly described. The symmetric 
space for Sp(4n,R) may be identified with the Siegel space

(5.8.5) f)2n =  { Z e  M2nx2n(C) | *Z =  Z,1m(Z) > 0 }

on which g =  ( c  d ) e Sp(4n, M) acts by fractional linear transforma­
tions, g ■ Z — (AZ  +  B )(C Z  +  D )~l . The maximal compact subgroup 
K  is the stabilizer of the following basepoint

Xl
- d  0 
0 1

or x\
—2m —1 
-1  2

if d =£. 1 (mod 4) or if d =  4m +  1 respectively. The symmetric space for 
Sp(R4n, S2) may be identified with

(5.8.6) f)2n0 =  {Z t> € M2nx2n(C)| Z  € I)2n}

on which g — ( c  d ) e Sp(M4n,S'2) acts by fractional linear transfor­
mations, g ■ Zt) =  {AZx} +  B)(CZ'o +  D )~l . The mapping T passes to 
a mapping which we also denote by 4/ : f)2nt) —»• f)2n and which is given 
by $ (W ) =  Then 4>(gW) =  ^(p)^(TT) for all g 6 Sp(R4n,S2)
and all W  € f)2nd. The mapping ^ : Yn —> f)2nt> will be described in §10. 
In summary we have a commutative diagram, the last line of which 
provides the names of the involutions associated with a given column:

Ks ------------- ► K h ------- ► K

i i i

Sp(2n, C) - Sp(R4r\S2) - Sp(R4n, Qo)

1 1 i

Yn ------------► fort* ------------ ► v2n*

Os 0h,rh (9,r
Definition 5.9. Define 0 : Sp(2n, C) —> Sp(4n, R) and 4> • Yn —> 

f)2n to be (f> =  4/ o ^ in the above diagram.

5.10 Remark

Let M  be a nonzero integer and let GL(4n,Z)[M] be the principal



530 M. GORESKY &  Y.S. TAI

congruence subgroup of level M. It follows from (5.2.2) that

V>_1(GL(4n,Z )[M]) =  Sp(2 n,O d)[M\

is the principal congruence subgroup of level M. Since 4/ G GL(4n,Z) 
it also follows that

(5.10.1) 0 " 1(Sp(4n,Z)[M]) -  Sp(2n,O d)[M\.

Proposition 5.11. The nonabelian cohomology sets i ? 1((r),iir) 
and i71((r), Sp(4n, ]R)) are both trivial.

5.12 Proof

By Proposition 3.2 it suffices to show that is trivial. Let
bo =  Diagn (J "q1) . Then b^1 =  *bo =  —bo- We claim there exists is 
an isomorphism : (AT, r) =  (U (2n),r') where r'(u) =  feub^1 for 
all u G U(2n). Assuming the claim for the moment, let us prove that 
id1((r /), U(2n)) is trivial. Let /a : GL(2n,C) —> GL(2n, C) be the invo­
lution /jl{A) =  botA“ 1bo Its restriction to U(2n) coincides with r'. To 
prove id1((r /), U(2n)) is trivial, by Proposition 3.2 it suffices to show 
that i : U(2n)) —► LT1((/i), GL(2n, C)) is the trivial mapping.
So let u G U(2n) and assume that n/i(n) =  1. Then ub^u^b^1 =  1 
so nbo is antisymmetric. Regarding ubo as a bilinear form, it is non­
degenerate, so it can be converted into the symplectic form bo by a 
change of basis. In other words, there exists A G GL(2n, C) such that 
Aubo tA =  bo or

(5.12.1) u — A~l b o tA_1bo 1 =  A ^ ^ A )

This equation says that the cocycle defined by u becomes trivial in 
H 1 ((/x), GL(2n, C)) as desired.

The isomorphism 4> : (AT, r) —> (U (2n),r/) is obtained by chang­
ing the basepoint x\ G fen (whose isotropy group is K  =  G°) to the 
basepoint ihn G fen (whose isotropy group we denote by K f =  G6 =  
U(2n)). Let

a =
Diagn(a) 0 

0 Diagn(a/
G GSp(4n,R) and JVo =

bo 0 

o 4bo

where a, af are defined as follows:



ANTI-HOLOMORPHIC MULTIPLICATION 531

symbol 1 (mod 4) d =  1 (mod 4)
/ l  o \ (2  1 )a \oV=d) [o y = d )

a' ( (  \Ado\
V 0 1) V -1 2J

Define $  : Sp(4n,M) -> Sp(4n,M) by $(g) =  agar1. The mapping 
$  converts the commuting involutions 9, r  into commuting involutions 
9'{g) =  t5i-1 and r'(g) =  NogN^1, so it takes (K, r) to (how­
ever the mapping #  does not preserve the integral structure). The 
identification U(2n) =  K' C Sp(4n, E) is given by A +  iB ^  a ) ■ 
Restricting the involution t' to U(2n) gives r'(u) =  b^ub^1. q.e.d.

5.13 The involution on Siegel space

There is a unique involution r  : 1)2n —* 1)2n so that r(gZ) =  T(g)r(Z) 
for all g € Sp(4n,R) and Z £ 1)2n; it is given by

(5.13.1) t (Z) =  Z  =  bZ\>~1

where 1) =  Diagn(/3). If Z =  (zij) is divided into 2x2 blocks ztJ then 
Z € t)2n is fixed under r iff ztJ — /4zl? t13 (for 1 < i , j  < n), or

(5.13.2)

(5.13.3)

zij
dzij Wij

wI J  Zij

Zij — a -1 I dzij Wij \ t -1 1 1 a
wI J  Zij

if d ^  1 (mod 4)

if d =  1 (mod 4)

for some Zij,Wij G C, and where a — (§ } ) .  Conversely, if Z  G f)2n is 
divided into 2x2 blocks z^ =  (^!j ^  ) then Z  =  r(Z ) iff =  dzij 
and i/ij =  Wij. These are linear equations in the coordinates, so f)2n is 
an open subset of a certain linear subspace of the space of symmetric 
2n x 2n matrices.

Proposition 5.14. The embedding f> : Sp(2n, C) —> Sp(4n,M) 
passes to an embedding <f : Yn =  Sp(2n, C)/Ks —> \)2n whose image 
is the fixed point set 7n particular, 4>(Yn) is a real algebraic sub­
manifold of f)2n. If g G Sp(4n,E) and if g ^  ±7 t/ien </>(Fn) H ^ a 

proper real algebraic subvariety of <f(Yn), where fy92n denotes the points 
in f)2n that are fixed by g.
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5.15 Proof

The first two statements follow from Proposition 5.11 and Lemma 3.8 
part (b). If g — { q d ) ^ Sp(4n,R) then the points Z  G f)2n that are 
fixed by g satisfy

which is a system of linear and quadratic equations in the matrix entries 
for Z, so this fixed point set is a real algebraic subvariety of f)2n, as is 
its intersection with \)\n. We will now show that this intersection is 
a proper subvariety of \)\n unless g =  =t7. We consider only the case 
d ^  1 (mod 4); the case d =  1 (mod 4) is similar.

Let Y  be the 2n x 2n matrix consisting of 2x2 blocks along the 
diagonal yi — (  _ o  ̂^ )  (f°r 1 < i < n) where yi > 0. It follows from
(5.13.2) that itY  G for all t > 0. If itY  is fixed under g then (5.15.1) 
gives t2Y C Y  =  B and YD  =  AY  from which it follows that B =  C =  0. 
Since g is symplectic we also obtain D =  tA~1. So we are reduced to 
considering those matrices A G GL(2n,R) such that Z =  A Z lA for all

We outline one of many possible ways to see this implies A =  ±7. By 
taking Z =  Diag(zi,Z2, .. .  ,zn) to consist of 2x2 blocks zi =  ^ )
along the diagonal, and by varying one block but fixing the others, 
we may conclude that A =  Diag(ai, a2, . . . ,  an) also consists of 2x2 
blocks, and that z* =  aiZ^a .̂ Comparing real and imaginary parts of 
this equation gives a * =  ±7. It is then easy to see that the signs must 
all coincide. q.e.d.

5.16 7 -real points

If 7 G Sp(4n, Z) and 77 =  7 (that is, if / 7 is a 1-cocycle), then a point 
Z  G f)2n is said to be a 7 real point if r(Z ) =  7Z, the set of which was 
denoted in (3.4.1). If F c  Sp(4n,Z) is a torsion-free subgroup that 
is preserved by the involution r then the set of r  fixed points in the 
quotient T\i)2n precisely the image of the set

(5.15.1) AZ +  B =  ZCZ  +  ZD

7ezi«r>,r)



ANTI-HOLOMORPHIC MULTIPLICATION 533

6. Symplectic Od modules

6.1

The main result in this section (Proposition 6.4), which classifies sym­
plectic Od modules, will be used in the proof of both main theorems 
(Theorem 2.3 and Theorem 8.5) of this paper. First, it is used to 
prove Proposition 6.10, which verifies hypothesis (4) (vanishing of non- 
abelian cohomology) of Lemma 3.8, which in turn is used to prove The­
orem 2.3. Proposition 6.4 is also used in the proof of the Comessatti 
lemma (Proposition 7.7), which in turn is used to prove Theorem 8.5. 
Throughout this section we fix a square-free integer d < 0 and let Od 
denote the ring of integers in the quadratic imaginary number field

Recall [3] (VII. 10 Prop. 24) that a finitely generated module P  over the 
Dedekind domain Od is torsion-free iff it is projective. If such a module 
P  has rank n, then there exist iq, r>2, . . . ,  vn £ P  such that

for some fractional ideal X.
Now suppose Po C P  is a submodule. Then there exist submodules 

P\1P2 C P  such that P  =  Pi © P2 and so that Pi D Po and Pi 0 
Q — p0 (g) Q. For, let M  =  P/Po and consider its torsion-free quotient 
M/MtOY where M tor denotes the torsion submodule of M. The preceding 
paragraph implies the composition

admits a splitting M/Mtor —► P  whose image we denote by P2. Then 
P =  Pi @ P2 where

6.2

(6.2.1) P =  OdV 1 0  OdV2 © • • • 0  OdVn- 1 0  lv n

(6 .2.2) P ^ M  ->• M/Mtor

Pi =  {x  € P | rx G Pq for some r € Od}

is the kernel of the composition (6.2.2).
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6.3 Polarizations

Let Q : R2r x R2r —> R be a symplectic form and let L C R2r be a 
lattice. We say that Q is a principal polarization of L if Q takes integer 
values on L and if, for some basis of L (and hence for any basis of L), the 
matrix for Q has determinant 1. In this case there exists a symplectic 
basis of L, meaning an ordered basis such that the resulting matrix for 
Q is

* =  0 M .
\ ~ I r  0 )

Now suppose r =  2n and suppose that L is also an Od module. Let us 
write b • v for the action of b G Od on a vector v G L. We say the action 
of Od is compatible with the polarization Q if

(6.3.1) Q(b -u ,v) =  Q(u , b • v)

for all u,v e L and b G cf. Equation (7.3.4). It follows that Q(b • 
u,u) =  0 for all b G Od and all u G L.

Proposition 6.4. Suppose Q is a symplectic form on R477, that prin­
cipally polarizes a lattice L C R4n. Suppose L has an Od structure that 
is compatible with the polarization Q. Then there exists

. .  • , Ufi, t q , . . . ,  vn G L

such that the following ordered collection is a symplectic basis for L:

{ ui,lo • i q , . . .  ,un,w • un,uj • vi, vi , . . .  ,uj • rn, rn} 
if d ^  1 (mod4), and

{ui,w - u i , .. .  ,un,u; • un, (a; -  1) • Vi, Vi, . . . ,  (a; -  1) • 
if d =  1 (mod 4).

In particular, L =  Li © L2 is the direct sum of the free Lagrangian 
submodules

Li — OdUi © • • • © OdUn and L2 =  © • • • © C^n-

In either case, with respect to this basis, the matrix for the action of 
y/d G Od is the matrix N of Equation (5.8.3) (cf. §7.3).

Proposition 6.4 will be proven by induction on n.
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6.5 The case n =  1

By §6.2, L =  OdV @Xw  for some v,w  £ L and some fractional ideal 2. 
So a Z basis of L is given by

(6.5.1) {v, uo • v, aw, bw • re}

for some a, b £ Q. The symplectic form Q vanishes on OdV since Q (v,u- 
v) =  Q(cc • u,u) =  —Q(v,u; • t), and it similarly vanishes on Xw. So
with respect to this basis, the matrix for Q is  ̂_jp ^  where P  is some 
integer matrix. On the other hand, Q is a principal polarization of 2, 
so det P  =  ±1. Apply P _1 to the basis {aw, bw • w} of Xw to obtain a 
new basis {x , y} of Xw. Then the matrix of Q with respect to the basis 
{v, u • v, x, y } is J2. Now let us determine the relationship between x, y, 
and uj • y. Set x =  a'y +  tiw • y for some a', b' £ Q. Then

1 =  Q(v, x ) =  a!Q{y, y) +  bfQ(v, w • y) =  b'Q{u -v ,y ) =  bf 
0 =  Q(w • v, x) =  afQ(w -v ,y ) +  bfQ(w • v, w • y) =  a' +  Q(cc2 • u, y)

f a' +  dQ(v, y) =  a' if d =£ 1 (mod 4)
+  Q((a; +  m) • u, y) =  a' +  1 if d =  1 (mod4).

Hence x =  t c - y i f < i ^ l  (mod 4) and x =  (cc — 1) • y if d =  1 (mod 4), as 
desired. In either case, cc • y £ 24c so Xw — Ody is free.

6.6 The case n >  1

We will prove in Lemma 6.7 below (by a somewhat roundabout argu­
ment) that there exist elements x, y £ L so that

(6.6.1) Q(x, y) =  0 and Q(x, w • y) — 1.

It follows that Q(w • x ,y ) =  1 and Q(w • x, w • y) =  0. Let Po be the Od 
span of {x ,y } .  It has a Z basis { t , cc • x,uo • y,y}  with respect to which 
the matrix of Q\Pq is J2.

We claim that L splits as a direct sum, L =  Po©P2 of Od submodules 
(of Z rank 4 and rank 4n-4 respectively) such that the restriction Q|I/2 
is a principal polarization. By induction, the lattice L2 has a basis of 
the desired type, from which it follows that L does also.

The claim is proven as follows. Using §6.2 there exists a splitting 
L =  Pi 0  P2 by submodules Pi and P2 such that Pi D Po and Pi 0  Q =  
Po 0  Q. Let {u, v , £, w} be a Z basis for Pi and let Qi be the matrix of
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Q with respect to this basis. If A denotes the matrix that transforms 
this basis of Pi ® Q into the basis {x, uo • x, u  • y, y}, then J2 =  AQi lA. 
Since these are matrices of integers, it follows that det(A) =  ±1 hence 
Po — Pi. The next step is to modify the complement P2 to obtain a 
complement L2 which is principally polarized.

By §6.2 we may write P2 =  O^wi © • • • © OdW2n-3 ®Tw2n-2 for some 
Wi G P2. For 1 < i < 2n — 2 set

w[ =  W i-  Aix -  fj,iU • x -jiou  • y -  Viy.

Then there are unique choices of integers A*, /^,7* , ^  G Z  so that each 
w\ is Q orthogonal to Po. Let L2 be the Od span of the vectors w\ (for 
1 < i < 2n — 2). Then L =  Po ® L2 and L2 is orthogonal to Po. With 
respect to any choice of Z basis for L2 (and the above basis for Po) the 
matrix for Q is

(6.6.2) J2 0 

0 Q2

where Q2 is some integer matrix. However Q is a principal polarization, 
so the determinant of the matrix (6.6.2) is 1, from which it follows that 
the determinant of Q2 is also 1. Therefore, the restriction of Q to L2 is a 
principal polarization, as desired. The rest of this section is dedicated to 
proving the existence of the elements x, y, which we now state precisely.

Lemma 6.7. Fix n > 2. Suppose L C R4n is a lattice that is 
principally polarized by the symplectic form Q, and suppose L admits a 
compatible action of Od- Then there exists x ,y  £ L so that (6.6.1) holds.

6.8 Proof

If { u\, . . . ,  Ur} is a collection of vectors in L let

(u\, . . . ,  uf)

denote their vector space span in M2n and let

(ui, . . . ^ r )1-

be the Q-annihilator of this span. Since Q is integral on L, the inter­
section L n (tfci,. . . ,  Ur)1- is a lattice in (u\, . . . ,  )-L.
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Step 1. There exists a Lagrangian Od submodule Lo C I.
Suppose by induction that a Q linearly independent collection of 

vectors

(6.8.1) {ui,a; • - U2, - - - ,ur,u) • ur} C L

has been found so that Q vanishes on their Q span Ur (with the case 
r =  0 being trivial). The Q-annihilator has dimension 2n — r and 
the intersection L fl Û ~ is a lattice in Û ~. If r < n then there exists 
a vector ur+\ G Û ~ fl L which is not contained in Ur. We claim the 
collection {ui, u • . . . ,  ur, uj • ur, ur+i, u • ur+ i} is linearly independent
and that Q vanishes on its vector space span Ur+i.

Suppose that to • ur+1 is a linear combination of the other vectors in 
this collection, say,

r

0) * Uj-~|_1 — ^ © biLU * Uĵ j +  CUf'-\-\
1=1

for some rational numbers â , 6̂ , and c. Multiplying by uj and collecting 
terms gives

(d -  C2 ) u r + 1 =  ^ 2 ( ai +  C^i)U  * Ui +  (bid  +  Cdi)Ui)
2— 1

if d ^  1 (mod 4). But d — c2 < 0 so this contradicts the linear indepen­
dence of (6.8.1). The case of d =  1 (mod 4) is similar.

Step 2. There exists a Lagrangian Od submodule L\ C  L and a 
submodule L2 C L so that L = L\ © L2.

This follows from §6.2 and in fact L i ® Q  =  Lo®Q-

Now set L\ =  OdV 1 © C*(02 © • • • © OdVn-1 ©Zyn for some fractional 
ideal X. Then there exist rational numbers a, b G Q so that the collection 
{yi, w • y i , . . . ,  yn- i , v  ■ Vn-1, yn, ayn +  btu ■ yn} forms a Z basis of L\.

Step 3. Choose any Z basis for L2. Together with the preceding 
basis for L\ this gives a basis for L — L\ © L2 with respect to which the 
matrix of Q is

0 T

— *T *
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for some matrix T of integers. It follows that det(T) =  ±1. Applying 
T~l to this basis gives a new Z basis for L2 such that the matrix for Q 
is

6.9 Application to nonabelian cohomology

Proposition 6.4 may be used to construct an Oj module structure on 
certain lattices. Let r  be the involution of Sp(4n, Z) =  Sp(Z4n, Qq) de­
fined in §5.7. Let T C Sp(4n, Z) be a torsion-free (arithmetic) subgroup 
that is preserved under r. If d =  1 (mod 4) then suppose also that V is 
contained in the principal congruence subgroup T(2) of level 2. Set

is trivial.

6 .11  Proof

Let 7 G T and suppose / 7 is a 1-cocycle, that is, 77 =  yTVyiV-1 =  / ,  
cf. Equation (5.8.3). It follows that (-/V7)2 =  TVyiVy =  N 2 =  dl. Using 
Equation (5.8.4) we obtain

Denote this new basis by {zi, aq, 22, 2̂? • • •, Then

Q (yi,x i) = 0 and Q{u • 2/1,rri) = 1.

Therefore the elements y — y\ and x =  —x\ satisfy (6.6.1). q.e.d.

Proposition 6.10. The mapping

QoiN'yu, N^v) =  dQ0(u, v)

and hence

Q0(N^u,v) =  Qq(u,N ^v)
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for all u,v E M4n. We use this to define a Qo-polarized Od module 
structure on the standard lattice Z4n by letting \f& act through W7, 
that is, define

(a +  bVd) • u =  au +  bN^u

whenever a, b E Z If d =  1 (mod 4) it is necessary to check that the 
action of u =  (1 +  Vd) / 2 also preserves the lattice Z4n, however this 
follows from the fact that 7 =  I  (mod 2) when d =  1 (mod 4).

So we may apply Proposition 6.4 to conclude that Z4n admits a 
symplectic basis with respect to which the matrix of Vd is N. In other 
words, there exists h E Sp(4n, Z) such that W7 — hNh~l . Using the 
fact that N — N ^ d l  we conclude that

7 =  N ^ h N h "1 =  N h N ^ h -1 =  h /T 1

from which it follows that h E T and that the cocycle f 1 is a coboundary.
q.e.d.

7. Anti-holomorphic multiplication

7.1

In this section we recall [13] some standard facts and notation concern­
ing abelian varieties. Let L C Cr be a lattice (that is, a free abelian 
subgroup of rank 2r so that L ®c C2r is an isomorphism of real 
vector spaces). Then A — CT/L is a complex torus. If . . .  ,u;r is
a basis for the space of holomorphic 1-forms on A, and if vi, U2, . . . ,  v̂ T 
is a basis for L then the corresponding period matrix ft is the matrix 
with entries ftij =  f v. If v\ — MjVj and if uo[ =  Ylj BijUOj are new 
bases then the resulting period matrix is

(7.1.1) ft' — B& A.

A real symplectic form Q on Cr is compatible with the complex struc­
ture if Q(iu,iv) =  Q(u,v) for all u,v E Cr, (not to be confused with 
Equation (7.3.4) below). A compatible form Q is positive if the sym­
metric form R(u , v) =  Q(iu, v) is positive definite. If Q is compatible 
and positive then it is the imaginary part of a unique positive definite 
Hermitian form H  =  R +iQ . Let L C Cf be a lattice and let H  — R +iQ



540 M. GORESKY &  Y.S. TAI

be a positive definite Hermitian form on Cr. Recall that Q is a princi­
pal polarization of L if L admits a basis such that the resulting matrix 
for Q is Jr (cf. §6.3). A principally polarized abelian variety is a pair 
(.A =  Cr/L, H  =  R +  iQ ) where H  is a positive definite Hermitian form 
on Cr and where L C Cr is a lattice that is principally polarized by Q .

Each Z G f)r determines a principally polarized abelian variety

(AZ,H Z)

as follows. Let Qo be the standard symplectic form on R2r =  W  © Rr 
with matrix J =  Jr — ( _°7 q ) (with respect to the standard basis of 
Rr ® Rr). Let Fz : Rr ® Rr Cr be the real linear mapping with 
matrix (Z ,/) ,  that is,

FZ (y )  =  Zx +  y.

Then

(7.1.2) Qz =  (FzU Q o)

is a compatible, positive symplectic form that principally polarizes the 
lattice

(7.1.3) LZ =  FZ( Zr © Z r).

(In fact ^(standard basis) is a symplectic basis for Lz-) The Hermitian 
form corresponding to Qz is

Hz(u, v) =  Qz(iu, v) +  iQ ziu , v) =  tu{hn.{Z))~1v

for u, v E Cr. The pair (Az =  Cr/Lz, Hz) is the desired principally po­
larized abelian variety. If zi, Z2, • - •, zr are the standard coordinates on 
Cr then, with respect to the above symplectic basis of L, the differential 
forms dzi/dz2, . . . ,  dzr have period matrix =  (Z, I).

7.2

The principally polarized abelian varieties (Az =  Cr/Lz, Hz) and (Aq 
=  Cr/Ln,Ho) are isomorphic iff there exists a complex linear map­
ping £ : Cr —> Cr such that £(Lq) =  Lz  and £*(Hq) =  Hz- Set 
h =  X F ^tF n) =  ( ^ g ) .  Then: h e  Sp(2r,Z), -  h • Z, and
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£(M) =  \CZ  +  D )M  for all M  € Cr, which is to say that the fol­
lowing diagram commutes:

(5 ) Rr ffiRr ------- > Cr M
Fh.z

(7.2.1)

7i(£)  Rr © Rr — —> Cr \CZ +  D )M

(since h ■ Z is symmetric). The relationship between the mapping Fz 
and the involution r is the following. Let N  be as in (5.8.3). If Z £ t)r 
and Z  =  bZ*b~l then this diagram commutes:

(? )  Rr © R r -------► C  M
v FZ

(7-2-2) i  1 1 „
*iV(?) Rr © Rr --------► Cr bM.

Fa

7.3

A real endomorphism of a principally polarized abelian variety (A =  
Cr/L , H  =  R +  iQ) is an M-linear mapping /  : Cr —> Cr such that 
f(L )  C L; two such being considered equivalent if they induce the same 
mapping A —» A. As in §5.2, fix a square-free integer d < 0 and let 
Od denote the ring of integers in the number field Q (Vd). Recall (for 
example, from [23] Equation (5.5.12) or [27] or [7] §3.1.1) that a complex 
multiplication by the ring Od on A is a ring homomorphism <J> : Od —► 
EndM(A) such that <5(1) =  / ,  and for all b E Od and u, v G Cr,

(7.3.1) $(&) : Cr —> Cr is complex linear,
(7.3.2) Q($(b)u, v) =  Q(u, $(b)v).

(If r =  1 then (7.3.2) follows from (7.3.1) and the relation Q(u,v) =  
Q(iu,iv).) In analogy with the above, let us say that an anti-holomor- 
phic multiplication by the ring Od is a ring homomorphism 4/ : Od 
Endi^(A) such that 4/(1) =  /  and so that the mapping k — SS/(y/d) : 
C2n —> C2n satisfies

(7.3.3)
(7.3.4)

K,(au) =  an(u) 
Q(k,(u) ,v) =  Q(u, k(v))
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for all a G C and u,v G Cr. (Consequently, 4/(1) is complex linear and 
ft =  ^(Vd) is anti-linear.) In this case, 4/ is determined by the mapping 
ft, and Equation (7.3.4) implies that

(7.3.5) Q m b )(u ),v )) =  Q (u M b)(v ))

for all b £ Od- If such an anti-holomorphic multiplication exists then 
r is even (and in fact (u,v) =  Q(k(u) ,v) +  y/dQ(u,v) is a complex 
symplectic form on Cr with respect to the complex structure defined by 
K,/y/—d). Equivalently, a choice of anti-holomorphic multiplication by 
Od<> if one exists, is a choice of Od-module structure on L that satisfies
(7.3.3) and (7.3.5) for all u,v G L and all b G Od-

7.4

For the remainder of this section take r =  2n and write Qq for the 
(standard) symplectic form on R4n whose matrix is J =  J2n with re­
spect to the standard basis of R4n. The following lemma states that 
certain points (the 7-real points, for appropriately chosen 7) in the 
Siegel space correspond to abelian varieties with anti-holomorphic mul­
tiplication. We use the involution r  defined in (5.8.2) and (5.13.1) and 
the corresponding matrix N  of (5.8.3); see also §5.16.

Lemma 7.5. Let 7 G Sp(4n,Z) and suppose 77  = 1. If d =  
1 (mod 4) then assume also that 7 = I (mod 2). Fix Z G Then 
the mapping

(7.5.1) Kz =  Fz o \N j) o Fz l : C2n -»• C2"

defines an anti-holomorphic multiplication by Od on the principally po­
larized abelian variety (Az,Hz)-

7.6 Proof

Set 7] =  %Nj). Then

r]2 =  \Nj N j ) =  XN jdN ^'y)

t ( *so the same is true of ft .̂ Also, 77 =  7
V °

two factors are in Sp(4n,R) so Qo(r]u, r}v) =  dQo(u, v) for all u, v £ 
M4n. Hence Qz (kzu, kzv) = dQz (u,v) for all u, v € C2n which implies

= d\ 77 ) = dl

0 \ / /  o \
I . The first 

b- 7  \0 dlj
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(7.3.4). The mapping kz preserves the lattice Lz — Fz(Z?n © Z2n) 
since 77 preserves the integer lattice. If d =  1 (mod 4) and 7 =  I  (mod 2) 
then XN j) +  1 =  0 (mod2) (since /?, b, and N  are all =  I  (m od2), see 
§5.7). This shows that +  rf) preserves the lattice Z2n © Z2n, hence 
Od preserves L z .

Finally we check that Kz : C2n —► C2n is anti-linear. Let 7 =  ( ^ ^ ) . 
By (7.2.1) and (7.2.2) the following diagram commutes:

(7.6.1)

C2n
FZ

W

p2 n c 2r

M

bM

2n n\ ]U)2n
-!-z

C2n %CZ +  D)bM.

But Z =  7_1 • Z  so the bottom arrow is also Fz- Then kz is the 
composition along the right-hand vertical column and it is given by 
M  1—̂ \CZ +  ,D)bM which is anti-linear. q.e.d.

The following proposition is an analog of the lemma ([29], [4]) of 
Comessatti and Silhol.

Proposition 7.7. Suppose A =  (C2n/L^H — R +  iQ) is a prin­
cipally polarized abelian variety with antiholomorphic multiplication k : 
C2n —> C2n by Od• Then there exists a basis for the holomorphic 1-forms 
on A and there exists a symplectic basis for L such that the resulting 
period matrix is Lt — (Z, I) for some which is fixed under the
involution r.

7.8 Proof

Throughout this section, in order to simplify notation, but at the risk of 
some confusion with the usual multiplication, we will write b • v rather 
than 4/(6)t , for any b £ Od and v £ C2n. First consider the case d ^  
1 (mod4). By Proposition 6.4 and by interchanging the u*s and t ’s , 

there exist i q , . . . ,  7xn, 77, . . . ,  vn £ L so that the ordered collection

{ u  ■ U l , U i ,  . . . ,LO ■ Un , U n - Vl ,  OJ ■ V l , . . . , V n ,LO- Vn}
is a symplectic basis for L.
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The space of holomorphic 1-forms on A is 2n-dimensional, so for 
each i (1 < i < n) there exist a unique holomorphic 1-form 77* such that 
the following holds for all j  (with 1 < j  < n):

Set r)[ =  K*rji =  ft*7̂ . Then the collection {77̂ ,771, . . . ,  77̂ , 77̂ } is an or­
dered basis for the holomorphic 1-forms on A. Let us compute the period 
matrix with respect to these bases. Calculate that

It follows that the second “half” of the period matrix is the identity. 
Now let Zij =  f u. r)i and Wij =  for 1 < i , j  < n. Then by a similar

which implies by (5.13.2) that Z  G
Now consider the case d =  4m +  1. In this case Proposition 6.4 

guarantees the existence of vectors ui, . . . ,  un, vi , . . . ,  vn G L so that the 
ordered collection

(7.8.1) { ( w - i ) - u i , u i , . . . , { u j - l ) - u n,uni -v1, . . . , v n,u; -vn}

is a symplectic basis for L. For each i (1 < i < n) there exist a unique 
holomorphic 1-form rji such that Jv rji =  0 and J rji =  5{j. Set 77' =  

Then

calculation, the first half of the period matrix consists of 2x2 blocks,
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since \fduj — 2m+uo. So the second half of the period matrix is Diagn(cr) 
where a — ( § } ) .  Set Zij =  Ju.rji and wij — fu.Vi- Then a simple 
calculation gives

J ( l j — l ) ' U j  J u j  

^  fuj

dZij Wij  

VJij Zij

12
1
2

0

1

So the period matrix is (Z /Diagn(V  1), Diagn(<r)) where Z’ consists of 
2x2 blocks =  ( dZ lJ Wl] )  . By (7.1.1), changing the basis

V w i j  z i j  /

{Vl,m ,---,Vn,Vn}

by the action of Diagn(a_1) will give a period matrix (Z, I) where 

Z =  Diagn(a -1)Z'Diagn( V " 1).

By (5.13.3) the point Z  E \)\n is fixed under r  as claimed. q.e.d.

8. A  coarse m oduli space for abelian varieties with 
anti-holom orphic m ultiplication

8.1 Level structures

Let (A =  C2n/L , H =  R + iQ ) be a principally polarized abelian variety. 
A level M  structure on A is a choice of basis {C /i,. . . ,  V i,. . . ,  V2n} 
for the M-torsion points of A that is symplectic, in the sense that there 
exists a symplectic basis

{ui, . . . , U2m Vli • • • ,V2n]

for L such that

Ui =  ^  and Vi =  j j  (modL)

(for 1 < i < 2n). For a given level M  structure, such a choice

W )  • • • > U2n, Vi, . . . ,  V2n}

F  : R2n © M2n C2n

determines a mapping 

(8.1.1)
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such that F (l? n ® Z2n) =  L, by F(ei) =  Ui and F(fi) =  Vi where 
{ e i , . . . ,  e2n, / i ,  • • •, /2n} is the standard basis of M2n © M2n. The choice 
{u i , . . . ,  U2n, iq , . . . ,  v>2n} (or equivalently, the mapping F) will be re­
ferred to as a lift of the level M  structure. It is well-defined modulo the 
principal congruence subgroup T(M ), that is, if F f : M2n © R2n —» C2n 
is another lift of the level structure, then F f o F _1 G T(M).

Suppose (A, H , as) is a principally polarized abelian variety with 
anti-holomorphic multiplication by Od as in §7.3. A level M  struc­
ture {£ /i,. . . ,  U2n, V i , o n  A is compatible with ft if for some 
(and hence for any) lift F  of the level structure, the following diagram 
commutes (mod L) :

(8 .1.2)

i ( z 2" ez2n) -___ , iF M
tN

If (z2n © z2n) -___ > 1F M
where N  is the matrix (5.8.3).

We will refer to the collection

A  =  (A =  <C2n/ L, H =  R +  iQ,K, {Ui, Vj})

as a principally polarized abelian variety with anti-holomorphic multi­
plication and level M  structure. If

A' =  (A ' =  C2n/L', H' =  R +  iQ, k', {U[, V/ } )

is another such, then an isomorphism A  =  A! is a complex linear map­
ping if : C2n —> C2n such that ip(L) =  '! / ,  ^ ( H )  — H f, ^*(ft) =  ft', and 
such that for some (and hence for any) lift

{Ul, . . . , U2m 1̂ > • • • , ^2n}

and

of the level structures,

Define V (d, M ) to be the set of isomorphism classes of principally polar­
ized abelian varieties with anti-holomorphic multiplication by Od and 
level M  structure.
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8.2

If Z E {)2nj then for any M  > 1 we define the standard level M  structure 
on the abelian variety (Az, Hz)  to be the basis

{Fz (et/M),Fz (fj/M)}  (mod L)

where

{ex, . . . , &2m fli ■ ■ ■ i /2n}

is the standard basis of R2" © R2n.
Lem m a 8.3. Let 7 6 Sp(4n, Z) and let Z e &  that is, Z — 7 • Z. 

Let M  > 3. Then the standard level M  structure on the abelian variety 
(Az ,Hz)  is compatible with the anti-holomorphic multiplication kz iff
7 e r M =  r (M )n f (M ) .

8.4 Proof

It follows immediately from diagram (7.6.1) that 7 E T(M) iff the stan­
dard level M  structure on (Az, Hz)  is compatible with k z• Since T(M)  
is torsion-free, 77 =  I  which implies 7 E r(M ); hence 7 E Tm - q.e.d.

By Lemma 8.3, each point Z  E ^  determines a principally po­
larized abelian variety

A Z =  (Az , Hz , k z , { Fz (ei/M), Fz (fj/M)})

with anti-holomorphic multiplication and (compatible) level M  struc­
ture.

Theorem  8.5. Fix M  > 3. If d =  1 (mod4), assume also that 
M  is even. Then the association Z A z determines a one to one 
correspondence between the real points (2.3.2) X ^ of X  =  and
the set V(d,M) of isomorphism classes of principally polarized abelian 
varieties with anti-holomorphic multiplication by Od and (compatible) 
level M  structure.

8.6 Proof

A point x E X  is real iff it is the image of a TM-real point Z  E
If two TM-real points Z , determine isomorphic varieties, say : An =
A z  then by (7.2.1) there exists h E Sp(4n, Z) such that Fi — h Z. Since
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the isomorphism ^ preserves the level M  structures, it follows also from 
£7.2.1) that h G T(M). We claim that h G Ym - Let Z  =  7^ • Z  and 
Yl =  70 • fl, with , 70 G Tm - Putting diagram (7.6.1) for Z  together 
with the analogous diagram for Yl and diagram (7.2.1), and using the 
fact that ip*(Kn) =  kz gives a diagram

R2n0]R2n ------- , £ 2n

\ l n ^ z ) r
R2" 0  R2n

Fa.

FZ

Kzi’K'Q1 =

c2r-
from which it follows that %'ynh'yz) G T(M ), hence h G Y(M), hence 
h G Ym -

So it remains to show that every principally polarized abelian va­
riety with anti-holomorphic multiplication and level M  structure, A  =  
(A, if, Av, {?7i, Vj}) is isomorphic to some A z • By the Comessatti lemma 
(Proposition 7.7) there exists Zf E f)2n> such that Zf =  Z f, and there 
exists an isomorphism

$  : (Az' ,Hz',Kzf) — (A, if, ft)

between the principally polarized abelian varieties with anti-holomor­
phic multiplication. However the isomorphism ^  must be modified 
because it does not necessarily take the standard level M  structure on 
(Az>,Hz', Kz*) to the given level M  structure on (A, if, k).

Choose a lift { i q , . . . ,  U2n? ^i5. • •, V2n} of the level M  structure and 
let F  : R2n ® M2n —> C2n be the corresponding mapping (8.1.1). Define

(8.6.1) lg - x =  F ~l o t f o  Fz > G Sp(4n, Z)
(8.6.2) Z ^ g - Z *

(8.6.3) 7 =  gg~x =  N ^ g N g '1.

As in §7.2, if g =  ($  g )  define £ : C2n -+ C2n by £(w) =  *(CZ +  D)w. 
Define ^ ° £. We will show that 7 E Tm , that Z =  7 • Z, and that
^ induces an isomorphism ^ : A z —► A  of principally polarized abelian 
varieties with anti-holomorphic multiplication and compatible level M  
structures.

In the following diagram, F  is the mapping (8.1.1) associated to 
the lift of the level M  structure. The bottom square commutes by the
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definition of g, while the top square commutes by (7.2.1):

R2n © R2n — C2n
t p
9 ̂

(8.6.4) R2n© R 2n --------► C2n.
FZ'

V

R2n © R2n F > C2n.
First let us verify that £ : (Az, Hz, kz) —»■ (Az'> #2T'i « z ')  is an iso­

morphism of principally polarized varieties with anti-holomorphic multi­
plication by Orj. It follows from (8.6.4) that £*(Lz) =  Lz> and £*(Hz) =  
H z'■ We claim that £*(kz) =  Kz>, that is, kz> =  But this fol­
lows from direct calculation using £ =  Fz ' fgFz, kz =  Fz\N ^)F ^1, 
Hz' =  Fz' fN Fz/ and (8.6.3) (and it is equivalent to the statement that 
the pushforward by tg of the involution %Nj) on R2n © R2n is the in­
volution tN). It follows that

(8.6.5) ip*(Kz) =

We claim that the standard level M  structure on (A z , H z ) is com­
patible with Kz- By construction, the mapping ip takes the standard 
level M  structure on (Az, Hz)  to the given level M  structure on (A, H). 
By assumption, the diagram (8.1.2) commutes (modL). By (8.6.4), 
F  =  ip o Fz- Using (8.6.5) it follows that the diagram

(Z2n © Z2n)M Fz
—LzM

M (z2n © z2n)
«Z

Fz
M^Z

commutes (modL^), which proves the claim. It also follows from 
Lemma 8.3 that 7 G Ym •

In summary, we have shown that

(Az , HZ, KZj {Fz {ei/M),Fz (fj /M)})

is a principally polarized abelian variety with anti-holomorphic multipli­
cation and (compatible) level M  structure, and that the isomorphism ^ 
preserves both the anti-holomorphic multiplication and the level struc­
tures. q.e.d.
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9. Rational structure

9.1

Let g i—> g =  NgN~x be the involution on Sp(4n,R) where N  denotes 
the matrix (5.8.3), as in §5.7. The resulting anti-holomorphic involution 
on fen is given by Z  i—> Z — . As in §8, fix a level M  > 1 and
let T =  Tm  =  T(M) fl r(M ). It is well-known ([5] §V Thm. 2.5) that 
the arithmetic quotient T(M)\t)2n admits a model that is defined over 
a certain cyclotomic field. For our purposes, however, we need a model 
that is defined over a subfield of the real numbers, and we need it for 
the slightly different arithmetic quotient X  — TM\t)2n- For these facts 
we will use results of [25].

Theorem 9.2. There exists a projective embedding X  —► CPr and 
there exists an anti-holomorphic involution r  on CPr such that:

• The closure X  is the Baily-Borel Satake compactification of X .

• As a projective algebraic variety, X  is defined over Q.

• The involution r  is rationally defined and preserves X .

• The restriction r\X coincides with the involution (induced by) r  
of §5.13.

In summary, the set X described in Theorem 2.3 forms the set of 
real points of a complex quasi-projective algebraic variety defined over 
Q. The proof will occupy the rest of this section.

Proposition 9.3. The complex vector space of (holomorphic) Tm ~ 
modular forms on f)2n ^ spanned by modular forms with rational Fourier 
coefficients.

9.4 Proof

Let G =  GSp(4n), let A be the adeles of Q and let S C G (A )+ be 
an open subgroup containing Q XG (R )+ (where +  denotes the identity 
component). Let Ts =  S fl G(Q). Suppose that F C G(Q) is an arith­
metic group which is contained in Ts and that:

(1) S7QXG (R )+ is compact.

(2) r - Q x = r 5.



ANTI-HOLOMORPHIC MULTIPLICATION 551

(3) The set
> II 0 \ G G(A)

\

t g n  z* >
V 0 th n j p y j

is contained in S.

Then [25] Thm. 3 (ii) states that the complex vector space of T-modular 
forms with weight k on fan is spanned by those forms whose Fourier 
coefficients are in the finite abelian extension ks of Q that is determined 
by the set S. To apply this to our setting, let S\(M) be the collection 
of elements x G G (A )+ such that each p-component xp G GL(2n, Zp) 
and satisfies

xp =  (mod M  • Zp)
y 0 J

for some ap G Z x . Define S(M) =  S i(M )-Q x , let S\M) =  NS(M)N~\  
and S =  S(M)  n S'(M). Then hypothesis (1) is satisfied. It is easy to 
see that S'(M), Sf(M)  both contain A, hence hypothesis (3) is satisfied 
for the set S. In this case, ks — Q and

rs = sn  G(Q) -  (T(M) n f(M ))  • Qx =  r M • Qx
which verifies hypothesis (2). q.e.d.

9.5

Let I -  =  ^JQn _ j2  ̂ . Its action by fractional linear transformations
maps the Siegel lower half space fjjn to the uPPer half space fan, that 
is, /_  • Z =  — Z. Hence, for any holomorphic mapping /  : f)2n —> C we 
may define f  : f)2n —> C by

f\ Z )  =  / ( /_ •  N ■Z) =  f ( - b Z % - 1).

Proposition  9.6. If f  : f)2n —> C is a holomorphic T-modular 
form of weight fc, with rational Fourier coefficients, then f  is also a 
holomorphic T-modular form of weight k, and

(9.6.1)

for all Z G f)2n-

f (Z )  =  f ' (Z)
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9.7 Proof

Suppose that / (7  • Z) =  j(7 , Z)kf (Z )  for all 7 G T and all Z  G fan 
where

i ( ( c f l ) > 2 ) =  det(CZ +  D)

is the standard automorphy factor. Then j(/_7V, Z) =  det(— *b) is in­
dependent of Z. Let 7 G T and set

V  =  I ^ N j N - 1! ! 1 G T.

Then

— j { l '  11 -N  ■ Z)kf ( Z )
=  det(— %)kj {  7, Z)k det(— *b)-kf\ Z )

=  j ( % Z)kf ( Z ) .

which shows that f  is T-modular of weight k. Next, with respect to 
the standard maximal parabolic subgroup Pq (which normalizes the 
standard O-dimensional boundary component), the modular form /  has 
a Fourier expansion,

f (Z )  =  as exp (27ri(s, Z))
S

which is a sum over lattice points s G L* where L =  T Pi Z(Uq) is the 
intersection of T with the center of the unipotent radical Uq of Po and 
where as G Q. Then

f (Z )  =  ^  as exp (27ri(s, bZ^b-"1))
s

=  7 ^  as exp (2m(s, — bZ%~1)}
S

=  f { - b Z % - ^ )  = J { Z ) .

q.e.d.
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9.8

The Baily-Borel compactification X  of X  is the obtained by embed­
ding X  holomorphically into CPm using m +  1 (T-)modular forms (say 
/o, / i , . . . ,  fm) of some sufficiently high weight with rational Fourier 
coefficients, and then taking the closure of the image. Define an embed­
ding $> : X  CP2m+1 by

$ (Z ) =  (fo(Z) : h ( Z )  : • • • : f m(Z) : f'Q{Z) : f [ {Z)  : • • • : f m(Z)) .

Denote these homogeneous coordinate functions by Xj — f j(Z)  and 
yj =  Define an involution a : CP2m+1 —> CP2m+1 by cr(xj) =
yj and cr(yj) =  Xj. Then Equation (9.6.1) says that this involution is 
compatible with the embedding <f>, that is, for all Z G X  we have:

<r$(Z) =  $ (Z ).

Define ^  : CP2m+1 —> CP2m+1 by setting =  Xj +  yj and rjj =  
i(xj — yj) for 0 < j  < m. Let Y  =  ^ $ (X ) and let Y  denote its closure.

Proposition  9.9. The composition : X  —> CP2m+1 is a holo- 
morphic embedding which induces an isomorphism of complex algebraic 
varieties X  —> Y. The variety Y is defined over the rational numbers, 
and the real points of Y are precisely the image of those points Z  G X  
such that Z =  Z.

9.10 Proof

The image \k<I>(X) is an algebraic subvariety of projective space that 
is preserved by complex conjugation, so it is defined over R. The real 
points are obtained by setting ^  and fjj =  rjj which gives xj — yj 
and yj =  xj hence $ (Z ) =  cr$(Z), or Z — Z. The Fourier coefficients of 
£j and r]j are in Q[i] so the image \I/<F(X) is defined over Q [i]. Since it 
is also invariant under Gal(C/R), it follows that ^^>(X) is defined over 
Q. q.e.d.

9.11 Remark

The embedding (/o : fi  : • • • : f m) : X  CPm determines the usual 
rational structure on X , and the resulting complex conjugation is that 
induced by Z i—> — Z for Z G f)2n-
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10 . The symmetric space for Sp(2n,C)

10.1

In this section we sketch a proof of the well-known (but difficult to 
reference) fact that the complex symplectic group acts transitively on 
the quaternionic Siegel space by fractional linear transformations, and 
that the stabilizer of each point is a maximal compact subgroup. These 
facts are not needed in the rest of the paper, however they may help to 
make this symmetric space look a little more familiar.

10.2 A  quaternion algebra

Associated to the imaginary quadratic field Q (Vd) we consider the 
quaternion algebra H over R that is generated by 1, i, j, k with i2 =  k2 =  
dl, j 2 =  —1 and ij =  k. If w — r l  +  si +  x} +  yk set w =  r l  —si —xj — yk 
and u>* — r l  +  si — xj +  yk. If we embed 9 : C —> H by y/d i—> i then 
9(z) =  9(z) and we may write HI =  0(C) ©k0(C). Define the purely 
quaternionic part of such an element w E HI to be

Qu(w) =  k -1 (a;j +  yk) =  y +  |i-

The mapping 9 extends to an injective algebra homomorphism 9 : 
Mnxn(C) —► Mnxn(H) by applying 9 to each matrix entry. For no- 
tational convenience we shall often omit the use of the symbol 9.

If A ,B  G GL(n,H) then %AB)* =  ( ^* ) ( U*) .  If Qu(A) =  0 then 
Ak =  kA. An element A E Mnxn(H) is Hermitian if A — tA. In this case 
(z, z ) a  =  lzAz is real, for all z G HP. The element A is positive definite 
(written A > 0) if (z, z ) a  > 0 for all nonzero z. The unitary group 
U(n,HI) (sometimes denoted Sp (n)) consists of those A G Mnxn(M) 
such that A~1 =  lA.

10.3

Define the quaternionic Siegel space

Yn =  { W e  Mnxn( H) \W*=*W,  Qu (W) > 0} .
Proposition 10.4. The symplectic group Sp(2n,C) acts transi­

tively on the quaternionic Siegel space Yn by fractional linear transfor­
mations: if g — ( c  d ) then

g ' W  =  (AW  +  B)(C W  +  D ) - 1
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where we have identified 9(A) with A , etc. Moreover,

(10.4.1) Qu(g • W ) =  %CW +  D)~1Qu(W)(CW  +  D ) ' 1.

The stabilizer of the basepoint Wo =  A d - In g Yn is the unitary group 
U(n, H) over the quaternions, which is embedded in Sp(2n, C) by

A + 1 £>k i—> A B 

- B  A

10.5 Proof
Equation (10.4.1) may be verified by a (tedious) direct computation. 
It follows, for any g E Sp(2n,C), that W  E Yn iff g • W  E Yn. The 
remaining statements may be verified by direct computation. q.e.d.

10.6

Define the homomorphism /i : H —> M2X2(C) as follows:

d ^  1 (mod 4) d =  4m +  1

a*(1) ( ? g ) a - 1 ( ? g ) a

m(j) (V=i  0 \ 
V o - v = i )

M U 0 )

where a — ( q \). This mapping extends to a homomorphism

T : MrXr{^) > -^2rx2r(C)

which replaces each matrix entry with the 2x2 block defined above. The 
following fact is immediate:

Lemma 10.7. The composition

Mrxr{C) — L -f Mrxr(M) — ^  M2rx2r(C)

takes values in M2rX2r*(®0 and ^ coincides with the mapping \pr of
(5.2.1). In particular, it restricts to the injective homomorphism : 
Sp(2n,C) Sp(M4r\S2) of §5.7.
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Proposition 10.8. The mapping /i takes the quatemionic Siegel 
space Yn c  Mnxn(M) diffeomorphically to the symmetric space

bn*  C M2nx2n(C)

for Sp(R4n, S2). Its image is the fixed point set of the involution Ty. 
Moreover, for each g € Sp(2n, C) and W  € Yn we have

(10.8.1) f i ( g - W ) = M g ) - T ( W ) .

10.9 Proof

Since /a and 0 are algebra homomorphisms, for

9 — ( c  d )  ̂Sp(2n,C)

we find,

n(g -W ) =  n ((i9(A)W +  0(B)) (0(C)W  +  0 (D ) ) -1)
=  (ix0(A)pl(W) +  /j,0(B))(fj,$(C)p,(W) +  ^ ( D ) ) - 1 
=  f i (g ) .p (W)

which verifies (10.8.1). A direct calculation shows that p takes the base 
point Wq =  7̂ = k /n 6 Yn to the following base point x 2 € t)2nt>,

X2
i

\/—d
Diagn

0 - d

0
or

X2
i

V^d
Diagn<r_1

0 -d

0
a —

i
y/^d

Diagn
— 1 —2m

2 1

depending on whether d ^  1 (mod 4) or d =  4m +  1 respectively. It 
follows from (5.8.6) that /i takes Yn to 1 ) 2 and it further follows from 
Proposition 5.14 that its image is precisely the fixed point set under

q.e.d.
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11. Concluding remarks

11.1

The definition of anti-holomorphic multiplication given in §7 extends 
in an obvious manner to more general CM fields. Let F  be a totally 
real, degree m extension of Q and let E — F[\fd\ be a totally imaginary 
quadratic extension of F  (with d E Of ). Let (A =  C2n/L, H =  R +  iQ) 
be a principally polarized abelian variety as in §7. Then an anti- 
holomorphic multiplication by the ring of integers Of  is a homomor­
phism ^  : Oe Endj^A) such that ^/(Of ) C Endc(A), such that 
k =  ^f(Vd) : C2n —» C2n is anti-linear (k,(clx) =  an{x) for all a E C and 
x E Cr), and such that Q(^f(b)x^y) =  Q (x^ (b )y )  for all b E Of  and 
y E C2n. One might then expect (1) that the moduli space of principally 
polarized abelian varieties with anti-holomorphic multiplication by Of 
and appropriate level structure may be identified with the locus of real 
points in a corresponding Hilbert-Siegel modular variety, and (2) that 
it consists of finitely many copies of T\D where T C Sp(2n, Oe) is an 
appropriate level subgroup and where D =  T ^ x - * - x l ^ i s a  product 
of m copies of the symmetric space Yn =  Sp(2n, C )/U (n, H I).

11.2

One might ask whether the closure of X ^ in the Baily-Borel Satake 
compactification X  coincides with the locus of real points (X )m of the 
Baily-Borel compactification. Although we do not know the answer to 
this question, in [9] we were able to show, in the case n — 1 (that is, 
when is an arithmetic quotient of real hyperbolic 3-space), that the 
difference (X)^ — consists at most of finitely many points.

11.3

In [8] we consider a different rational structure on the Siegel modular 
variety X  =  T\f)n and a different anti-holomorphic involution r', such 
that the resulting locus of real points (let us call it X^) may be naturally 
identified with the moduli space of real abelian varieties (with appro­
priate level structure); and we show that this moduli space consists of 
finitely many copies of the locally symmetric space A \G L (n ,R )/0(n ) 
(for appropriate principal congruence subgroups T and A). The invo­
lution t ' arises from an involution on Sp(2n,M) whose fixed point set
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is GL(n,R). In this paper also, the key technical tool is the lemma of 
Comessatti and Silhol. Although the outline of [8] is parallel to that 
of the present paper, the technical details are completely different and 
we do not yet know how to formulate or prove the most natural general 
statement along these lines. Interesting related results are described in 
[2] ,
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