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LEGENDRIAN CONTACT HOMOLOGY

IN THE BOUNDARY OF A

SUBCRITICAL WEINSTEIN 4-MANIFOLD

Tobias Ekholm & Lenhard Ng

Abstract

We give a combinatorial description of the Legendrian contact
homology algebra associated to a Legendrian link in S1 × S2 or
any connected sum #k(S1 × S2), viewed as the contact boundary
of the Weinstein manifold obtained by attaching 1-handles to the
4-ball. In view of the surgery formula for symplectic homology [5],
this gives a combinatorial description of the symplectic homology
of any 4-dimensional Weinstein manifold (and of the linearized
contact homology of its boundary). We also study examples and
discuss the invariance of the Legendrian homology algebra under
deformations, from both the combinatorial and the analytical per-
spectives.
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1. Introduction

Legendrian contact homology is a part of Symplectic Field Theory,
which is a generalization of Gromov–Witten theory to a certain class
of noncompact symplectic manifolds including symplectizations of con-
tact manifolds. SFT contains holomorphic curve theories for contact
geometry, where Legendrian contact homology in a sense is the most
elementary building block. Although Legendrian contact homology is a
holomorphic curve theory, it is often computable as the homology of a
differential graded algebra (DGA) that can be described more simply
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and combinatorially. For example, the DGA of a Legendrian (n−1)-link
in the contact (2n − 1)-sphere at the boundary of a symplectic 2n-ball
can be computed in terms of Morse flow trees; see [10].

In a different direction, the computation of Legendrian contact ho-
mology for 1-dimensional links in R3 was famously reduced by Chekanov
[7] to combinatorics of polygons determined by the knot diagram of the
link. The main goal of the current paper is to generalize this combinato-
rial description to Legendrian links in general boundaries of subcritical
Weinstein 4-manifolds. These boundaries are topologically connected
sums #k(S1×S2) of k copies of S1×S2 where k is the rank of the first
homology of the subcritical Weinstein 4-manifold; we discuss Weinstein
manifolds in more detail later in the introduction.

In Section 2.4, we present a combinatorial model for the Legendrian
contact homology DGA for an arbitrary Legendrian link in #k(S1×S2).
This description follows Chekanov’s, but several new features are needed
due to the presence of 1-handles. Perhaps most notably, the DGA is
generated by a countably infinite, rather than finite, set of generators
(Reeb chords); cf. [29], where infinitely many Reeb chords also appear
but in a different context. We accordingly present a generalization of
the usual notion due to Chekanov of equivalence of DGAs, “stable tame
isomorphism,” to the infinite setting. Briefly, Chekanov’s stable tame
isomorphisms involve finitely many stabilizations and finitely many ele-
mentary automorphisms; here we allow compositions of infinitely many
of both, as long as they behave well with respect to a filtration on the
algebra.

One can view the combinatorial DGA abstractly as an invariant of
Legendrian links in #k(S1 × S2), and indeed one can give a direct but
somewhat involved algebraic proof that the DGA is invariant under
Legendrian isotopy, without reference to holomorphic curves and contact
homology. This is the content of Theorem 2.18 below. One can use
the DGA, much as for Legendrian links in R3, to extract geometric
information: e.g., the DGA provides an obstruction to Legendrian links
in #k(S1 × S2) being destabilizable.

We then join the combinatorial and geometric sides of the story in
our main result, Theorem 4.1, which states that the combinatorial DGA
coincides with the DGA for Legendrian contact homology, defined via
holomorphic disks. This result has interesting consequences for general
4-dimensional Weinstein manifolds that we discuss next.

One of the main motivations for the study undertaken in this paper
is the surgery formula that expresses the symplectic homology of a We-
instein manifold in terms of the Legendrian contact homology of the
attaching sphere of its critical handles; see [5]. Here, a Weinstein man-
ifold is a 2n-dimensional symplectic manifold X which outside a com-
pact subset agrees with Y × [0,∞) for some contact (2n − 1)-manifold
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Y and which has the following properties. The symplectic form ω on
X is exact, ω = dλ, and agrees with the standard symplectization form
in the end Y × [0,∞), λ = etα, where t ∈ [0,∞) and α is a contact
form on Y ; and the Liouville vector field Z ω-dual to λ, ω(Z, ·) = λ,
is gradient-like for some Morse function H : X → R with H(y, t) = t,
(y, t) ∈ Y × [0,∞) ⊂ X. The zeros of Z are then exactly the critical
points of H and the flow of Z gives a finite handle decomposition for X.
Furthermore, since Z is a Liouville vector field, the unstable manifold
of any zero of Z is isotropic and hence the handles of X have dimension
at most n. The isotropic handles of dimension < n are called subcritical
and the Lagrangian handles of dimension n critical.

A Weinstein manifold is called subcritical if all its handles are sub-
critical. The symplectic topology of subcritical manifolds is rather easy
to control. More precisely, any subcritical Weinstein 2n-manifold X is
symplectomorphic to a productX ′×R2, whereX ′ is a Weinstein (2n−2)-
manifold; see [9, Section 14.4]. Furthermore, any symplectic tangential
homotopy equivalence between two subcritical Weinstein manifolds is
homotopic to a symplectomorphism; see [9, Sections 14.2–3]. As a con-
sequence of these results, the nontrivial part of the symplectic topology
of a Weinstein manifold is concentrated in its critical handles. More
precisely, a Weinstein manifold X is obtained from a subcritical We-
instein manifold X0 by attaching critical handles along a collection of
Legendrian attaching spheres Λ:

⊔m
j=1 S

n−1 → Y0, where Y0 is the ideal
contact boundary manifold of X0. In particular, the Legendrian isotopy
type of the link Λ in Y0 thus determines X up to symplectomorphism.

An important invariant of a Weinstein manifold X is its symplec-
tic homology SH(X), which is a certain limit of Hamiltonian Floer
homologies for Hamiltonians with prescribed behavior at infinity. Sym-
plectic homology and Legendrian contact homology are connected: [5,
Corollary 5.7] expresses SH(X) as the Hochschild homology of the Leg-
endrian homology DGA (A(Λ), ∂(Λ)) of the Legendrian attaching link
Λ of its critical handles. Similarly, the linearized contact homology of
the ideal contact boundary of X is expressed as the corresponding cyclic
homology; see [5, Theorem 5.2].

In view of the above discussion, Theorem 4.1 then leads to a com-
binatorial formulation for the symplectic homology of any Weinstein
4-manifold (as well as the linearized contact homology of its ideal bound-
ary). As one consequence, we deduce a new proof of a result of McLean
[22] that states that there are exotic Stein structures on R8. We note
that our construction of exotic Stein R8’s (and corresponding exotic
contact S7’s) is somewhat different from McLean’s.

Here is an outline of the paper. Our combinatorial setup and compu-
tation of the DGA are presented in Section 2 and sample calculations
and applications are given in Section 3. In Section 4, we set up the
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contact topology needed to define Legendrian contact homology in our
context. This leads to the proof in Section 5 that the combinatorial for-
mula indeed agrees with the holomorphic curve count in the definition
of the DGA. In the Appendices, we demonstrate invariance of the DGA
under Legendrian isotopy in two ways: from the analytical perspective
in Appendix A, and from the combinatorial perspective in Appendix B,
which also includes a couple of deferred proofs of results from Section 2.
It should be mentioned that the analytical invariance proof depends on
a perturbation scheme for so-called M-polyfolds (the most basic level of
polyfolds), the details of which are not yet worked out.

Acknowledgments. We thank Mohammed Abouzaid, Paul Seidel, and
Ivan Smith for many helpful discussions. TE was partially supported by
the Knut and Alice Wallenberg Foundation as a Wallenberg scholar.
LN thanks Uppsala University for its hospitality during visits in 2009,
when this project began, and 2010. LN was partially supported by NSF
grants DMS-0706777 and DMS-0846346.

2. Combinatorial definition of the invariant

In this section, we present a combinatorial definition of the DGA for
the Legendrian contact homology of a Legendrian link in #k(S1 × S2)
with the usual Stein-fillable contact structure. (For the purposes of this
paper, “link” means “knot or link.”) We first define a “normal form” in
Section 2.1 for presenting Legendrian links in #k(S1×S2), and describe
an easy algorithm in Section 2.2 for deducing a normal form from the
front of a Legendrian link, akin to the resolution procedure from [27].
We then define the DGA associated to a Legendrian link in normal
form, in two parts: in Section 2.3 we present a differential subalgebra,
the “internal DGA,” which is associated to the portion of the link inside
the 1-handles and depends only on the number of strands of the link
passing through each 1-handle; then we extend this in Section 2.4 to
a DGA that takes account of the rest of the Legendrian link, with an
example in Section 2.5. Finally, in Section 2.6 we present a version
of stable tame isomorphism, an equivalence relation on DGAs, which
allows us to state the algebraic invariance result for the DGA.

2.1. Normal form for the xy projection of a Legendrian link.

As is the case in R3, it is most convenient to define the DGA for a
Legendrian link in #k(S1 × S2) in terms of the projection of the link
(or the portion outside of the 1-handles) in the xy plane. Let A,M > 0.

Definition 2.1. A tangle in [0, A]×[−M,M ]×[−M,M ] is Legendrian
if it is everywhere tangent to the standard contact structure dz − y dx,
where x, y, z are the usual coordinates. A Legendrian tangle Λ ⊂ [0, A]×
[−M,M ]×[−M,M ] is in normal form if there exist integers n1, . . . , nk ≥
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0 such that

Λ ∩ {x = 0} = {(0, y�i , z�i ) | 1 ≤ � ≤ k, 1 ≤ i ≤ n�},
Λ ∩ {x = A} = {(A, ỹ�i , z̃�i ) | 1 ≤ � ≤ k, 1 ≤ i ≤ n�},

with y�i , z
�
i , ỹ

�
i , z̃

�
i ∈ [−M,M ] satisfying the following conditions:

• For some (arbitrarily small) ε > 0, for any fixed �, each of the
following sets lies in an interval of length less than ε: {y�1, . . . , y�n�

},
{z�1, . . . , z�n�

}, {ỹ�1, . . . , ỹ�n�
}, and {z̃�1, . . . , z̃�n�

};
• if �1 < �2, then for all i, j,

y�1i > y�2j , z�1i > z�2j ,

ỹ�1i > ỹ�2j , z̃�1i > z̃�2j ;

• for 1 ≤ i < j ≤ n�,

y�i > y�j, z�i > z�j ,

ỹ�i < ỹ�j, z̃�i > z̃�j .

Less formally, Λ meets x = 0 and x = A in k groups of strands, with
groups of size n1, . . . , nk. The groups are arranged from top to bottom in
both the xy and the xz projections. Within the �th group, the strands
can be labeled by 1, . . . , n� in such a way that the strands appear in
increasing order from top to bottom in both the xy and xz projections
at x = 0 and in the xz projection at x = A, and from bottom to top in
the xy projection at x = A.

Any Legendrian tangle in normal form corresponds to a Legendrian
link in #k(S1×S2) by attaching k 1-handles joining the portions of the
xz projection of the tangle at x = 0 to the portions at x = A. The �th

1-handle joins the �th group at x = 0 to the �th group at x = A, and
within this group, the strands with the same label at x = 0 and x = A
are connected through the 1-handle.

See Figure 1 for an illustration of the xy and xz projections of a
Legendrian tangle in normal form. Note that the xy projection can be
deduced from the xz projection as usual by setting y = dz/dx.

Definition 2.2. A tangle diagram is in xy-normal form if it is the
xy projection of a Legendrian tangle in normal form.

In Section 2.4, we will associate a differential graded algebra to a
tangle diagram in xy-normal form.

2.2. Resolution. As in the case of R3 [7], it is not necessarily easy
to tell whether a tangle diagram is (planar isotopic to a diagram) in
xy-normal form. However, in practice a Legendrian link in #k(S1×S2)
is typically presented as a front diagram, following Gompf [19]. In this
subsection, we describe a procedure called resolution that inputs a front
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Figure 1. The xy (left) and xz (right) projections of
a Legendrian tangle in normal form. The dashed boxes
are [0, A] × [−M,M ] in (x, y) or (x, z) coordinates, and
the tangle continues into the dotted boxes. In the ter-
minology of Definition 2.1, the strands labeled 1, 2, 3
intersect the left side of the dashed boxes at (0, y11 , z

1
1),

(0, y12 , z
1
2), (0, y13 , z

1
3) and the right side at (A, ỹ11 , z̃

1
1),
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3), respectively; strands 1′, 2′ inter-
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2
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2
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side at (A, ỹ21 , z̃
2
1), (A, ỹ

2
2 , z̃

2
2).

tangle tangle

Figure 2. A Legendrian front diagram in #2(S1 × S2)
in Gompf standard form (left), and perturbed to be the
xz projection of a tangle in normal form in the sense of
Definition 2.1 (right).

diagram for a Legendrian link in #k(S1 × S2), and outputs a tangle
diagram in xy-normal form that represents a Legendrian-isotopic link.

Gompf represents a Legendrian link in #k(S1×S2) by a front diagram
in a box [0, A] × [−M,M ] that is nearly identical in form to the xz
projections of our normal-form tangles from Definition 2.1, but with the
intersections with x = 0 and x = A aligned horizontally; see Figure 2
for an illustration. We say that such a front is in Gompf standard form.

Any front in Gompf standard form can be perturbed to be the xz
projection of a tangle in normal form. This merely involves perturbing
the portions of the front near x = 0 and x = A so that, rather than being
horizontal, they are nearly horizontal but with slopes increasing from
bottom to top along x = 0, and increasing from bottom to top along
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Figure 3. Resolving a front in Gompf standard form.
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Figure 4. Example of front resolution for a Legendrian
link in #2(S1 × S2).

x = A except decreasing within each group of strands corresponding to
a 1-handle. The resulting front then gives a Legendrian tangle whose xy
projection satisfies the ordering condition of Definition 2.1. See Figure 2.

Although one can deduce the xy projection of a Legendrian tangle
from its xz projection by using y = dz/dx, this can be somewhat difficult
to effect in practice. However, as in R3 [27], if we allow the tangle to
vary by Legendrian isotopy (in fact, planar isotopy in the xz plane),
then it is possible to obtain a front whose corresponding xy projection
is easy to describe.

Definition 2.3. The resolution of a front in Gompf standard form is
the tangle diagram obtained by resolving the singularities of the front
as shown in Figure 3 and, for each 1-handle, adding a half-twist to the
strands that pass through that 1-handle at the x = A end of the tangle.

Note that the half-twist has the effect of reversing the order of the
strands entering the 1-handles at x = A. In Gompf standard form, the
strands entering a 1-handle from the left and the right are identified
with each other in the obvious way, by identifying x = 0 and x = A;
in the resolution of such a front, the top strand entering a particular
1-handle from the left is identified with the bottom strand entering the
1-handle from the right, and so forth. See Figure 4 for an example of a
resolution.

Proposition 2.4. Let Λ be a Legendrian link in #k(S1 × S2) repre-
sented by a front in Gompf standard form. Then the resolution of the
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front is (up to planar isotopy) the xy projection of a Legendrian link in
normal form that is Legendrian isotopic to Λ.

See Section B.1 for the proof of Proposition 2.4, which is very similar
to the analogous proof for resolutions in R3 from [27].

In practice, to compute the DGA associated to a Legendrian link in
#k(S1×S2), we begin with a Gompf standard form for the link, resolve
it as above, and then apply the combinatorial formula for the DGA to
be described in Section 2.4 below.

2.3. Internal differential graded algebra. Here we present the sub-
algebra of the contact homology differential graded algebra determined
by the Reeb chords in each 1-handle, and holomorphic disks with posi-
tive puncture at one of these Reeb chords. Let n ≥ 1 be an integer, rep-
resenting the number of strands of the Legendrian link Λ = Λ1∪· · ·∪Λs

passing through the 1-handle, where the Λj denote the knot components
of Λ. To define a grading on the subalgebra, we need two auxiliary pieces
of data: an s-tuple of integers (r1, . . . , rs) associated to the components
Λj , j = 1, . . . , s, and an n-tuple of integers (m(1), . . . ,m(n)). These rep-
resent the rotation numbers of the Legendrian link (which only appear
here in the grading of the homology variables tj) and a choice of Maslov
potential for each of the strands passing through the 1-handle; see also
Section 2.4.

Given (r1, . . . , rs) and (m(1), . . . ,m(n)), let (An, ∂n) denote the dif-
ferential graded algebra given as follows. As an algebra, An is the tensor
algebra over the coefficient ring Z[H1(Λ)], that is,

Z[t, t−1] := Z[t1, t
−1
1 , . . . , ts, t

−1
s ],

freely generated by generators c0ij for 1 ≤ i < j ≤ n and cpij for 1 ≤
i, j ≤ n and p ≥ 1. (See Remark 5.2 for a discussion of the geometric
significance of the coefficient ring.) This algebra is graded by setting
|tj | = −2rj , |t−1j | = 2rj , and

|cpij | = 2p − 1 +m(i)−m(j)

for all i, j, p. The differential ∂n is defined on generators by

∂n(c
0
ij) =

n∑
m=1

σiσmc
0
imc

0
mj

∂n(c
1
ij) = δij +

n∑
m=1

σiσmc
0
imc

1
mj +

n∑
m=1

σiσmc
1
imc

0
mj

∂n(c
p
ij) =

p∑
�=0

n∑
m=1

σiσmc
�
imc

p−�
mj

where p ≥ 2, σi = (−1)m(i) for all i, δij is the Kronecker delta, and we
set c0ij = 0 for i ≥ j. Extend ∂n to all of An in the usual way by the
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Leibniz rule

∂n(xy) = (∂nx)y + (−1)|x|x(∂ny).
It is clear that ∂n has degree −1, and easy to check that ∂2n = 0.

Note that An is infinitely generated as an algebra but has a natural
increasing filtration given by the superscripts, with respect to which ∂n
is a filtered differential.

Given a Legendrian link Λ ⊂ #k(S1 × S2), we can associate a DGA
(Ani

, ∂ni
) as above to each of the k 1-handles; see Section 2.4 below.

We refer to the DGA whose generators are the collection of generators
of Ani

, i = 1, . . . , k, and whose differential is induced from ∂ni
, as the

internal DGA of Λ.

2.4. The DGA for an xy projection in normal form. We can now
define the DGA associated to a Legendrian link in #k(S1×S2), or more
precisely to a tangle in xy-normal form in the terminology of Section 2.1,
with one base point for each link component.

Suppose that we have a Legendrian link Λ = Λ1∪ · · ·∪Λs ⊂ #k(S1×
S2) in normal form; then its projection πxy(Λ) to the xy plane is a
tangle diagram in xy-normal form. Let a1, . . . , an denote the crossings
of the tangle diagram. Label the k 1-handles appearing in the diagram
by 1, . . . , k from top to bottom; let n� denote the number of strands
of the tangle passing through handle �. For each �, label the strands
running into the 1-handle on the left side of the diagram by 1, . . . , n�
from top to bottom, and label the strands running into the 1-handle on
the right side by 1, . . . , n� from bottom to top. Also choose base points
∗j , j = 1, . . . , s in the tangle diagram such that ∗j lies on component
Λj for all j = 1, . . . , s, and no ∗j lies at any of the crossings (or in the
1-handles).

We can now define the DGA. Our definition involves three parts: the
algebra, the grading, and the differential.

2.4.A. The algebra. Let A be the tensor algebra over Z[t, t−1] =
Z[t1, t

−1
1 , . . . , ts, t

−1
s ] freely generated by:

• a1, . . . , an;
• c0ij;� for 1 ≤ � ≤ k and 1 ≤ i < j ≤ n�;

• cpij;� for 1 ≤ � ≤ k, p > 0, and 1 ≤ i, j ≤ n�.

(We will drop the index j in tj when the Legendrian Λ is a single-
component knot, and the index � in cpij;� when there is only one 1-

handle.) Note that A contains k subalgebras A1
n1
, . . . ,Ak

nk
, where A�

n�

is the tensor algebra over Z[t, t−1] freely generated by c0ij;� for 1 ≤ i <

j ≤ n� and c
p
ij;� for p > 0 and 1 ≤ i, j ≤ n�. Each of these subalgebras

A�
n�

should be thought of as the internal DGA corresponding to the

�th handle, and the grading and differential on this subalgebra will be
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defined accordingly. Together, the A�
n�

generate a differential subalgebra
of A, which we call “the” internal DGA of Λ.

It should be noted that we have chosen our formulation of the algebra
in such a way that all of the t±1j commute with each other and with the

generators ai and c
p
ij;�. This suffices for our purposes but is not strictly

necessary. It is possible to elaborate on the construction and consider an
algebra over Z generated by ai, c

p
ij;�, and t

±1
j , modulo only the obvious

relations tj · t−1j = t−1j · tj = 1. See, e.g., [14, Section 2.3.2] or [24,

Remark 2.2] for more discussion.

2.4.B. Grading. The grading on A is determined by stipulating a
grading on tj and on each generator ai and c

p
ij;� of A. We will do each

of these in turn.
We begin with some preliminary definitions. A path in πxy(Λ) is a

path that traverses some amount of πxy(Λ), connected except for points
where it enters a 1-handle (i.e., approaches x = 0 or x = A along a
labeled strand) and exits the 1-handle along the corresponding strand
(i.e., departs x = A or x = 0 along the strand with the same label). In
particular, the tangent vector in R2 to a path varies continuously as we
traverse the path (note that the strands entering or exiting a 1-handle
are horizontal). The rotation number r(γ) of a path γ consisting of
unit vectors in R2 (i.e., points in S1) is the number of counterclockwise
revolutions made by γ(t) around S1 as we traverse the path (i.e., the
total curvature

∫
γ κds divided by 2π); note that this is generally a real

number, and is an integer if and only if γ is closed. By slight abuse of no-
tation, we will often speak of the rotation number of a path γ in πxy(Λ)
to mean the rotation number of its unit tangent vector γ′(t)/|γ′(t)|.

In this terminology, the rotation number rj = r(Λj) is the rotation
number of the path in πxy(Λ) that begins and ends at the base point ∗j
on the jth component Λj and traverses the diagram once in the direction
of the orientation of Λj . We define

|tj| = −2r(Λj).

To define the remainder of the grading on A, we need to make some
auxiliary choices joining tangent directions to the various base points
∗1, . . . , ∗s, although the grading only depends on these choices in the
case of multi-component links (s ≥ 2). For i = 1, . . . , s, let vi ∈ S1

denote the unit tangent vector to the oriented curve πxy(Λi) at the base
point ∗i. Now for i = 2, . . . , s, pick a path ξi in S

1 from v1 to vi; then
for 1 ≤ i, j ≤ s, let ξij denote the path in S1 from vi to vj given by the
orientation reverse of ξi followed by ξj, considered up to homotopy (so
we can choose ξii to be constant). Note that there is a Zs−1 worth of
possible choices for the paths ξij.

With ξij chosen, we next define the grading of the ai generators.
Let a+i and a−i denote the preimages a+i and a−i in Λ of the crossing
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point ai in the upper and lower strands of the crossing, respectively,
and suppose that a+i , a

−
i belong to components Λi+ ,Λi− , respectively.

There are unique paths γ± in the xy projection of the component Λi±

connecting a±i to the base point ∗i± and following the orientation of
Λi± , such that the lifts of γ± to Λ are embedded. Let σi be the path
of unit tangent vectors along γ+, followed by ξj+j−, and followed by

the path of unit tangent vectors along γ− traversed backwards. Assume
that the crossing at ai is transverse (else perturb the diagram); then
r(σi) is neither an integer nor a half-integer, and we define

|ai| = �2r(σi)�,
where �x� denotes the largest integer smaller than x.

It remains to define the grading of the cpij;� generators. This can be

done by adding dips and treating c0ij;� generators as crossings in a dipped
diagram; cf. the proof of Proposition 2.8 in Section B.1. We use a slightly
different approach here, however. Choose a Maslov potential m that
associates an integer to each strand passing through each 1-handle, in
such a way that the following conditions hold:

• if SL, SR are strands on the left and right of πxy(Λ) that correspond
to the ends of a strand of Λ passing through a 1-handle, then
m(SL) = m(SR), and these Maslov potentials are even if Λ is
oriented left to right (i.e., it passes through the 1-handle from
x = A to x = 0), and odd if Λ is oriented right to left;

• if S, S′ are endpoints of strands through 1-handles with S ∈ Λi

and S′ ∈ Λj, such that Λi,Λj are oriented from S, S′ to ∗i, ∗j
respectively, then

m(S′)−m(S) = −2r(σ)
where σ is the path of unit tangent vectors along Λi from S to ∗i,
followed by ξij, followed by the path of unit tangent vectors along
Λj from ∗j to S′; note that this last path is traversed opposite

to the orientation on Λj , and that r(σ) ∈ 1
2Z since strands are

horizontal as they pass through 1-handles.

It is easy to check that the Maslov potential is well-defined (given choices
for ξij) up to an overall shift by an even integer.

As suggested by Section 2.3, we now grade the “internal generators”
cpij;� of A as follows:

|cpij;�| = 2p − 1 +m(Si;�)−m(Sj;�),

where Si;�, Sj;� are the strands running through handle � labeled by i
and j. This completes the definition of the grading on A.

Remark 2.5. Note that the grading on A is independent of the choice
of Maslov potential. Different choices of γij do, however, lead to different
gradings for s ≥ 2. As mentioned previously, there is a (2Z)s−1 worth of
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choices for ξij . Given the grading | · | on A resulting from such a choice,
and any (2n1, . . . , 2ns) ∈ (2Z)s, one can obtain another grading | · |′ on
A by defining

|ai|′ = |ai|+ 2(ni+ − ni−)
and similarly for the other generators cpij;�. (The grading on the homol-

ogy generators t1, . . . , ts is unchanged.) Any such grading comes from a
different choice of ξij, and conversely.

Remark 2.6. If πxy(Λ) is the resolution of a front diagram of an
s-component link, then we can calculate the grading on generators of A
directly from the front diagram, as follows. We can associate a Maslov
potential to connected components of a front diagram minus cusps and
the base points ∗j , 1, . . . , s, in such a way that the following conditions
hold:

• the same Maslov potential is assigned to the left and right sides of
the same strand (connected through a 1-handle), and this potential
is even if the strand is oriented left to right (from x = A to x = 0)
and odd otherwise;

• at a cusp, the upper component (in the z direction) has Maslov
potential one more than the lower component.

As before, we set |tj | = −2r(Λj) and |cpij;�| = 2p− 1+m(Si;�)−m(Sj;�).
The other generators of A are in one-to-one correspondence to: right
cusps in the front; crossings in the front; and pairs of strands entering
the same 1-handle at x = A (corresponding to the half-twists in the
resolution). Let a be one of these generators. If a is a right cusp, define
|a| = 1 (this assumes that no base point ∗j is in the portion of the resolu-
tion given by the loop at a). If a is a crossing, then |a| = m(So)−m(Su),
where Su is the undercrossing strand at a (in the front projection, i.e.,
the strand with more positive slope) and So is the overcrossing strand at
a. Finally, if a is a crossing in the half-twist near a handle and involving
strands labeled i and j with i < j, then

|a| = m(Si)−m(Sj)

where Si and Sj are the strands labeled i and j at the 1-handle.

2.4.C. Differential. Finally, we define the differential ∂ on A. It suf-
fices to define the differential on generators of A, and then impose the
Leibniz rule. We set ∂(tj) = ∂(t−1j ) = 0. On each A�

n�
, we then define

the differential by ∂ = ∂n�
, as defined in Section 2.3.

It remains to define the differential for crossings ai. To do this, deco-
rate the quadrants of the crossings in πxy(Λ) by the “Reeb signs” shown
in the left diagram in Figure 5, as in Chekanov [7].

For r ≥ 0, let ai, b1, . . . , br be a collection of (not necessarily distinct)
generators of A such that ai is a crossing in πxy(Λ), and each of b1, . . . , br
is either a crossing aj or a generator of the form c0j1j2;� for j1 < j2. Define
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Figure 5. Reeb signs on the left; orientation signs at a
crossing a on the right.

+

ai
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aj

j1

j2
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+

Figure 6. Positive and negative corners for a disk (lo-
cally depicted by one of the shaded regions). From left to
right: two possible positive corners at a crossing ai; two
possible negative corners at aj; and two possible nega-
tive corners at c0j1j2;�, where j1 < j2 and � is the label of
the depicted handle.

Δ(ai; b1, . . . , br) to be the set of immersed disks with convex corners (up
to parametrization) with boundary on πxy(Λ), such that the corners of
the disk are, in order as we traverse the boundary counterclockwise, a
“positive corner” at ai and “negative corners” at each of b1, . . . , br. Here
positive and negative corners are as depicted in Figure 6. Disks are not
allowed to pass through a 1-handle, but they can have a negative corner
c0j1j2;� on either side of the 1-handle.

We now set

∂(ai) =
∑
r≥0

∑
b1,...,br

∑
Δ∈Δ(ai;b1,...,br)

sgn(Δ) t
−n1(Δ)
1 · · · t−ns(Δ)

s b1 · · · br,

where nj(Δ) is the signed number of times that the boundary of Δ
passes through ∗j , and sgn(Δ) is a sign to be defined below. Extend ∂
to A via the Leibniz rule. For any crossing ai, the set of all possible
immersed disks with + corner at ai and any number of − corners is
finite, by the usual area argument (or see the proof of Proposition 2.8
below), and so the sum in ∂(ai) is finite.

To define the sign associated to an immersed disk, we assign “orien-
tation signs” (entirely distinct from Reeb signs) at every corner of the
disk, as follows. For corners at a c0j1j2;�, we associate the orientation sign:

• +1 for a corner reaching the handle from the right (at x = 0; see
the second diagram from the right in Figure 6);
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• (−1)|c0j1j2;�|+1
= (−1)m(j1)−m(j2) for a corner reaching the handle

from the left (at x = A; see the rightmost diagram in Figure 6),
wherem(j1),m(j2) are the Maslov potentials associated to strands
j1, j2.

Next we consider corners at crossings of πxy(Λ). At a crossing of
odd degree, all orientation signs are +1. At a crossing of even degree,
there are two possible choices for assigning two +1 and two −1 signs
to the corners (corresponding to rotating the diagram in Figure 5 by
180◦), with only the stipulation that adjacent corners on the same side
of the understrand have the same sign; either choice will do, and the
two choices are related by an algebra automorphism. For the sake of
definiteness, in computations involving the resolution of a front, we will
take the −1 corners to be the south and east corners at every corner of
even degree.

Finally, for an immersed disk Δ with corners, we set sgn(Δ) to be
the product of the orientation signs at all corners of Δ. This completes
the definition of the differential ∂.

Remark 2.7. Our sign convention agrees with the convention in [17],
up to an algebra automorphism that multiplies some even crossings by
−1. For disks that do not pass through the 1-handles and do not involve
the c generators or half-twist crossings, this agrees precisely with the
convention in [27].

Furthermore, our orientation scheme is induced from the non-null-
cobordant spin structures on the circle components of the link. For
calculations related to symplectic homology it is important to use the
null-cobordant spin structure since the link components are boundaries
of the core disks of the handle and we need to orient moduli spaces of
holomorphic disks with boundaries on these in a consistent way. From
an algebraic point of view the changes in our formulas are minor: chang-
ing the spin structure on the component Λj corresponds to substituting
t±j in the formulas above by −t±j . We refer to [12, Section 4.4s] for a
detailed discussion.

With the definition of (A, ∂) in hand, we conclude this subsection by
stating the usual basic facts about the differential.

Proposition 2.8. The map ∂ has degree −1 and is a differential,
∂2 = 0.

Proposition 2.8 can be proven either combinatorially or geometrically.
The combinatorial proof is based on the proof of the analogous result
in R3 and is deferred to Section B.1. The geometric proof relates the
differential to moduli spaces of holomorphic disks, in the usual Floer-
theoretic way; see Remark 5.1.
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Figure 7. An oriented Legendrian knot in #2(S1×S2):
front in Gompf standard form (left), and resolution with
base point ∗ (right).

2.5. An example. To illustrate the definition in Section 2.4, we de-
scribe the differential graded algebra associated to the Legendrian knot
in Figure 7. Note that this example appears in [19, Figure 36], in the
context of constructing a Stein structure on T 2 ×D2.

The knot has tb = 1 and r = 0 (note that tb is well-defined since the
knot is null-homologous). The differential graded algebra A associated
to the knot has generators a1, . . . , a9, c

0
12, c̃

0
12, and c

p
ij, c̃

p
ij for 1 ≤ i, j ≤ 2

and p ≥ 1, with grading

|a1| = |a4| = |a6| = |a8| = |a9| = 1,

|a2| = |a3| = |a5| = |a7| = |c012| = |c̃012| = 0,

|cp11| = |c̃p11| = |cp22| = |c̃p22| = 2p− 1,

|cp12| = |c̃p12| = 2p,

|cp21| = |c̃p21| = 2p − 2.

(Here for notational simplicity we have dropped the second subscript
on cpij;� and instead write cpij := cpij;1, c̃

p
ij := cpij;2.)

The differential on A is given by

∂(a1) = −a2a3 + t−1c012a5 ∂(c012) = ∂(c̃012) = 0

∂(a4) = 1 + a5a7 ∂(c121) = ∂(c̃121) = 0

∂(a6) = 1 + c̃012a7 ∂(c111) = 1− c012c121
∂(a8) = −c012 + a3 ∂(c̃111) = 1− c̃012c̃121
∂(a9) = −c̃012 − a2 ∂(c122) = 1− c121c012
∂(ai) = 0, i 
= 1, 4, 6, 8, 9 ∂(c̃122) = 1− c̃121c̃012

∂(c112) = −c012c122 + c111c
0
12

∂(c̃112) = −c̃012c̃122 + c̃111c̃
0
12

and so forth for the differentials of cpij and c̃pij , p ≥ 2.

We remark that (A, ∂) has a graded augmentation over Z/2 (and
indeed over Z if we set t = −1), given by the graded algebra map
ε : A → Z/2 determined by ε(a2) = ε(a3) = ε(a5) = ε(a7) = ε(c012) =
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ε(c̃012) = ε(c121) = ε(c̃121) = 1 and ε = 0 for all other generators of A. It
follows from the results of the subsequent section (see Corollary 2.21)
that the Legendrian knot pictured in Figure 7 is not destabilizable.

2.6. Stable tame isomorphism for countably generated DGAs.

In this section, we discuss the notion of equivalence of DGAs that we
need in order to state the invariance result for the DGAs described
in Section 2.4. For finitely generated semifree DGAs, this equivalence
was first described by Chekanov [7], who called it “stable tame iso-
morphism.” We extend his notion here to countably generated semifree
DGAs.

Definition 2.9. Let I be a countable index set, either {1, . . . , n} for
some n or N = Z>0, and let R be a commutative ring with unit. A
semifree algebra over R is an algebra A over R, along with a distin-
guished set of generators {ai | i ∈ I} ⊂ A, such that A is the unital
tensor algebra over R freely generated by the {ai}:

A = R〈a1, a2, . . .〉.
Thus A is freely generated as an R-module by finite-length words in
the ai, including the empty word. A semifree differential graded algebra
(A, ∂) over R is a semifree algebra A over R, equipped with a grading
(additive over products, withR in grading 0) and a degree−1 differential
∂ satisfying the signed Leibniz rule: ∂(ab) = (∂a)b+ (−1)|a|a(∂b).

Note that the differential ∂ on a semifree DGA is determined by its
values on the generators ai, i ∈ I. In practice, R will be either Z[t, t−1]
or a quotient such as Z/2.

We next define two classes of automorphisms of a semifree DGA,
the elementary and the tame automorphisms. These do not involve the
differential.

Definition 2.10. An ordering of a semifree algebra A over R is a
bijection σ : I → I, which we picture as giving an increasing total order
of the generators of A by setting aσ(1) < aσ(2) < aσ(3) < · · · . Any
ordering produces a filtration on A,

R = F0A ⊂ F1A ⊂ F2A ⊂ · · · ⊂ A,
where FkA = R〈aσ(1), aσ(2), . . . , aσ(k)〉.

Definition 2.11. Let A be a semifree algebra over R. An elementary
automorphism of A is a grading-preserving algebra map φ : A → A such
that there exists an ordering σ of A for which for all k ∈ I,

φ(aσ(k)) = ukaσ(k) + vk,

where uk is a unit in R and vk ∈ Fk−1A.
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Informally, an elementary automorphism is a map that sends each gen-
erator ak to itself plus terms that are strictly lower in the ordering than
ak. Note that any elementary automorphism preserves the correspond-
ing filtration {F kA} of A.

Remark 2.12. The more familiar notion of an elementary automor-
phism in the sense of Chekanov [7] (which is defined when the index set
I is finite, but the notion can be extended to any index set) is also an
elementary automorphism in the sense of Definition 2.11. For Chekanov
(see also [17]), an algebra map φ : A → A is elementary automorphism
if there exists an i such that φ(ai) = uai + v for u a unit and v ∈ A
not involving ai, and φ(aj) = aj for all j 
= i. Given such a φ, suppose
the generators of A appearing in v are aj1 , . . . , aj� where j1, . . . , j� 
= i.
Then any ordering σ satisfying σ(1) = j1, . . . , σ(�) = j�, σ(� + 1) = i
fulfills the condition of Definition 2.11.

Conversely, an elementary automorphism φ as given in Definition 2.11
is a composition of Chekanov’s elementary automorphisms: for k ∈ I,
define φk by φk(aσ(k)) = ukaσ(k) + vk and φk(aj) = aj for all j 
= σ(k);
then

φ = · · · ◦ φ3 ◦ φ2 ◦ φ1.
Note that this composition is infinite if I is infinite, but converges when
applied to any element of A.

From now on, the term “elementary automorphism” will be in the
sense of Definition 2.11.

Proposition 2.13. Any elementary automorphism of a semifree al-
gebra is invertible, and its inverse is also an elementary automorphism.

Proof. Suppose that φ is an elementary automorphism of A with
ordering σ, units uk, and algebra elements vk as in Definition 2.11. Note
that v1 ∈ F0A = R. Construct an algebra map ψ : A → A as follows.
We define ψ(aσ(k)) inductively on k by:

ψ(aσ(1)) = u−11 (aσ(1) − v1),
ψ(aσ(k)) = u−1k (aσ(k) − ψ(vk)).

Note that this is constructed so that ψ(vk) ∈ Fk−1A and ψ(aσ(k)) ∈
FkA for all k, as is clear by induction. (In particular, ψ(vk) is determined
by ψ(aσ(1)), . . . , ψ(aσ(k−1)).) It is straightforward to check by induction

on k that ψ(φ(aσ(k))) = φ(ψ(aσ(k))) = aσ(k), and so ψ = φ−1. q.e.d.

Definition 2.14. A tame automorphism of a semifree algebra is a
composition of finitely many elementary automorphisms.
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Note crucially that different elementary automorphisms may have dif-
ferent orderings associated to them: it is not the case that a tame au-
tomorphism must preserve one particular filtration of the algebra.

It follows from Proposition 2.13 that every tame automorphism is
invertible, with another tame automorphism as its inverse. Thus the set
of tame automorphisms forms a group, and the following relation is an
equivalence relation.

Definition 2.15. A tame isomorphism between two semifree differ-
ential graded algebras (A, ∂) and (A′, ∂′), with generators {ai | i ∈ I}
and {a′i | i ∈ I} respectively for a common index set I, is a graded alge-
bra map φ : A → A′ with

φ ◦ ∂ = ∂′ ◦ φ,
such that we can write φ = φ2 ◦ φ1, where φ1 : A → A is a tame
automorphism and φ2 is the algebra map sending ai to a′σ(i) for all

i ∈ I, where σ : I → I is any bijection such that |ai| = |a′σ(i)| for all

i. If there is a tame isomorphism between (A, ∂) and (A′, ∂′), then the
DGAs are tamely isomorphic.

The final ingredient in stable tame isomorphism is the notion of an
algebraic stabilization of a DGA. Our definition of stabilization extends
the corresponding definition in [7] by allowing countably many genera-
tors to be added simultaneously.

Definition 2.16. Let (A, ∂) be a semifree DGA over R generated
by {ai | i ∈ I}. A stabilization of (A, ∂) is a semifree DGA (S(A), ∂)
constructed as follows. Let J be a countable (possibly finite) index set.
Then S(A) is the tensor algebra over R generated by {ai | i ∈ I} ∪
{ej | j ∈ J} ∪ {fj | j ∈ J}, graded in such a way that the grading on the
ai is inherited from A, and |ej | = |fj |+ 1 for all j ∈ J . The differential
on S(A) agrees on A ⊂ S(A) with the original differential ∂, and is
defined on the ej and fj by

∂(ej) = fj, ∂(fj) = 0

for all j ∈ J ; extend to all of S(A) by the Leibniz rule as usual.

Now we can define our notion of equivalence for countably generated
DGAs.

Definition 2.17. Two semifree DGAs (A, ∂) and (A′, ∂′) are stable
tame isomorphic if some stabilization of (A, ∂) is tamely isomorphic to
some stabilization of (A′, ∂′).
Note that stable tame isomorphism is an equivalence relation.

With this in hand, we can state the main algebraic invariance result
for the DGA associated to a Legendrian link in #k(S1 × S2).
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Theorem 2.18. Let Λ and Λ′ be Legendrian links in #k(S1×S2) in
normal form, and suppose that Λ and Λ′ are Legendrian isotopic. Let
(A, ∂) and (A′, ∂′) be the semifree DGAs over Z[t, t−1] associated to
the diagrams πxy(Λ) and πxy(Λ

′), which are in xy-normal form. Then
(A, ∂) and (A′, ∂′) are stable tame isomorphic.

Theorem 2.18 will be proven in Section B.2. In practice, given a front
projection for a Legendrian link in #k(S1 × S2) in Gompf standard
form, one resolves it following the procedure in Section 2.2 and then
computes the DGA associated to the resolved diagram; up to stable
tame isomorphism, this DGA is an invariant of the original Legendrian
link.

We conclude this section with some general algebraic remarks about
stable tame isomorphism. First, just as for finitely generated DGAs,
stable tame isomorphism is a special case of quasi-isomorphism.

Proposition 2.19. If (A, ∂) and (A′, ∂′) are stable tame isomorphic,
then H∗(A, ∂) ∼= H∗(A′, ∂′).

Proof. This is essentially the same as the corresponding proof in [7];
see also [17, Cor. 3.11]. If (A, ∂) and (A′, ∂′) are tamely isomorphic, then
they are chain isomorphic and the result follows. It suffices to check
that if (S(A), ∂) is a stabilization of (A, ∂), then the homologies are
isomorphic. Let ι : A → S(A) denote inclusion, and let π : S(A) → A
denote the projection that sends any term involving an ej or fj to 0.
Then π ◦ ι = IdA. If we define H : S(A)→ S(A) by

H(v) = 0 v ∈ A
H(vejw) = 0 v ∈ A, w ∈ S(A)
H(vfjw) = (−1)|v|+1vejw v ∈ A, w ∈ S(A),

then it is straightforward to check that on S(A),
H ◦ ∂ + ∂ ◦H = ι ◦ π − IdS(A).

The result follows. q.e.d.

Second, we can apply the usual machinery (augmentations, lineariza-
tions, the characteristic algebra [27], etc.) to semifree DGAs up to stable
tame isomorphism. For now, we consider augmentations.

Definition 2.20. A graded augmentation (over Z/2) of a semifree
DGA (A, ∂) is a graded algebra map ε : A → Z/2, where Z/2 lies in
degree 0, for which ε ◦ ∂ = 0.

Corollary 2.21. The existence or nonexistence of a graded augmen-
tation of (A, ∂) is invariant under Legendrian isotopy.

As in [7], if Λ is a (geometric) stabilization of another Legendrian
link Λ′, then the differential graded algebra for Λ is trivial up to stable
tame isomorphism, and in particular has no graded augmentations.
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Figure 8. A Legendrian link passing exactly once
through a 1-handle is Legendrian isotopic to its double
stabilization. The second move is Gompf move 6 (see
Figure 23); the others are planar Legendrian isotopies.

Corollary 2.22. If (A, ∂) has a graded augmentation, then Λ is not
destabilizable.

Remark 2.23. Suppose that the Legendrian link Λ passes through
any of the 1-handles exactly once (nj = 1 for some j). Then it is easy
to check that (A, ∂) is trivial, because ∂c111;j = 1. Indeed, it is the case
that any such Λ is Legendrian isotopic to its own double stabilization
(i.e., the result of stabilizing Λ once positively and once negatively); see
Figure 8.

We can repeat this argument to conclude that Λ is Legendrian iso-
topic to arbitrarily high double stabilizations of itself. It follows that
the Legendrian isotopy class of such a link is determined by its formal
Legendrian isotopy class (topological class and rotation number).

A Legendrian link in #k(S1×S2) passing through some handle once
could be considered an imprecise analogue of a loose Legendrian knot in
an overtwisted contact 3-manifold, i.e., a Legendrian knot whose com-
plement is overtwisted (see [16]), in the sense that both of these are
infinitely destabilizable. It is also reminiscent of a loose Legendrian em-
bedding in higher dimensions [23].

3. Calculations and applications

In this section, we present a number of calculations of Legendrian
contact homology in connected sums of S1 × S2, as well as some appli-
cations, notably a new proof of the existence of exotic Stein structures
on R8.

3.1. The cotangent bundle of T 2. Consider the Legendrian knot
Λ1 ⊂ #2(S1 × S2) from Section 2.5. As shown in [19], handle attach-
ment along this knot yields a Stein structure on the D2-bundle over T 2

with Euler number 0, that is, DT ∗T 2; see also Proposition 3.5. We will
explicitly calculate the Legendrian contact homology in this case.

The DGA for Λ1 was computed in Section 2.5. Recall from there that
it has a differential subalgebra, the internal DGA, generated by internal
Reeb chords cpij , c̃

p
ij .
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Proposition 3.1. The differential graded algebra for Λ1 is stable
tame isomorphic to the internal DGA along with one additional gener-
ator, a, of degree 1, whose differential is

∂(a) = c012c̃
0
12 + tc̃012c

0
12.

Proof. Beginning with the differential graded algebra for Λ1 from
Section 2.5, we successively apply the tame automorphisms a2 �→ a2 −
c̃012, a3 �→ a3+c

0
12, a1 �→ a1+a9a3+c̃

0
12a8+a9c

0
12; the resulting differential

has

∂(a1) = c̃012c
0
12 + t−1c012a5

∂(a4) = 1 + a5a7

∂(a6) = 1 + c̃012a7

∂(a8) = a3

∂(a9) = −a2.
Destabilize to eliminate the generators a2, a3, a8, a9, and then succes-
sively apply the tame automorphisms a4 �→ a4 + a5(c̃

1
22a7 + c̃121a6),

a1 �→ t−1a1 + t−1c012(−a4c̃012 + a5c̃
1
22), a4 �→ a4 + c̃111, a5 �→ a5 + c̃012,

a6 �→ a6 + c̃111, a7 �→ a7 − c̃121. This gives
∂(a1) = c012c̃

0
12 + tc̃012c

0
12

∂(a4) = −a5c̃121
∂(a6) = c̃012a7.

To complete the proof, we need to eliminate a4, a5, a6, a7; this is done
in the lemma that follows, with (v,w, x, y) = (c̃111, c̃

1
22, c̃

0
12, c̃

1
21) allowing

us to eliminate (a, b) = (a4, a5) and (a, b) = (a6, a7) in turn. q.e.d.

Lemma 3.2. Let (A, ∂) be a differential graded algebra whose gen-
erators include v,w, x, y with |v| = |w| = 1, |x| = |y| = 0,

∂(x) = ∂(y) = 0, ∂(v) = 1− xy, ∂(w) = 1− yx.
Let (A′, ∂) be the differential graded algebra given by appending two
generators a, b to the generators of A, with |a| = |b|+1 and differential
given by the differential on A, along with ∂(b) = 0 and ∂(a) equal to
one of the following:

∂(a) = ±xb,±bx,±yb,±by.
Then (A′, ∂) is stable tame isomorphic to (A, ∂).

Proof. We will prove the lemma when ∂(a) = xb; the other cases
are clearly similar. Stabilize (A′, ∂) once by adding e11, e12 with |e11| =
|e12|+ 1 = |a|+ 1 and ∂(e11) = e12, ∂(e12) = 0. Applying the successive
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elementary automorphisms e12 �→ e12 − ya − wb, e11 �→ e11 + we12,
a �→ a+ xe12 yields

∂(e11) = −ya, ∂(e12) = b, ∂(a) = ∂(b) = 0.

Destabilize once by removing e12, b, and stabilize once by adding e21, e22
with |e21| = |e22| + 1 = |a| + 2 and ∂(e21) = e22, ∂(e22) = 0. Applying
the successive elementary automorphisms e22 �→ e22 + xe11 − va, e21 �→
e21 + ve22, e11 �→ e11 − ye22 yields

∂(e21) = xe11, ∂(e22) = a, ∂(a) = ∂(e11) = 0.

Finally, destabilize once by removing e22, a to obtain an algebra gener-
ated by the generators of A along with e21, e11 with |e21| = |e11|+ 1 =
|a|+ 2 and ∂(e21) = xe11, ∂(e11) = 0.

This procedure shows that A′ is stable tame isomorphic to the same
algebra but with the gradings of a, b both increased by 2, and if we
omit a, b, then the resulting algebra is A. We can then iterate the proce-
dure, adding generators to A′ in successively higher grading, to conclude
the following. Let (S(A′), ∂) be the stabilization of (A′, ∂) obtained by
adding ei1, ei2 for all i ≥ 1, with |ei1| = |ei2|+1 = |a|+i and ∂(ei1) = ei2,
∂(ei2) = 0. Then (S(A′), ∂) is tamely isomorphic to (S(A′), ∂′), where
∂′ is the same differential as ∂ except

∂′(e12) = b, ∂′(b) = 0,

∂′(e22) = a, ∂′(a) = 0,

∂′(ei+2,2) = ei1, ∂′(ei1) = 0, i ≥ 1.

But (S(A′), ∂′) is a stabilization of (A, ∂), and the lemma is proven.
q.e.d.

From Proposition 3.1, we can calculate the Legendrian contact ho-
mology of Λ1 in degree 0, which is H0(A, ∂) where (A, ∂) is the DGA
for Λ1. In particular, we have the following result.

Proposition 3.3. If we set t = −1, then the Legendrian contact
homology of Λ1 in degree 0 is

Z[x±11 , x±12 ] ∼= Z[π1(T
2)].

Proof. By Proposition 3.1, we want to calculate H0(A, ∂) where (A, ∂)
is the internal DGA along with a. Since A is supported in nonnegative
degree, the subalgebra in degree 0, which is generated by c012, c

1
21, c̃

0
12, c̃

1
21,

consists entirely of cycles. The boundaries in degree 0 are generated by
the differentials of generators of degree 1: ∂(a) = c012c̃

0
12−c̃012c012, ∂(c111) =

1− c012c121, ∂(c122) = 1− c121c012, ∂(c̃111) = 1− c̃012c̃
1
21, ∂(c̃

1
22) = 1− c̃121c̃

0
12.

Thus in homology, c121 and c̃121 are the multiplicative inverses of c012 and
c̃012 respectively. If we write c012 = x1 and c̃012 = x2, then in homology,

∂(a) causes x1 and x2 to commute, and thus H0(A, ∂) ∼= Z[x±11 , x±12 ], as
desired. q.e.d.
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Figure 9. The Legendrian knot Λ2 ⊂ #4(S1 × S2).

Remark 3.4. It can be shown that the entire Legendrian contact
homology of Λ1, H∗(A, ∂), is supported in degree 0, but we omit the
proof here.

From the point of view of the symplectic homology of T ∗T 2, the Leg-
endrian DGA is isomorphic to the (twisted) linearized contact homology
of the co-core disk of the surgery; see [5, Section 5.4]. This linearized
contact homology is isomorphic to the wrapped Floer homology of the
co-core disk (i.e., the fiber in T ∗T 2); see e.g. [15, Proof of Theorem
7.2]. The wrapped homology of the fiber is in turn isomorphic to the
homology of the based loop space of T 2 (see [1, 2]), which is Z[π1(T

2)]
in agreement with our calculation.

We also point out that the fact that we need to take t = −1 in
Proposition 3.3 corresponds to changing our choice of the Lie group
spin structure on the knot in defining the signs to the bounding spin
structure which extends over the core disk of the handle as is required
in the construction of the surgery isomorphism.

3.2. The cotangent bundle of Σg. This is a generalization of the
previous example. Let Λ1 be the Legendrian knot in #2(S1 ×S2) given
in the previous section, and let Λ2 be the knot in #4(S1 × S2) drawn
in Figure 9. This construction generalizes to Λg ⊂ #2g(S1×S2) for any
g ≥ 1. It can readily be calculated that Λg is null-homologous and has
Thurston–Bennequin number 2g − 1 and rotation number 0.

The significance of Λg is contained in the following result.

Proposition 3.5. Handle attachment along Λg gives a Stein struc-
ture on DT ∗Σg, the disk cotangent bundle of the Riemann surface of
genus g.

Proof. We restrict ourselves to the case g = 2 (the general case is
similar), and follow [19]. A (slightly unorthodox) handle decomposition
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Figure 10. Obtaining a disk bundle over Σ2 by handle attachment.

of a disk bundle over Σ2 is given by the left diagram in Figure 10. Here
the circles represent spheres, identified in pairs via reflection, and the
arcs represent a knot in #4(S1×S2) along which a 2-handle is attached.
Via isotopy, we may draw this handle decomposition in more standard
form as the right diagram in Figure 9, where the spheres are now iden-
tified pairwise through reflection in a vertical plane. The Legendrian
knot Λ2 is simply a Legendrian form of the knot in Figure 9; note that
it wraps around itself near the left spheres labeled 2, 3, 4, but this does
not change the isotopy class of the knot.

The particular disk bundle over Σ2 determined by handle attachment
along Λ2 has Euler number given by tb(Λ2) − 1 = 2g − 2. This agrees
with the Euler number of DT ∗Σ2, and the proposition follows. q.e.d.

We now calculate the Legendrian contact homology of Λg. As in the
previous section, the differential graded algebra for Λg has an internal
subalgebra generated by 2g copies of (A2, ∂2).

Proposition 3.6. The differential graded algebra for Λg is stable
tame isomorphic to the internal subalgebra with one additional generator
a of degree 1 whose differential is

∂(a) = c012;2gc
0
12;2g−1 · · · c012;2c012;1 + tc012;1c

0
12;2 · · · c012;2g−1c012;2g.

Proof. We will assume g = 2; the general case is similar. Label cross-
ings in the resolution of Λ2 as follows: the crossings corresponding to
front crossings and right cusps are labeled in Figure 9; there are four
additional crossings d1, d2, d3, d4, corresponding to the half-twists at the
right of the diagram for handles 1, 2, 3, 4. Pick a base point along the
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strand of Λ2 connecting crossing a4 leftwards to handle 1. The non-
internal differential is given by

∂(a1) = −a4a7 + t−1c012;1a15a14a13 ∂(a16) = 1 + c012;2a19

∂(a2) = −a4 − a5a8 ∂(a17) = 1 + c012;3a20

∂(a3) = −a5 − a6a9 ∂(a18) = 1 + c012;4a21

∂(a10) = 1 + a13a21 ∂(d1) = a7 − c012;1
∂(a11) = 1 + a14a20 ∂(d2) = a8 − c012;2
∂(a12) = 1 + a15a19 ∂(d3) = a9 − c012;3

∂(d4) = −a6 − c012;4
and the differential of all other non-internal generators is 0.

Applying the tame automorphism

a1 �→ a1 + a2a7 − a3a8a7 + d4a9a8a7 + c012;4d3a8a7 + c012;4c
0
12;3d2a7

+ c012;4c
0
12;3c

0
12;2d1

yields ∂(a1) = c012;4c
0
12;3c

0
12;2c

0
12;1 + t−1c012;1a15a14a13. Next define the

auxiliary quantities g2, g3, g4, h2, h3, h4 by

g2 = c121;2a16 + c122;2a19 h2 = −a12c012;2 + a15g2c
0
12;2 + a15c

1
22;2

g3 = c121;3a17 + c122;3a20 h3 = −a11c012;3 + a14g3c
0
12;3 + a14c

1
22;3

g4 = c121;4a18 + c122;4a21 h4 = −a10c012;4 + a13g4c
0
12;4 + a13c

1
22;4,

and note that ∂(g2) = a19+c
1
21;2, ∂(g3) = a20+c

1
21;3, ∂(g4) = a21+c

1
21;4,

∂(h2) = a15 − c012;2, ∂(h3) = a14 − c012;3, ∂(h4) = a13 − c012;4. Thus,
applying the tame automorphism

a1 �→ t−1(a1 + c012;1h2a14a13 + c012;1c
0
12;2h3a13 + c012;1c

0
12;2c

0
12;3h4)

now gives ∂(a1) = tc012;4c
0
12;3c

0
12;2c

0
12;1 + c012;1c

0
12;2c

0
12;3c

0
12;4.

Next, the succession of tame automorphisms a4 �→ −a4 − a5a8, a5 �→
−a5−a6a9, a6 �→ a6−c012;4, a7 �→ a7+c

0
12;1, a8 �→ a8+c

0
12;2, a9 �→ a9+c

0
12;3

gives

∂(a2) = a4, ∂(a3) = a5, ∂(d1) = a7, ∂(d2) = a8, ∂(d3) = a9, ∂(d4) = a6,

and we can destabilize to eliminate the generators a2, . . . , a9, d1, d2, d3, d4.
Finally, apply the successive tame automorphisms a10 �→ a10 + a13g4 +
c111;4, a11 �→ a11+a14g3+c

1
11;3, a12 �→ a12+a15g2+c

1
11;2, a16 �→ a16+c

1
11;2,

a17 �→ a17 + c111;3, a18 �→ a18 + c111;4, a13 �→ a13 + c012;4, a14 �→ a14 + c012;3,

a15 �→ a15 + c012;2, a19 �→ a19 − c121;2, a20 �→ a20 − c121;3, a21 �→ a21 − c121;4



92 T. EKHOLM & L. NG

Figure 11. The Legendrian knot Λ ⊂ S1 × S2.

to get

∂(a10) = a13c
1
21;4 ∂(a16) = c012;2a19

∂(a11) = a14c
1
21;3 ∂(a17) = c012;3a20

∂(a12) = a15c
1
21;2 ∂(a18) = c012;4a21,

and we can eliminate a10, . . . , a21 by Lemma 3.2. What remains is the
internal subalgebra and a1. q.e.d.

Proposition 3.7. If we set t = −1, then the Legendrian contact
homology of Λg in degree 0 is

Z〈x±11 , x±12 , . . . , x±12g 〉 / (x1x2 · · · x2g − x2g · · · x2x1) ∼= Z[π1(Σg)].

Proof. Nearly identical to the proof of Proposition 3.3. In this case,
the identification is given by c012;� �→ x�, c

1
21;� �→ x−1� for 1 ≤ � ≤ 2g, and

the differential ∂(a) gives the desired relation x1x2 · · · x2g = x2g · · · x2x1
in homology. q.e.d.

Remark 3.8. As was the case for Λ1, it can be shown that the entire
Legendrian contact homology of Λg is supported in degree 0. Also, as
there, our calculation can be interpreted as a calculation of the wrapped
Floer homology of a fiber in T ∗Σg which is isomorphic to the homology
of the based loop space, i.e., Z[π1(Σg)].

3.3. Exotic Stein structure on R8. Let Λ be the Legendrian knot in
S1× S2 depicted in Figure 11. Note that Λ generates H1(S

1× S2), i.e.,
it winds algebraically once around S1. This means in particular that the
Weinstein 4-manifold W that results from adding a 2-handle along Λ is
contractible (although its fundamental group at infinity is nontrivial).

We will prove the following result.

Proposition 3.9. The Legendrian contact homology of Λ, i.e., the
homology of (A(Λ), ∂(Λ)), is nonzero.

Before proving Proposition 3.9, we deduce a result about exotic Stein
structures on R8. LetW be the Weinstein 4-manifold given by attaching
a 2-handle to S1 × D3 along Λ. Then the product W ×W inherits a
Stein structure from W .
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Figure 12. A knot Legendrian isotopic to Λ, with half-
twist added and xy-projection crossings labeled.

Proposition 3.10. W × W is diffeomorphic to R8 but the Stein
structure on W ×W is distinct from the standard Stein structure on
R8.

Proof. First note that W is contractible. Consider the boundary of
W ×W as the result of joining the bundlesW ×∂W and ∂W ×W along
their common boundary ∂W ×∂W . Note that any loop in the boundary
of W ×W is homotopic to a loop in ∂W ×∂W , which is null-homotopic
since W is contractible. Thus we find that ∂(W ×W ) is a homotopy
7-sphere that bounds the contractible manifold W ×W . It follows that
W ×W is in fact diffeomorphic to R8.

It remains to show that the Stein structure onW×W is not the stan-
dard one on R8. By Proposition 3.9, for the Legendrian homology DGA
(A(Λ), ∂(Λ)), the unit 1 ∈ A(Λ) is not in the image of the differential
∂(Λ). It follows that the homology of the Hochschild complex AHo(Λ)
is nonzero, and thus from [5] that the symplectic homology SH(W ) is
nonzero. Now the Künneth formula in symplectic homology [28] gives

SH(W ×W ) ∼= SH(W )⊗ SH(W ) 
= 0 = SH(R8),

and we conclude that W ×W is an exotic Stein R8. q.e.d.

Remark 3.11. The same result holds for any Legendrian knot Λ ⊂
S1×S2 that generates H1(S

1×S2) and has nonzero Legendrian contact
homology. A “simpler” example of such a Λ is given in Remark 3.12;
see Figure 13.

Proof of Proposition 3.9. For the purposes of this result, it suffices to
work over the ring Z/2 instead of Z[t, t−1] by setting t = 1 and reducing
mod 2. We will show that the homology for the DGA over this ring has
a certain quotient that has (somewhat remarkably) previously appeared
in the literature on Legendrian contact homology in a rather different
context [31].

For computational convenience, change Λ by a Legendrian isotopy by
pulling out two of its cusps, to give the knot in Figure 12; this causes
all holomorphic disks (besides those in the internal differential) to be
embedded rather than just immersed. The non-internal differential for
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Figure 13. Another Legendrian knot in S1 × S2.

the knot shown in Figure 12 is

∂(a1) = 1 + a5a4 + (1 + a9a11)a6 + a9c
0
12

∂(a2) = (1 + a3a5)a4 + a3(1 + a9a11)a6 + a3a9c
0
12

∂(a7) = 1 + a11a10 + c012a12 + c013

∂(a8) = (1 + a9a11)a10 + a9c
0
12a12 + a9c

0
13

∂(a12) = c023

∂(d12) = c012 + 1 + a3a5

∂(d13) = c013 + d12c
0
23 + (1 + a3a5)d23 + a3(1 + a9a11),

with zero differential for all other non-internal generators.
Let A′ = (Z/2)〈a, b, c, d〉 be the tensor algebra on four generators

a, b, c, d. Define an algebra map φ : A → A′ by
φ(c012) = a, φ(c013) = d, φ(c121) = c, φ(c131) = b, φ(a3) = 1,

φ(a4) = 1, φ(a5) = a+ 1, φ(a9) = 1, φ(a10) = 1, φ(a11) = d+ 1,

and φ = 0 for all other generators of A. It is straightforward to check
that φ ◦ ∂ = 0 on all non-internal generators of A. On internal generators
of A, we have

(φ ◦ ∂)(c132) = ba,

(φ ◦ ∂)(c111) = 1 + ac+ db,

(φ ◦ ∂)(c122) = 1 + ca,

(φ ◦ ∂)(c133) = 1 + bd,

(φ ◦ ∂)(c123) = cd,

and (φ ◦ ∂)(cpij) = 0 for all other internal generators.
It follows that φ induces a surjective algebra map from A to the

quotient

A′′ = (Z/2)〈a, b, c, d〉/(1 + ac+ db, 1 + ca, 1 + bd, ba, cd),

and this is a chain map from (A, ∂) to (A′′, 0). Thus φ descends to a
surjection from H(A, ∂) to A′′. But it was proven in [31] that A′′ is
nonzero. q.e.d.



SUBCRITICAL LEGENDRIAN CONTACT HOMOLOGY 95

Remark 3.12. It can also be shown that the Legendrian knot shown
in Figure 13, which is slightly simpler than Λ but also winds homolog-
ically once around S1, also has nonzero Legendrian contact homology.
Thus this knot also produces an exotic Stein structure on R8. However,
the proof that the homology is nonzero in this case appears to be more
complicated than the proof of Proposition 3.9; the proof known to us
uses Gröbner bases calculated via computational algebra software.

4. Geometric constructions for relating the combinatorial

invariant to Legendrian homology

4.1. Main result and overview of Sections 4 and 5. As mentioned
in Section 1, the Legendrian contact homology (Legendrian homology,
for short) of a Legendrian link Λ is a part of SFT and is in particular
defined using moduli spaces of holomorphic disks. We will discuss this
theory in the setting relevant to this paper in Section 5 below. Here we
just describe its basic structure for Legendrian links Λ ⊂ Yk = #k(S1×
S2). Legendrian homology associates a DGA AH(Λ) with differential
∂H to Λ. The algebra AH(Λ) is freely generated by the Reeb chords
of Λ over Z[t, t−1] and the differential ∂H is defined through a count
of holomorphic disks in the symplectization R × Yk with Lagrangian
boundary condition R × Λ. The main result of the paper can then be
stated as follows:

Theorem 4.1. The Legendrian homology DGA AH(Λ) of a link Λ ⊂
Yk in Gompf normal form is canonically isomorphic to the combinato-
rially defined algebra A associated to Λ in Section 2.4. The canonical
isomorphism is a one-to-one map that takes Reeb chords to generators
of A and that intertwines the differentials ∂H on AH and ∂ on A.

The proof of Theorem 4.1 is rather involved and occupies Sections
4 and 5. Before we outline its steps we comment on the definition of
AH(Λ). The algebra AH(Λ) depends on the choice of contact form on
Yk, and below we will equip Yk with contact forms that depend on
positive parameters (ε, δ). The set of Reeb chords of Λ will in the present
setup (unlike in the case of ambient contact manifold R3) not be finite.
In general Legendrian homology algebras come equipped with natural
action filtrations and are defined as corresponding direct limits. For the
contact form on Yk that we use below the action is related to the grading
of the algebra, which simplifies the situation somewhat. Theorem 4.1
should be interpreted as follows. For any given degree there exists (ε0, δ0)
such that for Yk equipped with the contact form corresponding to (ε, δ)
with ε < ε0 and δ < δ0, the natural map in the formulation has the
properties stated on the part of the algebra of action less than the given
degree, and furthermore, the homology of A is canonically isomorphic
to the homology of AH defined via the action filtration.
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The proof of Theorem 4.1 involves a study of holomorphic disks in
specific contact models of Yk and associated contact and symplectic
manifolds. We study aspects of the geometric constructions and prop-
erties of these models in this section, followed by holomorphic disks in
Section 5.

4.2. Contact and symplectic pairs. In this section we consider con-
structions of pairs (Y,Λ) where Y is a contact 3-manifold and Λ is a
Legendrian link, as well as pairs (X,L), where X is a Weinstein 4-
manifold and L an exact Lagrangian submanifold in X with cylindrical
ends, i.e., outside a compact subset (X,L) looks like a disjoint union of
half symplectizations of contact pairs (Y,Λ).

4.2.A. One-handles. Consider C2 with coordinates (z1, z2) = (x1 +
iy1, x2 + iy2). For δ > 0, consider the region

Hδ =
{
(z1, z2) : − δ2 ≤ 1

2

(
x21 + y21

)
+ 2x22 − y22 ≤ δ2

}
with boundary given by the hypersurfaces

V±δ =
{
(z1, z2) :

1
2

(
x21 + y21

)
+ 2x22 − y22 = ±δ2} .

Topologically, V−δ ≈top R3×S0 and Vδ ≈top S
2×R. The normal vector

field

(4.1) Z = 1
2 (x1 ∂x1 + y1 ∂y1) + 2x2 ∂x2 − y2 ∂y2

of V±δ is a Liouville vector field of the standard symplectic form ωst on
C2, where

ωst = dx1 ∧ dy1 + dx2 ∧ dy2.
That is, if L denotes the Lie-derivative, then

LZ ωst = d(ω(Z, ·)) = d
(
1
2(x1 dy1 − y1 dx1) + 2x2 dy2 + y2 dx2

)
= ωst.

Note that Z points out of Hδ along Vδ and into Hδ along V−δ.
The Liouville vector field Z determines the contact forms α±δ along

V±δ where

α±δ = ωst(Z, ·)|V±δ
=
(
1
2(x1 dy1 − y1 dx1) + 2x2 dy2 + y2 dx2

)∣∣
V±δ

.

Trivializations of the contact structures ker(α±δ) are given by (v, iv),
where

(4.2) v = 2x2 ∂x1 + y2 ∂y1 − 1
2(x1 ∂x2 − y1 ∂y2)

and i denotes the complex structure on C2. The Reeb vector field R of
α±δ satisfies R = NR̃, where

(4.3) R̃ =
(
1
2(x1 ∂y1 − y1 ∂x1) + 2x2 ∂y1 + y2 ∂x2

)∣∣
V±δ

,

and where the normalization factor N is given by

N =
(
1
4

(
x21 + y21

)
+ 4x22 + y22

)−1
.
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The flow lines of the Reeb flow are thus the solution curves of the
following system of ordinary differential equations:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
ẋ1 = −1

2y1,

ẏ1 =
1
2x1,

ẋ2 = y2,

ẏ2 = 2x2,

given by

x1(t) = x1(0) cos
(
1
2t
)
+ y1(0) sin

(
1
2t
)
,(4.4)

y1(t) = −x1(0) sin
(
1
2 t
)
+ y1(0) cos

(
1
2t
)
,(4.5)

x2(t) = x2(0) cosh
(√

2 t
)
+ 1√

2
y2(0) sinh

(√
2 t
)
,(4.6)

y2(t) =
√
2x2(0) sinh

(√
2 t
)
+ y2(0) cosh

(√
2 t
)
,(4.7)

where (x1(0) + iy1(0), x2(0) + iy2(0)) is the initial position.

Lemma 4.2. There is exactly one geometric closed Reeb orbit γ in
Vδ. If γ

m denotes the mth iterate of γ, then

CZ(γm) = 2m,

where CZ denotes the Conley–Zehnder index measured with respect to
the trivialization (v, iv); see (4.2).

Proof. The statement on the uniqueness of the geometric orbit is im-
mediate from the explicit expression for the Reeb flow lines above. In
the trivialization on the contact planes along γ given by (∂x2 , ∂y2), the
linearized Reeb flow is given by Equations (4.6) and (4.7). A straight-
forward calculation shows that the Conley–Zehnder index of the cor-
responding path of matrices equals 0. The frame (∂x2 , ∂y2) makes one
full turn in the positive direction with respect to the frame (v, iv) per
iterate of γ. It follows that CZ(γm) = 2m. q.e.d.

The standard Legendrian strand in Vδ is the subset

Λst = {(x1, y1, x2, y2) ∈ Vδ : y1 = x2 = 0} .
Lemma 4.3. The Reeb chords of Λst ⊂ Vδ are exactly the Reeb orbits

γk and the image under the linearized Reeb flow of the tangent space to
Λst at the initial point of the chord is transverse to the tangent space at
its endpoint.

Proof. Immediate from the expression for the Reeb flow lines above.
q.e.d.
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4.2.B. Standard contact R3 and standard contact balls. The
standard contact form on R3 is the 1-form

αst = dz − y dx,
where (x, y, z) are coordinates on R3 = J1(R) with x a coordinate on R,
z the coordinate of function values in J0(R), and y the fiber coordinate
in T ∗R.

We define the standard contact ball of radius ρ > 0 as the subset

Bρ =
{
(u, v, z) ∈ R3 : u2 + v2 + z2 ≤ ρ2

}
=
{
(r, θ, z) ∈ R+ × S1 × R : r2 + z2 ≤ ρ2

}
,

with the contact form

αb = dz + 1
2(u dv − v du) = dz − 1

2r
2 dθ,

where (r, θ) are polar coordinates on the uv-plane.
Let p = (x0, y0, z0) ∈ R3 and consider the embedding F : Bρ → R3

(4.8) F (u, v, z) = (u+ x0 , v + y0 , z + z0 + y0u+ 1
2uv).

Note that F is a contact embedding, i.e., F ∗αst = αb. We call F (Bρ)
the standard contact ball of radius ρ centered at p.

4.2.C. The manifold Yk(δ), standard R3 with k 1-handles. The
contact manifold Yk(δ) is topologically R3 with 2k balls removed and
k 1-handles (i.e., [−1, 1] × S2) attached along the boundaries of the
removed balls.

We first describe the attaching loci for the handles. Fix 2k points{(
0, y�, z�

)
,
(
A, ỹ�, z̃�

)}
1≤�≤k

in R3 as in Section 2.1. Let σ denote the minimal distance between
two of these points and fix standard contact balls (see Section 4.2.B) of
radii ρ � σ centered at these points. These balls will be the attaching
locus. Let R3

ρ(◦k) denote the complement of the standard contact balls
of radius ρ/2 centered at these points.

We then consider identifications of regions near the boundary of the
standard contact balls centered at two corresponding points

p− =
(
0, y�, z�

)
and p+ =

(
A, ỹ�, z̃�

)
with two regions in the standard handle (see Section 4.2.A) that will be
used for the handle attachment. Fix δ � ρ and consider the two regions

A+
ρ (δ) =

{
(x1, y1, x2, y2) ∈ V−δ : x2 = 0, y2 > 0, x21 + y21 ≤ ρ2

}
,

A−ρ (δ) =
{
(x1, y1, x2, y2) ∈ V−δ : x2 = 0, y2 < 0, x21 + y21 ≤ ρ2

}(4.9)

(see Figure 14) and the map G : A±ρ (δ)→ Bρ, where Bρ is the standard
contact ball:

(4.10) G(x1, y1, 0, y2) = (x1, y1, 0).
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δ

x1

y1

y2

A+
ρ (δ)

A−ρ (δ)

ρ

Figure 14. The regions A±ρ (δ) ⊂ V−δ.

Reeb flow
A±ρ (δ) G

B±ρ (δ)

Bρ

G(A±ρ (δ))

Figure 15. The regions B±ρ (δ) ⊂ V−δ.

Then

G∗
(
dz + 1

2 (u dv − v du)
)
= 1

2(x1 dy1 − y1 dx1).
Thus G∗αb = α−δ|A±ρ (δ). The Reeb vector fields of α−δ and αb are

transverse to A±ρ (δ), respectively G(A±ρ (δ)), and we use their flows to

construct a contactomorphism from a neighborhood of A±ρ (δ) to Bρ.

We use the notation B±ρ (δ) ⊂ V−δ for this neighborhood of A±ρ (δ); see
Figure 15. Thus B±ρ (δ) is identified with a neighborhood of p±.

We use the flow of the Liouville vector field Z (see (4.1)) to identify
B±ρ (δ)−B±ρ/2(δ) ⊂ V−δ with a region in Vδ. More precisely, let Φt

Z : R4 →
R4 denote the time t flow generated by the vector field Z. Then for each

p ∈ B±ρ (δ)−B±ρ/2(δ) there is a unique time T (p) such that Φ
T (p)
Z (p) ∈ Vδ
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Liouville flow

Vδ

C−ρ (δ)

C+
ρ (δ)

C ′ρ(δ)
Cρ(δ)

V−δ

B−ρ (δ)−B−ρ/2(δ)

B+
ρ (δ)− B+

ρ/2(δ)

Figure 16. The map φ identifies regions in V±δ via the
Liouville flow.

and we define the map

φ :
(
B+

ρ (δ)−B+
ρ/2

(δ)
) ∪ (B−ρ (δ)−B−ρ/2(δ))→ Vδ, φ(p) = Φ

T (p)
Z (p).

Then φ∗αδ = eTα−δ. See Figure 16.
We next estimate the function T and its derivative. The time t flow

of Z with initial condition p = (x1(0), y1(0), x2(0), y2(0)) is given by

Φt
Z(p) =

(
e
1
2 tx1(0) , e

1
2 ty1(0) , e

2tx2(0) , e
−ty2(0)

)
.

Thus the function T = T (p) solves the equation

1

2
eT
(
x1(0)

2 + y1(0)
2
)
+ e4T 2x2(0)

2 − e−2T y2(0)2 = δ2.

Using the fact that the initial value lies in Bρ(δ) − Bρ/2(δ) ⊂ V−δ, we
can rewrite this as

δ2 =
1

2

(
eT − e−2T ) (x1(0)2 + y1(0)

2
)
+ 2

(
e4T − e−2T )x2(0)2 − δ2e−2T

=
eT

2

(
x1(0)

2 + y1(0)
2
)
+ 2e4Tx2(0)

2

− e−2T
(
δ2 +

1

2

(
x1(0)

2 + y1(0)
2
)
+ 2x2(0)

2

)
.

(4.11)

Noting that all coefficient functions (functions that depend on T ) in the
final line of (4.11) are increasing in T , we deduce first that

T = O(δ2/ρ2)
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and second that the solution T decreases monotonically with the quan-
tity

(
x1(0)

2 + y1(0)
2 + x2(0)

2
)
and hence that the differential of T sat-

isfies

|dT | = O(δ2/ρ3).

Let Cρ(δ) ⊂ Vδ be the region with boundary φ(∂B+
ρ (δ) ∪ ∂B−ρ (δ))

which contains φ
(
B±ρ (δ) −B±ρ/2(δ)

)
, let C ′ρ(δ) ⊂ Vδ be the region with

boundary φ
(
∂B+

ρ/2(δ) ∪B−ρ/2(δ)
)

which does not contain φ(B±ρ (δ)−
B±ρ/2(δ)), and let C±ρ (δ) = φ

(
B±ρ (δ) −B±7ρ/8(δ)

)
. See Figure 16.

Let αρ;δ denote the contact form on Cρ(δ) given by

αρ;δ = efαδ,

where f : Cρ(δ)→ R has the following properties:

• f = −T ◦ φ−1 on C±ρ (δ);
• f = 0 on C ′ρ(δ);
• |df | = O(δ2/ρ3).

The above estimates on T show that such a function f exists. Then

φ : (B±ρ (δ) −B±7ρ/8(δ), α−δ)→ (C±ρ (δ), αρ;δ)

is a contactomorphism.
Finally, as discussed above, we consider B±ρ (δ) as neighborhoods of

p± in R3, and then define Yk(δ) as the contact manifold

Yk(δ) = R3
ρ(◦k)

⋃
φ

(

k
�=1C

�
ρ(δ)

)
,

where C�
ρ(δ) is a copy of Cρ(δ) attached via the map φ at the pair of

points
(
0, y�, z�

)
and

(
A, ỹ�, z̃�

)
. We denote the contact form on Yk(δ)

by αk;δ.

Lemma 4.4. For all sufficiently small δ > 0, there are exactly k
distinct geometric Reeb orbits γ1, . . . , γk in Yk(δ), one in each handle.
Furthermore, if γmj denotes the mth iterate of γj, then

CZ(γmj ) = 2m,

where CZ denotes the Conley–Zehnder index measured with respect to
the trivialization (v, iv) as in (4.2).

Proof. Since the C1-distance between the contact forms αδ and αρ;δ

on Cρ(δ) is controlled by δ, the lemma is an immediate consequence of
Lemma 4.2. q.e.d.

Choose R > 0 such that BR/2 contains all the balls Bρ where the
1-handles of Yk(δ) are attached. (The factor of 2 is not used here but
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will be used in Section 4.2.E.) Then R3 −BR ⊂ Yk(δ), and we write

(4.12) Y k(δ) = Yk(δ) − int(R3 −BR).

Then the contact form αk;δ on Y k(δ) agrees with αb in a neighborhood

of ∂Y k(δ) which is identified with a neighborhood of ∂BR in BR.

4.2.D. Legendrian links in Yk(δ). Let Λ ⊂ Yk(δ) be any Legendrian
link. Then there exists a contact isotopy which moves Λ to a link in
normal form; see Section 2.2. Below, all our links will be assumed to be
in normal form. With notation as in Section 2.4 we have the following
result.

Lemma 4.5. Any Reeb chord of a link Λ in normal form is either
entirely contained in the handle and then of the form cpij or it lies com-
pletely in the complement of all handles.

Proof. It is straightforward to check that no Reeb chord can connect
a point on Λ inside a handle to a point outside the handle (compare
Section 5.3.C). The last statement follows from the fact that inside the
handles Λ is the graph of the differential of a function on the standard
strand in a small 1-jet neighborhood of that strand in combination with
Lemma 4.3. q.e.d.

We call Reeb chords of the first type mentioned in Lemma 4.5 handle
chords and those of the second type diagram chords.

4.2.E. The closed manifold Ỹk(ε; δ). Consider the hypersurface

E(a) :=
{
(z1, z2) ∈ C2 : |z1|2 + a−1|z2|2 = 1

}
.

The vector field

W =
1

2
(x1∂x1 + y1∂y1 + x2∂x2 + y2∂y2)

is a Liouville vector field for ωst. SinceW is transverse to E(a) it induces
a contact form

αa = ω(W, ·) = (x1 dy1 − y1 dx1 + x2 dy2 − y2 dx2) |E(a).

The corresponding contact structure is isotopic to the standard contact
structure on S3 = E(1). The Reeb vector field on E(a) is

Ra = (x1∂y1 − y1∂x1) + a−1(x2∂y2 − y2∂x2).

Let F : Bd → E(a) be a contact embedding of a standard ball of ra-
dius d such that F (Bd) does not intersect any complex coordinate plane.
For ε > 0 sufficiently small, let Bε(a) ⊂ E(a) denote the image under F
of the standard ball of radius ε centered at 0 ∈ Bd. See Figure 17.

Lemma 4.6. If a is irrational, then the closed Reeb orbits in E(a) are
exactly the multiples of the two circles E(a)∩(C×{0}) and E(a)∩({0}×
C). Furthermore, if the Liouville–Roth exponent of a equals p > 2, then
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E(a)

F

Bε(a)

z2 = 0

z1 = 0

Bd

Figure 17. Constructing Ỹk(ε; δ); 1-handles are at-
tached in a small ball that does not intersect the two
closed Reeb orbits.

there is a constant K > 0 such that the following holds for all sufficiently
small ε > 0. If γ(t) is a Reeb trajectory which leaves Bε at t = 0 and if

T > 0 is such that γ(T ) ∈ Bε, then T ≥ Kε−
1
p .

Proof. The lemma is a consequence of the fact that outside the peri-
odic orbits the Reeb flow is an irrational rotation on a torus with slope
a: an orbit which returns to Bε gives a rational approximation of a of
the form

∣∣a− n
m

∣∣ < ε. But then, by definition of the Liouville–Roth

exponent, ε > m−p, for all sufficiently small ε, and the action of γ is
bounded below by Km for some K. q.e.d.

Consider the map ψε : BR → Bε defined by

ψε(u, v, z) =
(

ε
R u,

ε
R v,

(
ε
R

)2
z
)

and note that ψ∗εαb =
(
ε
R

)2
αb. Since Y k(δ) agrees with BR near its

boundary (see (4.12)) we use the map F ◦ ψε in a neighborhood of the

boundary to attach
(
Y k(δ),

(
ε
R

)2
αk;δ

)
to E(a) − Bε. We denote the

resulting contact manifold Ỹk(ε; δ) and its contact form α̃ε;δ.

Let Λ ⊂ Y k(δ) be a Legendrian link. Using the inclusion(
Y k(δ),

(
ε
R

)2
αk;δ

)
→
(
Ỹk(ε; δ), α̃ε;δ

)
, we consider Λ as a Legendrian

link in Ỹk(ε; δ) and as such denote it Λ(ε).

Corollary 4.7. If the Liouville–Roth exponent of a /∈ Q equals p > 2,
then there is a constant K > 0 such that the following holds for all
sufficiently small ε > 0: If c is a Reeb chord of Λ(ε) ⊂ Ỹk(ε; δ) which is
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not entirely contained in Y k(δ) ⊂ Ỹk(ε) or if it is a Reeb orbit which is
not a Reeb orbit in E(a), then∫

c
α̃ε;δ ≥ Kε−

1
p .

Proof. Immediate from Lemma 4.6. q.e.d.

4.2.F. Exact cobordisms (Wk(h; δ), L(h)). Let Λ ⊂ Y k(δ) be a Leg-

endrian link. As above we consider Λ as a link in Ỹk(ε; δ) and as such
we denote it Λ(ε). For suitable positive functions h : R → R which
are constantly equal to ε± in a neighborhood of ±∞, we construct
a symplectic cobordism (Wk(h; δ), Lk(h)) with positive and negative

ends
(
Ỹk(ε+; δ),Λ(ε+)

)
and

(
Ỹk(ε−; δ),Λ(ε−)

)
, respectively. Topolog-

ically these cobordisms will simply be products R × Ỹk(ε; δ), but the
symplectic form will not be the symplectization of a contact form. We
construct them as follows.

Consider the standard contact ball Bd of radius d embedded into E(a)
and let 0 < ε± � d. We use strictly positive smooth functions h : R→ R

which satisfy the following conditions:

• There are T− < 0 < T+ such that

(4.13) h(t) =

{
ε− if t ∈ (−∞, T−],
ε+ if t ∈ [T+,∞).

• The derivative of h satisfies

(4.14) 2h′(t) + h(t) > 0.

Let Bd(h) denote the manifold

Bd(h) =

{
(t, p) ∈ R×Bd : |p| ≥ 1

2
h(t)

}
≈top R× (Bd −Bε−).

Endow Bd(h) with the exact symplectic form d
(
etαb

)
. Recall that we

consider Bd as embedded in E(a) and define B̃d(h) ⊂ R × E(a) as
follows:

B̃d(h) = (R× (E(a) −Bd)) ∪ Bd(h).

Then the primitive etαb of the symplectic form on Bd(h) extends as e
tαa

to R× (E(a) − Bd). Using this extension we consider also B̃d(h) as an
exact symplectic manifold and we denote the primitive of its symplectic
form etα̃.

Consider the region A in Y k(δ) outside the boundary of the standard
contact ball of radius R

2 :

A = BR −BR/2 ⊂ Y k(δ);

see (4.12). The map

Φ: R×A→ Bd(h), Φ(t, q) =
(
t, h(t)u, h(t)v, h2(t)z

)
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is a level preserving embedding such that

Φ∗
(
etαb

)
=
(
eth2(t)

)
αk;δ.

(Note that h is increasing so that |h(t)| � d for all t ∈ R and the image
of Φ lies inside Bd.) We define the exact symplectic cobordism Wk(h)
as follows:

(4.15) Wk(h) =
(
B̃d(h), e

tα
)
∪Φ

(
R× Y k(δ),

(
eth2(t)

)
αk;δ

)
,

where Φ is the gluing map. We must check that the form d
(
eth2(t)αk;δ

)
on R× Y k(δ) is symplectic. We have

(4.16) d
(
eth2(t)αk;δ

)
= eth2(t) dαk;δ + eth(t)

(
2h′(t) + h(t)

)
dt ∧ αk;δ

and (4.14) implies that this is indeed symplectic.
Inside this symplectic cobordism we also have an exact Lagrangian

cobordism L(h) interpolating between the Legendrian submanifolds Λ(ε+)
and Λ(ε−):

L(h) = R× Λ ⊂ R× Y k ⊂Wk(h).

To see that L(h) is Lagrangian, note that its tangent space is spanned by
the tangent vector of Λ and ∂t. The vanishing of the restriction of the
symplectic form then follows immediately from (4.16) in combination
with Λ being Legendrian.

Finally, we note that in the regions near t = −∞ and t = +∞ in
(4.13) where h(t) is constant, (Wk(h), L(h)) is symplectomorphic to the

symplectizations of
(
Ỹk(ε−; δ),Λ(ε−)

)
and

(
Ỹk(ε+; δ),Λ(ε+)

)
, respec-

tively.

5. Legendrian homology in closed and open manifolds

In this section we study the analytical aspects of Theorem 4.1, and in
particular obtain rather explicit descriptions in Section 5.2 of the moduli
spaces of holomorphic disks involved. In Section 5.3 we then study the
actual solution spaces, and in Section 5.4 their orientation. However,
before going into the detailed aspects of this study, we give in Section
5.1 a more general overview of Legendrian (contact) homology in order
to provide a wider context of the more technical study that follows.

5.1. Legendrian homology in the ideal boundary of a Weinstein

manifold. Our discussion in this section follows [5]. Let Y be a contact
manifold which is the ideal boundary of a Weinstein manifold X with
vanishing first Chern class c1(X) = 0. Pick an almost complex structure
J on X which is compatible with the symplectic form and which in
the end [0,∞) × Y of X splits as a complex structure in the contact
planes of Y and pairs the R-direction ∂t with the Reeb vector field R
of the contact form on Y , J∂t = R. In this setup holomorphic curves
satisfy SFT-compactness [4]: any finite energy holomorphic curve in X
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is punctured and is asymptotic to a Reeb orbit cylinder R× γ ⊂ R× Y
at infinity. Furthermore, any sequence of holomorphic curves converges
to a several-level holomorphic building with one level in X and several
levels in R× Y , where levels are joined at Reeb orbits.

Let Λ ⊂ Y be a Legendrian submanifold. The Legendrian homology
algebra AH(Y,Λ) is the algebra freely generated over Z[H2(X,Λ)] by
the set of Reeb chords of Λ graded by a Maslov index; see [5, Section
2.1]. The differential in AH(Y,Λ) satisfies the Leibniz rule and is defined
through a count of so-called anchored holomorphic disks. These are two-
level holomorphic buildings of the following form. The top level is a map
u : (D, ∂D)→ (R×Y,R×Λ), where D is a disk with the following punc-
tures: one positive boundary puncture near which u is asymptotic to
R× a for some Reeb chord a of Λ, several negative boundary punctures
where u is asymptotic to R × b for some Reeb chord b of Λ (possibly
different for different punctures), and interior negative punctures where
u is asymptotic to R× γ for some Reeb orbit γ (again possibly different
for different punctures). The lower level consists of holomorphic spheres
with positive punctures at the Reeb orbits of all interior negative punc-

tures of u. We write M(R×Y ;X)
A for the moduli space of such buildings,

where A denotes the homology class of the building. The differential
acting on a Reeb chord a is now defined as follows:

∂Ha =
∑

dim(M(R×Y ;X)
A

(a;b))=1

|M(R×Y ;X)
A (a;b)|Ab,

where |M(R×Y ;X)
A | denotes the number of R-components in the moduli

space (recall that J is R-invariant in the end R × Y ). Here the moduli

spaces M(R×Y ;X)
A (a;b) are oriented manifolds and the number of R-

components refers to a signed count of components.

Remark 5.1. The fact that ∂2H = 0 follows by identifying configura-
tions that contribute to ∂2Ha with the broken curves at the boundary of
the 1-manifold of anchored holomorphic disks of dimension 1 with pos-
itive puncture at a; this 1-manifold is the quotient of the corresponding
2-dimensional moduli space by the R-action.

Remark 5.2. When considering Legendrian homology of Λ ⊂ Y
without using the filling X it is natural to use coefficients for the
DGA in Z[H2(Y,Λ)], rather than in Z[H2(X,Λ)]. However, in the com-
binatorial section of this paper, we have used a third coefficient ring,
Z[H1(Λ)] ∼= Z[t, t−1]. Here we explain why this suffices in our situation.

In the case studied in this paper, Y = #k(S1×S2) and X is obtained
by attaching k 1-handles to the 4-ball. Thus H2(X,Λ) ∼= ker(H1(Λ) →
H1(X)), while there is an exact sequence

0→ H2(Y )→ H2(Y,Λ)→ H1(Λ)→ H1(Y ).
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Using the explicit form given below for the holomorphic disks contribut-
ing to the differential, it is easy to check that one can choose caps for
the Reeb chords of Λ so that the H2(Y ) portion of the homology class
of any such disk is trivial. It follows that coefficients in either H2(X,Λ)
or H2(Y,Λ) reduce to coefficients in ker(H1(Λ)→ H1(X)).

Note that ker(H1(Λ) → H1(X)) may in general be smaller than
H1(Λ). One might as well use coefficients in Z[H1(Λ)], as we do, rather
than in Z[ker(H1(Λ) → H1(X))], since this clearly does not lose in-
formation. We can interpret the fact that the coefficients reduce from
H1(Λ) to ker(H1(Λ) → H1(X)) as follows: if Λj is a component of Λ
such that [Λj ] �= 0 ∈ H1(X), then one can choose capping paths such

that t±1j does not appear in the differential. Indeed, this can be shown
directly combinatorially: if Λj passes algebraically a nonzero number of
times through one of the 1-handles, then replace the single base point ∗j
on Λj by multiple base points, one on each strand passing through that
1-handle. (For the relation between the DGAs for single and multiple
base points, see [26, section 2.6].) Any holomorphic disk whose bound-
ary passes through these base points must then pass through them in
canceling pairs, and so t±1j does not appear in the differential.

We stay in the general setting in order to explain the functorial prop-
erties of Legendrian homology. Consider a Weinstein 4-manifoldW with
an exact Lagrangian submanifold L ⊂ W . Assume that outside a com-
pact set, (W,L) consists of two ends: a negative end symplectomor-
phic to the negative half ((−∞, 0] × Y−, (−∞, 0] × Λ−) of a symplec-
tization of a pair (Y−,Λ−), where Λ− is a Legendrian submanifold of
contact Y−, and a positive end symplectomorphic to the positive half
([0,∞) × Y+, [0,∞) × Λ+) of a symplectization of a pair (Y+,Λ+). As-
sume that Y− is the ideal boundary of a Weinstein manifold X. Then
Y+ is the ideal boundary of the Weinstein manifold X ◦W obtained by
gluing W to X along Y−. If a is a Reeb chord of Λ+ and b is a word

of Reeb chords of Λ−, we let M(W ;X)
A (a;b) denote the moduli space of

holomorphic disks in (W,L) anchored in X, with positive puncture at a

and negative punctures according to b; the definition of M(W ;X)
A (a;b)

precisely generalizes the previous definition of M(R×Y ;X)
A (a;b). Then

the algebra map Φ: AH(Y+,Λ+) → AH(Y−,Λ−) defined on generators
as

Φ(a) =
∑

dim(M(W ;X)
A (a;b))=0

|M(W ;X)
A (a;b)|Ab

is a chain map (i.e., a morphism of DGAs).

Remark 5.3. The proof of the chain map equation Φ◦∂+−∂−◦Φ = 0
is analogous to the proof of ∂2H = 0: configurations contributing to
Φ◦∂+−∂−◦Φ are in oriented one-to-one correspondence with the broken
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curves at the boundary of the 1-manifold of anchored holomorphic disks
in (W,L) of dimension 1 with one positive boundary puncture.

Furthermore, a similar but more involved argument shows that a
1-parameter family of exact symplectic cobordisms (Wt, Lt), t ∈ [0, 1]
gives a chain homotopy between the chain maps Φτ induced by (Wτ , Lτ ),
τ = 0, 1; see Appendix A for a more detailed discussion.

In order to make sense of these definitions of differentials and chain
maps, one needs the moduli spaces to be transversely cut out. For the
disks in the upper level of the holomorphic buildings involved this is
relatively easy: the argument in [13, Lemma 4.5(1)] shows that it is
possible to achieve transversality by varying J in the contact planes near
the Reeb chord endpoints. For the lower level, achieving transversality
is more involved: because of multiple covers it is not sufficient to perturb
only J , and a more elaborate perturbation scheme is needed, e.g. using
the polyfold framework of [20] or Kuranishi structures as in [18]. For
an argument adapted to the case just discussed (i.e., disks anchored in
a Weinstein filling), see [3, Section 2h]. In the case under study in this
paper we will show that these more elaborate perturbation schemes are
not needed (see Corollary 5.5 and Lemma A.1) and hence they will not
be further discussed.

For purposes of computing Legendrian homology, the open manifold
Yk(δ) is simpler than the closed Ỹk(ε; δ) because of the absence of “wan-
dering” chords that leave the region where the Legendrian link lies and
then come back. One of the main results of this section shows that there
is no input in Legendrian homology from these wandering chords. More
precisely, by inclusion, a Legendrian link Λ ⊂ Y k(δ) can be viewed as

a link in Ỹk(ε; δ) or in Yk(δ), and we show that if ε and δ are suffi-
ciently small then there is a canonical isomorphism between the Leg-
endrian homology DGAs AH(Ỹk(ε; δ),Λ(ε)) and AH(Yk(δ); Λ) below a
given grading.

In Section 5.2 we use the cobordisms in Section 4.2.F interpolating
between Ỹk(ε; δ) for different parameter values and an argument inspired
by arguments of Bourgeois–van Koert [6] and Hutchings [21], to show
that the Legendrian homology of a link Λ ⊂ Y k(δ), considered as a

subset of Ỹk(ε; δ), is isomorphic to the Legendrian homology of Λ ⊂
Y k(δ), considered as a subset of Yk(δ). Finally, in Section 5.3 we show
that for certain regular complex structures on R×Yk(δ), the Legendrian
homology differential of a link Λ in standard position is given by the
combinatorial formula from Section 2.4.

5.2. Holomorphic disks. Recall that the manifold Yk(δ) was built by
attaching small 1-handles to R3. We use notation as in Section 4.2.C.

5.2.A. Almost complex structures. Consider the regions of the form
Bρ−Bρ/2 where the handles are attached to R3. We will use an almost
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complex structure on R×Yk(δ) which is induced from the standard com-
plex structure on the plane outside the B3ρ/4 and which interpolates in
the region B3ρ/4 −Bρ/2 to an almost complex structure on the contact
planes in the handle that agrees with the standard complex structure
in a 1-jet neighborhood of the standard Legendrian strand, inside of
which the part of the link that runs through the handle lies. For later
convenience, we assume that the size of the 1-jet neighborhood where
the complex structure is standard equals δ0 � δ and that the strands
of the link in the handle lie within distance δ1 � δ0 from the standard
strand through the handle.

As we choose the Legendrian to lie close to straight line segments
near the attaching regions, the almost complex structure outside the
handles and the almost complex structure inside the neighborhood of a
standard strand agree and the interpolation will be chosen trivial here.
This means in particular that the almost complex structure agrees with
the standard 1-jet structure all along a neighborhood of the extended
strand which goes through the handle and continues out in R3.

After scaling by ε we consider Yk(δ) as a subset of Ỹk(ε; δ) concen-
trated in a small ball in E(a). We extend the almost complex structure
over the contact planes over the rest of this manifold in some fixed way.
5.2.B. Trivial anchoring. As discussed in Section 5.1, Legendrian ho-
mology for boundaries of Weinstein domains is defined by counting an-
chored holomorphic disks, i.e., disks with additional interior negative
punctures that are filled by rigid holomorphic planes in the Weinstein
manifold. Here we show that no such extra interior negative punctures
are needed in the cases of Yk(δ) and Ỹk(ε; δ), which we consider as the
boundaries of their natural Weinstein fillings: a half space in C2 and
the ball in C2, respectively, with k 1-handles attached. In fact, a similar
result holds for boundaries of subcritical Weinstein manifolds in any di-
mension, but we restrict attention to the case of dimension 3 since that
is all we need here.

Lemma 5.4. If the formal dimension of an anchored holomorphic
disk mapping to (R × Yk(ε; δ),R × Λ(ε)) (or to (R × Yk(δ),R × Λ)) is
≤ 1, then the disk has only one level and no interior punctures.

Proof. It is well known that the Conley–Zehnder index in E(a) is

proportional to action. It follows that if γ is a Reeb orbit in Ỹk(ε; δ)
that is not contained in one of the handles, then |γ| > 1. Thus the
minimal grading |γ| of an orbit in Yk(ε; δ) is attained at the central
Reeb orbits in the handles and satisfies |γ| = 1, and the same holds
in Yk(δ). This implies that if the formal dimension of a holomorphic
building with interior negative punctures at some γ equals 1, then the
disk in the symplectization must have dimension < 1 and hence does not
exist by transversality for disks with one positive boundary puncture,
as the only such disks are trivial strips. q.e.d.
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Corollary 5.5. The differential of the DGA of a Legendrian link in
Ỹk(ε; δ) or in Yk(δ) is defined through disks without interior punctures.

5.2.C. The core algebra. Consider a Legendrian link Λ(ε) ⊂ Ỹk(ε; δ, )
using the notation above. The Reeb chords of Λ(ε) fall into two classes,
interior and exterior, where the interior chords are entirely contained
in Y k(δ) ⊂ Ỹk(ε; δ) and the exterior chords are not. As in Section 4.2.D
we further subdivide the interior chords into diagram chords and handle
chords.

Let A(Λ) denote the algebra generated by all interior chords and let
A1-h(Λ) denote the algebra generated by all handle chords. Since the

contact form on Y k(δ) ⊂ Ỹk(ε; δ) depends on ε only through scaling, it
is clear that A(Λ) is independent of ε.

Lemma 5.6. If ε > 0 and δ > 0 are sufficiently small, then A(Λ) and

A1-h(Λ) are sub-DGAs of AH(Ỹk(ε; δ),Λ(ε)). Furthermore, the differen-
tials on A(Λ) and A1-h(Λ) agree with the differentials on these algebras
obtained by considering Λ as a Legendrian link in Yk(δ), i.e., using the
differential on AH(Yk(δ),Λ).

Proof. We first show that the differential acting on an interior chord
is a sum of monomials of interior chords. We start with diagram chords.
Let a denote a diagram chord. By definition of the contact form on
Ỹk(ε; δ) there exists a constant � such that the action of any diagram
chord is bounded by �ε2. Since by Lemma 4.4 the action of any exterior

chord is bounded below byKε
− 1

p for some constant K, it follows that no
holomorphic disk with one positive puncture at a can have any negative
punctures mapping to exterior chords.

We consider second the case of a handle chord. Let a denote a handle
chord and let na denote the number of times it intersects the subset
{(x1, y1, x2, y2) ∈ Vδ : y1 = 0}. Note that there exists �0 such that the
action of any diagram chord is bounded below by �0ε

2 and that the
action of a equals (na+ θ)δε

2 for some −1 < θ < 1. Let u be a holomor-
phic disk with positive puncture at a, m negative punctures at diagram
chords, and t negative punctures at exterior chords b1, . . . , bt, and with
boundary representing the homology class

∑s
j=1 rj[Λj ]. Since the disk

has nonnegative d(etα̃)-area, we find by Stokes’ Theorem and mono-
tonicity near base points in the diagram part of the link that

a(a) >

t∑
j=1

a(bj) +m�0ε
2 + rc0ε

2,

where a(c) denotes the action of a Reeb chord c, and where r =
∑s

j=1 |rj |.
Here we use the fact that the projection of any disk passing a base point
covers a small half disk near this base point.
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The sum of gradings of the chords at the negative end is then bounded
above by

I = kext

t∑
j=1

a(bj) +mi0 + ri1,

where kext is related to the constant of proportionality between Conley–
Zehnder index and action in E(a) and where i0 and i1 are grading
bounds for diagram chords and for the homology classes [Λj ]. The area
inequality then gives

(na + θ)δε2 >
t∑

j=1

a(bj) +m�0ε
2 + rc0ε

2,

and consequently,

na >
1

δ
(ε−2

t∑
j=1

a(bj) +m�0 + rc0)− θ.

Thus, ifM is the maximal difference in Maslov potential for two strands
passing through a handle, then the grading of a satisfies

|a| ≥ 2na− 1−M >
2

δ
(ε−2

t∑
j=1

a(bj) +m�0 + rc0)− 2θ− 1−M > I +1,

provided δ is small enough and at least one of the terms in the expression
for I is nonzero. Since I is an upper bound for the sum of the gradings
at the negative end, it follows that the moduli space containing the
holomorphic disk u is not counted in the differential. We conclude that
both A(Λ) and A1-h(Λ) are subalgebras.

Finally, it is easy to see that the area of any disk which contributes
to the differential on A(Λ) is O(ε2). A straightforward monotonicity
argument then shows that no such disk can leave R×Y k(δ) and it follows
that the differential on A(Λ) agrees with that induced by considering
Y k(δ) as a subset of Yk(δ). q.e.d.

Remark 5.7. Note that the argument in Lemma 5.6 also shows that
the chords in one 1-handle generate a subalgebra on their own. By mono-
tonicity, a disk with positive puncture in one 1-handle and a negative
puncture in another has area at least c0ε

2 for some c0 > 0. The argument
now shows that such a disk cannot be rigid for grading reasons.

Remark 5.8. As the exterior chords of Λ(ε) have action bounded be-

low by Kε−
1
p , we find that the inclusion of A(Λ) into AH(Ỹk(ε; δ),Λ(ε))

gives a canonical isomorphism on the parts of the DGAs below this ac-
tion bound. Note that the natural action on A(Λ) is scaled by ε2 under
the inclusion so that the map is a canonical isomorphism below action

K ′ε−(2+
1
p
)
.
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Remark 5.8 shows that Lemma 5.6 is a rather strong result. However,
since Legendrian homology algebras are defined through action filtra-
tions with respect to fixed generic contact forms, it does not a priori
give information above the action level. As we shall see, it in fact does
and the homology of A(Λ) equals the homology of AH(Ỹk(ε; δ),Λ(ε)).

For that reason we call A(Λ) ⊂ AH(Ỹk(ε; δ),Λ(ε)) the core algebra of Λ.

5.2.D. Cobordism maps. Consider the cobordism W (h) with posi-

tive end Ỹ (ε+; δ) and negative end Ỹ (ε−; δ); see Section 4.2.F. Such a
cobordism induces a chain map of DGAs:

Φh : AH(Ỹ (ε+; δ),Λ(ε+))→ AH(Ỹ (ε−; δ),Λ(ε−)).

Let W (h′) be a cobordism with positive end Ỹ (ε−; δ) and negative

end Ỹ (ε+; δ). Joining W (h) to W (h′), we get a cobordism connect-

ing Ỹ (ε+; δ) to itself which can be deformed to a symplectization. As
mentioned above (see Appendix A for more detail) such a deformation
induces a chain homotopy. In particular,

Φh ◦Φh′ = id

on the homology of AH(Ỹ (ε+, δ),Λ(ε+)). Similarly, we find that

Φh′′ ◦ Φh = id

on AH(Ỹ (ε−, δ),Λ(ε−)) for suitable h′′ and we conclude that Φh is an
isomorphism on homology.

Lemma 5.9. For any ε > 0, there exists δ0 and 1
2 < θ < 1, inde-

pendent of ε, such that if ε+ = ε and ε− = θε then for all δ < δ0 there
exists a positive function h : R → R which satisfies (4.13) and (4.14)
such that Φh(A(Λ)) = A(Λ) and Φh|A(Λ) = id.

Proof. Repeating the proof of Lemma 5.6 we find first that Φh(A(Λ)) ⊂
A(Λ) and that Φh(A1-h(Λ)) ⊂ A1-h(Λ), and then that any disk con-
tributing to Φh is contained inside R × Y (ε; δ). Finally, note that the
C2-norm of h/ε controls the distance from the cobordism (Wk(h), L(h))
to the trivial cobordism. Since the map induced by the trivial cobor-
dism is the identity and since there is a uniform action bound on diagram
chords, it follows that for θ sufficiently close to 1 the map equals the
identity when acting on diagram chords.

Furthermore, the map Φh takes handle chords to sums of monomials
of handle chords and it is straightforward to check that if c is any handle
chord, if b1 · · · bk is a monomial of handle chords, if θ is sufficiently close

to 1, and if a(c) ≥ ∑k
j=1 a(bj), then |c| >

∑k
j=1 |bj | unless k = 1 and

b1 = c. This implies that there are no disks of formal dimension −1 in
the handle. It follows that for any fixed handle chord c the moduli space
of disks with positive puncture and negative puncture at c is cobordant
to the corresponding moduli space defined by the trivial cobordism and
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that other moduli spaces that could contribute to Φh(c) are empty (see
also Lemma A.1). We conclude that Φh is the identity also when acting
on handle chords, and consequently Φh|A(Λ) = id. q.e.d.

5.2.E. Legendrian homology and the homology of A(Λ). Lemma
5.6 implies that the inclusion map

(5.1) ι : A(Λ)→ AH(Ỹk(ε; δ),Λ(ε))

is a chain map for ε, δ > 0 small enough. Furthermore, it implies that
the homology of A(Λ) is canonically isomorphic to that of AH(Yk(δ); Λ).

Lemma 5.10. For ε, δ > 0 sufficiently small, the inclusion map ι in
(5.1) induces an isomorphism in homology. In particular, it follows that
the corresponding DGAs are quasi-isomorphic:

AH(Ỹk(ε; δ),Λ(ε)) ∼=quasi AH(Yk(δ),Λ).

Proof. For simpler notation we write HAH for the homology of
AH(Ỹk(ε; δ),Λ(ε)), and HA for the homology of A(Λ).

To see that ι is injective on homology, consider a sum of monomials
w ∈ A(Λ) which represents 0 ∈ HAH. This means that there exists a
sum of monomials γ of chords of Λ such that dγ = w. Consider now a
concatenation of N cobordisms W (hj), j = 1, . . . , N which all satisfy
Lemma 5.9 and such that the contact manifold at the negative end
Ỹk(θ

Nε), 0 < θ < 1, has the property that the action of any exterior
chord which is bounded below by Kθ−N/pε−1/p is larger than any chord
appearing in a monomial in γ. Then, writing

Φ = ΦhN
◦ · · · ◦Φh1 ,

we must have Φ(γ) ∈ A(Λ) and by Lemma 5.9,

dΦ(γ) = Φ(dγ) = Φ(w) = w,

and we find that w represents 0 ∈ HA as well and ι is injective on
homology.

To see that ι is surjective on homology, for any class in HAH repre-
sented by γ we find as above that there is N such that Φ = ΦhN

◦· · ·◦Φh1

satisfies Φ(γ) ∈ A(Λ). Since Φ is the identity on A(Λ), there exist
w ∈ A(Λ) such that Φ(γ − w) = 0. But Φ is an isomorphism on ho-
mology and thus the class represented by γ is also represented by the
cycle w ∈ A(Λ). It follows that ι is surjective on homology as well and
thus a quasi-isomorphism. q.e.d.

5.3. Explicit descriptions of rigid holomorphic disks. In this sec-
tion we describe all moduli spaces necessary for computing the differen-
tial on A(Λ), after a slight isotopy, giving Λ what we call a split diagram,
which we describe first.
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Figure 18. Perturbing the xz projection of a Legen-
drian link near the attaching locus (left) to obtain the xz
projection of a link (middle) whose xy projection (right)
contains a dip. This produces new Reeb chords near the
attaching locus.

5.3.A. Split diagrams. Consider the front resolution of a Legendrian
link in Yk as described in Section 2.2. In order to facilitate the proof
that the combinatorial formula in Section 2.4 indeed gives a description
of the Legendrian algebra, we will make additional modifications to the
front resolution by adding additional “dips” in a neighborhood of each
attaching ball. (Note that these dips do not change the DGA up to
stable tame isomorphism by the analytic or combinatorial invariance
proofs; see Appendices A and B.)

Consider the part of the Lagrangian diagram of a Legendrian link in
a small region around the attaching S0 of a one-handle; see Figure 1.
Recall that we identified a neighborhood of the core-sphere of the handle
with a δ0-neighborhood of the 0-section in a 1-jet space of an interval
and that all strands passing through the handle lie in an ε-neighborhood
of the 0-section, ε� δ0.

We change the link by a Legendrian isotopy that we will call an
attaching isotopy since it is supported near the attaching regions. This
isotopy changes the Lagrangian diagram only near the attaching locus
where it appears as in Figure 18. Note that the attaching isotopy induces
a set of new Reeb chords N of the link.

Lemma 5.11. There exists an isotopy such that for any Reeb chord
c ∈ N , the action a(c) of c satisfies a(c) < 2δ1.

Proof. Figure 19 shows the front of the link before and after the
isotopy. The lemma follows. q.e.d.

We call a Legendrian link obtained by front resolution followed by an
attaching isotopy introducing short chords a Legendrian link with split
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z

x

min-chord

max-chord

max-chord

min-chord

Λ-strands

isotopy isotopy

Figure 19. Short chords introduced by the isotopy. In
each diagram, the height of the vertical direction is less
than ε.

diagram. We show below that the holomorphic disks which need to be
considered for calculation of the differential of the Legendrian contact
homology of a Legendrian link with split diagram are of three types:
diagram disks, handle disks, and interpolating disks.

5.3.B. Diagram disks. Let Λ be a Legendrian link with split diagram.
Let R(r1) ⊂ R(r2) ⊂ R2, where we think of R2 as the xy-plane, be
regions such that R(r2) contains all of the diagram of Λ except standard
strands entering the attaching locus and such that R(r2)−R(r1) contains
all the diagram double points corresponding to the short maximum Reeb
chords near the attaching locus; see Figure 19.

Lemma 5.12. Let u : D → R×Yk(δ) be a holomorphic disk with one
positive puncture and boundary on R × Λ. Assume that the Reeb chord
of the positive puncture is contained in R(r1) × R ⊂ Yk(δ). Then u(D)
is contained in R× (R(r1)× R).

Proof. Recall that we use the R-invariant almost complex structure
pulled back from C in R× (R(r1)×R). Let E = u−1(R× (R(r2)×R)).
Then for generic r2, E is a Riemann surface with boundary ∂E mapping
to

(R× Λ) ∪ (R× (∂R(r2)× R)),

and if π : R × (R(r2) × R) → R(r2) is the projection, then π ◦ u is
holomorphic with respect to the standard complex structure on C. If u
does not map any boundary component into R×(R(r2)−R(r1))×R, then
it is an easy consequence of the maximum principle that u(D) ⊂ R(r1):
if not, u|E would not have bounded y-coordinate and its area would be
infinite.
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Assume thus that some boundary component of D maps into this
region. Consider the outermost strand before the dip. As above, the
maximum principle implies that the disk cannot lie on the outside of
this strand. Hence it lies on the inside. If the disk has no more corners
then it eventually ends up on the outside and the maximum principle
again is violated. It follows that the disk stays in R× (R(r1)× R).

q.e.d.

We call disks in Lemma 5.12 diagram disks.

5.3.C. Handle disks. Consider a standard Legendrian strand Λ run-
ning through a one-handle; see Section 4.2.A. Recall that the Reeb
chords of Λ are then cm,m = 1, 2, . . . wherem is the number of times the
chord wraps around the central Reeb orbit and that although all chords
are orbits, they are nondegenerate in the sense that the linearized Reeb
flow takes the tangent space of Λ at the start point to a Lagrangian
subspace in the contact plane in the tangent space at the endpoint that
is transverse to the tangent space of Λ at the endpoint. Consider a small
perturbation of the standard strand so that no Reeb chord is also an
orbit. Then the Reeb chords are in natural one-to-one correspondence
with the Reeb chords of the unperturbed strand and we then have the
following.

Lemma 5.13. The moduli space MR×Yk(δ)(c1;∅) of once-punctured
holomorphic disks with boundary on Λ × R contains algebraically one
R-family (i.e., one disk, rigid up to translation).

Proof. Consider the Weinstein domain obtained by attaching one 1-
handle to the ball. Let Λ denote the standard Legendrian knot which
runs through the handle once. Then the Weinstein manifold which re-
sults from attaching a 2-handle along Λ is the 4-ball. According to [5,
Corollary 5.7] there is a quasi-isomorphism between the symplectic ho-
mology of the ball and the homology of a complex AHo(Λ) associated to
A(Λ) that has two generators for each monomial w in A(Λ), ŵ and w̌:

SH(B4)→ AHo(Λ).

Now the complex on the left-hand side is acyclic and the complex of the
right-hand side has no generators in negative degrees, one generator τ
in degree 0, and one generator č1 in degree 1. Since the homology must
vanish, we conclude that

dAHo č1 = τ.

On the other hand, 〈dAHo č1, τ〉 can be computed in terms of moduli
spaces of holomorphic disks:

〈dAHo č1, τ〉 = |MYk(δ)(c1;∅)|,
where the right-hand side denotes the number of R-components in the
moduli space. The lemma follows. q.e.d.
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Remark 5.14. Alternatively, one can prove Lemma 5.13 using Re-
mark 2.23 as follows. Since the closed-up standard strand is isotopic
to a stabilization, it is straightforward to show that its DGA must be
trivial. This implies that 1 is a boundary, which gives the desired result
as explained above.

We next construct a somewhat nongeneric situation where many
strands pass through the handle but where all the relevant moduli spaces
admit concrete descriptions. Fix a 1-jet neighborhood of Λst and fix a
very small ε > 0. Consider n strands Λ′1, . . . ,Λ

′
n parallel to Λst. More

precisely, let

Λ′j = Φjε
R (Λst),

where Φt
R is the time t Reeb flow. Then Λ′j is Legendrian for j = 1, . . . , n.

Lemma 5.15. The Reeb chords connecting Λ′j to Λ′k are as follows:

(a) If j < k then: there is one Reeb chord of length (k − j)ε starting
at any point on Λ′j , for each integer w > 0 there is a Reeb chord

along the unique Reeb orbit in the handle of length 2πwδ+(k−j)ε,
and there are no other Reeb chords.

(b) If j ≥ k then: for each integer w > 0 there is a Reeb chord along
the unique Reeb orbit in the handle of length 2πwδ− (j− k)ε, and
there are no other Reeb chords.

Proof. Consider (a). Note that any Reeb chord starting on Λ′j and

ending on Λ′k gives rise to a Reeb chord starting and ending on Λ′k by
subtracting one of the short Reeb chords mentioned. Similarly, in case
(b), any Reeb chord starting on Λj and ending on Λ′k gives rise to a Reeb
chord starting and ending on Λ′j by adding one of the short chords.

Since Λ′j = Φjε
R (Λst), the lemma follows from Lemma 4.3. q.e.d.

In order to get to a situation where the moduli spaces can be de-
scribed, we perturb Λ′j further as follows. In the 1-jet neighborhood, Λ′j
corresponds to the graph of the constant function f(q) = jε. We denote
the perturbation of Λ′j by Λj and define it as the 1-jet graph of the

function f(q) = jε + jκq2, where κ � ε and where q is a coordinate
along the standard strand. (Note that q = 0 corresponds to the central
Reeb orbit.)

Lemma 5.16. The Reeb chords connecting Λj to Λk are as follows:

(a) If j < k, then for each integer w ≥ 0 there is a Reeb chord along
the unique Reeb orbit in the handle of length 2πwδ+(k− j)ε, and
there are no other Reeb chords.

(b) If j ≥ k, then for each integer w > 0 there is a Reeb chord along
the unique Reeb orbit in the handle of length 2πwδ− (j− k)ε, and
there are no other Reeb chords.
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Proof. To control short Reeb chords, one may use the 1-jet neighbor-
hood. Uniqueness of short chords is then an immediate consequence of
the fact that functions of the form f(q) = c0 + c2q

2, c0, c2 constants,
have only one critical point at the origin. For the long chords simply note
that no strand was perturbed at its intersection with the central Reeb
orbit and that, for all long chords, the linearized Reeb flow mapped the
tangent line at the initial point to a tangent line transverse to the tan-
gent line in the contact plane at the final point already for Λ′0, . . . ,Λ

′
n.

q.e.d.

We will use the following notation for Reeb chords between the strands
Λ1, . . . ,Λn: let c

p
ij be the Reeb chord connecting Λj to Λi of length clos-

est to 2πδp. Using the definition of Reeb chord grading from [5, Section
2.1], it is a straightforward consequence of Lemma 4.2 that the grading
of cpij is

|cpij | = 2p− 1 +m(i)−m(j),

where m(i) denotes the integer valued Maslov potential of the strand
Λi; see Section 2.3.

Lemma 5.17. For sufficiently small perturbations Λ1, . . . ,Λn of Λst

as described above the following holds. If i, j, l ∈ {1, . . . , n} and ifm, p, q ≥
0 with m = p + q, then the moduli space M(cmij ; c

p
lj , c

q
il) is transversely

cut out and C1-diffeomorphic to R. Furthermore, moduli spaces of holo-
morphic disks with all punctures inside the handle and with more than
two negative punctures have formal dimension > 1.

Proof. To see the last statement note that if the positive puncture
maps to cpij and the negative punctures map to chords cqlij , then p ≥

∑
ql

for action reasons, and the grading formula shows that the dimension of
the moduli space is > 1 if there are more than two negative punctures.

Now consider the 1-parameter family (including R-translation) of
disks shown in Figure 20. We claim first that it is transversely cut out.
To this end we use the trivialization x2 + iy2 for the normal bundle of
the disk. We trivialize the bundle over the Reeb chords, which leads to
a Lagrangian boundary condition given by small rotations which, when
closed up by negative rotations at corners, has Maslov index equal to
−1. The operator is Fredholm of index 0 with values in a 1-dimensional
bundle. It follows that it is an isomorphism.

We next show that this is the only disk (up to R-translation) in the
moduli space. To see this we note that if there were another disk in the
moduli space, then it could not be contained in the Reeb orbit cylinder
over cm. This, however, contradicts its action being 0, and we conclude
there is exactly one disk. q.e.d.

By Lemma 5.6, disks that contribute to the differential and that start
inside the handle cannot have negative punctures outside the handle.
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Figure 20. A rigid disk in a handle covering a Reeb
orbit cylinder.

5.3.D. Interpolating curves. Finally, we consider curves that start
outside the handle and go inside. An action argument shows that they
cannot leave a small neighborhood of the standard strand. It follows
that they lie entirely in the 1-jet neighborhood and hence are given by a
count of holomorphic polygons on the diagram in the cotangent bundle
in a neighborhood of the 0-section, just like in the R3-case identifying
the 0-section with the x-axis and the cotangent fibers with lines in the
y-direction.

5.4. Orientations and signs. In this section we present an orientation
scheme and compute the corresponding signs of the rigid disks described
in Section 5.3. The material presented here is a generalization of [12,
Section 4.5] and we will refer there for many details.

5.4.A. A trivialization of the bundle of contact planes in Yk(δ).
Consider first the standard contact R3 with contact form αst = dz−y dx.
As above we use the complex structure on the contact planes induced
by the standard complex structure on T ∗R = C via the Lagrangian pro-
jection Π: R3 = J1(R) → T ∗R. Furthermore, we trivialize the contact
plane field using the frame ∂y, J∂y where J is the complex structure on
the contact plane field. We next transport this trivializing vector field
to the standard contact balls. Recall the contactomorphism in (4.8). Its
inverse is

F−1(x, y, z) = (x− x0 , y − y0 , z − z0 − 1
2(x− x0)(y + y0)).

In particular, the vector field corresponding to ∂y is then

(5.2) dF−1 ∂y = ∂v − 1
2u∂z.
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We next study the behavior of trivializations in the handles of Yk(δ).
Recall the trivialization of the contact plane field along V−δ given by
v, i · v, where i is the complex structure of C2 and where v is given
by (4.2). In our construction of Yk(δ) we attached the handles using
standard contact balls identified with balls in V−δ. The identifications
were constructed using the map of the disks in (4.9) and (4.10). In order
to determine the vector field in the standard ball that corresponds to v,
we first express v as

v = w0 + wR,

where w ∈ TAρ and where wR is parallel to the Reeb vector field. Using
notation as in (4.3), we find

w0 = y2∂y1 +
1
2y1∂y2 , wR = −1

2x1y
−1
2 R̃.

The vector field vb in the standard contact ball that corresponds to v
is thus the sum of the image of w0 under dG (see (4.10)) and a suitable
multiple of the Reeb field. A straightforward computation gives

vb = −1
2u
(
δ2 + 1

4(u
2 + v2)

)
∂z +

(
δ2 + 3

4u
2 + 1

2v
2
)
∂v +

1
2uv ∂u.

Continuously killing all quadratic terms, we find a homotopy to the
trivialization given by

−1
2u∂z + ∂v,

which in turn corresponds to the vector field ∂y in 1-jet coordinates.
In conclusion, we have continued the trivialization of the contact plane
field given by (∂y, J∂y) over R3(◦k) to all of Yk(δ) in such a way that
inside the handles this trivialization is given by (v, i · v).
5.4.B. Capping operators and the symplectization direction. In
[12] the contact manifolds under consideration are of the form P × R,
where P is an exact symplectic manifold, with contact form dz − β,
where β is the primitive of the symplectic form on P . (In particular,
taking P = T ∗R and β = y dx, we get standard contact R3 as a special
case.) If we use an almost complex structure on the symplectization of
such a manifold given by the product of the standard complex structure
on C ≈ R × R and the pullback to the contact planes of an almost
complex structure on P , holomorphic curves in the symplectization can
be described entirely in terms of holomorphic curves in P , and it was
moduli spaces of holomorphic curves in P that were oriented in [12].
In the present setup we do not have any projection and hence we must
study holomorphic curves in the symplectization. As a starting point we
will revisit the construction in [12], in a sense adding the symplectization
direction back.

5.4.C. A brief description of the orientation scheme. We give
the description as close as possible to the application we have in mind.
The starting point is a number of properties of ∂̄-operators with La-
grangian boundary conditions on the disk that we discuss next. These
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properties originate from [18]; we will, however, refer to [12] since the
treatment there is closer to the case under study here. Let D denote the
unit disk in C and let L : ∂D → Lag(C2) denote a smooth map where
Lag(C2) denotes the space of Lagrangian planes in C2. Consider the
Riemann–Hilbert problem with trivialized Lagrangian boundary con-
dition: let W2(L) denote the space of functions u : D → C2 with two
derivatives in L2 such that

u(eiθ) ∈ L(eiθ), L∂̄Ju|∂D = 0,

and let W1 denote the space of J-complex-antilinear maps TD → TC2

with one derivative in L2 that vanish when restricted to the boundary, or
equivalently, after fixing a trivialization of TD, the corresponding space
of maps D → C2. Then the linearized operator L∂̄J : W2(L) → W1 is a
Fredholm operator of index

2 + μ(L),

where μ(L) denotes the Maslov index of Λ. If Y ′ denotes the space of
Fredholm operators as just described, then the determinant bundle over
Y ′ with fiber over L ∈ Y given by

Λmax
(
ker(L∂̄J)

) ⊗ Λmax
(
coker(L∂̄J )

)
is nonorientable and remains nonorientable if Y ′ is replaced by the space
of oriented Lagrangian boundary conditions. However, adding the re-
quirement that the bundle of Lagrangian subspaces over ∂D is trivi-
alized leads to an orientable bundle; see [12, Lemma 3.8]. Note that
the space of trivialized Lagrangian boundary conditions is homotopy
equivalent to Ω(U(2)), the loop space of the unitary group of C2: if
A : ∂D → U(2), then A ·R2 is a trivialized Lagrangian boundary condi-
tion and an orthonormal frame in a Lagrangian plane gives an element
in U(2). Furthermore, as explained in [12, Lemma 3.8], orientations on
R2 ⊂ C2 and on C induce an orientation on the determinant bundle
over Y . We use this orientation of the determinant bundle over Y to
orient all moduli spaces.

Let Λ ⊂ Yk(δ) be a Legendrian link and consider a moduli space

MR×Yk(δ)(a; b1, . . . , bk). In order to orient it we first fix a trivialization
τ of the tangent bundle of Λ. Then (∂t, τ) gives a trivialization of the
tangent bundle of R× Λ ⊂ R× Yk(δ), where ∂t is the vector field along
the R-factor of R× Yk(δ). Note that if u : Dk+1 → R × Yk(δ) is a holo-
morphic map of a (k+1)-punctured disk with boundary on R×Λ, then
u∗T (R× Yk(δ)) splits as u∗(ker(α))⊕C, and the Lagrangian boundary
condition splits as u∗(TΛ)⊕R. Second, we fix positive and negative ori-
ented capping operators at all Reeb chords. These are 1-punctured disks
with trivialized Lagrangian boundary conditions, which when glued to
the punctures give a disk with trivialized boundary condition.
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In [12, Section 3.2], (linear) gluing analysis for joining operators as
just described is carried out. In particular, if k + 2 operators are glued
into an operator, then orientations on the determinants of all operators
except one induce an orientation on the last one. (The actual rule for how
to induce such an orientation depends on some choices that are discussed
in detail in [12].) In particular, capping operators allow us to orient the
kernel/cokernel of the linearized operator at u, which together with
a chosen fixed orientation on the space of automorphisms/conformal
structure on Dk+1 gives an orientation of the moduli space.

5.4.D. Signs of diagram disks. The main objective of this section is
to reduce the computation of the sign of a diagram disk to the compu-
tation of similar disks carried out in [12, Section 4.5]. Consider the four
quadrants at a crossing of the link diagram as in the right diagram in
Figure 5. In the terminology of [12], quadrants where the sign is −1 are
called A-shaded. We then have the following:

Lemma 5.18. Let TΛ be equipped with the Lie group spin structure.
Then there is a choice of orientation of C and R such that the sign of
a rigid diagram disk in M(a; b1, . . . , bk) is given by (−1)s(u) where s(u)
is the number of A-shaded corners of u.

We prove Lemma 5.18 after discussing capping operators. Here we
use the observation above that the boundary condition of the linearized
operator splits and define split capping operators. For the component
of the boundary condition at a Reeb chord in the contact plane, we
use exactly the same capping operators as in [12, Section 4.5]. (As
there, this requires stabilization in order to have room to rotate the
trivialization so that it satisfies compatibility conditions at Reeb chord
endpoints.) In the symplectization direction, the tangent space to the
configuration space of maps around a solution is a Sobolev space with
small positive weight near each puncture, augmented by a 1-dimensional
space of explicit solutions near each puncture corresponding to trans-
lations in the R-direction. The kernel and cokernel of the correspond-
ing linearized problem are canonically identified with the kernel and
cokernel of the same (linearized) operator acting on the Sobolev space
with small negative exponential weight and without auxiliary space of
solutions. We thus use as capping operators in the symplectization di-
rections the once-punctured disk with constant boundary condition R

and with small negative exponential weight. This operator has index
1 and has 1-dimensional kernel. The gluing sequence for the capping
disks with positive (respectively, negative) punctures, which glue to the
constant boundary condition on the closed disk, again of index 1 with
1-dimensional kernel, is:

0 −−−−→ ker(∂̄D) −−−−→ ker(∂̄D+)⊕ ker(∂̄D−) −−−−→ R −−−−→ 0.
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Here ∂̄D+ and ∂̄D− denote the capping operators in the R-direction

with positive (respectively, negative) puncture, ∂̄D denotes the operator
on the closed disk with constant R boundary condition, and the last
R is identified with the cokernel of the ∂̄-operator on the strip with
R-boundary conditions and positive exponential weights at both ends.
(This cokernel consists of constant functions with values in iR and the
operator is the operator on the middle part of the glued disk as the
gluing parameter goes to ∞.) The maps in the sequence are given by
the matrices (

1
1

)
and

(−1 1
)
.

Consider next the gluing sequence for the C-component of a linearized
boundary condition. Note that the result of gluing capping operators
to the linearized boundary condition is again a closed disk with con-
stant boundary condition R and 1-dimensional kernel, and the gluing
sequence is

0 −−−−→ ker(∂̄D) −−−−→ ker(∂̄D+)⊕m
j=1 ker(∂̄D−;j)⊕ ker(∂̄C) −−−−→

−−−−→ ⊕m
j=1R −−−−→ 0,

where the summands are gluing parameters near the punctures. Thus
the orientation induced on ker(∂̄C) is simply the orientation induced by
the R-factor.

Proof of Lemma 5.18. By our choice of capping operators and the lin-
ear gluing that this gives rise to, as discussed above, it follows that the
orientation of the reduced moduli space is determined entirely in terms
of the operator in the contact planes which is pulled back from C for di-
agram disks. The lemma is then an immediate corollary of [12, Theorem
4.32]. q.e.d.

5.4.E. Signs of interpolating disks. After the signs of diagram disks
have been computed, the sign of interpolating disks can be determined
by a simple homotopy argument. More precisely, we have the following:

Lemma 5.19. Let TΛ be equipped with the Lie group spin structure.
Then there is a choice of orientation of C and R such that the sign of
a rigid interpolating disk in M(a; b1, . . . , bk) is given by (−1)s(u) where
s(u) is the number of A-shaded corners of u. Here the diagram disk
should be drawn in a 1-jet neighborhood of Λst.

Proof. By monotonicity, any rigid holomorphic connecting disk lies in
an arbitrarily small neighborhood of Λst and its Lagrangian projection
has convex corners. Furthermore, it can be homotoped through disks
with convex corner to a small such disk in R2. The result then follows
from Lemma 5.18 once we choose capping operators as there for the
short Reeb chords in the handle. q.e.d.
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5.4.F. Signs of handle disks. We now turn to determining the signs
of rigid handle disks. In order to determine the signs of interpolating
disks, we made choices for the orientations of the capping disks with
positive puncture at the short Reeb chords in the middle of the han-
dle. We choose here also the capping disks with negative puncture as
for the diagram disks, and the orientation on the determinants of the
corresponding operators are then fixed by the condition that these two
orientations should glue to the canonical orientation. Note next that
the linearized boundary condition of a rigid handle disk with positive
puncture at a short Reeb chord in the middle of the handle can be de-
formed to that of a small rigid triangle lying in the 1-jet neighborhood
of Λst. It follows from Lemma 5.19 that the sign of any such rigid disk
in M(c0ij ; c

0
il, c

0
lj) is

(−1)|c0il|+1.

Before we complete the discussion of combinatorial signs, we need
to recall an orientation gluing result: with capping operators fixed and
oriented in such a way that orientations on positive and corresponding
negative caps glue to the canonical orientation on the determinant of the
operator on the closed disk, the following holds. If I ⊂ M̂(a; b1, . . . , bm)
is a component of a reduced moduli space of dimension 1 with nonempty
boundary which is oriented as above, and if u0#v0 and u1#v1 are the
broken disks at its two boundary points, then

(5.3) σ(u1)ε(u1, v1)σ(v1) + σ(u0)ε(u0, v0)σ(v0) = 0,

where σ(u) is the sign of the rigid disk u and where

ε(u, v) = (−1)
∑l

j=1 |bj |,

if u ∈ M(a; b1, . . . , bl, bl+1, . . . , bm) and v ∈ M(bl+1; c1, . . . , ck). This
follows from [12, Lemma 4.11] in combination with the above discus-
sion of capping operators in the symplectization direction. Using this
property we can establish a combinatorial sign rule inductively.

Lemma 5.20. There is a choice of orientations for capping operators
at the Reeb chords inside the handle for which the sign of the rigid disk
in M(cpij ; c

q
il, c

r
lj) equals

(−1)|cqil|+1.

Proof. After the above discussion of short chords, we may assume
that the sign rule holds for all rigid triangles with positive puncture
below a given action. Consider the next Reeb chord a in the action
ordering. We claim that if we choose the orientation on the capping
operator of a as a positive puncture so that the sign rule holds for some
triangle with positive puncture at a, then it holds for all such triangles.
To see this, we represent the link as Λ1 ∪ · · · ∪ Λn inside the handle
exactly as in Lemma 5.17. Then any rigid triangle lies inside the trivial



SUBCRITICAL LEGENDRIAN CONTACT HOMOLOGY 125

holomorphic cylinder over the central Reeb chord and looks like a Reeb
chord strip with a slit; see Figure 20. For any two such triangles we get a
transversely cut out reduced 1-dimensional moduli space by considering
the corresponding strip with two slits. Assume that this moduli space
is M(a; b1, b2, b3). Then its boundary points correspond to

(u0, v0) ∈ M(a; b1, b23)×M(b23; b2, b3),

(u1, v1) ∈ M(a; b12, b3)×M(b12; b1, b2),

and our inductive assumption implies that

σ(v0) = (−1)|b2|+1 and σ(v1) = (−1)|b1|+1.

Equation (5.3) then gives

(−1)|b1|+1
(
σ(u0)(−1)|b2| + σ(u1)

)
= 0.

Since |b12| = |b1|+ |b2|+1, it follows that σ(u0) = (−1)|b1|+1 if and only

if σ(u1) = (−1)|b12|+1. By induction, we conclude that the lemma holds.
q.e.d.

Appendix A. Invariance from an analytical perspective

In this appendix we adapt the standard SFT proof of invariance to
show that the homotopy type of the DGA A(Λ) for a Legendrian link
Λ ⊂ Yk(δ) depends only on the isotopy class of Λ. As mentioned in
the Introduction, this is a proof strategy rather than a proof, since it
depends on a perturbation scheme for M-polyfolds that has not yet been
fully worked out.

Consider an isotopy Λt, t ∈ [0, 1], between Legendrian links Λ0 and
Λ1. The isotopy then gives an exact Lagrangian L01 ⊂ Yk(δ) with posi-
tive end Λ0 and negative end Λ1. As mentioned in Section 5.1, this cobor-
dism induces a DGA-morphism Φ01 : A(Λ0) → A(Λ1). On the other
hand, reversing the isotopy we get a corresponding map Φ10 : A(Λ1)→
A(Λ0), and by shortening the composite isotopy we get a 1-parameter
family of cobordisms Ls

00, s ∈ [0, 1], with induced map at s = 0 given by
Φ10 ◦ Φ01 and at s = 1 given by the identity. Thus, once we prove that
a 1-parameter family of cobordisms induces a chain homotopy, we can
conclude that Φ10 ◦ Φ01 is chain homotopic to the identity. Similarly,
Φ01 ◦Φ10 is chain homotopic to the identity and invariance will follow.

Below we will discuss some of the steps in this program, following
[11].

A.1. Anchored disks. Consider a generic 1-parameter family of cobor-
disms Ls ⊂ Y (δ)×R, s ∈ [0, 1]. In order to define the chain homotopy K
induced by Ls we will consider the boundary of 1-dimensional param-
eterized moduli spaces. That in turn involves looking at holomorphic
disks of formal dimension −1. Using the argument from [13, Lemma
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4.5(1)] as in Section 5.1, it is straightforward to show that disks with
one positive boundary puncture and several negative boundary and in-
terior punctures are transversely cut out after a small perturbation of
the almost complex structure J . Recall that the Conley–Zehnder indices
of the Reeb orbits in Yk(δ) are 2m, m > 0. Thus, possible dimensions of
spaces of holomorphic disks are 2m− 1. Let γ be a simple central Reeb
orbit in the middle of a handle, and letMX(γ) denote the moduli space
of holomorphic disks with positive puncture at γ.

Lemma A.1. For generic J , the space MX(γ) is a transversely cut
out 1-manifold with boundary points corresponding to R-families in the
moduli space MR×Yk(δ)(γ).

Proof. Since the Reeb orbit is simple, the moduli space cannot contain
multiple covers. Hence any curve in it is somewhere injective and the
transversality follows from a standard argument. Since the Reeb orbit
has minimal action, there can be no bubbling and the boundary is as
claimed. q.e.d.

Remark A.2. It follows from the Bott–Morse description of sym-
plectic homology that the moduli spaces MX(γ) in fact are nonempty,
since curves in them constrained by the unstable manifold of the critical
point in the handle are needed for the symplectic homology differential
to hit the corresponding Morse generator, which must be hit since the
symplectic homology of a subcritical Weinstein manifold vanishes [8].

A.2. Producing chain homotopies. Consider a 1-parameter family
of exact Lagrangian cobordisms (Yk(δ), Ls), s ∈ [0, 1], together with a
1-parameter family of almost complex structures Js. We assume that
Js is such that parameterized moduli spaces of disks with one positive
boundary puncture are transversely cut out, and that this holds also for
the moduli spaces at the endpoints s = 0, 1. Write Λ± for the Legendrian
submanifolds at the positive and negative ends of Ls. Then L0 and L1

determine chain maps

Φ0,Φ1 : A(Λ+)→ A(Λ−).

Lemma A.3. The DGA maps Φ0 and Φ1 are chain homotopic,
i.e., there exists a finite sequence of chain maps Φj : A(Λ+) → A(Λ−),
j = 1, . . . ,m, with Φ1 = Φ0 and Φm = Φ1, and degree +1 maps
Kj : A(Λ+)→ A(Λ−), j = 1, . . . ,m− 1, such that

(A.1) Φj+1 − Φj = ΩKj ◦ ∂+ + ∂− ◦ ΩKj ,

where ∂± is the differential on A(Λ±) and where ΩKj is linear and is
defined as follows on monomials:

ΩKj(c1 . . . cr) =

r∑
l=1

(−1)|c1|+···+|cl−1|Φj+1(c1 · · · cl−1)Kj(cl)Φ
j(cl+1 · · · cr).
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Remark A.4. The lemma follows from (a slightly extended ver-
sion of) [11, Lemma B.15] (which involves orientations on the mod-
uli spaces), which is stated in somewhat different terminology. In the
proof below, we will adapt the terminology used there to the current
setup. Also, it should be mentioned that [11, Lemma B.15] depends on
a perturbation scheme for so-called M-polyfolds (the most basic level of
polyfolds), the details of which were not yet worked out, and hence it
should be viewed as a proof strategy rather than a proof in the strict
sense.

Proof. Write Ms(a;b) for the moduli space of (anchored) holomor-
phic disks in Yk(δ) × R with boundary on Ls, positive puncture at the
Reeb chord a, and negative punctures at the Reeb chords in the word
b. Consider a parameterized moduli space

M(a;b) =
⊔

s∈[0,1]
Ms(a;b),

where the (Ls, Js), s ∈ [0, 1], is generic.
We say that a holomorphic disk of formal dimension d is a (d)-disk.

Recalling that the Legendrian homology algebra is defined as a direct
limit using the action filtration, we work below a fixed energy level. Since
(Ls, Js) is generic, the (−1)-disks form a transversely cut-out 0-manifold
in the parameterized moduli space that is generic with respect to the
projection to the parameter space. In particular this implies that (−1)-
disks occur only at a finite number of isolated instances 0 < s1 < s2 <
· · · < sm < 1 at which the cobordism contains exactly one (−1)-disk,
and that the projection from the parameterized 1-dimensional moduli
space is a Morse function. It then follows that the chain maps Φs remain
unchanged, except possibly when s crosses a (−1)-disk moment. We
consider crossing such a (−1)-disk moment. For simpler notation, we
still take s ∈ [0, 1] and assume that there is a single (−1)-disk moment
in the interval.

We first note that if the (−1)-disk has an interior puncture and gives
an anchored (0)-disk, then it follows from Lemma A.1 that Φs does not
change.

In order to express the change in the chain map at other (−1)-disk
moments, we use the (−1)-disk to construct a chain homotopy. To do so
one, must, however overcome a transversality problem that arises when
several copies of the (−1)-disk are attached to a disk in the symplectiza-
tion of the upper end, resulting in a non-transverse broken disk. To solve
this problem we invoke so-called abstract perturbations. More precisely,
a perturbation is constructed that orders the negative punctures of any
disk in the upper end in time so that only one negative puncture can
be attached to the (−1)-disk at the time. Note that since we start the
perturbation from the degenerate situation where all negative punctures
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lie at the same time, new (−1)-disks might arise when the perturbation
is turned on, where perturbations of a moduli space MΛ+×R(a;b) in
the positive end might give new (−1)-disks with positive puncture at a.

The actual perturbation scheme is organized energy level by energy
level in such a way that the size of the time separation is determined
by the action of the Reeb chord at the positive puncture. In particular
the time distances between the positive punctures in the newly created
(−1)-disk are of the size of this time separation. As we move to the
next energy level, the time separation is a magnitude larger, so that one
of the negative punctures of a disk on the new energy level passes all
the positive punctures of the (−1)-disks created on lower energy levels
before the puncture following it enters the region where (−1)-disks may
be attached to it.

Consider now the parameterized 1-dimensional moduli spaceM(a;b)
of (0)-disks defined using the perturbation scheme just described. The
boundary of M(a;b) then consists of the 0-manifolds M0(a,b) and
M1(a;b) as well as broken disks that consist of one (−1)-disk at s and
several (0)-disks with a (1)-disk in the upper or lower end attached.
Thus, if for a Reeb chord c, K(c) denotes the count of (−1)-disks after
the ordering perturbation scheme is turned on:

K(c) =
∑

|c|−|b|=−1
|M(c,b)|b,

then, by counting the boundary points of oriented 1-manifolds, we con-
clude that (A.1) holds. q.e.d.

Remark A.5. The proof of invariance just given is in a sense less
involved than the combinatorial proof given in Appendix B. In fact
this comparison is a little misleading: the combinatorial proof should
be compared to computing the chain homotopies associated to all rel-
evant (−1)-moments rather than just proving existence; see [15]. For
example, Gompf move 6 below involves an infinite sequence of birth-
deaths of Reeb chords and the corresponding stable tame isomorphism
involves a countably infinite stabilization, as does the chain map of the
corresponding cobordism defined as a direct limit with respect to action.

Appendix B. Invariance from a combinatorial perspective

In this appendix, we present proofs of various combinatorial results
from Section 2 that have been deferred until now. We begin in Sec-
tion B.1 with the short proofs of Proposition 2.4 (about resolutions of
fronts) and Proposition 2.8 (∂2 = 0). The bulk of this appendix, Sec-
tion B.2, consists of a proof of the main combinatorial invariance result,
Theorem 2.18.
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x = A0

πxz

πxy

x = A

Figure 21. Setting up the rightmost portion of a front
(πxz) projection so that the corresponding xy projection
is the resolution of the front.

B.1. Proofs of Propositions 2.4 and 2.8.

Proof of Proposition 2.4. This follows the proof of Proposition 2.2 in
[27]. Perturb a front in Gompf standard form to be the xz projection
of a tangle in normal form, as in Figure 2. Now beginning from the
left, change the front by planar isotopy so that the corresponding xy
projection is given by the resolution of the front, as in [27]. The only
novel feature in the current setup is that the right end of the front has
to be arranged to pass into the 1-handles (that is, strands passing into
the same 1-handle must become arbitrarily close in z coordinate) while
remaining in normal form.

Thus, suppose that we have constructed the front from left to right,
including all crossings and cusps, and the only remaining task is to pass
into the 1-handles. Then the right-hand end of the front, where the front
intersects, say, x = A0 for some A0, consists of a number of straight line
segments whose slopes are increasing from bottom to top. Now for each
1-handle, choose one strand of the Legendrian link that passes through
that 1-handle, and extend the corresponding straight line segment (with
slope unchanged) rightward from x = A0 to x = A for some A � A0.
Then connect the x = A0 endpoints of all strands passing through that
1-handle to the endpoint of the chosen strand at x = A. See Figure 21
for an illustration.
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πxy(Λ)

c014

c023

c024

c012 c034

c013

c014

c023

c024

c012 c034

c013πxy(Λ)

Figure 22. Turning a Legendrian link Λ in S1×S2 into
a Legendrian tangle Λ̃ in R3.

For A sufficiently large, the slopes of the line segments between x =
A0 to x = A are, from bottom to top, increasing from handle to handle,
and decreasing within the subset of strands passing into a single handle.
Thus the corresponding xy projection for x ≥ A0 looks precisely as
desired: at x = A0 there is a half twist involving the strands passing
into each 1-handle, and otherwise the xy projection consists of horizontal
lines. (To make the projection of the half twist generic, just perturb the
x = A0 endpoints slightly in the x direction.) This completes the proof.

q.e.d.

Proof of Proposition 2.8. The fact that this is true for generators of the
internal DGA was noted in Section 2.3. Now suppose that ai is a crossing
of πxy(Λ). We wish to show that ∂2(ai) = 0 and that |∂(ai)| = |ai| − 1.
We will assume for notational reasons that Λ ⊂ S1 × S2, but the same
proof works for any number of 1-handles.

Replace the 1-handle in the xy projection of Λ by half-twists on the
left and right, as in Figure 22. The result is the xy projection of a
Legendrian tangle Λ̃ in R3. To see this, add “dips” (cf. [30]) to Λ on the
left and right, and then the half-twists are half of each dip; see Figure 18
from Section 5.3.A. Let n be the number of strands of Λ passing through
the 1-handle. Label the crossings in the new half-twists in the tangle by
c0ij , 1 ≤ i < j ≤ n, as shown in Figure 22 (note that these labels are

repeated on left and right).

To the xy projection of the Legendrian tangle Λ̃, we can associate a
differential graded algebra over Z[t, t−1] just as in the standard Chekanov
setup [7, 17], where the differential counts bounded disks (no unbounded
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4:

5:

6:

Figure 23. Gompf moves 4, 5, and 6.

regions) with boundary in πxy(Λ̃). Here crossings are graded as usual by
rotation numbers of paths from overcrossings to undercrossings, where
the 2n ends of the tangle are identified pairwise; note in particular that
this agrees with the grading of c0ij from Section 2.4. For definiteness of

orientation signs, at each of the crossings labeled c0ij , if |c0ij | is even, then
we take the south and west corners to be the −1 corners for orientation
signs.

With these conventions, the Chekanov differential on the algebra for
Λ̃ agrees with the differential ∂ on both the crossings ai in πxy(Λ) and
on the c0ij . (In particular, this shows that ∂(ai) is a finite sum of terms.)

The usual proof that ∂2 = 0 and ∂ lowers degree by 1 from [7, 17] now
gives the desired result. q.e.d.

B.2. Combinatorial proof of invariance.

B.2.A. Outline of the proof. In this section, we prove the main com-
binatorial invariance result, Theorem 2.18. The proof relies on estab-
lishing invariance under several elementary moves. More precisely, by
Gompf [19], any Legendrian link in #k(S1 × S2) can be represented by
a front diagram in Gompf standard form (see Section 2.1). Two such
front diagrams represent links that are Legendrian isotopic if and only if
they are related by a sequence of Legendrian isotopy of the front tangle
inside the box [0, A]× [−M,M ] (which can in turn be decomposed into
a sequence of Legendrian Reidemeister moves as in R3), and three other
moves, which we call Gompf moves 4, 5, and 6. See Figure 23. As men-
tioned in Section 2.2, we can perturb any diagram in Gompf standard
form to a diagram in normal form, and the Gompf moves can be simi-
larly perturbed to involve diagrams in normal form. We will henceforth
assume that all front diagrams are in normal form.
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We will prove invariance under each of Gompf’s moves; this is the
content of Propositions B.3, B.5, B.9, and B.11 below. These results are
then combined to prove Theorem 2.18 in Section B.2.H.

B.2.B. Reducing the number of possible moves. Before turning
to the actual study of the DGA under moves, we consider two tech-
nical simplifications. First, Gompf’s version of move 4 in [19] has the
cusped strands above the others, rather than below. The version we
use, as shown in Figure 23, is equivalent to Gompf’s version, either by
symmetry or by additional application of Gompf move 5.

Second, Gompf moves 4 and 6 have variants obtained from our dia-
grams by a 180◦ rotation, which also need to be considered for a general
Legendrian isotopy. However, we do not need to separately consider
these alternate moves, because the action of 180◦ rotation affects the
DGA in a simple way, which we describe next.

Definition B.1 (cf. [25]). Let (A, ∂) be a semifree DGA over R
with generators {ai}. There is another differential ∂op on A defined on
generators by reversing the order of every word in ∂(ai) and introducing
appropriate signs. More precisely, define an R-module involution op :
A → A by

op(ai1ai2 · · · ain) = (−1)
∑

j<k |aij ||aik |ain · · · ai2ai1 ,
and define ∂op = op ◦ ∂ ◦ op. Then (A, ∂op) is another semifree DGA
satisfying the Leibniz rule.

Lemma B.2. Let Λ be a Legendrian link in #k(S1 × S2) in normal
form, with front projection πxz(Λ). Then the result of rotating πxz(Λ)
by 180◦ is the front projection of a Legendrian link Λ′ in normal form,
and if (A, ∂), (A′, ∂′) are the DGAs associated to πxy(Λ) and πxy(Λ

′),
then (A′, ∂′) is (tamely) isomorphic to (A, ∂op).

Proof. It is clear that the front of a normal-form link Λ, rotated
180◦, is again the front of a normal-form link Λ′. Furthermore, the map
(x, y, z) �→ (A− x, y,−z) is a contactomorphism of R3 sending Λ to Λ′.
The resulting xy projections πxy(Λ) and πxy(Λ

′) are related by reflection
in the vertical (y) axis. There is an obvious one-to-one correspondence
between generators of A and generators of A′, and it is easily checked
that this correspondence preserves grading. Since reflection reverses the
orientation of R2, terms appearing in the differential ∂ have analogous
terms in ∂′ but with the order of letters reversed. We leave it as an
exercise to check that the signs in ∂′ and the signs in ∂ are related as
in Definition B.1. q.e.d.

B.2.C. Invariance under isotopy within [0, A] × [−M,M ].

Proposition B.3. If Λ and Λ′ are Legendrian links in #k(S1 × S2)
in normal form, isotopic through Legendrian links in normal form, then
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the DGAs associated to πxy(Λ) and πxy(Λ
′) are stable tame isomorphic.

Note that the isotopy in Proposition B.3 occurs entirely within the
box [0, A] × [−M,M ] in the xz projection, and does not involve the
portions of the Legendrian link in the 1-handles.

Before presenting the proof of Proposition B.3, we note an area esti-
mate that is very similar to the corresponding estimate for Legendrian
links in R3. First, we say that a Legendrian link Λ is in normal-plus
form if:

• Λ is in normal form;
• the points (0, y�i , z

�
i ) and (A, ỹ�i , z̃

�
i ) where Λ intersects x = 0 and

x = A satisfy

z�i = z�1 + (i− 1)ε, � = 1, . . . , k, i = 1, . . . , n�,

z̃�i = z̃�1 + (i− 1)ε, � = 1, . . . , k, i = 1, . . . , n�,

for all t and arbitrary fixed small ε > 0.

That is, the points in the xz projection where Λ enters the 1-handles
are evenly spaced, with ε between the z-coordinates of adjacent points.

Now for Λ in normal-plus form, let a1, . . . , an denote the crossings in
πxy(Λ) (the Reeb chords of the portion of Λ outside of the 1-handles),
and define a height function h on Reeb chords by h(ai) = z+i −z−i , where
z±i are the z-coordinates of Λ at crossing ai, with z

+
i > z−i . Extend this

height function to internal Reeb chords c0j1j2;� by h(c
0
j1j2;�

) = (j2 − j1)ε;
note that this is the difference in z-coordinate between strand i and
strand j as they enter the �th 1-handle.

Lemma B.4. Suppose that Λ is in normal-plus form, ai is a crossing
of πxy(Λ), and b1, . . . , br are each either a crossing aj or an internal Reeb
chord c0j1j2;�. If Δ(ai; b1, . . . , br) �= ∅, then

h(ai) > h(b1) + · · · + h(br).

Proof. The argument is the same as for the analogous estimate in
[7]: by Stokes’ Theorem, the difference h(ai)− h(b1)− · · · − h(br) is the
area of an immersed disk with boundary on πxy(Λt) that has positive
corner at ai and negative corners at b1, . . . , br, since they both measure
the integral of dz = y dx around the boundary of the disk. The one new
feature is that a “negative corner” at a c0j1j2;� is not a corner, but rather
a strip bounded by strands j1 and j2 at handle �; see Figure 6. Since
the z coordinate jumps by (j2 − j1)ε = h(c0j1j2;�) at such a corner, the
result follows. q.e.d.

Proof of Proposition B.3. Suppose that we have an isotopy Λt of Legen-
drian tangles in normal form. By perturbing, we may assume that each
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Λ Λ′

Figure 24. Front (xz) diagrams for Legendrian links
Λ,Λ′ in normal form related by Gompf move 4. The cor-
ners in these fronts are understood to be smoothed out.

Λt is in normal-plus form, and that the isotopy has generic singulari-
ties in the xy projection. We can further choose ε in the definition of
normal-plus form to be sufficiently small that each h(c0j1j2;�) (which is

bounded above by (n�− 1)ε) is smaller than h(ai) for any crossing ai in
any πxy(Λt).

We now follow Chekanov’s proof of invariance of the DGA from the
R3 case [7]. As t goes from 0 to 1, the tangle diagram πxy(Λt) changes
by planar isotopy and a sequence of Reidemeister moves, each of which
is either a triple-point move (Reidemeister III) or a double-point move
(Reidemeister II).

Invariance under a triple-point move is precisely as in [7]. Invariance
under a double-point move also follows the proof from [7]. Note in this
case that the stable tame isomorphism between the DGAs for two dia-
grams related by a Reidemeister II move leaves all internal generators
cpj1j2;� unchanged, and is defined on crossings ai inductively, beginning

with the crossing of smallest height and working the (finite) way up
to the crossing of largest height. The fact that we can induct in this
manner follows from Lemma B.4. q.e.d.

We will implicitly use Proposition B.3 in the proofs of invariance un-
der Gompf moves 4, 5, and 6 below. In each case, to simplify the proof,
it is convenient to create new crossings in the xy projection that local-
ize certain holomorphic disks. These new crossings are created through
Legendrian isotopy contained in [0, A] × [−M,M ] in the xy projection,
which does not affect the stable tame isomorphism type of the DGA by
Proposition B.3.

B.2.D. Invariance under Gompf move 4.

Proposition B.5. If Λ and Λ′ are Legendrian links in #k(S1 × S2)
in normal form, related by Gompf move 4, then the DGAs associated to
πxy(Λ) and πxy(Λ

′) are stable tame isomorphic.

Let Λ and Λ′ be Legendrian links in #k(S1 × S2) related by Gompf
move 4. Perturb the fronts of Λ and Λ′ to be in normal form, and
then further perturb them to take the form shown in Figure 24. Then
the corresponding xy projections are in xy-normal form as shown in
Figure 25.
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Figure 25. The xy projections for Λ and Λ′ given in
Figure 24, with some crossings labeled. The dotted boxes
are identical (and correspond to the dotted boxes in Fig-
ure 24), as are the two shaded regions.

By Proposition B.3, it suffices to show that the DGAs for Λ and
Λ′ associated to the xy projections shown in Figure 27 are stable tame
isomorphic. Denote these DGAs by (A, ∂) and (A′, ∂′) respectively. Note
that we have labeled particular crossings in the xy projections of Λ and
Λ′; then A′ is generated by

• cpij , 1 ≤ i, j ≤ n− 2, and p ≥ 1 if i ≥ j
• b, e, a1, . . . , an−2, b1, . . . , bn−2, d1, . . . , dn−2, e1, . . . , en−2
• the other “external” crossings contained in the dashed box in Fig-
ure 25,

while A is generated by the same generators along with

• cpij , 1 ≤ i, j ≤ n, where at least one of i, j is n− 1 or n, and p ≥ 1
if i ≥ j

• a.
For the purpose of keeping track of signs, let (m(1), . . . ,m(n)) be the
Maslov potential associated to strands 1, . . . , n passing through the han-
dle, and write σi = (−1)m(i) for each i. Note that σn−1 = −σn, and if
we write sgn(x) = (−1)|x|, then sgn(a) = −1 and sgn(cpij) = −σiσj .

Extend ∂′ from A′ to A by setting

∂′(a) = 1− c0n−1,n,
∂′(c0n−1,n) = 0,

∂′(cpin) = cpi,n−1, 1 ≤ i ≤ n, p ≥ 1, if i ≥ n− 1,

∂′(cpi,n−1) = 0, 1 ≤ i ≤ n, p ≥ 1, if i ≥ n− 1,

∂′(cpn−1,j) = cpnj , 1 ≤ j ≤ n− 2, p ≥ 1,

∂′(cpnj) = 0, 1 ≤ j ≤ n− 2, p ≥ 1;
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then (A, ∂′) is a stabilization of (A′, ∂′). It suffices to construct a tame
automorphism of A intertwining ∂ and ∂′. To this end, we will construct
elementary automorphisms Φ,Ψ,Ω of A and establish that

(B.1) ∂ ◦Φ ◦Ψ ◦Ω(x) = Φ ◦Ψ ◦ Ω ◦ ∂′(x)

on generators x of A; then Φ ◦Ψ ◦Ω is the desired tame automorphism.
We break down the generators of A into groups, and establish (B.1)

for each group in turn:

• Group 1: a, c0n−1,n, c
0
ij for i, j ≤ n − 2, and any crossing in the

shaded regions in Figure 25 (including e, e1, . . . , en−2, d1, . . . , dn−2)
• Group 2: cpij for p ≥ 1 and i, j ≤ n− 2

• Group 3: c0i,n−1 and c0in where i ≤ n− 2, and cpij where p ≥ 1 and
either i ≥ n− 1 or j ≥ n− 1

• Group 4: a1, . . . , an−2, b1, . . . , bn−2, b.

We will also present the definitions of Φ,Ψ,Ω in turn as they are used.
For now, we note that Φ,Ψ,Ω will act as the identity on all generators
of A except:

• for Φ: Group 2
• for Ψ: Group 3
• for Ω: Group 4.

If x is in Group 1, then ∂(x) = ∂′(x); note in particular that this
holds for x = a and x = c0n−1,n by the construction of ∂′ and the fact

(calculable from Figure 25) that ∂(a) = 1 − c0n−1,n. In addition, any
generator appearing in this differential is also in Group 1. It follows
that Φ ◦ Ψ ◦ Ω acts as the identity on both x and ∂′(x), and thus that
(B.1) holds for x in Group 1.

We next construct Φ so that (B.1) holds for x in Group 2. First note
that if i, j ≤ n− 2, then

∂(cpij) = δijδ1p +
n∑

m=1

p∑
l=0

σiσmc
l
imc

p−l
mj ,

∂′(cpij) = δijδ1p +

n−2∑
m=1

p∑
l=0

σiσmc
l
imc

p−l
mj .

To define Φ, we introduce some auxiliary elements of A. We extend our
definition of cpij to allow one or both of the indices i, j to take the value
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n− 1
2 , as follows:

c0
n− 1

2
,n

= c0
n−1,n− 1

2

= 1,

cp
n− 1

2
,α

= cpn−1,α − acpnα, p ≥ 1, α ∈ {1, . . . , n− 1, n − 1

2
, n},

cp
α,n− 1

2

= cpαn − cpα,n−1a, p ≥ 0 and α ∈ {1, . . . , n− 2},

or p ≥ 1 and α ∈ {n− 1, n − 1

2
, n},

c0αβ = 0, α ≥ β.

Note that the second and third lines overlap and agree in the definition
of cp

n− 1
2
,n− 1

2

for p ≥ 1; in both cases, we find that

cp
n− 1

2
,n− 1

2

= cpn−1,n − cpn−1,n−1a− acpnn + acpn,n−1a.

Also define
σn− 1

2
= σn−1 = −σn.

We collect a few facts about these new cpαβ that are easy to verify

from the definition.

Lemma B.6. 1) For α, β ∈ {1, . . . , n − 1, n − 1
2 , n}, p2 > 0, and

either p1 > 0 or p1 = 0 and α ≥ n− 2, we have

cp1α,n−1c
0
n−1,n− 1

2
cp2
n− 1

2
,β
− cp1

α,n− 1
2

c0
n− 1

2
,n
cp2nβ = cp1α,n−1c

p2
n−1,β − cp1αncp2nβ .

2) For p ≥ 0 and α, β ∈ {1, . . . , n − 1, n − 1
2 , n} with at least one of

α, β = n− 1
2 , we have

∂(cpαβ) =

n∑
m=1

p∑
l=0

σασmc
l
αmc

p−l
mβ

where the sum on m is only over integers.

Now define Φ : A → A as follows: Φ acts as the identity on all
generators outside of Group 2, and if p ≥ 1 and i, j ≤ n− 2, then

Φ(cpij) = cpij +
∑
q≥1

(−1)q
∑

λ0+···+λq=p+1

cλ0−1
i,n− 1

2

cλ1

n− 1
2
,n− 1

2

· · · cλq−1

n− 1
2
,n− 1

2

c
λq

n− 1
2
,j
,

where the second sum is over all ways to write p+1 = λ0 + · · ·+ λq for
any λ0, . . . , λq ≥ 1. For example, for i, j ≤ n− 2,

Φ(c1ij) = c1ij − c0i,n− 1
2
c1
n− 1

2
,j
,

Φ(c2ij) = c2ij − c0i,n− 1
2
c2
n− 1

2
,j
− c1

i,n− 1
2
c1
n− 1

2
,j
+ c0

i,n− 1
2
c1
n− 1

2
,n− 1

2
c1
n− 1

2
,j
.

Choose any ordering of A for which the cpij generators are ordered so

that cpij < cpi′j′ whenever np+ j − i < np′ + j′ − i′. With respect to the

induced filtration on A, the differentials ∂ and ∂′ are filtered, sending
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cpij to a sum of terms lower in the filtration. It is then easy to check that
Φ is elementary with respect to this ordering.

We can now establish (B.1) for x in Group 2. This is a result of the
following lemma, along with the fact that the differential ∂′, applied to
a generator in Group 2, only involves generators in Groups 1 and 2.

Lemma B.7. For all p ≥ 0 and all i, j ≤ n− 2,

∂ ◦ Φ(cpij) = Φ ◦ ∂′(cpij).
Proof. We have

Φ ◦ ∂′(cpij) =
∑

m≤n−2

∑
l

σiσmΦ(clim)Φ(cp−lmj ) + δijδ1p.

When we expand this out using the definition of Φ, besides δijδ1p, we
obtain a sum of terms of the form

σiσm(−1)qci,n− 1
2
· · · cn− 1

2
,mcm,n− 1

2
· · · cn− 1

2
,j

with m ≤ n− 2, where we have suppressed the superscripts on the c’s,
and q is the length of the word ci,n− 1

2
· · · cn− 1

2
,mcm,n− 1

2
· · · cn− 1

2
,j. (Some

terms are shorter than this, e.g., σiσm(−1)qcimcm,n− 1
2
· · · cn− 1

2
,j , but the

following argument still applies.) Note that this term also appears, with
the same sign, in ∂((−1)qci,n− 1

2
· · · cn− 1

2
,n− 1

2
· · · cn− 1

2
,j), where q − 1 is

the length of the word ci,n− 1
2
· · · cn− 1

2
,n− 1

2
· · · cn− 1

2
,j, by Lemma B.6(2)

and the fact that sgn(ci,n− 1
2
) = −σiσn and sgn(cn− 1

2
,n− 1

2
) = 1. Thus

every term in the expansion of Φ ◦ ∂′(cpij) has a corresponding term in

the expansion of ∂◦Φ(cpij) (and this also holds for the extra term δijδ1p).
It suffices to check that the sum S of the remaining terms in the ex-

pansion of ∂◦Φ(cpij) = ∂(
∑

(±ci,n− 1
2
· · · cn− 1

2
,j)) is 0. These are the terms

for which, besides i at the beginning and j at the end, no subscripts
≤ n−2 appear. We can write S as a finite sum S1+S2+ · · · , where S1 is
the contribution of ∂(cpij), S2 is the contribution of ∂(−∑ ci,n− 1

2
cn− 1

2
,j),

and so forth. More precisely, we have

S1 = σiσn−1
∑

λ0+λ1=p+1

(cλ0−1
i,n−1c

λ1
n−1,j − cλ0−1

in cλ1
nj),

S2 = −σiσn−1
∑

λ0+λ1+λ2=p+1

(
cλ0−1
i,n−1c

λ1

n−1,n− 1
2

cλ2

n− 1
2
,j
− cλ0−1

in cλ1

n,n− 1
2

cλ2

n− 1
2
,j

+cλ0−1
i,n− 1

2

cλ1

n− 1
2
,n−1c

λ2
n−1,j − cλ0−1

i,n− 1
2

cλ1

n− 1
2
,n
cλ2
nj

)
and so forth, where all sums are over λ0 ≥ 1 and λi ≥ 0 for i ≥ 1.
Each nonzero term in these sums either has all λq ≥ 1, or it has exactly
one λq = 0 (where q > 0) and incorporates either c0

n−1,n− 1
2

or c0
n− 1

2
,n
.
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We can then write Sr = S0
r + S1

r , where S
0
r sums the terms with some

λq = 0, and S1
r sums the terms with all λq ≥ 1.

Note that S0
1 = 0 and S1

1 = S1, while

S0
2 = −σiσn−1

∑
λ0+λ2=p+1

(
cλ0−1
i,n−1c

0
n−1,n− 1

2
cλ2

n− 1
2
,j
− cλ0−1

i,n− 1
2

c0
n− 1

2
,n
cλ2
nj

)

= −σiσn−1
∑

λ0+λ2=p+1

(
cλ0−1
i,n−1c

λ2
n−1,j − cλ0−1

in cλ2
nj

)

= −S1
1 ,

where the middle equality follows from Lemma B.6(1). Similarly, S0
r =

−S1
r−1 for all r ≥ 2, whence S =

∑
r(S

0
r + S1

r ) = 0. q.e.d.

We next turn our attention to the definition of Ψ and establishing
(B.1) for Group 3 generators. First define the differential ∂′′ : A → A
by ∂′′ = Φ−1 ◦ ∂ ◦Φ. For any 1 ≤ i ≤ n and p ≥ 0, we have

∂′′(cpin) = Φ−1∂Φ(cpin) = Φ−1∂(cpin)

= Φ−1(σiσn−1c
p
i,n−1c

0
n−1,n + · · · ) = σiσn−1c

p
i,n−1c

0
n−1,n + · · · ,

where the ellipses involve only terms lower than cpi,n−1 in the filtration
chosen earlier. Denote the final ellipsis by

∂′′0 (c
p
in) := ∂′′(cpin)− σiσn−1cpi,n−1c0n−1,n.

Similarly, for any 1 ≤ j ≤ n− 2 and p ≥ 1, we can define ∂′′0 (c
p
n−1,j) by

∂′′0 (c
p
n−1,j) := ∂′′(cpn−1,j) + c0n−1,nc

p
nj ,

and ∂′′0 (c
p
n−1,j) is lower in the filtration than cpnj.

Now define the algebra map Ψ : A → A by

Ψ(cpi,n−1
) = σiσn−1c

p
i,n−1

+ ∂′′0 (c
p
in) + ∂′′(cpi,n−1

)a p ≥ 1 and 1 ≤ i ≤ n,

or p = 0 and i ≤ n− 2,

Ψ(cpin) = cpin − cpi,n−1
a p ≥ 1 and 1 ≤ i ≤ n,

or p = 0 and i �= n− 2,

Ψ(cpnj) = −cpnj + ∂′′0 (c
p
n−1,j) + a∂′′(cpnj) p ≥ 1 and 1 ≤ j ≤ n− 2,

Ψ(cpn−1,j) = cpn−1,j − acpnj p ≥ 1 and 1 ≤ j ≤ n− 2,

and Ψ acts as the identity on all other generators of A. From the above
discussion, Ψ is elementary with respect to the chosen ordering on A.

Lemma B.8. If x is a generator in Group 3, then

∂′′ ◦Ψ(x) = Ψ ◦ ∂′(x).
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Proof. If either p ≥ 1 or p = 0 and i ≤ n− 2, we have

∂′′Ψ(cpin) = ∂′′(cpin − cpi,n−1a)
= (σiσn−1c

p
i,n−1c

0
n−1,n + ∂′′0 (c

p
in))

+ (∂′′(cpi,n−1)a− σiσn−1cpi,n−1(1 + c0n−1,n))

= Ψ(cpi,n−1)

= Ψ∂′(cpin)

whence ∂′′Ψ(cpi,n−1) = (∂′′)2Ψ(cpin) = 0 = Ψ∂′(cpi,n−1), and the lemma

holds for x = cpin and x = cpi,n−1. If p ≥ 1 and j ≤ n − 2, then a

similar calculation yields ∂′′Ψ(cpn−1,j) = Ψ∂′(cpn−1,j) and ∂′′Ψ(cpnj) =

0 = Ψ∂′(cpnj), and the lemma holds for x = cpn−1,j and x = cpnj . q.e.d.

It follows immediately from Lemma B.8 that (B.1) holds when x is
a Group 3 generator, since then ∂ΦΨΩ(x) = ∂ΦΨ(x) = Φ∂′′Ψ(x) =
ΦΨ∂′(x) = ΦΨΩ∂′(x).

Finally, it remains to define Ω and establish (B.1) for Group 4 gen-
erators. Define the algebra map Ω : A → A by

Ω(ai) = ai − σiσn−1c0in, 1 ≤ i ≤ n− 2,

Ω(bi) = bi + aia, 1 ≤ i ≤ n− 2,

Ω(b) = b+ a,

and Ω is the identity on all other generators of A. We can choose an
ordering of A (independently from before) such that a < b and c0ina <
ai < bi for all 1 ≤ i ≤ n − 2; then Ω is elementary with respect to this
ordering.

An inspection of Figure 25 yields, for i ≤ n− 2:

∂(ai) =

n−2∑
j=i+1

c0ijaj + c0i,n−1 − σiσn−1di,

∂′(ai) =
n−2∑

j=i+1

c0ijaj − σiσn−1di,

∂(bi) =

n−2∑
j=i+1

c0ijbj + c0in − σiσn−1aic0n−1,n − σiσnei − σiσndib,

∂′(bi) =
n−2∑

j=i+1

c0ijbj − σiσn−1ai − σiσnei − σiσndib,

∂(b) = e+ c0n−1,n,

∂′(b) = e+ 1.
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Λ Λ′

Figure 26. Front (xz) diagrams for Legendrian links
Λ,Λ′ in normal form related by Gompf move 5. The cor-
ners in these fronts are understood to be smoothed out.

Note in particular that there are no holomorphic disks whose only posi-
tive puncture is at ai or bi and extend into the dotted boxes in Figure 25.
This can be shown in general via an area estimate, or more simply by
assuming that the figures in the dotted boxes are the result of resolu-
tion, in which case the rightmost point in such a holomorphic disk would
have to be a positive puncture (cf. the differential for simple fronts in
[27]).

One can now check directly that (B.1) holds for generators in Group
4, i.e., ai, bi, and b. For instance, from the definition of Ψ, we have
Ψ(c0in) = c0in − c0i,n−1a, and thus

∂ΦΨΩ(ai) = ∂ΦΨ(ai − σiσn−1c0in)
= ∂(ai − σiσn−1(c0in − c0i,n−1a))

= −σiσn−1di +
n−2∑

j=i+1

cij(aj − σjσn−1(c0jn − c0j,n−1a))

= ΦΨ(−σiσn−1di +
n−2∑

j=i+1

cij(aj − σjσn−1c0jn))

= ΦΨΩ(−σiσn−1di +
n−2∑

j=i+1

c0ijaj)

= ΦΨΩ∂′(ai).

Similar computations hold for bi and b.
This completes the proof of (B.1) for all generators of A, and the

proof of invariance under Gompf move 4.

B.2.E. Invariance under Gompf move 5.

Proposition B.9. If Λ and Λ′ are Legendrian links in #k(S1 × S2)
in normal form, related by Gompf move 5, then the DGAs associated to
πxy(Λ) and πxy(Λ

′) are stable tame isomorphic.

Let Λ and Λ′ be Legendrian links in #k(S1 × S2) related by Gompf
move 5. Perturb the fronts of Λ and Λ′ to be in normal form, and
then further perturb them to take the form shown in Figure 26. Then
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Figure 27. The xy projections for Λ and Λ′ given in
Figure 26. The dotted boxes are identical (and corre-
spond to the dotted boxes in Figure 26), as are the two
shaded regions. Note the unusual labeling of strands in
the xy projection of Λ′: q and q + 1 are switched.

the corresponding xy projections are in xy-normal form as shown in
Figure 27.

By Proposition B.3, it suffices to show that the DGAs for Λ and Λ′
associated to the xy projections shown in Figure 27 are stable tame iso-
morphic. Denote these DGAs by (A, ∂) and (A′, ∂′) respectively. (Note
that we have labeled particular crossings a, b, b̃ in πxy(Λ) and ã, b, b̃ in
πxy(Λ

′).)
The generator sets for A and A′ are identical, except that a and c0q,q+1

are generators for A but not A′, and ã and c0q+1,q are generators for A′
but not A. Note that the presence of c0q+1,q rather than c0q,q+1 in A′ is
due to the switching of labels q and q + 1 in the bottom diagram of
Figure 27. As for grading, the strands passing through the 1-handle in
πxy(Λ) and πxy(Λ

′) share a common Maslov potential (m(1), . . . ,m(n)),
withm(i) being the potential for the strand labeled i, and it follows that
all common generators of A and A′ have the same grading in both. For
future reference, write σi = (−1)m(i) and note that
(B.2)

sgn a = sgn ã = sgn b = sgn b̃ = − sgn c0q,q+1 = − sgn c0q+1,q = σqσq+1

where sgn a = (−1)|a|, etc.
Define Ã to be the graded tensor algebra generated by the union of

the sets of generators of A and A′. We can extend the differential ∂
from A to Ã, and ∂′ from A′ to Ã, by setting

∂(ã) = −c0q+1,q, ∂(c0q+1,q) = 0,

∂′(a) = c0q,q+1, ∂′(c0q,q+1) = 0.
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Then (Ã, ∂) is a stabilization of (A, ∂), (Ã, ∂′) is a stabilization of

(A′, ∂′), and it suffices to show that (Ã, ∂) and (Ã, ∂′) are tamely iso-
morphic.

Define an algebra automorphism Φ of Ã as follows:

Φ(b) = b− ã,
Φ(cpqj) = cpqj − σqσq+1ac

p
q+1,j, j �= q + 1; p ≥ 1 if j ≤ q,

Φ(cpi,q+1) = cpi,q+1 + cpiqa, i �= q; p ≥ 1 if i ≥ q + 1,

Φ(cpq,q+1) = cpq,q+1 + cpqqa

− σqσq+1(ac
p
q+1,q+1 + acpq+1,qa), p ≥ 1,

and Φ acts as the identity on all other generators of Ã. (In particular,
Φ(c0q,q+1) = c0q,q+1 and Φ(c0q+1,q) = c0q+1,q.) It is easy to check that Φ is
elementary: choose any ordering such that a, ã are at the bottom and for
fixed p, the cpij are ordered so that cpij < cpi′j′ if j − i < j′ − i′. Similarly,

define an elementary automorphism Φ′ of Ã by

Φ′(b̃) = b̃− a,
Φ′(cpq+1,j) = cpq+1,j + σqσq+1ãc

p
qj , j �= q; p ≥ 1 if j ≤ q + 1,

Φ′(cpiq) = cpiq − cpi,q+1ã, i �= q + 1; p ≥ 1 if i ≥ q,

Φ′(cpq+1,q) = cpq+1,q − cpq+1,q+1ã

+ σqσq+1(ãc
p
qq − ãcpq,q+1ã) p ≥ 1,

and Φ′ acts as the identity on all other generators of Ã.
To complete the proof of invariance for Gompf move 5, we will estab-

lish that

(B.3) Φ−1 ◦ ∂ ◦Φ = (Φ′)−1 ◦ ∂′ ◦ Φ′

on Ã. It suffices to establish (B.3) on generators of Ã, which we divide

into groups: a, b, ã, b̃; internal generators cpij, including c
0
q,q+1 and c0q+1,q;

and external generators, which correspond to crossings in the shaded
regions of Figure 27. For a, b, ã, b̃, note that ∂(a) = c0q,q+1, ∂(b) = x, and

∂′(b) = c0q+1,q+x, where x only involves external generators (in fact, up
to sign, x is just the external generator corresponding to the leftmost
crossing in the shaded region), and so Φ−1∂Φa = c0q,q+1 = (Φ′)−1∂′Φ′a
and

Φ−1∂Φb = Φ−1∂(b− ã) = Φ−1(x+ c0q+1,q)

= x+ c0q+1,q = (Φ′)−1(x+ c0q+1,q) = (Φ′)−1∂′Φ′b.

Similarly, (B.3) holds for ã and b̃.

Next, we check (B.3) for internal generators cpij . Let π : Ã → Ã
be the algebra map that sends c0q,q+1 and c0q+1,q to 0 and acts as the
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identity on all other generators of Ã. Since the internal differentials ∂
and ∂′ only differ in terms that involve either c0q,q+1 and c0q+1,q, we have

π∂cpij = π∂′cpij for all i, j, p. Equation (B.3) for internal generators is the
content of the following result.

Lemma B.10. For all i, j, p, we have

Φ−1∂Φ(cpij) = π∂cpij = π∂′cpij = (Φ′)−1∂′Φ′(cpij).

Proof. We will show that Φ−1∂Φ(cpij) = π∂cpij ; the proof that

(Φ′)−1∂′Φ′(cpij) = π∂′cpij is essentially identical. We first establish this
when i �= q and j �= q+1. In this case, from the definition of Φ, we have

Φ(σiσqc
l
iqc

p−l
qj + σiσq+1c

l
i,q+1c

p−l
q+1,j) = σiσqc

l
iqc

p−l
qj + σiσq+1c

l
i,q+1c

p−l
q+1,j ,

whence Φ(∂cpij) = ∂cpij . Thus

Φ−1∂Φ(cpij) = Φ−1∂cpij = ∂cpij = π∂cpij ,

where the last equality follows from the fact that c0q,q+1 does not appear

in ∂cpij .
It remains to prove the lemma when i = q or j = q + 1. This breaks

into three cases: i = q and j �= q + 1, i �= q and j = q + 1, and i = q
and j = q + 1. We will establish the first case and leave the similar
calculations for the other two cases to the reader. For j �= q+1, we have

Φπ∂(cpqj) = δqjδ1p +
∑

(m,l)�=(q+1,0)

σqσmΦ(clqm)Φ(cp−lmj )

= δqjδ1p +
∑

(m,l)�=(q+1,0)

σqσm(clqm − σqσq+1ac
l
q+1,m)cp−lmj

+
∑
l>0

(clqq − σqσq+1ac
l
q+1,q)(−σqσq+1ac

p−l
q+1,j)

+
∑
l>0

σqσq+1(c
l
qqa− σqσq+1ac

p−l
q+1,qa)c

p−l
q+1,j

= δqjδ1p +
∑

(m,l)�=(q+1,0)

σqσm(clqm − σqσq+1ac
l
q+1,m)cp−lmj

= δqjδ1p +
∑
m,l

σqσmc
l
qmc

p−l
mj − σqσq+1c

0
q,q+1c

p
q+1,j

−
∑
m,l

σq+1σmac
l
q+1,mc

p−l
mj

= ∂(cpqj − σqσq+1ac
p
q+1,j)

= ∂Φ(cpqj),

where the second and third sums after the second equality arise from

the fact that Φ(cp−lmj ) and Φ(clqm) have additional terms when m = q
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Figure 28. Disks contributing to the differentials ∂x
or ∂′x and involving c0iq, c

0
i,q+1 for i < q, arranged into

families; the depicted portions are the parts outside the
shaded region in Figure 27. Some of these disks also have
negative corners at a, ã, b, or b̃, as shown. Circles rep-
resent the handle 2-spheres. The positive corner x is not
shown but is to the right of each diagram where the
2-sphere is on the left, and vice versa. The words un-
derneath each disk are the contributions of the depicted
portion of the disk to the corresponding word in ∂ or ∂′.
Orientation signs are calculated from the rules in Sec-
tion 2.4, with some simplification due to (B.2).

and m = q + 1, respectively. Thus Φ−1∂Φ(cpqj) = π∂cpqj , as desired.
q.e.d.

Finally, we need to check (B.3) for external generators, corresponding
to crossings in the shaded region of Figure 27. Let x be such a crossing;
we need to show that Φ−1∂x = (Φ′)−1∂′x. The only generators appear-

ing in ∂x or ∂′x that are affected by Φ or Φ′ are b, b̃, and generators
of the form c0iq, c

0
i,q+1 for i < q and c0qj , c

0
q+1,j . The terms in ∂x and

∂′x that do not include any of these generators are identical, while the
terms that do include these generators can be grouped as shown in Fig-
ure 28 (which shows terms involving c0iq or c0i,q+1 for i < q; there is an

entirely analogous group of diagrams for terms involving c0qj or c0q+1,j

for j > q + 1). For instance, the top left set of diagrams corresponds
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Λ Λ′

Figure 29. Front (xz) diagrams for Legendrian links
Λ,Λ′ in normal form related by Gompf move 6. The cor-
ners in these fronts are understood to be smoothed out.

to a collection of terms y(c0i,q+1 + c0iqa)z in ∂x and a term yc0i,q+1z in

∂′x. The fact that Φ−1∂x = (Φ′)−1∂′x now follows from the following
identities, easily checked from the definitions of Φ and Φ′:

Φ−1(c0i,q+1 + c0iqa) = (Φ′)−1(c0i,q+1) = c0i,q+1,

Φ−1(c0iq + c0i,q+1b+ c0iqab) = (Φ′)−1(c0iq + c0i,q+1b) = c0iq + c0i,q+1(b+ ã),

Φ−1(c0iq) = (Φ′)−1(c0iq − c0i,q+1ã) = c0iq,

Φ−1(c0i,q+1 − c0iq b̃) = (Φ′)−1(c0i,q+1 − c0iq b̃+ c0i,q+1ãb̃)

= c0i,q+1 − c0iq(a+ b̃),

along with the analogous identities involving c0qj and c0q+1,j .

B.2.F. Invariance under Gompf move 6, part 1.

Proposition B.11. If Λ and Λ′ are Legendrian links in #k(S1×S2)
in normal form, related by Gompf move 6, then the DGAs associated to
πxy(Λ) and πxy(Λ

′) are stable tame isomorphic.

The proof of Proposition B.11 occupies this section and the following
section, B.2.G.

Let Λ and Λ′ be Legendrian links in #k(S1 × S2) related by Gompf
move 6. Perturb the fronts of Λ and Λ′ to be in normal form, and
then further perturb them to take the form shown in Figure 29. Then
the corresponding xy projections are in xy-normal form as shown in
Figure 30.

By Proposition B.3, it suffices to show that the DGAs for Λ and Λ′
associated to the xy projections shown in Figure 30 are stable tame
isomorphic. Denote these DGAs by (A, ∂) and (A′, ∂′) respectively. We
will show that these DGAs are both stable tame isomorphic to a third
DGA (A′′, ∂′′), which we now define.

Note that A is generated by internal generators cpij , where 1 ≤ i, j ≤
n, p ≥ 0, and i < j if p = 0, along with external generators correspond-
ing to crossings in πxy(Λ), including a1, . . . , an as marked in Figure 30
as well as b1, . . . , bn and so forth. Let A′′ be the algebra generated by
the internal generators cpij, along with all external generators except
a1, . . . , an. This algebra inherits a grading from A. There is an algebra
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Figure 30. The xy projections for Λ and Λ′ given in
Figure 29, with some crossings labeled. The dotted boxes
are identical (and correspond to the dotted boxes in Fig-
ure 29), as are the two shaded regions.

projection map π : A → A′′ that maps a1, . . . , an to 0 and every other
generator of A to itself; that is, it projects away any word involving any
ai. We now define ∂′′ : A′′ → A′′ by

∂′′ = π ◦ ∂.
We will prove that (A, ∂) and (A′′, ∂′′) are stable tame isomorphic.

The proof that (A′, ∂′) and (A′′, ∂′′) are stable tame isomorphic is en-
tirely similar. (Note for this purpose that there is also a projection map
π′ : A′ → A′′ that sends the generators a1, . . . , an of A′ to 0 and acts
as the identity on all other generators, and that ∂′′ = π′ ◦ ∂′.)

For grading purposes, let (m(1), . . . ,m(n)) be the Maslov potentials
associated to strands 1, . . . , n passing through the handle, and let m(0)
be the Maslov potential associated to the strand in the front projection
of Λ in Figure 29 that crosses over the other strands (and includes the
bottom half of the left cusp). Then we have

|ai| = m(0)−m(i)

for 1 ≤ i ≤ n. Write σi = (−1)m(i) for 1 ≤ i ≤ n, and σ = (−1)m(0);
then sgn(cpij) = −σiσj and sgn(ai) = σσi.

Let Ã be the algebra generated by the generators of A, along with
infinite families of generators

{aq}∞q=n+1 and {bq}∞q=n+1
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with grading given by |aq+n| = |aq|+ 2 for all q ≥ 1 and |bq| = |aq| − 1

for all q ≥ n+ 1. Extend ∂ from A to Ã by setting

∂(aq) = bq, ∂(bq) = 0 for q ≥ n+ 1.

Then (Ã, ∂) is a stabilization of (A, ∂).
We can also view Ã as being generated by the generators of A′′, along

with {aq}∞q=1 and {bq}∞q=n+1. Extend ∂
′′ from A′′ to Ã by setting

∂′′(bq+n) = aq, ∂
′′(aq) = 0 for q ≥ 1;

note that this is a graded differential since |bq+n| = |aq|+1. Then (Ã, ∂′′)
is a stabilization of (A′′, ∂′′). It thus suffices to establish the following
result.

Lemma B.12. (Ã, ∂) and (Ã, ∂′′) are tamely isomorphic.

We will construct the tame isomorphism in Lemma B.12 in two steps,
one of which is deferred to Section B.2.G. Let Ã0 denote the subalgebra
of Ã generated by internal generators cpij along with ai for i ≥ 1 and bi

for i ≥ n+1. This is in fact a differential subalgebra of Ã with respect to
∂: indeed, by inspection of Figure 301 and the definition of the internal
differential, we have

∂(ai) = −
i−1∑
j=1

σσjajc
0
ji, for i ≤ n,

∂(cpij) = δijδ1p +

p∑
�=0

n∑
m=1

σiσmc
�
imc

p−�
mj .

In Section B.2.G, we will establish the following result.

Lemma B.13. There is a tame automorphism Ψ of Ã with the fol-
lowing properties:

1) Ψ acts as the identity on all generators of A except for {ai}i≥1
and {bi}i≥n+1, and restricts to a tame automorphism of Ã0 ⊂ Ã;

2) for q ≤ n,

Ψ(aq) = aq −
q+n−1∑
m=n+1

σσmbmc
0
m−n,q;

3) on Ã0,

Ψ ◦ ∂ = ∂′′ ◦Ψ.
1For the purposes of computing signs in the differentials of ai here as well as in

other external generators later, we choose the following crossing quadrants to have
orientation signs: southwest, southeast for ai, ei, and fi; southeast, northeast for di;
northwest, southwest for gi; south, east for d; and south, west for g.
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We now use Lemma B.13 to prove Lemma B.12 and thus invariance
under Gompf move 6.

Proof of Lemma B.12. Define Ω : Ã → Ã to be the algebra map given
by

Ω(ei) = ei + bi+n, 1 ≤ i ≤ n,

Ω(d) = d+
n∑

i=1

bn+idi,

and Ω(x) = x for all other generators of Ã. Note that Ω is an elementary
automorphism with respect to any ordering for which bn+1, . . . , b2n are
less than the ei, di, and d. We will show that

(B.4) Ω ◦Ψ ◦ ∂(x) = ∂′′ ◦ Ω ◦Ψ(x)

for all generators x of Ã, and thus Ω ◦ Ψ is the desired tame automor-
phism of Ã intertwining ∂ and ∂′′.

For a generator x of Ã0 ⊂ Ã, since Ω restricts to the identity on Ã0,
we have ΩΨ∂(x) = Ψ∂(x) = ∂′′Ψ(x) = ∂′′ΩΨ(x) by Lemma B.13(3).
Otherwise, x corresponds to a crossing in the shaded region of the top
diagram in Figure 30. An inspection of Figure 30 shows that unless
x = d or x = ei for some 1 ≤ i ≤ n, ∂(x) does not involve any of
a1, . . . , an, e1, . . . , en; then by Lemma B.13(1), ∂(x) = Ψ∂(x), and so
ΩΨ∂(x) = Ω∂(x) = ∂(x) = ∂′′(x) = ∂′′ΩΨ(x).

It remains to check (B.4) for x = d or x = ei. To this end, another
inspection of Figure 30 yields

∂(di) = −gi +
n∑

j=i+1

c0ijdj , 1 ≤ i ≤ n,

∂(ei) = ai − fi +
∑
j<i

σσjejc
0
ji, 1 ≤ i ≤ n,

∂(d) = 1− g +
n∑

i=1

aidi −
n∑

i=1

σσieigi.

Then by direct calculation and Lemma B.13(2), we have

ΩΨ∂(ei) = Ω

⎛
⎝ai − fi + i−1∑

j=1

σσj(ej − bj+n)c
0
ji

⎞
⎠

= ai − fi +
∑
j<i

σσjejc
0
ji

= ∂′′(ei + bn+i)

= ∂′′ΩΨ(ei)
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and

ΩΨ∂(d) = 1− g +
n∑

i=1

⎛
⎝
(
ai −

i−1∑
j=1

σσjbj+nc
0
ji

)
di − σσi(ei + bi+n)gi

⎞
⎠

= ∂′′(d) +
∑
i

(aidi − σσibi+ngi)−
∑

1≤j<i≤n
σσjbn+jc

0
jidi

= ∂′′
(
d+

n∑
i=1

bi+ndi

)

= ∂′′ΩΨ(d).

q.e.d.

B.2.G. Invariance under Gompf move 6, part 2. In this section
we prove Lemma B.13, completing the proof of invariance for Gompf
move 6. When defining the tame isomorphism Ψ, it will be convenient
to replace the notation cpij by cab for a, b ∈ Z, where cab is defined as
follows: write a = a1n+ a2 and b = b1n+ b2 for 1 ≤ a2, b2 ≤ n; then

cab =

{
0 a ≤ b

cb1−a1a2,b2
a > b.

Also extend σ1, . . . , σn to σa for all a ∈ Z by setting σa = σa2 . With
this notation, the following result is trivial to check.

Lemma B.14. 1) For any a, b ∈ Z, cab = ca+n,b+n.

2) For any a, b ∈ Z, ∂(cab) = δa+n,b +
∑b−1

m=a+1 σaσmcamcmb.

For s ≥ n, define a map ∂s : Ã0 → Ã0 as follows:

∂s(aq) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

bq, q > s,

−
q−1∑

m=s−n+1

σσmamcmq, q ≤ s,

0, q ≤ s− n+ 1,

∂s(bq) =

{
0, q > s

aq−n, (n+ 1 ≤ ) q ≤ s,

∂s(cab) = ∂(cab).

(The case q ≤ s−n+1 in the definition of ∂s(aq) is superfluous, following
from the expression for q ≤ s, but is included for ease of reference.)

Extend ∂s to all of Ã0 by the Leibniz rule. Note that ∂n = ∂.
We next claim that ∂n, ∂n+1, . . . are related by tame automorphisms

of Ã0. To this end, for s ≥ n+1, define algebra maps φs, ψs : Ã0 → Ã0
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as follows:

φs(bs) = bs −
s−1∑

m=s−n
σσmamcms,

ψs(aq) = aq − σσsbscs,q+n, for (s− n+ 1 ≤ ) q ≤ s,

and φs, ψs act as the identity on all generators of Ã0 besides bs for φs
and as−n+1, . . . , as for ψs.

Lemma B.15. For all s ≥ n+ 1, we have ψsφs∂s−1 = ∂sψsφs.

Proof. We will show that ψsφs∂s−1(x) = ∂sψsφs(x) for all gener-

ators x of Ã0. Since ψs, φs do not affect generators of the form cpij ,

ψsφs∂s−1(c
p
ij) = ∂(cpij) = ∂sψsφs(c

p
ij). Similarly, it follows from the def-

initions of ∂s, ∂s−1, ψs, φs that if q > s, we have ψsφs∂s−1(aq) = bq =
∂sψsφs(aq) and ψsφs∂s−1(bq) = 0 = ∂sψsφs(aq); and if q < s, we have
ψsφs∂s−1(bq) = aq−n = ∂sψsφs(bq).

It remains to check x = aq for q ≤ s and x = bs. For x = aq with
q < s, we have

ψsφs∂s−1(aq) = ψsφs

(
−

q−1∑
m=s−n

σσmamcmq

)

= −
q−1∑

m=s−n
σσm(am − σσsbscs,m+n)cmq

= −
(

q−1∑
m=s−n+1

σσmamcmq

)
− σσsas−ncs,q+n + bs∂(cs,q+n)

= ∂s(aq − σσsbscs,q+n)

= ∂sψsφs(aq),

while for x = as, we have

ψsφs∂s−1(as) = ψs

(
bs −

s−1∑
m=s−n

σσmamcms

)

= bs −
s−1∑

m=s−n
σσmamcms +

s−1∑
m=s−n

σmσsbscs,m+ncm+n,s+n

= bs + (∂s(as)− σσs−nas−ncs−n,s) + bs(∂(cs,s+n)− 1)

= ∂s(as − σσsbscs,s+n)

= ∂sψsφs(as).
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Finally, for x = bs, we have

∂sψsφs(bs) = ∂s(bs)− ∂sψsφs

(
s−1∑

m=s−n
σσmamcms

)

= as−n − ψsφs∂s−1

(
s−1∑

m=s−n
σσmamcms

)

= as−n − ψsφs(as−n)
= 0

= ψsφs∂s−1(bs),

where the second equality follows from ψsφs∂s−1(x) = ∂sψsφs(x) for
x = am and x = cms, and the third equality is a direct computation:

∂s−1

(
s−1∑

m=s−n

σσmamcms

)

=

s−1∑
m=s−n

(
−

m−1∑
�=s−n

σmσ�a�c�mcms + am

(
s−1∑

�=m+1

σmσ�cm�c�s + δm+n,s

))

= as−n −
∑

s−n≤�<m≤s−1

σmσ�a�c�mcms +
∑

s−n≤m<�≤s−1

σmσ�amcm�c�s

= as−n.

This completes the verification of the lemma for all generators of Ã0.
q.e.d.

For s ≥ n+ 1, define Φs : Ã0 → Ã0 by

Φs = ψs ◦ φs ◦ ψs−1 ◦ φs−1 ◦ · · · ◦ ψn+1 ◦ φn+1.

By Lemma B.15, we have Φs ◦ ∂n ◦ Φ−1s = ∂s on Ã0.

Now define ∂∞ : Ã0 → Ã0 by

∂∞(cpij) = ∂(cpij)

∂∞(aq) = 0 q ≥ 1

∂∞(bq) = aq−n q ≥ n+ 1.

Intuitively, this is the limit of ∂s as s → ∞. Note that on Ã0 ⊂ Ã,
∂∞ agrees with ∂′′. If we can construct the “limit” automorphism Φ =
lims→∞Φs, then we should have Φ ◦ ∂n ◦ Φ−1 = ∂∞ on Ã0, and Φ
intertwines ∂ = ∂n and ∂′′ = ∂∞ on Ã0.

To make this rigorous, consider the following algebra maps Ψ1,Ψ2 :
Ã0 → Ã0: Ψ1 is the identity on all generators except for the aq, and

Ψ1(aq) = aq −
q+n−1∑

m=max(q,n+1)

σσmbmcm,q+n
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for q ≥ 1; Ψ2 is the identity on all generators except for the bq, and

Ψ2(bq) = bq −
q−1∑

m=q−n
σσm(ψ−1n+1ψ

−1
n+2 · · ·ψ−1q−1(am))cmq

for q ≥ n+ 1. Then Ψ1 is an elementary automorphism with respect to
any ordering of Ã0 for which

c0ij , c
1
ij < a1 < bn+1 < a2 < bn+2 < a3 < bn+3 < · · ·

where c0ij , c
1
ij are ordered before all aq and bq for all 1 ≤ i, j ≤ n, and Ψ2

is an elementary automorphism with respect to any ordering for which

c0ij , c
1
ij < a1 < · · · < an < bn+1 < an+1 < bn+2 < · · · .

(To verify this second statement, note that ψ−1s (am) = am+σσsbscs,m+n

for m ≤ s, and so when m ≤ q − 1, ψ−1n+1 · · ·ψ−1q−1(am) can only involve

am, bs with s ≤ q − 1, and cs,m+n with s ≥ n+ 1.)

We now define the map Ψ : Ã0 → Ã0 by Ψ = Ψ1 ◦Ψ2. By the above
discussion, Ψ is a tame automorphism of Ã0.

Lemma B.16. 1) ∂s(aq) = ∂∞(aq) for s ≥ q+n−1, and ∂s(bq) =
∂∞(bq) for s ≥ q.

2) Φs(aq) = Ψ(aq) for s ≥ q + n − 1, and Φs(bq) = Ψ(bq) for s ≥
q + n− 2.

Proof. (1) is clear from the definition of ∂s and ∂∞.
To establish (2), rewrite Φs for s ≥ n+ 1 as follows:

(B.5) Φs = ψs ◦ ψs−1 ◦ · · · ◦ ψn+1 ◦ φ̃s ◦ φ̃s−1 ◦ · · · ◦ φ̃n+1,

where φ̃q = (ψq−1 · · ·ψn+1)
−1 ◦ φq ◦ (ψq−1 · · ·ψn+1) for q ≥ n+ 1. Since

φq acts as the identity on all generators but bq, and the definitions of

ψq−1, . . . , ψn+1 do not involve bq, we conclude that φ̃q acts as the identity

on all generators of Ã0 except bq, and

φ̃q(bq) = ψ−1n+1 · · ·ψ−1q−1(φq(bq)) = bq −
q−1∑

m=q−n
σσm(ψ−1n+1 · · ·ψ−1q−1)(am)cmq

= Ψ2(bq).

Note that by the discussion preceding the lemma, Ψ2(bq) involves only
a� with � < q, along with b’s and c’s.

From (B.5), we have Φs(aq) = (ψs · · ·ψn+1)(aq). Using the definitions
of Φs, φs, and ψs, one can easily check by induction on s ≥ n+ 1 that

Φs(aq) = (ψs · · ·ψn+1)(aq),

=

⎧⎪⎨
⎪⎩
aq, s < q

aq −
∑s

m=max(q,n+1) σσmbmcm,q+n, q ≤ s ≤ q + n− 2,

aq −
∑q+n−1

m=max(q,n+1) σσmbmcm,q+n, s ≥ q + n− 1,
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and it follows that Φs(aq) = Ψ1(aq) = Ψ(aq) when s ≥ q + n− 1.
Finally, let s ≥ q+n−2. We have just shown that (ψs · · ·ψn+1)(x) =

Ψ1(x) if x = a� with � < q, and the same equation holds trivially if x is
a b or c generator. It follows that

Φs(bq) = (ψs · · ·ψn+1)(φ̃q(bq)) = (ψs · · ·ψn+1)(Ψ2(bq)) = Ψ1(Ψ2(bq))

= Ψ(bq),

and this completes the proof of (2). q.e.d.

We are now in position to prove Lemma B.13.

Proof of Lemma B.13. The tame automorphism Ψ of Ã0 is the one de-
fined in the above discussion. Properties (1) and (2) in the statement
of Lemma B.13 are direct consequences of the construction of Ψ. It
remains to establish property (3), which we can do by checking that

Ψ∂(x) = ∂′′Ψ(x) for all generators x of Ã0.
If x = cpij , then Ψ∂(cpij) = ∂(cpij) = ∂′′(cpij) = ∂′′Ψ(cpij). If x = aq with

q ≥ 1, then choose any s ≥ q + n − 1. By Lemma B.16(2), we have
Φs(aq) = Ψ(aq); since ∂n(aq) involves only a1, . . . , aq−1 and c, we also
have Ψ∂n(aq) = Φs∂n(aq). Furthermore, Ψ(aq) = Ψ1(aq) involves only
a� with � ≤ q, b� with � ≤ n + q − 1, and c, and so by Lemma B.16(1)
we have ∂∞(Ψ(aq)) = ∂s(Ψ(aq)). Thus

Ψ∂(aq) = Ψ∂n(aq) = Φs∂n(aq) = ∂sΦs(aq) = ∂sΨ(aq)

= ∂∞Ψ(aq) = ∂′′Ψ(aq).

Finally, consider the case x = bq with q ≥ n + 1, and choose any
s ≥ q + n − 2. From the discussion preceding Lemma B.16, Ψ2(bq)
involves only c, a� with � ≤ q − 1, and b� with � ≤ q; then Ψ(bq) =
Ψ1(Ψ2(bq)) involves only c, a� with � ≤ q − 1, and b� with � ≤ n +
q − 2. By Lemma B.16(1), it follows that ∂sΨ(bq) = ∂∞Ψ(bq). Also, by
Lemma B.16(2), Φs(bq) = Ψ(bq). Thus

Ψ∂(bq) = 0 = Φs∂n(bq) = ∂sΦs(bq) = ∂sΨ(bq) = ∂∞Ψ(bq) = ∂′′Ψ(bq)

and the proof is complete. q.e.d.

B.2.H. Proof of Theorem 2.18. Consider two front diagrams that
represent Legendrian-isotopic links in normal form in #k(S1 × S2). By
[19], these diagrams are related by a sequence of the basic moves men-
tioned above. (Since our definition of the DGA requires a choice of base
point on each component of the link, we should also include moves that
fix the fronts but move base points along the components. However,
such moves simply change the differential by conjugation by a particu-
lar tame automorphism of the algebra, replacing each generator by itself
times some product of powers of ti. See [27, section 2.5].)

By Proposition B.3, two Legendrian links in normal form that are
related by Legendrian isotopy inside the box [0, A] × [−M,M ] have
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DGAs that are stable tame isomorphic. Propositions B.5, B.9, and B.11
show invariance under Gompf moves 4, 5, and 6. Invariance for the
alternate (180◦ rotated) versions of Gompf moves 4 and 6 follows from
invariance under the usual versions, along with Lemma B.2 and the fact
that two semifree DGAs (A, ∂), (A′, ∂′) are stable tame isomorphic if
and only if (A, ∂op), (A′, ∂′op) are stable tame isomorphic. q.e.d.
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[28] A. Oancea, The Künneth formula in Floer homology for manifolds with restricted
contact type boundary, Math. Ann. 334(1):65–89, (2006), arXiv:math/0403376,
MR 2208949, Zbl 1087.53078.

[29] J.M. Sabloff, Invariants of Legendrian knots in circle bundles, Commun. Con-
temp. Math. 5(4):569–627, (2003), arXiv:math/0208214, MR 2003211, Zbl
1046.57013.

[30] J.M. Sabloff, Augmentations and rulings of Legendrian knots, Int. Math. Res.
Not. (19):1157–1180, (2005), arXiv:math/0409032, MR 2147057, Zbl 1082.57020.

[31] C. Shonkwiler & D.S. Vela-Vick, Legendrian contact homology and nondestabiliz-
ability, J. Symplectic Geom. 9(1):33–44, (2011), arXiv:0910.3914, MR 2787360,
Zbl 1226.57013.

Uppsala University

Box 480

751 06 Uppsala, Sweden

and



SUBCRITICAL LEGENDRIAN CONTACT HOMOLOGY 157

Insitute Mittag-Leffler

Aurav 17

182 60 Djursholm, Sweden

E-mail address: tobias@math.uu.se

Mathematics Department

Duke University

Durham, NC 27708-0320

E-mail address: ng@math.duke.edu



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.7
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType true
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
    /SKY <>
    /SLV <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


