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INTERSECTION BOUNDS FOR NODAL SETS
OF PLANAR NEUMANN EIGENFUNCTIONS
WITH INTERIOR ANALYTIC CURVES

LavyaN Ern-HaJJ & JouHN A. ToTH

Abstract

Let Q C R? be a bounded piecewise smooth domain and ¢y
be a Neumann (or Dirichlet) eigenfunction with eigenvalue A\? and
nodal set N, = {z € Q;px(z) = 0}. Let H C Q be an interior
C¥ curve. Consider the intersection number

n(\ H) = #(HNN,).

We first prove that for general piecewise-analytic domains, and
under an appropriate “goodness” condition on H (see Theorem
1.1),

(1) n(A, H) = Ou(})

as A — oo. Then, using Theorem 1.1, we prove in Theorem 1.2
that the bound in (1) is satisfied in the case of quantum ergodic
(QE) sequences of interior eigenfunctions, provided 2 is convex
and H has strictly positive geodesic curvature.

1. Introduction

Let © C R? be a real analytic, bounded planar domain with boundary
O and H C Qa real-analytic interior curve. We consider here the Neu-
mann (or Dirichlet) eigenfunctions ¢, on real analytic plane domains
Q C R? with

—Apy = Ny in
{ Oypx =0 (Neumann), ¢y =0 (Dirichlet) on 0S.

The nodal set of ©) is by definition
Ny, ={z € Q:¢py\(zx) =0}

Our main interest here involves estimating from above the number of
intersection points of the nodal lines of Neumann eigenfunctions (the
connected components of the nodal set) with a fixed analytic curve H
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contained in the interior of the domain 2. We define the intersection
number for Dirichlet data along H by

(2) n(A, H) = #{Ny, N H}.

We recall from [TZ] that an interior curve H is said to be good provided
for some Ao > 0 there is a constant C' = C(\g) > 0 such that for all
A > AO)

Q | loaldo = e

H
Assuming the goodness condition (3), it is proved in [TZ] that
() n(\, H) = O (N).

It follows from unique continuation for the interior eigenfunctions and
the potential layer formula py(z) = [5o N(z,7(s); \)ea(s)do(s); = €
int(Q2), that (3) is satisfied in the special case where H = 0Q. The
goodness property (3) seems very likely generic (see [BR]). However,
it is difficult to prove in concrete examples that the lower bound is
satisfied for all eigenfunctions with A > Xg. Indeed, in [TZ], only the
special curve 0% is shown to be good. Recently, Jung [Ju] has shown
that in the boundaryless case, closed horocycles of hyperbolic surfaces
of finite volume are good in the sense of (3) and hence satisfy the O(\)
upper bounds. In the case of a flat 2-torus, Bourgain and Rudnick [BR]
have recently proved < A upper bounds when H is real-analytic with
nowhere vanishing curvature (they also prove g A€ lower bounds in
the case where H is real-analytic and non-geodesic).

Despite these results, it is clear that not all curves are good in the
sense of (3). As a counterexample, consider the Neumann problem in
the unit disc. The eigenfunctions in polar variables (r,6) € (0, 1] x [0, 27]
are g7t (1,0) = Cpy n cO8 mHJm(j;mnr) and gogfffl(r, 0) = CpynsinmbJ,,
(jm.nr)- Here, Jy, is the m-th integral Bessel function and jy, ,, is the m-
th critical point of J,,,. The eigenvalues are A?n,n = (];nn)2 Fixm e Z™*
and consider

27k
Hm:{(r79);6: L; kzO;---,m_l}.
m
Then’ Clearly’ for any n = 07 17 27 ey @%fﬁAHm =0 and so in particular

H,, is not good in the sense of (3).
The point of this paper is threefold:

(i) To give an alternative proof of the nodal intersection bound of
Toth and Zelditch for interior curves H under a revised goodness
condition on H (see Theorem 1.1).

(ii) To establish exponential lower and upper bounds (see Theorem
1.3) for the Grauert tube maxima of analytic continuations of
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restrictions of quantum ergodic (QE) eigenfunctions to positively
curved H in annular subdomains of the complexification of H.

(iii) To use the lower bounds in (ii) combined with (i) to explicitly
identify a large class of interior analytic curves in planar billiards
that satisfy the n(\, H) = Og(\) intersection bounds for interior
QE sequences of eigenfunctions. That is the content of Theorem
1.2.

Moreover, for both Theorems 1.1 and 1.2, the n(\, H) upper bound is
proved using the frequency function method of F.H. Lin combined with
some semiclassical microlocal analysis, rather than the Jensen argument
in [TZ]. Indeed, the revised goodness condition (see Theorem 1.1) that
is needed for all our results follows here readily from the main frequency
function bound for the number of complex zeros in a complex thickening
of H.

Our first main theorem is:

THEOREM 1.1. Let ) be a bounded, piecewise-analytic domain and
H C Q an interior C¥ curve with restriction map vg : C°(Q) — C°(H).
Let Héco denote the complex radius £, > 0 Grauert tube containing H
as its totally real submanifold and let (v )© be the holomorphic con-
tinuation of vrex to Héco. Suppose the curve H satisfies the revised
goodness condition

(5) sup |(vrex)“(2)] 2 e
z€HE,

for some C > 0. Then, there is a constant Cq g > 0 such that for all
A > AO)

n(\ H) < Ca.pA.

Our results here are inherently semiclassical and so we introduce the
parameter h which takes values in the sequence )\j_l; g =123 ....
By a slight abuse of notation, we denote the Neumann (or Dirichlet)
eigenfunctions ¢y by ¢y, and write n(h, H) := n(X, H). The restrictions
to H are denoted by ¢ := ygpy, where vy : CO(Q) — CY(H) is the
restriction operator vy f = f|g. In the special case where H = 92 we
denote the Neumann (resp. Dirichlet) boundary traces by cpgﬂ = Y90 Ph
(resp. ¥ = yaahdypn).

Our second result deals with the case of quantum ergodic sequences
of eigenfunctions. We recall that given a piecewise smooth manifold (2
with boundary, a sequence of L?-normalized eigenfunctions (n;, Jpy i

quantum ergodic (QE) if for any a € S (T*Q) with 7(supp(a)) C Int(£2),

cl

<Ophjk (a’)(phjk ’ Qohjk> Nhjk —0t /S o a(m, g)d:u’a
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where dy is Liouville measure. By a theorem of Zelditch and Zworski
[ZZ], for a domain with ergodic billiards, a density-one subset of eigen-
functions are quantum ergodic. The domain 2 is quantum uniquely er-
godic (QUE) if all subsequences are QE. We also recall from [TZ2] the
quantum ergodic restriction (QER) problem, which is to determine con-
ditions on a hypersurface I' so that the restrictions yprp; to I' on a
Riemannian manifold (M, g) with ergodic geodesic flow are quantum
ergodic along T'.

An important consequence of Theorem 1.1 concerns convex billiards.

THEOREM 1.2. Let 2 be a bounded, piecewise-analytic conver domain
and H be a C¥ interior curve with strictly positive geodesic curvature.
Let (gphjk )72 be a QF sequence of Neumann or Dirichlet eigenfunctions
in Q. Then,

n(hj,, H) = Opa(h;').

The proof of Theorem 1.2 follows by showing that positively curved
H are good in the sense of (5) and then applying Theorem 1.1.

When Q is a convex ergodic billiard, it follows from the QE result
of Zelditch and Zworski [ZZ] that Theorem 1.2 applies to at least a
density-one subsequence of eigenfunctions. To our knowledge, it is an
open question as to whether or not there are ergodic billiards that are
QUE.

In the course of proving goodness for curved H, we actually prove a
much stronger result (see Proposition 6.1 and Theorem 1.3 below). We
show that the Grauert tube maximum of complexified eigenfunction
restrictions max, ¢y |(va ¢ (2)] is in fact exponentially increasing in
h provided the Grauert tube radius ¢, > 0 is sufficiently small. We
summarize this in the following theorem which seems of independent
interest.

To state our next result, we consider weight function

S(t) == max ]Re (ip(t,s))
S

)

where p is the complexified distance function between H and 99 (see
(57) and (79)). In Lemma 7.7 we compute the asymptotics of S(t) for
Imt € [eo — §,&,], with e > 0 small and 0 < § < e,. We show that in
such thin strips in the upper half-plane,

(6) S(t) =TImt + "C%J(GSRM)(Irnt)3 + O(|Imt]?).

THEOREM 1.3. Let Q be a convex bounded planar domain, H C Q
an interior C¥ strictly convex closed curve with curvature kg > 0, and
(gphjk)zozl a QF sequence of interior eigenfunctions. Then, for e, >
0 sufficiently small and any 0 < § < e, there exist constants C1 =
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Ci(e0,0) > 0 and Cy = Ca(e5) > 0, such that for h € (0, ho(eo)],

Cremn DI < mas |(in)(2)] < Coh kMG,
ze

Here, mp(eo — ) = Milye[_rrxleo—se O(t) and Mpu(es) =
MaXye(—r x]x[0,c0] S (t). Moreover, it follows from (6) that Mp(so) =
g0+ 0(e2) and my(eo — 6) = o — 0 + O(|eo — I3).

The lower bounds in Theorem 1.3 are one of the main results of this
paper and use Proposition 6.1 in a crucial way. To our knowledge, even
the (much simpler) upper bounds for |uhH’(C| are new for domains with
boundary. General results for growth of cp% for C* manifolds without
boundary are proved in [Z2].

Our nodal intersection bounds are consistent with S.T. Yau’s famous
conjecture on the Hausdorff measure of nodal sets [BG, Do, DF, DF2,
H, HL, HHL, HS, L, Y1, Y2] which asserts that for all smooth (M, g)
there are constants ci,C; > 0 such that c;A < [Ny, | < Ci1A, where | - |
denotes Hausdorff measure. There has been important recent progress
on polynomial lower bounds in Yau’s conjecture using several methods
(see [CM], [He|, [Man], [SZ]). Contrary to the lower bounds on nodal
length, there are no general nontrivial lower bounds for the intersection
count studied here, which is easily seen by considering the disc (see
also [JN, NJT, NS| and related results on sparsity of nodal domains
[Lew]). In analogy with the case of nodal domains, it is of interest to
determine whether non-trivial (i.e. polynomial in \) lower bounds exist
for nodal intersections under appropriate dynamical assumptions (such
as ergodicity) on the billiard dynamics. Recently, in [GRS], Ghosh,
Reznikov, and Sarnak have established such polynomial lower bounds
in the case of arithmetic surfaces. We hope to return to this question
elsewhere.

Throughout the paper C' > 0 will denote a positive constant that can
vary from line to line.

1.1. Outline of the proof of Theorem 1.1. We now describe the
main ideas in the proof of Theorem 1.1 suppressing for the moment
some of the technicalities. Let ¢ : [-7, 7] — H be a C¥-parametrization
of the curve H with |¢/(t)| # 0 for all t € [—m, 7] and let r : [—7, 7] — O
be the arclength parametrization of the boundary. We denote the respec-
tive eigenfunction restrictions (on the parameter domain) by uf (t) =
oM (q(t)) and uf(s) = ¢§%(r(s)). As in [TZ], given the eigenfunction
restriction, ufl (t) = ¢(q(t)), t € [—, 7], the first step is to complex-
ify uf to a holomorphic function uhH’C(t) with ¢ € C., where C¢, is a
simply connected domain with C* boundary 0C,_ containing the rec-
tangle Sc, » in the parameter space. The image of S., » under the com-

plexified parametrization of H is the complex Grauert tube Hg ; that
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is, HC = ¢%(S., ). The reason for introducing the intermediate do-
main of holomorphy C., is somewhat technical and has to do with the
frequency function approach to nodal estimates, which is adapted to
counting complex zeros in discs (see Lemma 3.3). Let n(h, C.,) denote
the number of complex zeros of uhH’(C in the simply connected domain
C.,. The key frequency function estimate (see Proposition 3.4) gives the
upper bound

0rus || 2
(7) n(h, H) < n(h,Co,) < Cy | —— )

HC
[y, ”Lgo

Here, we write L2 for L*(9C.,,do(t)) and Or is the unit tangential
derivative along 0C; . A key step in the proof of Theorem 1.1 is to h-
microlocally decompose the right hand side in (7). Let xg € C§°(T*0C%,)
with xr(c) = 1 for |o| < R+ 1 and xgr(c) = 0 for |o| > R+ 2 with
R > 0 arbitrary. Clearly,

(8) l|oruy” HL2 < ||0rOpn(xr)uy HL2 +[|0r (1 —Opp(xr))uy" ”L2-

For the first term on the right hand side of (8), since hdrOpyr(xr) €
Opn(S°0(T*0C.,)), we have by L2-boundedness that

H@TOph(XR)uh ||L2 _ Hh@TOph(XR)uh HL2O < Coh L.

luf 2, a2,

As for the second term on the right hand side of (8), by using poten-
tial layer formulas and the Cauchy-Schwarz inequality combined with a
complex contour deformation argument (see Proposition 4.2), we show
that

(10) |01 = Opn(xr))uy, iz, = O™ /) - [luf®| 2.

Here, Cg %, R as R — oo and L% = L?([—m, 7], dt), so the term on the
right hand side of (10) involves the L?-integral of the restriction of ¢y,
to the domain boundary 0f).

Since [[uf}||;2 = O(h™%) for some a > 0, it follows that

(11) 1hor(1 = Opn(xR))uy Iz, = O(e= /™).

From the Cauchy integral formula, Cauchy-Schwarz, and the goodness
condition (5) we get

(12) lup Cllpe. > C - sup Jup C(8)] g e/,

tESeo,

From (12) and (11),

H,C
(13) ”haT(l — Oph(XR)Uh ”Lgo _ O(e(_cR'i‘CO)/h).

H,.C
[y, ”Lgo
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By choosing R sufficiently large in the radial frequency cutoff xgr, we
get that Cr —Cp £ R > 0, and so substitution of the estimates (8), (9),
and (13) in (7) completes the proof of Theorem 1.1. q.e.d.

1.2. Outline of the proof of Theorem 1.3. Let Héco be the complex
Grauert tube of radius €, > 0 with totally real part H and let § > 0
be an arbitrarily small constant. Choose (., € C§°(HS;[0,1]) to be a
cutoff in the Grauert tube equal to 1 on Hg_% — Hg_gé and vanishing
outside HC _;—HE _ 5. Let X, 6(t) := (.,,5(¢%(t)) be the corresponding
cutoff in the parameter domain.

Ignoring technicalities arising from corner points on the boundary,
the main technical part of the proof of Theorem 1.3 (see Proposition
6.1 and Corollary 6.2) consists of showing that under the non-vanishing
curvature condition on H and for £, > 0 small, there is an order-zero
semiclassical pseudodifferential operator P(h) € Opp,(C§°(B*9Q)) such
that
(14)

2 [ [ SO )R e 1) g (PSR, 0.
C/2nZ
Moreover, the principal symbol o(P(h)) satisfies
(15) / a(P(h))y tdydn > Crae,s >0
B*9Q

where y(y,n) = /1 — [n*.

Given a quantum ergodic sequence (cphjk)z‘;l, it follows that the
boundary restrictions (cpg? )2, are themselves quantum ergodic [Bu,
k
HZ] in the sense that

(16) (PR, 0%~y / o(P(R))y~ dydn,
B*0Q

It then follows from (14), (15), and (16) that

e / /<C/2 z e S OM S ()2 Xy 5 (8) dbdE ~pyo

(17) / o(P(h)y ' dydy = Cogr..5 > 0.
B*0Q)

To get the lower bounds for the Grauert tube maxima, we use the
elementary inequality

A2 max ]uhH’C(t)\2 X // e~ 25W/hy _ 5(t)dtdt
C/2nZ

tESeo

(18) > B2 / /C/2 ] e 25OMHC)R x5 (4) didE.
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In view of (17) and the formula S(t) = Im ¢+ @(Im )3 +0(|Imt]°)
in Lemma 7.7, the exponential lower bound for the Grauert tube maxi-
H,C

mum of |u, | follows from (18).

The upper bound follows by using the complexified potential layer
formula

H,C .
uf S0 = [ N0 (o)l r)ir(s)

combined with Cauchy-Schwarz and the a priori bound [[uf®| ;- Q) =
O(1), which is a direct consequence of the QER property of the eigen-
function boundary traces. Further details are given in section 6. q.e.d.

1.3. Outline of proof of Theorem 1.2. Theorem 1.2 follows from
Theorems 1.3 and 1.1 since the goodness condition (5) for H follows
trivially from the lower bound in Theorem 1.3. q.e.d.

Remark: We note that the lower bound in Theorem 1.3 gives exponential
growth for the Grauert tube maximum maxes,_ . |uhH’(C(t)| consistent
with the upper bound. Therefore, it is much stronger than the goodness
condition (5) which only requires that the Grauert tube maximum not
decay faster than e~¢/" for some C > 0.

1.4. h-microlocal characterization of P(h). Although we give a
self-contained proof of Proposition 6.1 in section 8, it is useful to un-
derstand the h-microlocal rationale behind the characterization of P(h)
in the proposition. To simplify the argument somewhat, we continue to
assume here that 0f2 is smooth.

Let HC = Héc Héco /2 be the complex strip corresponding to

60/2,50 o

£0/2 < Imt < &, in the complexification of H and x € C§°(H£/2 o)
a cutoff to the complex strip H;CO /260" Given the composite operator
F\(h) : C>(0Q) — C§°(H,), with

€o
Fy(h) i= h™Ae=S/ G NC(h),
the argument in Proposition 6.1 characterizes the operators
(19) P(h) = F\(h)"Fy(h) : C*(09Q) — C*(09Q)

as h-pseudodifferential of order 0.
The reason for this can be seen as follows. Under the positive cur-
vature assumption on H we show in section 8.3 that for €, > 0 small,

. C
there exists s* € C’“J(Hf:co/2 ..) such that s — Relip“(ts)] phag a non-

Imt
degenerate maximum at s = s*(t). Since the subharmonic weight func-

tion S(t) = Reip®(t,s*(t)), it follows that the phase of the operator
F\(h) is of the form

(20)  lt,s) = RepC(t,5) +iBu(t,5) (s — 5°(1)* + Os — 5*(1))°),
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where coefficient £ (¢, s) ~ k(Y (s))?Imt. Here, s*(Ret,0) = Y ~!(Ret)
where Y : 900 — H is the glancing map relative to H (see Definition
7.4). When H is strictly convex, up to choice of orientation, the map Y is
the C*-diffeomorphism of 92 with H that assigns to each point r € 9
the corresponding point ¢ € H with the property that the geodesic ray
joining these points is tangent to H at the terminal point, q.

As for the real part of the phase Re (t, s) = Re pC(t, s), we note that
in view of (20), WFy (F\(h)) C A with

A= {(s,dsp"(t,8);t, —dip"(t, ) —id;S(t)), s = s*(t), %O <Imt < &5}

(21)
C T x T*HE.
One can decompose A into real and imaginary parts A = Re A @ iIm A
with
Re A = {(s,dsRe pC(t, s); Ret, —dreRe p(t, s)),

(22) s = s*(t), % <Imt <eo} C T*9Q x T*H.

Under the positive curvature condition on H, one can show that (s, Imt)
are parametrizing coordinates for Re A. For (z,§,y,n) € Re A, the pro-
jections k1(z,&,y,n) = (z,€) and ka(z,&,y,1n) = (y,n) are diffeomor-
phisms onto their images and the open real Lagrangian Re A is a canon-
ical graph with respect to the symplectic form 3 (ds Adlmt) & k5 (—ds A
dlmt) (see section 7.5.3). In particular, dsdi,¢Rep®(t,s) # 0 when
s = s*(t). As a consequence of this and the analysis of the imaginary
part of the phase in (20), a key step in the proof of Proposition 6.1 is
the operator decomposition (see Lemma 8.2)

(23) Fy(h)* Fy(h) = Uy ()T (h)* x* T(h)Uy (h).

Here, Uy (h) : C*(0Q2) — C*°(H) is an h-Fourier integral operator
quantizing the glancing diffeomorphism Y : 02 — H. After an appro-
priate choice of complex variables 7 + iTy € H;CO /2,20 and identifying
Hg/z ., With a subset of 7" H via map 71 +ir2 — (71, 72), the operators
T(h) : C*(H) — C>®(T*H) can be written in the form

(24)
T(h)g(r1,72)

— (27Th)_3/4/ e[’i(Tl_u)TZ_B(ulevTQ)‘Tl_u‘Q}/hc(u’ Tl) 7'27 h)g(u) do‘(u)
H

where ¢ ~ Y22, crh* and 5(u,7'1,7'2) > 0 when (u,71,72) € suppec.

Here, supp c(u, -, h) C {(11,72); 3 < 7 < &}. Consequently, T'(h) is,

h-microlocally on the image of H éco /2,607

of [WZ] of order zero. Indeed, the extra multiplicative factor of h=1/4

an FBI-transform in the sense



10 L. EL-HAJJ & J.A. TOTH

is included in the definition of F)(h) to ensure that T'(h) is of order
zero. The identity (23) follows from the analysis in section 8 (see, in
particular, Lemma 8.2).

Given (23), it follows by the h-Egorov theorem for FBI-transforms
([Zw] Theorem 13.12) that

T(h)*X*T(h) = Q(h)

where Q(h) : C*°(H) — C°°(H) is an h-pseudodifferential operator on
H of order 0. Finally, conjugation with the h-Fourier integral operator
Uy (h) quantizing the glancing map and another application of the usual
h-Egorov theorem for h-pseudodifferential operators gives P(h) in (19)
as an h-pseudodifferential operator of order 0 acting on the boundary
0f). This is essentially the content of Proposition 6.1 along with the
explicit computation of the principal symbol of P(h).

1.5. QER for Cauchy data along H and growth of uhH’C. In (16)
we have used that for Dirichlet, interior QUE for domains implies QE for
the boundary traces 9029. This follows from Burq’s proof of boundary
quantum ergodicity [Bu] using the Rellich commutator argument (see
also [HZ] for a different proof). In the Neumann case, the same is true as
long as one uses test operators with symbols supported away from the
tangential set to the boundary; in particular, our test operator P(h)
in (14) has this property. Neither statement is necessarily correct for
the eigenfunction restrictions to a general interior curve H [TZ2]. An
important point in this paper is that the nodal intersection count for an
interior H is linked to QER for the boundary values of eigenfunctions
cpgﬂ, not the QER problem for H (however, see below). Indeed, the
identity (14) directly links a weighted L2-integral of the holomorphic
eigenfunction continuations over H to boundary QER. That part of the
argument is somewhat technical and uses the curvature assumption on
H (see sections 7 and 8).

Despite the fact that the growth of the holomorphic continuations
uhH’(C and, consequently, the nodal intersection count, need not be di-
rectly linked to the QER problem for Dirichlet data consisting of eigen-
function restrictions to H, it is worthwhile to point out that it is directly
related to the QER problem for Cauchy data along H. Let

CDu(h) = (ph o)

with gth = p|lg and gohH’V = hO,, ¢n|H, where we continue to assume
that (pp) is QE sequence for the domain €. Then, the interior curve H
and 912 bound a subdomain Qg C € and one can write the boundary
restriction 9029 directly in terms of the Cauchy data along H. Indeed,
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Green’s formula gives

/ Do att Go (), a(t), )k (a(t))da ()
(25) /H B Go(r(s), a(t), ) t™ (a())da().

It follows that

(26) (P(h)ed?, 8% = (Qu(h) CDp (h), CDy(h))

where Qg (h) is a 2 x 2-matrix of h-pseudodifferential operators acting
on H and we write CDg(h) as a column vector. Consider the opera-
tors T'(h) : C*(H) — C*>(09) and G(h) : C*(H) — C*>°(092) with
Schwartz kernels T'(r(s), q(t); h) = 0,,Go(r(s),q(t); h) and G(r(s), ¢(t);
h) = —h7'Go(r(s),q(t);h) respectively. Here Go(z,y,h) is the free
Green’s kernel in (29) and both T'(h) and S(h) are h-Fourier integral
operators with standard WKB-expansions. The latter follows from (29)
since H is interior to © and so dist(H, 9€2) > 0. The entries of Qg (h) are
the operators Q11(h) = T'(h)*P(h)T'(h), Q22(h) = G(h)*P(h)G(h), Q12
(h) = T(h)*P(h)G(h), and Q21(h) = Q12(h)*. By the h-Egorov theo-
rem, Q;j(h) : C*°(H) — C*°(H) are h-pseudodifferential on H of order
0 and the respective symbols can be computed in terms of the symbol
o(P(h)) in Proposition 6.1 and the transfer map between 02 and H
(see [TZ2] section 3). One can then restate Proposition 6.1 in the form

(27) W1/ / / 25O ()2 (1) ded
C/2nZ
~h—ot (Qu(h) CDy(h),CDg(h)).

The formula (27) relates the growth of the holomorphic continuations
C to QER for the eigenfunction Cauchy data along H.

Remark: Recently, Zelditch [Z] has obtained detailed results on the as-
ymptotic distribution of complex zeros of gth’C in the ergodic case when
H is a geodesic. Although we do not pursue this here, the identity in
(17) can be used to derive asymptotic distribution results for complex
zeros of gohH’C in the case where H has strictly positive geodesic curva-
ture, but only in an annular subdomain of H g away from the real curve
H (i.e. on the support of the cutoff x. ). At the moment, we do not
know what the asymptotic distribution of the zeros of cpf’(c looks like
in the entire Grauert tube H g when H is geodesically curved. We hope
to return to this problem elsewhere.

Remark: The convexity assumption on df2 in Theorems 1.2 and 1.3 can
be relaxed somewhat. Although we do not pursue it here, it is not hard
to show using the methods of this paper that our results extend to the
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case where the glancing map Y : 9Q — H is a diffeomorphism, H is C¥
strictly convex, and (¢p) is a QE sequence.
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2. Analytic continuation of eigenfunctions and domains

2.1. Complexification of domains ) and their boundaries 0.
We adopt notation that is similar to that of Garabedian [G] and Millar
[M1, M2] (see also [TZ]) and denote points in R? by (z,y) and com-
plex coordinates in C2 by (z,w). It is also important to single out the
independent complex coordinates ( = z+iw,(* = z—iw. When H C 2
and 0€) are real analytic curves, their complexifications are the images
of analytic continuations of real analytic parametrizations. There are
two natural parameter spaces and, as in [TZ], we freely work with both
throughout. We define the parameter strip of width 2¢g to be

Se, ={t € C:t=Ret+ilmt,Ret € R,Imt € [—¢eo,60]}.
The corresponding fundamental rectangular domain is
Seor ={t€C:t=Ret+ilmt,Ret € [—m, 7], Imt € [—&,, 0]}
For e, > 0 small, the associated conformal map of S, » onto H, éco is
q“: S,

¢“(t) = (a1 (1), a5 (1)).
Without loss of generality, we assume that H is a closed curve with
|¢'(t)] # 0 for all t € [—m,7]. In addition, we assume throughout that
the real-analytic parametrization q : [—7, 7] — H with ¢(t + 27) = q(¢)
extends to a conformal map ¢© : So., or — HS. with ¢C(t+27) = ¢©(2).
One can also naturally parametrize H éco using functions on annular do-
mains in C of the form

A, ={ze€Cie " <|z] <e™}.

C
m HEO

In terms of the conformal map

2 Seqm — Aeo, 2(t) = et

given any 27-periodic holomorphic function f € O(Sg, ) there is a
unique holomorphic F' € O(A.,) with

f(t) = F(=(t)) = F(e").



NODAL INTERSECTION 13

The conformal parametrizing map ¢ : Seor — Héco induces a confor-
mal parametrizing map Q© : A., — HE with ¢©(¢) = Q%(e). We use
the two maps interchangeably throughout. Generally, uppercase letters
denote parametrization maps from the annulus A.. and lowercase ones
denote maps from the rectangle S, . In view of the potential layer
formulas and the boundary conditions, the boundary curve 0f2 has spe-
cial significance. Without loss of generality, we let r : [—m, 7] — 00
be the real analytic arclength parametrization of the boundary with
r(t 4+ 2m) = r(t) and |r/(t)] = 1 for all ¢t € [—7,n]. The corresponding
holomorphic continuation is 7€ : Sz, — 00C with rC(¢) = RE(2(2)).

In addition, we let C., be a simply connected domain bounded by a
closed real-analytic curve 0C,, with

(28) [_77-777] g SEQJI’ g £o g 5260,27r7
and .
min |z — [-m,7]| > T and max [Im z| < S
2€9C.,NR 2 2€8C:,, 4

The interval [—7, 7] is just the totally real slice of the complex parameter
rectangle S, » which is contained in C¢ . By possibly shrinking e, > 0
we assume from now on that the eigenfunction restrictions extend to
2m-real periodic holomorphic functions uhH’C on the larger rectangles
S%e0,27-

2.1.1. Holomorphic continuation of the restricted eigenfunc-
tions. Let G : H2(R?) — L?*(R?) be the fundamental solution of the
Helmholtz equation in R? with Schwartz kernel

? _
Glay.a',y/ h) = JHag) (h|(@,y) = (',9))),
where

S

et* ooe_s 1
(29) Ha(V(2) = ¢, — / — (1 —=—)""2ds, Rez>0.
z s 21z
vz / Vs

An application of Green’s theorem yields the following potential layer
formula for the Neumann eigenfunctions:

(30) on(z,y) = / By, G, 7(5), h) o1 (r(5))do(s),
o0

where (z,y) € Q and v € Spa(€) is the unit external normal to the
boundary at r(s) € 9Q. We denote the kernel of the potential layer
operator in (30) by

N(z,y;r(s),h) :=0,,G(z,y;7(s), h)
(31) = — b 'Hal) (h 7Y |(2,y) — 7 (s)]) cos O((z, ), 7(5))
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where (2.9) — r(s)
x,y) —7(s
ot = (=20 )
and the corresponding operator by N(h) : C°(8Q) — C*(£2).
To understand holomorphic continuation of eigenfunctions, one starts
with the singularity decomposition of the kernel G(x, y; (s), h). It is well
known that

G,y 7(s),h) = A(h|(w) — 7(5)]) log (M)
(32) + B0, y) - (s))

where A(z) and B(z) are entire functions of 22 € C and each of them
have elementary expressions in terms of Bessel functions (see [TZ] Ap-
pendix A). A(z) is the Riemann function [G].

We identify (z,y) € R? with o + iy € C, and introduce the notation

plx + iy, r(t)) = \/(x +iy —r(t)) - (x — iy — r(t)) where z — /2 is the
positive square-root function with vRez > 0 when Re z > 0. Substitu-
tion of (32) in (30) implies that for (z,y) € Q and with 9, := 0,
1 _
ente) = =5 [ onr()0 A0 ) lox(o?) dr(s)
1

~3 | enlrs)AB )0, 1og(?) ars)

(33) + | 3B p)en(r(s)) dr(s).
[2/9]

The holomorphic continuation of the third integral is the easiest to
describe since there is a real analytic F' € C¥(R,R) with entire extension
FC € O(C) satisfying

(34) 0yB(h™'p) = 8, F(h™?p?)

and the same is true for the normal derivative 9, A(h~!p) of the Riemann
function. In view of (34), the last integral in (33) has a biholomorphic
extension to Q° := {(z,w) € C%;Rez + iRew € Q}.

In contrast, the first two integrals both turn out to have fairly subtle
analytic continuations over €2 in C? that rely heavily on analytic continu-
ation of the eigenfunction boundary traces ([TZ] Appendix 9). However,
we need only consider holomorphic continuation over a strictly interior
curve H C ) here. Thus, to describe the holomorphic continuation of
the first integral on the right hand side of (33) it suffices to assume that
z + iy € ) is far from the boundary with |z + iy —r|> > 42 > 0, where
go < dist(H,08?). When max(|Imw|, |Im z|) < e, it follows by Taylor
expansion that

|p? (z4iw,7)—|Re z4iRe w—r|? | < max(|Im w|, |Im z|)||Re z+iRe w—r|.
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Thus, Re p?(z + iw,r) > €2 and (s,Re z, Rew) > log(p?(Re z, Rew, 5))
has a biholomorphic continuation in the (Re z, Re w) variables to

(35)

[Q — 992:,]% (o)

= {(z,w) € OF; Dé%?z |Re z + iRew — 1| > 2¢,, Imz| < &, [Imw| < &5}
T

The same is true for 9, A(p) and consequently for the integral. By
the same argument, the function (s,Re z, Rew) — 0, p?(Re z, Rew, s)
also biholomorphically continues in the (Re z, Re w)-variables to [Q —
O0..]%(eo). Consequently, so does the second integral on the RHS of
(33).

Restriction of the outgoing variables (z,y) to (¢qi(s),q2(s)) € H in
(33) yields the integral equation

(36) N(h)gh® = o3
From now on, we will refer to ¢, > 0 as the modulus of analyticity. In
light of the potential layer formula (36) for the Neumann eigenfunctions,
it is useful to compare eigenfunction restrictions to 92 with restrictions
to H C fl, and similarly for the holomorphic continuations. For the
restrictions of the Neumann eigenfunctions pulled-back to the parameter
domain, we continue to write
(37)
W2 (t) = 21 (8), o (1), ufl (8) = of (1), qa(0)); ¢ € [~ ]
with 7(¢) = r1(t) +ire(t) € 0Q and q(t) = ¢1(t) +ig2(t) € H.
ProprosITION 2.1. Suppose that H C Q is real analytic and let
dist(H,00) = ming y)c[—r )2 [q(t) — 7(s)|. Assume that q(t) has a holo-
morphic continuation to I(8) = [—m,w|£[—6,8]. Then the restriction ull
of the Neumann eigenfunctions has a holomorphic continuation uhH’(c(t)
to the strip Soc, 2x with

dist(H,00)
SUPye 1, (5) 10kg" ()]

Moreover, in the strip Sa., 2x, the continuation is given by the complex-
ified potential layer equation

(38) N = @) ",
where NC(h) is the operator with Schwartz kernel NC(q®(t),r(s),h)

holomorphically continued in the outgoing t-variables, and cpf’(c is the
holomorphic continuation of gth to Hg .

26, <

Proof. The proposition follows from the above analytic continuation
argument for (33) and (36) since by (35) the u holomorphically con-
tinue to the set {t € C;min,epq [¢(Ret) — 7| > 2e,,|Im¢C(t)| < &0}
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The formula in (38) follows from uniqueness of analytic continuation
and the fact that, by the above analysis of (33), for ¢ = ¢%(¢) € Ha-, 2r,

e Q) = INER®I(0) = NE ()R (0)- q.e.d.

3. The frequency function and measure of the nodal set

We first recall the definition of the frequency function with an impor-
tant application due to F.H. Lin [L] for estimating measures of nodal
sets. We are interested here in the planar case of holomorphic functions.
In general, the frequency function for harmonic functions in arbitrary
dimensions is defined as follows.

DEFINITION 3.1. Let Au =0 with A = 7", x the standard Lapla-
cian in R™. The frequency function of the harmomc function u in the
unit ball By C R™ is defined to be

f f31 ‘VUP

S luf?

0B1

F(u) =

When the context is clear, we suppress the dependence of F' on u
and just write F' for the frequency function. In the planar case, any
non-zero holomorphic function f(z) in the disc By = {z € C;|z| < 1}
has a decomposition of the form f = u + iv where u,v are harmonic
conjugates and so, since 0, f = d,u+10,v, in analogy with the harmonic
case in Definition 3.1, one defines the frequency function to be

ffB 10, f(2)|?dzdz
[ 1f(2)]2do(z) -

0By

(39) F=

An elementary but useful example to keep in mind is the monomial
f(z) = 2% = rkek®; k € Z*t. In this case, one easily computes the fre-
quency function to be k? fol r2k=ldr = k/2, where k is the degree of the
polynomial z*. By Green’s formula, the analogous result is easily veri-
fied for arbitrary homogeneous harmonic polynomials in any dimension.
The following result, proved by Lin [L] using Taylor expansion, and by
Han [H] using Rouche’s theorem, is an important generalization of the
polynomial case to arbitrary non-zero holomorphic functions. We recall
the result here and refer the reader to [H] for a proof (see also [HL],
[NV, Theorem 3.14], and [PST] for additional details). The key result
that estimates the number of complex zeros of f(z) in the disc Bj is
given by

THEOREM 3.2. [H, L, NV] Let f(z) be a non-zero analytic function
in By = {z € C : |z| < 1}. Then, for any 6 € (0,1) there exists a
constant C(6) > 0 such that

#{/71(0) N Bs} < C(8)F.
where F is defined to be the ratio in (39).



NODAL INTERSECTION 17

It is useful here to rewrite the frequency function F in (39) exclusively
in terms of integrals over the circular disc boundary 9B;.

LEMMA 3.3. Let f: By — C be non-zero holomorphic. Then,

Fe< ”8€f”L2(BBl)7
£l z2a8)

where Og = x0y — Y0, is the unit tangential derivative along the circular
boundary 0B of the disc.

Proof. The proof follows from Green’s formula and an application
of Cauchy-Schwarz. For z = = + iy = (z,y) € By we write f(z) =
Re f(z,y)+m f(x,y), where Re f(x,y),Im f(z,y) are real-valued har-
monic functions.

Since f is analytic, 0, f = 0,Re f —i0yRe f, and so

101> = (8:Re f)* + (9yRe f)* = [V(Re f)[*.

An application of Green’s theorem implies that

40)
L{flazf(Z)lzdzd? ZB[fIV(Ref)Izdxdy

= [ Ref-9,(Ref)dd — [[Ref - A(Re f)dzdy
0B1 B

= [ Ref-9,(Ref)ds,
0B1

where v is the outward pointing unit normal to 9B and the last line
follows since A(Re f) =0 in Bj.

Next, we use the Cauchy-Riemann equations written in polar coordi-
nates (r,0) € Rt x [0,27) to rewrite the normal derivative term on the
right hand side of the last line in (40) in terms of a tangential one.

(41) 0, Re f|8B1 = 0,Re f|r:1 = %Im f|r:1-
Hence, it follows from (41) and (40) that

(42) //|azf(z)|2dzdz: /Ref-8g(1mf) o).
Bl 631
Finally, an application of Cauchy-Schwarz in (42) gives

[[10-f(2)|Pdzdz < |[Re fll 1208, - 10s(Im f)] 2(08,)
(43 "

<N fllz2@my) - 190 f 1 r2081)- q.e.d.
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3.1. Frequency functions for the holomorphic continuations of
restricted eigenfunctions. We wish to estimate here the intersection
number n(h, H) in terms of Lemma 3.3.

PROPOSITION 3.4. Let H C € be a C¥ interior curve and let C-,
be a simply connected, bounded domain in C containing the rectangle
Seon With real-analytic boundary 0C,, and arclength parametrization
t— k(t) € OC.,. Then, for e, > 0 sufficiently small,

07wy 2.
n(h, H) ~ CH,ao HC .
1l

Here, L2 := L*(dC.,,|dt|) and Or denotes the unit tangential deriv-
ative along OC:, with Orf(t) == & f(k(t)).

Proof. Since C¢, is a simply connected bounded domain, by the Rie-
mann mapping theorem there exists a conformal map

H:Bl—>CEO,

where By = {z;]z| < 1}. By Caratheodory, there is & € C°(B;) with
R B, = K| B univalent up to the boundary. Moreover, since 9C¢, is real-
analytic, it follows from the Schwarz reflection principle that

(44) F € C¥(By).

Analogous results also hold for the inverse conformal map x~!: C., —
B . Since & is conformal and satisfies (44), it follows that the boundary
restriction

I~{|aB1 : 631 — 8050

is a C“-diffeomorphism. We define the composite function on Bj
H,C HC /-~
g, (2) == uy, " (k(2)); z€ B

We apply Theorem 3.2 to the holomorphic function gf’c in By. We
choose 0 € (0,1) so that Cs := &(Bs) D [—m, m]. We have that

n(h, H) = Ny, 0 [—m, 7] <nS(h,C5) = #{t € Cs; u"“(t) = 0}
(45) = #{t € Bsi g " (t) = 0}.
It follows by Theorem 3.2, Lemma 3.3, and (45) that

HC
19095, L2 081)

(46) n(h, H) < 20221 .
gy HLZ(aBl)

An application of the change of variables formula in (46) with ¢ = %(2)
for z € OBy proves the proposition. g.e.d.
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4. Estimating the frequency function: hA-microlocal
decomposition

In view of Proposition 3.4, we are left with showing that

lorug |l 2, »
ol 2,

To prove (47), we will need to h-microlocally decompose yac., uf’c

where voc., 1 C%(Sae, 2x) — C°(9C., ) is the restriction map. We briefly
digress here to introduce the relevant h-pseudodifferential cutoff opera-
tors, noting that 0C., is C¥-diffeomorphic to the unit circle 9B;.

4.1. Semiclassical pseudodifferential operators on tori. Let M"™
be compact manifold. The following semiclassical symbol spaces are
standard [EZ] and will suffice for our purposes.

DEFINITION 4.1. We say that a € SZ””(T*M x [0,ho)) if
a € C™(T*M;]0, hq)) has an asymptotic expansion of the form a ~j_o+
h=Fk > i2gaj(x,E)I where

0207 aj(w,€)| < Cap(1+ €)™ V; (2,6) € T*M.

The corresponding class of h-pseudodifferential operators Ay : C°(M) —
C>®°(M) have Schwartz kernels locally of the form

An(x,y) = (2wh) ™" / v M, & h)dg
with a € Sfl’m(T*M; [0,h0)). We write Ay, = Opp(a) for the operator
with symbol a(z,&; h).

Since 0C;, is C“-diffeomorphic to a circle S' = R/277Z, it suffices
here to consider h-pseudodifferential operators on tori and the latter
operators can be conveniently described globally in terms of their action
on Fourier coefficients. Given A;, € Opy,(S%™(T*T™)) one can write the
Schwartz kernel in the form
Ap(z,y) = (2m)™" Z eV g (1, & h); (,y) € [—m, 7" X [, 7]

ge(hZ)™

where apn(-,&) € C*°(T") and
05 5 g (2, €)] < Cap(1+ €)™V

where Aﬁ,gaw (7381, ,&n) = amn(z;§1+0P, - - §nthBy) —arn (251,

.., &) is the semiclassical iterated difference operator in the frequency
coordinates. The converse also holds, so that the two realizations of
h-pseudodifferential operators are equivalent. (See [Ag, Mc]| for the ho-
mogeneous case where h = 1. The extension to the semiclassical setting
is straightforward.)
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We are interested here specifically in the h-pseudodifferential cutoffs
Xn = Opn(x) € Opp(S%=°(T*0C.,)) where x € C§(T*0C.,). We
naturally identify 0C., with R/27Z by using the periodic C* arclength
parametrization

K:[—m,m = 0C:,; t — K(t).

4.2. Semiclassical wavefront sets of eigenfunction restrictions.
Let H"~! C M™ be any interior smooth hypersurface in a compact
manifold with or without boundary. In this subsection, we do not make
any analyticity assumptions on either H or the ambient manifold, M.
Let uhH := R be the eigenfunction restriction where ~vg : f —
flu, f € C°(H). Then, making a Fermi-coordinate decomposition in
a collar neighbourhood of H, it is not hard to show that

(48) W Ey(ufl) € B*H = {(s,0) € T*H;|o|, < 1}.

For Euclidean domains M = €, (48) follows directly from potential
layer formulas. For completeness and because of the importance of the
localization of W Fy(ufl) in our argument, we sketch the proof of (48)
for planar domains, which is the case we are interested in here. The
proof of (48) uses the potential layer representations of eigenfunctions
discussed in Section 2.1.1 in the planar case n = 2 restricted to the
curve H. It is immediate from (30) that

(49) afl ()= [ NG).r() ) o (s)do(s).

Since H C € is interior, i[nf ]|q(t) —r(s)] > C > 0, and so from
t,se|—m,m
(29) it follows that

(50)  N(t,s;h) = N(q(t),r(s),h) = (2rh)~ze 10Tl gt s )

where

e

alt,s;h) =Y aj(t,s)h? + O(hF)
=0
uniformly for all (¢(t),7(s)) € H x 092 with a; € C°([—n, 7] x [—7,7]).
Similar uniform asymptotics hold for derivatives as well.
Let x(¢) € C3°(R) be a cutoff function equal to zero when [£] > 2
and equal to 1 for [¢| < 3/2 and let Opy(x) € Opp(S%=°°(T*H; (0, hol))
be the microlocal cutoff with kernel

Opn(X)(t,t)) = (2m) 2 > 0N (©); (t,8) € [-m, 7] x [, 7).
¢enZ
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Then, from (49) and (50), it follows that
Opn(1 = X)uj! (t)
— Op(1 = )NuJ™(2)
(27)- Z/ / (ilt=t)EHa) /R (1 ) (€) alq(t)), r(s): h)

cehz
ud(s) ds dt.
Since |dyq(t')] = 1, differentiation of the phase
W(t,t', ;) i= (E = )€+ [a(t) —r(s)]

in t gives

|0 W (t, 1, s;6)| < :im

3
> ¢l -1 z§wmwa>§

—_

Since |¢] > % when £ €suppy, repeated integration by parts in t/, an
application of Cauchy-Schwarz, and using that |[uf?|. = O(h™'/*)
[BGT] implies that supyepozq) [Opn(1 — x(§))uf! (t)] = O(h®(€)~>)
where (£) := /1 + |£|2. The same argument for t-derivatives combined
with the Sobolev lemma implies that for all k € Z™T,

(51) 10pn (1 = X(€)uh | (=) = Ok(RZ(€) ™).

The wavefront bound in (48) is an immediate consequence of (51) since
the cutoff function x (&) can be chosen with support arbitrarily close to
|€| = 1 and the same argument gives (51) for any such cutoff.

In the next section we improve the compactness result (48) under the
real-analyticity assumption on (92, H) to show that in the h-microlocal
decomposition (8) the residual term |dr(1 — Oph(XR))uh HEO =0
(e=ColR)/h) with appropriate Cy > 0 and where xp € C§°(R) with
supp xr C {& €] < R}. Hence, to get an asymptotic estimate for the
frequency function of uhH’C, it suffices to bound ||8T0ph(XR)uhH’C||€O
and the latter is O(h~!|uf'C|.,) by standard L?*-boundedness of the
h-pseudodifferential operator hdrxs € Opy, (S~ (T*0C.,)).

4.3. The real analytic case. We now assume that H is real-analytic.
As outlined in the previous section, our goal here is to improve the
O(h*)-bound in (51) to obtain exponential decay estimates for the
residual mass term of the form ||Opp(1 — X)uf’CHLgO = O(e= /M), In
the following, using the parametrization [—m, 7| 5 t — k(t), we identify
0C., with R/(27Z), and so Opp(1 — x) : C*°(R/27Z) — C*(R/27Z).
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4.3.1. Holomorphic continuation of the N(t,s;h)-kernel. Given
(z,w) € C?, consider the map z + iw — (z + iw)* = z — iw which is
the holomorphic continuation to C? of the usual complex conjugation
x + iy — = — iy when (z,y) € R2. In the following, z — z'/2 denotes
the square root with positive real part with —7 < arg(z) < .

In view of Proposition 2.1 it follows that for e, > 0 sufficiently small,
the potential layer equation uf (t) = Nuf®(t) analytically continues to
the equation

(52) u () = [INu§C(Q); ¢ € Saey 2m-

In particular, we consider here the case where ( = k(t) € 9C.,.
For ¢ € U,,, where U, := {C € Sac, 2r; max |z — ¢] < %'}, equation
ze co

(52) remains valid and moreover, since
(53)
Re [¢°(¢) = r(s)]lg"(Q)" —7(s)] R €2 > 0 when (¢, s) € Ue, x [-, 7],

the kernel
(54) NC(E(C),r(s), h) = Hal) (h—v 145(0) — r(&)IE Q)" — r<s>1>

is holomorphic for ¢ € U,,. By Proposition 2.1, we have

(55)  wf'C0)= [ NOE(Q).r(s), h)ul®(s)do(s), ¢ € U..

—T

It follows from (53), (54), and the integral formula (29) that the real
WKB asymptotics for the N(¢,s, h)-kernel [HZ, TZ] holomorphically
continues in ¢ to give the complex asymptotic formula

NC(GE(C), r(s), h) = (2mh)~ @ @ QrEN/hGC (¢ s 1)
(56) (¢, s) € U., x [,

where a®((, s;3h) ~n—0 Y e as (¢, s)hF with ag(-, s) € O(U.,) and
(57)

£(65(0),r(5) = VI6°(0) — r(3)][a°(Q)* — 7)) (C,9) € Uz, x [—m, 7).

In particular, for ( = k(t) € 9C,, we have

(58) wy “(w(t) = [ N (x(t),r(s), h) i (s)do(s), t € [~m,],
where NC(q%(k(t)),r(s), h) satisfies the asymptotics in (56). Since we
compute in the parametrization variables (t,s) € [—m, 7], to simplify
notation we define

(59)  NC(t,s,h) = NC(¢C(x(t)),r(s),h); (t,s)€ [-m, 7] x [—m,7].
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4.3.2. Estimating the residual kernel [Op,(1 — x)NC|(t, s; h). Let
x € C§°(R) be a cutoff with x(§) = 0 when

€| > 205 sup 105 (¢%(€),7(s))|
(¢,8)€Ueq X [—m,m]

and x(§) =1 when
l<10et sup o [pS(a5(Q), ()]
(¢,8)EU X [—,7]

In this section we prove

PROPOSITION 4.2. Let H C ) be a C¥ interior curve with dist
(H,00) < d(eo) and let OC., be a curve satisfying (28). Then, as-
suming 6(g9) > 0 is sufficiently small and k € 7T, there is a constant
Ck(eo) > 0 such that for h € (0, h(es)],

|| [Oph(l — X)N(c](’ 7 h) ||Ck([—ﬂ'77r}><[—ﬂ'77r}) — O(E_Ck(&‘o)/h)‘

Proof. In light of the complexified potential layer formula in (55), we
substitute the complex WKB asymptotics for N(¢%(¢), r(s), h) in (56)
and use the Cauchy integral formula to deform contours of integration.

From (55) and (56), one gets that
(60) )

[Opr(1 — X)N(C](tv s,h)

= (2m)? EZhZ JT, e ENrEN/A (1 — 3)(€) a®((t'), v(s); ) dt
S
Consider the complex phase
VO 1, 5) = (t =)+ pS (" (w(1'), 7(5))-

For simplicity, write p© (¢, s) for p*(¢®(k(t')),r(s)). Consider for ¢ €
hZ the deformed contour
(61) we(t') =t — z% sgn(€)
where (t,t',s) € [-7,7]3. The deformed phase function
(62)
(twe(t)),5) = U (1.8 — i sen(€),s) = (t—t)e+i5 €1+ (we(t'), ).
Since [£] > 10e5! sup 1p°(q%(¢),r(s))| when & € supp(1 — ),

(¢,8)EU: X [—7,7]
it follows from (62) that

(63)  ImU(twe(t),s) >4  sup  [pS(5(Q),(5))] o
(8)€Uzo X[~m.1]

uniformly for (¢,#',s) € [—m,n]3. Moreover, for |¢| > 1 it also follows
from (62) that

(64) Im Wt we(t'), s) = 1]+ O(1) = e,
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Using Cauchy’s theorem, we deform the t'-contour of integration in (60)
to get
(65)

[Opn(1 = X)NC(t, 5, h)

= (2m) 72 Ygenz, S, eSO (1= x)(€) a® (55 (we (1)), 7(5); ) dlt

where the imaginary part of the deformed phase function W(t,we(t'), s)
satisfies (63). It follows from (63) and (64) that for appropriate C'(g,) £

~
~
Eo,

€0 co (co)
(66) |0ph(1—)NC(t, s, )| < e x | 3 e 3l | = o(e"5),
e>1

The argument for the higher C*-norms is basically the same since
the complex phase function UC(¢,#, 5) is unchanged. The derivatives 0%
and 8? just create additional polynomial powers in h~! in the amplitude
a(c(‘a 5 h). g.e.d.

Remark: For future reference (see proof of Theorem 1.1 below), we
note that when yrp € C§°(R) with xr(§) = 1 for || < R and supp
Xr C {&; €| < 2R}, it is clear from (64) that

CR(EO)

(67) HOph(l _XR)NC('7'7h)HCk Ok( )7
where Cr(eo) & R as R — oo.

5. Proof of Theorem 1.1

Proof. Let xr € C§°(R; [0, 1]) be a frequency cutoff as in Proposition
4.2 with xr(€) =1 for || < R and xg(§) = 0 for || > 2R. To simplify
notation, in the following we continue to write L2 = L?(9C.,) (resp.
L? = L*([-n,7])) and the corresponding unit speed parametrizations
are t — k(t) (resp. t — q(t)).

We recall that the basic frequency function estimate gives
horu .

n(h, H) < b~
1 2.

/10D (xr) (hOr )uy 2.
( e
lup e,
11 = Opn(xr)) (hdr)uy |12, )

gy a2,
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From Proposition 4.2 and Cauchy-Schwarz, it follows that
1 = Opu(xr)horuf™| < R
\

(68)
a2,

H,C
uf I,

In the last line of (68) we have used that |[uf}| ;> = O(h~%) for a > 0
(for example, Tataru’s sharp bound [Ta| gives o« = 1/3). Since uhH’(C(t)
is holomorphic for all t € Sy, 2r, it follows from the Cauchy integral
formula (see figure 1) and the Cauchy-Schwarz inequality that

(69)

1
sup |up"“(t)] < Cy - 2 (/ / s)—t|” 2dsdt> Nt HLgO
teSeo —mJ—m
= )}l

In (69) we use that 0C,, and S., » are disjoint so that f(s,t) = |k(s) —
t|=! € L*([~m,n] x [~7,7]). Substitution of (69) into (68) then implies
that

(1 — Opn(xr))hdru;” ||L2 —Og(eo)
=0 (e uy!

ks
[ 7> b (Seom)

7CR(5O)+CO

(70) =0 » ),

since by assumption HuhH’CHLm(Ssm) > e~ for some Co > 0. Since
Opn(xr) (hOr) € Opy,(S%=>°(T*H)), it follows by L?-boundedness that

Op hopul?
(1) |Opn(xr)hOTUY," HL2 — On. (),
[ 2,

The constant Cr(e;) £ R as R — o0, and so the proof of Theorem
1.1 follows from (70) and (71), by choosing R sufficiently large so that
Cr(go) — Cy > 0 in (70). q.e.d.

6. Proofs of Theorems 1.2 and 1.3

Proof. The key ingredient in the proofs of Theorems 1.2 and 1.3 is
the following operator bound: q.e.d.

PROPOSITION 6.1. Let H C € be a closed, strictly convex, interior
real analytic curve. Let N(C(q(c,r;h) be the holomorphic extension of
N(gq,r;h) in the q variables to Héco with the corresponding operator

NE(h) : L2(09Q;ds) — L*(HS ; ™ Ea dtdt),
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Y
‘\("Zru,%r

Figure 1

where HE = {q®(t); Imt| < eo}. Let a € C§°(HE) with

5eo

G

Then for h € (0,ho(eo)], and e5 > 0 sufficiently small, there exists an

associated symbol ag € C§°(B*92) C S%°°(T*9N x (0, ho]) such that
h=Y2 NC(h) e 25/"aNC(h) = Opp(ag) + R(h).

For (s,0) € B*0RQ, the symbol
(73)
ag(s,o) = ;5 a(Ret(s,0),Imt(s,0)) k2 (Y(s)) [Imt(s,0)| "1 v%(s, 0),

where y(s,0) = /1 —|o|? and

(72) suppa C {q%(t) € HE ; Eg<1 mt <

Y (s) =Ret(s,0)(1 + O(|Imt(s, o)),
o =—(w(s,Y(s)), Toa(s))
2
(74) - H(Y( Ka(9), Y (s)|Imt(s, 0)|*(1 + O(|Im t(s, 0)|)).

Moreover, the remamder satisfies
IR(M)[L2(80)—12(50) = O(h).

Remark: We note that the support properties of a(t) in Proposition
6.1 are stated for concreteness and can be replaced with any amplitude
supported in a strip not containing a real interval. In particular, for
a(t) = xe,(Imt) where x., € C§° is supported in any strip {e, — 6 <
Imt < e,} with 0 < § < e, arbitrarily small, the operator

P(h) = [h= e e, NE ()] - [0 ey NE(h)]

n (19) satisfies
P(h) = Opp(ag) + R(h),
where ag is as in (73) with a(t) = xe, (Im?).
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Remark: Since [(w(s,Y (s)),Toa(s))| < 1, it follows from (74) and the
support assumptions on a(Ret,Imt) in (72) that for e, > 0 small, ag €
C§e(B*0N) (i.e. has support disjoint from the tangential set S*052).

The proof of Proposition 6.1 is rather technical and to avoid break-
ing the exposition at this point we defer the proof to section 8. As an
immediate consequence Proposition 6.1 we have the following corollary:

COROLLARY 6.2. Assume € is a smooth convex bounded domain and
the interior curve H is strictly convex. Let x., € C3°(Se, x) be supported
in the strip {eo — 0 < |Imt| < eo} with 0 < § < &5. Then, for e, > 0
sufficiently small, there exists an order zero pseudodifferential operator
P(h) such that

W2 [ e ) e 6 dedt = (PR, )1
Seo,m
such that the principal symbol o(P(h)) satisfies
/ o(P(h))y~ " dydn > Co(2, H,e5) > 0,
B*9Q

where y(y,n) = /1 — |n|2.

Proof. Given P(h) = h=Y2[e=%/"x. NC(h)]* - [e=%/"x.,NC(h)], the
result follows by an application of the complexified potential layer for-
mula (55) and Proposition 6.1. q.e.d.

Assuming Proposition 6.1 for the moment, as discussed in Section 1.2,
we claim the proofs of Theorems 1.2 and 1.3 follow easily from Theorem
1.1 and Corollary 6.2.

Proof of Theorem 1.3. The lower bound in Theorem 1.3 follows from
Corollary 6.2 by taking supremum inside the integral. First, it is clear
from the proof of Proposition 1.2 that the interval [e,/6,5e,/6] can
be replaced by any interval of the form I(e,,9d) := [eo — d,60 — 0/2]
with 0 < § < &,. Without loss of generality, we can further assume that
Xeo € C5°([e0 — 36,60 —0/3]; 10, 1]) with x.,(Imt) =1 for Im¢ € I(e,,0).
Thus,

€0—0/3
Y2 max ]uhH’(C(t)]2 X (/ / e~ 25 ﬂ‘dtdt)
qCU)Eféé - —-36

2 [ SO (ot

~hosot <P(h)u‘ZQ,u‘2 )L2(00)
(75) ~h—0+ CH7EO’
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In the last line we have used the QER property of the boundary traces
© of the QE sequence of interior eigenfunctions to obtain

(P(h)ph%, 03%) ~noor /B o TP dydn = ca e, > 0.
Since for Imt € I(g0,6),S(t) = Imt + O((Im#)?), dimS(t) = 1 +
O(|Im t|?), by making the change of variables (Ret,Imt) — (Ret, S(t)),
it follows that

o—s
/ /6 /3 e 25O/ it < O she25(Eo=0)/h,

Thus, it follows from (75) that

H,C / ~1/4 [S(c0—38)] /R
(76) qc(rgzeuégo lup, ()| = Chc, sh /4¢lS( N/h
Since one can choose § € (0, &,) arbitrarily, the lower bound in Theorem
1.3 follows from (76) and the polynomial factor h~/* is irrelevant since
it gets absorbed into the exponential.
As for the upper bound, we simply use the complexified potential
layer formula (55) and apply Cauchy-Schwarz to get

|U}I;L(c(t)| < (27Th)_1/2‘/ ei/hpc(t,s)a(t,s;h)ugﬂ(s)do_(s)
o0
(77) < Ch ™ 2eSENM Y| 2 < Cpp e 25,

In the last step, we used the a priori bound ||u{®}|| ;> = O(1) combined
with the fact that maxc yeme <o e~tm e (" m)/h < S(ee)/h The upper

bound for [|uf®?| ;> follows from the fact that the boundary restrictions
uf? = pp|on are themselves QE in the sense of (16). In the Dirichlet

case, the Rellich formula gives [|h0,¢n| 12(90) = O(1), and so the upper
bound in (77) is also O(h~/2e5(E)/h), q.e.d.

Proof of Theorem 1.2. From the lower bound in Theorem 1.3, for a real-
analytic positively curved H, sufficiently small ¢, > 0 and any § > 0, it
follows that

78 max |uPCH)2>C el28(eo=0)l/h,

(78) (E(DEHE, ‘ h ®)° = Hieo,6
It is obvious that any such curve is good in the sense of (5) and conse-
quently, Theorem 1.2 follows from Theorem 1.1. q.e.d.

We note that the lower bound (78) is much stronger than what is
required for Theorem 1.2 since it shows that the tube maxima of holo-
morphic continuations of eigenfunction restrictions actually grow expo-
nentially in the tube radius.

Also, in regard to (75), as we have already indicated in section 1.2,
it follows from the Rellich commutator argument in [Bu] that quantum
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ergodicity of the interior eigenfunctions ¢y implies that the boundary
restrictions 9029 have the analogous quantum ergodic restriction prop-
erty in (16). We note that the last statement is not necessarily true if
one replaces 02 by an arbitrary interior curve, H.

Before proving Proposition 6.1, we will need some background on
asymptotics of the complexified potential layer operator NC(h), its re-
lation to the glancing map Y : 02 — H, and complexification.

7. Asymptotics for the complexified potential
layer operator N©(h)

To simplify the writing somewhat, we assume throughout this section
that 0 is smooth. The case of boundaries with corners is discussed in
section 9.

Abusing notation somewhat, we let

(79) pE(t ) = pS (" (1), 7(5))

for (t,s) € Sae, 27 X [—m, 7] where the RHS in (79) is the complexified
distance function (see (57)). We define the weight function

(80) S(t) == Sen[n_%fﬂ] Re [ip®(t, s)],

and one has the following

LEMMA 7.1. For ¢“(t) € HE and with the weight function S(t) in
(80), there exist b;-c(-, s) € O(S2¢,,2:;CY(R/27Z)); j > 0 such that

(81)

e SO NE (" (1), r(s): )
N
= (2rh) " exp ([ip™(t,5) = S@)]/h) | Y_b5(Es)hT | +O(BNT).
j=0

Proof. The lemma is an immediate consequence of Proposition 2.1
and (56) since

—S(t) + Re (ip(t,s)) <0, (t,5) € Sac, 20 X [, 7).
q.e.d.

The main step in the proof of Proposition 6.1 is an analysis of the
asymptotics of the composite operators P(h) : C®(9Q2) — C*°(91),
where

P(h) = b2 [e 5/  NE(B)]" - [e75/ "y, NE(h)].
For this, one needs a detailed analysis of the complex phase function on
the right hand side of (81). We begin with
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7.1. Asymptotic expansion of pC(t,s). Let Ty (s) = dsq(s) be the
unit tangent to H and vy (s) the unit outward normal to H. Throughout
the paper, kp(s) denotes the scalar curvature of H. In the following, it
will be useful to define the relative displacement vector

q(Ret) —r(s)
w(s,Ret) i= —F—=.
(5 ReD) = i Ret) = ()]
From the Frenet-Serret formulas, we get that for ¢, > 0 small, the

holomorphic continuation ¢ of the parametrization ¢ of H satisfies, for
Imt| < e,

¢“(Ret +ilmt) — r(s) = q(Ret) — r(s) + ilmt Tx(Ret)

1
- iliH(Re t)[Imt|*vg (Ret)

i

(82) 6(Im )3 [ (Ret)vg (Ret) — k% (Ret) Ty (Ret)] + O(|Imt[*).

Similarly, when |t — s| < &5, one also has the expansion
¢“(Ret + ilmt) — q(s) = (Ret +ilmt — s)Tx(s)
1
+ %KaH(s)(Ret +ilmt — s)?vy(s) + E[mﬁq(s)l/g(s)
(83) — k% (8)TH(s)] (Ret +iImt — 5)> + O(|Ret + ilmt — s|*).

Both (82) and (83) will be useful at different points in our analysis;
the former when determining growth of functions in Im ¢ and the latter
when estimating joint growth in Ret — s and Im ¢.

Let (,) : C x C — C be the standard complex bilinear extension of
the Cartesian inner product on R x R. A direct computation using (82)
gives
(84)

Im p®(t,s) = (w(s,Ret), T (Ret)) (Imt)

— <%<f<¢’H(Ret)uH(Ret) — k% (Ret) Ty (Ret),w(s, Ret))

ko (Ret)(vg(Ret),w(s,Ret))

(w(s,Ret), Tu(Ret))|q(Ret) — T(s)|_2

N~ N~ DN

lg(Ret) —r(s)|"?(w(s,Ret), Tr(Re t)>3> (Imt)® + O(|[Im ¢[°).

It follows that at a critical point s = s*(t) of Im pC(t, s)
(85) dsIm pC(t,s*(t)) = 0,

and when Im ¢ # 0, we have

(86) (Dsw(s*(t),Ret), Ty (Ret)) + O(|Imt]?) = 0.
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Moreover, when equation (86) is satisfied, we have

LEMMA 7.2. Lett € [—m, 7] +i[%, o] solve the critical point equation
in (86). Then, for e, > 0 sufficiently small,

(T (Ret),w(s*(t),Ret))| = 1+ O(|Imt|?).
Proof. Carrying out the s-differentiation gives

(Osw(s,Ret), T (Ret))

= la(Ret) —r(s)| ™" ((TBQ(3)7TH(Ret)>

(87) — (Toa(s),w(s,Ret)) - (Tr(Ret),w(s,Ret)