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Abstract

Given a proper, cocompact action of a Lie groupoid, we de-
fine a higher index pairing between invariant elliptic differential
operators and smooth groupoid cohomology classes. We prove a
cohomological index formula for this pairing by applying the van
Est map and algebraic index theory. Finally we discuss in exam-
ples the meaning of the index pairing and our index formula.

Introduction

Index theory of transversely elliptic operators is a subject which has
deep roots in several areas of mathematics, e.g. the Lefschetz fixed point
theorem, the L2-index theorem and discrete series representations of Lie
groups, the Baum-Connes conjecture, and the Novikov conjecture. In
this article, we will prove a cohomological index theorem for a general
type of transversely elliptic differential operators associated to a proper,
cocompact Lie groupoid action.

The set-up we consider is very broad and our main theorem comprises
the following special cases:

1) Atiyah’s L2-index theorem for covering spaces in [At], and the
“higher index” generalization of Connes–Moscovici to higher de-
gree group cocycles in [CoMo90].

2) The L2-index theorem for homogeneous spaces of Lie groups in
[CoMo82], and the recent generalization to proper, cocompact
actions of Lie groups on complete riemannian manifolds in [W].

3) The cohomological index theorem for the pairing between elliptic
operators on principal bundles for foliation groupoids and coho-
mology classes of the associated classifying spaces in [Co, GoLo1,
GoLo2].

4) The longitudinal index theorem on Lie groupoids proved in [PPT2]
evaluating the natural pairing between differentiable groupoid co-
homology and elliptic elements in the universal algebra of the as-
sociated Lie algebroid.
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Recent developments in noncommutative and differential geometry en-
able us to improve and generalize these results.

Let us now describe more precisely the setting we consider: Let G

be a Lie groupoid over the unit space M , acting properly on a smooth
manifold Z with moment map µ : Z →M given by a surjective submer-
sion. Assume that the quotient Z/G is compact. Since µ is a surjective
submersion, the kernel of the map Tµ : TzZ → Tµ(z)M for z ∈ Z defines
a regular foliation F on Z equipped with a natural G-action. By a G-
invariant elliptic differential operator on Z, we mean a leafwise elliptic
differential operator D on Z that is invariant under the G-action. The
analytic index of such a G-invariant elliptic differential operator on Z
was introduced by Connes [Co] (see also Paterson [P]). Its significance
can be seen among other things by its connection to the Baum-Connes
conjecture for Lie groupoids [Tu, HLS]. All the recent results listed in
1)–4) above can be viewed as computing the pairing between this in-
dex class and certain cyclic cocycles in the context of noncommutative
geometry.

Key to our generalization is to cast all these examples into the frame-
work of groupoids and understand the role played by groupoid and Lie
algebroid cohomology. This is perhaps least obvious in the example 2),
but recall that in the work by Connes and Moscovici [CoMo82] the
L2-index is determined by integration on the relative Lie algebra coho-
mology of the Lie group G and compact subgroupH. Then, one observes
that the van Est morphism naturally maps the differentiable (or con-
tinuous) Lie group cohomology to the relative Lie algebra cohomology.
So, this suggests that there is a natural pairing between the index of a
G-invariant elliptic differential operator and the differentiable Lie group
cohomology. This fits very well with our recent work in [PPT2], where
a natural morphism from the differentiable groupoid cohomology to the
cyclic cohomology of the groupoid algebra C∞

cpt(G) was constructed. Gen-
eralizing this idea, we introduce and compute natural index numbers of
a G-invariant elliptic differential operator on Z associated differentiable
groupoid cohomology classes of G.

Our main theorem imposes no restriction on the type of Lie groupoid
G or the type of manifold G acts on. The initial ingredient of the proof
of our index formula is the observation that by cocompactness of the
G-action Z carries a well behaved calculus Ψ∞

inv(Z;F) of G-invariant
pseudodifferential operators on Z along the foliation F . Moreover, a G-
invariant elliptic differential operator D on Z has a well-defined index
Ind(D) which is an element in theK-theory of the algebra Ψ−∞

inv (G;Z) of
G-invariant smoothing operators on Z. Next, we construct a canonical
pairing between the differentiable groupoid cohomology H•

diff(G;L) with
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values in a G-representation L of “transverse densities”, and the K-
theory of Ψ−∞

inv (G;Z),

(1) 〈 , 〉 : H•
diff(G;L)×K0(Ψ

−∞
inv (G;Z)) → C.

The pairing of Ind(D) with classes in H•
diff(G) defines a family of index

numbers of D. When G is a unimodular Lie group G, a bi-invariant
density Ω defines a class in H0(G;L) and gives rise to a trace on the G-
invariant smoothing operators, and therefore the pairing 〈[Ω], Ind(D)〉
of Ind(D) recovers the L2-index of a G-invariant elliptic differential op-
erator.

We compute the cohomological formulas of the above index num-
bers using the localized groupoid index theory developed in [PPT2].
By localizing the support of the kernel of a smoothing operator to the
diagonal, we introduce the localized K-theory group K loc

0 (Ψ−∞
inv (Z;F)).

And given a G-invariant elliptic differential operator D on Z, we in-
troduce a localized index Indloc(D) as an element in K loc

0 (Ψ−∞
inv (Z;F))

which is mapped to Ind(D) ∈ K0(Ψ
−∞
inv (Z;F)) under the natural forget-

ful map from K loc
• (Ψ−∞

inv (Z;F)) to K•(Ψ
−∞
inv (Z;F)). Through the van

Est morphism ΦZ , the localized version of the differentiable groupoid
cohomology for the proper G-action on Z is the G-invariant foliated
cohomology H•

F (Z;µ
∗L)G defined by the de Rham cohomology on the

G-invariant leafwise differential forms. We will define a canonical pairing

〈 , 〉loc : H•
F (Z;µ

∗L)G ×K loc
0 (Ψ−∞

inv (Z;F)) → C,

which is compatible with the pairing in Eq. (1), i.e.,

(2) 〈Ind(D), α〉 = 〈Indloc(D),ΦZ(α)〉loc ,
where ΦZ : H•

diff(G) → H•
F(Z;µ

∗L)G is the van Est map, and α is a
class in H•

diff(G).
The main theorem of this paper is the following cohomology formula

of the index number introduced above:

(3) 〈Indloc(D), α〉loc :=
1

(2π
√
−1)k

∫

T ∗
µZ

(c◦π)π∗α∧ Â(F∗)∧ ch(σ(D)),

for α ∈ Heven
F (Z;µ∗L)G. Here, π is the natural projection from T ∗

µZ to
Z, and c(x) is a cut-off function for the proper cocompact G action on Z,

and Â(F∗) is the Â class of T ∗
µF as a foliated bundle over F , and finally

ch(σ(D)) is the leafwise Chern character of the K-theory class defined
by the principal symbol σ(D). The integral is actually independent of
the choice of cut-off function c.

This paper is organized as follows. In Section 1, we will introduce the
van Est map for a proper cocompact G action on Z, and also introduce
the calculus of G-invariant pseudodifferential operators. The index pair-
ing between (localized) differentiable groupoid cohomology of G and the
(localized) K-theory of G-invariant smoothing operators is explained in
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Section 2. In the same section, we introduce the index Ind(D) and the
localized index Indloc(D) of a G-invariant elliptic differential operator
D. In Section 3, we prove the index formula Eq. (3) by the algebraic
index theory of deformation quantization. Interesting examples of our
index theorem are discussed in Section 4. In particular, an example of
a foliation index theorem on orbifolds is explained.

Acknowledgments. We would like to thank Nigel Higson, Hang Wang,
and Weiping Zhang for inspiring discussions on index formulas for el-
liptic G-invariant pseudodifferential operators. Pflaum is partially sup-
ported by NSF grant DMS 1105670, and Tang is partially supported by
NSF grant DMS 0900985.

1. Preliminaries

1.1. Proper actions of Lie groupoids. Let G ⇒M be a Lie groupoid.
In this paper we have the convention that we draw arrows in G from

left to right: x
g→ y for an arrow g ∈ G with source s(g) = x and tar-

get t(g) = y. This means that the multiplication g1g2 of two arrows
g1, g2 ∈ G is defined when t(g1) = s(g2). The unit map of the groupoid
will be denoted by u : M → G. For fixed x ∈ M , we write G

x for the
submanifold of all arrows g ∈ G with s(g) = x, and Gx for all arrows
with t(g) = x. Associated to the Lie groupoid G is its Lie algebroid
which in the following will be denoted by A.

A left action of G on a manifold Z is given by a submersion µ : Z →
M , called the moment map, which controls the action of G given by a
smooth map

G t×µZ → Z,

where G t×µZ := {(g, z), t(g) = µ(z)}. (This is our general notation
for fibered products of manifolds.) We write the action above simply as
(g, z) 7→ gz. This map should satisfy the usual axioms for an action, i.e.,
g1(g2z) = (g1g2)z and u(x)z = z, whenever defined, and µ(gz) = s(g).

We denote by F the foliation on Z by the fibers of µ. The foliation
is given by the (involutive) sub-bundle TµZ ⊂ TZ consisting of all
X ∈ TZ which are tangent to the fibers of µ or in other words which
are tangent to the leaves of the foliation F . Note that, here, by slight
abuse of language, we identify the leaves of the foliation with the fibers
of the moment map µ, even if the fibers are not connected.

We write T ∗
µZ for the bundle dual to TµZ. The canonical projection

of TµZ (resp. T ∗
µZ) onto Z is denoted by πTµZ (resp. πT ∗

µZ). Since g ∈ G

induces a diffeomorphism from µ−1
(
t(g)

)
to µ−1

(
s(g)

)
, in the following

also denoted by g, there is a natural action of G on TµZ and T ∗
µZ by

the differentiation.

Definition 1.1. A cut-off density on Z adapted to the G-action is a
nowhere vanishing smooth section c ∈ Γ∞

cpt(Z,
∣
∣
∧top

∣
∣A

∗) satisfying:
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(i) For every compact K ⊂M , the set supp(c) ∩ G(K) is compact.
(ii)

∫

Gµ(z)

c(g−1z) = 1, for all z ∈ Z.

If the G-action on Z is cocompact, the first condition just means that
the support of c is compact. Notice that a cut-off density on Z can be
regarded as a (left) Haar system on the transformation groupoid G⋉Z.
Therefore, it follows by [Tu, Sec. 1.7] that such a density exists if and
only if the action of G on Z is proper.

Throughout this paper, we fix an invariant leafwise riemannian met-
ric on Z, i.e. a riemannian metric η on TµZ such that η(gX, gY ) =
η(X,Y ) for all X,Y ∈ TµZ and g ∈ G with µ

(
πTµZ(X)

)

= µ
(
πTµZ(Y )

)
= t(g). If a cut-off density c on Z is given, and ̺ an

arbitrary riemannian metric on Z, we obtain an invariant leafwise rie-
mannian metric on Z by putting

η(X,Y ) :=

∫

Gµ(z)

̺(g−1X, g−1Y )c(g−1z) for z ∈ Z, and X,Y ∈ Tµ,zZ.

Since by the observation above c is a left Haar system on G ⋉ Z, one
easily checks that this metric is invariant.

1.2. The van Est morphism. For any proper action of a Lie groupoid
G on Z with moment map µ : Z → M , Crainic [Cr] has constructed,
for any representation E of G, a “van Est” map

ΦZ : H•
diff(G;E) → H•

F(Z;µ
∗E)G,

from the differentiable groupoid cohomology H•
diff(G;E) with values in

E to the G-invariant part of the foliated de Rham cohomology
H•

F (Z;µ
∗E) with values in the flat vector bundle µ∗E. In this section,

we give an alternative construction of this map using a so-called double
groupoid defined by the action to construct a morphism on the level of
cochain complexes. In fact, a generalization of this morphism exists for
any action, not necessarily proper ones.

The action of G on Z gives a natural example of a double groupoid,
which is essentially a groupoid in the category of groupoids, c.f. [BrMa,
MeTa]. More concretely, we have a square of groupoids

(4) Gt×µZ

����

Gt×µ(Zµ×µZ)oo
oo

����

Z Zµ×µZoo
oo

.

The manifold Zµ×µZ has a natural map to M by mapping (z1, z2)
to µ(z1) = µ(z2) in M , and we denote this map simply also by µ. This
explains the definition of Gt×µ(Zµ×µZ). As both µ and t are assumed to
be surjective submersions, the fiber products in Square 4 are all smooth
manifolds. Furthermore, observe that Zµ×µZ has a natural groupoid
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structure with the unit space Z. Similarly, there is a natural map ν
from Gt×µZ to G, and Gt×µ(Zµ×µZ) can be identified as the fiber
product of Gt×µZ with itself over the map ν and therefore is equipped
with a natural groupoid structure. This way, the two horizontal edges of
the square (4) are Lie groupoids. The G action on Z lifts to the diagonal
action of G on Zµ×µZ. The G-actions on Z and Zµ×µZ equip Gt×µZ
and Gt×µ(Zµ×µZ) with action groupoid structures, and make the two
vertical edges of the square (4) into groupoids. It is straightforward to
check that the above square of groupoids does satisfy the definition of
a full double Lie groupoid, c.f. [MeTa, Defn. 3.1, 3.2].

As is explained in [MeTa, Prop. 3.10], the nerve functor on a full dou-
ble Lie groupoid produces a bisimplicial manifold N•,•. In our example
(4), this bisimplicial manifold is defined as follows:

Np,q(G;Z) := G
(p)

τp×µq Z
(q)
µ ,

where

G
(p) := G t×s . . . t×s G

︸ ︷︷ ︸

p+1 copies

, Z(q)
µ := Z µ×µ . . . µ×µZ

︸ ︷︷ ︸

q+1 copies

.

The maps τp : G
(p) →M and µq : Z

(q)
µ →M are defined by

τp(g0, g1, · · · , gp) := t(gp), µq(z0, · · · , zq) = µ(z0).

The simplicial structure on G
(•)

τ×µq Z
(q)
µ is lifted from the simplicial

structure on the nerve space G
(•) of the groupoid G, and the simplicial

structure on G
(p)

τp×µ Z
(•)
µ is lifted from the simplicial structure on the

nerve space Z
(•)
µ of the groupoid Z µ×µZ ⇒ Z. Accordingly, the space

Cp,q
diff(G;Z) := C∞(Np,q(G;Z)) of smooth functions on Np,q(G;Z) forms

a bicosimplicial complex. Define the differentiable cohomology of the ac-
tion of G on Z to be the cohomology of the total complex of C•,•

diff(G;Z),
which is quasi-isomorphic to the diagonal by the Eilenberg–Zilber the-
orem. This cohomology is denoted by H•

diff(G;Z).
The differentiable Lie groupoid cohomology H•

diff(G) of G is defined as

the cohomology of the simplicial complex C•
diff(G) := C∞(G(•)). There

is a natural forgetful map from N•,•(G;Z) to the nerve space G
(•) of G.

This map induces a natural morphism α from C•
diff(G) to C•,•

diff(G;Z),
and therefore a morphism

(5) α : H•
diff(G) → H•

diff(G;Z).

Proposition 1.2. The map α defined by Eq. (5) is an isomorphism.

Proof. Consider the spectral sequence associated to the p-filtration on
C∞(N•,•(G;Z)). The E2-term of the spectral sequence can be computed

Ep,0
2 = Hp

diff(G), Ep,q
1 = 0, q ≥ 1.
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This follows from the fact that the complex Cp,•
diff(G;Z) identifies with the

complex computing groupoid cohomology of the Lie groupoid Z µ×µ Z ⇒

Z with values in Cp
diff(G). Since Z µ×µ Z ⇒ Z is a proper groupoid, its

cohomology is concentrated in degree zero by [Cr, §2.1] and one finds
the result for Ep,q

2 . Therefore the spectral sequence degenerates at E2.

We notice that Ep,0
1 is exactly the complex of differentiable groupoid

cohomology of G, and therefore α is an isomorphism. q.e.d.

We now give an alternative complex computing H•
diff(G;Z). The ac-

tion of the groupoid G on the groupoid Zµ×µZ ⇒ Z defines a natural

action of G on the Z
(•)
µ , and we define Cp

diff(Z)
G := C∞

inv(Z
(p)
µ ). This

defines a graded vector space C•
diff(Z)

G which inherits a differential d
defined by

(6) dϕ(z0, . . . , zk+1) :=
k+1∑

i=0

(−1)iϕ(z0, . . . , ẑi, . . . , zk+1),

where ϕ ∈ Ck
diff(Z)

G and ẑi means we omit zi from the argument of ϕ.

The corresponding cohomology is denoted by H•
diff(Zµ)

G.

Corollary 1.3. When the G-action on Z is proper, H•
diff(G;Z) is

isomorphic to H•
diff(Zµ)

G.

Proof. We consider the spectral sequence associated to the filtration
of the bicomplex C∞(N•,•(G;Z)) =

⊕

p,q C
∞(Np,q(G;Z)) with respect

to the degree q: Er,s
2 (G;Z) is computed to be

E0,s
2 = Hs(C∞

inv(Z
(•)
µ ), d), Er,s

2 = 0, s ≥ 1,

this time because the groupoid G⋉Z ⇒ Z is proper. Therefore, the spec-
tral degenerates at E2 again. It follows that the cohomology H•

diff(G;Z)
is isomorphic to H•

G
(Zµ). q.e.d.

Crucial for the construction of the van Est map is a localized version
of the bicomplex C∞(N (•,•)(G;Z)). Notice that G(p)

τp×µ Z is embedded

inside G
(p)

τp×µqZ
(q)
µ via the canonical diagonal inclusion of Z →֒ Z(q).

This embedding is also compatible with the simplicial structures. Define

Cp,q
loc (G;Z) := germs

G(p)
τp×µqZ

(

C∞
(

G
(p)

τp×µqZ
(q)
µ

))

,

taking the germ of a smooth function on G
(p)

τp×µqZ
(q)
µ at the embedded

submanifold G
(p)

τp×µZ. There is a natural morphism

L : C•,•
diff(G;Z)) → C•,•

loc (G;Z),

by taking germs at G
(p)

τp×µZ, and we equip the right hand side with
the induced differentials turning it into a bicosimplicial complex. Denote
the inherited differentials by dG and dZ . The cohomology of the total
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complex of this bicomplex is denoted by H•
loc(G;Z). The morphism L

above induces a map

(7) L : H•
diff(G;Z) → H•

loc(G;Z).

On Z, let Ω•
F be the space of leafwise differential forms on Z with

respect to the foliation F . This forms a fine sheaf over Z with a natural
G action induced by the G action on Z. To compute H•

loc(G;Z), we will
consider the following bicomplex,

Cp,q
diff(G;F) := Γ

(

G
(p)

τp×µZ, β
∗Ωq

F

)

,

where β : G
(p)

τp ×µ Z → Z is defined by β(g0, · · · , gp; z) = z. The
cohomology of the total complex of Cp,q

diff(G;F) is denoted byH•
diff(G;F).

Proposition 1.4. There is a natural isomorphism

λ : H•
loc(G;Z)

∼=−→ H•
diff(G;F).

Proof. This is just a G-equivariant version of the well-known isomor-
phism between Alexander–Spanier cohomology and de Rham cohomol-
ogy; see e.g. [CoMo90, §1].

We point out that on Z, there is a fine (pre)sheaf of complexes C
•
AS

defined by

C
k
AS := germsZ

(

C∞(Z(k)
µ )

)

,

where Z is embedded diagonally in Z
(k)
µ . And the differential dZ on

C∞(Z
(k)
µ ) naturally descends to the differential dZ on C

•
AS. The space

Cp,q
loc (G;Z) is identified with the space of global sections of the sheaf

β∗pC
q
AS on G

(p)
τp×µZ. From the G action on Z, the sheaf C•

AS is equipped
with a canonical G action. As the sheaf of complexes β∗qC

•
AS is fine, the

cohomology of C•,•
loc (G;Z) is isomorphic to the groupoid differentiable

cohomology of the groupoid G τ×µZ ⇒ Z with the coefficient C•
AS.

For C•,•
diff(G;F), we consider a sheaf Ω•

F on Z of leafwise differential
forms along F with the de Rham differential dF . And C

p,q
diff(G;F) is the

space of global sections of the sheaf β∗pΩ
q
F . This sheaf is also equipped

with a canonical G action. The cohomology of C•,•
diff(G;F) is isomorphic

to the groupoid differentiable cohomology of G τ×µZ ⇒ Z with the
coefficient Ω•

F .
There is a natural quasi-isomorphism λ : C•

AS → Ω•
F of sheaves of

differential complexes on Z as is explained in [CoMo90, Lem. 1.5] by

λ(f0 ⊗ · · · ⊗ fk) = f0df1 ∧ · · · ∧ dfk.
It is natural to check that λ is G-equivariant and therefore defines a
quasi-isomorphism

λ :
(

Γ(G(p)
τp×µ Z, β

∗
p(C

q
AS)), dZ

)

−→
(

Γ(G(p)
τp×µ Z, β

∗
p(Ω

q
F )), dF

)

,

inducing the desired isomorphism on cohomology. q.e.d.
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Lemma 1.5. When G acts on Z properly, H•
diff(G;F) is equal to

H•
F (Z)

G, the cohomology of the de Rham differential on the space of
G-invariant leafwise differential forms on Z with respect to F .

Proof. We apply the spectral sequence associated to the filtration of
degree q on the bicomplex C•,•

diff(G;F). At the E1 level, E•,q
1 is exactly

the complex of differentiable cohomology of the groupoid Gt×µZ with
coefficient in Ωq

F(Z), the leafwise differential forms on Z with respect
to F . Since the G-action on Z is proper, Gt×µZ is a proper groupoid.
By [Cr, Prop. 1], E•,q

1 is computed to be

E0,q
1 = Ωq

F (Z)
G, Ep,q

1 = 0, p ≥ 1.

Therefore, the spectral sequence degenerates at the E2-level, and there-
fore H•

diff(G;F) and H•
F(Z)

G are isomorphic. q.e.d.

Composing the isomorphism α defined in Eq. (5) with the morphism L
defined in Eq. (7) and the isomorphism λ in Prop. 1.4, we define the
following morphism of complexes:

ΦZ := λ ◦ L ◦ α : C•
diff(G) → Tot•

(
C•,•
diff(G;F)

)
.

We now have the following:

Theorem 1.6. Let G act on a manifold Z such that the moment map
µ : Z → M is a surjective submersion. When the action is proper, the
morphism ΦZ , combined with the isomorphism of Lemma 1.5, induces
a map

ΦZ : H•
diff(G) → H•

F(Z)
G,

which coincides with the van Est map of [Cr].

Remark 1.7. Theorem 3 of [Cr] states that the van Est map ΦZ

is an isomorphism in degree • ≤ n and injective for • = n + 1, when
the G-action is proper and the fibers of the moment map µ : Z → M
are homologically n-connected. Theorem 1.6 above provides a natural
framework to generalize this van Est theorem to the case of a general Lie
groupoid action. Indeed, by studying when the map L : H•

diff(G;Z) →
H•

loc(G;Z) is an isomorphism, we can obtain similar conditions on the
moment map µ : Z → M for the van Est morphism ΦZ to be an
isomorphism.

1.3. The invariant pseudodifferential calculus. Here we provide
the construction of the algebra of invariant pseudodifferential operators
on a manifold Z along the fibers of µ, where G ⇒ M is a Lie groupoid
acting properly on Z with moment map µ : Z → M . This pseudo-
differential calculus extends the one on Lie groupoids in [NWX], to
which it reduces when Z = G, or more generally when the action is
free: in this case, we have a principal G-bundle, and we simply pass to
the Morita equivalent gauge groupoid. For actions of Lie groups, the



452 M.J. PFLAUM, H. POSTHUMA & X. TANG

invariant pseudodifferential calculus was first constructed in [CoMo82,
§1].

With notation from Section 1.1, consider the space Symm
inv(Z;F) of

invariant symbols over Z along F of order m. By definition, this is the
space of all a ∈ C∞(T ∗

µZ) such that the following conditions hold true:

(i) The function a is G-invariant in the sense that a(gξ) = a(ξ) for all
ξ ∈ T ∗Z and g ∈ G with µ(π(ξ)) = t(g).

(ii) With respect to some local coordinates x : U → R
n over some

coordinate patch U ⊂ Z and the induced local coordinate system
(z, ζ) : T ∗U → R

2n there exists for all compact K ⊂ U and α, β ∈
N
n a constant CK,α,β > 0 such that for all ξ ∈ T ∗U with πT ∗Z(ξ) ∈

K the estimate
∣
∣
∣∂αz ∂

β
ζ a(ξ)

∣
∣
∣ ≤ CK,α,β(1 + ‖ζ(ξ)‖2)m/2

holds true.

As usual, we put

Sym∞
inv(Z;F) =

⋃

m∈Z
Symm

inv(Z;F)

and also
Sym−∞

inv (Z;F) =
⋂

m∈Z
Symm

inv(Z;F) .

To define the calculus of (invariant) pseudodifferential operators along
F recall that we have fixed an invariant leafwise riemannian metric η on
TµZ. This enables us to construct a linear map Op : Sym∞

inv(Z;F) →
Hom

(
C∞
G-cpt(Z), C∞

G-cpt(Z)
)
, called the quantization map, as follows. To

this end note first that η induces a connection on TµZ and an expo-
nential function Exp :W → Z, where W is an appropriate open neigh-
borhood of the zero section of TµZ, and ExpX is the end point of the
unique geodesic γ : [0, 1] → Lz ⊂ Z within the leaf Lz through the
point z = πTµZ(X) such that γ(0) = z and γ̇(0) = X. Now choose a
smooth cut-off function χ : Z × Z → [0, 1] which equals 1 on a neigh-
borhood of the diagonal, has support in a necessarily (larger) neighbor-
hood of the diagonal over which (πTµZ ,Exp)

−1 is defined, and satisfies
χ(y, z) = χ(z, y). Then let e : Z × T ∗

µZ → C be the map

(y, ξ) 7→ χ(y, z(ξ))e
√
−1〈ξ,Exp−1

z(ξ)
(y)〉

where z(ξ) = πT ∗
µZ(ξ) .

Given a ∈ Symm
inv(Z;F), f ∈ C∞

cpt(Z) and z ∈ Z, we now put

(8) Op(a)f(z) =

∫

Tµ,zZ

∫

Lz

e(y, z)a(ξ)f(y) dy dξ ,

where, up to a factor (2π
√
−1)−r/2 with r being the dimension of the

leaves, integration with respect to y ∈ Lz is over the natural volume
density dν induced by the riemannian metric η|Lz

, and integration over
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Tµ,zZ is with respect to the natural translation invariant measure given
by the positive symmetric bilinear form ηz.

Next, consider the fibered product Z µ×µZ and note that G acts on
it by the diagonal action. Given a smooth G-invariant G-compactly sup-
ported function k on Z µ×µZ, we obtain an operator

Pk : C∞
G-cpt(Z) → C∞

G-cpt(Z), f 7→
(

Z ∋ z 7→
∫

Lz

k(z, y)f(y)dy ∈ C

)

,

where integration over Lz is with respect to the same volume density
dν as above. The space of operators Pk ∈ Hom

(
C∞
G-cpt(Z), C∞

G-cpt(Z)
)

obtained in this way are called the invariant smoothing operators on Z
along F .

By an invariant pseudodifferential operator over Z along F of order m
we now understand an operator A ∈ Hom

(
C∞
G-cpt(Z), C∞

G-cpt(Z)
)
, which

up to an invariant smoothing operator coincides with Op(a) for some a ∈
Symm

inv(Z;F). Denote by Ψm
inv(Z;F) the space of such pseudodifferential

operators, and put as usual

Ψ∞
inv(Z;F) :=

⋃

m∈Z
Ψm

inv(Z;F), and Ψ−∞
inv (Z;F) :=

⋂

m∈Z
Ψm

inv(Z;F) .

Elements of Ψm
inv(Z;F) can now be regarded as families {Px}x∈M , where

each Px is a pseudodifferential operator on µ−1(x) of orderm, satisfying:

(i) the family {Px}x∈M is smooth in its dependence on x ∈M ,
(ii) the family {Px}x∈M is G-invariant:

Ps(g) = Lg ◦ Pt(g) ◦ L−1
g ,

where Lg : C∞(µ−1(s(g))) → C∞(µ−1(t(g))) is the pull-back along
diffeomorphism induced by the action of g ∈ G,

(iii) the support of P , defined as

supp(P ) :=
⋃

x∈M
supp(Px) ⊂ Z µ×µ Z,

is G-compact.

This implies that the invariant pseudodifferential operator calculus we
defined coincides with the one by [P, §4]. Moreover, it follows by the ex-
position above (cf. also [P, §4]) that Ψ∞

inv(Z;F) forms a filtered algebra
containing the smoothing operators in Ψ−∞

inv (Z;F) as an ideal.
The quantization map Op has a quasi-inverse, the so-called symbol

map σ : Ψ∞
inv(Z;F) → Sym∞

inv(Z;F) which is given by

σ(P )(ξ) := P
(
e(−, z(ξ))

)
(z(ξ)) for P ∈ Ψ∞

inv(Z;F) and ξ ∈ T ∗
µZ.
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2. The analytic index pairing

2.1. The trace. In this section we shall construct a trace on the algebra
Ψ−∞

inv (Z;F) of smoothing operators on a proper cocompact G-manifold
Z, where G is a unimodular Lie groupoid. Let us first recall the definition
of unimodularity: as before G ⇒M is a Lie groupoid. Consider the real
line bundle L :=

∣
∣
∧top

∣
∣T ∗M ⊗

∣
∣
∧top

∣
∣A over M . As shown in [ELW],

L carries a canonical representation of G.

Definition 2.1. A Lie groupoid G ⇒M is unimodular if there exists
a nonvanishing, G-invariant section of L.

When G is unimodular, we refer to such an invariant section as a
“volume form”, or “transverse density”, usually denoted by Ω. From
now on in this section we assume G to be unimodular and choose such
a volume form.

Remark 2.2. Recall, cf. [GS], that for a smooth submersion f :
X → Y , integration over the fiber defines a map

f∗ : Γ
∞
c (X,

∣
∣
∧top T ∗X

∣
∣) → Γ∞

c (Y,
∣
∣
∧top T ∗Y

∣
∣), α 7→

∫

f
α.

More precisely, we choose an Ehresmann connection on the fibers of f ,
i.e., a smooth isomorphism TxX ∼= Tx(f

−1(y)) ⊕ (f∗TY )x, for f(x) =

y. With this, we can decompose
∣
∣
∧top T ∗

xX
∣
∣ ∼=

∣
∣
∧top T ∗

x (f
−1(y))

∣
∣ ⊗

f∗(
∣
∣
∧top T ∗Y

∣
∣), and integrate over the fibers of f . One checks that the

resulting density is independent of the Ehresmann connection chosen.

Given Ω ∈ Γ∞(M ;L), choose a cut-off density c on Z adapted to the
G-action, and define the following functional on Ψ−∞

inv (Z;F):

τΩ(K) :=

∫

Z
c(z)k(z, z)dν ∧ µ∗Ω

=

∫

M

(∫

µ
c(z)k(z, z)dν

)

Ω, K ∈ Ψ−∞
inv (Z;F).

(9)

In this formula, we have used the duality between A and A
∗ to pair c with

µ∗Ω. The resulting “transverse density” combines with the fiberwise
density dν to form a density on Z, using the choice of an Ehresmann
connection on fibration defined by the moment map µ : Z → M . The
resulting integral over Z is independent of this choice by the remark
above.

In the rest of this article, we will include dν together with the Schwarz
kernel function k(z1, z2), and view k(z1, z2)dν(z2) as a fiberwise density
on Z µ×µZ along the second µ-fiber. By slight abuse of notation, we will
denote it again by k(z1, z2).

Proposition 2.3. τΩ does not depend on the choice of c and defines
a trace if Ω is G-invariant.
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Proof. To check the trace property, we write out

τΩ([K1,K2]) =

∫

M

∫

µ

∫

µ
c(z1)(k1(z1, z2)k2(z2, z1)− k2(z1, z2)k1(z2, z1))Ω

=

∫

M

∫

Gµ(g)

〈ϕ(g),Ω〉 ,

where ϕ ∈ Γ∞(G; s∗
∣
∣
∧top

A
∗∣∣) is defined as

ϕ(g) :=

∫

µ−1(s(g))

∫

µ−1(s(g))
c(z1)c(g

−1z2)
(
k1(z1,z2)k2(z2, z1)

− k2(z1, z2)k1(z2, z1)
)
.

Above, we have used the defining property (ii) of Def. 1.1 of the cut-off
function to go from the first to the second line above. Next, we have

ϕ(g−1) =

∫

z1∈µ−1(t(g))

z2∈µ−1(t(g))

c(z1)c(gz2)
(
k1(z1, z2)k2(z2, z1)

− k2(z1, z2)k1(z2, z1)
)

=

∫

z1∈µ−1(t(g))

z2∈µ−1(s(g))

c(z1)c(z2)
(
k1(z1, g

−1z2)k2(g
−1z2, z1)

− k2(z1, g
−1z2)k1(g

−1z2, z1)
)

=

∫

z1∈µ−1(t(g))

z2∈µ−1(s(g))

c(z1)c(z2)
(
k1(gz1, z2)k2(z2, gz1)

− k2(gz1, z2)k1(z2, gz1)
)

=

∫

z1∈µ−1(t(g))

z2∈µ−1(t(g))

c(g−1z1)c(z2)
(
k1(z1, z2)k2(z2, z1)

− k2(z1, z2)k1(z2, z1)
)

= −ϕ(g).

In this computation we have twice used the change of variables given by
the diffeomorphism g : µ−1(s(g)) → µ−1(t(g)) to go to the second and
the fourth line. To go to the third line, the G-invariance of k1 and k2
was used. Finally, because of this property ϕ(g−1) = −ϕ(g), the integral
over G vanishes, proving the trace property.

To prove that the trace does not depend on the choice of cut-off func-
tion, let c′ be another such function, and insert 1 =

∫

Gµ(z) c′(g−1z) into
the formula for τΩ and change variables again, using the G-invariance of
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the kernels k:

τΩ(k) =

∫

M

∫

µ
c(z)k(z, z)

=

∫

M

∫

µ

∫

Gµ(z)

c′(g−1z)c(z)k(z, z)

=

∫

M

∫

µ

∫

Gµ(z)

c′(z)c(gz)k(z, z)

=

∫

M

∫

µ
c′(z)k(z, z).

This shows that the trace does not depend on the choice of cut-off
function c. q.e.d.

Proposition 2.4. For a ∈ Sym−∞
inv (Z;F):

τΩ (Op(a)) =

∫

T ∗
µZ
c(z)a(z, ξ)µ∗Ω.

Proof. The proof follows immediately by writing out the kernel of
Op(a) defined by (8), and substituting it in the definition (9) of the
trace τΩ. q.e.d.

2.2. The pairing. In [CoMo90] the higher index of elliptic operators
on a manifold was defined by a pairing with Alexander–Spanier cocy-
cles representing cohomology classes of the underlying manifold. In our
set-up of a proper groupoid action, we need a similar representation
of the foliated invariant cohomology classes in H•

F (Z)
G. The complex

C•
diff(Z)

G, with the differential (6), as well as its localization C•
loc(Z)

G

to the unit space M , offers the right object to introduce the pairing.
In this form, cohomology classes naturally pair with the so-called

localized K-theory of the algebra of smoothing operators Ψ−∞
inv (Z;F).

The localization of the K-theory of this algebra to the diagonal M is
defined just as in [PPT2], which in turn is based on the construction
in [MoWu] for manifolds. This results in an abelian group denoted by
K loc

0 (Ψ−∞
inv (G;Z)). Let Ψ−∞

inv (Z;F)+ be the unitalization of Ψ−∞
inv (Z;F).

Classes of K loc
0 (Ψ−∞

inv (G;Z)) are represented by pairs

(P, e) ∈ Mat∞
(
Ψ−∞

inv (Z;F)+
)
×Mat∞(C)

with support in some open neighborhood U ⊂ Z
(2)
µ of Z, that are idem-

potents, i.e., P 2 = P , e2 = e and satisfy

P − e ∈ Mat∞
(
Ψ−∞

inv (Z;F)
)
.

Two such pairs (P0, e0) and (P1, e1) represent the same class if one
can find a homotopy of idempotents (Pt, et), t ∈ [0, 1] with support in
U . With this, the localized K-theory K loc

0 (Ψ−∞
inv (Z;F)) is defined as the
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direct limit over open sets U localizing to the diagonal. By construction,
the localized K-theory comes equipped with a canonical morphism

(10) K loc
0 (Ψ−∞

inv (Z;F)) → K0(Ψ
−∞
inv (Z;F))

to the usual K-theory group by forgetting about the support of idem-
potents.

Next, given a cocycle ϕ ∈ C2k
diff(Z)

G, we define

〈ϕ, (P, e)〉 :=
∫

Z
(2k+1)
µ

c(z0)ϕ(z0, . . . , z2k)kP (z0, z1) · · · kP (z2k, z0)µ∗(2k)Ω

−
∫

Z
(2k+1)
µ

c(z0)ϕ(z0, . . . , z2k) tr(e)µ
∗
(2k)Ω.(11)

In this formula, kP denotes the kernel of the matrix trace of P .

Remark 2.5. The pairing above can be written in terms of the nat-
ural pairing between cyclic homology and cohomology of the algebra
Ψ−∞

inv (Z;F):

〈ϕ, (P, e)〉 = 〈χΩ(ϕ),Ch(P, e)〉 ,
where Ch : K0(Ψ

−∞
inv (Z;F)) → HCev(Ψ

−∞
inv (Z;F)) is the noncommuta-

tive Chern character to cyclic homology and χΩ(ϕ) is a natural cyclic
cocycle defined using the trace τΩ, analogous to [PPT2, §1.3].

Proposition 2.6. Combined with the map (5) and the isomorphism
of Corollary 1.3, equation (11) defines a pairing

〈 , 〉 : Hev
diff(G)×K0(Ψ

−∞
inv (Z;F)) → C.

Proof. For k0, . . . , k2n ∈ Ψ−∞
inv (Z;F) and ϕ ∈ C2n

diff(Z)
G, define the

pairing

〈ϕ, k0 ⊗ . . .⊗ k2n〉 :=
∫

Z
(2n+1)
µ

c(z0)ϕ(z0, . . . , z2n)k1(z0, z1) · · ·

· · · k2n(z2n, z0)µ∗(2n+1)Ω.

Since the differential (6) of the complex C•
diff(Z)

G can just be identified
with the Alexander–Spanier differential along the fibers of µ, one proves,
as in [CoMo90, Lemma 2.1], by a straightforward computation that

〈dϕ, k0 ⊗ . . .⊗ k2n〉 = 〈ϕ, b(k0 ⊗ . . .⊗ k2n)〉 ,
where b is the Hochschild boundary. Since in the formula (11) of the pair-
ing, the kernels kP are idempotents in a matrix algebra over Ψ−∞

inv (Z;F),
the result now follows. q.e.d.

Next, we localize the pairing: to the unit spaceM . SinceK loc
0 (Ψ−∞

inv (Z;F))
is by definition an inverse limit of K-theory groups with support in a
neighborhood of M , and C•

loc(Z)
G is the direct limit, we have:
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Corollary 2.7. The pairing (11) localizes to a pairing

〈 , 〉loc : Hev
F (Z)G ×K loc

0 (Ψ−∞
inv (Z;F)) → C,

compatible with the forgetful map (10) and the van Est map.

Proof. Since K loc
0 (Ψ−∞

inv (Z;F)) is by definition a direct limit of K-

theory groups with support in a neighborhood ofM , and C•
loc(Z)

G is the
projective limit of groups over such neighborhoods, the pairing indeed
localizes. By the results of Section 1.2, the cohomology of C•

loc(Z)
G is

equal to H•
F (Z)

G, and the result follows. q.e.d.

Remark 2.8. We have focused on the construction of the (local-
ized) index pairing in the case of a unimodular Lie groupoid G. The
pairing can be extended to the case of general, i.e., nonunimodular,
Lie groupoids by replacing Hev

diff(G) and Hev
F (Z)G by Hev

diff(G;L) and

Hev
F (Z;µ∗L)G, i.e.

(12) 〈 , 〉loc : Hev
F (Z;µ∗L)G ×K loc

0 (Ψ−∞
inv (Z;F)) → C.

Indeed the invariant volume form Ω defines a class in H0
diff(G;L) and

using the H•
diff(G)-module structure on H•

diff(G;L), c.f. [Cr], one can

view the product ϕ · Ω in (11) as an element in H2k
diff(G;L). With this,

one easily observes that the same formula defines a pairing as above for
general elements in Hev

diff(G;L), and respectively Hev
F (Z;µ∗L)G.

Finally, consider a G-invariant family of elliptic differential operators
along the fibers of µ. Using the G-invariant pseudodifferential calculus
of Section 1.3, one constructs the index class Ind(D) ∈ K0(Ψ

−∞
inv (Z;F))

in the standard way. In fact, we can localize the support of this K-
theory class in an arbitrary small neighborhood of Z ⊂ Z µ×µZ, so as to
obtain, just as in [PPT2, Prop. 3.5], a localized index class Indloc(D) ∈
K loc

0 (Ψ−∞
inv (Z;F)).

3. The index theorem

In this section we prove the following index theorem:

Theorem 3.1. Let G be a Lie groupoid acting properly and cocom-
pactly on a manifold Z. Suppose that D is an elliptic G-invariant dif-
ferential operator on Z, and α ∈ H2k

F (Z;µ∗L)G. The index pairing (12)
evaluated on these elements is given by

〈α, Indloc(D)〉loc :=
1

(2π
√
−1)k

∫

T ∗
µZ
π∗ 〈c, α〉 ∧ Â(F∗) ∧ ch(σ(D)).

Remark 3.2. In this index formula, L is the line bundle ∧topT ∗M ⊗
∧topA over M; Â(F∗) is the Â-genus of the foliation F∗, as will be
introduced below; and ch(σ(D)) is the foliated Chern character of the
symbol of D. These characteristic classes live in H•

F∗(T ∗
µZ)

G. The term
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〈c, α〉 means that we use the pairing between A and A
∗ to obtain a

transverse density in µ∗
∣
∣
∧top T ∗M

∣
∣. After wedging with the classes in

H•
F∗(T ∗

µZ)
G we obtain a compactly supported differential form on Z

that can be integrated.

As an immediate corollary we observe that if the foliated cohomology
class lies in the image of the van Est map, the pairing only depends on
the “global” index class in K0

(
Ψ−∞

inv (Z;F)
)
, so that we have:

Corollary 3.3. In the situation above, let ν ∈ H2k
diff(G;L). Then we

have

〈ν, Ind(D)〉 := 1

(2π
√
−1)k

∫

T ∗
µZ
π∗ 〈c,ΦZ(ν)〉 ∧ Â(F∗) ∧ ch(σ(D)).

3.1. The algebraic index theorem. Given the set-up as above, where
the Lie groupoid G ⇒ M acts on Z with moment map µ : Z → M ,
consider P := T ∗

µZ, the cotangent bundle along the fibers of µ. With the
fiberwise cotangent bundle structure, it is easy to see that this manifold
carries a canonical regular Poisson structure Π whose symplectic leaves
are exactly the cotangent bundles of the fibers of µ, i.e., F∗, where
F = ker(Tµ) defines the foliation of Z by the fibers of µ. The groupoid
G naturally acts on T ∗

µZ, and the Poisson structure is invariant for this
action.

The Fedosov construction is a well-known method to construct a for-
mal deformation quantization of a symplectic manifold. It applies also
to regular Poisson manifolds by a leafwise construction, since the foli-
ation by symplectic leaves is not singular. The Fedosov construction is
differential geometric in nature; it basically depends on the choice of a
symplectic connection. Therefore, in our case where G acts on T ∗

µZ in a
proper way and we can average with respect to a cut-off function, we ob-
tain a G-invariant leafwise symplectic connection on T ∗

µZ, and it yields
a formal deformation quantization classified by a foliated cohomology
class of the form

Ω :=
1

~
ω +

∞∑

k=0

~
kΩk ∈ 1

~
ω +H2

F∗(T ∗
µZ,C[[~]])

G,

where ω ∈ Ω2
F∗(T ∗

µZ)
G is the leafwise symplectic form. We denote the

resulting sheaf of noncommutative algebras by A
~
T ∗
µZ

. By construction,

this sheaf carries an action of G by automorphisms.
For regular Poisson manifolds there is a very general “algebraic index

theorem” for cyclic homology of a formal deformation first proved in
[NeTs01] in the context of symplectic Lie algebroids. For our purposes,
we need a G-equivariant version of this theorem, which we will briefly
outline using the alternative construction in [PPT1] of the so-called
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cyclic trace density: this is a morphism of complexes of sheaves
(13)

Ψ :
(

Tot•
(

BC(A ~
T ∗
µZ

)
)

, b+B
)

→
(
Tot•

(
BΩF∗⊗ C[~−1, ~]]

)
, dF∗

)
.

Here, BC(A ~
T ∗
µZ

) denotes the sheafified Connes’ (b,B)-complex comput-

ing cyclic homology, c.f. [Lo], where b denotes the Hochschild differen-
tial. On the other hand,

Totk BΩF∗ :=
⊕

i≥0

Ω2r−2i−k
F∗ ,

where 2r is the rank of F∗, and is equipped with the foliated de Rham
differential dF∗ . The only two ingredients of the trace density (13) are
the choice of a symplectic connection as in the Fedosov construction, and
a universal cyclic cocycle on the formal Weyl algebra of R2r, c.f. [PPT1].
Therefore, since in our set-up this connection is G-invariant, one easily
observes that the morphism (13) is G-equivariant for the natural action
on the domain and range.

On the other hand there is the classical symbol map, combined with
the Hochschild–Kostant–Rosenberg isomorphism given by

σ(a0 ⊗ . . .⊗ ak) := i∗(a0(0)da1(0) ∧ . . . ∧ dak(0)) ∈ Ωk
F∗(T ∗

µZ),

where aj(0) ∈ C∞
T ∗
µZ

is the constant term in the ~ expansion of aj ∈
A

~
T ∗
µZ

, for j = 1, . . . , k, and i : F∗ → T ∗
µZ is the inclusion of the sym-

plectic leaves. This morphism maps the Hochschild differential to zero
whereas the B-differential is mapped to the foliated de Rham differential
dF∗ . The algebraic index theorem for such deformation quantizations
measures the discrepancy between these two maps. For this we need the
Â-genus defined by

Â(F∗) :=
k∏

i=1

xi/2

sinh(xi/2)
∈ Hev

F∗

(
T ∗
µZ;C

)G
,

where the xi are the leafwise Chern roots with respect to an invariant
almost complex structure compatible with the symplectic form. With
this, the algebraic index theorem reads:

Theorem 3.4. The following diagram commutes after taking coho-
mology:

Tot•
(

BC(A ~
T ∗
µZ

)
)

σ //

Ψ
**❱❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

Tot• (BΩF∗)

∪Â(F∗)e−Ω/2π
√

−1~

��

Tot• (BΩF∗)⊗ C[~−1, ~]]

.
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Furthermore, all three morphisms are equivariant for the G-action, so

that an invariant cyclic chain in Tot•
(

BC(A ~
T ∗
µZ

)
)

lands in the complex

Tot• (BΩF∗)G ⊗ C[~−1, ~]].

Next, consider a formal difference [e] − [f ] of two idempotents e =
e0+~e1+. . . , and f = f0+~f1+. . . in MatN (A ~

T ∗
µZ

) representing a class

in K-theory. The noncommutative Chern character, c.f. [Lo], defines a
map

Ch : K0

(

A
~
T ∗
µZ

)

→ HC•
(

A
~
T ∗
µZ

)

.

On the other hand, taking the zero order term [e0] − [f0] defines an
element in the foliated K-theory K0

F∗(T ∗
µZ). Recall, c.f. [MoSc], that

foliated K-theory is the group completion of the semigroup of isomor-
phism classes of foliated vector bundles, and the ordinary commuta-
tive Chern character in K-theory combines with the restriction map
i∗ : H•(T ∗

µZ) → H•
F∗(T ∗

µZ) to define the foliated Chern character

ch : K0
F∗(T ∗

µZ) → H•
F∗(T ∗

µZ). With this we have the following corol-
lary that is used in the proof of the index theorem:

Corollary 3.5. For e ∈ K0

(

A
~
T ∗
µZ

)

, the following equality in H•
F∗

(T ∗
µZ) holds true:

Ψ(Ch(e)) = R
(

Â(F∗) ∧ ch(σ(e))
)

∧ e−Ω/2π
√
−1~.

Here R is the operator that multiplies the degree 2k-part of an even
differential form with (2π

√
−1)−k. The appearance of this factor is

caused by the different normalizations of the noncommutative and com-
mutative Chern characters.

3.2. A lemma on G-invariant cohomology. The algebraic index
theorem of the previous section yields an equality in the G-invariant
foliated cohomology H•

F∗(T ∗
µZ)

G. To obtain an actual number and relate
to the higher index pairing of Proposition 2.6, we need an integration
map. Because of the noncompactness of Z, we need the cut-off function
for this:

Lemma 3.6. Let α ∈ Ωtop
F (Z)G. The functional

∫

Z/G
α :=

∫

Z
α 〈c, µ∗Ω〉

vanishes on exact invariant forms and defines a linear map

Htop
F (Z;K)G → K,

for any field K containing R, which does not depend on the choice of
the cut-off function c.
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Proof. Given β ∈ Ωtop−1
F (Z)G, we have to show that

∫

Z/G
dFβ = 0.

Let us first remark that differentiation of the identity (ii) of Definition
1.1 yields the identity

∫

Gµ(z)

g∗dFc(z) = 0, for all z ∈ Z.

Indeed, although strictly speaking c ∈ Γ∞
c (Z, µ∗

∣
∣
∧top

A
∗∣∣) is a density,

since the density bundle is a pull-back along µ and dF is the differential
along the fibers of µ, the above equation makes sense. With this we now
compute:
∫

Z/G
dFβ =

∫

Z
dFβ 〈c, µ∗Ω〉

= −
∫

Z
β ∧ dF 〈c, µ∗Ω〉 (by Stokes’ Theorem)

= −
∫

Z
β ∧ 〈dFc, µ∗Ω〉 (since dFµ∗Ω = 0)

= −
∫

Z

∫

Gµ

g∗cβ ∧ 〈dFc, µ∗Ω〉 (c.f. Def. 1.1 (ii))

= −
∫

Z

∫

Gµ

cβ ∧
〈
(g−1)∗dFc(z), µ

∗Ω
〉

= 0,

where, to go to the fifth line, we have used that both β and Ω are
G-invariant. This proves the first claim. The second claim, that the
integration map does not depend on the choice of the cut-off function c,
is proved in the same manner as in the proof of Proposition 2.3. q.e.d.

Remark 3.7. There are two extensions of this lemma:

i) The lift of the G-action to T ∗
µZ is still proper, but it will not be

cocompact. It is easy to see that the lift π∗c is a cut-off density
on T ∗

µZ adapted to the G-action in the sense of Definition 1.1.
When one assumes that the differential forms have compact sup-
port along the F∗-direction, the same Lemma holds true for T ∗

µZ
when one integrates with respect to π∗c.

ii) One can interpret αµ∗Ω as a foliated invariant differential form
with values in the foliated flat line bundle µ∗L. Clearly the proof
of the lemma holds true for any element in Ω•

F (Z;µ
∗L)G, so that

∫

Z
〈c, α〉 , α ∈ Ωtop

F (Z;µ∗L)G

vanishes on exact forms.
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3.3. Proof of Theorem 3.1. With the results of the previous two
subsections, the algebraic index theorem for T ∗

µZ, and the cohomolog-
ical nature of the integration map, the proof of Theorem 3.1 proceeds
in complete analogy with the proof of the index theorem in [PPT2].
Instead of providing full details, which in the end would repeat many
similar statements of loc. cit., we give a step by step outline, in which
each step can be easily proved by modifying the arguments of [PPT2],
to which we refer for further details.

First, assume G to be unimodular, and fix an invariant transverse
density Ω as in Definition 2.1.

Step 1: Asymptotic calculus. Instead of the usual pseudodifferen-
tial calculus, one can go over to an asymptotic version where symbols
a(~, z, ξ) depend on an additional variable ~ ∈ [0,∞) and have an as-
ymptotic expansion near ~ → 0 of the form

a ∼
∞∑

k=0

~
kam−k, am−k ∈ Symm−k

inv (Z;F).

We write ASymm
inv(Z;F) for the space of such asymptotic symbols of

order m, and JSymm
inv(Z;F) for the subspace of symbols vanishing at

~ = 0 up to all orders. Define the scaling operator ι~ : Sym∞
inv(Z;F) →

Sym∞
inv(Z;F) by (ι~a)(z, ξ) := a(z, ~ξ). With this we can define an

associative product on ASym∞
inv(Z;F) :=

⋃

mASymm
inv(Z;F) by

(14) a1 ⊛ a2 :=

{

σ~ (Op~(a1) ◦Op~(a2)) , ~ > 0,

a1 · a2, ~ = 0,

where Op~ := Op ◦ι~ and σ~ := ι~−1 ◦ σ. The quotient algebra A
∞
inv :=

ASym∞
inv(Z;F)/ JSym∞

inv(Z;F) is isomorphic to Sym∞
inv(Z;F)[[~]] as a

vector space, and the product above defines a deformation quantization
A
∞ of T ∗

µZ which is G-invariant. In the invariant subalgebra A
∞
inv there

is the ideal A−∞
inv which supports a C[~−1, ~]]-valued trace induced by

the trace of Proposition 2.4:

τΩ(a) :=
1

~r

∫

T ∗
µZ
c(z)a(~, z, ξ)µ∗Ω,

where r denotes the rank of the foliation F .

Step 2: Comparing traces. By the classification of ⋆-products on reg-
ular Poisson manifolds, c.f. [NeTs01], the deformation quantization of
T ∗
µZ defined by the asymptotic pseudodifferential calculus is isomorphic

to a G-invariant Fedosov quantization A
~
T ∗
µZ

. On the invariant part A
~,G
T ∗
µZ

, the cyclic trace density morphism (13) defines a C[~−1, ~]]-valued trace
by restricting to the degree zero of the Hochschild complex

Ψ2r
2r : C0(A ~,G

T ∗
µZ

) → Ω2r
F∗ ⊗ C[~−1, ~]],
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which satisfies Ψ2r
2r(a ⋆ b− b ⋆ a) = dF∗-exact. By Lemma 3.6, it follows

that the functional

trΩ(a) :=

∫

T ∗
µZ

Ψ2r
2r(a) 〈c, µ∗Ω〉

defines a trace. Just like in [PPT2, Prop. 5.4], one proves that the two
traces agree exactly: for a ∈ A

−∞
inv , we have τΩ(a) = trΩ(a).

Step 3: Compatibility with cup-products. As a next step, we com-
pare the cyclic trace density with the trace density as follows: consider
ϕ ∈ Ck

diff(G;Z), and write it, for simplicity only, as ϕ = ϕ0⊗. . .⊗ϕk with

ϕi depending on a single variable z ∈ Z. For a = a0 ⊗ . . .⊗ ak ∈ A
~,G
T ∗
µZ

,

the formula

X(ϕ)(a) := trΩ (a0 ⋆ π
∗ϕ0 ⋆ . . . ⋆ ak ⋆ π

∗ϕk)

defines a morphism of complexes

X :
(

Ĉk
diff(G;Z), d

)

→
(

Tot•(BC(A ~,G
T ∗
µZ

)), b+B
)

.

The crucial identity is now:

X(ϕ)(a) =

∫

T ∗
µZ

Ψ(a) ∧ΦZ(ϕ) 〈c, µ∗Ω〉 .

This equality corresponds to Prop. 5.8 of [PPT2].

Step 4: Final computation. In this last step we put all ingredients
together to compute the index pairing Prop. (2.6). We consider a co-
homology class α ∈ H2k

F (Z)G and represent it by a localized groupoid

cocycle ϕ ∈ C2k
diff(G;Z). Given a G-invariant elliptic differential operator

D along the fibers of µ : Z → M , its class Indloc(D) ∈ K loc
0

(
Ψ−∞

inv (Z)
)

is represented by an idempotent kD ∈ MN (Ψ−∞
inv (Z)) (actually a for-

mal difference of idempotents, but this does not alter the computation)
which we write as Op(a) with a ∈ A

−∞
inv . Next we scale the operator

D by ~ ∈ [0,∞) by the rule ∂/∂zi 7→ ~
−1∂/∂zi in local coordinates

zi along the fibers of µ, and observe that the localized K-theory class
represented by Op~(a) does not depend on ~. The pairing with α can



THE TRANSVERSE INDEX THEOREM FOR LIE GROUPOIDS 465

then be computed in the limit ~ → 0:

〈Indloc(D), α〉loc
= τΩ (ϕ0kDϕ1kD · · ·ϕ2kkD) (c.f. Prop. 2.6)

= lim
~→0

τΩ (ϕ0 Op~(a)ϕ1 Op~(a) · · ·ϕ2k Op~(a))

= lim
~→0

τΩ (Op~(ϕ0 ⋆ a)Op~(ϕ1 ⋆ a) · · ·Op~(ϕ2k ⋆ a)) (c.f. (14) & (8))

= lim
~→0

τΩ (Op~(ϕ0 ⋆ a ⋆ ϕ1 ⋆ a ⋆ ϕ2k ⋆ a)) (c.f. (14))

= lim
~→0

trΩ (ϕ ⋆ a ⋆ ϕ1 ⋆ a ⋆ ϕ2k ⋆ a) (by Step 2)

= lim
~→0

∫

T ∗
µZ/G

Ψ(a⊗ . . .⊗ a) ∧ΦZ(ϕ) (by Step 3)

=
1

(2π
√
−1)k

∫

T ∗
µZ/G

Â(F∗) ch(σ(D))π∗α. (by Cor. 3.5)

The integral in the last two lines is the invariant integral defined in
Lemma 3.6 using the auxiliary cut-off function c. In the final line we
have also used the fact that a⊗ . . .⊗a represents the components of the
noncommutative Chern character of the localized index class, c.f. Re-
mark 2.5. The characteristic class of the formal quantization constructed
by the asymptotic pseudodifferential calculus in 1) above is given by the
leafwise symplectic form, and since its cohomology class is trivial, this
term does not appear in the index formula. This finishes the proof of
Theorem 3.1 for proper actions of unimodular Lie groupoids.

Remark 3.8. In this final remark we explain how to prove the main
theorem in the case where G is not unimodular. As remarked before,
in this case, there is no trace on the algebra Ψ−∞

inv (Z;F) and one has
to modify the pairing to a pairing with groupoid cocycles twisted by
the representation L as in (12). To compute this pairing, we follow the
strategy in [PPT2, §6]: we trivialize the real line bundle L by choosing
a nonvanishing volume form Ω ∈ Γ∞(M ;L). Its failure to be G-invariant
is measured by the so-called modular function

δΩG (g) :=
g∗Ω
Ω

,

which satisfies δΩ
G
(g1g2) = δΩ

G
(g1)δ

Ω
G
(g2). After this trivialization of L,

the complex C•
diff(Z;µ

∗L) identifies with C∞
δ−inv(Z

(•)
µ ), where δ-inv means

that the functions satisfy the twisted invariance property

ϕ(gz0, . . . , gzk) = δΩG (g
−1)ϕ(z0, . . . , zk).

The differential is still given by (6). If we examine the proof of Proposi-
tion 2.3, we see that this twisting exactly compensates the failure of τΩ
to be a trace, making the pairing well defined.
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After localization, we find that the complex ΩF (Z;µ∗L)G computing
H•

F (Z;µ
∗L)G can be identified with the invariant foliated de Rham com-

plex ΩF(Z)G, again with a twisted differential that makes the integral of
Lemma 3.6 vanishing on (twisted-)exact forms. With this observation,
the argument applying the algebraic index theorem remains valid in this
case and one finds exactly Theorem 3.1.

4. Examples

4.1. Principal bundles. As a particular example, let us consider the
case where G acts freely on Z, i.e., Z is a principal G-bundle. For sim-
plicity, we will assume that G is unimodular, and there is a G-invariant
volume element Ω. In this case the quotient space B := Z/G is a smooth
manifold, assumed to be compact. For principal bundles, many of the
constructions in this paper have a natural interpretation in terms of the
so-called gauge groupoid G(Z) of Z: this is the groupoid over the base
B with the space of arrows defined by

G(Z) := (Z ×M Z)/G,

and the groupoid structure is induced by the G-equivariant groupoid
structure of the pair groupoid Z ×M Z ⇒ Z associated to the moment
map µ : Z → M . In fact, the principal bundle Z defines a Morita
equivalence between G and G(Z).

The Lie algebroid A(Z) of the gauge groupoid G(Z) is defined on
the vector bundle TµZ/G → B. When dealing with foliated invariant
differential forms on T ∗

µG, we expect in the case of a free action to be
able to push everything down to B, or better to the dual of the Lie
algebroid A

∗(Z). The space T ∗
µZ is foliated itself by the fibers of the

composition of the cotangent projection with µ, abusively also denoted
µ, and with this we have

Tµ(T
∗
µZ)/G

∼= π!A(Z),

where π : A∗(Z) → B is the projection. Here π!A(Z) is the pull-back
Lie algebroid as in [MaHi], and the isomorphism is proved just as in
[PPT2, Lemma 4.3]. Since we are pulling back A(Z) along the pro-
jection of its dual, we observe, just as in loc. cit., that there exists a
canonical symplectic form Θ ∈ Ω2

π!A(Z)
.

Proposition 4.1. Let G act freely on Z, and take α ∈ Ωtop
F (T ∗

µZ)
G

with compact support along the fibers of T ∗
µZ → Z. Then we have the

equality
∫

T ∗
µZ/G

α =

∫

A∗(Z)

〈
α|A∗(Z),Θ

r
〉
,

where r is the rank of the Lie algebroid A(Z).
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Proof. Let q : T ∗
µZ → A

∗(Z) be the quotient map. We pull back

Θ to an element q∗Θ ∈ Ω2
F (T

∗
µZ)

G on T ∗
µZ. q

∗Θr ∧ µ∗Ω defines a G-

invariant element of Ωtop(T ∗
µZ)⊗µ∗L. The G-invariance property makes

q∗Θr ∧ µ∗Ω naturally descend to a volume element ΩA∗(Z) with respect
to which the integral on A

∗(Z) is well defined. As a G-invariant element

of Ωtop
F (T ∗

µZ), α is the pull-back of α|A∗(Z). Then
∫

T ∗
µZ/G

α =

∫

T ∗
µZ

〈π∗c(z), α ∧ µ∗Ω〉(15)

=

∫

T ∗
µZ

〈
π∗c(z), q∗α|A∗(Z) ∧ µ∗Ω

〉
.

Now α can be written as

〈q∗α|A∗Z , q
∗Θ〉 q∗Θ = q∗(

〈
α|A∗(Z),Θ

〉
Θ).

Continuing the computation in Eq. (15), we obtain that
∫

T ∗
µZ/G

α =

∫

T ∗
µZ
q∗(

〈
α|A∗(Z),Θ

〉
) 〈π∗c(z), q∗Θr ∧ µ∗Ω〉

=

∫

A∗(Z)

〈
α|A∗(Z),Θ

〉
ΩA∗(Z)

∫

Gµ(z)

c(g−1z).

By the definition of the cut-off function c, we conclude the identity of
the proposition. q.e.d.

We apply Proposition 4.1 to the index formula in Theorem 3.1, and
obtain the following index formula for free actions:

Theorem 4.2. Suppose that Z is a principal G-bundle. For a closed
invariant form α ∈ Ω2k

F (Z)G, we have:

〈α, Indloc(D)〉loc :=
1

(2π
√
−1)k

∫

A∗(Z)

〈

α|A∗(Z) ∧ Â(F∗) ∧ ch(σ(D)),Θ
〉

.

WhenM is compact, the left translation defines a proper and cocom-
pact G action on Z = G with the quotient beingM . The gauge groupoid
G×M G/G is identical to G. Theorem 4.2 in this case recovers the main
theorem proved in [PPT2, Thm. 5.1].

Remark 4.3. Let us finally explain how the index theorem above
for principal G-bundles is connected to the index theorems of Connes,
c.f. [Co, Sec. III.7.γ], and Gorokhovsky–Lott, c.f. [GoLo2]. For this we
assume G to be a foliation groupoid. This means, c.f. [CrMo], that the
anchor of its Lie algebroid ρ : A → TM is injective, and its image defines
the foliation. If we write νA := TM/ρ(A) for the normal bundle to the
foliation, the line bundle L needed as a twisting in the non-unimodular



468 M.J. PFLAUM, H. POSTHUMA & X. TANG

case can be identified with L ∼=
∧top ν∗

A
= O(νA), the orientation bundle

of A. In [PPT2, Remark 7.4], we have constructed a canonical map

(16) i : H•
diff(G;L) → H•(BG;O(νA)).

Now, let π : Z → B be a principal G bundle. The gauge groupoid G(Z) is
also a foliation groupoid with induced foliation given by F = µ∗A/G, and
normal bundle νF satisfying π∗νF ∼= µ∗νA. With these identifications,
the characteristic classes in Theorem 4.2 can be identified as the usual
foliated characteristic classes of the induced foliation F as in [MoSc,
Ch. 5]. The right hand side of this integral can then be viewed as the
result of pairing this foliated cohomology class with a transverse current,
which can be identified, following the argument in the proof of Theorem
4 of [GoLo2], as ψ∗(i(α)), where ψ : B → BG is the map, unique up to
homotopy classifying Z. With this observation, Theorem 4.2 yields the
following result for foliation groupoids:

Theorem 4.4. Let G be a foliation groupoid and π : Z → B a prin-
cipal G-bundle equipped with an elliptic G-invariant differential operator
D. For c ∈ H2k

diff(G;L), we have

〈c, Ind(D)〉 = 1

(2π
√
−1)k

∫

B
Â(F∗) ∧ chF (σ(D)) ∧ ψ∗(i(c)),

where F denotes the induced foliation on B and ψ : B → BG is the
classifying map of the principal bundle.

This is exactly the index theorem of [Co, Sec. III.7.γ] and [GoLo2],
for the transverse currents coming from classes in the smooth groupoid
cohomology. In that light, it should be remarked that the map (16) is
not an isomorphism, so [Co, Sec. III.7.γ] and [GoLo2] give more general
index theorems for the smaller class of foliation groupoids.

4.2. Homogeneous spaces of Lie groups. Let G be a Lie group,
and H be a compact subgroup. We consider the special case that G

is a unimodular Lie group G, and Z is the homogeneous space G/H.
The map µ : Z → point is the trivial map, and the foliation F is the
whole manifold Z. Let g and h be the Lie algebra of G and H, and g∗

and h∗ be their dual. Then by translation, Ω•(G/H)G is isomorphic to
(∧•T ∗

[e]G/H)H , where [e] is the coset eH in G/H, and (∧•T ∗
[e]G/H)H

is isomorphic to (∧•(g/h)∗)H . Under these isomorphisms, the de Rham
differential on Ω•(G/H)G is isomorphic to the Lie algebra cohomology

differential on the relative Lie algebra cohomology complex (∧•(g/h)∗)H ,
and therefore H∗(Z)G is isomorphic to H•(g,H;C).

LetD be a G-invariant elliptic differential operator on Z = G/H. The
principal symbol σ(D) defines a K-theory element on T ∗G/H = T ∗

µZ.
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Theorem 3.1 states that for any α ∈ H•(G/H)G,

〈α, Indloc(D)〉loc =(17)

1

(2π
√
−1)k

∫

T ∗G/H
〈π∗c(z), α〉 ∧ Â(T ∗G/H) ∧ ch(σ(D)).

As is explained in [W, Remark 6.15], by the G-invariance, the above in-
tegral can be reduced to an integral on m∗ where m is a complement of h
in g. More concretely, G is a principalH bundle over G/H. By choosing a
connection on this bundle, Connes and Moscovici [CoMo82] introduced

an Â class Â(g,H) ∈ H•(g,H;C). The restriction of the symbol σ(D) of
a G-invariant elliptic operator to T ∗

[e]G/H defines an H-equivariant K-

theory element. Connes and Moscovici [CoMo82] introduced a Chern
character ch(σ(D))m∗ of σ(D) in H•(g,H;C). Under the isomorphism
between H•(G/H) and H•(g,H;C), Wang explained in [W, Remark

6.15], Â(T ∗G/H) is reduced to Â(g,H) ∈ H•(g,H;C) and ch(σ(D)) is
reduced to ch(σ(D))m∗ ∈ H•(g,H;C). And the index pairing can be
written as

〈α, Indloc(D)〉loc :=
1

(2π
√
−1)k

〈

α ∧ Â(g,H) ∧ ch(σ(D))m∗ , [V ]
〉

,

where [V ] is the fundamental class of m∗. When α is 1 ∈ H0(g,H;C),
this is exactly the L2-index theorem proved by Connes and Moscovici
[CoMo82]. Now, with our theorem, the freedom of choosing different

α provides a powerful approach to understand the full class Â(g,H) ∧
ch(σ(D))m∗ ∈ Heven(g,H;C).

Remark 4.5. Let us finally drop the unimodularity assumption and
assume that H ⊂ G is maximal compact. The index theorem is now
phrased in terms of the natural pairing

〈 , 〉 : H•(g,H;C)×H•(g,H;L) → C,

where L =
∧top

g. As remarked by Connes and Moscovici, in the case
of the homogeneous space Z = G/H, the index class Ind(D) can be
constructed in K0(C∞

c (G)), and we can pair with group cocycles ν ∈
H2k

diff(G;L) using the pairing of [PPT2]. Since H is maximal compact
in G, when G is connected, the van Est morphism ΦZ of this paper
induces an isomorphism H•

diff(G;L)
∼= H•(g,H;L): this is the classical

van Est theorem for Lie groups [vE]. Our main result now implies:

Theorem 4.6. Let H ⊂ G be a maximal compact subgroup of a Lie
group, and D a G-invariant elliptic differential operator on Z := G/H.
For ν ∈ H2k

diff(G;L) we have:

〈ν, Ind(D)〉 = 1

(2π
√
−1)k

〈

Â(g,H) ∧ ch(σ(D))m∗ ,ΦZ(ν)
〉

.
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4.3. Families on orbifolds. By an étale Lie groupoid, we mean a
Lie groupoid whose source and target maps are local diffeomorphisms.
Consider a proper étale groupoid G such that the quotient space X :=
M/G is compact. A proper étale groupoid G is unimodular. And the
quotient space M/G is an orbifold, i.e., a topological manifold that is
locally diffeomorphic to the quotient of a euclidean space by a finite
group action. Consider a proper G action on µ : Z → M . Let D be a
G-invariant elliptic differential operator on Z. Theorem 3.1 states

(18) 〈α, Indloc(D)〉loc :=
1

(2π
√
−1)k

∫

T ∗
µZ
π∗ 〈c, α〉 ∧ Â(F) ∧ ch(σ(D)),

for α ∈ H•
F (Z)

G. We observe that quotients of leaves of F by the G-
action define a foliation FX on M/G. And D defines a leafwise elliptic
differential operator DX on X with respect to the foliation FX . The
index pairing (18) computes the index numbers of the operator DX .
This is a longitudinal index theorem for the leafwise elliptic operator
DX on the orbifold X with the foliation FX .

Assume µ : Z → M is a fiber bundle over M with a compact closed
fiber F . Let D be a G-invariant elliptic differential operator on Z. For
x ∈M , D|µ−1(x) is an elliptic differential operator on a compact closed

manifold µ−1(x), and therefore the kernel and cockerel of D|µ−1(x) are
finite dimensional vector spaces. Varying x ∈ M , as D is G-invariant,
ker(D) and coker(D) together define a G-equivariant K-theory Indt(D)
element on M . The latter group, also known as the “orbifold K-theory”
K0

orb(X), is the group completion of the monoid formed by isomorphism
classes of G-equivariant vector bundles on M . In general, the Chern
character maps K•

orb(X) to the cohomology of the so-called “inertia
orbifold”, but here we are only interested in its localization at the units
ch[1] giving a G-invariant differential form on M . The integration of

ch[1](Ind
t(D)) overM/G can be identified directly with the index pairing

in this paper ∫

M/G
ch[1](Ind

t(D)) = 〈1, Ind(D)〉 ,

where 1 stands for the constant function with value 1 on M . As G

is proper, up to a scalar, 1 is the only nontrivial cohomology class in
H•

diff(G). By the index formula (18), we have

Theorem 4.7. Let G ⇒ M be a proper étale groupoid, and Z a G-
equivariant fiber bundle over M with compact closed fibers F . Then we
have:

∫

M/G
ch[1](Ind

t(D)) =

∫

T ∗
µZ
π∗

〈

c, Â(F) ∧ ch(σ(D))
〉

.

Theorem 4.7 is an example of a family index theorem on orbifolds.
We remark that as it is only the integration of ch[1](Ind

t(D)) over M/G,
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not on the full inertia orbifold, the pairing above is in general a rational
number, not an integer.
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