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ERGODICITY AND INTERSECTIONS OF NODAL SETS
AND GEODESICS ON REAL ANALYTIC SURFACES

STEVE ZELDITCH

Abstract

We consider the intersections of the complex nodal set N, )\(C_
of the analytic continuation of an eigenfunction of A on a real
analytic surface (M2, g) with the complexification of a geodesic .
We prove that if the geodesic flow is ergodic and if v is periodic
and satisfies a generic asymmetry condition, then the intersection
points N, )S N 7575 condense along the real geodesic and become
uniformly distributed with respect to its arc-length. We prove an
analogous result for non-periodic geodesics except that the ‘origin’
vz,£(0) is allowed to move with A;.
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This article is concerned with the ‘complex geometry’ of nodal sets
of Laplace eigenfunctions on real analytic Riemannian surfaces (M?, g)
with ergodic geodesic flow. All but one of the methods are valid in all
dimensions, so until it is necessary to specialize to surfaces we consider
Riemannian manifolds (M™, g) of general dimension m. Let {¢;} be an
orthonormal basis of eigenfunctions of the Laplacian A of (M, g),

A('lpj = A?@j’ <90jy90k> = Ojk,

where \g = 0 < A\; < Ap < --- and where (u,v) = [}, uvdVy (dV,
being the volume form). When the geodesic flow G* : SgM — SyM is
ergodic on the unit (co-)tangent bundle, the ‘random wave model’ for
eigenfunctions predicts that the nodal sets

Ny, ={x € M : pj(zx) =0}
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become equidistributed with respect to the volume form in the sense
that

(1)
; m—1 1
Hm = (N,) //\/ IR = i, g) /M fdV, (7] € CLAD)).

Here, ’Hm_l(/\/'@j) denotes the hypersurface volume; we refer to [Z4]
for background. This prediction appears to lie far beyond the scope of
current mathematical techniques. But we aim to show that something
quite close to (1) can be proved for intersections of complex nodal lines
and complexified geodesics on real analytic surfaces with ergodic geo-
desic flow. Roughly speaking, we show that in the complex domain,
as A — oo, the intersections of nodal sets with generic periodic and
non-periodic geodesics condense along the underlying real geodesic and
become uniformly distributed relative to its arclength. Much of the
proof generalizes to any real analytic curve on a surface or to a real an-
alytic hypersurface in higher dimensions, but the case of geodesics seems
to us special and interesting enough to deserve a separate treatment; the
potential generalizations are discussed at the end of the introduction.

To state our results, we introduce some notation. We recall that any
real analytic manifold M admits a Bruhat-Whitney complexification
Mc [BW], and that for any real analytic metric g all of the eigenfunc-
tions ¢; extend holomorphically to a fixed open neighborhood M, of M
in Mc called a Grauert tube. We denote the holomorphic extension by
cp;-c. The ‘radius’ (in the imaginary direction) of an open neighborhood
is measured by the Grauert tube function ,/p and we denote the level
set \/p = 7 by OM, for 7 < € (see §1 for background). The complex
nodal sets are defined by

Nye = {¢ € M+ ¢5(¢) = 0}.

We propose to intersect these nodal sets with the (image of the) com-
plexification of an arc-length parameterized geodesic

(2) Tog R = M, 76(0) =2, 7,,00)=¢ €T, M.
As recalled in §1, v, ¢ admits an analytic continuation

(3) o ¢:Sc— M.

to the strip

(4) Se={(t+ireC:|r| <€}

When we freeze 7 we simplify the notation to

(5) Vae(t) =g (t + 7).
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The intersection points of 7;?,5 and N, gj correspond to the zeros of the
pullback (’yf f)*cpé-c. We encode this discrete set by the measure

(6) [N:\ig&] = Z Otvir-

(t+iT): gpgc(wgyg(t+i7)):0

Definition 1. Let S = {ji} C N be a subsequence of the positive
integers. We say that the intersection points of the complex nodal sets
N ;\Cj and the complexified geodesic ’y;CC ¢ for the subsequence S condense

k b

on the real geodesic and become uniformly distributed with respect to
arc-length if, for any f € C.(S,),

lim > Ft+ir) = l/f(t)dt.
(t+it): go}ck('yg’g(t+i7)):0 TIR

C
That is, ﬁ[/\/}l”g] — L60(7)dtdr in the sense of measures.

The first result of this article (Theorem 1) gives a sufficient condition
on a periodic geodesic v, ¢ for the existence of a subsequence S, ¢ of den-
sity one of the {\;} for which {N}, } satisfies the condition of Definition
1. The condition is that the QER (quantum ergodic restriction) result
of [TZ] is valid for the geodesic. As recalled in §10.1 (see especially
Theorem 10.2) the QER result states that restrictions of eigenfuntions
‘F’jk‘%,g to a (real) geodesic are quantum ergodic along 7, ¢ as long as
Vet 18 asymmetric (as a hypersurface of M) with respect to the geo-
desic flow. The asymmetry condition (Definition 4) pertains to pairs
of geodesics a(t),a*(t) : R — M, with a(0) = a*(0) € y,¢ (i.e. the
trace of v,¢) and with o' (0) equal to the reflection through To0)Va st
of o/(0). The condition is that «(t) and o*(t) almost never return to
V¢ at the same time and the same point. This is a generic condition
on a closed geodesic and also holds for any Birkhoff regular geodesic.
Since geodesics are hypersurfaces only when dim M = 2, the result on
intersections of periodic geodesics and nodal sets is only proved in that
dimension. Results independent of QER hold in all dimensions.

The second result ( Theorem 2) is an analogous result for non-periodic
geodesics, such as Birkhoff regular ones. The result is somewhat weaker
due to the non-compactness of non-periodic geodesics and the resulting
problems with escape of mass at parameter time infinity.

0.1. A key Lemma. Before stating the Theorems precisely, we state
a key Lemma which is valid in all dimensions and which reduces the
equidistribution of zeros in the ergodic case to growth estimates. It is
ultimately based on the Proposition 2 which we state after some further
preliminaries.
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The starting point is the Poincaré-Lelong formula, according to which
we may express the current of summation over the intersection points
in (6) in the form,

NP = L 08,0 1og |y oS (¢ + i7)|
(7) Nyl = —00utir 108 | 12,64, (t +i7)

This formula holds for the complexification of any real analytic curve.
It follows from (7) that the main step in the proofs of all the theorems
is to obtain the asymptotics of the sequence

z 1 . INE «
(8) opS = =log [y e (t+im)| L (@) € 5*M)

J \j
of subharmonic functions on a strip S. C C.

Next we use the following compactness result, which combines a stan-
dard compactness Lemma due to Hartogs, H. Cartan and L. Hérmander
with a stronger conclusion that is ultimately based on Proposition 2
below. We use the notation v* for the USC (upper semi-continuous)

regularization of v. For background we refer to [Ho2] (Theorems 3.2.12-
3.2.13).

Lemma 1. For any compact analytic Riemannian manifold (M, g),
and any (x,&) € S*M, the family of subharmonic functions

Foe= it (t+ir), j=1,2,...}

on the strip S, is precompact in L}OC(SE) as long as it does not converge

uniformly to —oo on all compact subsets of S.. Moreover:
o For all (z,£), limsupy_, vz’s(t +i7) < 2|7|.
o Let {vf}f} be any subsequence of {vf’g} with a unique L} . limit v
on Se and let v* be its USC regularization. Then if v* < 2|7| — ¢
on an open set U C S then v* < 2|1| — € for U = Jep(U + 1)
and
(9) limsupw;, <2|7| —¢ on U.

k—o00

The upper bounds follow from the global upper bound

(10) tinsup 5 1og |, (O < 21/3(0)
k—oo J
everywhere on 9M, proved in [Z]; we review it in §3.2. However, it is
not generally true that if a limit v* is < 2|7| — € on some open set then
it is globally < 2|7| — € on R. This is where Proposition 2 is used.
Since there is no unique choice of origin along (the trace of) the
parameterized geodesic v, ¢ it is natural to consider the enlarged family

(11) Fat = FEE0

seR
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of translates of 7;’590]- for 5 = 1,2,.... The compactness result of
Lemma 1 generalizes to this family; we refer to Lemma 7.1 for the
statement we need.

0.2. Statement of results for asymmetric periodic geodesics
on surfaces. The first result pertains to periodic geodesics on surfaces
which satisfy the asymmetry condition (Definition 4). The asymmetry
condition is needed to rule out obvious counter-examples such as when
Ya,¢ is the fixed point set of an isometric involution; then “odd” eigen-
functions under the involution will vanish everywhere on the geodesic.
As mentioned above, the asymmetry condition arose in [TZ] (see also
[DZ]) as the condition that -, ¢ have the QER (quantum ergodic restric-
tion) property, i.e that there exists a full density set of eigenfunctions
{¢j, } which are quantum ergodic when restricted to v, ¢ (see Theorems
10.1 -10.2). The generic asymmetry of periodic geodesics on hyperbolic
surfaces is proved in [TZ] and the discussion is almost the same for
any surface of negative curvature. Hence we do not discuss existence of
asymmetric periodic geodesics in this article.

Theorem 1. Let (M2, g) be a real analytic Riemannian surface with
ergodic geodesic flow. Let v, ¢ be a periodic geodesic satisfying the as-
symetry QER hypothesis of Definition 4. Then there exists a subse-
quence of eigenvalues \;, of density one such that the equi-distribution
result in Definition 1 holds.

The main Proposition is:

Proposition 1. (Growth saturation) If v, ¢ is a periodic geodesic
which satisfies the QER asymmetry condition (Definition 4) along com-
pact arcs, then there exists a subsequence S, ¢ of density one so that,
for all T <€,

lim Llog S (t+z‘7)‘2 =2|7| in L},.(S,).

k—00 )\jk TEF Ay loc\T
The subsequence Sy ¢ is the ergodic sequence along v, ¢ given by Theorem
10.1.

Proposition 1 immediately implies Theorem 1 since we can apply

2
7;’590(()\:% (t+ ZT)‘ to obtain a

00 to the L' convergent sequence % log
Ik

weakly convergence sequence of measures tending to 2 99||.

Proposition 1 has an analogue for any real analytic curve but the ex-
act formula is special to geodesics and arises because complex geodesics
are isometric embeddings to Grauert tubes (see §1.5). In general, the
growth rates of restrictions depend on the curve.

0.3. Statement of results for non-periodic geodesics. We next
consider non-periodic geodesics. The non-compactness of R may allow
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the L? mass of the restricted eigenfunctions (in the real or complex
domain) to escape ‘to infinity’ along the parameter interval R of the
geodesic as \; — 0o. That is, |90(]C|’Y;§ might achieve growth saturation
only on intervals I; C R which gety translated to infinity as j — oo.
Viewed on the compact manifold M, the ‘high mass’ intervals might
move along 7, ¢, and in the limit the saturating mass might jump to
another geodesic.

To gain some partial compactness, we consider the two-parameter
family (11) of restrictions Vs (z,6) P 88 S, Aj vary. For fixed A; this is
the family of translates of 7;§<,0j. Of course, this family is non-compact
in Cy(R) since Ve is not an almost-periodic function.

Theorem 2. Let (M2, g) be a real analytic Riemannian surface with
ergodic geodesic flow. Let 7y, ¢ be a non-periodic geodesic satisfying the
assymetry QER hypothesis of Definition 4. Then there exists a subse-
quence of eigenvalues A, of density one and a sequence { N} C R such
that for any f € C.(S.),

Jim 3 £t +i7) :% /R F(t)dt.

(t+iT): ﬁ/(*ac,g) go?k (t+Ng+it)=0

Thus, we obtain a result parallel to that of Theorem 1 except that
we may have to translate the origin = of 7, ¢ unbounded parameter
distances along the geodesic.

These concentration- equidistribution results are ‘restricted’ versions
of the result of [Z], which states that for real analytic (M, g) with ergodic
geodesic flow,

1

(12) W15 Ng ) L[ ety

for a density one subsequence of ergodic eigenfunctions. Here, w = dd®p
is the Kéhler metric on the Grauert tube induced by g (see [GS1, LS]
and §1). An important point to observe is that dd®,/p is singular along
the real domain, indicating that complex zeros concentrate along the
totally real submanifold M. Our results show that the singularity is
magnified under restriction to asymmetric geodesics, indeed it becomes
a delta function along the real geodesic.

It follows that there exist many “nearly real” intersections of a com-
plex geodesic with the complex nodal line when the geodesic flow is
ergodic (i.e. zeros of ’y;écp;-c whose imaginary parts tend to zero with
Aj). It would be very interesting to know the proportion of “truly
real” intersection points among these nearly real ones. There are very
few lower bounds known at present on the number of real intersection
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points, except in special cases such as separation of variables eigenfunc-
tions or eigenfunctions on flat tori [BR] or special eigenfunctions and
the geodesics on the modular hyperbolic surface [GRS].

0.4. Discussion of the proofs. The proofs involve several principles
which played no role in the global result (12). Some hold in much
greater generality and some are specific to geodesics. At the end of the
introduction we discuss the potential generalizations.

One of the main ingredients in the proof is an invariance principle
for restrictions to geodesics in the complex domain that is a simple
kind of QUER (quantum uniquely ergodic restriction) principle. The
main statement (Lemma 2) proves the translation invariance of the limit
measures of L? normalizations of |’7;§(,D;C(t+i7')|2 along intervals in each
horizontal line of S;. Intuitively, it is the restricted version of the stan-
dard fact that Wigner measures of eigenfunctions are almost invariant
under the geodesic flow. Since we are restricting to a single geodesic, the
result should be translation invariance of the limit measures. But we ob-
viously need to normalize ﬁ@p?(t +¢7) along horizontal lines to obtain
a bounded family of measures. The non-compactness of R in the case
of non-periodic geodesics forces us to work on compact sub-intervals.

In the case of periodic geodesics, we can normalize 7;’590(](;(75 +i7) for
each 7 by dividing by its L? norm on the horizontal interval ¢ € [0, L]
where L is the period of 7, ¢ in the real domain (hence also in the com-
plex domain). When v, ¢ is a non-periodic geodesic, there is no canonical
choice of normalization and therefore we consider all possibly choices.
When we pull back under Va0 WE consider all possible renormalizations
along intervals I as follows:

Definition 2. Let I C R be an interval and let I, C S, = {t +i7 :
t € I} be the indicated segment of 9S,. Then define

T+, C
(13) U= 2t i , (l.e. / \U;Tvxvfﬁdt:l),
||7x,590j los, 21, dt) I

where

fllz2 ) :/tI |f(GTFT (2, 6))|?dt.

We then associate Wigner measures to normalized complexified eigen-
functions. As will be explained below, in the complex domain the rel-
evant theory of pseudo-differential operators is the Toeplitz calculus of
[BoGu]. This reflects the fact that restricted complexified eigenfun-
tions concentrate microlocally on the tangent directions to 7, ¢. Hence
Wigner measures are defined simply by multiplication operators along

0S;:
Definition 3. Let a € C2°(0S;) and set
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(14) / a() W () = (ol gy / o|UT 4 P,
oS- S,

Our aim is then to determine the weak* limits of

2
‘U;T’m’§ on I, and on general compact sets of 05;.

2
. 1 . . .
Since ‘U jf’m’g‘ is normalized to have mass one on I, it forms a pre-

compact family of probability measures on I.. The following Proposi-
tion asserts that the Wigner distributions are asymptotically invariant
under translation.

Proposition 2. (Lebesgue limits) Let (M, g) be a real analytic Rie-
mannian manifold of any dimension m, Let (x,&) € S*M be any point
and let 1, be the interval defined above. Then as long as 7;’590]- #0

(identically), the sequence {]U;T’x’glz} is QUE on 1, with limit mea-
sure giwven by normalized Lebesgue measure on L.. That is, for any
a € CX(1,), we have

lim [ a(t)dW "¢ = 1 a(s)ds.
I J1, / L | I-

The proof of Proposition 2 uses the Toeplitz Fourier integral operator
calculus of Boutet de Monvel-Guillemin [BoGu]. Toeplitz operators
arise in the complex domain because the restriction ’y;:ZVTt of the wave
group V! on M, is a Toeplitz Fourier integral operator (we refer to §4
for the notation). This is the analogue in the complex domain of the
operator W = ~; .U (t) studied in [TZ]. In the real domain this operator
is a Fourier integral operator with a one-sided fold singularity; in the
complex domain the analogous operator is of a very different type: it is
a Toeplitz Fourier integral which microlocally lives on the tangent line
to the geodesic. The main point of the proof is to show that the Wigner
distributions U;T’x’s are almost invariant under time translation. But
the only translation invariant measures on R are constant multiples of
Lebesgue measure. Since we normalized the Wigner distributions to
have integral 1 over I, the constant must be one on that interval.

The behavior of the local mass on general intervals is not clear apriori
when -y, ¢ is non-periodic, especially at parameter distances ¢ exceeding
the ‘Eherenfest time’ log A;, where the remainders in Egorov type the-
orems break down. The weak * limits cannot be deduced from those
on dM, (which were studied in [Z]) since weak™ convergence is not pre-
served by restriction to sets of measure zero.

Proposition 2 combines with Lemma 1 as follows: If any limit is
< 7 —¢€ on an open set, then by Proposition 2 it has to be < 7 —¢€ on all
of 0S5;. Otherwise, the normalizations of U ;T’x’é would have different
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exponential orders and Proposition 2 could not be true for every interval
I. We rely on the fact that Proposition 2 holds simultaneously for all
of the normalized pullbacks in Definition 2.

We now sketch the proof of Theorem 1 on periodic geodesics and of
Proposition 1 to highlight the differences between restriction to geodesics
in the real and complex domains and to indicate the kinds of new phe-
nomena that are needed in the proof. To prove Proposition 1 in the
case of periodic 7, ¢, we first prove an integrated version for L? norms.

Lemma 2. Let v, ¢ be a periodic geodesic of period L. Assume that
{@;} satisifies QER along the periodic geodesic vy ¢. Let || 05 ||L2(8S

be the L?-norm of the complexified restriction of @; to a period cell OSTL
of 0S,. Then,

. 1
Jim 5 1og |17 sy = 207
To prove Lemma 2, we study the orbital Fourier series of 77 %¢; and

of its complexification. The orbital Fourier coefficients are

1 2mint

L
uf’_g(n) = E/O @Aj(’h‘f(t)) SLodt,

J

and the orbital Fourier series is
2ﬂznt
(15) o (g (0) =D vié(n -
nez
Hence the analytic continuation of 7 €5 s given by

ﬂzn( 17)
(16) o5 (Ve + iT) Z vy ’§ ¢
nez

By the Paley-Wiener theorem for Fourier series, the series converges ab-
solutely and uniformly for |7| < ¢y. The growth rate of w()c\j (Ve e(t+1i1))
is thus intimately related to the joint asymptotics of the Fourier coef-
ficients V)\’g( ) in (Aj,n). We use the QER hypothesis in the following
way:

Lemma 3. Suppose that {gij} is QFER along the periodic geodesic
Ya,e- Then for all € > 0, there exists Ce > 0 so that

> yyff(nw > C..
n:n|>(1—€)X;
Lemma 3 implies Lemma 2 since it implies that for any € > 0,
Z ‘Vif;f(n)‘2e—2n7 > CEe2T(l—e)Aj
n:|n|>(1—e);

In essence, we prove the lower bound in Proposition 1 in the ergodic
case by showing that all of the Fourier coefficients in the allowed energy
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region |n| < A; are of uniformly large size. Since the top frequency term
dominates and its Fourier coefficient is large, 7;590;(; must have maximal
growth.

The argument sketched above only proves the desired logarithmic
growth law of Proposition 1 for L?-norms. Proposition 2 improves it to
give the local L!-convergence statement of Proposition 1.

The proof of Theorem 2 follows the same general outline but is more
complicated for two reasons: first, the Fourier transform of VrePi 18
the Fourier transform of an L* function and not an L? function. It
can be shown that it is not even a measure and so we cannot speak of
the ‘size’ of the Fourier coefficients. Hence it has to be multiplied by a
decaying analytic function before the Fourier transform is taken. And
as mentioned above, the Fourier coefficients may saturate the growth
bounds somewhere on R for each j but the location of the saturating
mass may escape to infinity along the parameter interval. This explains
why we may need to introduce translations N; into the times.

0.5. Generalizations. There are several natural generalizations of in-
tersection problems for geodesics and nodal hypersurfaces to consider:
(i) to general real analytic curves C' C M? of a real analytic surface; (ii)
to general real analytic hypersurfaces H C M™ in any dimension; (iii)
to generic or random geodesics in all dimensions. We plan to investigate
the generalizations in a subsequent article.

The generalization (i) is simplest, since most of the techniques and
results of this article apply to any real analytic curve C C M?. The
main one which does not is Proposition 2, in the cases when the curve
is not a geodesic. Moreover, the unit speed parametrization of C' no
longer complexifies to an isometric embedding of Grauert tubes, and it
is not as simple to find the growth rate of )\—13 log \go}c(’yg(t +1i7)]; it does
not equal |7| when C' is not a geodesic, and one does not get the same
concentration of complex zeros along the real points, i.e. there exists
an additional smooth component to the limit distribution of complex
ZEros.

The additional complication in (ii) is that nodal hypersurfaces inter-
sect other hypersurfaces H in codimension 2 submanifolds rather than
discrete points. Hence the limit measure will be a locally L' measure on
a complex (n — 1)-dimensional parameter domain. Instead of expand-
ing the restriction as a Fourier series or integral we would need to use
eigenfunctions of the hypersurface Laplacian.

The generalization (iii) is the most difficult, and it is not clear at the
moment whether a generalization of Theorem 1 to periodic geodesics in
higher dimensions exists. We cannot appeal to the QER result of [TZ]
in this case. The QER result is a quantum analogue of the fact that
unit (co-)vectors in S3; M, i.e. with footpoint on H, form a cross section
to the geodesic flow when H is a hypersurface and thus the first return
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map is ergodic. When dim H < dim M — 1, S5, M is no longer a cross
section and the proof in [TZ] does not apply. It is not clear that the
Fourier coefficients always have uniformly the same size for |n| < \. It
is tempting to relate the L? mass of restricted eigenfunctions to their
global mass when the geodesic is Birkhoff regular (i.e. uniform) but the
results so far do not improve on Theorem 2. However it is possible to
prove a somewhat weaker version of Theorem 1 for random geodesics;
we postpone the proof to a subsequent article.

0.6. Acknowledgements. Thanks to Simon Marshall for many help-
ful conversations on earlier drafts of this article, and to John Toth for
collaboration on related problems in [TZ] and elsewhere.

1. Geometry of geodesics and Grauert tubes

In this section, we discuss the geometry of geodesics and their com-
plexifications in Grauert tubes. We need to relate the holomorphic
extension of v, ¢ to the Hamilton flow of the Grauert tube function.
The relations are valid in all dimensions and so we consider a general
real analytic Riemannian manifold M™ of dimension m.

1.1. Geodesic flow in the real domain. A potentially confusing
point is that there are two geodesic flows in the real domain, and both
are relevant to the microlocal analysis of wave groups. Below we denote
by m: T*M — M the standard projection.

e The geometer’s geodesic flow: the Hamilton flow of the Hamil-
tonian H(x,€) = [¢]2 = Zijzl g (x)&:&; on T*M. We denote its
flow by ¢' : T*M — T*M. The usual exponential map is defined
by exp, & = mg'(z,£). On the zero section 0y C T*M it is the
identity map.

e The homogeneous geodesic flow G : T*M — 0 — T*M — 0 (the
bicharacteristic flow of the wave operator): It is the Hamiltonian
flow generated by H(z,¢) = |¢|, = VH. Tt is homogeneous in the
sense that G(z,7€) = rG'(x,£). It is not defined on 0.

1.2. Grauert tubes. For background on Grauert tube geometry we
refer to [GS1, GS2, LS]. By a theorem of Bruhat-Whitney [BW], a
real analytic manifold M always possesses a complexification Mc, i.e.
a complex manifold of which M is a totally real submanifold. A real
analytic metric g then determines a canonical plurisubharmonic function
pg on Mc whose square root /p is known as the Grauert tube function.
In fact, p(¢) = —%r%(( , ) where r(% is the holomorphic extension of
the distance-squared function from a neighborhood of the diagonal in
M x M. The (1,1)- form 89,/p has rank m—1 on M.\ M, and the leaves
of its null foliation (the ‘Monge-Ampeére’ or Riemann foliation) are the
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traces of the complexified geodesics ¢ (t + i7). The Grauert tubes are
defined by

M. ={¢ € Mc:/p() <€}
Remark 1.1. We define \/P SO that it measures the tube radius

rather than the tube diameter, i.e. \/p(¢) = 34/—72(¢,¢). Thus on a
flat torus, \/p(x + &) = [£].

We define the Kahler form w = w, of M, by
(17) w=i"190p.

The unusual sign convention (making the Kahler form a negative rather
than positive) (1,1) form) is adopted from [GS1]. In terms of the real
operators (with J* the complex structure operator on 1-forms),

o
T 4rm

_ 1 ;o
d&° (0-0)=—1-J"d, dd°=—d'd= iaa,

we have
(18) w = —2mdd®p.

Following [GLS], we define the imaginary time complexified expo-
nential map by

(19) E: (z,£) € BEM — expS v/—1¢ € M,.

The following Lemma records the way that F transfers objects between
M, and the co-ball bundle B M of radius € in 7M.

Lemma 1.2. Let o = £ - dx resp. wp+pr be the canonical 1-form,
resp. symplectic form, of T*M. Then E : (BXM,wr+n) — (Me,w) is a
symplectic diffeomorphism from the co-ball bundle of radius € to M. It
has the properties:

o EY[f2 = py and E*l¢l, = /p.
o E*a=S0p =d°/p and E*w = wp« ).

Proof. This is a reformulation of some results of [GS1, GLS, LS].
The Theorem on p. 568 of [GS1] states that v = S9|¢|2 on T* M where
0 is with respect to the “adapted complex structure” on B}M. Using
a theorem of Kostant-Sternberg, they produce a unique diffeomorphism
Y o (BfM,wrsp) — (Me,w). It thus suffices to show that E = 1.
This follows from the uniquness argument in [GLS| Proposition 1.7
and Theorem 1.8. That is, 1) o E~! is a biholomorphic map of M,
which equals the identity on the totally real submanifold M C M., and
therefore must be the identity map.

q.e.d.
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Since (M7, w,) is a symplectic manifold, we can consider Hamiltonian
flows of p and /p. We denote the Hamilton flow of any function H with
respect to w = w, by exptZ%;. When w is understood, we simply denote
by =, /5 the Hamilton vector field of /p with respect to w. The following
Lemma asserts that E interwines (both) geodesic flows on B M —0 with
Hamilton flows on M,.

Lemma 1.3.
(20) EoGt:eXptE\/ﬁoE, Eog' =exptZ,0FE.

Proof. 1t follows from Lemma 1.2 that E*\/p = || and that E*w =
wp+ys- Hence F intertwines the associated Hamiltonian flows. Similarly

for the Hamiltonian flow of p.
q.e.d.

We recall that the Liouville measure on each sphere bundle S¥M of
radius € is given by duy, = oz/\w%?kl. Under the complexified exponential
map F, Liouville measure pulls to M, to

E*dpr, =d°\/p A wm L
1.3. Complexified Hamiltonian flow. In addition to its Kéhler form

wy € Qb1 (Mc), the Grauert tube carries the complex holomorphic met-
ric

(21) ge =Y ¢79(¢)d¢ @ d¢;

i,j=1
in local holomorphic coordinates on M¢. The complexified geodesic flow
(22) g T*Me — T* Mg

is the partially defined Hamiltonian flow of the holomorphic Hamilton-
ian,

(23) He(C,9) =Y g7 ()&
i,j=1
on T (Mc) with respect to its holomorphic symplectic form

0= dG Adg,
J

where & are the coordinates of a (1,0)-form in the basis d(x. The
Hamiltonian vector field is then

sr= S el -3 0 O
(24) == 9" Obige — 2 55 Sigg

In these coordinates the canonical one-form on T*Mc¢ is given by

(25) QT* M = Z@dg
J

1,7=1 i,j=1
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We also denote by 7 : T*M¢ — Mc the natural projection.
The following Lemma relates 755 (t+1i7) to the holomorphic geodesic
flow.

Lemma 1.4. Let (x,§) € T*M and let v, ¢(t +i7) : R — M, be the
analytic continuation of v, ¢(t) = exp, t&. Then:

Yog(t +i1) = mge (2, €).

E(,§) = mgg(x,1€).

9" =9d9 |

Vw,f(t + ZT) = WGt—l—ZT(‘Ta 5) = WGZTGt(x7 g) = fYGt(:L‘,E) (ZT)

Indeed, these identities hold for real ¢t and therefore analytically con-
tinue to complex t.

1.4. Hamiltonian flow of ,/p and complexified geodesics. In this
section we relate ’yufgg(t +47) to the Hamilton orbits of = ;. Although
both arise from Hamilton flows of metric functions, it is not obvious
that the holomorphic configuration space orbits ’yufgg(t + i7) should be
the same curves for fixed 7 as the ‘phase space’ Hamilton orbits exp t= /P
on OM,. We now prove that indeed they are the same curves.

As a (simple) example we consider the flat torus R"™/Z". In this case
E(z,§) =z +i§ and

’Yxf(t) = LE—i—t%, ’Yﬂc,ﬁ(t"i_iT) =x + (t—l-iT)%,

exptE 5z +if) = Bz +t%,§) =+ (t+ i)

In the last line, we assume that /p(E(z,§)) = |{| = T.

Another way to contrast the two flows is the following: OM, is a
contact co-isotropic manifold for w, and the flow lines of the Hamilton
flow of /p or of p form its real one dimensional null-foliation. On
the other hand, dd®,/p has a complex one dimensional null foliation on
M. We wish to relate the real null-foliation for w, on M, to the
holomorphic null foliation for dd®,/p on all of M.

Proposition 1.5. The orbit of the Hamiltonian flow of \/p through
Y, (iT) on OM; is the curvet — v, ¢(t+i7). That is, exptZ ;(E(z,§))
= Vx,ﬁ(t +il€]).

Proof. Let (x,&) € T*M be a real co-vector. It follows from Lemma
1.3 that expt= ;(E(z,§)) = Eo G'(z,€) and then by Lemma 1.4 that
(26) 7GE(x,€) = 1GLGe(2,€) = B(G (2,€)) = exptE, /5(E(x,€)).

Also, we have ([GLS])

(27) expy gy i53(t) = (t + is).

Indeed, let 5(r) be the geodesic with initial conditions £(0), (0) =
(7(t), s%(t)). By definition, exp, ) is¥(t) is the analytic continuation of
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r — B(r) at r =i. But f(r) = y(t + rs) for real r so B(i) = y(t + is).
Therefore (27) holds. Since E(x,§) = exp, i€ this says,

E(y(t),s7(t)) = y(t + is).
Putting s = [¢| gives

(28) B(G'(x,€)) = Yot + i[€]).
Combining (26) and (28) we have
(29) exptE 5(E(x,€)) = E o G'(x,8) = vzt +il¢]),

completing the proof.
q.e.d.

The following Corollary is also in [LS].
Corollary 1.6. v, ¢(i7) is a flow line of the gradient field V/p.

1.5. Kahler isometric embedding of geodesics. As in the intro-
duction, we let (2) be an arc-length parametrized geodesic, and let
(3) denote its analytic extension to a strip. The special properties of
geodesics are given in the following

Proposition 1.7. The map vz ¢ : Se — M. is a Kdhler isometric
embedding. More precisely,

1) p(Yog(t +i7)) = 7%

2) VP(ae(t +im) =|7];

3) Yy edd®p =dt NdT;

4) v ¢dd®\/p = do(T)dtdr.

Proof. Since 7, ¢ is holomorphic, the last two statements follow from
the first two, which are equivalent. The first statement follows from the

fact that the holomorphic extension of v, ¢ corresponds under E (19) to
the homogeneous lift of v, ¢ to T*M, i.e.

Vot +iT) = T’y;é(t) :S. — B*M

and the holomorphicity of this map is essentially the definition of the
adapted complex structure in [LS, GS1]. Thus (as in Proposition 1.5),

Vot +i7) = E(y2,(t), 775 £ (1))-
By [GLS] (p. 686), with d = r¢,

d*(q, exp, i&) = —[¢[3.
But
V(exp, i€) = 3/~ lexp, i€, exp, —i€) = [ ~d(0, exp, iE),

by analytic extension of the equation d? (exp, &, exp, —§) = 4d(q, exp, &).
Thus,
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. 1 ‘ ‘
—p(Vog(t +i7)) = Zd2(’YGf(x,£)(ZT)7’YGt(x,g)(—ZT)) = —72.

2. Szego kernels on boundaries of Grauert tubes

The proofs of Proposition 2 and Proposition 2 are based on microlo-
cal analysis in the complex domain. In this section and the next, we
introduce the basic objects of microlocal analysis on Grauert tubes: the
Szego projectors and Poisson extension operator. To the extent possi-
ble, we refer to [BoGu, BoSj, GS2, Z] for background. We include
further background on Fourier integral operators with complex phase in
the Appendix §10.

As in [Z], we study the analytic continuation of eigenfunctions via
the Poisson operator

(30)  PT:L*(M)— O°0M,), PT(¢,y)= Ze”wf i(y),

which is defined by analytically continuing the Schwartz kernel of the
Poisson semi-group

(31) U = e VAL L2(M) — LA(M)

in the first variable to ( € M, and then restricting it to OM,. As
reviewed in §2 - §3, OY(OM,) denotes the Hilbert space of boundary
values of holomorphic functions in M, which belong to L?(0M.). The
Poisson operator is a Fourier integral operator with complex phase and
its wave front is contained in the graph of the complexified geodesic flow
(see §3).

2.1. Szego projector on boundaries of Grauert tubes We denote

by O+ (aM ) the subspace of the Sobolev space Wt (OM,) con-
sisting of CR holomorphic functions, i.e.

O (OM,) = WHT (OM,) N O(9M,).
The inner product on O°(9M,) is with respect to the Liouville measure
dite.
For each 7 < ¢, the Szegd projector
I, : L2(0M,) — O°(OM,)

of the tube M, is the orthogonal projection onto boundary values of
holomorphic functions in the tube. It is proved by Boutet de Monvel-
Sjostrand [BoSj] that II, is a complex Fourier integral operator, whose
real canonical relation is the graph Ay  of the identity map on the
symplectic cone ¥ C T*(0M,) spanned by the contact form «, :=

d°pl(anr,) i-e
X ={(z,&rae), (x,6) € OMy, v >0} C T*(0M;).
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This symplectic cone is symplectically equivalent to T*M under the
homogeneous map

(32) br t "M —-0— X, LE(JZ,f) = <‘7:77—£7 ’5‘04 £ > .
& @)

The parametrix construction of [BoSj| for Szegd kernels of strictly
pseudo-convex domains applies to I and has the form

(33) 1, (2, y) — / V@) Az, y, 0)do,
0

where 1)(x,y) = 72 — p(x,y) and where A is a classical symbol of order
2m — 1 in 6.

In the theory of Fourier integral operators with complex phase of
[MSj], the full complex canonical relation of IL; lies in the (Cartesian
square of the) complexification OM ; of M. In general, the canonical
relations associated to the Schwartz kernels K (x,y) of Fourier integral
operators with complex phase lie in the complexification of the rele-
vant cotangent bundles 7*(X x X'). But the wave front set WF(K)
is contained in the real points of the canonical relation. Since the sym-
plectic geometry in the real domain is simpler, we choose to work in the
framework of adapted Fourier integral operators and Toeplitz operators
of [BoGu] (Section A.2 of the Appendix; see Definition 2.7). In the
theory of Toeplitz operators of [BoGu], a special symbol calculus is
defined for a sub-class of Fourier integral operators with complex phase
known as Toeplitz operators or Hermite Fourier integral operators (see
§3 of [BoGu] for the definition). The Toeplitz calculus of [BoGu]| ap-
plies to the operators in our problem, and it is not necessary for us to
analytically continue to the complexification (9M,)C.

We briefly recall the definition of adapted Fourier integral operators.
Let X, X’ be two real C* symplectic manifolds and let ¥ C T* X, Y C
T*X' be two symplectic subcones. Let x : ¥ — ¥’ be a homogeneous
symplectic isomorphism, i.e one that commutes with the R action on
the cones. Then a Fourier integral operator with complex phase from
X to X' is said to be adapted to x if its complex canonical relation C
is positive, and if its real part Cr is the graph of x. It is called elliptic
if its symbol is nowhere vanishing. In this language, Il is a Fourier
integral operator with complex phase which is adapted to the identity
map x = Idy,_ : ¥; — X.. For background on general complex canonical
relations and their real points, we refer to [MSj] (see also §10).

As discussed in the Appendix of [BoGu] (section (2.11)), a Fourier
integral operator A with complex phase adapted to x is a Hermite op-
erator. The authors define the symbol at any point of the graph of x to
be a half-density on the graph of x tensored with a linear operator

(34) K, , f(u) = )\/e_q(“’”)f(v)dv
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on S(R™) where A € C and ¢(u,v) is a quadratic form with positive real
part. Here, R™ is the symplectic orthogonal complement in T'(T*0M,)
to TY. It is shown in [BoGu] that the principal symbol of any Szego
projector Il is a rank one projector onto the ‘ground state’ annihilated
by the Lagrangian system associated to the 0 operator. By comparison,
in the symbol calculus of [MSj], the symbol is a half-density on the
complex canonical relation.

3. Poisson kernels and their analytic continuations

In this section we study the Poisson operator P7 (30) and its com-
position with the wave group U! = eitVA We begin by reviewing the
proof of the following

Proposition 3.1. Let (M, g) be a real analytic compact Riemannian
m-manifold. Then PTU' is a Fourier integral operator with complex
phase of order —mT_l associated to the positive complex canonical rela-

tion
(35)  Gri={(y,n,C,pc} CT*M x T*OM, : (C,pc) ~ G (y,m)}

where ~ denotes the equivalence relation in (91) of §10.

Here, ]\fzv: M denotes the complexification of M. Since dim¢ M =
m, dimg 0M, = 2m — 1 and so the canonical relation has complex
dimension 3m — 1.

As mentioned above, it is simpler to work in the framework of adapted
Fourier integral operators, since the symbols live on the real points of
the canonical relation. In the following Proposition, we use an exten-
sion of the notion of adapted Fourier integral operator in the sense of
§2. Namely, we allow the homogeneous symplectic map to be a sym-
plectic embedding rather than a symplectic isomorphism. All of the
composition results of [BoGu] extend readily to this case.

Proposition 3.2. P7 is a Fourier integral operator with complex
m—1

phase of order —™ = adapted to the isomorphism v, : T*M — 0 — ¥,
(32). Moreover, for any s,

PT . WE(M) — O (9M,)
s a continuous isomorphism.

This Proposition is proved in [Z2, St]. A somewhat less precise state-
ment is given in [Bou] and in Theorem 3.2 of [GS2], but the proof is
hardly indicated there. Since the statement and proof of Proposition
3.2 differ somewhat from the previous versions, we review its proof. We
also need the following extension:
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Proposition 3.3. P7oU! is a Fourier integral operator with complex

phase of order —mT_l adapted to the symplectic isomorphism

(36) Xrt(y,n) = (G (y,n) : T*M — 0 — %,.

Equivalently, P™ o Ut is a Fourier integral operator of Hermite type of

order —mT_l associated to the canonical relation

(37) Loy = {(tr(G'(y:m)),y,m)} C Br x T*M.

Proof. This follows immediately from Proposition 3.2 and from the
fact proved in [BoGu], Theorems 3.4 and 7.5, that the composition of
a Fourier integral operator and a Fourier integral operator of Hermite
type is also a Fourier integral operator of Hermite type, with a certain
addition law for the orders and a composition law for the symbols.

q.e.d.

The proofs of Proposition 3.2-3.3 can be extracted from Hadamard’s
classical construction of a convergent parametrix for the Schwartz ker-

nels of the operators cos tvV/A and % in a small neighborhood of

the characteristic conoid. Hadamard did not consider the operator
exp(itv/A) since VA was unknown at that time, but in [Z2] we mod-
ify the Hadamard parametrix construction to construct the Schwartz
kernel U(t,z,y) of Ut as a convergent Riesz series expansion near the
characteristic conoid. Further it is shown that U(i7,z,y) admits an
analytic continuation in z when (i1, z,y) lies in a small enough neigh-
borhood of the complex characteristic conoid. Outside of this neighbor-
hood U (ir,z,y) is real analytic. It follows from the construction that
U (i) is a Fourier integral operator of complex type, and its canonical
relation is the graph of the imaginary time geodesic flow G*7; we refer
to [Z2] for the details.

However, we need one additional statement to justify the claim that
PT is adapted to ¢r. The canonical relation G, ; of Proposition 3.2 is the
holomorphic extension of G¢. We need to see that the intersection of this
graph with X, xT*M is I'; ;. The proof involves the same identifications
as in §1.4.

We recall that G* : T*M —0 — T*M —0 is the homogeneous geodesic
flow, i.e. Gt(x,&) = [¢|G! <a:, %) The analytic continuation in ¢ is also
homogeneous, so we have

(33) G (3,€) = |EIG <:c %) -

Lemma 3.4. We have: t,(y,n) = G (y,n). Thus, G'" gives a ho-
mogeneous symplectic isomorphism

G™:T*M —0— %, —0.
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Proof. By homogeneity we may assume that |{| = 1. We then want
to show that
G (,€) = (exp, iT€, ar)
where ., is the canonical one form of T, ;. OM;. Note that G'(x,8) =
g'(x,€) for |€] = 1 and we can analytically continue ¢'(z,€) in t. By
definition, for (x,£) € S*M C T* M,

giT($7 5) € T;;,g(ir

yMr

is defined by extending the phase space Hamilton orbit ¥, : R —
T*M holomorphically in time as an orbit of flow of the holomorphic
Hamiltonian (23) and for fixed (z,&), ¥4 is a holomorphic strip in
T*Mc. We then restrict it to the imaginary time axis to obtain a real

curve
(39) Va,e(17) 1 [0,€0) = T M.

If 7¢ : T*Mc — Mg denotes the natural projection, then mc (9, ¢(i7)) =
Y2,(iT), so the only non-obvious aspect is the p; component. But
Yz, (i7) is the cotangent lift of v, ¢(i7), hence is given by

(40) 6709 = (eelirgc gnelin)

where gc : TMc — T*Mc is the linear map defined by the analytic
continuation (21) of the Riemannian metric to a holomorphic symmetric
two tensor on T'Mc. The formula (40) is the analytic continuation of
the lifting formula in the real domain. It remains to prove that

. d .
(41) <%,§(ZT),9<C d—T%,g(ZT)> =y, (ir))-

We recall that %%,g(zﬁ') €T, .(irMc and that Ve,e(iT) € OM,. The
curve t — 7z ¢(t + i7) is characteristic for the form w restricted to
OM., and so %%75(15 + i7) spans the null space of the form. Note that
%%75(1'7') = i%vxf(t +i7)|t=0 and that T := %%,g(t + i7)|t=0 and
%’mg(zﬁ') = JT are symplectically paired by Wy, ¢ (ir)-

We now dualize to T*0M, using the metric. We let «a, denote the
canonical 1-form of T*0M,. Then a,(T) = 1 and ker o, is the CR
sub-bundle of TOM,. The claim (41) is equivalent to

d . .
(42) gc <d_7_'7m,§(17')7 > = w(JTa ) = a’\/zyé(iT)(') € T’yz’g(iT)MT'

Indeed, we note that we get 1 if we evaluate both sides on 7', and so it
suffices to check that we get 0 on the CR sub-bundle. But the CR sub-
bundle is J-invariant and symplectically orthogonal to T, and therefore
also to JT.



324 S. ZELDITCH

Alternatively, we compute using Hamilton’s equations (24). If
G (,§) = (¢, p), we have

seirnclin) = gc (iy07(neir)) picks
(Zm—,k g (%c,g(iT)) Pigjk (Yae (iT)) dCy

= Dk PGk = Q(y, (ir))-

Here, we also use that ac|ry = ax. In other words, if we restrict the
holomorphic canonical one form to T3, then it agrees with the restric-
tion of the canonical one form of T*(OM;) to TX. But this is obvious
since a is the analytic continuation of the canonical 1-form of T*0M..

q.e.d.

3.1. Poisson kernel and Szeg6 kernel. Define the self-adjoint oper-
ator on L?(M,dV) by

(43) A, = (P™P7) 3.

By Lemma 3.1 of [Z] A; is an elliptic self-adjoint pseudo-differential op-
erator of order mT_l with principal symbol |€ |771771 Equivalently, P™* PT
is a pseudo-differential operator of order —™=L with principal symbol

_m—1 2
[

Proposition 3.5. The Szegé kernel 1L is related to the Poisson ker-
nel P™ by

I, = PTA2P™,

Proof. Let II, denote the operator in the statement. It is easily ver-
ified that

fit =0, L0, = 1,.

T

To check the idempotent property we note that
P (PT*PT)—l PT*pT (PT*PT)—l Pt = pT (PT*PT)—l P

Further the range of IT, equals O°(9M.,). Thus it is a projection onto
that space. Moreover it is the orthogonal projection since it annihlates
any f1O%0M,): Indeed, O°(OM,) is the image of P™ on L*(M) and
Prf =0if f1LO(OM,).

q.e.d.

Proposition 3.6. The operator PTA. is a unitary operator:
L3*(M) — O°0M,) with left inverse A,P™*. Moreover, A2PT* :
OY(OM,) — L*(M) is a left inverse to P;.
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Proof. 1t suffices to show that
A PT*PTA, = A2P™P" = Id : L*(M) — L*(M),
PTA2P™ =11, : O%0M,) — O°(0M,).
The identities are obvious (see Proposition 3.5). q.e.d.

We note that the CR functions {u;} are not in general orthogonal.
However, it follows from Proposition 3.6 that

Corollary 3.7. The CR functions P" A;@; form an orthonormal ba-
sis of H?(OM,,du.,).

Since A, = A™5 mod
mal, i.e. the Gram matrix <(u uk>> = I + K, where K, is a compact

7} is almost orthonor-

operator.

3.2. Pointwise Weyl laws and norms for complexifed eigen-
functions. We denote by

()= Y @i(@)e;w)
JiXEDN

the spectral projections for v/A corresponding to the interval Iy, which
we take to be either [0,\] or [\, A + 1]. We analytically continue the
spectral projection kernels and restrict to the anti-diagonal to obtain
the pluri-subharmonic kernels

(44) 7 (G0 = D 1#5, (OF.
JinjEIy

Since they are of exponential growth, we also define their ‘tempered’
analogues,

(45) PR = D e ™5 (O, (Vpl) < 7).
JinjEIy

In [Z2] we give a pointwise local Weyl law and remainder estimate
for complexified spectral projections:

Proposition 3.8. [Z2] On any compact real analytic Riemannian
manifold (M, g) of dimension m, we have

m—1

_ . A ? A ,
Pox(¢,¢) = (2m) <%> <m + 0(1)> ;

with remainders uniform in C.

The pointwise Weyl laws imply upper bounds on sup norms of com-
plexified eigenfunctions (less precise bounds are proved in [Bou, GLS].)
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Proposition 3.9. [Z2] Suppose (M, g) is real analytic of dimension
m. Then,
1) For > % and \/p(¢) = T, there exists Cy > 0 (depending only
on the metric) so that
_m—1 m—
Cpdy 2 e < sup [¢f(Q)] < ONF Feem,
CeM;,
By Corollary 3.7 the operator PT A" is unitary so that {P7A,p;} are
orthonormal. They are asymptotically the same as

m—1 m—1
e 2 _—TA; C
)‘j4 PT(Pj:)‘j4 € TJ(P]‘ ’8M7—7

hence these are almost normalized to have L?-norms equal to one.

4. The wave group in the complex domain

To prove Proposition 2, we need to consider the symmetries of the
matrix elements (or Wigner measures) in Definition 3. The key operator
in studying restriction to complexified geodesics is the composition

(46) Yreo P LA(M) — 0°(9S;),

where 7% is the pullback under (5). To prove Proposition 2, we show
that to leading order, this operator intertwines the wave group U’ =
ei™VA on M with the translation operator T,f(s+ir) = f(s+t+iT)

on 0S:. On the infinitesimal level, Yz © P intertwines % with the

generator Z sz of the geodesic flow. Here and below, we identify a
vector field = with the differential operator Z(f) = df (E).

It is simpler to work with a unitarily equivalent “wave group” f/f
acting on the O°(9M, ). In this section, we define and study this wave
group. The symbol calculus of Toeplitz Fourier integral operators shows
that it is essentially the compression to O°(9M, ) of translation by the
(non-holomorphic) Hamilton flow of /p. This makes it evident that
pullback by 7;’5 intertwines the wave group with translations.

4.1. The wave group V.

We first define the operators V!:

Definition 4.1. Let A, = (PT*PT)_% (43). Then set
Vi=PTU'A2P™ . O°(OM,) — O°(OM,).
The advantage of V! is that its eigenfunctions are natural:
(47) VIP g = NPTy,
Indeed, from Proposition 3.6 , A2P7* is a left inverse to P7. Hence it
suffices to observe that

PTUtAg_PT*PT(,Dj —_ eitAj PT(,DJ
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The disadvantage is that V! is not a unitary group and is not even
normal since the A2 factors moves to the left side of U? when taking
the adjoint and in general U? and A, do not commute. So the spectral
theorem does not apply to V.!. This defect is remedied by:

Definition 4.2. Define
Vi=PTAU'A P : O°OM,) — O°(OM,).
Proposition 4.3. f/f 1 a unitary group with eigenfunctions
VIPTArp; = eit/\jPTATcpj.
Proof. By Proposition 3.6,
VIV = PTAU'A,P™*PTA.UA,P™*

= PTA*A P™ =11, : L?>(0OM,) — L*(0M,),
so that f/f is unitary. Also,
ViVE = PTAU'A.P™*PTA.USA,PT™*

= PTAUNS A P™ = Vs . [2(OM,) — L*(OM,).
Similarly,
VIPTA,p; = PTAU'A.PT™*PT A p; = €™ PT A ;.
q.e.d.

4.2. V! as a Fourier integral Toeplitz operator. The following
Proposition states the analogue of Propositions 3.1-3.3 for V!. It shows
that V! is a Fourier integral operator with complex phase of Hermite
type on OY(OM,) C L?(OM,) which is “adapted” to the graph of the
Hamiltonian flow of |/p on the symplectic cone 3. associated to the
Hardy space O°(0M.,) in the sense of [BoGu] (see §2).

Proposition 4.4. V! and V! are Fourier integral operators with com-
plex phase of Hermite type on O°(OM,) C L*(OM.) adapted to the graph
of the Hamiltonian flow of \/p on ¥;. They have the same canonical re-
lations and principal symbols

m—1
oyt = [¢| "7 oprooytoopr.

Proof. That both operators have the same canonical relation and
symbol is obvious because they only differ in the order of the pseudo-
differential operator A,, which has a scalar symbol. By definition and by
Proposition 3.1, Vf is a composition of Fourier integral operators with
complex phase, and all are associated to canonical graphs and equiva-
lence relations. Moreover all are operators of Hermite type. If follows
that the composition is transversal, so that V! is also a Fourier integral
operator with complex phase and of Hermite type.
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The underlying complex canonical transformation is

gT,t © g;k = {(C7PC7 </7pC’} - T*éTWT X T*é—]\\ZT :

Iy,m) € T*M = (C,pc) ~ G (y,m),  ('sper) ~ G (y,m)}
where G, ; is defined in (35). Thus

(¢;pe) ~ GH(C Pl

and there is the additional constraint that ({’,pc) ~ G (y,m) € &,
The real point set of this canonical relation is its intersection with
>, x X, and then we have

g‘r,t o gi N ET X ET = {(Capr Clypc’} C ET X ET : (CapC) = Gt(C/apc’)}-
But then ¢’ € OM,,p; = d°,/p and by Proposition 1.5 and Lemma 3.4,

GH(¢',d°Vp) = (expt= sp(C), d°Vp).

It follows that V! is adapted to the graph of EG'E~! = expt= /B on
3.

The symbol calculation is then a routine use of the composition theory
of Fourier integral operators and therefore we only outline it here: The
symbol of U is well-known to be the canonical volume half-density on
the graph of G*. On the real points of the canonical relation C; of
I, this volume half-density is conjugated to the canonical volume half-
density on the graph of exptZ, in ¥, x X;.

q.e.d.

4.3. V! as a Toeplitz Fourier integral operator. We recall that
in [BoGu] a special symbol calculus was developed for Fourier integral
operators of Hermite type adapted to symplectic diffeomorphisms, i.e.
for compressions (restrictions) ITFIL. of Fourier integral operators F
of complex type to the Hardy space H?(OM,. Since the operators f/f
and V! of this type, they have Toeplitz symbols in this sense. In the
next Proposition, we calculate these symbols and put the operators
into a more geometric form of Toeplitz quantizations of a Hamiltonian
flow. Such dynamical Toeplitz quantizations were studied by Boutet de
Monvel-Guillemin [BoGu]| and in [Z3].

To state the next Proposition, we need some further notation and
background on symbols of Szegd projectors. We recall from [BoGu] that
o is a rank one projector onto a ground state ej in the quantization
of the symplectic transversal TS+ C T*0M, to TY. The ground state
is annihilated by a Lagrangian system of Cauchy-Riemann equations
corresponding to a Lagrangian subspace A C T'X.

The time evolution of I, under the flow gt is defined by

(48) I, = gT_tHTgi.

T
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It is another Szegd projector adapted to the symplectic cone X;; since
g is not a family of holomorphic maps in general, IIL is associated to a
new CR (complex) structure and translation by gt does not commute
with II.. But ¥, is invariant under the flow and ¢’ clearly commutes
with the identity map on ¥,. The change in the range of IIL under ¢ is
encoded to leading order in the change of the principal symbol.

Under dgt, the Lagrangian A, goes to a new Lagrangian Af and ot
is a rank one projector onto a ground state e,: depending on ¢. If we
right compose by IL. the composite symbol is

(49) o(ILIILIL,) = [(en, ,en ) o,

The overlap (ea,,ep:) is an inner product of two Gaussians and is cal-
culated explicitly in [Z3]. It is nowhere vanishing. Define

(50) o= (eat,ea,) "

Proposition 4.5. Let gL = exp t= p on OM.. Then there exists a
pseudo-differential operator 6, with principal symbol given by o times
a phase €47 so that

(51) V9i=Tlgb6y 11y, V! =Ty/61-95/6: 711,

Proof. Each side of each formula is an elliptic Toeplitz Fourier integral
operator adapted to the graph of gt. In the case of V! and V! this follows
from Proposition 3.3 and by the composition theorem for such operators
in [BoGu]. In the case of Il gLoy .11, it follows similarly from the fact
that IL; is a Toeplitz operator and from the simple composition with
pullback by gt (see §2.1).

We next verify that they have the same principal symbol. To compute
the symbols we use Proposition 4.3. On the principal symbol level it
implies that
O, © 07,0 g—t11, 4t Ot 7 © OTI, = O, &> |07,t|20’1'[7 0T yt11, gt © 011, = OTI, -

Then

O-H‘r © O-g*tl_l-rgt © O-H‘r = |<6A5.7 eA‘r>|2'
It follows that
loral? = {ear,en, )72

Clearly the symbol (50) is a solution, and is unique up to a phase e
Existence of 0, ; then follows by an inductive argument on the symbol
order.

iet,T

q.e.d.

5. Restriction to geodesics I: Intertwining relations

The purpose of this section is to prove that the restriction 7;*5 inter-
twines translation on R and translation by the geodesic flow on OM;.
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There are several further intertwining relations of this kind, both infin-
itesimal and global. The one we need for the proof of Proposition 2 is
a T*T version on OM,, and so it is emphasized in the following;:

Proposition 5.1. On L?(0M,), we have

VI (97.6)7) Opx, () (77, ) " VF = T (77 6)") " Ty Opa, (@) Ty (v7.¢) "L

Remark 5.2. Here, Op,, (a) is a semi-classical pseudo-differential
operator [Zw], and ~ means that both sides belong to the same class of
Fourier integral operators and have the same principal symbols. Above,
(Va,e)* denotes the pullback under the map 7, ¢ and the additional *
denotes the adjoint of this operator.

By adding lower order terms to the symbols we can arrange the left
side to equal the right modulo Toeplitz smoothing operators. We begin
by using Proposition 4.5 to show that Proposition 5.1 is equivalent to

Lemma 5.3. We have,
I ((77,6)")* T Opa(a)T* (77 ¢)“IL-

=~ 17709~ T (7] ¢)*)*Opa; (@) (V] ) Tr g T,

in the sense that the operators on each side are Hermite Fourier integral
operators (Toeplitz operators) adapted to the symplectic embedding L;@ :
Ryygf C X and having the same principal symbol.

Indeed the equivalence follows immediately from Proposition 4.5 and
from the fact that

(52) (77.¢)" I, : O°(0M,) — O} 1(0S,)

loc

is the adjoint of a Toeplitz Hermite Fourier integral operator adapted to
the symplectic embedding R ~7 e C >r. The latter statement is proved
in Theorem 9.1 of [BoGu]. All of the hypotheses of that theorem are
satisfied by the map

Vo X Voge t RXR — OM; x OM;.
It follows that
(53) (2e) T ((v7,0)")" = O°(OM;) — O°(9M;)
is a Toeplitz operator quantizing the symplectic sub-cone R+7;7§ c X,

i.e. having the real points of its canonical relation along Ag T xR4T
It has a paramatrix of the form,

I (7z¢():77.6(5) = /0 GINOLDN D AT o (8), 70 £(5)), 0)d6,

obtained by pulling back the parametrix (33).
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Furthermore, Theorem 9.1 of [BoGu| asserts that, for any Toeplitz
operator I, QIL; of order r,

(’y;’g)*HTQHT is a Toeplitz operator of order r on 95,

whose principal symbol is the restriction of og to Rivze

5.1. Proof of Lemma 5.3.

Proof. The right side is the same as
(54) a7 Trg'g 7 (7] ¢)*)*Opr; (@) (V] )" 9" g ' Tl g' g P oreg L.

We use the obvious intertwining relations

(55)  THvie) = (vie) gt (i) )T =g(vze)")
to get

(56) g ((72,)") Opr; () (07,6) 9" = ((77.6)) T Opr; ()T (7 )
and thus it suffices to prove
(57)

I (7 )" )* T Opa(a)T* (77 ¢) 1L,

~ 1579~ T g" (7] ) )T Opa, ()T (7 ) ¥~ Trg g~ oreg' T
Now T; Opy, (a)T ¢ appears on both sides of the purported formula and is
a completely general pseudo-differential operator. Hence (57) is equiv-
alent to

I ((7.6) ") Opa(b) (77 ) 117
(58)
~ 1579 T g" (7] ¢)*) Opa(b) (7] ) 9" Mg’ g~ o g L,

for any Op,(b).
We further observe that g~ to,1g" = 0,4 0 g~¢. We thus need to show
that
I (77 ¢)*)*Opa(b) (7] )11
(59)
=~ T a1 (7] ) ) *OpA(b) (0 ) T (07t 0 g~ )L

To prove this, we show that

HTU_TtHi((’Y;g)*)*Op)\(b)(’Y;,g)*Hf%(UTt o g I
(60)
= HTU_ﬂHiHT(('Y;g)*)*OpA(b) (’Y;,g)*HTHf%(UTt o g~ L.

Here, we inserted an extra factor of Il to the right of the first IT¢
and to the left of the second. To prove (60) we use the O] = 9]*0f
operator on 0M,, where 5g is the Cauchy-Riemann operator associated
to the CR structure of OM, as a real hypersurface in M,. Thus, II, is
the orthogonal projection onto the kernel of LJj. Since M, is strictly
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pseudo-convex, there is a spectral gap between the 0 eigenvalue of LI}
and its first positive eigenvalue. Thus there exists a pseudo-differential
Green’s operator G of order —2 such that

7G, = Id —T1,.
We use this to write
I, 0Tl = I, oTILTT, 4 I, oTIL O] G

We then observe that the principal symbol of the zeroth order Toeplitz
operator HTUH’;DZGT vanishes. Indeed, since I1.LJj = 0 it is the same as
I, [oIIY,07]G-. But the commutator [¢II%,0]] is a Toeplitz operator
adapted to the identity map on X, with vanishing principal symbol,
since scalar functions commute with the symbol of IIL. It follows that
oI 07 G is of order —1, and does not contribute to the principal
symbol of the right side of (60), proving the claim.

Thus we reduce to proving that the symbol of right side of (60) is the
same as the symbol of the left side of (59) . But this follows from the
fact that

L, oL, ~ 11, Il,o.0g 'TLIL ~ I1,.
Indeed, the symbol of the left side of the first expression equals
G011, Ot OTL, = Ort(€A,; €AL )OTI, = OTI,

since the numerical factor cancels by (50). The symbol on the left side
of the second is

Ort© g_t<eA7—7 eAE_ >0HT = UHT'
Indeed, g~ Ay = A so

—t I R
Ort©g9 = <6A77 eA§_> = Orty

and so the claim follows as for the first expression. This completes the
proof of Lemma 5.3 and therefore of Proposition 5.1.
q.e.d.

Differentiating Lemma 5.3 in ¢ and setting ¢ = 0 gives the infinitesimal
version:

Corollary 5.4. Let g = %‘t=0<€A376A7>_1- There ezists a pseudo-
differential operator R_1 of order —1 so that,
I ((7.¢)*)* Opa[ s a) (0 ¢)*ILr

~ -2 5 + 00+ Ro1), ((07,6)") Opy, (a) (77 ¢ )" L~
Proof.

d

_ d
%tZOHTgtUt,THT = HT(:\/ﬁ + E‘t:OUtJ)HT'
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By (50), the second term is

d d 1
E’t:OUT,t = %’t:0<eA376AT> .

q.e.d.

Alternatively, one can construct a paramatrix for (v f)*HT by pulling
back the parametrix (33), to get

L (o (1), C) = /0 ePVOLED0 A((47 (1), ¢, 0)db.

Applying % changes the amplitude to

0BT, OA+ DA (e, C,0)

The first term is 9¢((77 ¢(t),C) - ’y;’lg(t), and on the diagonal 0v is the

contact form, which evaluates to 1 on 7;:5(75). Similarly, the symbol of
E /5 evaluates to 6.

6. Lebesgue limits of matrix elements: Proof of Proposition 2

In this section, we use the intertwining relation in Proposition 5.1 to
prove that matrix elements

Iz, Iz,
(61) (U™, U "%)

of compactly supported multiplication operators on 9.5, with respect to
the L? normalized pullbacks of Definition 2 are asymptotically invariant
under translation T} : L2(R) — L?(R). It is simplest to show

Proposition 6.1. Let a € C§°(1;). Then
8 I-,x
<aaa |Uj ’ ’£|2> =or. (1), /\j — 00.

The invariance property scales with the normalization of the pull-
backs. We therefore use the preliminary normalization

%

(62) V. < R
1651122 001,

J

and later divide again by the mass of the pullback on I,.

Proof. By differentiating Proposition 4.5 in ¢ (and setting ¢t = 0),
there exists a pseudo-differential operator og on M, of order zero so
that,

(63) HT(E\/ﬁ + O'o)HTu;-— = Z/\]’LL;
We then use Corollary 5.4 to obtain,
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(Za) (V) ul, (V] ) ul)m
= ([&, a3 ) uf, (V) ul e
= ([E\/p + 0o+ R_1), ((’7;@)*)*0]9)\]- (a)(’yg,g)*]u;’ u;>M
= {[Bo1.(170)) O, (@) (V)T )

where R_; is a pseudo-differential operator of order —1. We then apply
the Cauchy-Schwartz inequality and the fact that

IR_1uf |l r2onr, < A Ul r2gom,)
to bound the final expression by

[IK[R=1, ((77.6)")"Opx; (@) (g ) *]uf  uf )|

IN

)‘j_l |[TL- ('Y;,g)*ao (’Y;g)*ﬂ'ruﬂ L2 (OM;)

IN

NGO 5l 2

Here, supp a C L. If we divide 77 %u] by [[(7] ¢)*u][|z2(r) to obtain U}xé
then the latter expression tends to zero as A\; — oo and the sequence
|U ]I ’x’5\2 is a sequence of probability measures on I whose weak™* limits
must be probability measures on I given by constant multiples of dt. Of
course, there is only one such probability measure.

q.e.d.

xT

larger interval J, I C J, then we would end up with the ratio

Remark 6.2. If we chose to divide by the L? norm of VT’*gu; on a

||(7;,5)*U§||L2(1)
107 ) w220y

and the same estimate holds.

We give a second proof using the global propagator. Although it is
essentially the same, it is worth recording because the interval on which
the remainder estimate is made gets shifted by ¢ units. We begin with
a pointwise Weyl law giving almost uniform bounds for restrictions of
‘most’ normalized complexified eigenfunctions. We recall that the lower
counting (or natural) density of a subset S C Z, is defined by

1
minf L e i< N
D,(S) = liminf Z4#{j € 5:j < N}
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Lemma 6.3. For all compact intervals I and € > 0 there exists a
subsequence Sy of lower counting density Dy(Sr.¢) > 1 — € so that

fimsup ¢ [ 165 (et +ir)Pde < .
j—)oo,jESIYe I

Here, as above, |I] is the Lebesgue measure of I. We set \/p = 7 and
define

m—+1

MO\ = (27) ™75 (_Alw

Proof. 1t follows from Proposition 3.8 that for all t € R,

1 o, . _
Y NS (et + )P = 1+ O,
M(N) 9

JiAGETN

and by integrating over a compact interval I C R we have

09 37 2 ¢ [165 Omelt+ im) P = 1]+ 00

JiA €L

where the remainders are uniform in ¢ resp. I. We then apply a simple
Chebyshev inequality to (65). Let {X(j)}32; be a sequence of positive
real numbers satisfying

M{X(j)} = Jim — Z X(j

Then for any § > 0 there exists Ng < 0o so that

N
1
M—-6< — X)) <M+, N >Ny
_N; (J) <M+, = N
For S C {1,...,N}, let Px(S) = +#5N{1,...,N}. Then for N > N,
and for k € Z,

M+

Pylij€dl,... N} X(j) <kM} 21— ——r.

Setting

X() = ™6 (a4 in)P, k=[]

and taking lim infy proves the Lemma.
q.e.d.

Lemma 6.3 implies Proposition 6.1 as follows:
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Proof. We assume that a € C°(R). By Lemma 5.3 , we have
(66)
(a(vg o) uf, (v ) ufdr = (a(vg ) Vg, (0 ) Viuf)r

= (V07,0 alg ) Vg uf)onr,

(07.e) ) TFaTi(vg ) uf, uf) o, + O(I|Ti(a) (0 ¢)* Rea (M)uf [[3ar,)
= (((7.0)) (Tra) (] )" uf, ufdont, + O([(Tra) (] ) Ro1(Aj)u 5, )
= ((Tra) (7] ) uf, (V] ) uf)mr

-1 T \*, T
+A7 01Oz ) ufllmayy),  (as Aj = o0)
where (as above) R_; is a pseudo-differential operator of order —1 and
Tia(s) = a(s +t).
We then divide by (||(7; ¢)*u][|1,, and observe that we get translation
invariance of weak* limits on the longest interval with the property that

T \*,,T o0
{ H(’Yx,g) Uy HTt(IT) }
R
is bounded, or more generally is o(\;), for the given subsequence. Lemma

6.3 implies that this happens for a subsequence of eigenvalues of full
density. This concludes the proof of Proposition 2.

q.e.d.

6.1. Lebesgue limits for the family of translates. When dealing
with non-periodic geodesics it is useful to consider the family

Vo (a0) 50 (s €R)
of pullbacks as s, A\; vary. We have,
Vo5 (wg)Pi () = Vo e it = 5),
so we are considering the family of translates
F={Tsvpepj» 7=1,2,...,8s €R}.
The family of translates for fixed j is of course not compact in Cy(R)
for general v, ¢. On the other hand, for fixed j the family of translates

{p;(G*(z,§)), s € R} is compact in C(S*M).
We modify Definition 2 as follows:

Definition 6.4. Let {N;} C R and define

7 Tx,& | IT,T7GNj (z,6)
(67) vrTet U] ,

where 0S; 7 :={t+ir: |t| <T}.

IT,T = 8S‘r,T:
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We then modify the proof of Proposition 2 to show that the weak*

limits of
2

‘YJ.T’T’“’U’g dt on the line segments 0S5, 7

tend to normalized Lebesgue measure:

Proposition 6.5. (Lebesgue limits for moving pullbacks) Let (z,§) €
BEM be any point. Then as long as v, p; # 0 (identically), the se-

quence {\Y}T’T’x’glz} is QUE on R with limit measure given by normalized
Lebesgue measure on each segment 0Sr 1

Proof. The proof is similar to that of Proposition 2, so we only indi-
cate how to modify it. As in the proof of Proposition 2, the key step is
to generalize the intertwining relation in Proposition 5.1 to prove that
matrix elements

(68) <01))\J (a)}/ijTvxvg, }/ijT7x76>

are asymptotically invariant under translation T : L?*(R) — L2?(R).
We need to replace ’yg*f by ’ygf,\,j (@£) everywhere in the proof of (66).
To do this, we observe that the intértwining relation generalizes to the
two-parameter equivalence

HT((V&s(m@)*)*Tt*OPA(a)Tt(%T;s((x,g))*HT
(69) o .
~ 11079~ HT(’V@S((@:@)**OP)\J- (a)(WZ;s(xvg))*Hrthg IL;,

where the remainders are uniform in s. To see that the implicit remain-
ders in the ~ relation are uniform in s we observe that the intertwining
relation holds for all (z,£) € S*M, and (since S*M is compact) with
uniform remainders in (x,&). Since are only specializing the estimate to
points on 7, ¢, the remainders are uniform in s.

We then set s = N; and follow the steps in (68). The remainder in the

last line of (68) gets replaced by the same expression with 7;,\,], ul

(,€) J
replacing ’yzéu;. Due to the uniformity of the remainders in the in-

tertwining relation (69), the remainder in the modified (68) is still of

order O()\j_l) after we divide by ||7; Ni (o 5)u;||, or equivalently, when the
’ T

matrix elements are taken with respect to the L?-normalized Y,
q.e.d.

7. Growth rates of restricted eigenfunctions: Proof of
Lemma 1

We apply a general compactness theorem for subharmonic functions
(see [Ho, Theorem 4.1.9]):
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Let {v;} C SH(X) be a sequence of subharmonic functions in an
open set X C R™ which have a uniform upper bound on any compact
set. Then either v; — —oo uniformly on every compact set, or else

there exists a subsequence v;, which converges in L} (X) to some v €
L} (X)NSH(X). Further, we have (‘Hartogs’ Lemma):

(70)
(1)  limsup;vj(z) <v(z) with equality almost everywhere

(ii)  For every compact subset K C X and every continuous
function f, limsup;_,. supg(v; — f) < supg(v — f).
(¢43) In particular, if f > v ; ande >0, then v; < f+e on K

for j large enough.

In [Z] we applied this compactness theorem to prove that for the full
sequence of ergodic eigenfunctions,
1 .
(71) vj =3 log [ (QF = 2v/p in L(Mo).
j
We note that when vj, — v in L}, then limsup,_, . v;, need not be
upper semi-continuous. If we denote by v* its upper semi-continuous

regularization then v = v* almost everywhere and by the compactness
theorem lim supy, vj, = v almost everywhere.

Proof. To prove Lemma 1, we first observe that v; is SH (subhar-
monic) on S, and apply the above theorem to {v;} with X = S,.
Exactly as in [Z], it follows from Proposition 3.9 that the sequence {v;}
is uniformly bounded above by 2|7| globally on M,. Under the condi-
tion of non-uniform convergence to —oo, there must exist a subsequence,
which we continue to denote by {v;, }, which converges in L] (Sc,) to
some v € L} (Sey) N SH(Se,)-

Thus, v < 2|7|. Assume for purposes of contradiction that v < 2|7|—e
on an open set W, C Sc. Let I¢ = W. N 0S;. By Lemma 2, one has
|U $’£’IT|2 — %dt in the weak* topology of measures for every interval
I-. In particular, this holds on I¢. If so, we claim that v < 2|7| — € on
all of 0S;. If not, there is an interval I, s where v > 2|7| — e+ ¢ for
some & > 0. That is,

Voety < eClI=9% on 1€, and v > 27| —e+4d on I s.

For any interval I,

dt
—1 2d 2 _.
"g/ 5] m / ”“m - /I”m
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So if I = I 5 we have

1 dt
—log/ uj, 2 >2(|r| —e+4d/2
SV | !|I . (I7] /2)

for k > ko(0). That is,

/ 7 22 dt > 2 (Irl=e+/2).
IT(; ]k ’IT ’

T,

Again we have |U o IT‘S|2 - 75 dt. Now choose T' large enough so
that both If and I, s are contmued in Iy = [-T,T]. Then we also have
\Ujk’g’lT] dt — dt, weak * on [-T,T].

Since I, s C Ir, for sufficiently large k,

| 7-6|

Lrsl  (r—evs/on,
H’Ym,gu HL2 75)227—TQ(T e+0/2)\j,

We then compare the two statements,

v M2y =

26,1512 dt « 26,172 dt »
]Ujk |“dt — m weak * on If, \Ujk T2dt — @ weak * on Ir.

The conditions overlap for a € C2°(If), so let us choose a test func-
tion approximating the characteristic function 1;¢, and in fact we may
assume a equals this test function. But on I¢,

’ §IT’2 ’ 751 ‘2"7&5 JHLQ(I6 7| < Crese” 16 ’U z,€,17 ’
ny‘rﬁ ]HLZ(IT ‘IE‘ o
It is thus impossible that both |Ujk’5’lT|2 and |U]i ’5’I$|2 tend to 1 weakly

on It.
This contradiction shows that

(72) v<2|T|—eon W, = v <2|7| —€ on 95-.
It follows that
2
(73)  limsup )\— log |z ggp/\ (t+it)| <2(]7| —€) on all of 9S;.

k—oo "

q.e.d.

7.1. Hartogs theorem for the family of translates. In this section,
we prove a slightly more general version in which the origin (z,¢) is
allowed to move with the index of the sequence:

Lemma 7.1. For any compact analytic Riemannian manifold (M, g)
of any dimension m, any complezified geodesic vy ¢, and sequence {N;}C
R and any sequence of eigenfunctions, the family of plurisubharmonic

functions
L 1 1 * C . 2
’Uj = 7'('—)\] og IVGNJ'(;E’O(’D)\j(t_‘_ZT)
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18 precompact in LlOC(SE) as long as it does not converge uniformly to
—o0 on all compact subsets of S.. Moreover, any limit of a subsequence
is < 2|7|. If the limit v of a subsequence vj, is < 2T — € on an open
interval t € (a,b), then v < 2|7| — e for allt € R and
limsupv;, <2|7| —e.
k—o0
Proof. The uniform upper bound by 2|7| of course holds for the whole
family F (11). We also use Lemma 6.5 in place of Proposition 2 and
with in’g’l in place of Ui’g’l where I is any one of the intervals in the
proof of Lemma 1, and then follow the same argument.
q.e.d.

8. Periodic geodesics on surfaces: Proof of Proposition 1

In this section we prove Proposition 1 and therefore Theorem 1 for
restrictions to periodic geodesics on real analytic surfaces with ergodic
geodesic flow. We thus assume that ~, ¢ is a periodic orbit of period L.
We then denote the orbital Fourier coefficients of an eigenfunction by

1 L, )

1‘,5 _ 2mint

v;*(n) = / P (Yre(t))e” L dt
L'Y 0

Thus, we have

(74) 71:75 Z . ’5 27r1nt ‘

neL

Hence the analytic continuation is given by

2‘rr'Ln( iT)
(75) ©; C (Yee(t +i1)) Zu’gne -
ne”L

It follows from the Paley-Wiener theorem and from the fact that
’y;’gcpj admits an analytic continuation to the annulus e~ "l < r < el

that |ij§(n)| < Cje~ "I, Furthermore, the Fourier modes |n| >> \; are
exponentially decaying. In semi-classical language, such high angular
momentum is inconsistent with the energy )\? of the particle. More
precisely, for n > \;,

(76) !V()P<A2 AT,
Indeed, Proposition 3.9 gives
1
- d < )\ 4 2|T\)\
va!%\s
EN:

It follows that
Z|V ,€ n)|?e2n Tl < A e A
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and (76) follows immediately from
Z |I/ ,5 |2 2n|7| < /\ 4 2\7’|)\
n>\;

8.1. Mass in the highest allowed modes. The purpose of this sec-
tion is to prove

Proposition 8.1. Let dim M = 2. Suppose that {¢,,} is QER along
the periodic geodesic v, ¢. Then for all e > 0, there exists Cc > 0 so that

ZB,S 2
S P C.
n:|n|>(1—e);

Consequently,
Z lyff(n)Pe—nT > CEeT(l—E))\j.
n:n|>(1—€)X;

Proof. The first step is a direct application of the QER theorem of
[TZ]. See Theorem 10.2. It implies that within the range |n| < \; the
Fourier coefficients are asymptotically all of the same size %

Lemma 8.2. Assume that 7;75% 18 QER. Then for any 0 < a <b<

1 we have
> P [ N
n:a;|n|<bA;

Here, dji, ¢ denotes the limit measure in Theorem 10.2.

One can prove this using homogeneous or semi-classical pseudo-differ-
ential operators. For instance, let x»(D) be a semi classical convolution
operator on the circle S} = =R/ 207 with D = 73 and consider

2min z,
DDz e055 Vo ePi) st = Zx( ) ().
neZ

Assuming {¢;} satisfies QER with respect to 7, ¢, we have
A D705 Vo gPid st — /B - Xz ¢
L

It follows that, for any € > 0 we have
> W (n)? = 2e.
n:(1—€)A; <|n|<(1+e)A;
Consequently,
Z |V§7.§(n)|2€—2n'r > 06627'(1—6))\3' )

J
n:|n|>(1—e)A;
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8.2. Completion of proof of Proposition 1 for periodic geo-
desics. The following Lemma is an integrated version of Proposition
1.

Lemma 8.3. Let dim M = 2 and assume that {p;} satsifies QER
along the periodic geodesic ~y. Let ||7;EQD(JC||%2(85L) be the L?-norm of

the complexified restriction of p; along one period cell 0SE. Then,
3 1 * Cp2
A}ﬁnoo by log |77 @7 117208,y = 2I7].

Indeed, this follows from Proposition 8.1 since, for any € > 0,

lim inf log Z |V§’_§(n)|26_2m > 2|7|(1 — ).

)\j—)OO J
n:|n|>(1—e);

To prove Proposition 1 we argue by contradiction. If it is false, then
there exists a time interval [a, b] and ¢y > 0 so that

b
/ (1) 65 2 = 0=y,

On the other hand, by Proposition 8.1 we know that over the whole
period interval we have,

L
/ ()" eS P > C(eIr=)
0

for all ¢ > 0. Hence, we have

b
(77) / UPETT 24t = O(e~e0 ).
a
But by Proposition 2, every weak* limit of {ij ’S’T’T} is a constant
multiple of Lebesgue measure. It follows that the multiple must be
zero. But this contradicts Lemma 8.3.

9. Non-periodic geodesics: Proof of Theorem 2

In the periodic case, a key step is to compute the L? norm of the
analytic continuation using the Plancherel theorem and to compare it
to the L? norm in the real domain using the Plancherel theorem. To
generalize the proof to non-periodic geodesics, we need to introduce a
decaying analytic factor to put ’y;{cp;-c into L? along horizontal lines.

9.1. Analytic convergence factors. Let G be a real analytic function

whose analytic extension to S, lies in L?(9S,,dt) for each 7 < e. In
particular we have in mind G(z) = e~/ 2 but a less rapidly decaying

choice is G = t+1ip for large enough [p| >> e.
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Thus for a given analytic and decaying convergence factor G, we con-
sider

(78)  v8(a) = F (G- eon) / G ox(rme(t)e 0 dt.
We then have the Fourier inversion formula
G- v con,(9) = [ 55 (0))do
R

and analytically continue G -7;£<,0 \; to

(79) G- vs ek, (s +i7) = /]R 7,280 (5) do.

We then have the Plancherel theorem for each fixed 7

80 [ 1605 st inPds = [ o) e

—0o0
As in the periodic case, the growth rate of |7 égp()c\ (s+i1)| as A\j — o0
depends on the magnitude of the Fourier transform I/A’f( ) for |o| >~ Aj.
Lemma 9.1. Let dim M = 2 and suppose that v, ¢ is a non-periodic

geodesic such that QER holds in the real domain along each finite arc
(such as a uniform geodesic.) Then for all € > 0, there exists Ce > 0 so

that
/ 129 (0) 2do > C..
o2(1-0x,

Consequently,

/ ‘V§7.§7g(0,)‘2e—207'd0_ > CEe2|'r\(1—5))\j
|o|>(1—¢) ’

Proof. We consider the test operator Gx(A~'D)G in the real domain,
and its matrix elements

(X(\7'D)G; ¢05, GV i) r2®) = (GX (A D)GY: 605, Vi 6030 L2 (R) -

Claim 9.2. There exists a subsequence of eigenvalues {\;, } of density
one so that,

1) Jm O DI ki) = [ 10OPx(o)itdo

This is almost the QER Theorem 10.2 except that the operator
X()\j_lD)g does not have compact spatial support in the ¢ variable.
To deal this, we introduce a cutoff in ¢ and then verify that it can be
removed.
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Theorem 10.2 implies that
(82)

lim (1_q7x(A;,' D)GYs ¢4 GYa 605) = /B *R<1[—T,T]’g(t)PX(U)dth’

k—o0

On the other hand, we claim that there exists a subsequence of {\;, }
of natural density one so that the G-weighted mass on the complement
of [T,T] is arbitrarily small, i.e. for all e there exists T'(¢) so that for
T > T(e),

limsup [(1jy>7X (A}, D)Gs ¢4 GVa c05)| < €.

k—o0

To prove this, we consider the Weyl sums

N(\T,G) = Z \<1|t\zTX()\j_k1D)g’Y;§<ijaQ’Y;,gﬁﬁjkﬂ'
])\JSA

Assuming with no loss of generality that we use a positive quantization,
this sum is bounded above by

NAT,G) < Zj:)\jg)\<1\t|2T ‘GX(AJ_;QID)Q‘ 7:,§¢jk’7;,§¢jk>

Jrew Liy>ro <|G ‘X()‘j_le)gD E]’:)\Jg)\ de’g-

Then

im0 Ng\)/\g:sg) < fB*]R 1|t\2T|g|2X(0—)deO_ <,

if T is chosen large enough so that f|t‘>T |G|?ds < e. By definition, a
density one proportion terms of the series in the numerator must be
< 2e.

On the other hand we can use (79) with 7 =0 to get

2
[ xtomp e ae= | V24 (o) Pat.
R ’ lo|>(1—e)r; 7
Combining the two limit formulae gives, for any ¢ > 0,

lim inf / V789 (0) 2t > 2¢](G] 2 -
lo|>(1—e)A;

Aj—00 J

In the complex domain on 95, we then use (80) to get

lim inf ‘V§7.§7g(0_)’2e—2o7—d0_ > QGHQ"%z(R)-Cz‘TKl_E))\j,
2700 Jig[>(1-e)n;

concluding the proof of the Lemma.
q.e.d.
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9.2. Logarithmic asymptotics. As in the periodic case, we can then
compute logarithmic asymptotics of L? norms on 95,

Lemma 9.3. Assume that {¢;} satisfies QER along arcs of the ge-
odesic vz ¢. Let ||Q7;2<,0;C||L2(3ST) be the L?-norm along 0S;. Then for
all G as above,

) 1
)\Jl-li)noo " log |GV 05 HL2(as =2|7|.

Proof. By Lemma 9.1, we have for any € > 0, and any G as above,

lim lnf)\ —00 )\ lOg ||g7x 5(10] ||L2(85‘7_)
— 1 f 1 e—210|,%:89 24
= 1m1n,\_,oo>\ og [p e \1/ (0)|*do -

> 2(1—e)|7|

On the other hand, the upper bound follows (as usual) by Proposition
3.9.
q.e.d.

Let G(t) = ; +Zp where |p| is sufficiently large (as above). Lemma 9.1
implies:

Corollary 9.4. For any e > 0 and any \; there exists N; = N (e, \j) €
R so that

1 N;+1
lim inf — 1 dt > 2|r| —
minf 3= log /Nj ey IPdt > 27| —e.

Here, the choice of [N;, N; + 1] is somewhat arbitrary; there is no
need to make the intervals of unit length.

Proof. Using obvious upper bounds on G on the intervals [n,n + 1]
we have,

/ 1G(vs 05, (s +i7)|ds < Z 1+n2/ Y370k 2t

—00

Hence by Lemma 9.1 ,
.. 1 1
I e / TS 2t
If the Lemma were false, we would have for all n, and sufficienty large
Ajs
/ ey Pdt < AT

and then % log) . cz W of these integrals would be < 2|7| — €, con-

tradicting the lower bound (83).
q.e.d.
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9.3. Completion of proof of Theorem 2. As in the previous cases,
we need to rule out (73).

By Lemma (9.3) and Corollary 9.4 there exists a sequence [N;, Nj1]
for which the lower bound of Corollary 9.4 holds. For this sequence, (9)
is false. It follows by Lemma 7.1 that v; — 2|7|. The rest of the proof
of Theorem 2 follows as in the periodic case.

10. Appendix

In this appendix, we review the QER result of [TZ] (see also [DZ]).
We also review the theory of Fourier integral operators with complex
phase that we use in this article. We refer to [MSj] and volume IV of
[Ho] for background. Since the manifolds and metrics in this article are
real analytic, the theory of almost analytic extensions is not needed.

10.1. Quantum ergodic restriction in the real domain. In this
section we review the QER theorem for hypersurfaces of [TZ]. There
is no advantage to specializing to curves in surfaces, so we review the
result for hypersurfaces H C M.

Let H C M be an embedded submanifold, and denote by

(84) TpM ={(¢q,§) € T;M, g€ H}

the cotangent bundle of the ambient space along H. We also denote by
T*H ={(q,n) € T;H, q &€ H} the cotangent bundle of H. We further

denote by rg : T M — Ty M the reflection map through T*H, i.e.

ri(§) = & with {|py = &|ry but with opposite normal components.
We define the first return time T'(s, &) on S M by,

(85) T(s,&) =inf{t > 0:G"(s,6) € S5 M, (s,€) € SyM)}.

By definition T'(s, ) = 4+ if the trajectory through (s, £) fails to return

to H. We define the first return map on the same domain by

(86) O SHM = SpM,  ®(s, &) = GTE9(s5,¢)

When G? is ergodic, ® is defined almost everywhere and is also ergodic.

Definition 4. We say that H has a positive measure of microlocal
reflection symmetry if

> . () (s () (s
ML,H U{(Saf) € SHM : THGT] ( 75)(375) = GTJ ( 76)74]"1(375)} > 0.
J#0
Otherwise we say that H is asymmetric with respect to the geodesic
flow.

To state the QER result for Dirichlet data, we need some further
notation. The result holds for several classes of pseudo-differential op-
erators on H with essentially the same proof. We state the result first for
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pseudo-differential operators with classical poly-homogeneous symbols
o
a(s,o) ~ Z a_k(s,0), (a_ positive homogeneous of order — k)
k=0

on T*H and then for semi-classical pseudo-differential operators with
semi-classical symbols a € S*O(T*H x (0, hg] of the form

ap(s,0) ~ th a_k(s,0), (a_ € Sig(T*H))
k=0

as in [HZ, TZ).

The restriction map S7; M — B*H is singular along S*H and pushes
forward Liouville measure to a multiple 7§}Hd3d0 of the symplectic
volume density on B*H. Here, yp+g := (1 — |0|2)% We note that ~ is
a zeroth-order homogeneous function on 77 M which equals the non-
homogeneous vp- g of [HZ] on S5 M (ie. [n,|? + |of> = 1).

For homogeneous pseudo-differential operators, the QER theorem is
as follows:

Theorem 10.1. Let (M, g) be a compact manifold with ergodic geo-
desic flow, and let H C M be a hypersurface. Let @y ;5 = 1,2, ... denote
the L?-normalized eigenfunctions of Agy. If H has a zero measure of mi-

crolocal symmetry, then there exists a density-one subset S of N such
that for \g > 0 and a(s,o) € SY(T*H)

s, i, KOp(@)prlms o m) 2y = wla),
where

— 4 —1
W(a) — 'UOZ(S*M) /*HGO(S,O')’YB*H(S,U)deO.

The analogous result for semi-classical pseudo-differential operators
is:

Theorem 10.2. Let (M, g) be a compact manifold with ergodic geo-
desic flow, and let H C M be a hypersurface. If H has a zero measure
of microlocal symmetry, then there exists a density-one subset S of N
such that for a € SY(T*H x [0, hy)),

lim Opn. (a)on. ||, On. — wla),
hj—>0+;jes< Ph; (@)pn, |15 ons 1) 12 (ar) (a)

where

— -1
OJ(CL) - UOZ(S*M) /B*HCLO(SyU)’YB*H(S,U)deO'.
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10.2. Fourier integral distributions with complex phase. First,
we review the relevant definitions (see [Ho] IV, §25.5 or [MSj]). A
Fourier integral distribution with complex phase on a manifold X is a
distribution that can locally be represented by an oscillatory integral

A(az):/ @0 g (., 0)do
RN

where a(z,0) € S™(X x V) is a symbol of order m in a cone V C R™ and
where the phase ¢ is a positive regular phase function, i.e. it satisfies

Ceor = {(2,0) : dy(x,0) = 0}.

e In the analytic setting (which is assumed in this article), ¢ admits
an analytic continuation (¢ to an open cone in X¢ x V.

Define
C<P<c = {(a;,@) € Xec x Ve V@(,O(c(a:,e) = 0}.
Then Cy. is a manifold near the real domain. One defines the La-
grangian submanifold A,. C T*X¢ as the image

(LE,H) S Csp(c — (xyvxSO(C(xae))

According to Definition 4.4 of [MSj], the space I"(X,A) of Fourier
integral operators of order m with complex phase is the class of operators
satisfying

e WF (A) C Ag;

e For every Ag € Ar and every choice of local coordinates x1,...,x,
near 7(\g), A is microlocally of the form I(a,y) near \g where
@ is a positive phase function generating A near )y and where
a € §MHMF2N)/A(R™ 5 RN) has its support in a small conic neigh-
borhood of (zg,6p) € Cyr, i.e. the point corresponding to Ag.

Given a closed conic positive Lagrangian manifold A € T*X — 0,
there exists a principal symbol map

AeI™(X,N)/IT" (X, A) = DA L),

and also a quantization (denoted P in [MSj]) which inverts it. As in the
real domain, given a real analytic phase ¢ and its holomorphic extension
¢ parametrizing A, one defines the Leray residue form dz on Cz by
0P 0P ~ ~
ds NdSE N N A2 = Nz o Nz AdBy A A dBy.
001 00,
If I(p, A) is a complex oscillatory integral with positive phase, and ag
is the principal term of the amplitude A, then the symbol of I(p, A) is

ag d@.
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10.3. Complex canonical relation of IIl.. We denote by oM - the
complexification of OM,. The positive complex canonical relation of I1-
is the idempotent canonical relation

C, C T*(OM, x OM.,)

satisfying C2? = C, = C generated by the complex extension p(z,w) of
the Grauert tube function to M, x M.. Thus,

(87)

Cr ={(2,00.p,w,00,p) : z € OM,,w € OM,,0 € Ry, p(z,w) = 472.}.

The canonical relation C; can also be described as a flowout relation
in terms of complex characteristics of the tangential Cauchy-Riemann
operator 0. As a strongly pseudo-convex hypersurface in the complex
manifold M¢, OM,; is a CR manifold whose complexified tangent bundle
has a complex codimension one subspace invariant under the complex
structure J. We denote by Z,...,Z,,, resp. Zi,...,Zy, an orthonor-
mal basis with respect to the Kahler form w, on Mc of the holomor-
phic tangent space TVY0M,, resp. the anti-holomorphic tangent space
TN (M, ). Then Oy =Y, Z3 Z;.

We denote the symbol of [, by g. Its zero set is the characteristic
variety X, of O, in the real cotangent space T*0M.,, i.e. simultaneous
kernel of the functions

(88) C](‘Taf) = <§7 Zj>7

which are the symbols of the associated derivative along Zj. Thus,

d
g=>_|¢I*: T*OM; » R.
j=1
When we holomorphically extend to oM -, we get the complex char-
acteristic variety Jy C T*(0M,), the zero set of ¢, the holomorphic
extension of g. We let (; be the analytic extensions to M, of the func-

tions ¢; and & be the standard holomorphic symplectic form of T*OM -
Thus,

(89) Ty ={(# &) e T*OM, : {; =0 Vj} = {G = 0}

It is an involutive sub-manifold of T*0M -+ with the properties:
(i) (J4)r=2X

(90) (i) 26(u,u) > 0,Yu € T(J4)*

(ili) T,(Jp) =TS & W, .

Here, I/Vp‘Ir is the sum of the eigenspaces of F},, the normal Hessian of ¢,
corresponding to the eigenvalues {i\;} with A; > 0.
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Since J4 is a co-isotropic (i.e. involutive) submanifold of T*OM.,
it has a null folation, which is given by the joint Hamilton flow of the
defining functions ;. We then have,

(91)

Cr = {(2,6,9.7) € T+ x T5 : (&,€) ~ (§:7)},

where ~ is the equivalence relation of ‘belonging to the same leaf of the
null foliation of J. .
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