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GENUS ONE SCHERK SURFACES
AND THEIR LIMITS
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This work is presented in memory of Connor Arellano Douglas

Abstract

The singly periodic, genus one helicoid was conjectured to be
the limit of a one parameter family of doubly periodic minimal
surfaces referred to as Perturbed Genus One Scherk Surfaces.
Using elliptic functions, we show such surfaces exist, solving a
two-dimensional period problem by perturbing a one-dimensional
problem. Using flat structures associated to these minimal sur-
faces, we verify the conjecture.

1. Introduction

In this paper, we prove the existence of a one parameter family of dou-
bly periodic minimal surfaces. The members of this family are embedded
in R

3 and their quotients have genus one and four vertical annular ends.
We index this family by θ ∈ (0, π/2), where 2θ (and π−2θ) denotes the
angle between the ends. We also show that as θ tends to zero (or π/2)
these surfaces limit on the singly periodic genus one helicoid.

1.1. History. Our genus one surfaces can be visualized by attaching
a handle to a fundamental piece of one of Scherk’s doubly periodic
surfaces. These classical surfaces are also parameterized by the angles
at which their ends meet and can be defined by the Weierstrass data

g(z) = z

dh = iz
dz

(z − eiθ)(z + eiθ)(z − e−iθ)(z + e−iθ)

The doubly periodic Scherk surface with orthogonal ends (2θ = π/2)
can also be described by the relation

ez =
cos x

cos y

and enjoys eight lines of symmetry. We refer to the other doubly periodic
Scherk surfaces as “sheared” or “perturbed,” all of which possess two
rotational symmetries.
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Using the techniques of Weber-Wolf [27] it can be shown that finitely
but arbitrarily many handles may be added to Scherk’s doubly periodic
surface when the ends are perpendicular. Karcher [14] constructed a
higher genus analog of Scherk’s orthogonal doubly periodic surface by
adding a handle in the most symmetric way possible; the technique
that Weber-Wolf [27] later deployed also assumes maximal symmetry.
In particular, the genus-one version of this surface is assumed to have
a quotient that is conformally equivalent to a symmetrically punctured
square torus.

Such assumptions have a particularly nice effect on the flat structure
representations of the forms gdh and (1/g)dh. In fact, for the more
general genus-g case, the flat structure representations are similarly easy
to draw and work with, provided all of the handles are added in a
symmetric fashion.

Let S(g, 2θ) denote a putative example of a perturbed genus-g Scherk
surface whose ends meet at angles 2θ and π − 2θ. Scherk [21] proved
that for any θ ∈ (0, π/2) the surface S(0, 2θ) exists, and, as is shown
in [23], if the parameter θ tends to 0 or π/2, these surfaces tend to a
horizontal helicoid, one whose axis of revolution lies in the xy-plane.
(Convergence is taken in the pointed Gromov-Hausdorff sense [8].) In
other words

lim
θ→0

S(0, 2θ) = H(0)

where H(0) denotes the singly periodic, genus zero helicoid.
Hoffman-Karcher-Wei [11] proved the existence of a singly periodic

genus-one helicoid, which we denote by H(1). They were motivated by
the suspicion that perturbed genus-one Scherk Surfaces, S(1, 2θ), exist
for any θ ∈ (0, π/2), and that their limit should similarly exist, produc-
ing a singly periodic helicoid with a handle.
1.2. Main Results. The existence and uniqueness of H(1) is known
(see [11], [3]) but establishing the existence of S(1, 2θ) was only recently
accomplished by Batista-Ramos [4] via the method of the “support func-
tion.” It remains unknown whether or not singly periodic, genus-g heli-
coids, denoted H(g), and S(g, 2θ) exist for g > 1 and θ 6= π/4.

Unfortunately, the flat structure approach of Weber and Wolf does
not seem to extend to S(g, 2θ) for arbitrary θ. Even for g = 1 their
method is difficult to employ. Consequently, we aim to prove the ex-
istence of S(1, 2θ) for arbitrary θ by combining their techniques with
basic elliptic function theory on rhombic tori. Our main result is the
following

Theorem 1. Given any θ ∈ (0, π/2), there exists a complete, em-
bedded, doubly periodic minimal surface in R

3 whose quotient has genus
one and 4 Scherk-type ends meeting at angles 2θ and π − 2θ.

Moreover, as θ → 0 these surfaces limit on the singly periodic, genus
one helicoid (in the pointed Gromov Hausdorff sense).
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A portion of the orthogonal-ended surface, S(1, π/2), is depicted on
the left in Figure 1, while a portion of a sheared surface, S(1, 2θ) for
some θ < π/4, is depicted on the right.

Figure 1. Orthogonal and sheared genus one scherk surfaces

Theorem 1 is proved in two main steps. First, it is shown that we can
produce possibly perturbed surfaces S(1, 2θ) by deforming the under-
lying, symmetrically punctured rhombic torus off of the square torus.
In addition to this toroidal deformation, we obtain a uniqueness result
for S(1, π/2). Using numerical estimates, Hauswirth-Traizet [10] argued
that the surface S(1, π/2) can be deformed in therms of θ, a result that
is superior to this first step.

Next, we prove that this family of minimal surfaces has a limit. Using
geometric coordinates that arise from flat structures, it is shown that
this limit occurs when θ = 0 or θ = π/2, and that the resulting flat
structures agree with those of the singly periodic, genus-one helicoid.
This is enough to conclude that the surfaces converge to the singly pe-
riodic helicoid. A standard application of the maximum principle shows
that the surfaces are embedded, finishing the the theorem.

Although the techniques underlying this proof depend, in part, on
the genus being one, they are nonetheless encouraging in the interests
of establishing the existence of H(g) for g > 1. One suspects that, as
happens for g = 0 and g = 1, singly periodic helicoids with an arbitrary
number of handles may be found by similarly perturbing the surfaces
S(g, π/2). That is, one suspects

lim
θ→0

S(g, 2θ) = H(g).
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1.3. An Outline of the Paper. In Section 2 we review theWeierstrass
representation and the associated period problems for minimal surfaces.
We also review facts about and notation for rhombic tori and their
associated ℘ functions.

Section 3 concerns necessary Weierstrass data for the proposed sur-
face S(1, 2θ). We first collect expressions for and facts about g and dh.
This data is parameterized by three real parameters (φ, θ, t), where φ
parameterizes the underlying rhombic torus and the pair (θ, t) deter-
mines where this torus is punctured. Next we address the vertical and
horizontal period problems. After establishing that dh has no periods,
we define the period function F (φ, θ, t). This function vanishes if and
only if the remaining horizontal period problem is solved.

The third subsection is devoted to proving Theorems 2 and 3, which
assert our uniqueness and deformation results. In particular, we show
the following

F (π/2, θ, t) = 0 ⇐⇒ (θ, t) = (π/4, t0)(1)

det |DF(θ,t)|(π/2,π/4,t0) > 0(2)

where t0 ∈ (0,∞). The Implicit Function Theorem then guarantees the
existence of triples (φ, θ, t) near (π/2, π/4, t0) satisfying F (φ, θ, t) = 0.

In Section 4 we prove that the solution curve determine by F (φ, θ, t) =
0 is analytic so that Sullivan’s Local Euler Characteristic Theorem [9]
applies. As a result, this curve necessarily extends (with the possibility
of branchings) to a boundary point where φ ∈ {0, π}, θ ∈ {0, π/2},
and/or t ∈ {0,∞}.

We review the notions of extremal length and flat structures in Sec-
tion 5. With these tools we show that the only allowable boundary
points force the surfaces S(1, 2θ) to limit on the singly periodic, genus-
one helicoid,H(1). Lastly, we argue that these surfaces are all necessarily
embedded.

2. Prelininaries

2.1. Minimal Surfaces. There are a number of ways to define a mini-
mal surface (see, for example, [7] or [13]), but one of the more common
or useful formulations involves Weierstrass data. A result of Osserman
tells us that every finite total curvature minimal surface is conformally
a compact Riemann surface with finitely many punctures [19]. The map
X : R → R

3 that parameterizes our Riemann surface, R, as a minimal
surface admits an integral representation that is given by

X(z) = Re

∫ z

·

(

1

2

(

1

g
+ g

)

dh,
i

2

(

1

g
− g

)

dh, dh

)

.
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Here g is a meromorphic function, dh is a holomorphic 1-form, and z
is a local coordinate on the punctured surface R. The pair (g, dh) is
referred to as the Weierstrass data for the minimal surface.

Both g and dh have geometric significance. As the notation suggests,
dh is the (complexified) differential of the height function, and g is
the Gauss map composed with stereographic projection. To construct a
desired minimal surface, it suffices to determine appropriate g and dh.
In order for the surface to be unbranched, one first has to ensure that
the zeroes and poles of g agree with the zeroes of dh. In order for the
map X to be well defined, one has to solve the period problem(s)

Re

(
∫

γ

1

2

(

1

g
+ g

)

dh

)

= 0

Re

(
∫

γ

i

2

(

1

g
− g

)

dh

)

= 0

Re

(
∫

γ
dh

)

= 0

where the integrals are taken over all generators γ of H1(R;C). The
first two equations are often referred to as the horizontal period prob-
lem, while the last is the vertical period problem. The horizontal period
problem can be rewritten as a single complex equation

∫

γ
gdh =

∫

γ

1

g
dh

again for all γ that generateH1(R;C). IfR has genus k and n punctures,
there are 3(2k+n−1) real conditions to satisfy. Moreover, if R has high
genus, then the function g and 1-form dh can be difficult to determine. In
summary, topologically complicated minimal surfaces are often difficult
to construct via Weierstrass data.

When R is a punctured sphere, the period problem typically reduces
to a condition on the residues of gdh, (1/g)dh and dh, namely that they
are purely real. A good example has already been mentioned: Scherk’s
doubly periodic surface, which is defined on Ĉ− {±e±iθ} by the data

g(z) = z

dh =
izdz

∏

(z ± e±iθ)

Only the vertical period problem is solved for this data, producing a
doubly periodic surface in R

3 that is defined over the lattice generated
by (sec θ, csc θ, 0) and (− sec θ, csc θ). For many other examples, consult
[24].
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2.2. The Weierstrass ℘ Function for Rhombic Tori. Let Λφ de-

note the rhombic lattice generated by {1, eiφ}. The Weierstrass ℘ func-
tion for the torus C/Λφ is given by

℘(z) =
1

z2
+

∑

n,m∈Z∗

1

(z − n− eiφm)2
−

1

(n+ eiφm)2

The symmetries of the lattice produce symmetries within the ℘ function.
Specifically, reflecting across either line of symmetry is given by

z 7→ eiφz̄

z 7→ 1 + eiφ − eiφz̄

and the values of ℘ change according to the formulae

℘(eiφz̄) = e−2iφ℘(z)

℘(1 + eiφ − eiφz̄) = ℘(eiφz̄) = e−2iφ℘(z).

In fact, the following, more general formulae holds for any k-th order
derivative of ℘:

℘(k)(eiφz̄) = e−(2+k)iφ℘(k)(z)

℘(k)(−eiφz̄) = (−1)ke−(2+k)iφ℘(k)(z).

We list some notation and collect elementary facts about the ℘ func-
tion for the rhombic torus C/Λφ:

ω1 = 1/2, ω2 = eiφ/2, ω3 = ω1 + ω2

ei = ℘(ωi)

(℘′)2 = 4(℘− e1)(℘− e2)(℘− e3)

e2 = e−2iφe1

e1 = e−2iφe2

0 = e1 + e2 + e3

e3 = 2e−iφRe(eiφe1) ⇒ e3 ∈ e−iφ
R

e3 = 0 ⇐⇒ φ = π/2

℘(z) ∈ e−iφ
R ⇐⇒ z lies on a diagonal

From the last equation, we immediately conclude that the zeroes of the
℘ function lie along a diagonal. For more information on ℘ see [6].

2.3. The Square Torus. On the square torus ℘ is real valued along
the horizontal and vertical lines bordering the fundamental square and
along the dividing lines x = 1/2 and y = 1/2. It is purely imaginary
along the two diagonals.
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The derivative, ℘′, is real valued along the horizontal lines y = 0 and
y = 1/2 and it is imaginary along the vertical lines x = 0 and x = 1/2.

It takes values in eiπ/4R along the diagonals.
It is straightforward to see that along the real axis ℘ has as its mini-

mum value the number e1 = ℘(ω1).

3. The Initial Surface S(1, π/2) and Toroidal Deformations

Here we prove that S(1, π/2) exists, which is not a new result (see
[14] and [26]). However, the methods we use offer a slight improvement
on previous results; specifically, we show that up to a re-indexing of data
and a shift and rotation of the torus, there is only one way to puncture
the square torus so that it embeds as S(1, π/2). Moreover, the punctures
are placed only with respect to the torus’ rhombic symmetry, whereas
in previous constructions the punctures were placed with respect to
both rhombic and rectangular symmetry lines. This is the content of
Theorem 2.

Next, the Implicit Function Theorem is used to show that for φ suf-
ficiently close to π/2, one can puncture the torus C/Λφ so that the
resulting surface immerses into R

3 as S(1, 2θ) for some θ ∈ (0, π/2).
This is the content of Theorem 3.

Theorems 2 and 3 are achieved via the period functions F (φ, θ, t) and

F̂ (φ, θ, t), which detect when the horizontal period problem is solved.
These function use expressions for g and dh which we collect in the
proceeding subsection; these expressions are parameterized by three real
variables (φ, θ, t) and one complex variable s = s(φ, θ, t) that depends
on the others.

3.1. Expressions for g and dh. Based on computer images (see [12])
we expect S(1, 2θ) to possess two rotational symmetries, each of which
interchange two ends and maintain the set of vertical points. Near the
ends, the function g and the one-form dh should behave like the Gauss
map and height differential for S(0, 2θ); that is, g should be horizontal
at these points and dh should have simple poles with residues given by
the residues of the height-differential for the genus-0 surface.

All of this, along with an analysis of the connectivity of the fixed point
set of the reflections, imply that S(1, 2θ) is conformally equivalent to
a symmetrically punctured rhombic torus, C/Λφ − {a1, . . . , a4} whose
Weierstrass data satisfy the following divisor table:

0 ω1 ω2 ω3 a1 a2 a3 a4
dh 0 0 0 0 ∞ ∞ ∞ ∞
g 0 ∞ ∞ 0 eiθ e−iθ −eiθ −e−iθ

The behavior of the height differential for S(0, 2θ) near the ends deter-
mines the behavior of dh for S(1, 2θ) near its ends; specifically, dh must
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have purely real residues given by

Resa3 = Resa1dh =
sec θ csc θ

8
= −Resa2dh = −Resa4dh

As indicated by the above table, the Gauss map must take on the values
±e±iθ (with multiplicity 1) at the punctures ai. This is enough informa-
tion to determine the data (g, dh) up to a multiplicative factor. In fact,
the symmetric placement of the punctures,

a2 = eiφa1

a3 = 1 + eiφ − a1

a4 = 1 + eiφ − a2

allows us to express g and dh as

g(z) =
t

eiφ/2
·
℘− e3
℘′

dh =
℘(a1)− ℘(a2)

8 sin θ cos θ
·

d℘

(℘− ℘(a1))(℘− ℘(a2))

= ie−iφ Im
(

eiφ℘(a1)
)

4 sin θ cos θ
·

d℘

(℘− ℘(a1))(℘− ℘(a2))
.

The last expression for dh was obtained by using the reflection rule

℘(a2) = ℘(eiφa1) = e−2iφ℘(a1).

The variable t takes values in t ∈ (0,∞). More to the point, given a triple
(φ, θ, t), we can construct the Gauss map g on the torus C/Λφ. We then

puncture said torus at the points ai where g(ai) = ±e±iθ, which allows
us to construct dh. It is easy to see that g is a degree 2 map, and so
there are two possible choices for each of the ai; there is also ambiguity
in the ordering of the points ai. Via the following propositions, we can
normalize these choices. We also point out that the Gauss map is purely
real along one diagonal and purely imaginary along the other, and that
it is an odd map.

Proposition 1. Again, let g denote the Gauss map for the rhombic
torus C/Λφ. Then g(z) satisfies g(z) = g(ω3 − z).

Proof. Naturally, it suffices to check this claim for the map (℘ −
e3)(℘

′)−1. Again, this follows after analyzing the divisor data for the
two maps

g1(z) =
℘(z)− e3
℘′(z)

, g2(z) =
℘(ω3 − z)− e3
℘′(ω3 − z)

= g1(ω3 − z)

Both g1 and g2 have simple zeroes at 0 and at ω3 and both have simple
poles at ω1 and ω2. From this we conclude that g1(z) = C · g1(ω3 − z).
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To determine that C = 1 simply evaluate both functions at z = ω3/2.
q.e.d.

Proposition 2. The Gauss map has 4 ramification points located
along the diagonals, halfway between the vertices of the rhombus and
the center ω3.

Proof. Every elliptic, degree 2 meromorphic function has 4 rami-
fication points (with index 2 at each point), and to determine the
location of these points we appeal to the previous proposition. The
points so described in the hypothesis are invariant (mod {1, eiφ}) un-
der the action z 7→ ω3 − z, and since the previous proposition implies
g′(ω3 − z) = −g′(z), the proof is done. q.e.d.

Proposition 3. The triple (φ, θ, t) ∈ (0, π) × (0, π/2) ∪ (−π/2, 0) ×
R
+ determines the same punctured torus that the triples (φ, θ,−t) and

(φ,−θ, t) determine, modulo a re-indexing of the punctures and a pos-
sible shift and/or 180◦ rotation of the torus.

Proof. Since φ determines the torus, we only need to check that
(θ, t), (θ,−t), and (−θ, t) determine the same punctures up to re-ordering
and a possible shift and rotation of the torus. Let t ∈ R

+ and θ ∈ (0, π/2)
be given. The Gauss map is a degree 2, branched cover over the sphere,
Ĉ, that, by the previous claim, is ramified at points along the diagonals
where it is purely real or purely imaginary. Since θ 6= 0 and θ 6= ±π/2
the point eiθ has two pre-images under the map g:

g−1{eiθ} = {a1, b1}

From the first claim, we suspect that b1 ≡ ω3 − a1, but we need to
make sure that ω3 − a1 and a1 are distinct points in the torus. This
is immediate, though, since a1 ≡ ω3 − a1 ⇐⇒ 2a1 ≡ ω3 ⇐⇒ a1
lies along a diagonal, which cannot happen since we are assuming that
g(a1) = eiθ, which is neither real nor imaginary. Therefore, we may
obtain one pre-image from the other by shifting and rotating the torus.

Without loss of generality, choose the puncture to be a1. Because g
is odd and because a3 = 1+ eiφ − a1 ≡ −a1 we have that g(a3) = −eiθ.
This implies that the triple (φ, θ,−t) corresponds to relabeling a3 7→ a1
or b3 7→ a1, the first of which is a simple re-indexing of the punctures,
the second a shift and rotation followed by a re-indexing.

Similarly, the choice (φ,−θ, t) corresponds to relabeling a2 7→ a1 or
b2 7→ a1, which completes the proof. q.e.d.

We also note that the map (℘′)(℘ − e3)
−1 takes two curves to the

double ray e−iφ/2eiθR, call them γ1 and γ2, where γ1 joins ω3 to ω1 and
γ2 joins ω2 to 0. Hence, the Gauss map g takes these curves to the ray
eiθR. A straightforward reflection argument shows that the curves γi
are contained in the shaded boxes depicted in Figure 2. In particular,
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they cannot cross the boundary of the parallelogram (except at ω1 and
ω2) representing the rhombic torus.

Figure 2. Gauss map

We further normalize the situation by agreeing to label a1 as the pre-
image of eiθ under g, and we agree to puncture the torus at a1 and its
reflections.

The Gauss map g is purely real and imaginary along the diagonals
and the lines indicated in Figure 2, and these are the only places where
g takes on such values. As a result, for θ 6= 0 or θ 6= π/2, the punctures
ai must be chosen to lie in the interiors of the shaded boxes in Figure 1.

3.1.1. One More Parameter. Because our expression for dh involes
℘(a1)—where a1 is determined by a choice for the triple (φ, θ, t) and
our normalizing conditions—it will be beneficial to treat this value as
another variable. That is, we label

s = ℘(a1)

s̄e−2iφ = ℘(a2).

We derive an explicit relationship between s and the triple (φ, θ, t) that
results from the differential equation satisfied by ℘:

℘′(a1)

℘(a1)− e3
=

℘′(a1)

s− e3
=

t

eiθeiφ/2

⇒
℘′(a1)

2

(s− e3)2
= 4

(s− e1)(s − e2)

(s− e3)
=

t2

e2iθeiφ

4e2iθeiφ(s− e1)(s − e2)− t2(s− e3) = 0.

This equation, along with our normalizing conditions, implicitly de-
fines s as a function of our parameters, s = s(φ, θ, t). Later we will
show that s(φ, θ, t) depends analytically on (φ, θ, t) ∈ P, where P is
our parameter space given by the open half-slab P = (0, π)× (0, π/2)×
(0,∞).We now rewrite our expressions for g and dh one last time and
collect expressions for gdh and (1/g)dh:
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g =
t

eiφ/2
·
℘− e3
℘′

= eiθ
℘′(a1)

s− e3
·
℘− e3
℘′

dh = ie−iφ Im
(

eiφs
)

4 sin θ cos θ
·

d℘

(℘− s)(℘− s̄e−2iφ)

gdh = ie−3iφ/2 · t
Im(eiφs)

4 sin θ cos θ
·

℘− e3
(℘− s)(℘− s̄e−2iφ)

dz

dh

g
= ie−iφ/2 ·

1

t
·

Im(eiφs)

4 sin θ cos θ
·

4(℘− e1)(℘− e2)

(℘− s)(℘− s̄e−2iφ)
dz

3.2. The Period Problem. Symmetries and residues reduce what
should be a 5-dimensional (real) period problem to a 2-dimensional one.
In the case of the square torus, additional symmetry cuts this down to
a 1-dimensional problem.

3.2.1. The Periods of dh. A straightforward computation confirms
that the residues of dh are purely real; specifically, they are given by
±(1/8) sec θ csc θ. Along paths γi that enclose our punctures ai we there-
fore have

∫

γi

dh =
±2πi

8 sin θ cos θ
∈ iR

The bilinear relation applied to dz ∧ dh then yields

0 =

∫ ∫

R

dz ∧ dh =

∫ 0

1
dz

∫ eiφ

0
dh−

∫ eiφ

0
dz

∫ 0

1
dh+ 2πi

4
∑

i=1

aiResaidh

whereR is a parallelogram representing our torus, with vertices 0, 1, eiφ,
and 1 + eiφ.

The residue sum above vanishes, leaving the equation

eiφ
∫ 1

0
dh =

∫ eiφ

0
dh.

From this we conclude that if dh is to have purely imaginary periods,
then the integrals above must vanish. Otherwise we are forced to con-
clude that eiφ ∈ R which gives us a degenerate torus.

Proposition 4. Let H(z) : C/Λφ → C be an odd function. If the
periods of H(z)dz are integrable, then they vanish.

Proof. Let β1 be the path parameterized by z(t) = t for t ∈ [0, 1], and
let β2 be parameterized by w(t) = 1+ eiφ− z(t). The double-periodicity
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of H and difference in direction between β1 and β2 imply
∫

β1

H(z)dz = −

∫

β2

H(w)dw

∫ 1

0
H(t)dt = −

∫ 1

0
H(1 + eiφ − t)dw(t) =

∫ 1

0
H(1 + eiφ − t)dt

= −

∫ 1

0
H(t)dt

⇒

∫

β1

H(z)dz = 0.

Similar computations reveal that the integral of H along the remaining
perimeter curve vanishes. q.e.d.

This allows us to conclude that there is no period problem for dh, for
dh = H(z)dz where H(z) is odd. The above proposition then applies.
If we let β1 and β2 denote the generators for H1(C/Λφ), then the first
homology group for our punctured torus is generated by β1, β2, γi where
each γi encloses a puncture. Since the integral of dh vanishes along the
βi and is purely imaginary along the γi, the integral of dh along any
cycle is purely imaginary.

3.2.2. The Periods of gdh and (1/g)dh. A careful but straightfor-
ward examination of the forms gdh and (1/g)dh and their behavior
under reflection reveals

∫

β1

gdh = −

∫

β2

gdh

∫

β1

1

g
dh = −

∫

β2

1

g
dh

where β1 and β2 are straight lines joining the origin to the points 1 and
eiφ, respectively. As a result, we see that the horizontal period condition
is solved along β1 ⇐⇒ it is solved along β2.

It is also easily verified that along γi the period condition fails in
accordance with the desired double-periodicity of the surface; this fol-
lows from having set the residues of dh and values of g at the punctures
equal to the residues and values of the Weierstrass data for the genus 0
surface.

3.2.3. The Period Function. Because the form dh has no periods, we
will have an immersed, minimal surface with all of the desired properties,
provided we can solve the remaining horizontal period problem. The
aforementioned symmetry requires that we only solve this problem along
either β1 or β2; in other words, we will have our desired minimal surface
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provided

∫ 1

0
gdh =

∫ 1

0

1

g
dh.

Using our expressions for g and dh this equation simplifies significantly,
yielding

|s− e1||s − e2|

∫ 1

0

℘− e3
(℘− s)(℘− s̄e−2iφ)

dx

= −|s− e3|e
2iφ

∫ 1

0

(℘− e1)(℘− e2)

(℘− s̄)(℘− s̄e−2iφ)
dx

Define the Period Function for the triple (φ, θ, t) by the difference of
these two expressions. That is, let

F (φ, θ, t) = |s − e1||s − e2|

∫ 1

0

℘− e3
(℘− s)(℘− s̄e−2iφ)

dx

+ |s− e3|e
2iφ

∫ 1

0

(℘− e1)(℘− e2)

(℘− s̄)(℘− s̄e−2iφ)
dx

Proposition 5. For any φ ∈ (0, π) and any θ ∈ [0, π/2], we have

F (φ, θ, 0) = |e1 − e3|e
2iφ = |e2 − e3|e

2iφ

F (φ, θ,∞) = |e3 − e1||e3 − e2|

∫ 1

0

dz

℘− e3

Proof. First, observe that because of the equation

4e2iθeiφ(s− e1)(s− e2)− t2(s− e3) = 0

the parameter t = ∞ ⇐⇒ s = e3, and t = 0 ⇐⇒ s = e1 or s = e2. We
obtain the equations above simply be evaluating the period function at
s = e3 and s = e1 or e2. However, the first integrand in our expression
for F has singularities when s = e1 and s = e2, and so more care is
needed to perform the evaluation at these points.

We only need to check that the first integral vanishes when taken over
a small neighborhood of the point 1/2. Outside of this neighborhood, the
integrand is bounded even as s → e1, and since the coefficient tends to
0 as this happens, the entire expression vanishes. Now, over an interval
[1/2− δ, 1/2+ δ] we use a result from [5] to conclude that what remains
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similarly tends to 0 as s → e1. One finds
∣

∣

∣

∣

∣

∫ 1

2
+δ

1

2
−δ

℘− e3
(℘− s)(℘− s̄e−2iφ)

dx

∣

∣

∣

∣

∣

∼

∣

∣

∣

∣

∣

M

∫ 1

2
+δ

1

2
−δ

dx

(℘− s)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

M

∫ 1

2
+δ

1

2
−δ

dx

(℘− ℘(a1))

∣

∣

∣

∣

∣

= |M |

∣

∣

∣

∣

1

℘′(a1)

[

ln
σ(x− a1)

σ(x+ a1)
+ 2xζ(a1)

]
∣

∣

∣

∣

1

2
+δ

1

2
−δ

where ζ(x) = −
∫

℘(x)dx, σ(x) = e
∫
ζ(x)dx, and M is constant. If we let

a1 → ω1 = 1/2, the above expression vanishes when we multiply it by
the coefficient |s− e1|. q.e.d.

3.3. The Existence and Uniqueness of S(1, π/2) and Toroidal
Deformations. We now state our two main theorems and outline a
strategy for their proof:

Theorem 2. The function F (π/2, θ, t) = 0 ⇐⇒ θ = π/4 and
t = t0 ∈ (0,∞), where t0 is uniquely determined. In particular, there is
only one way to puncture the square torus with respect to its rhombic
symmetry (modulo our normalizing conditions) so that it immerses as
S(1, 2θ); moreover, it must immerse as S(1, π/2).

Our strategy for proving Theorem 2 is straightforward. We show that
the imaginary part of F (π/2, θ, t) vanishes if and only if s ∈ R which,
when coupled with our normalizing conditions, forces θ = π/4, which
in turn forces s to be real. The Intermediate Value Theorem is used to
show that the real part of this function vanishes for some choice of s,
and hence for some choice of t. Finally, derivative estimates show that
this real part is monotone in s, establishing uniqueness.

Theorem 3. For φ sufficiently close to π/2 there exists a pair (θ, t) ∈
(0, π/2) × (0,∞) so that F (φ, θ, t) = 0.

Our strategy for proving Theorem 3 is outlined in two steps:

(1) Prove that DF̂(θ,t) has full rank at the point (π/2, π/4, t0) where

F = |s − e3| · F̂ relates the two functions. Again, we rely heavily
on the Weierstrass ℘ function for the square torus to prove this
claim.

(2) Use the relationship between DF̂ and DF to conclude that DF(θ,t)

has full rank at the point (π/2, π/4, t0). Lastly, appeal to the im-
plicit function theorem to ensure the existence of (θ, t), solving the
period problem near φ = π/2.

Remark. Our proof of Theorem 3 will actually demonstrate that
θ(φ) and t(φ) depend smoothly on φ near φ = π/2.
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3.3.1. Proof of Theorem 2. Setting φ = π/2 simplifies our period
function F . In this situation −e2 = e1 > 0 and e3 = 0. As a result
s̄e−2iφ = −s̄ and

F (π/2, θ, t) = |s2 − e21|

∫ 1

0

℘

(℘− s)(℘+ s̄)
dx− |s|

∫ 1

0

℘2 − e1
2

(℘− s̄)(℘+ s)
dx

Because this expression depends only on s we denote F (π2, θ, t) = F (s).
Moreover, because ℘ is real valued along the interval [0, 1] we may omit
all of the conjugation in the second integral (except over s), yielding

F (s) = |s2 − e21|

∫ 1

0

℘

(℘− s)(℘+ s̄)
dx− |s|

∫ 1

0

℘2 − e21
(℘− s̄)(℘+ s)

dx

A solution will exist precisely when we find a value of s so that
Re
(

F (s)
)

= Im
(

F (s)
)

= 0. Let us examine the latter condition first,
computing the imaginary parts of each integrand.

Im

(

℘(x)

(℘(x)− s)(℘(x) + s̄)

)

=
℘(x)

|℘(x)− s|2|℘(x) + s̄|2
Im ((℘(x)− s̄)(℘(x) + s))

=
2℘2(x)

|℘(x)− s|2|℘(x) + s̄|2
Im(s)

A similar computation reveals that the imaginary part of the second
integrand is equal to

−2℘(x)(℘2(x)− e21)

|℘(x)− s̄|2|℘(x) + s|2
Im(s)

Together we have the equation

Im
(

F (s)
)

= 2

(

|s2 − e21|

∫ 1

0

℘2

|℘− s|2|℘+ s̄|2
dx+ |s|

∫ 1

0

℘(℘2 − e21)

|℘− s̄|2|℘+ s|2

)

Im(s)

We claim that the terms of the sum are both positive and finite. This is
evident for the first term, and for the second term one simply needs to
recall that the value e1 is a local minimum for the real valued function
℘(x) along the segment [0, 1].

We see that when φ = π/2 the period function satisfies Im
(

F (s)
)

=
0 ⇐⇒ Im(s) = 0. In other words, the parameter ℘(a1) = s is strictly
real, and this forces the puncture to lie along any of the lines that border
the fundamental square, or along any of the dividing lines x = 1/2 or
y = 1/2. Already, this forces θ = ±π/4 since s satisfies

4ie2iθ(s2 − e21) = t2s
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As s2−e21 and t2s are both real, we have no other choices for θ. Moreover,
our other normalizing condition—that a1 be chosen along the curve γ1—
forces us to pick |s| = s ∈ (0, e1). This simplifies our expression for F (s)
even more:

F (s) = (e21 − s2)

∫ 1

0

℘

℘2 − s2
dx− s

∫ 1

0

℘2 − e21
℘2 − s2

dx

The period function we are now left with is differentiable in s as the
variable ranges over (0, e1). In order to find that F (s) = Re

(

F (s)
)

= 0
we only appeal to the period function’s continuity in s. Specifically, since

F (0) = e21

∫ 1

0

dz

℘
> 0

and F (e1) = −e1 < 0, we have the existence of a point s0 where F (s) =
0. Denote this value of s by s0.

A priori, there could be multiple choices of a1 (or, equivalently, s)
that satisfy Re

(

F (s)
)

= F (s) = 0. A straightforward calculus-based
argument shows that s0 is unique. Differentiating F (s) with respect to
s yields

F ′(s) = −2s

∫ 1

0

℘

℘2 − s2
dx+ 2s(e21 − s2)

∫ 1

0

℘

(℘2 − s2)2
dx

−

∫ 1

0

℘2 − e21
℘2 − s2

dx− 2s2
∫ 1

0

℘2 − e21
(℘2 − s2)2

dx

It is not difficult to argue that F ′(s) < 0. We first note that as 0 < s <
e1 < ℘(x) for all x ∈ [0, 1], all of the integrands in the above expression
are positive. This would seal the deal were it not for the second integral
term, whose coefficient is positive. Instead what we argue is that the
first term is larger in modulus than the second term. Specifically, we
claim

2s

∫ 1

0

℘

℘2 − s2
dx > 2s(e21 − s2)

∫ 1

0

℘

(℘2 − s2)2
dx

Canceling a 2s from both sides we see that it suffices to prove

℘(x)

℘(x)2 − s2
> (e21 − s2)

℘(x)

(℘(x)2 − s2)2

for all s ∈ (0, e1) and all x ∈ [0, 1]. Again, this follows from the fact that
℘ has a minimum at e1 along the segment [0, 1].
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℘2(x)− s2 ≥ e21 − s2

⇒
1

℘(x)2 − s2
≤

1

e21 − s2

⇒ (e21 − s2)
℘(x)

(℘(x)2 − s2)(℘(x)2 − s2)
≤

℘(x)

℘(x)2 − s2

As a result, the function F (s) is monotone decreasing on (0, e1), and
this completes our proof. In fact, this says a bit more than we set out to
prove; for φ = π/2 there is precisely one pair (θ, t) = (π/4, t0) satisfying
F (π/2, π/4, t0) = 0. q.e.d.

3.3.2. Proof of Theorem 3. Differentiating the period function with
respect to θ and t is going to result in unappealing formulae. To simplify
matters, we instead work with the function

t2
∫ 1

0

℘− e3
(℘− s)(℘− s̄e−2iφ)

dx+ 4e2iφ
∫ 1

0

(℘− e1)(℘− e2)

(℘− s)(℘− se2iφ)
dx.

Technically this is a different function, but it agrees with F up to a
positive, multiplicative factor. We name this function F̂ and note

F (φ, θ, t) = |s− e3| · F̂ (φ, θ, t).

For φ ∈ (0, π) and t ∈ (0,∞), this function vanishes precisely when
F does, and its Jacobian at (π/2, π/4, t0) is full rank if and only if the
Jacobian of F is full rank. Also, we recall that the variable s is implicitly
a function of φ, θ, and t, as determined by the equation

4e2iθeiφ(s− e1)(s− e2)− t2(s− e3) = 0

Step (1). In order to differentiate F̂ we establish the following notation:

F̂ (φ, θ, t) = t2B(s(φ, θ, t)) + 4e2iφC(s(φ, θ, t))

B(s) =

∫ 1

0

℘− e3
(℘− s)(℘− s̄e−2iφ)

dz

C(s) =

∫ 1

0

∏

(℘− ei)

(℘− s)(℘− se2iφ)
dz̄

Re(F̂ ) = R = t2ReB + 4cos 2φ (ReC)− 4 sin 2φ (ImC)

Im(F̂ ) = I = t2ImB + 4 sin 2φ (ReC) + 4 cos 2φ (ImC)

s(φ, θ, t) = u(φ, θ, t) + iv(φ, θ, t).

We now differentiate R and I and then evaluate these expressions at
p = (φ0, θ0, t0, s0) = (π/2, π/4, t0 , s0).
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Remark: The point p is written as though it is an element of R4.
This error is intentional as our expressions will involve s as well as the
variables φ, θ, and t; these expressions remain simpler if the relationship
between s0 and (π/2, π/4, t0) is suppressed.

Computations reveal that

∂R

∂t

∣

∣

∣

p
= 2t0B(s0) +

∂u

∂t

(

t20
∂B

∂u
− 4

∂C

∂u

)

∂I

∂t

∣

∣

∣

p
= 0

∂R

∂θ

∣

∣

∣

p
= 0

∂I

∂θ

∣

∣

∣

p
=

∂v

∂θ

1

i

(

t20
∂B

∂v
− 4

∂C

∂v

)

.

The details for these equations are contained in Appendix A, as are the
arguments thatRt(p) > 0 and Iθ(p) > 0. Together we have detDF̂(θ,t)(p) >
0, completing the first step.

Step (2). To argue that DF(θ,t)(p) has full rank at p we relate the (θ, t)

Jacobians of F and F̂ :

F̂ (φ, θ, t) = |s− e3|
−1 · F (φ, θ, t)

(

Rθ Rt

Iθ It

)

=

(

|s− e3|
−1
θ · R̃ |s− e3|

−1
t · R̃

|s− e3|
−1
θ · Ĩ |s− e3|

−1
t · Ĩ

)

+
1

|s− e3|

(

R̃θ R̃t

Ĩθ Ĩt

)

where R̃ = Re(F ) and Ĩ = Im(F ). Evaluating these expressions at p,

where R = I = R̃ = Ĩ = 0, e3 = 0, and s = s0 yields
(

0 Rt

Iθ 0

)

=
1

s0

(

R̃θ R̃t

Ĩθ Ĩt

)

As a result, the (θ, t)-Jacobian of F (φ, θ, t) has full rank at p.
The implicit function theorem now implies that for φ near π/2 the

parameters θ and t depend smoothly on φ and may be chosen so that
F (φ, θ(φ), t(φ)) = F (φ) = 0. This finishes our proof. q.e.d.

3.4. Additional Remarks. We note here that via a result of Montiel-
Ros (see [17]) we can conclude that our initial surface S(1, π/2) is non-
degenerate and hence belongs to an analytic, one-dimensional family
of minimal surfaces. To see this, we simply need to observe that the
branch values of g lie along a great circle. Because the underlying torus
is square, we obtain the following algebraic description:

R =
{

(z, w) ∈ Ĉ× Ĉ : w2 =
z2 − a2

z2 + a2

}

,
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where ±a and ±ia are the branch values of the Guass map g. Hence,
we need to show that a = 1 in order to conclude non-degeneracy.

When φ = π/2 and hence θ = π/4, it is straightforward to verify that
the quadratic differential (dg/g) dh is purely real along the vertical lines
in the square torus that join ω1 to ω3. This implies the presence of a
planar reflection (z, w) 7→ (1/z,w), which, in turn, implies a = 1.

Unfortunately, the functions θ(φ) and t(φ) are not easily analyzed,
but symmetry governs their behavior under the transformation φ 7→
(π − φ).

Proposition 6. If (φ, θ, t) vanishes under F , then so does the triple
(π − φ, π/2− θ, t)

Proof. First, we establish that s(π − φ, π/2 − θ, t) = s(φ, θ, t). This
follows from a straightforward analysis of the equation that defines s.
Specifically,

4e2iθeiφ(s− e1)(s − e2) = t2(s− e3)

4e−2iθe−iφ(s̄− e1)(s̄ − e2) = t2(s̄− e3)

The second equation defines the function s̄. Given any odd integer n,
the change of parameters φ 7→ π − φ and θ 7→ nπ/2 − θ imply that
s̄ and s satisfy the same equation. To see this, we first note that the
invariants ei(φ) satisfy ei(π − φ) = ei(φ). We now substitute into the
first equation, yielding

4e2i(nπ/2−θ)ei(π−φ)(s− e1)(s− e2) = t2(s− e3)

⇒ 4e−2iθe−iφ(s− e1)(s− e2) = t2(s− e3)

⇒ s(π − φ, nπ/2− θ, t) = s̄(φ, θ, t)

However, since we choose θ ∈ (0, π/2), the only allowable value of n is
n = 1. This establishes the desired property.

Now we claim that F̂ (φ, θ, t) = F̂ (π − φ, π/2 − θ, t), which finishes
the proof. To see this, we show that it is true for the functions B(φ, θ, t)
and C(φ, θ, t). Because the ℘ function and its associated invariants ei
satisfy

℘(z;π − φ) = ℘(z̄;φ)

ei(π − φ) = ei(φ)

under this transformation of variables, the function B becomes
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B(π − φ, π/2 − θ, t) =

∫ 1

0

℘(x;π − φ)− e3(π − φ)

(℘(x;π − φ)− s)(℘(x;π − φ)− s̄e2iφ)
dx

=

∫ 1

0

℘(x;φ)− e3(φ))

℘(x;φ) − s)(℘(x;φ)− s̄e2iφ)
dx

In the expression above, the parameter s now depends on π − φ and
π/2− θ. We may replace the s terms above with s̄, giving

B(π − φ, π/2− θ, t) =

∫ 1

0

(

℘(x)− e3
(℘(x)− s)(℘(x)− s̄e−2iφ)

)

dx

= B(φ, θ, t)

An analogous computation with the function C(φ, θ, t) gives

C(π − φ, π/2− θ, t) = C(φ, θ, t)

Finally, because F̂ = t2B + 4e2iφC, we have

F̂ (π − φ, π/2 − θ, t) = t2B(φ, θ, t) + 4e−2iφC(φ, θ, t) = F̂ (φ, θ, t)

This completes the proof. q.e.d.

Corollary 1. For φ sufficiently close to π/2 the functions θ(φ) and
t(φ) satisfy

θ(π − φ) = π/2− θ(φ)

t2(π − φ) = t2(φ).

Proof. This follows from Proposition 6 and Theorem 3. q.e.d.

In other words, the function θ(φ) − π/4 is odd about the point φ =
π/2. Therefore, to demonstrate that the values of θ are changing as
the torus parameter φ changes, we simply need to argue that θ(φ) is
non-constant.

One is tempted to show, for example, that it is impossible to solve
the period problem on the hexagonal torus φ = π/3 with θ = π/4, but
we have had no success in doing this. Similarly, a maximum principle
at infinity (such as used in [16]) seems useful in demonstrating that
θ = π/4 ⇒ φ = π/2, but, again, results in this direction have not yet
been obtained.

However, it should be noted that based on observations of Weber-
Hoffman-Wolf [25] regarding the uniqueness of the underlying torus
upon which the singly periodic genus helicoid is based, it is likely S(1, 2θ)
cannot be be obtained by appropriately puncturing any rhombic torus.
In particular, letting φ0 denote the value of φ upon which H(1) is de-
fined, it should follow that for all φ /∈ (π − φ0, φ0) it is impossible to
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puncture C/Λφ in such a way to obtain S(1, 2θ). This leads to the fol-
lowing:

Conjecture 1. For all θ ∈ (0, π/4], S(1, 2θ) ∼= C/Λφ − {a1, a2, a3,
a4} ⇒ φ ∈ (π − φ0, φ0).

4. The Analytic Solution Curve and Flat Structures

In this section we obtain useful gdh and (1/g)dh flat structure rep-
resentations for the surfaces S(1, 2θ); these structures are parameter-
ized by a triple (ℓ, θ, α). We first observe that the period condition

F̂ (φ, θ, t) = 0 determines an analytic curve in (φ, θ, t)-space. From
this we conclude that the surfaces S(1, 2θ) exist until one (or more) of
the parameters (φ, θ, t) degenerates. As a consequence, associated gdh
and (1/g)dh flat structures exist until one (or more) of the parameters
(ℓ, θ, α) degenerates.

4.1. The Analytic Curve. The function F̂ (φ, θ, t) = R(φ, θ, t)+
iI(φ, θ, t) is analytic in φ, θ, and t for (φ, θ, t) ∈ P. This follows from

the definition of F̂ :

t2
∫ 1

0

℘− e3
(℘− s)(℘− e−2iφs̄)

dx+ 4e2iφ
∫ 1

0

∏

(℘− ei)

(℘− s)(℘− se2iφ)
dx

For non-degenerate values of φ, the Weierstrass ℘ function ℘(z; τ) is an-
alytic in both z and τ = eiφ, and hence so are the values ei = ℘(ωi; τ).
Clearly the functions t2 and e2iφ depend analytically on t and φ, respec-
tively. The only other parameter we need to check is s = s(φ, θ, t).

Proposition 7. The function s(φ, θ, t) is analytic on P

Proof. The proof is contained in Appendix B. q.e.d.

We can now conclude that the functionsR(φ, θ, t) and I(φ, θ, t) are an-
alytic in P. Moreover, the solution curve determined by R = I = 0 nec-
essarily contains an analytic arc passing through the point (π/2, π/4, t0).
We have already established that near this point, θ and t are functions
of φ. As a result, the solution curve cannot be branched at (π/2, π/4, t0).

Using Sullivan’s Local Euler Characteristic Theorem (see [9]), we
know that this solution curve must be extendable. Moreover, because
of the uniqueness result from Theorem 2, it is therefore impossible for
this solution curve to “close up” within the slab P, as this would force
a branching at (π/2, π/4, t0).

We are forced to conclude that the solution curve necessarily inter-
sects ∂P = {(φ, θ, t) : φ ∈ {0, π} or t ∈ {0,∞} or θ ∈ {0, π/2}}. Even if
the curve branches at certain points, again by [9] there is always at least
one path that persists. Unfortunately, the possible limit points in ∂P are
difficult to identify since the parameters (φ, θ, t) are not well adapted
to detect when the period condition fails; in particular, it is difficult to
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demonstrate that R 6= 0 or I 6= 0 when, say, the parameter φ → 0, π. It
is possible to restrict one particular degeneration, though.

Remark: Let x ∈ [a, b] with a and b possibly infinite. Here and
for the remainder of the paper x∗ will denote an interior value of the
real variable x, e.g. φ∗ ∈ (0, π). We will say that the variable x does
not degenerate if x → x∗, and we will say that x does degenerate
otherwise.

Proposition 8. The period problem becomes impossible to solve as
(φ, θ, t) → (φ∗, θ,∞) or (φ, θ, t) → (φ∗, θ, 0).

Proof. This follows from examining the period function F̂ (φ, θ, t),
which is given by

t2
∫ 1

0

℘− e3
(℘− s)(℘− e−2iφs̄)

dx+ 4e2iφ
∫ 1

0

∏

(℘− ei)

(℘− s)(℘− se2iφ)
dx

Observe that the parameter θ appears implicitly, as a variable upon
which s depends. The integrands remain bounded since φ does not de-
generate, and if t → 0 then s → e1 or s → e2, and as we have already
noted, at these values F̂ = e2iφ. Similarly, as t → ∞, s → e3 where
F̂ = ∞. In either case, F̂ 6= 0 and so the period problem is unsolved.
q.e.d.

We would like to argue that if φ degenerates, then the period problem
fails, but this is difficult to do. Instead, we assume that the period prob-
lem is solved and thereby obtain flat structures that are parameterized
by new coordinates, (ℓ, θ, α) where ℓ ∈ (0,∞) and α ∈ (0, π/2). Certain
degenerations of these geometric coordinates yield contradictions, while
other degenerations will imply that φ cannot degenerate.

4.2. Flat Structures. As described in [27], a one-form η on a Rie-
mann surface R gives rise to a cone metric. In particular, if z is a local
coordinate on R, then one can use η = f(z)dz to define a line element
dsη by

dsη = |η| = |f(z)||dz|

Away from the zeroes and poles of η, the metric dsη has curvature

K = −
2

f(z)
∂∂ log f(z) = 0

since f is meromorphic.
At a zero or pole p of η, we have η = (zk + higher-order terms)dz,

and so dsη is isometric to a Euclidean cone metric with cone angle
2π(k+1) at p. In particular, because dsη is a cone metric of non-positive
curvature, unique geodesics in a given homotopy class are guaranteed
to exist, provided the curves do not pass through a pole or zero of η
(see [22] for more details).



GENUS ONE SCHERK SURFACES AND THEIR LIMITS 23

The developing map D : R → R′ given by

D(z) =

∫ z

·

η

takes η-geodesics in R to straight lines, and is conformal except at the
finitely many points where η has a zero. Akin to Riemann’s original
constructions, the surface R′ is built so that D(z) has a well defined
inverse; the important distinction is that R′ is obtained as a polygonal
domain in C with identifications. This is accomplished by developing
enough η-geodesics in R; these representations are called the flat struc-
ture representations of η.

For minimal surfaces, the one-forms gdh and (1/g)dh underly useful
cone metrics |gdh| and |(1/g)dh|, respectively. Recall that the horizontal
period condition is given by

∫

γ
gdh =

∫

γ

1

g
dh.

This condition is satisfied provided that the gdh-geodesic and the (1/g)dh-
geodesic belonging to the homology class of γ develop into conjugate line
segments. Hence, the horizontal period condition can easily be built into
the flat structure representations for gdh and (1/g)dh.

Conversely, one can start with proposed gdh and (1/g)dh flat struc-
tures, constructed so that the horizontal period problem is solved, and
typically represented as polygons with various edges identified. These
flat structures will determine some compact Riemann surface with punc-
tures, but it is not clear that they will determine the same one.

The (horizontal) period problem is in this manner replaced by a ques-
tion of conformal type. Even with the period problem restricting the
possible gdh and (1/g)dh flat structures, there are often a number of
free parameters left undetermined (typically the lengths of the polygon’s
edges). One is then required to demonstrate that for some choice of these
parameters, enough conformal invariants agree, ensuring that the pair
of flat structures represent one-forms defined on the same underlying
Riemann surface.

After accomplishing this, one then has to verify that the vertical
period problem is solved, but this is often accomplished by making use
of the fact that

dh =

√

(gdh)

(

1

g
dh

)

.

Moreover, the entire procedure is facilitated by the presence of sym-
metry within the Riemann surface R, for lines of symmetry on R are
necessarily η-geodesics.
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4.2.1. The Helicoid “on its side”. Here is a straightforward and
helpful example of a minimal surface’s flat structure representation: the
helicoid “on its side.” To develop a convenient gdh flat structure for
this minimal surface, observe that the gdh and (1/g)dh flat structures
for any surface agree with the gdh and (1/g)dh flat structures for its
conjugate surface, up to rotation (see, for example, [24]). Hence, we can
use a catenoid on its side to develop the gdh flat structure for a helicoid
on its side (see Figure 3 below).

a

b

a b

gdh

Figure 3. gdh flat structure for the helicoid “on its side”

The corresponding (1/g)dh flat structure looks exactly the same, only
the points a and b are relabeled a ↔ b.

4.2.2. The Scherk-Karcher Surface S(1, π/2). Here is another il-
lustrative example, one that also has relevance to our problem. Let
R = C/Λπ/2−{a1, a2, a3, a4} be our punctured square torus correspond-
ing to the triple (φ, θ, t) = (π/2, π/4, t0). As we have already noted, the
punctures ai are required to lie along the lines of symmetry as depicted
in Figure 4, where the divisor data for gdh and (1/g)dh is also depicted.
Again, because lines of symmetry are geodesics for both cone metrics
|gdh| and |(1/g)dh|, we develop the flat structures depicted in Figure 5.

Observe that the period problem is solved if and only if the gdh-
geodesic and (1/g)dh-geodesic belonging to the homology class of the
line segment joining 0 and 1/2 (and, by reflection, those joining the
other half-period points) develop into conjugate line segments of the
same length ℓ.

The only free parameter in these flat structures is this length ℓ. In this
problem, it is sufficient to consider one conformal invariant, namely the
Extremal Length of a particular set of curves. On the gdh flat structure,
the Extremal Length is given by one value, and on the (1/g)dh flat
structure it is given by another, possibly different, value. We will review
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gdh (1/g)dh
02

02
02

02

∞ ∞ ∞ ∞

∞

∞ ∞

∞

Figure 4. gdh and (1/g)dh divisor data for S(1, π/2)

Figure 5. gdh and (1/g)dh flat structures for S(1, π/2)

the notion of Extremal Length in the next section, but, as proven in [26],
there is a finite choice of ℓ for which these two values agree. Moreover,
as with our uniqueness result concerning the square torus, there is only
one such value of ℓ for which this happens.

4.3. Remarks on the Developing Map and Teichmüller Space.
In their constructions, [27], Weber-Wolf typically assumed a maximum
amount of symmetry. As a result, the flat structure representations for
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gdh and (1/g)dh likewise enjoy a great deal of symmetry. So much so,
in fact, that these structures can often be “folded” down to simply
connected regions bounded by line segments and rays that meet at 90◦

and 270◦; such domains are called orthodisks.

a

d

b

c

1

g
dh

c

a

bd

gdh
a

c

bd

Figure 6. Orthodisk flat structures for S(1, π/2)

When working with orthodisks, the gdh and (1/g)dh geodesics that
join various 0s, poles, and regular points often overlap, and, as a result,
the conformal map that necessarily exists between the gdh and (1/g)dh
flat structures is forced to be edge-preserving. As a result, the flat struc-
tures are not merely conformally equivalent but Teichmüller equivalent
(see [1] or [18] for more details about this notion).

Figure 5 depicts non-simply connected flat structure representations
for gdh and (1/g)dh. However, orthodisks are available in this setting;
they are obtained by developing the region indicated in Figure 6.

Orthodisks will not be available for the surfaces S(1, 2θ). This fol-
lows because symmetry is necessarily destroyed by moving away from
the square torus. Hence, the gdh and (1/g)dh flat structures that we
will develop will only be conformally equivalent, not Teichmüller equiv-
alent, as they are obtained from Riemann surfaces that have been slit
differently.

4.4. The (1/g)dh Flat Structure for S(1, 2θ). For minimal surfaces
S(1, 2θ) near the Scherk-Karcher surface S(1, π/2), we obtain (1/g)dh-
flat structures such as the ones depicted in Figure 7.

The figure depicts one quarter of the (1/g)dh flat structure, developed
from the quarter of the underlying rhombic torus depicted on the left.
The paths joining various half-period points, as well as paths joining
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Figure 7. (1/g)dh flat structure for S(1, 2θ)

half-period points to the puncture (the solid and dotted paths, respec-
tively), are (1/g)dh-geodesics and so they develop to (correspondingly
solid and dotted) straight line segments.

Observe that the horizontal and vertical lines of symmetry develop
to vertical and horizontal lines of symmetry. Also note that the geo-
desic joining ω1 to the puncture a1 is chosen to meet the other two
geodesics (the solid paths) at 90◦. This geodesic develops into a ray,
and in the flat structure representation shown above, it is depicted
as two, identified rays; the identification is obtained via the transla-
tion ~v 7→ 2πi · Resa1(gdh) + ~v. The length of this translation vector
is π/4 sec θ csc θ and is the hypotenuse of the dotted triangle depicted
above.

The complete (1/g)dh flat structure is obtained by reflecting the de-
picted quarter across the orthogonal lines of symmetry, and then making
appropriate identifications between the edges labeled with length ℓ.

We also remark here that the value α must lie in (0, π/2). If α = 0,
for example, then the geodesic joining the half-period points ω1 and ω2

would coincide with the geodesic joining ω1 to ω3, which is a line of
symmetry in the torus and the flat structure. While it is possible for
the intersection of two cone-metric geodesics to contain more than a
single point, this can only happen if one of these geodesics approaches
a zero or a pole of the cone-metric. Since this is not the case with our
|(1/g)dh| cone-metric and either line of symmetry, we conclude that α
cannot equal 0 or π/2.

Additionally, neither of the edges marked with an ℓ can intersect a line
of symmetry, since if this were to happen the hypotenuse of the dotted
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triangle would have to vanish, which is impossible since this value is,
again, given by π/4 sec θ csc θ.

In summary, (1/g)dh flat structures are parameterized by a triple
(ℓ, θ, α) ∈ (0,∞)× (0, π/2)× (0, π/2), and possess quarters that we may
represent via diagrams such as the one given in Figure 7.

4.5. The gdh Flat Structure for S(1, 2θ). If we similarly depict the
gdh-geodesics joining the half-period points and the puncture, we de-
velop the flat structure representation depicted in Figure 8, which cor-
responds to a quarter of the underlying rhombic torus.

Figure 8. gdh flat structure for S(1, 2θ)

We have presented two flat structure representations for the gdh flat
structure. The second one is obtained from the first by cutting along the
dotted geodesic, and then gluing along the identified, solid geodesic(s).
In the top picture, the solid lines are identified, and in the bottom
picture the dotted lines are identified. The complete flat structure is
similarly recovered by reflecting across the horizontal and vertical line
segments and making appropriate identifications.

Again, the straight line segments of length ℓ in Figure 8 are the
developed gdh-geodesics that belong to the same homology class as
the Euclidean line segments joining various half-period points along the
perimeter of the rhombus that represents our torus (on the square torus,
these geodesics coincide with the Euclidean line segments).
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We remark that, a priori, it is possible for the gdh-geodesics joining
two half-period points to coincide with a line of symmetry; this possibil-
ity exists because the two lines of symmetry cross the double-zeroes of
the form gdh. However, because the gdh flat structure and the (1/g)dh
flat structure enjoy a conjugacy relationship corresponding to a solved
period problem, the angles between the lines of symmetry and such
geodesics are necessarily given by the values indicated above, namely
π − α and π/2 + α. If these geodesics were to coincide for some surface
S(1, 2θ), then we would have α = π or α = −π/2, but, as previously
noted, the parameter α can only take values in (0, π/2).

In summary, quarters of the gdh flat structures are represented by
diagrams such as the ones in Figure 8, and are parameterized by the
same triple (ℓ, θ, α) used to parameterize (1/g)dh flat structures.

4.6. A Bit More About Both Structures. The flat structures fea-
ture three undetermined parameters: ℓ, θ, and α. Observe that a non-
degenerate triple of these geometric coordinates (ℓ, θ, α) corresponds
to a non-degenerate triple of our original coordinates (φ, θ, t). We also
record the following relationships between ℓ and the underlying 1-forms:

2ℓ = 2

∫

γ+

|gdh| =

∣

∣

∣

∣

∫ 1

0
gdh

∣

∣

∣

∣

(3)

= 2

∫

γ−

∣

∣

∣

∣

1

g
dh

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ 1

0

1

g
dh

∣

∣

∣

∣

(4)

where γ+ and γ− denote the respective gdh- and (1/g)dh-geodesics ho-
mologous to the line segment [0, 1/2].

The gdh flat structure also reveals key relationships between the pa-
rameters ℓ, θ, and α. Specifically,

π

4
sec θ − 2ℓ cosα > 0(5)

π

4
csc θ − 2ℓ sinα > 0(6)

From these inequalities we find

ℓ → ∞ ⇐⇒ θ → 0 and α → π/2(7)

or

ℓ → ∞ ⇐⇒ θ → π/2 and α → 0(8)

In particular, if the parameter ℓ degenerates to ∞, then the parameter
θ degenerates as well, which will imply that S(1, 2θ) exists for every
θ ∈ (0, π/2).
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Figure 9. gdh flat structure for H(1) “on its side”

4.7. The gdh Flat Structure for H(1). Finally, because we claim
that our surfaces limit on the singly periodic, genus-one helicoid (on its
side), we include here the gdh flat structure for this surface.

Again, similarly indicated edges are identified, and note the rela-
tionship with or similarity to the gdh flat structure for the genus zero
helicoid on its side. Indeed, the presence of this “added corner” (as well
as the helicoidal ends) confirms, at least morally or intuitively, that this
is an accurate depiction of gdh for H(1).

We will be able to make this conclusion more precise by analyzing the
form gdh that gives rise to this flat structure. One way to accomplish
this is to develop the gdh flat structure for the singly periodic, genus
one helicoid (on its side); indeed, this form will necessarily have divisor
data (double zeroes and double poles) that give rise to Figure 9.

In the next section we will obtain the Figure 9 as a limit of gdh flat
structures for the surfaces S(1, 2θ). As a result, the form gdh (as well
as (1/g)dh) can be understood in terms of the parameters (φ, θ, t). A
straightforward residue calculation and the presence of symmetry will
allow us to use a result from [3] and conclude that the corresponding
minimal surface is the singly periodic genus one helicoid H(1).

5. Taking a Limit

In this section we use various extremal lengths to demonstrate that
certain degenerations of our surfaces are impossible. As a result of The-
orem 3, we know that perturbed gdh and (1/g)dh flat structures exist
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and remain conformally equivalent. Our goal is to show that the gdh flat
structures degenerate to the gdh flat structure for the singly periodic
genus-one helicoid. This will be accomplished by demonstrating that
all other possible degenerations violate either the conformal equivalence
between the (1/g)dh and gdh flat structures or the period condition.
We outline the main steps for this procedure below.

Step (1). We show that θ must degenerate. To accomplish this, we first
prove Lemma 1, which asserts ℓ → 0 ⇒ φ → φ∗. Lemma 2 makes use
of the bilinear relation applied to gdh ∧ dz and (1/g)dh ∧ dz, as well as
Lemma 1, to establish that ℓ → 0 ⇒ θ → 0 (or π/2). Finally, Lemma 3
uses Extremal Length arguments to conclude that limit triples of the
form (ℓ∗, θ∗, 0) and (ℓ∗, θ∗, π/2) are impossible. Theorem 4 collects these
results to conclude that the parameter θ necessarily degenerates. As a
consequence, we learn that for every θ ∈ (0, π/2), the surface S(1, 2θ)
exists as an immersed surface in R

3.

Step (2). We show that ℓ degenerates if and only if the torus parameter
φ does not degenerate and the quantity |Im(seiφ)| csc θ sec θ degenerates
to 0 or ∞. This is the content of Lemmas 4 and 5, which make use of
various curve systems and their corresponding extremal lengths.

Step (3). We next argue that the quantity |Im(seiφ)| csc θ sec θ cannot
tend to 0 or ∞, and so the parameter ℓ cannot degenerate. This is the
content of Lemma 6. (The “doubling technique” defined in Rosenberg-
Toubiana [20] and used in Meeks-Rosenberg [15] for doubly periodic
surfaces can be used to this end, too.) As a result, few limiting flat
structures are available as possibilities, and, using Extremal Length
arguments, all but one yield contradictions. We then show that this
remaining flat structure agrees with that of the gdh flat structure for
H(1), completing the proof of Theorem 5.

First, though, we review the notion of extremal length in general as
well as in the particular case of a (punctured) rhombic torus.

5.1. Extremal Length. There are a number of ways to define Ex-
tremal Length. Let Γ be a set of (rectifiable) curves on a Riemann
surface R, and let M = {ρ ≥ 0} denote the set of Borel measurable,
conformal metrics on R with finite area. The extremal length of Γ on
R is given by

ExtR(Γ) = sup
ρ∈M

infγ∈Γ (Lρ(γ))
2

Aρ(R)

where Lρ(γ) denotes the ρ-length of the curve γ, and Aρ(R) denotes
the ρ-area of R.

5.1.1. Basic Properties. If f : R → R′ is a conformal map, then
ExtR(Γ) = ExtR′(f(Γ)). As a result, it provides a notion of length
that depends only on the underlying Riemann surface R. The Extremal
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Length of a set of curves enjoys a number of properties (see [2] for more
details), but we mention only a few basic ones here. First, if Γ′ ⊂ Γ
then Ext(Γ′) ≥ Ext(Γ); in other words, one can obtain upper bounds by
restricting the set of curves under consideration. Second, one can obtain
lower bounds by equipping R with a particular metric ρ0. That is

ExtR(Γ) ≥
infγ∈Γ(Lρ0(γ)

2)

Aρ0(R)

There is another convenient way to obtain lower bounds. If every γ ∈ Γ
contains a sub-curve β ∈ B, then ExtR(Γ) ≥ ExtR(B).

5.1.2. Extremal Length On A Torus. Often times Γ will consist
of a homology class of curves. Let Γ = [γ] be the homology class of
a generator for the first homology group of a torus C/{ω1, ω2}. The
Extremal Length of Γ is well understood, even if the lattice degenerates.

Using the Euclidean metric on our rhombic tori R = C/Λφ, one finds

ExtR(Γ) ≥
1

2 cos(φ/2) sin(φ/2)

where, again, Γ denotes the homology class of either standard generator
of H1(R). Similarly, let D1 denote the diagonal of our torus that joins
the origin to the point 1 + eiφ, and let Γ1 denote the homology class of
D1. Then, again by using the Euclidean metric, we find

ExtR(Γ1) ≥
4 cos2(φ/2)

2 cos(φ/2) sin(φ/2)
= 2 cot(φ/2)

On the other hand, if we restrict Γ1 to a subset of curves that are
required to join the opposite sides of a rectangle with length 2 cos(φ/2)
and width (1/2) sin(φ/2), as in Figure 10, one obtains the following
upper bound:

ExtR(Γ1) ≤ 4 cot(φ/2).

Figure 10. Γ1 restricted to gray rectangle
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We apply similar reasoning for the homology class Γ2 of the other
diagonal D2, and collect the resulting estimates here:

4 cot(φ/2) ≥ ExtR(Γ1) ≥ 2 cot(φ/2)(9)

4 tan(φ/2) ≥ ExtR(Γ2) ≥ 2 tan(φ/2).(10)

5.2. Some Notation and Sets of Curves. Many of the following
Lemmas will make use of the same curve systems and surfaces, and
so we establish notation that will be repeatedly used. While all of the
families of curves used are homology classes, we remind the reader that
the notion of extremal length is well defined for a mere set of curves.
Indeed, we will restrict or enlarge these classes to sets whose extremal
lengths are more readily approximated; this allows us to obtain lower
and upper bounds, respectively.

R = C/Λφ − {a1, a2, a3, a4}

R = C/Λφ

Γ = [γ] = Homology Class of a Standard Generator for H1(R)

Γ1 = [D1] = {Homology Class of diagonal D1 joining 0 to 1 + eiφ}

Γ2 = [D2] = {Homology Class of diagonal D2 joining eiφ to 1}

Γ̃ = {Homology Class of curves enclosing the punctures a1 and a2}

Γ̂ = {Homology Class of curves enclosing the points 1/2 + eiφ, a1, a2,

and 1 + eiφ/2 that only intersect the half of D1, as indicated

in Figure 12}

Γ∗ = {Homology Class of curves enclosing a1 and a3, that enclose

no other punctures or half-period points, and that do not

intersect either diagonal}

Ext+(·) = Extremal Length on gdh flat structure

Ext−(·) = Extremal Length on (1/g)dh flat structure

Ext0(·) = ExtR(·)

Ext0̄(·) = Ext
R
(·)

Figure 11. Curves in Γ1,Γ2, and Γ̃, respectively
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Figure 12. Curves in Γ̂ and Γ∗

Figure 13. Complete (1/g)dh (left) and gdh (right) flat structures

Because the gdh and (1/g)dh flat structures are conformally equiva-
lent to the punctured rhombic torus R, we have Ext+(F) = Ext−(F) =
Ext0(F) for any family F of curves.

We will also make use of the entire gdh and (1/g)dh flat structures,
as opposed to quarters. This is necessary since for general S(1, 2θ), pre-
viously depicted quarters of these flat structures are not conformally
equivalent. Indeed, these quarters were obtained by developing gdh and
(1/g)dh geodesics which may not, in general, agree. The complete flat
structures are depicted in Figure 13.

5.3. Step 1: Proving θ Degenerates.

Lemma 1. If ℓ → 0, then the torus parameter φ cannot degenerate.

Proof. For a contradiction, suppose ℓ → 0 and that φ tends to 0 or
π. Let Γ′

i ⊂ Γi be the subset of the homology class of either standard

generator for H1(R) of our (non-punctured) torus, where Γ′
i is given by

curves on the gdh flat structure such as the one depicted in Figure 14.
These curves are not allowed to touch any edges other than the ones
indicated; in other words, we have used the 1-form gdh to restrict the
sets Γi.

The structure in Figure 14 has been rescaled by 1/ℓ, keeping the
lengths of the identified edges fixed at 1 but causing the lengths of the
horizontal and vertical lines of symmetry to become infinite. The second
picture assumes that the parameter α degenerates, too, though whether
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Figure 14. Ext+(Γ
′
i) < ∞ as (ℓ, θ, α) → (0, θ, α)

or not this additional degeneration takes place has no affect on our
conclusion, namely, that as ℓ → 0 we have

∞ > Ext+(Γ
′
i) ≥ Ext+(Γi) = Ext0(Γi).

However, if the parameter φ degenerates, then, Ext0̄(Γi) → ∞. Because
the homology class of Γi on the punctured torus R is contained in the
homology class of Γi on the torus R we have

Ext0(Γi) ≥ Ext0̄(Γi) → ∞

producing the desired contradiction. q.e.d.

Lemma 2. It is impossible for (ℓ, θ, α) to limit on (0, θ∗, α)

Proof. First, the bilinear relation applied to gdh∧dz and (1/g)dh∧dz

combined with the period condition
∫

gdh =
∫

(1/g)dh yield

−2ℓ
(

e−iα + eiφeiα
)

=
πi

4 sin θ cos θ

(

eiθ(a1 − a3)− e−iθ(a2 − a4)
)

−2ℓ
(

eiα + eiφe−iα
)

=
πi

4 sin θ cos θ

(

e−iθ(a1 − a3)− eiθ(a2 − a4)
)

Assuming ℓ → 0, we know from Lemma 1 that φ is not degenerating.
Moreover, using that a2 = eiφa1 and a4 = eiφa3, the two equations
above become

0 = 2eiφ/2 · Im
(

eiθe−iφ/2(a1 − a3)
)

(11)

0 = 2eiφ/2 · Im
(

e−iθe−iφ/2(a1 − a3)
)

(12)
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In particular, we see that (a1 − a3) ∈
(

e−iθeiφ/2
)

R ∩
(

eiθeiφ/2
)

R. As
we are not allowing θ to limit on 0 or π/2, this implies that (a1 − a3) =
0 or ∞. As it is impossible for our punctures to tend to ∞, we are forced
to conclude that a1 = a3 which implies a1 = ω3. Hence, ℘(a1) = s → e3
as ℓ → 0, which implies that t → 0 and, via Proposition 8 and Lemma 1,
this implies that the period problem is unsolved for arbitrarily small
values of ℓ ⇒⇐. q.e.d.

Lemma 3. It is impossible for (ℓ, θ, α) to limit on (ℓ∗, θ∗, 0) or
(ℓ∗, θ∗, π/2)

Proof. Without loss of generality, it suffices to show only one of these
triples is impossible. This follows because if the triple (φ, θ, t) corre-
sponds to the flat-structure triple (ℓ, θ, α), then the triple (π− φ, π/2−
θ, t) corresponds to (ℓ, π/2 − θ, π/2 − α). Therefore, we will show that
(ℓ∗, θ∗, 0) is impossible.

Figure 15. The set of curves Γ′
2 and its possible degenerations

In this case, the length of the vertical line segments present in the
gdh flat structure tend to (π/4) csc θ − 2ℓ sinα → (π/4) csc θ∗ > 0,
while the horizontal lengths may or may not vanish, depending on the
limiting behavior of (π/4) sec θ−2ℓ cosα → (π/4) sec θ∗−2ℓ∗. However,
because the lengths of these horizontal line segments remain bounded,
we have enough information to argue that φ cannot degenerate to π.
If this did happen, then Ext0(Γ2) → ∞, but under these assumptions
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we have Ext+(Γ2) → δ < ∞, as depicted in Figure 15. Specifically,
we use the restricted subset Γ′

2 ⊂ Γ2, consisting curves joining only
the edges indicated. In either case, Ext+(Γ

′
2) < ∞, and so Ext+(Γ2) ≤

Ext+(Γ
′
2) < ∞.

To show that φ cannot degenerate to 0, we first argue that (π/4) sec θ−
2ℓ cannot tend to 0. This is easily seen by appealing to the bilinear re-
lation equations for gdh ∧ dz and (1/g)dh ∧ dz used in the proof of
Lemma 2; assuming (ℓ, θ, α) → (ℓ∗, θ∗, 0), φ → 0 and using equation
(11), we find

−4ℓ∗ =
iπ

4 sin θ∗ cos θ∗

(

eiθ
∗

(a1 − a3)− e−iθ∗(a2 − a4)
)

=
iπ

4 sin θ∗ cos θ∗

(

(a1 − a3)
(

eiθ
∗

− e−iθ∗
))

=
iπ

sin θ∗ cos θ∗
(a1 − 1)(i sin θ∗)

ℓ∗ =
π

4
sec θ∗(a1 − 1).

Here, as before, we made use of the relations a2 = e−2iφa1 and a3 =
1+eiφ−a1. We conclude that the horizontal length vanishes if and only
if (a1 − 1) = 1/2 in the limit, which implies that a1 → 3/2. However, if
we repeat this process with equation (12), we find

ℓ∗ =
π

4
sec θ∗(1− a1)

which implies that a1 → 1/2. Therefore, φ cannot tend to 0. By as-
sumption, the parameter θ is likewise not degenerating. This leaves t
to degenerate, which, as noted in Proposition 8, results in an unsolved
period problem, yielding our desired contradiction. q.e.d.

We are now in a position to prove the following

Theorem 4. Given any θ ∈ (0, π/2), there exists an immersed S(1, 2θ).

Proof. From Lemma 2, we see that limiting flat structure triples of
the form (0, α, θ∗) are impossible. We have already remarked that if
ℓ → ∞ then θ degenerates, without loss of generality, to 0. Moreover,
Lemma 3 rules out the possibilities of (ℓ∗, 0, θ∗) and (ℓ∗, π/2, θ∗) as limit
triples.

Because our original coordinates (φ, θ, t) must degenerate, our geo-
metric coordinates must degenerate, too. Using these first three Lemmas
and the fact that ℓ → ∞ ⇒ θ → 0, though, we see that the only possible
degenerations all include θ → 0. Hence, for every θ ∈ (0, π/4] we have
an immersed S(1, 2θ). By Proposition 6, this set of allowable θ may be
extended to (0, π/2). q.e.d.
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5.4. Step 2: Relating (ℓ, θ, α) and (φ, θ, t). In this subsection we
show that if ℓ degenerates to ∞, then φ can not degenerate. This is the
content of Lemma 4, and although it is similar in flavor to Lemma 1,
the proof is more delicate. As a result, we are able to understand ℓ
degenerating in terms of the quantity |Im

(

seiφ
)

| csc θ sec θ degenerating
to 0 or ∞; this is the content of Lemma 5.

Lemma 4. If ℓ → ∞ then φ cannot degenerate.

Proof. Without loss of generality, assume θ → 0. Because (π/4) sec θ−
2ℓ cosα > 0, we have that α → π/2, and we also have the upper bound
2ℓ cosα ≤ sec θ → 1.

First we show that csc θ/ℓ → ∞. It is clear that Ext−(Γ̃) → 0 as

(ℓ, θ, α) → (∞, 0, π/2), where Γ̃ consists of curves enclosing the punc-

tures a1 and a2. This is easily verified by considering the subset Γ̃′ ⊂ Γ̃
given by the depicted curves in Figure 16. The (1/g)dh flat structure in
Figure 16 has been rescaled by 1/ℓ, and the curves under consideration
are only allowed to intersect the edges indicated.

Figure 16. Ext−(Γ̃
′) → 0

The length of the vertical line segment in Figure 16 is given by
2 sinα+ (π/4) csc θ/ℓ, and so either tends to infinity or a positive value
as (ℓ, θ, α) → (∞, 0, π/2). The length of the horizontal line segment is
given by 2 cosα+(π/4) sec θ/ℓ and hence tends to 0 under the assumed
degeneration, as depicted in the diagrams.

As our parameters degenerate, the curves in Γ̃′ can be contained in
arbitrarily small balls, implying that Ext−(Γ̃

′) → 0. Of course, this

implies that Ext−(Γ̃) → 0.
However, if the ratio csc θ/ℓ does not tend to ∞, then Ext+(Γ) limits

on a positive value. To see this, rescale the gdh flat structure by 1/ℓ,

and note that γ̃ ∈ Γ̃ must contain solid or dotted sub-arcs, like the
ones depicted in Figure 17. Specifically, these sub-arcs pass through the
darkly-shaded, polygonal region D.
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D is a symmetric region, and as a set in E
2, one quarter of it is the

polygonal region whose vertices coincide with the set of points
{

(0, 2 cos α),

(

0,
π

4

csc θ

ℓ

)

,

(

δ + 2 sinα, (δ + 2 sinα) tan θ +
π

4

csc θ

ℓ

)

,

(2 sinα, 0), (2 sin α+ δ, 0)

}

where δ is an arbitrary, fixed positive number. Reflect this set across the
real and imaginary axes and intersect the resulting polygonal domain
with the gdh flat structure to obtain D, which is pictured in Figure 17
as a darkly shaded region.

Figure 17. Dark region, D, carries the standard Eu-
clidean metric

Equip these flat structures with the Euclidean metric on D; that is,
consider the metric ρ given by

ρ(z) =

{

1 if z ∈ D
0 if z /∈ D

This choice of ρ provides us with a positive lower bound on the extremal
length Ext+(Γ) (we have emphasized where our depicted curves intersect
this region by highlighting sub-arcs with a lighter shade). This implies

Ext+(Γ̃) > 0.

Remark: The above picture assumes that the ratio csc θ/ℓ limits on
a finite, positive value. If instead this limits to 0, then the Extremal
Length Ext+(Γ̃) tends to ∞.

For the rest of the proof, we will assume csc θ/ℓ → ∞, which will be
depicted in limiting, rescaled gdh structures via vertical line segments
whose lengths increase without bound.

Again, we first argue that φ cannot degenerate to π. This follows be-
cause, again, Ext0(Γ2) → ∞ under this degeneration, but Ext+(Γ2) → 0
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under the degeneration (ℓ, θ, α) → (∞, 0, π/2). This can be seen by us-
ing the set of curves Γ′

2, used in the proof of Lemma 3, and rescaling
the gdh flat structure by 1/ℓ.

We now show that φ cannot degenerate to 0. Consider the set Γ̂,
consisting of curves that enclose the points 1/2+eiφ, a1, a2, and 1+eiφ/2,
but that do not intersect the line segment joining the origin to ω3. Such
a curve is depicted in Figure 18.

cos(φ/2)

2 sin(φ/2)

Figure 18. A curve in the set Γ̂

After we rescale the torus by csc(φ/2) and fix a neighborhood of the
dotted line depicted in Figure 18, it is clear that the extremal length
Ext0(Γ̂) increases without bound as φ → 0. This happens because the
curves enclosing the half-period points are not allowed to intersect the
bordering line segments of the identified rectangle in Figure 18 (on the
right). As φ → 0 this rescaled rectangle becomes infinitely wide and,

more to the point, every curve γ̂ ∈ Γ̂ becomes “pinched,” which forces
the extremal length to become infinite.

However, we can find a subset Γ̂′ ⊂ Γ̂ that has Ext+(Γ̂) → 0. Let Γ̂′

denote the set of curves depicted in Figure 19. This figure shows the
gdh flat structure (and its limit) rescaled by 1/ℓ. A curve γ̂′ ∈ Γ̂′ is only
allowed to cross the gdh geodesics joining 0 and ωi (i ∈ {1, 2}) once,
and it is also only allowed to cross the gdh geodesics joining ω3 and the
punctures once.

The limiting extremal length is zero since all limiting curves can be
contained in arbitrarily small open balls. Hence, Ext+(Γ̂) ≤ Ext+(Γ̂

′) →

0, which contradicts the fact that Ext0(Γ̂) → ∞. We are forced to
conclude that φ cannot limit on 0, which completes the proof. q.e.d.

Lemma 5. The following hold

ℓ → 0 ⇐⇒
|Im

(

seiφ
)

|

sin θ cos θ
→ 0

ℓ → ∞ ⇐⇒
|Im

(

seiφ
)

|

sin θ cos θ
→ ∞
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Figure 19. The set of curves Γ̂′

Proof. This follows simply by noting that

2ℓ =

∣

∣

∣

∣

∫ 1

0
gdh

∣

∣

∣

∣

=
|Im

(

seiφ
)

|

4 sin θ cos θ

(

t ·

∣

∣

∣

∣

∫ 1

0

℘− e3
(℘− s)(℘− s̄e−2iφ)

dx

∣

∣

∣

∣

)

If ℓ → 0 or if ℓ → ∞, then φ cannot degenerate. After appealing to
Proposition 8, we conclude that our original parameters (φ, θ, t) are
limiting on (φ∗, 0, t∗). The fact that t and φ are not degenerating is
enough to conclude that the parenthetical term in the above expression
for ℓ remains bounded away from 0 and ∞. Therefore, the only way for
ℓ to vanish or blow up is if the coefficient Im

(

seiφ
)

sec θ csc θ does so.
q.e.d.

5.5. Step 3: Producing the gdh Flat Structure for H(1). The main
result in this section is that the parameter ℓ cannot degenerate. This is
accomplished via Lemma 6, and it leaves only a handful of flat structures
that, via more extremal length arguments, are easily dismissed as limits.
The only “surviving” candidate coincides with the flat structure for
H(1).

Lemma 6. As (φ, θ, t) → (φ∗, 0, t∗) the quantity Im
(

seiφ
)

sec θ csc θ
cannot tend to 0. Moreover, ℓ cannot tend to ∞.

Proof. We begin with our equation that relates our parameters φ, θ, t
and s:
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4e2iθeiφ
(s − e1)(s − e2)

(s − e3)
= t2

eiφ
(s − e1)(s − e2)(s̄ − ē3)

|s− e3|2
= e−2iθ t

2

4

e−iφ(s̄− ē1)(s̄ − ē2)(s− e3) = e2iθ
t2

4
|s− e3|

2

e−iφs̄|s|2 + e−iφē3|s|
2 + eiφs|e1|

2 − (e3s̄)e
−iφs− |e3|

2e−iφs̄− e−iφe3ē1e2

= e2iθ
t2

4
|s− e3|

2

We now take an imaginary part of both sides, noting that the under-
lined terms are purely real. The imaginary part of the left hand side is
therefore given by

Im
(

e−iφs̄
)

·
(

|s|2 − |e3|
2
)

+ Im
(

eiφs
)

· |e1|
2 − Im

(

e−iφs(e3s̄)
)

(13)

= Im
(

e−iφs̄
)

·
(

|s|2 − |e3|
2
)

+ Im
(

eiφs
)

· |e1|
2

− Im
(

e−iφs̄(e3s̄) + e−iφs̄(ē3s)
)

(14)

= Im
(

eiφs
)

·
(

|e3|
2 − |s|2 + |e1|

2 − 2Re(e3s̄)
)

(15)

= Im
(

eiφs
)

·
(

−|s− e3|
2 + 2|e3|

2 + |e1|
2
)

(16)

= Im
(

eiφs
)

·
(

|e1 − e3|
2 − |s− e3|

2
)

.(17)

Because the expression Im
(

e−iφs̄(ē3s)
)

= Im
(

e−iφē3|s|
2
)

= 0, we are
free to add it to equation (13) in order to obtain equation (14). Equa-
tion (17) is obtained from equation (16) by noting that

|e1 − e3|
2 = (e1 − e3)(e1 − e3) = e2iφ(e1 − e3)(e2 − e3)

= e2iφ(e1e2 − e3(e1 + e2) + e23)

= e2iφ(e−2iφ|e1|
2 − e3(−e3) + e23) = e2iφ(e−2iφ|e1|

2 + 2e23)

= |e1|
2 + 2|e3|

2

Setting equation (17) equal to the imaginary part of e2iθ t
2

4 |s − e3|
2

gives

Im
(

eiφs
)

·
(

|e1 − e3|
2 − |s − e3|

2
)

= 2 sin θ cos θ ·
t2

4
|s− e3|

2(18)

Im
(

eiφs
)

2 sin θ cos θ

(

|e1 − e3|
2 − |s− e3|

2

|s− e3|2

)

=
t2

4
(19)

4

t2
Im
(

eiφs
)

2 sin θ cos θ

(

|e1 − e3|
2

|s− e3|2
− 1

)

= 1.(20)
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Equation (20) implies that ℓ cannot tend to zero when (φ, θ, t) →
(φ∗, 0, t∗). For if ℓ → 0 then by Lemma 5 the quantity Im(eiφs) sec θ
csc θ → 0, too, violating (20).

Unfortunately, it is not easy to use the above expression to show that
ℓ cannot tend to infinity. To demonstrate this, we use another extremal
length argument. As we have already noted, if ℓ → ∞ then the torus
parameter φ cannot degenerate; this was the content of Lemma 5, and
as we recalled at the start of the proof for that Lemma, we know that
α → π/2 and csc θ/ℓ → ∞ as ℓ → ∞.

The rest of the proof of Lemma 5 used the gdh flat structure to
conclude that φ was not degenerating. Working with the (1/g)dh flat
structure, we show that, indeed, φ → 0, providing a desired contradic-
tion.

Under the assumption that (ℓ, θ, α) → (∞, 0, π/2) and that csc θ/ℓ →
∞, we rescale the (1/g)dh flat structure by ℓ and let the structure degen-
erate. We use a subset of Γ′

2 ⊂ Γ2 of the homology class of the diagonal
joining 1 and eiφ on the underlying torus. The subset Γ′

2 consists of
curves restricted to join the opposite sides of a rectangle of length A
and height B where

A = 4cosα+ 2
sec θ

ℓ
, B = 2 sinα

The set Γ′
2 is depicted in Figure 20, and its extremal length is given by

Ext−(Γ
′
2) =

A

B
=

2cosα+ sec θ
ℓ

sinα
→ 0

which implies that Ext−(Γ2) → 0.
We therefore have Ext−(Γ2) → 0 ⇒ Ext0(Γ2) → 0 ⇒ φ → 0, which

is a contradiction. q.e.d.

Theorem 5. As θ → 0 the surfaces S(1, 2θ) → H(1).

Proof. We prove this by showing that the gdh flat structures for
S(1, 2θ) converge to the gdh flat structure we claim represents H(1).
The notion of convergence we are using is that of pointed, Gromov-
Hausdorff (for more details, see [8]).

Previous lemmas demonstrate that ℓ cannot tend to 0 or ∞. From
Lemma 3 we know that α cannot degenerate in isolation. As a result,
after assuming θ → 0, the only possible limits are (ℓ∗, 0, α∗), (ℓ∗, 0, 0) and
(ℓ∗, 0, π/2). If we can show that φ cannot degenerate, then the latter two
cannot be possible. For even though θ → 0, the fact that ℓ → ℓ∗ < ∞
implies (by Lemma 5) that Im(seiφ)/ sin θ remains bounded away from
0 and ∞. As a result, the forms gdh and (1/g)dh remain finite and
well-defined, and under these conditions (as noted in Lemma 3), it is
impossible for α to degenerate.
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Figure 20. Γ′
2 on the (1/g)dh flat structure

Consider Ext−(Γ2) for the case (ℓ, θ, α) → (ℓ∗, 0, π/2), where, again,
Γ2 denotes the homology class of the diagonal joining 1 and eiφ which,
as we have already noted, develops to the horizontal line of symmetry
for both flat structures. Using the (1/g)dh flat structure, one finds that

Figure 21. Ext−(Γ2) remains positive and finite

this Extremal Length remains bounded away from 0 and ∞, as depicted
in Figure 21. Hence, φ cannot degenerate when (ℓ, θ, α) → (ℓ∗, 0, π/2).

Now suppose (ℓ, θ, α) → (ℓ∗, 0, 0) First we observe that Ext+(Γ2) →
0. This is accomplished by using the subset Γ′

2 ⊂ Γ2 depicted in Fig-
ure 22. Curves in this subset are symmetric, which is why we have
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Figure 22. The set of curves Γ′
2 ⊂ Γ2

depicted them on only one quarter of the structure. Moreover, on this
quarter, these curves join the gdh geodesic joining 0 to ω1 to the vertical
line of symmetry, and they are not allowed to touch any other edge. We
conclude that, if φ degenerates, then φ → 0. In this scenario, it is again
true that Ext−(Γ̃) → 0, which implies that the punctures a1 and a2 are
coming together, even after rescaling the torus by csc(φ/2).

Figure 23. A curve in Γ∗

We now use the set Γ∗, given by curves enclosing a1 and a3 that en-
close no other punctures or half-period points, and that are not allowed
to cross any diagonal. Such a curve is depicted in Figure 23.

After rescaling the torus, we observe that Ext0(Γ
∗) → ∞ either be-

cause the rescaled punctures tend infinitely far from each other, or be-
cause they limit on a diagonal; Figure 24 depicts how such a curve
becomes “pinched.”

Figure 24. Piece of a curve γ∗ ∈ Γ∗ getting pinched
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However, Ext+(Γ
∗) remains bounded away from infinity, since we may

restrict to the subset of curves in the gdh flat structure depicted in
Figure 25. Again, a curve in this subset is assumed to be symmetric
and is only allowed to join the indicated edges (without intersecting
any other edge).

Figure 25. Subset of Γ∗ with finite extremal length

Hence, φ cannot degenerate, which leaves the triple (ℓ∗, 0, α∗) as a
limit. This triple can correspond to two possible flat structures, though,
depending on whether the quantity sec θ − 2ℓ cosα tends to 0 or some-
thing finite. If this quantity does vanish, it is easy to produce a con-
tradiction. Specifically, Ext+(Γ2) → 0 while Ext−(Γ2) → δ > 0. The
former is made clear by restricting Γ2 to the subset of curves depicted
in Figure 26.

Figure 26. Subset of Γ2

The latter is also clear via the following depiction of how (1/g)dh
degenerates. Every γ ∈ Γ2 must join two ℓ-segments in the flat struc-
ture, as depicted below in Figure 27; the curves are only allowed to
join the indicated edges without making contact with any other edges.
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Also, these curves may wander more so than in the curve depicted in
Figure 27.

Figure 27. Darkly shaded region carries Euclidean metric

We equip the resulting structure with the Euclidean metric on the
darkly shaded region, as was done in a previous example. More precisely,
let D∗ denote this symmetric, darkly shaded region; as a set in E

2, one
quarter of D∗ is the polygonal region whose vertices coincide with the
set

{(0, 0), (0, δ + ℓ sinα), (2ℓ cosαπ/4 · sec θ, 0), (ℓ cosα+ π/4 · sec θ, ℓ sinα),

(δ + ℓ sinα, ℓ cosα+ π/4 · sec θ + δ tanα)}

where δ is an arbitrary but fixed positive constant.
D∗ is obtained by reflecting this set across the real and imaginary

axes and then intersecting with the (1/g)dh flat structure. Using the
Euclidean metric on D∗,

ρ(z) =

{

1 if z ∈ D∗

0 if z /∈ D∗

it is clear that every such γ has ρ-length bounded away from 0, and that
the ρ-area of the structure remains finite. Hence, the extremal length
remains bounded away from zero. We are forced to conclude that the
gdh flat structure limits on (ℓ∗, 0, α∗) with 1 − 2ℓ∗ cosα∗ > 0. We first
cut and re-assemble the gdh flat structure as depicted in Figure 28.

We now let the structure degenerate, fixing the point in Figure 28 la-
beled p. What results is the gdh flat-structure for the genus one helicoid
on its side, as depicted in Figure 29.

In order to finish the proof, we need to verify that this gdh flat struc-
ture implies that our limit surface S(1, 0) has helicoidal ends. This cer-
tainly is believable, as the limiting flat structure is similar to the gdh
flat structure for H(0).

As evidenced by this limiting flat structure, the form gdh did not
degenerate, and so the same is true for the form (1/g)dh. As a con-

sequence, the form dh = (gdh · (1/g)dh)1/2 did not degenerate, either.
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p

p

Figure 28. Reassembled gdh flat structure

Figure 29. Limiting gdh flat structure

Because dh(φ, θ, t) is given by

dh =
℘(a1)− ℘(a2)

8 sin θ cos θ
·

d℘

(℘− ℘(a1))(℘− ℘(a2))
,

as θ → 0 and a1 → a2, the quotient (℘(a1) − ℘(a2))/(8 sin θ cos θ)
necessarily tends to a finite value. This produces a well-defined, non-
degenerate 1-form for the limiting height differential, which we notate
as dhH:

dhH(1) = dh(φ∗, 0, t∗) = k · ie−iφ ·
d℘

(℘− ℘(a1))2

where k ∈ R. We similarly use the notation gH(1) to denote the Guass
map for this limiting surface.

Consider the form dz1 = dz1(φ, θ, t), which is given by

dz1 =
1

2

(

dh

g
= gdh

)

.

This form will play the role of the height differential for the upright,
genus one helicoid when θ → 0. That is, dz1 develops two simple poles
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with purely imaginary residue at the punctures a1 and a3 at θ = 0. The
gauss map will take on the values gH(1)(a1) = 1 and gH(1)(a3) = −1 at
the points a1 and a3, points where dhH(1) has double poles (and zero
residue).

We need to establish two things: first, that the Gauss map is not
branched over the values ±1 and second, that dz1 has purely imaginary
residues at the punctures a1, a3 when θ = 0. We accomplish both by
computing the residues of dz1 at the punctures a1 and a2 for each surface
S(1, 2θ) and then taking a limit as θ → 0. If we let γ denote a loop
enclosing both punctures a1 and a2, then we find

R(θ) =

∫

γ
dz1 =

i

4
sec θ

lim
θ→0

R(θ) =
i

4
.

Similarly, near the puncture a3 the form dz1 has residue −i/4.
Because the surface we have produced should be the singly periodic

genus one helicoid “on its side,” we use the adjusted Gauss map

G(z) =
1− gH(1)(z)

1 + gH(1)(z)

and focus attention on the data (G, dz1); this data is used to produce
an immersed surface in R that, near the punctures ai, is asymptotic to
the upright (singly periodic) genus zero helicoid. The map is, as usual,
given by

z 7→ Re

∫ z

·

(

1

2

(

1

G
−G

)

dz1,
i

2

(

1

G
+G

)

dz1, dz1

)

=: Re(φ1, φ2, φ3)

To verify the asymptotics, we examine this data near the puncture a1
(the puncture a3 is handled via symmetry).

Near a1 one can show that φi are given by

φ1(z) = −kie−iφ ·
h−2

z − a1
+O(z − a1)

= −kieiφ/2|h−2| ·
1

z − a1
+O(z − a1)

φ2(z) = ke−iφ · h−2
1

z − a1
+O(z − a1)

= keiφ/2|h−2| ·
1

z − a1
+O(z − a1)

φ3(z) =
1

2
kie−iφ · h−2c1 log(z − a1) +O(z − a1)

= ±
1

2
k|h−2| · |c1| · i log(z − a1) +O(z − a1)
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where for each expression we have chosen the constant of integration
so that the holomorphic parts of each φi(z) vanish at z = ai, and that
e−iφ · h−2 · c1 ∈ R.

Shifting our coordinate z so that a1 corresponds to the origin, we find

φ1 ∼ −
kieiφ/2|h−2|

z

φ2 ∼
keiφ/2|h−2|

z

φ3 ∼ ±
1

2
k|h−2| · i|c1| log(z − a1).

Using polar coordinates for z = reiα, the triple Re(φ1, φ2, φ3) is therefore
asymptotic to

Re(φ1, φ2, φ3) ∼ k|h−2|

(

sin(φ/2− α)

r
,
cos(φ/2 − α)

r
,∓|c1|α

)

proving the existence of helicoidal ends.
Combined with [3], this is enough to establish our limit as the singly

periodic, genus one helicoid. q.e.d.

5.6. Embeddedness. We are now in a position to prove the main the-
orem. All that is left to establish is that the surfaces S(1, 2θ) are em-
bedded.

Proposition 9. For every θ, the surface S(1, 2θ) is embedded.

Proof. Let T = {θ ∈ (0, π/4] : S(1, 2θ) is embedded}; we will now
demonstrate that T is non-empty, open, and closed. Connectivity of the
interval (0, π/4] then implies that T = (0, π/4].

Karcher [14] proved that S(1, π/2) is embedded. Later, Weber-Wolf
[27] proved that for any g ≥ 1 the surfaces S(g, π/2) are embedded.
Hence, π/4 ∈ T ⇒ T 6= Ø.

We now show that T is open. Instead of working with the doubly
periodic surfaces S(1, 2θ), we will work with a fundamental domain
S(1, 2θ) := S(1, 2θ)/Λ where Λ is the 2-dimensional lattice generated
by the two (period) vectors

~v1 =
π

2
(sec θ,− csc θ, 0)

~v2 =
π

2
(sec θ, csc θ, 0)

Let T denote the set of θ for which S(1, 2θ) is embedded. Since S(1, 2θ)
is embedded ⇐⇒ S(1, 2θ) is embedded, we have that T = T , and so it
suffices to show that T is both open and closed.

Let θ0 ∈ T . After translating and rotating the surface S(1, 2θ0), we
can assume that a neighborhood of the puncture a1 is asymptotic to
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the vertical plane Π1 defined below and, similarly, that a neighborhood
of the puncture a3 is asymptotic to the vertical plane Π3, obtained by
shifting Π1 a distance d along the x1-axis.

Π1 = {(x, x · tan θ, z) : x, z ∈ R}

Π3 = {(x+ d, x · tan θ, z) : x, z ∈ R}

The quantity d is given by

d(φ, θ, t) =

(

(
∫ a1

a3

dx1

)2

+

(
∫ a1

a3

dx2

)2
)1/2

where, for instance, the path of integration can be taken as the union of
the straight lines joining a1 and a3 to ω3, the center of the underlying
torus.

Let B(r) denote the ball of radius r

B(r) = {(x, y, z) : x2 + y2 + z2 ≤ r2}

and let B1 and B2 denote its upper and lower hemispheres, respectively.
Since d is continuous in (φ, θ, t) and, by assumption, d(φ0, θ0, t0) >
0, this distance d remains positive for θ near θ0, so that d ≥ η > 0
for some fixed constant η, for all θ near θ0. Hence, the corresponding
surfaces S(1, 2θ) ∩

(

R
3 −B1(r)

)

are asymptotic to two vertical planes
(Π1 and Π3) separated by a distance of at least η > 0. For large, fixed
r and θ near θ0,

(

S(1, 2θ) ∩
(

R
3 −B1(r)

))

consists of two components
separated by a distance of δ > 0, for some fixed δ. By symmetry, the
same is true in the complement of the lower hemisphere B2(r).

Hence, the minimal surfaces S(1, 2θ)∩
(

R
3 −B(r)

)

remain embedded
for θ near θ0. Because our curvature is uniformly bounded, continuity
implies that the compact surfaces S(1, 2θ) ∩B(r) remain embedded for
θ near θ0, demonstrating that T = T is open.

A standard application of the maximum principle implies that T is
closed. q.e.d.

Appendix A. Proof of Theorem 3

Using the notation

F̂ (φ, θ, t) = t2B(s(φ, θ, t)) + 4e2iφC(s(φ, θ, t))

B(s) =

∫ 1

0

℘− e3
(℘− s)(℘− s̄e−2iφ)

dz

C(s) =

∫ 1

0

∏

(℘− ei)

(℘− s)(℘− se2iφ)
dz̄

Re(F̂ ) = R = t2ReB + 4cos 2φ (ReC)− 4 sin 2φ (ImC)
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Im(F̂ ) = I = t2ImB + 4 sin 2φ (ReC) + 4 cos 2φ (ImC)

s(φ, θ, t) = u(φ, θ, t) + iv(φ, θ, t)

we derive explicit expressions that allow us to show detDF̂ 6= 0 at p.
First we differentiate R and I with respect to θ and t to obtain

∂R

∂t

∣

∣

∣

p
= 2t (ReB(s)) + t2

(

∂ReB

∂u

∂u

∂t
+

∂ReB

∂v

∂v

∂t

)

− 4

(

∂ReC

∂u

∂u

∂t
+

∂ReC

∂v

∂v

∂t

)

∂I

∂t

∣

∣

∣

p
= 2t (ImB(s)) + t2

(

∂ImB

∂u

∂u

∂t
+

∂ImB

∂v

∂v

∂t

)

− 4

(

∂ImC

∂u

∂u

∂t
+

∂ImC

∂v

∂v

∂t

)

∂R

∂θ

∣

∣

∣

p
= t2

(

∂ReB

∂u

∂u

∂θ
+

∂ReB

∂v

∂v

∂θ

)

− 4

(

∂ReC

∂u

∂u

∂θ
+

∂ReC

∂v

∂v

∂θ

)

∂I

∂θ

∣

∣

∣

p
= t2

(

∂ImB

∂u

∂u

∂θ
+

∂ImB

∂v

∂v

∂θ

)

− 4

(

∂ImC

∂u

∂u

∂θ
+

∂ImC

∂v

∂v

∂θ

)

.

All of the expressions on the right side of the equal signs are evaluated
at p. Note that many terms vanish because φ0 = π/2. Now let us collect
expressions for the derivative of s with respect to t and θ. Using the
equation relating φ, θ, t and s we find

4e2iθeiφ
(

∂s

∂t
(s− e2) + (s− e1)

∂s

∂t

)

= 2t(s − e3) + t2
∂s

∂t

At the point (φ, θ, s, t) = (π/2, π/4, t0 , s0) this expression simplifies a
great deal:

−
∂s

∂t
8s0 = 2t0s0 + t20

∂s

∂t

∂s

∂t
= −

2t0s0
t20 + 8s0

∈ R
−.(21)

Similarly, we compute the partial with respect to θ and evaluate at
(π/2, π/4, t0, s0):

8ie2iθeiφ(s− e1)(s − e2) + 4e2iθeiφ
(

∂s

∂θ
(s− e2) +

∂s

∂θ
(s− e1)

)

= t2
∂s

∂θ

8i(e21 − s20)− 8s0
∂s

∂θ
= t20

∂s

∂θ

∂s

∂θ
=

8i(e21 − s20)

t20 + 8s0
∈ iR+.(22)
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Because the partials st and sθ are, respectively, purely real and imag-
inary, our expression for the partials of the real and imaginary parts of
F̂ are nicely simplified. This follows from

∂s

∂t
=

∂u

∂t
, 0 =

∂v

∂t
(23)

∂s

∂θ
= i

∂v

∂θ
, 0 =

∂u

∂θ
.(24)

Also, the partial It is simplified as, at this point, the imaginary parts
of B(s) and C(s) are both zero. These observations yield the following
equations

∂R

∂t

∣

∣

∣

φ=π/2
= 2tReB(s) + t2

∂ReB

∂u

∂u

∂t
− 4

∂ReC

∂u

∂u

∂t

∂I

∂t

∣

∣

∣

φ=π/2
= t2

∂ImB

∂u

∂u

∂t
− 4

∂ImC

∂u

∂u

∂t

∂R

∂θ

∣

∣

∣

φ=π/2
= t2

∂ReB

∂v

∂v

∂θ
− 4

∂ReC

∂v

∂v

∂θ

∂I

∂θ

∣

∣

∣

φ=π/2
= t2

∂ImB

∂v

∂v

∂θ
− 4

∂ImC

∂v

∂v

∂θ
.

We now differentiate B and C, each with respect to t and θ. To
facilitate this process we first express the function B(s) in terms of the
real and imaginary parts of s = u+ iv:

B(s) = B(u, v) =

∫ 1

0

℘− e3
(℘− s)(℘− s̄e−2iφ)

dx

=

∫ 1

0

℘− e3
℘2 − ℘ (s̄e−2iφ + s) + e−2iφ|s|2

dx

=

∫ 1

0

℘− e3
℘2 − 2℘e−iφ(u cosφ− v sinφ) + e−2iφ (u2 + v2)

∂B

∂u
= −

∫ 1

0

(

2ue−2iφ − 2℘e−iφ cosφ
)

(℘− e3)

(℘2 − 2℘e−iφ(u cosφ− v sinφ) + e−2iφ (u2 + v2))
2
dx

∂B

∂v
= −

∫ 1

0

(

2ve−2iφ + 2℘e−iφ sinφ
)

(℘− e3)

(℘2 − 2℘e−iφ(u cosφ− v sinφ) + e−2iφ (u2 + v2))
2
dx.
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Evaluated at the point p—where, it bears reminding, the parameter
s0 = u0 + iv0 = (u0, v0) = (u0, 0)—these partials become

∂B

∂u

∣

∣

∣

p
= 2s0

∫ 1

0

℘

(℘2 − s20)
2
dx ∈ R

+(25)

∂B

∂v

∣

∣

∣

p
= 2i

∫ 1

0

℘2

(℘2 − s20)
2
dx ∈ iR+(26)

A similar series of computations is carried out for the function C(s):

C(s) = C(u, v) =

∫ 1

0

(
∏

℘− ei)
(

℘2 − 2℘eiφ(u cosφ− v sinφ) + e2iφ(u2 + v2)
)dx

∂C

∂u
= −

∫ 1

0

(

2ue2iφ − 2℘eiφ cosφ
)

(
∏

℘− ei)
(

℘2 − 2℘eiφ(u cosφ− v sinφ) + e2iφ(u2 + v2)
)2

dx

∂C

∂v
= −

∫ 1

0

(

2ve2iφ + 2℘eiφ sinφ
)

(
∏

℘− ei)
(

℘2 − 2℘eiφ(u cosφ− v sinφ) + e2iφ(u2v2)
)2

dx

Evaluating these expressions at p yields

∂C

∂u

∣

∣

∣

p
= 2s0

∫ 1

0

℘2 − e21
(

℘2 − s20
)2dx ∈ R

+(27)

∂C

∂v

∣

∣

∣

p
= −2i

∫ 1

0
℘

℘2 − e21
(℘2 − s20)

2
dx ∈ iR−.(28)

With this information we can simplify the partials of R and I even
further. Because taking real and imaginary parts commutes with partial
differentiation (of real variables), we find that the imaginary parts of Bu

and Cu along with the real parts of Bv and Cv are all zero. This leaves

∂R

∂t

∣

∣

∣

p
= 2t0B(s0) +

∂u

∂t

(

t20
∂B

∂u
− 4

∂C

∂u

)

∂I

∂t

∣

∣

∣

p
= 0

∂R

∂θ

∣

∣

∣

p
= 0

∂I

∂θ

∣

∣

∣

p
=

∂v

∂θ

1

i

(

t20
∂B

∂v
− 4

∂C

∂v

)
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The differential of our function F̂ at the point p therefore has deter-
minant given by Rt · Iθ. Equations (22), (24), (26), and (28) imply that
the above expression for Iθ(p) > 0. We now focus our efforts on proving
that Rt(p) 6= 0.

∂R

∂t

∣

∣

∣

p
= 2t0B(s0) + t20

∂u

∂t

(

∂B

∂u
−

4

t20
·
∂C

∂u

)

= t0

(

2B(s0) + t0
∂u

∂t

(

∂B

∂u
−

4

t20
·
∂C

∂u

))

= t0

(

B(s0)− t0 ·
2t0s0

t20 + 8s0

(

∂B

∂u
−

4

t20
·
∂C

∂u

))

We now use the relations

t20 =
4(e21 − s20)

s0

t20 + 8s0 =
4(e21 + s20)

s0

to rewrite our expression for Rt. We have

∂R

∂t

∣

∣

∣

p
= t0

(

2B(s0)− 2s0 ·
e21 − s20
e21 + s20

(

∂B

∂u
−

4

t20
·
∂C

∂u

))

= 2t0

(

B(s0)− s0 ·
e21 − s20
e21 + s20

(

∂B

∂u
−

s0
e21 − s20

∂C

∂u

))

= 2t0

(

B(s0)−

(

s0 ·
e21 − s20
e21 + s20

·
∂B

∂u
−

s20
e21 + s20

·
∂C

∂u

))

The second term in the parentheses can be bounded above by B(s0).
This follows directly from writing out this second term:

s0 ·
e21 − s20
e21 + s20

·
∂B

∂u
−

s20
e21 + s20

·
∂C

∂u

= 2s20 ·
e21 − s20
e21 + s20

∫ 1

0

℘

(℘2 − s20)
2
dx+

2s30
e21 + s20

∫ 1

0

e21 − ℘2

(℘2 − s20)
2
dx

=
2s20

e21 + s20

(

(e21 − s20)

∫ 1

0

℘

(℘2 − s20)
2
dx+ s0

∫ 1

0

e21 − ℘2

(℘2 − s20)
2
dx

)

=
2s20

e21 + s20

(
∫ 1

0

e21℘− s20℘+ s0e
2
1 − s0℘

2

(℘2 − s20)
2

dx

)

The numerator in the final term is easy to bound. Recall that 0 < s0 <
e1 < ℘ along the path of integration. We therefore bound

s0e
2
1 − s0℘

2 < s0e
2
1 − s0e

2
1 = 0
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so that the numerator is bounded by e21℘−s20℘ = (e21−s20)℘. In addition,
we have

1

℘2 − s20
<

1

e21 − s20

from which we conclude that the above expression is bounded above by

2s20
e21 + s20

∫ 1

0

℘(e21 − s20)

(℘2 − s20)(e
2
1 − s20)

dx =
2s20

e21 + s20

∫ 1

0

℘

℘2 − s20
dx

Finally, the coefficient in front of the integral is easily bounded by 1
since

e21 + s20 > s20 + s20 = 2s20.

All together, this implies

(

s0 ·
e21 − s20
e21 + s20

·
∂B

∂u
−

s20
e21 + s20

·
∂C

∂u

)

<

∫ 1

0

℘

℘2 − s20
dx = B(s0).

This shows that Rt(p) > 0. Combined with the fact that Iθ(p) > 0 we

find that detDF̂(θ,t)(p) > 0, as claimed. q.e.d.

Appendix B. Proof of Proposition 7

Proposition 7 The function s(φ, θ, t) is analytic in P.

Proof. From the equation relating s to the variables φ, θ, and t we
have that s(φ, θ, t) is given by

−
(

4e2iθeiφe3 − t2
)

±

√

(4e2iθeiφe3 − t2)
2
− 16e2iθeiφ (4e2iθeiφe1e2 + t2e3)

8e2iθeiφ

This will depend analytically on θ, φ, and t provided the discriminant
does not vanish. Observe that on the square torus, this expression be-
comes

1

8

(

√

t40 + 64e21 − t20

)

For an arbitrary choice of (φ, θ, t) ∈ P, the discriminant vanishes if
and only if

t4 − 24e2iθeiφe3t
2 + 16e4iθe2iφ(e23 − e1e2) = 0

t4 − 48e2iθRe
(

eiφe1

)

t2 + 16e4iθe2iφ
(

e21 + e1e2 + e22
)

= 0

t4 − 48e2iθRe
(

eiφe1

)

t2 + 16e4iθ
(

2Re
(

e2iφe21

)

+ |e1|
2
)

= 0
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From this we can solve for t2, which will be given by

48e2iθRe
(

eiφe1
)

±
√

482e4iθRe (eiφe1)
2
− 64e4iθ

(

2Re
(

e2iφe21
)

+ |e1|2
)

2

=
e2iθ

2

(

Re
(

eiφe1

)

±

√

482Re (eiφe1)
2
− 64

(

2Re
(

e2iφe21
)

+ |e1|2
)

)

We now analyze the expression in the radical above. The first term is
clearly positive, and we next argue that the second term is positive as
well. First, when φ = π/2 the second term is 64(−e21) < 0. If this term
ever vanishes for some value of φ we would have

2Re
(

(eiφe1)
2
)

= −|e1|
2 = −|eiφe1|

2

2(u2 − v2) = −u2 − v2

3u2 = 0

where we have notated eiφe1 = u+ iv. In particular, this term vanishes
if and only if eiφe1 is purely imaginary. However, this would imply

e1 = ρie−iφ ⇒ e2 = e−2iφe1 = −e1

⇒ 0 = e1 + e2 = −e3 ⇒ φ = π/2

which is a contradiction. Therefore, this term never changes sign, no
matter the value of φ. As a consequence, the expression in the radical
is a non-negative real number, and so we have that t2 = e2iθK for some
K ∈ R. This is only possible if θ = 0, θ = π/2, or K and hence t2 = 0.
Of course, this only happens on the boundary of P, not in the interior,
which finishes the proof. q.e.d.
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