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TOPOLOGICAL CENSORSHIP FROM THE

INITIAL DATA POINT OF VIEW

Michael Eichmair, Gregory J. Galloway & Daniel Pollack

Abstract

We introduce a natural generalization of marginally outer
trapped surfaces, called immersed marginally outer trapped sur-
faces, and prove that three-dimensional asymptotically flat ini-
tial data sets either contain such surfaces or are diffeomorphic to
R

3. We establish a generalization of the Penrose singularity the-
orem which shows that the presence of an immersed marginally
outer trapped surface generically implies the null geodesic incom-
pleteness of any spacetime that satisfies the null energy condi-
tion and which admits a non-compact Cauchy surface. Taken to-
gether, these results can be viewed as an initial data version of the
Gannon-Lee singularity theorem. The first result is a non-time-
symmetric version of a theorem of Meeks-Simon-Yau which implies
that every asymptotically flat Riemannian 3-manifold that is not
diffeomorphic to R

3 contains an embedded stable minimal sur-
face. We also obtain an initial data version of the spacetime prin-
ciple of topological censorship. Under physically natural assump-
tions, a 3-dimensional asymptotically flat initial data set with
marginally outer trapped boundary and no immersed marginally
outer trapped surfaces in its interior is diffeomorphic to R

3 minus
a finite number of open balls. An extension to higher dimensions
is also discussed.

1. Introduction

Topological censorship is a basic principle of spacetime physics. It
is a set of results, beginning with the topological censorship theorem
of Friedman, Schleich, and Witt [18], that establishes the topologi-
cal simplicity on the fundamental group level of the domain of outer
communications (the region outside all black holes and white holes of
a spacetime) in a variety of physically natural circumstances; see e.g.
[18, 19, 21, 12]. Topological censorship has played an important role in
black hole uniqueness theorems. In particular, it has been used to deter-
mine the topology of black holes in 3 + 1 dimensions; see e.g. [11, 21].
An important precursor to the principle of topological censorship is
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the Gannon-Lee singularity theorem [23, 31]. All these results involve
conditions that are global in time, such as global hyperbolicity or the
existence of a regular past and future null infinity. As such, they are
spacetime results. It is a natural and inherently difficult question to
determine whether a given initial data set gives rise to a spacetime that
satisfies these conditions.

In this paper we separate out the issue of global evolution and obtain
a pure initial data version of topological censorship.

A brief review of topological censorship, including the result of Gan-
non and Lee, will be given in Section 2. In Section 3 we take up the ques-
tion of what exactly constitutes an initial data singularity theorem. We
derive a generalization of the Penrose singularity theorem. The discus-
sion leads to the notion of immersed marginally outer trapped surfaces.
In Section 4 we present our initial data version of the Gannon-Lee sin-
gularity theorem. This result may be viewed as a non-time-symmetric
version of results of Meeks-Simon-Yau [32]. The proof relies on recent
existence results for marginally outer trapped surfaces; see [1] and refer-
ences therein. In Section 5 we formulate and prove an initial data version
of topological censorship for 3-dimensional initial data sets. The final
section establishes a related initial data result in higher dimensions. Re-
sults of a similar flavor and related to topological obstructions to finding
entire solutions of Jang’s equation have been considered in [40].

Our terminology follows that of [36]. We emphasize that our space-
times, Cauchy surfaces, etc. are smooth unless specified otherwise.
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2. A brief review of topological censorship

We expect that nontrivial topological structures such as throats join-
ing different universes pinch off and form singularities. This intuitive
idea has been captured in the following theorem proved independently
by Gannon [23] and Lee [31]:

Theorem 2.1 ([23, 31]). Let (M,g) be a globally hyperbolic space-
time which satisfies the null energy condition, Ric(X,X) ≥ 0 for all
null vectors X, and which contains a Cauchy surface V that is regular
near infinity. If V is not simply connected, then (M,g) is future null
geodesically incomplete.
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Regularity near infinity is a mild asymptotic flatness condition. Thus,
under suitable curvature and causality conditions, a nontrivial funda-
mental group entails the formation of singularities, as indicated by the
future null geodesic incompleteness.

The notion of topological censorship may then be described as fol-
lows. As the Gannon-Lee theorem suggests, nontrivial topology tends to
induce gravitational collapse. According to the weak cosmic censorship
conjecture, the process of gravitational collapse leads to the formation of
an event horizon which shields the singularities from view. As a result,
we expect that nontrivial topology is hidden behind the event horizon.
The domain of outer communications should have simple topology.

This notion was formalized by the topological censorship theorem of
Friedman, Schleich, and Witt [18]. Their theorem applies to asymptot-
ically flat spacetimes, i.e. spacetimes admitting a regular null infinity
(conformal completion) I = I + ∪ I −, I ± ≈ R × S

2, and such that
I admits a simply connected neighborhood U .

Theorem 2.2 ([18]). Let (M,g) be a globally hyperbolic asymptoti-
cally flat spacetime that satisfies the null energy condition and such that
I admits a simply connected neighborhood U . Then every causal curve
from I − to I + can be deformed with endpoints fixed to a curve lying
in U .

In physical terms the conclusion asserts that observers traveling from
I − to I + are unable to probe any nontrivial topology.

The domain of outer communications is the region D = I−(I +) ∩
I+(I −). The topological censorship theorem of Friedman, Schleich,
and Witt is really a statement about the domain of outer communi-
cations, since any causal curve from I − to I + is contained in D.
Strictly speaking, their theorem does not give any direct information
about the topology of the domain of outer communications, because it
is a statement about causal curves, rather than arbitrary curves. How-
ever, in [13], Chruściel and Wald used the Friedman-Schleich-Witt re-
sult to prove that for stationary (i.e. steady state) black hole spacetimes,
the domain of outer communications is simply connected, see also [28].
Subsequent to the work of Chruściel and Wald [13], the second-named
author was able to show that the simple connectivity of the domain of
outer communications holds in general:

Theorem 2.3 ([19]). Let (M,g) be an asymptotically flat spacetime
such that a neighborhood of I = I +∪I − is simply connected. Suppose
that the domain of outer communications D = I−(I +) ∩ I+(I −) is
globally hyperbolic and satisfies the null energy condition. Then D is
simply connected.
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While the proof of Theorem 2.3 makes use of the Friedman-Schleich-
Witt result, the conclusion is actually stronger. Thus, in the asymptot-
ically flat setting, topological censorship can be taken as the statement
that the domain of outer communications is simply connected. Topo-
logical censorship has been extended in various directions, for example
to the setting of asymptotically locally anti–de Sitter spacetimes [21],
and more recently to Kaluza-Klein spacetimes [12].

3. Initial data singularity theorems

What is an initial data singularity theorem? In view of the Penrose
singularity theorem, any result that proves the existence of trapped
surfaces in initial data would qualify.

We recall some basic definitions. Let (M,g) be a 4-dimensional time-
oriented Lorentzian manifold, henceforth referred to as a spacetime. Let
(V, h,K) be an initial data set for (M,g), that is, a spacelike hypersur-
face V of M with induced Euclidean metric h and second fundamental
form K. Let u denote the future pointing timelike normal to V in M .
Let Σ be a closed embedded two-sided surface in V . Then Σ admits a
smooth unit normal field ν in V that is unique up to sign. We will refer
to our choice of ν as the outward pointing unit normal. Then ℓ+ = u+ν
and ℓ− = u − ν are, respectively, the future directed outward and in-
ward null normal vector fields of Σ as a submanifold of M . Tracing
the null second fundamental forms χ± associated to the null normals
ℓ±, one obtains the null expansion scalars (or null mean curvatures)
θ± = trχ± = divΣ ℓ±. Note that θ± = trΣK ±H, where H is the mean
curvature scalar of Σ in V with respect to ν. Our sign convention for
H here is such that H is the tangential divergence of ν in Σ ⊂ V .

In a region of spacetime where the gravitational field is strong, it can
happen that θ− < 0 and θ+ < 0 along Σ. If this is the case, Σ is called
a trapped surface. Focusing attention on the outward null normal only,
Σ is said to be an outer trapped surface if θ+ < 0, and is said to be a
marginally outer trapped surface (MOTS) if θ+ vanishes identically.

The significance of trapped surfaces stems from their prominent role
in Penrose’s celebrated singularity theorem.

Theorem 3.1 (Penrose singularity theorem, cf. [25, Section 8.2]).
Let (M,g) be a spacetime. Assume that

(i) M admits a non-compact Cauchy surface V ;
(ii) M obeys the null energy condition;
(iii) V contains a trapped surface Σ.

Then at least one of the future directed null normal geodesics emanating
from Σ is incomplete.
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Beig and Ó Murchadha [6] have given criteria for vacuum initial data
sets to contain a trapped surface. In view of Theorem 3.1, we regard
their result as an initial data singularity theorem.

Schoen and Yau [42] have given geometric conditions that imply the
existence of a MOTS in an initial data set. Roughly, if enough matter
is packed into a small enough region, then a MOTS must be present.
Should conditions on an initial data set that imply the existence of a
MOTS be regarded as an initial data singularity result? In view of our
next result, a variant of the Penrose singularity theorem that applies
to marginally outer trapped surfaces rather than trapped surfaces, the
answer is yes. Related versions of the Penrose singularity theorem that
apply to separating outer trapped surfaces have been considered in [24,
43, 2]. Our proof is a variation of Penrose’s original argument.

Theorem 3.2. Let (M,g) be a spacetime. Suppose that the following
conditions are satisfied:

(i) M admits a non-compact Cauchy surface V .
(ii) M obeys the null energy condition.
(iii) V contains a MOTS Σ.
(iv) The generic condition holds on each future and past inextendible

null geodesic η normal to Σ.1

Then at least one of the null geodesics normal to Σ is future or past
incomplete.

Proof. We may assume that Σ is connected.
Assume that Σ separates V . Let V \ Σ = U ∪ W where U,W ⊂ V

are disjoint and open and where the closure of U is non-compact. By
taking the time dual of M if necessary, we may assume that Σ satisfies
θ+ = 0 with respect to the null normal ℓ+ = u + ν where ν is the unit
normal field of Σ in V that points toward U .

Consider the achronal boundary ∂J+(W ). Then H := ∂J+(W ) \W
is a C0 achronal hypersurface with boundary Σ. It is generated by null
geodesics orthogonal to Σ with initial tangents given by ℓ+. (We refer
the reader to [36] for a thorough treatment of achronal boundaries.) A
standard argument using the integral curves of a global timelike vector
field to construct a continuous injective map from H into U shows that
H is non-compact.

One may now argue as in [17, Theorem 5.2] to obtain an affinely
parametrized future inextendible null geodesic generator η : [0, a) → M ,
a ∈ (0,∞], of H such that η(0) = p ∈ Σ and η′(0) = ℓ+(p). Since H
is achronal, there are no focal cut points to Σ along η. It follows that

1The generic condition asks that there be a point p on each null geodesic η as
in the statement of the theorem and a vector X at p orthogonal to η′ such that
R(X, η′, η′, X) 6= 0. Put differently, we ask that there be a non-zero tidal acceleration
somewhere along η. See Theorem 2 in Section 8.2 of [25] and Lemma 2.9 of [4].
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η is contained in a smooth null hypersurface N ⊂ H generated by null
geodesics emanating from Σ near p with initial tangents given by ℓ+; cf.
Section 6 in [29].

Suppose that η is future complete, i.e., that a = ∞. For each t ≥ 0,
consider the null Weingarten map b = b(t) of N at η(t) with respect to
η′(t); cf. e.g. [20]. Then b = b(t) satisfies the Riccati-type equation

(3.1) b′ + b2 +R = 0,

where a dash denotes covariant differentiation, and where R encodes
the curvature values R(X, η′, η′, Y ) for X,Y orthogonal to η′. Tracing
(3.1), we obtain the Raychaudhuri equation

(3.2)
dθ

dt
= −Ric (η′, η′)− σ2 −

1

2
θ2 ,

where θ = trace b is the null mean curvature of N along η, and where σ
is the trace of the square of the trace-free part of b.

Since Σ is a MOTS, we have that θ(0) = 0. The null energy condition
shows that dθ

dt
≤ 0 for all t ≥ 0. Standard analysis shows that θ(t) →

−∞ in finite affine parameter time, unless θ = σ = 0 along η. In
the latter case, b vanishes along η, so that R also vanishes by (3.1).
This violates the generic condition. Thus η is future null geodesically
incomplete.

Assume now that Σ does not separate V . Then V \Σ is connected.
In view of Theorem 1.2 in [7], the spacetime (M,g) is isometric to

R×V with Lorentzian metric −φ2dt2+ht where φ is a smooth positive
function on R × V and where ht is a Riemannian metric on {t} × V .
Moreover, the Cauchy surface V corresponds to the horizontal cross-
section {0} × V under this isometry. Let p : Ṽ → V be a covering.

Consider the spacetime (M̃, g̃) with M̃ = R × Ṽ and g̃ = −φ̃2dt2 + h̃t
where φ̃(t, x) = φ(t, p(x)) and where h̃t = p∗ht. Clearly, Ṽ ∼= {0}× Ṽ is

a Cauchy surface for this spacetime and P : M̃ → M given by (t, x) 7→
(t, p(x)) is a covering map.

Since Σ is two-sided but does not separate V , we can make a cut along
Σ to obtain a connected manifold V ′ with two boundary components,
each isometric to Σ. Taking Z copies of V ′ and gluing these copies end-
to-end, we obtain a covering p : Ṽ → V of V . The inverse image p−1(Σ)

consists of Z copies of Σ, each one separating Ṽ . Let Σ0 denote one of
these copies. As per the comment above, we obtain a covering spacetime
M̃ with non-compact Cauchy surface Ṽ . The curvature assumptions on
M lift to M̃ . It follows from our earlier arguments that there exists a
null geodesic η0 normal to Σ0 that is future or past incomplete. The
projection of η0 under the covering map P is a past or future incomplete
null geodesic normal to Σ in M . q.e.d.



TOPOLOGICAL CENSORSHIP 395

Remark 3.3. Theorem 3.2 is false without the generic condition.
This can be seen in the example of the extended Schwarzschild solution
where every Cauchy surface intersects the event horizon in a MOTS
whose outward null normal geodesics are the generators of the future
horizon. These geodesics are known to be complete. The generic con-
dition fails along each such null geodesic. This rigidity is characteristic
in the setting of Theorem 3.2 when the generic condition fails while fu-
ture null geodesic completeness holds: One of the families of future or
past null geodesics emanating from the MOTS forms a totally geodesic
null hypersurface and the generic condition fails along all of the null
geodesics in this family; cf. Theorem 7.1 in the appendix. Thus, we
may still conclude null-geodesic incompleteness of the spacetime if we
weaken the hypotheses of Theorem 3.2 to only require that the generic
condition hold along one inward and one outward future pointing null
normal geodesic ray and one inward and one outward past pointing null
normal geodesic ray.

Our view of what should be considered an initial data singularity re-
sult must be taken one step further to accommodate other fundamental
examples. There is a more general type of object in an initial data set
that implies a Penrose-type singularity theorem, which we refer to as
an immersed MOTS.

Definition 3.4. Let (V, h,K) be an initial data set. A subset Σ ⊂ V
is called an immersed marginally outer trapped surface if there exists a
finite covering p : Ṽ → V of V and a closed marginally outer trapped
surface Σ̃ in (Ṽ , p∗h, p∗K) such that p(Σ̃) = Σ.

We say that Σ is a spherical (toroidal, etc.) immersed MOTS if Σ̃ is
spherical (toroidal, etc.).

Corollary 3.5. Theorem 3.2 remains valid when the condition that
V contain a MOTS is replaced by the condition that V contain an im-
mersed MOTS.

Proof. Let p : Ṽ → V be a cover of V and let Σ̃ ⊂ Ṽ be a MOTS in
(Ṽ , p∗h, p∗K). Let P : M̃ → M be the associated covering spacetime.
This spacetime satisfies the hypothesis of Theorem 3.2 relative to the
MOTS Σ̃ ⊂ Ṽ . Theorem 3.2 then asserts the existence of an incomplete
null geodesic normal to Σ̃. We then project this geodesic to M using
P . q.e.d.

The best known example of an immersed MOTS (that is not a MOTS)
occurs in the so-called RP

3 geon; see e.g. [18] for a detailed description.
The RP3 geon is a globally hyperbolic spacetime that is double covered
by the extended Schwarzschild spacetime. Its Cauchy surfaces have the
topology of a once punctured RP

3. The Cauchy surface that is covered
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by the t = 0 slice in the extended Schwarzschild spacetime contains a
projective plane Σ that is covered by the unique minimal sphere in the
Schwarzschild slice. Hence Σ is a spherical immersed MOTS.

An immersed MOTS does not cover an embedded submanifold in V
in general. To illustrate this point, we consider the following 2 + 1-
dimensional toy model of the RP

3 geon.
Consider the manifold M̃ = R

2 × S
1 with coordinates (t, y, θ) where

t, y ∈ R and θ ∈ R/2πZ and with Lorentzian metric g̃ = −dt2 + dy2 +

dθ2. The slice t = 0 is a Cauchy surface for the spacetime (M̃, g̃).
Geometrically, it is a flat cylinder. Let M be the manifold obtained
from M̃ by identifying points via the involution (y, θ) → (−y, θ+π). M

may be described as the subset {y ≥ 0} of M̃ , with the points (t, 0, θ)
and (t, 0, θ + π) in the timelike surface y = 0 identified. Since g̃ is
invariant under the involution, it descends to a flat Lorentzian metric g
on M . Hence (M̃, g̃) is a double covering of (M,g). The slice t = 0 in
M is a Cauchy surface for (M,g). It has the topology of a punctured

projective plane. We now perturb the slice t = 0 in M̃ . For a > 0
sufficiently small, the surface

S̃ = {(a sin(2θ), y, θ) : y ∈ R and θ ∈ R/2πZ} ⊂ M̃

is a Cauchy surface for (M̃, g̃). The intersection Σ̃ of S̃ with the null
hypersurface t = y is a circular MOTS, which may be viewed as a
perturbation of the MOTS at the intersection of t = 0 and t = y. Since
S̃ is invariant under the involution, it descends to a Cauchy surface S of
(M,g). Then Σ = p(Σ̃) is an immersed MOTS in S. It has transverse
self-intersections at the points (0, 0, 0) and (0, 0, π/4).

4. An initial data version of the Gannon-Lee singularity

theorem

Let (V, h,K) be an n-dimensional asymptotically flat initial data set.
This means that V is connected and that the complement of some com-
pact subset has finitely many components, each of which is diffeomor-
phic to R

n \ B1(0), and such that hij − δij and Kij decay suitably in
Euclidean coordinates. Decay conditions that ensure that large coordi-
nate spheres are null mean convex as in [15, (1)] are sufficient for our
applications.

Theorem 4.1. Let (V, h,K) be a 3-dimensional asymptotically flat
initial data set without boundary. If V is not diffeomorphic to R

3 then
V contains an immersed MOTS.

Theorem 3.2 and Theorem 4.1 together imply that a spacetime is
singular if it satisfies appropriate curvature conditions and if it contains
an asymptotically flat and topologically nontrivial Cauchy surface. We
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view Theorem 4.1 as an initial data version of the Gannon-Lee singu-
larity theorem (Theorem 2.1).

For time-symmetric data, MOTSs are the same as minimal surfaces.
In this special case, the conclusion of Theorem 4.1 follows from the
work of Meeks-Simon-Yau [32], who prove that an asymptotically flat
3-manifold that is not diffeomorphic to R

3 contains a stable minimal
sphere or projective plane.

Beig and Ó Murchadha [5], Miao [33], and Yan [45] have constructed
examples of asymptotically flat, scalar flat metrics on R3 that admit
stable minimal spheres. In particular, initial data may well contain
MOTSs and be diffeomorphic to R

3 at the same time.
In the proof of Theorem 4.1 we rely on the positive resolution of

the Poincaré and geometrization conjectures (see [37, 38, 39] and [8,
10, 30, 34, 35]), and on the work of Hempel [27] on the structure of
fundamental groups of closed three-manifolds. We are grateful to Ian
Agol for valuable correspondence on the underlying geometric group
theory.

The following existence result for closed MOTSs was proposed by R.
Schoen and is based on forcing a blow up of Jang’s equation and analysis
of the blow up set as in [41]. It was first proved by Andersson and
Metzger [3] in the 3-dimensional case and then by the first-named author
[14, 15] in general dimension (with small singular set in dimension n ≥
8) using different methods to force and control the blow up. The survey
article [1] contains an extensive overview of the techniques developed
in [41, 3, 14, 15], including a discussion of the geometric properties of
the MOTS whose existence is established.

Theorem 4.2 (Cf. Theorem 3.3 in [1]). Let (V, h,K) be an n-
dimensional initial data set where 3 ≤ n ≤ 7. Let W ⊂ V be a con-
nected compact n-dimensional submanifold with boundary. Assume that
its boundary ∂W can be expressed as a disjoint union of closed hyper-
surfaces ∂W = Σin∪Σout such that θ+ < 0 along Σin with respect to the
null normal whose projection points into W and such that θ+ > 0 along
Σout with respect to the null normal whose projection points out of W .
Then there exists a closed MOTS Σ in W that separates Σin from Σout.
This MOTS is almost minimizing.

Remark 4.3. Assume that the initial data set in Theorem 4.2 sat-
isfies the dominant energy condition. This means that µ ≥ |J | on V
where µ = 1

2
(R − |K|2 + (trace(K))2) and J = div(K − trace(K)h).

Then there exists a MOTS Σ ⊂ W as in the conclusion of the theorem
that admits a metric of positive scalar curvature. In particular, when
n = 3, there exists a spherical MOTS in W . To see this, note that the
induced metric on any closed stable MOTS is conformal to a metric of
non-negative constant scalar curvature by Theorem 2.1 in [22]. If the
dominant energy condition µ ≥ |J | is strict at any point on Σ, then



398 M. EICHMAIR, G. J. GALLOWAY & D. POLLACK

the induced metric is conformal to a metric of constant positive scalar
curvature. We can apply Theorem 18 in [16] to find a sequence of ini-
tial data (hi,Ki) on V converging to the original data (h,K) as i → ∞
and such that (V, hi,Ki) satisfies the strict dominant energy condition
µi > |Ji|. It follows that the MOTS Σi ⊂ W in (V, hi,Ki) in the conclu-
sion of Theorem 4.2 admits a metric of positive scalar curvature. The
uniform almost minimizing property of Σi shows that a subsequence
of Σi converges smoothly to a closed MOTS Σ ⊂ W in (V, h,K) that
separates Σin from Σout.

Let (V, h,K) and W be as in the statement of Theorem 4.2. We say
that the boundary ∂W is (strongly) null mean convex if it has positive
outward null expansion, θ+ > 0, and negative inward null expansion,
θ− < 0. Round spheres in Euclidean slices of Minkowski space and,
more generally, large radial spheres in asymptotically flat initial data
sets are null mean convex.

Proposition 4.4. Let (V, h,K) be an n-dimensional initial data set
where 3 ≤ n ≤ 7. Let W ⊂ V be a connected compact n-dimensional
submanifold with null mean convex boundary. The boundary of W is
connected if there are no MOTSs in W .

Proof. Suppose ∂W is not connected. We designate one component
of ∂W as Σin and the union of the others as Σout. Then Σin and Σout

satisfy the null expansion conditions of Theorem 4.2. In particular,
there exists a MOTS Σ in W . q.e.d.

Proof of Theorem 4.1. Assume that there are no immersed MOTSs in
V . By suitably truncating the ends of V we obtain a compact connected
3-dimensional submanifold W ⊂ V with null mean convex boundary
∂W whose components correspond to the ends of V . If V has more
than one end, then W contains a closed MOTS by Proposition 4.4.
This contradicts our assumption that (V, h,K) contains no immersed
MOTSs. Thus V has exactly one end.

If V is not orientable, we can pass to the orientable double cover
p : Ṽ → V . Then (Ṽ , p∗h, p∗K) is an asymptotically flat initial data
set with two ends and thus contains a MOTS. This contradicts our
assumption that (V, h,K) contains no immersed MOTSs. Thus V is
orientable.

It follows that we can express V as a connected sum V = R
3#N

where N is a compact orientable 3-manifold. Note that π1(V ) = π1(N).
The work of Hempel [27] in conjunction with the positive resolution

of the geometrization conjecture shows that π1(N) is a residually finite
group, i.e. for every non-identity element in the group there is a nor-
mal subgroup with finite index that does not contain that element. In
particular, if V is not simply connected, then π1(V ) contains a proper
normal subgroup with finite index k > 1. Such a subgroup gives rise to
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a k-sheeted covering p : Ṽ → V of V . Note that (Ṽ , p∗h, p∗K) is an
asymptotically flat initial data set with k ends. In particular, it con-
tains a MOTS. This contradicts our assumption that (V, h,K) contains
no immersed MOTS. Thus V is simply connected.

By the positive resolution of the Poincaré conjecture, N is diffeomor-
phic to S

3 and V is diffeomorphic to R
3. q.e.d.

Remark 4.5. Assume that (V, h,K) satisfies the dominant energy
condition. In view of Remark 4.3, the conclusion of Proposition 4.4 can
be sharpened as follows. If there is no spherical MOTS inW , then ∂W is
connected. This leads to a stronger conclusion in Theorem 4.1. Either
V is diffeomorphic to R

3 or (V, h,K) contains a spherical immersed
MOTS.

5. An initial data version of topological censorship

As in Theorem 2.2, consider the domain of outer communications
D = I−(I +) ∩ I+(I −) in a regular black hole spacetime (M,g) that
satisfies the null energy condition. Assume that D is globally hyperbolic
and consider a Cauchy surface forD whose closure V intersects the event
horizon in a compact surface. It is shown in [25, 44] that there can be
no trapped surface in V \ ∂V as otherwise it would be visible at I +,
which is not possible. This remains true for marginally trapped surfaces,
i.e. surfaces for which θ+ and θ− are nonpositive; cf. [44, Proposition
12.2.2] and [12, Theorem 6.1]. An argument similar to that of the proof
of Theorem 3.2 shows that there can be no immersed MOTS in V \ ∂V
either; cf. [44, Proposition 12.2.4] and [12, Remark 6.5].

For an initial data version of topological censorship, we think of the
initial data (V, h,K) as representing an asymptotically flat slice in the
domain of outer communications. The boundary ∂V is thought of as a
cross section of the event horizon. This is reflected in the requirement
that ∂V be a MOTS, possibly with multiple components.

Theorem 5.1. Let (V, h,K) be a 3-dimensional asymptotically flat
initial data set. Assume that every component of ∂V is a MOTS, ei-
ther with respect to the unit normal pointing into V or the unit normal
pointing out of V . If there are no immersed MOTSs in V \ ∂V , then V
is diffeomorphic to R

3 minus a finite number of open balls.

Proof. The proof is similar to that of Theorem 4.1.
By suitably truncating the asymptotically flat ends of V we obtain

a compact connected 3-manifold W ⊂ V whose boundary is the dis-
joint union of ∂V and a null mean convex surface whose components
correspond to the asymptotically flat ends of V .

Assume that V has more than one end. We may split ∂W into non-
empty unions of components Σout and Σin such that θ+ ≤ 0 along
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Σin with respect to the unit normal pointing into W and with strict
inequality on some component, and such that θ+ ≥ 0 along Σout with
respect to the unit normal pointing out of W and strict inequality on
some component. Theorem 4.2 still applies in this situation (cf. Section
5 in [3] or Remark 4.1 in [15]) and shows that there exists a MOTS
Σ ⊂ W that separates Σout from Σin. At least one component of Σ must
be disjoint from ∂V and is thus contained in V \ ∂V . This contradicts
our assumptions. It follows that V has only one end.

The same covering argument as in the proof of Theorem 4.1 shows
that V is orientable. Moreover, if some component of ∂V is not a 2-
sphere, then V admits a double covering (cf. [26, Lemma 4.9]). Such
a covering has two ends and thus contains a MOTS in its interior, con-
tradicting our assumption. It follows that the components of ∂V are
spherical.

We see that V can be expressed as a connected sum V = R
3#N

where N is a compact orientable 3-manifold with boundary ∂N . Let N̂
be the smooth closed orientable 3-manifold obtained from N by gluing
in balls along each of the spherical components of ∂N .

Assume that N̂ is not simply connected. As in the proof of Theorem
4.1, we see that N̂ admits a k-sheeted covering where 1 < k < ∞.
Since balls and their complements in R

3 are simply connected, it follows
that V admits a k-sheeted covering p : Ṽ → V . The boundary of Ṽ
covers the boundary of V . It is a MOTS with respect to the pull-
back data (p∗h, p∗K). Hence (Ṽ , p∗h, p∗K) is an asymptotically flat
initial data set with MOTS boundary and k ends. As above, we see
that (Ṽ , p∗h, p∗K) contains a closed MOTS that is disjoint from ∂Ṽ .
It follows that V \ ∂V contains an immersed MOTS, contrary to our

assumption. Thus N̂ is simply connected and hence, by the positive
resolution of the Poincaré conjecture, diffeomorphic to S

3.
It follows that V = R

3#N is diffeomorphic to R
3 minus a finite

number of open balls. q.e.d.

6. Higher dimensions

The proofs of Theorem 4.1 and Theorem 5.1 rely on facts that are
specific to dimension three, specifically the positive resolution of the ge-
ometrization conjecture. In this section we present a simple topological
condition that implies the existence of immersed MOTSs in asymptoti-
cally flat initial data sets of dimension up to and including seven.

Theorem 6.1. Let (V, h,K) be an n-dimensional asymptotically flat
initial data set without boundary where 3 ≤ n ≤ 7. If V contains a closed
non-separating hypersurface, then V contains an immersed MOTS.
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Proof. The argument in the proof of Theorem 4.1 shows that V has
exactly one end and that V is orientable. Let Σ be a closed non-
separating hypersurface in V . We can double V along Σ to obtain a two
sheeted covering p : Ṽ → V . Note that (Ṽ , p∗h, p∗K) is oriented and
has two asymptotically flat ends. The same argument as in the proof of
Theorem 4.1 shows that (Ṽ , p∗h, p∗K) contains a closed MOTS. This
MOTS projects to an immersed MOTS in V . q.e.d.

The existence of a closed non-separating hypersurface in Theorem
6.1 follows from the non-vanishing of the first Betti number of V . We
briefly sketch the standard topological argument. We assume that V is
oriented. Let V̂ be the smooth compact orientable manifold obtained
from a one point compactification of V . Then H1(V̂ ,Z) = H1(V,Z) so

that b1(V̂ ) > 0. Poincaré duality and the fact that there is no torsion

in co-dimension one homology implies that b1(V̂ ) > 0 if and only if

Hn−1(V̂ ,Z) 6= 0. By Thom’s realizability theorem (see e.g. Theorem

11.16 in [9]), we may choose a non-vanishing class in Hn−1(V̂ ,Z) and

represent it by a closed hypersurface. There is a component Σ̂ of this
hypersurface that does not separate V̂ . We may assume that Σ̂ does not
pass through the point at infinity of V̂ and hence view Σ̂ as a smooth
closed hypersurface Σ of V . Clearly, Σ does not separate.

Corollary 6.2. Let (V, h,K) be an n-dimensional asymptotically flat
initial data set without boundary where 3 ≤ n ≤ 7. If b1(V ) > 0 then V
contains an immersed MOTS.

7. Appendix

Theorem 7.1. Let (M,g) be a future null geodesically complete space-
time that satisfies the null energy condition and which contains a non-
compact Cauchy surface V . Assume that there exists a closed, con-
nected, separating hypersurface Σ ⊂ V that is a MOTS with respect to
the future directed null normal that points toward a component of V \Σ
whose closure is non-compact. The future inextendible null geodesics
emanating from Σ in the direction of this null normal form a smooth
totally geodesic null hypersurface.

Proof. Let V \Σ = U∪W where U,W ⊂ V are disjoint and open such
that the closure of U is non-compact. Let ℓ+ be the future directed null
normal that points toward U . Consider the C0 achronal hypersurface
H = ∂J+(W )\W . It is generated by null geodesic segments orthogonal
to Σ with initial tangents given by ℓ+. As in the proof of Theorem 3.2, H
is non-compact and contains the trace of a null geodesic η : [0,∞) → M
such that η(0) = p ∈ Σ and η′(0) = ℓ+(p). Let S1 be the component of
∂I−(η) ∩ I+(V ) containing η((0,∞)). Standard arguments show that
S1 is an achronal C0 hypersurface generated by future complete null
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geodesics; cf. [36] and the proof of Theorem IV.1 in [20]. Lemma IV.2
in [20] implies that S1 has null mean curvature θ1 ≥ 0 in the support
sense; cf. [20, Definition III.2]. In fact, sets of the form ∂I−(x) where
x ∈ S1 lies on a generator through and to the future of y ∈ S1 provide
the required family of locally smooth past support null hypersurfaces
at y. Let S2 = H \ (Σ ∪ Cut(Σ)) where Cut(Σ) is the set of null
focal cut points to Σ in the direction of ℓ+. Now S2 is a smooth null
hypersurface generated by null geodesics in the direction of ℓ+ up to (but
not including) cut points. Equation (3.2) and the null energy condition
imply that S2 has null mean curvature θ2 ≤ 0.

Causal considerations show that S2 lies locally to the future of S1 near
points where they intersect. In particular, this holds along η((0,∞)).
The maximum principle for C0 null hypersurfaces, Theorem III.4 in
[20], together with a straightforward continuation argument, implies
that S = S1 = S2 and that S has null mean curvature identically equal
to zero. It follows from equation (3.2) that the Weingarten map of S
vanishes identically. q.e.d.

Theorem 7.1 shows that (M,g) is future null geodesically incomplete
if the generic condition is violated along a single null geodesic in the
direction of ℓ+.
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conjectures—application of the Hamilton-Perelman theory of the Ricci flow, Asian
J. Math. 10 (2006), no. 2, 165–492, MR 2233789, Zbl 1200.53057.
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