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Abstract

Strongly pseudoconvex CR manifolds are boundaries of Stein
varieties with isolated normal singularities. We prove that any non-
constant CR morphism between two (2n−1)-dimensional strongly
pseudoconvex CR manifolds lying in an n-dimensional Stein va-
riety with isolated singularities are necessarily a CR biholomor-
phism. As a corollary, we prove that any nonconstant self map
of (2n − 1)-dimensional strongly pseudoconvex CR manifold is a
CR automorphism. We also prove that a finite étale covering map
between two resolutions of isolated normal singularities must be
an isomorphism.

1. Introduction

Rigidity phenomena in complex geometry have received a lot of at-
tention historically. Borel and Narasimhan [BN67] obtained some gen-
eral results on rigidity of morphisms with domain space carrying no
non-constant pseudoconvex function which is bounded above and tar-
get space being covered by an analytic subset of a bounded domain
in Cn. In 1975, Kobayashi and Ochiai [KO75] proved that there are only
finitely many surjective morphisms between two fixed projective man-
ifolds of general type. In 1981, Kalka, Shiffman, and Wong [KSW81]
developed a general theory to study the finiteness and rigidity theorems
for holomorphic mappings. Let Holk(X,Y ) denote the complex space
of holomorphic maps of rank > k from the compact complex space X
into the complex manifold Y . They proved that if Y satisfies certain
convexity or cohomological conditions, then for suitable k, Holk(X,Y )
is either discrete or finite. They also showed that if the tangent bun-
dle of Y satisfies the k-pseudoconvexity condition, then Holk(X,Y ) is
discrete. As a corollary, they asserted that if Y is a compact Hermitian
manifold with negative holomorphic sectional curvature, then the set of
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surjective holomorphic maps fromX onto Y is finite. On the other hand,
if Y is a compact Kähler manifold with c1(Y ) represented by a negative
semidefinite form and either cn(Y ) 6= 0 or cn1 (Y ) 6= 0, Kalka, Shiffman,
and Wong showed that Holn(X,Y ) is discrete. Recently, Hwang, Ke-
bekus, and Peternell [HKP06] proved the following beautiful result.
Let Y be a projective n-dimensional manifold which is not uniruled.
If either π1(Y ) is finite or cn(Y ) 6= 0, then for each connected normal
compact complex variety X, the space of surjective morphism from X
to Y is discrete.

In 1977, Wong [Won77] proved an important result in complex
geometry—that any strongly pseudoconvex domain with smooth bound-
ary in Cn with noncompact automorphism group must be biholomorphi-
cally equivalent to the unit ball. In 1978, S. T. Yau [Yau78] proved the
Calabi Conjecture. As a consequence, he [Yau77] proved that 3c2 > c21
for any Kähler surface with ample canonical bundle and the equality
holds if and only if the surface is covered by the ball in C2. Using this
results, he [Yau77] proved the Severi Conjecture, which states that ev-
ery complex surface which is homotopic to the complex projective plane
CP2 is biholomorphic to CP2.

As a consequence of his strong rigidity theorem [Mos83] Mostow
showed that two compact quotients of the ball of complex dimension
> 2 with isomorphic fundamental groups are either biholomorphic or
conjugate biholomorphic. S. T. Yau conjectured that his phenomenon of
strong rigidity should hold also for compact Kähler manifolds of complex
dimension > 2 with same homotopy type and negative sectional curva-
ture. In his famous paper [Siu80], Siu proved that Yau’s conjecture is
true when the curvature tensor of one of the two compact Kähler man-
ifolds is strongly negative with no curvature assumption on the other
manifold.

CR manifolds are abstract models of boundaries of complex mani-
folds. Strongly pseudoconvex CR manifolds have rich geometric and an-
alytic structures. The harmonic theory for the ∂b complex on compact
strongly pseudoconvex CR manifolds was developed by Kohn [Koh65].
Using this theory, Boutet de Monvel [Bou03] proved that if X is a
compact strongly pseudoconvex CR manifold of real dimension 2n− 1,
n > 3, then there exist C∞ functions f1, . . . , fN on X such that each
∂bfj = 0 and f = (f1, . . . , fN ) defines an embedding of X in CN .
Thus, any compact strongly pseudoconvex CR manifold of dimension
> 5 can be CR embedded in some complex Euclidean space. On the
other hand, 3-dimensional strongly pseudoconvex compact orientable
CR-manifolds are not necessarily embeddable. Throughout this paper,
our strongly pseudoconvex CR manifolds are always assumed to be com-
pact orientable and embedded in some CN . By a beautiful theorem of
Harvey and Lawson ([HL75],[HL]), these CR manifolds are the bound-
aries of subvarieties with only isolated normal singularities. Rigidity
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problems of CR-immersions into spheres and hyperquadrics were stud-
ied by Ebenfelt, Huang, and Zaitsev [EHZ04] [EHZ05]. Let X be a
strongly pseudoconvex CR manifold of dimension 2n − 1. For p ∈ X,
let f: (X, p) −→ S2n+2d−1 be a local CR immersion of X near p into
unit sphere S2n+2d−1 in Cn+d. The beautiful result of [EHZ04] states
that if d < n

2
− 1, then f is rigid in the sense that any other immersion

of (X, p) into S2n+2d−1 is of the form φ ◦ f , where φ is biholomorphic
automorphism of the unit ball B ⊆ Cn+d. As a striking corollary, they
show that if X and X ′ are two strongly pseudoconvex CR manifolds of
dimension 2n−1 in S2n+2d−1 with d < n

2
−1 and if X and X ′ are locally

CR equivalent at some points p ∈ X and p′ ∈ X ′, then there exists a
unitary linear transformation which maps X to X ′.

In a remarkable paper [Pin74], Pinchuk showed that a proper holo-
morphic mapping between strongly pseudoconvex domains in Cn is lo-
cally biholomorphic. In fact, he proved that proper holomorphic self-
maps of strongly pseudoconvex domains are necessarily biholomorphic.
It was proved in [BC82] and [DF82] that proper holomorphic maps
extend smoothly to the boundaries and hence induce CR morphisms
between the boundaries.

In our previous paper [Yau11], we took another point of view. In
view of Fornaess’s theory on strongly pseudoconvex domains [For76],
we investigate the rigidity property of CR morphisms between strongly
pseudoconvex CR manifolds by means of the singularities theory. In
this paper, we continue this investigation and prove the rigidity of CR
morphisms between CR manifolds lying in the same variety.

Theorem A. Let X1 and X2 be two (2n − 1)-dimensional compact
strongly pseudoconvex CR manifolds lying in a Stein variety V of dimen-
sion n in CN . Let V1 ⊆ V , V2 ⊆ V such that ∂V1 = X1 and ∂V2 = X2.
Assume that the singular set S of V is nonempty and is equal to the
singular set of Vi, i = 1, 2. Then nontrivial CR morphisms from X1

to X2 are necessarily CR biholomorphisms.

As a corollary of Theorem A, we prove the following theorem, which
is a conjecture of dimension 3 stated in [Yau11].

Theorem B. Let X be a compact strongly pseudoconvex embeddable
CR manifold of dimension ≥ 3 lying in CN . Then any nonconstant CR
morphism from X to itself must be a CR automorphism.

Remark. A special case of Theorem B was proved in [Yau11] un-
der the assumption that X bounds a complex variety with only isolated
normal nonquotient singularities and dim X = 3. In Theorem B here,
X is allowed to be boundary of a complex submanifold in CN .

The proofs of Theorem A can be reduced to the proof of the following
theorem, which is of independent interest.
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Theorem C. Let V be a normal Stein space whose singular set is

nonempty and finite. Let f1 : Ṽ1 → V and f2 : Ṽ2 → V be two resolutions

of V . If Φ̃ : Ṽ1 → Ṽ2 is a finite étale covering map, Φ̃ must be an
isomorphism.

The difficulty of Theorem C is that Φ̃ may not commute with the
resolution maps. For n = 2, Theorem C was proved in [Yau11].

In this paper, we derive a multiplicity formula in étale coverings be-
tween resolutions (see Theorem D below) and apply it to obtain Theo-
rem C.

Theorem D. Let V be an algebraic variety or a complex space with
finitely many normal isolated singularities xi, i = 1, . . . ,m, on V . Pos-
itive numbers cvV (xi) for each xi can be defined (see §5) such that
m∑
i=1

cvV (xi) is multiplicative in étale covering maps between resolutions.

That is, if W is another algebraic variety or complex space with normal

isolated singularities yj, j = 1, . . . , s, p1 : W̃ → W and p2 : Ṽ → V are

resolutions of W and V , respectively, and Φ : W̃ → Ṽ is an étale cover-

ing map, then we have
s∑

j=1

cvW (yj) = d
m∑
i=1

cvV (xi) where d is the degree

of Φ.

We call the number cvV (x) for a point x ∈ V canonical volume, and
it is defined in §5.

Remark. Theorem C and Theorem D are true both in the sense of
strong resolution of singularities of Hironaka or in the sense of weak
resolution of singularities. Recall that π : M → V is a strong resolution
of singularities of V if

(1) π is a proper birational morphism and M is smooth,
(2) M\ exceptional set is dense in M and π restricts to M\ exceptional set

is biholomorphic to V \ singular set of V.
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If we only require (1) above, then π : M → V is called a weak resolu-
tion of singularities.

Note that even if V is a smooth projective variety, an étale endomor-
phism Φ : V → V is not necessarily an isomorphism. For example, let
V be an abelian variety, n̂ : V → V is the morphism sending any point
x ∈ V to its n times, nx, then n̂ is an étale covering map which is not
an isomorphism if n > 1. Therefore, we need some restraints on V to
force the degree to be 1.

A notion of volume for an isolated singular point of normal variety is
defined in [BFF12]. The volume is multiplicative in étale covering maps.
By Theorem A of [BFF12], if KV is Q-Cartier and V is not log canon-
ical, the volume of the singularity is nonzero and we can determine the
degree of an étale morphism. Our definition of canonical volume is like
another multiplicative number between resolutions, and it determines
the degree of étale coverings. Our method of proving the multiplicativ-
ity of canonical volume by taking the étale cover corresponding to a
subgroup of the fundamental group is like the proof in the discussion of
nearly étale maps in [NZ09].

In §2, we shall recall all the notations and theorems that we need later.
In §3, we shall study the CR morphisms between two CR manifolds
which may not lie on the same variety. In particular, we make some
improvement of Theorem 1.1 in [Yau11]. Theorem A and Theorem B
are proved in §4. In §5, we prove Theorem C and Theorem D.
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2. Preliminaries

Definition 2.1. Let X be a connected orientable manifold of real
dimension 2n − 1. A CR structure on X is an (n − 1)-dimensional
subbundle S of the complexified tangent bundle CT (X) such that

(1) S ∩ S = {0},
(2) If L,L′ are local sections of S, then so is [L,L′].

A manifold with a CR structure is called a CR manifold. There is a
unique subbundle H of the tangent bundle T (X) such that CH = S⊕S.
Furthermore, there is a unique homomorphism J : H −→ H such that
J2 = −1 and S = {u − iu : u ∈ H}. The pair (H, J) is called the real
expression of the CR structure.
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Definition 2.2. Let L1, . . . , Ln−1 be a local frame of S. Then L1, . . . ,
Ln−1 is a local frame of S and one may choose a local section N of T (X)
which is purely imaginary such that L1, . . . , Ln−1, L1, . . . , Ln−1, N is a
local frame of CT (X). The matrix (cij) defined by

[Li, Lj] = ΣakijLk +ΣbkijLk +
√
−1cijN

is Hermitian and is called the Levi form of S.

Proposition 2.1. The number of nonzero eigenvalues and the ab-
solute value of the signature of the Levi form (cij) at each point are
independent of the choice of L1, . . . , Ln−1, N .

Definition 2.3. The CR manifold X is called strongly pseudoconvex
if the Levi form is definite at each point of X.

Theorem 2.1 (Boutet De Monvel [Bou03]). If X is a compact
strongly pseudoconvex CR manifold of dimension (2n − 1) and n > 3,
then X is CR embeddable in CN .

Although there are non-embeddable compact 3-dimensional CR man-
ifolds, in this paper all CR manifolds are assumed to be embeddable in
complex Euclidean space. The following beautiful theorem of Harvey
and Lawson connects the theory of strongly pseudoconvex CR mani-
folds on the one hand and the theory of normal isolated singularities on
the other hand.

Theorem 2.2 (Harvey–Lawson [HL75],[HL]). For any compact con-
nected embeddable strongly pseudoconvex CR manifold X, there is a
unique complex variety V in CN for some N such that the boundary
of V is X and V has only normal isolated singularities.

3. CR morphisms between CR manifolds lying on different
varieties

The following proposition was the starting point of our investigation.
It can be found in [Yau11]. It was proved by using the results of For-
naess [For76] and Prill [Pri67].

Proposition 3.1. Let X1 and X2 be two compact strongly pseudo-
convex CR manifolds of dimension 2n−1 > 3 which bound complex vari-
eties V1 and V2 in CN1 and CN2, respectively. Suppose the singular set Si

of Vi, i = 1, 2, is either an empty set or a set consisting of only isolated
normal singularities. If Φ: X1 −→ X2 is a non-constant CR morphism,
then Φ is surjective and Φ can be extended to a proper surjective holo-
morphic map from V1 to V2 such that Φ(S1) ⊆ S2, Φ

−1(X2) = X1 and
Φ: V1 \Φ−1(S2) −→ V2 \S2 is a covering map. Moreover, if S2 does not
have quotient singularity, then Φ−1(S2) = S1.

As an application of Proposition 3.1, we have the following theorem.
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Theorem 3.1. Let X1 and X2 be two compact strongly pseudocon-
vex CR manifolds of dimension 2n−1 > 5 which bound complex variety
V1 and V2 with only isolated normal singularities in CN1 and CN2 re-
spectively. Let S1 and S2 be the singular sets of V1 and V2, respectively,
and S2 is nonempty. Suppose 2n −N2 − 1 > 1. Then any nonconstant
CR morphism from X1 to X2 is a covering map. If |S1| is not divisible
by |S2| or |S1| 6 2|S2| − 1, then any nonconstant CR morphism from
X1 to X2 is necessarily a CR biholomorphism.

Proof. Let Φ: X2 −→ X2 be a nonconstant CR morphism. Proposi-
tion 3.1 says the Φ can be extended to a proper surjective holomorphic
map from V1 to V2 such that Φ(S1) ⊆ S2 and Φ: V1 \Φ−1(S2) → V2 \S2

is a covering map of degree d. For any q ∈ S2, we know that the punc-
tured neighborhood of q in V2 is (2n − N2 − 1)-connected in view of
a theorem of Hamm [Ham81]. Since 2n − N2 − 1 > 1 by assump-
tion, the punctured neighborhood of q is simply connected. We claim
that Φ−1(q) ⊆ S1. If Φ

−1(q) is not contained in S1, then there exists
a smooth point q′ of V1 in Φ−1(q). Recall that Φ−1(q) is a finite set.
We can find an open neighborhood U of q′ which is biholomorphic to a
domain in Cn such that Φ|U from U to the germ of (V2, q) is a branch
covering with ramification locus {q′}. Since the punctured neighborhood
of q in V2 is simply connected, this implies Φ|U is injective and hence
Φ|U is a biholomorphism. This leads to a contradiction because q is a
singular point. We have shown that Φ−1(q) = {q′1, . . . , q′d} ⊆ S1. There
are exactly d points in Φ−1(q) because the punctured neighborhood of
q is simply connected. If |S1| 6 2|S2| − 1, by the pigeonhole principle,
there exists q ∈ S2 such that Φ−1(q) = {q′}. Since the punctured neigh-
borhood of q is simply connected, we conclude that the degree of the
covering map Φ: V1 \ S1 −→ V2 \ S2 is 1. On the other hand, the above
argument shows that Φ: V1 −→ V2 is a covering map. In particular, |S1|
is divisible by |S2|. q.e.d.

4. Proof of Theorem A and Theorem B

We first recall a beautiful theory developed by Nash [Nas95]. In
a 1968 preprint which was published as [Nas95], Nash introduced a
beautiful theory on arc spaces and jet schemes for algebraic and analytic
varieties. In what follows, we shall use Ishii and Kollár’s treatment on
Nash arc families of singularities [IK03].

Definition 4.1 (Nash). Let V be a complex variety with singular
locus S ⊆ V . The space of arcs J∞(V ) of V parametries arcs α :
SpecC[[t]] −→ V such that α(0) ∈ S. Decompose J∞(V ) into its ir-
reducible components

J∞(V ) =
⋃

i∈I

Ci
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where the Ci’s are the components with an arc α such that α(t) /∈
S for generic t. Denote C0

i the open subset of Ci consisting of arcs
α : SpecC[[t]] −→ X such that α(t) /∈ S for generic t.

Definition 4.2 (Nash). Let π : M −→ V be a resolution of singular-
ities of V , and let A1, . . . , Ar be the irreducible components of the ex-
ceptional set on M . For any arc α ∈ C0

i , we have α : SpecC[[t]] −→ V
such that α(t) /∈ S for generic t. Then α can be uniquely lifted to an
arc α̃ : C[[t]] −→ M . This α̃ is called the lifting of α. There is a natural
map

ϕ :
⋃

i

C0
i −→

⋃

ℓ

Aℓ

given by ϕ(α) = α̃(0).

Theorem 4.1 (Nash [Nas95, p.35]; see also [IK03, p. 607]). Let V
be a complex variety and let π : M −→ V be a resolution of singularities.
Let {Ci : i ∈ I} be the components of the space of arcs through singular
locus of V , and let zi denote the generic point of Ci. Then we have the
following:

(i) ϕ(zi) is the generic point of an exceptional component Aℓi ⊆ M
for some ℓi.

(ii) For every i ∈ I, Aℓi is an essential component on M , i.e., a
component which appears on every possible resolution.

(iii) The resulting Nash map

N : {irreducible components of the space of arcs through singV }
−→ {essential components on M}

given by Ci −→ Aℓi is injective. In particular, there are only finitely
many irreducible components of the space of arcs through singV .

Open problem (Nash). Is the Nash map bijective?
In the beautiful paper of Ishii and Kollár, they proved that the

Nash map is bijective for toric singularities in any dimension. They
also showed that the Nash map is not bijective in general.

Definition 4.3. An essential component on M which is in the image
of the Nash map is called Nash essential component.

Definition 4.4. An isolated singularity (V, 0) is called a Nash ter-
minal singularity if for any resolution π : (M,E) → (V, 0) the n-form
ω ∈ Γ(M\E,Ωn) which is holomorphic on M\E must vanish along all
the Nash essential component Ei of E. And an isolated singularity (V, 0)
is called a Gorenstein singularity if there is some neighborhood U of 0
in V and a holomorphic n-form ω on U −{0} such that ω has no zeroes
on U − {0}.

We are now ready to prove Theorem A.
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Proof of Theorem A. Let Φ: X1 −→ X2 be a nonconstant CR mor-
phism. In view of Proposition 3.1, Φ can be extended to a proper holo-
morphic map from V1 to V2 such that Φ: V1 \ Φ−1(S) −→ V2 \ S is a
covering map of degree d and Φ(S) = S. Let S = {q1, . . . , qm}. Then
Φ−1(S) = {q1, . . . , qm, p1, . . . , pk}. We shall prove that Φ−1(S) = S.
Let π : M −→ V2 be a resolution of singularities of V2 such that the
exceptional sets

E1 = π−1(q1) =

ℓ1⋃

i=1

A1
i , . . . , Em = π−1(qm) =

ℓm⋃

i=1

Am
i

are normal crossing divisors.
Consider the fiber product V1 ×

V2

M of the maps Φ: V1 −→ V2 and

π : M −→ V2. Let τ : M̃ −→ V1 ×
V2

M be the normalization map. Then

we have the following commutative diagram (Figure 1) where π1 and π2
are natural projections.

Figure 1

Notice that π1 : V1×
V2

M −→ V1 is a biholomorphism outside π−1

1
(Φ−1(S))

and π2 : V1 ×
V2

M → M is a covering map outside
m⋃
i=1

Ei. Thus,

Φ̃ := π2 ◦ τ : M̃ −→ M

is a d-fold branch covering. For each Aj
i ⊆ Ej , and any point qji ∈ Aj

i

which is a smooth point in
m⋃
i=1

Ei, we choose a germ of a curve Γj
i at the

point qji which intersects with
m⋃
i=1

Ei only at qji and the intersection of

Aj
i and Γj

i is transversal at qji . Let Γ =
⋃

Γj
i , 1 6 j 6 m, 1 6 i 6 ℓj .

Notice that π̃ := π1 ◦ τ is a proper map which is a biholomorphism

outside Ẽ := π̃−1(Φ−1(S)) = Φ̃−1(E) where E = E1∪· · ·∪Em. Observe

that Ẽ has exactly m+ k connected components Ẽ = Ẽ1 ∪ · · · ∪ Ẽm+k.
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Clearly,

Φ̃∗(Ẽ) =
∑

i,j

djiA
j
i , where dji 6 d.

By the projection formula (cf. p. 34 of [Ful02] or p. 426 of [Har01]),

m∑

j=1

ℓj∑

i=1

dji = Γ · Φ̃∗(Ẽ)

= Φ̃∗(Γ) · Ẽ
> (ℓ1 + · · ·+ ℓm)d.

The last inequality comes from the fact that Φ̃∗(Γj
i ) has d distinct

branches because Φ̃ : M̃ \ Φ̃−1(E) −→ M \E is a d-fold covering space.

Since dji 6 d, we conclude that dji = d for all i, j. It follows that the

branch locus of Φ̃ is contained in the singular locus of
m⋃
i=1

Ei which is of

dimension n − 2. As M̃ is normal and M is smooth, Φ̃ : M̃ −→ M is a

covering map by purity of branch locus. In particular, M̃ is smooth.
Now we are ready to prove that Φ−1(S) = S, i.e., there are no

p1, . . . , pk points in Φ−1(S). Observe that π̃−1(pi), 1 6 i 6 k, and Ej ,

1 6 j 6 m, are maximal compact connected analytic subsets in M̃ and

M , respectively. Since Φ̃ is a covering map, there is a neighborhood Ũi

of π̃−1(pi) which maps biholomorphically to a neighborhood Uj of Ej for

some j via Φ̃. As π̃ : M̃ −→ V1 is a point modification in a neighborhood
of pi, there is a neighborhood Di of pi such that

π̃ : π̃−1(Di) \ π̃−1(pi) −→ Di \ {pi}
is a biholomorphism. Similarly, there is a neighborhood Oj of qj such
that

π : π−1(Oj) \ Ej −→ Oj \ {qj}
is a biholomorphism. Therefore,

π ◦ Φ̃ ◦ π̃−1 : Di \ {pi} −→ Oj \ {qj}
is a biholomorphism. Observe that pi is a smooth point of Di and qj is

an isolated normal singularity. It follows that π ◦ Φ̃ ◦ π̃−1 extends to a
biholomorphism from Di to Oj . In particular, qj is not a singular point.

This contradiction shows that Φ−1(S) = S and hence π̃ : M̃ −→ V1 is
also a resolution of singularities of V1.

If Φ(qi) = qj, then (V, qi) is isomorphic to (V, qj) as germs of singu-
larities. This is because the resolution of (V, qj) is a resolution of (V, qi).

Now we first prove Theorem A under the assumption that S does not
have Nash terminal singularity or S only has Gorenstein singularities.
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Let A1 be an irreducible component of E and Ã1 be an irreducible com-

ponent of Φ̃−1(A1). Then Φ̃|
Ã1

: Ã1 −→ A1 is a covering map. Suppose

that the degree of Φ̃|
Ã1

is d. Observe that by projection formula, we

have

Ã1 · Ã1 = (Φ̃∗

Ã1

A1) · (Φ̃|∗Ã1

A1)

= A1 · (Φ̃|Ã1∗
Φ̃|∗

Ã1

A1)

= A1 · Φ̃|Ã1∗
Ã1

= A1 · (dA1) = d(A1 ·A1).(4.1)

For any meromorphic n-form ω ∈ Γ(M \ E,Ωn) which is holomor-
phic on M \ E, we denote (ω) the divisor of ω along the exceptional
set E. Observe that if ω1 and ω2 are two such meromorphic forms, then
(ω1 + ω2) ≤ min((ω1), (ω2)). Since Γ(M \ E,Ωn)/Γ(M,Ωn) is finite di-
mensional, there exists a meromorphic form ω0 ∈ Γ(M \ E,Ωn) such
that (ω0) is the minimal one among all divisors along the exceptional
set E of meromorphic n-forms which are holomorphic on M \ E. We
shall denote this unique canonical divisor (ω0) along the exceptional set
by KM . In view of the above theory developed by Nash, it is clear that

the covering map Φ̃: M̃ −→ M in Figure 1 sends Nash essential compo-

nents in M̃ to Nash essential components in M . Observe that there is a

unique canonical divisor K
M̃

(respectively KM ) of M̃ (respectively M)

with support in the exceptional set of M̃ (respectively M). They are

the divisor (ω1) in M̃ and the divisor (ω0) in M . Since we are going to
do the local analysis of the canonical divisors in the neighborhood of

the exceptional sets, without loss of generality we may assume that M̃
and M are resolution of singularities of V0 where V0 is a connected open
set containing the singular locus of V . We claim that the coefficients
of K

M̃
and KM along the same Nash essential component are exactly

the same. This can be seen as follows: By Hironaka, there exists another

resolution
˜̃
M of V0 in such a way that

˜̃
M can be obtained by successive

monoidal transforms on M̃ orM , respectively. Since monoidal transform
does not change the coefficient along the Nash essential component of
the canonical divisor supported in exceptional set, the coefficients of
K˜̃

M
and K

M̃
along the same Nash essential component are the same.

This proves our claim.

On the other hand, Φ̃ : M̃ −→ M is a d-fold covering. The pullback

Φ̃∗(ω0) is still a holomorphic n-form outside the exceptional set. Its

divisor (Φ̃∗(ω0)) along the exceptional set is d-fold of the divisor (w0)
along the exceptional set.
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Case 1. V has no Nash terminal singularity.
Then there exists a Nash essential component AM

i of M such that the
coefficient ki of KM = (ω0) along this component is nonpositive. Denote

the same Nash essential component in M̃ by AM̃
i . Then the coefficient k̃i

of KM̃ along AM̃
i is exactly ki. By the costruction of KM̃ , we have that

ki is less than or equal to the coefficient of (Φ∗(ω0)) along AM̃
i which is

exactly dki. If ki < 0, then we have a contradiction unless d = 1.
Now we want to show that if the coefficient of K

M̃
and KM along the

same Nash essential component are zero, then d = 1. By formula (4.1),

we have AM̃
i ·AM̃

i = d(AM
i ·AM

i ). Since K
M̃
|
ÃM̃

i

and KM |AM
i

are trivial,

by adjunction formula, we have

c(K
AM̃

i

) c(N
AM̃

i

) (AM̃
i )2 d(AM

i )2

c(KAM
i
) c(NAM

i
) (AM

i )2

where c denotes the Chern class. It follows that d = 1.

Case 2. V has only Gorenstein singularities.
Then there exists a nowhere vanishing holomorphic n-form ω0 on

M \ E. The divisor (ω0) is supported on E and equal to KM defined

above along all Nash essential components . Observe that Φ̃∗(ω0) is a

nowhere vanishing holomorphic n-form on M̃ \ Ẽ. Its divisor (Φ̃∗(ω0))

is supported on Ẽ and is equal to KM̃ defined above along all Nash
essential components. It follows that if KM along any Nash essential
component has nonzero coeffient, then d = 1. The rest of the proof is
the same as case 1.

This completes the proof of Theorem A when S has no Nash terminal
singularity or S has only Gorenstein singularities.

For the general S, we can simply apply Theorem C, which will be

proved in §5, to conclude that Φ̃ is biholomorphic. q.e.d.

Proof of Theorem B. By Theorem 2.2, there is a unique complex variety
V in CN for someN such that the boundary of V isX. If the singular set
of V is nonempty, Theorem B follows immediately from Theorem A. On
the other hand, if V is smooth, then Theorem B follows from Proposition
1.4 of Yau [Yau11], which was proved using Pinchuk’s argument in
[Pin74]. q.e.d.

Remark. The proof of Theorem A also proves Theorem C in the case
that V does not admit Nash terminal singularity.
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5. Proof of Theorem C and Theorem D

Locally, we shall sssume that x ∈ V is a germ of complex analytic
space with only one isolated singularity x. By Hironaka’s paper[Hir63],
it’s biholomorphic equivalent to a germ of a complex algebraic singu-
larity. Since there are only finitely many isolated singularities, after the
equivalence and the resolution theorems of algebraic varieties over field

of characteristic 0, we can construct a resolution π : Ṽ → V of V such

that Ṽ is smooth and π is a bimeromorphic proper morphism.
The key point in the proof of Theorem C of [Yau11] for the surface

case is applying the minimal resolution. But in higher-dimensional cases,
there is no minimal resolution in general. The above proof of Theorem C
in §4 works if V does not admit Nash terminal singularity. Fortunately,
by [BCHM10], there is a unique partial resolution f : V can → V
called the relative canonical model of V such that V can has canonical
singularity and the canonical divisor KV can is f -ample. For surface, the
relative canonical model is obtained by contracting all (−2)-rational
curves in the minimal resolution of V . In general, the relative canonical
model is isomorphic to

Proj
⊕

m≥0

g∗O(mKZ)

where g : Z → V is any resolution of V .
Now we give the definition of the number cvV (x).

Definition 5.1. Locally, let (x ∈ V ) be a germ such that x is the only
isolated singularity. Take the relative canonical model f : V can → V of V
and denote E to be the exceptional set. Define cvV (x) = (KV can)dimE ·E,
called the canonical volume of x.

If V can is not isomorphic to V , we have E being nonempty and
cvV (x) = (KV can)dimE ·E > 0 by the f -ampleness. If V can is isomorphic
to V and x is a singular point, we set cvV (x) = (KV can)dimE · E =
(KV can)0 · x = 1. Finally, if x is a smooth point, we set cvV (x) = 0.

In general, if V has finitely many isolated normal singularities xi, i =
1, . . . ,m, then we consider the sum of canonical volume

m∑

i=1

cvV (xi) =
m∑

i=1

(KV can)dimExi · Exi

where f : V can → V is the relative canonical model of V and Exi
is the

exceptional set over xi. From the definition, we see that
m∑
i=1

cvV (xi) > 0

for nonempty isolated normal singularities xi, i = 1, . . . ,m, on V .
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We can begin the proof of Theorem D.

Proof. Suppose we have resolutions p1 : W̃ → W and p2 : Ṽ → V ,
and we consider relative canonical models p′1 : W can → W and p′2 :
V can → V . We start from the following claim:

Claim: If Φ : W can → V can is an étale covering map, then
s∑

j=1

cvW (yj) =

d
m∑
i=1

cvV (xi) where d is the degree of Φ.

Let E1 be the exceptional set of p′1, and let E2 be the exceptional set

of p′2. E1 =
s∑

j=1

Eyj where Eyj is the exceptional set over yj, and similarly

E2 =
m∑
i=1

Exi
where Exi

is the exceptional set over xi. Since the canonical

divisors KW can and KV can are p′1-ample and p′2-ample, respectively, if

E1 is not empty, we have
s∑

j=1

cvW (yj) =
s∑

j=1

(KW can)dimEyj · Eyj > 0.

Similarly,
m∑
i=1

cvV (xi) =
m∑
i=1

(KV can)dimExi · Exi
> 0 if E2 is not empty.

By Φ being an étale covering map, we have the pullback Φ∗KV can =
KW can . Also, Φ∗E2 = E1 since E1 and E2 are the only proper sets in
W can and in V can, respectively, if we shrink V and W . Therefore, from

s∑

j=1

(KW can)dimEyj · Eyj =
m∑

i=1

(Φ∗KV can)dimExi · Φ∗Exi

= d

m∑

i=1

(KV can)dimExi · Exi

where d is the degree of Φ, we have
s∑

j=1

cvW (yj) = d
m∑
i=1

cvV (xi).

If V can ∼= V , then E2 has dimension 0 and E2 =
m∑
i=1

xi. Since étale

morphisms are locally isomorphisms, Φ sends singular points to singular

points, and we have that E1 =
s∑

j=1

yj is also 0-dimensional and W can ∼=

W . The intersection (KV can)0 ·xi is just 1 by definition. By counting the

singular points, we have that
s∑

j=1

cvW (yj) = s = dm = d
m∑
i=1

cvV (xi) > 0.

The claim is proved.

Now, for two resolutions p1 : W̃ → W and p2 : Ṽ → V , we have

birational map φ2 : Ṽ 99K V can over V (see the diagram below).
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Take a common resolution Ṽ ′ of Ṽ and V can with birational mor-
phisms g : Ṽ ′ → Ṽ and φ′

2 : Ṽ ′ → V can, and Φ′ : W̃ ′ → Ṽ ′ is the

base-change of Φ : W̃ → Ṽ . Then Φ′ is also an étale covering map
with the same degree of Φ. After replacing Φ and φ2 by Φ′ and φ′

2,

respectively, we can assume φ2 : Ṽ → V can is a birational morphism.
By the property of the canonical model, V can and W can have canon-

ical singularities. We use a theorem in [Tak03]:

Theorem. ([Tak03], Theorem 1.1) Let V be a normal analytic space,

and let f : Ṽ → V be a resolution of singularities. Then the induced

homomorphism f∗ : π1(Ṽ ) → π1(V ) is an isomorphism if (V,∆) is
Kawamata log-terminal (klt) for some divisor ∆.

Definition 5.2. (X,△) is a pair where X is a normal variety and
△ is an effective Q-divisor such that KX + △ is Q-Cartier, and let
△ =

∑
di△i be the prime decomposition. We say that (X,△) is (1)

Kawamata log-terminal (klt) iff di < 1 for all i and there exists a pro-
jective birational morphism µ : Y → X from a smooth variety Y with
a normal crossing divisor Ei such that KY ≡ µ∗(KX + △) +

∑
eiEi

holds with ei > −1; (2) canonical iff there exists a projective birational
morphism µ : Y → X from a smooth variety Y with a normal crossing
divisor Ei such that KY ≡ µ∗(KX +△) +

∑
eiEi holds with ei ≥ 0 for

all i.

Ramark. In [Kol93], it is proved that f induces isomorphism between
algebraic fundamental groups when V is log terminal.

We see that π1(V
can) ∼= π1(Ṽ ) by the above theorem since V can

has canonical singularities; we have that (V can, 0) is klt. Now we take
the étale cover β : W ′ → V can which gives the subgroup β∗π1(W

′) ⊆
π1(V

can) isomorphic to the subgroup Φ∗π1(W̃ ) ⊆ π1(Ṽ ).
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We see that β is an étale covering map with the same degree as
Φ. Note that W ′ has canonical singularities since étale morphisms are

locally isomorphisms. Because φ2∗Φ∗π1(W̃ ) = β∗π1(W
′), there is a mor-

phism h : W̃ → W ′ coming from the morphism φ2 : Ṽ → V can extending

to the étale covers W̃ and W ′ of Ṽ and V can, respectively, and h is bi-

rational since φ2 is. In fact, h is a resolution morphism from W̃ to W ′.
We want to construct a morphism q : W ′ → W such that p1 = q ◦ h.
Let zi be a coordinate function defined on W . Since h is proper with

connected fiber, p∗1(zi) is a function on W̃ which descends to W ′ as a
continuous function h∗p

∗
1(zi) which is holomorphic outside codimension

1 subvariety of W ′. h∗p
∗
1(zi) is actually holomorphic on the smooth part

of W ′ because it is a continuous function on W ′. Recall that the sin-
gular set of W ′ consists of isolated normal singularities. So h∗p

∗
1(zi) is

actually holomorphic on W ′. This gives a morphism q : W ′ → W such
that p1 = q◦h. As p1 and q are birational, q is also birational. If E ⊆ W ′

is an exceptional curve over W , by the projection formula, we have

KW ′ · E = β∗KV can · E = KV can · β∗E > 0

since β∗E is a sum of exceptional curves in V can over V and KV can is
relative ample over V . So KW ′ is relatively ample over W . Then, by the
uniqueness of relative canonical model, we have W ′ isomorphic to W can.
Replacing W ′ by W can, we have an étale covering map β : W can → V can

and this is the claim above, which gives
s∑

j=1

cvW (yj) = d
m∑
i=1

cvV (xi)

where d = degβ = degΦ.
q.e.d.

We now can prove Theorem C.

Proof. We take W = V in Theorem C. Since the isolated singular

points are nonempty, we have
m∑
i=1

cvV (xi) > 0. The equation
m∑
i=1

cvV (xi) =

d
m∑
i=1

cvV (xi), where d is the degree of Φ, gives d = 1; hence, Φ is an iso-

morphism. q.e.d.
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