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A PROBLEM OF KLEE ON INNER SECTION

FUNCTIONS OF CONVEX BODIES

Richard J. Gardner, Dmitry Ryabogin, Vlad Yaskin
& Artem Zvavitch

Abstract

In 1969, Vic Klee asked whether a convex body is uniquely
determined (up to translation and reflection in the origin) by its
inner section function, the function giving for each direction the
maximal area of sections of the body by hyperplanes orthogonal
to that direction. We answer this question in the negative by con-
structing two infinitely smooth convex bodies of revolution about
the xn-axis in Rn, n ≥ 3, one origin symmetric and the other not
centrally symmetric, with the same inner section function. More-
over, the pair of bodies can be arbitrarily close to the unit ball.

1. Introduction

Let K be a convex body in Rn. The inner section function mK is
defined by

mK(u) = max
t∈R

Vn−1(K ∩ (u⊥ + tu)),

for u ∈ Sn−1. Here u⊥ denotes the hyperplane through the origin
orthogonal to u and Vn−1 denotes (n − 1)-dimensional volume. (See
Section 2 for other notation and definitions.) Thus the inner section
function simply gives, for each direction, the maximal area of cross-
sections orthogonal to that direction.

Interest in the inner section function goes back at least to the 1926 pa-
per [1] of Bonnesen. It has been called the inner (n−1)-quermass, par-
ticularly by authors who prefer to use the term “outer (n−1)-quermass”
for the brightness function, the function giving the areas of the orthog-
onal projections of a body onto hyperplanes. Values of the inner section
function have also been called HA-measurements, a term devolving from
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the de Haas-van Alphen effect in the study of Fermi surfaces of met-
als. The following explanation is taken from [7, Note 8.12]. The Fermi
surface of a metal bounds a body formed, in velocity space, by velocity
states occupied at absolute zero by valence electrons of the metal. The
Pauli exclusion principle allows no more than two electrons (with op-
posite spins) to possess the same velocity (i.e., speed and direction), so
electrons can only move into unoccupied states lying outside the Fermi
surface. The more electrons there are near the Fermi surface, the larger
the number that can increase their energy when the metal is heated and
the larger the number whose spins can be aligned with a magnetic field.
In this way the Fermi surface relates to the specific heat and magnetic
properties of the metal, and the concept also provides an explanation of
conductivity and ductility, for example. The body bounded by a Fermi
surface is not generally convex. However, the definition of the inner
section function above extends naturally to any bounded Borel set and
for the body bounded by a Fermi surface it may actually be measured
by means of the de Haas–van Alphen effect, i.e., magnetism induced in
the metal by a strong magnetic field at a low temperature.

In two influential articles published about 40 years ago, Klee [11], [12]
asked whether a convex body in Rn, n ≥ 3, is uniquely determined, up
to translation and reflection in the origin, by its inner section function.
The problem also appears in the books [3, p. 24] and [7, Problem 8.8(i)].
It has long been known that planar convex bodies whose inner section
functions are constant are precisely the planar convex bodies of constant
width. This explains the restriction n ≥ 3 in Klee’s problem, since when
n = 2, any convex body of constant width that is not a disk provides a
counterexample.

The main purpose of the present paper is to answer Klee’s question
negatively. We do this by constructing two convex bodies in Rn, n ≥ 3,
each a body of revolution about the xn-axis, such that one body is origin
symmetric and the other is not centrally symmetric, while both have the
same inner section function.

Klee’s problem is now seen as belonging to a fairly extensive literature
around the important concept of an intersection body. Given a star body
L in Rn, i.e., a set star-shaped with respect to the origin whose radial
function ρL is continuous, the intersection body IL of L is defined by

ρIL(u) = Vn−1(L ∩ u⊥),

for u ∈ Sn−1. Clearly, IL is an origin-symmetric star body. Moreover,
it is known that an origin-symmetric star body L is uniquely determined
by the values Vn−1(L∩u⊥), u ∈ Sn−1, and hence by its intersection body
IL. This was proved by Funk [4] for convex bodies in R3; the general
result is called Funk’s section theorem in [7, Corollary 7.2.7], though it
was not stated explicitly in this generality until the work of Lifshitz and
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Pogorelov [14] on Fermi surfaces. Intersection bodies were introduced
by Lutwak [15] and turned out to be the key to solving the Busemann-
Petty problem (see [5], [8], and [21], as well as [7, Section 8.2] and [13,
Chapter 5]).

For an origin-symmetric convex bodyK in Rn, the Brunn-Minkowski
inequality (see [6]) implies that mK(u) = Vn−1(K ∩ u⊥) for each u ∈
Sn−1. It follows immediately that Klee’s problem has an affirmative
answer if set entirely within the class of origin-symmetric convex bodies.
It is also known that in this case IK is itself an origin-symmetric convex
body, by Busemann’s theorem; see, for example, [7, Theorem 8.1.10].

Now suppose that K is an arbitrary convex body in Rn. The cross-

section body CK of K is defined by

ρCK(u) = mK(u),

for u ∈ Sn−1. As we have seen, when K is origin symmetric, mK(u) =
Vn−1(K ∩ u⊥) for each u ∈ Sn−1, and hence CK = IK is also an
origin-symmetric convex body. Cross-section bodies were introduced
by Martini [17], who asked if CK is always convex. When n = 2, this
follows from the fact, noted by Makai and Martini [16] (see also [7,
Theorem 8.3.5]) that in this case CK = ΠK, the projection body of
K. Meyer [18] proved that CK is also convex when n = 3, but Brehm
[2] showed that CK is not convex when K is a regular simplex in Rn,
n ≥ 4. Other facts and references for cross-section bodies can be found
in [7, Section 8.3 and Note 8.12].

With this background, Klee’s question can be rephrased as asking
whether a convex body in Rn, n ≥ 3, is uniquely determined, up to
translation and reflection in the origin, by its cross-section body. In
these terms, our solution involves constructing a non-centrally-symmet-
ric convex body K whose cross-section body CK is the (necessarily
origin-symmetric and convex) intersection body IL of some origin-sym-
metric convex body L. Thus K and L are not equal, up to translation
and reflection in the origin, while CK = IL = CL.

The paper is organized as follows. After the preliminary Section 2,
the main Section 3 states our result and proves it via a succession of
lemmas. The paper ends with the short Section 4 of concluding remarks.

2. Definitions, notation, and preliminaries

As usual, Sn−1 denotes the unit sphere and o the origin in Euclidean
n-space Rn. The unit ball in Rn will be denoted by Bn. The standard
orthonormal basis for Rn will be {e1, . . . , en}. The inner product of
vectors x and y is denoted by 〈x, y〉 and the Euclidean norm of x by |x|.

If X is a set, we denote by ∂X and intX the boundary and interior

of X, respectively.
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The set −X is the reflection of X in the origin. A set X is origin

symmetric if X = −X and centrally symmetric if it is a translate of an
origin-symmetric set.

The notation dz will always mean dHk(z), where Hk is k-dimensional
Hausdorff measure in Rn, for the appropriate k = 1, . . . , n. We follow
Schneider [20] by writing κn and ωn = nκn for the volume and surface
area of the unit ball in Rn, respectively.

A body is a compact set equal to the closure of its interior. A convex

body is a compact convex set with nonempty interior.
If L is a body containing the origin in its interior and star-shaped

with respect to the origin, its radial function ρL is defined by

ρL(x) = max{c ∈ R : cx ∈ L},
for x ∈ Rn \ {o}. Note that ρL(x) = 1 if and only if x ∈ ∂L. For
u ∈ Sn−1, ρL(u) gives the distance from the origin to ∂L in the direction
u. Moreover, ρL is homogeneous of degree −1, i.e., ρ(tx) = ρ(x)/t for
t > 0. The homogeneity means that we can often regard ρL as a function
on Sn−1.

For the purposes of this paper, a star body is a body whose radial
function is continuous on Sn−1. (The reader should be aware that other
definitions are often used.) When considering star bodies of revolution
about the xn-axis in Rn, we can regard the radial function as a function
of the spherical polar coordinate angle φ with the positive xn-axis.

Let K be a convex body and let u ∈ Sn−1. The parallel section

function AK,u(t) is defined by

(1) AK,u(t) = Vn−1(K ∩ (u⊥ + tu)),

for t ∈ R. See [13, Lemma 2.4 and Section 3.3] for recent results con-
cerning this function. With this notation, the inner section function of
K is

mK(u) = max
t∈R

AK,u(t),

for u ∈ Sn−1.
In the literature, it is often ignored that the parallel section function

AK,u is just the (n− 1)-dimensional X-ray of K in the direction u. See
[7, Chapter 2]. Thus this function has a prominent role in Geometric
Tomography, and indeed Klee’s problem was a significant open question
in this subject.

As usual, C(X) and Ck(X), 1 ≤ k ≤ ∞, denote the classes of con-
tinuous and k times continuously differentiable functions on a subset X
of Rn, and Ce(X) and Ck

e (X) will signify the even functions in these
classes.

We denote by R the spherical Radon transform, defined by

(Rf)(u) =

∫

Sn−1∩u⊥

f(v) dv,
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for bounded Borel functions f on Sn−1. It is known (see [7, Theo-
rem C.2.4]) that R is injective on the class of even functions on Sn−1,
and this fact, applied to (n−1)th powers of radial functions of star bod-
ies, immediately yields Funk’s section theorem mentioned in the Intro-
duction. As a historical aside, we remark that this injectivity property
of R was proved in 1904 by Minkowski (see [7, p. 430]), who used it to
show that a convex body in R3 of constant girth also has constant width.
However, Minkowski apparently did not notice the result of Funk (who
proved it differently).

We adopt a standard definition of the Fourier transform f̂ of a func-
tion f ∈ L1(R

n), namely

f̂(x) =

∫

Rn

f(y)e−i〈x,y〉 dy.

If f ∈ C(Sn−1) (or f ∈ Ck(Sn−1)) and p ∈ R, then f can be extended
by setting

(2) f(x) = |x|−n+pf

(
x

|x|

)
,

for x ∈ Rn \ {o}, and this extension is a homogeneous of degree −n+ p
function in C(Rn \ {o}) (or Ck(Rn \ {o}), respectively). Note that
throughout the paper, we shall use the same notation for a function on
Sn−1 and its homogeneous extension to Rn \ {o}, since the distinction
will be clear from the context. The Fourier transform of this extension
of f , which we also denote by f̂ , exists in the sense of distributions, as
explained in [9, p. 389] or [13, Sections 2.5 and 3.3], for example. Where
appropriate, statements in the sequel involving Fourier transforms of
homogeneous extensions of functions on Sn−1 are also to be considered
in the sense of distributions.

Let Dα, where α = (α1, . . . , αn) is a multiindex of nonnegative inte-
gers, be the differential operator defined by

Dαf =
∂|α|1f

∂xα1

1 · · · ∂xαn

n
,

for f ∈ C |α|1(Rn), where |α|1 =
∑n

j=1 αj. Then

(3) (Dαf)∧ = i|α|1xα1

1 · · · xαn

n f̂

and

(4) Dαf̂ = (−i)|α|1 (xα1

1 · · · xαn

n f)∧ .

These formulas also hold in the distributional sense; see, for example,
[13, p. 35]. The relation

(5) (△f)∧ = −|x|2f̂ ,
where △ is the Laplacian operator in Rn, follows directly from (3).
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If f is even, then f̂ is also even. If f ∈ Ce(R
n\{o}) is homogeneous of

degree −n+ 1, then by [13, Lemma 3.7], f̂ is a homogeneous of degree
−1 function in Ce(R

n \ {o}) and

(6) (Rf)(u) =
1

π
f̂(u),

for u ∈ Sn−1.
The spherical Radon transform is a continuous bijection from

C∞
e (Sn−1) to itself; see, for example, [7, Theorem C.2.5]. Let g ∈

C∞
e (Sn−1), and extend g as in (2) (with f there replaced by g and

p = n− 1) to a homogeneous of degree −1 function in C∞
e (Rn \ {o}). If

f = ĝ, then, by [13, Lemma 3.16], f ∈ C∞
e (Rn \ {o}) is homogeneous

of degree −n + 1. Since g is even, we have ̂̂g = (2π)ng and from (6) it
follows that

(R−1g)(u) =
1

(2π)n
(R−1̂̂g )(u) = 1

(2π)n
(R−1f̂ )(u)

=
π

(2π)n
f(u) =

π

(2π)n
ĝ(u),(7)

for all u ∈ Sn−1.
A rotationally symmetric function f on Sn−1 is one that can be de-

fined via a function f(φ) of the vertical angle φ in spherical polar co-
ordinates by setting f(u) = f(arccos un) = f(φ) for u = (u1, . . . , un) ∈
Sn−1. Moreover, we will consider f as an even function on S1, by first
extending f to [−π, π] by letting f(−φ) = f(φ) and then regarding S1

as [−π, π] with its endpoints identified. Of course we are abusing nota-
tion by using the same letter for the function of u ∈ Sn−1, the function
of φ ∈ [0, π], and the function of φ ∈ S1, but will adopt this convenient
practise throughout the paper.

3. Main result

Theorem 3.1. There exist convex bodies K and L in Rn, n ≥ 3,
with ρK , ρL ∈ C∞(Sn−1), each a body of revolution about the xn-axis,
such that K is not centrally symmetric, L is origin symmetric, and

mK = mL.

The theorem will be proved in a series of lemmas.

Lemma 3.2. Let 0 < ε < 1 and let Kε be the body of revolution

about the xn-axis in Rn with radial function given in spherical polar

coordinates by

(8) ρKε
(φ) =

(
1 + ε cos3 φ

)−1/3
,

where 0 ≤ φ ≤ π is the angle with the positive xn-axis, or equivalently

by

(9) ρKε
(x) = (|x|3 + εx3n)

−1/3,
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where x = (x1, . . . , xn) ∈ Rn \ {o}. Then ρKε
∈ C∞(Sn−1), the body Kε

is not centrally symmetric, and there is a positive ε0 ≤ 1 such that Kε

is convex for all ε < ε0.

Proof. It is clear from its definition via (9) that ρKε
∈ C∞(Sn−1)

provided ε < 1. To prove that Kε is not centrally symmetric and is
convex for sufficiently small ε, it suffices to show that this is true for
the planar convex body Jε obtained by intersecting Kε with the x1, xn-
plane. The radial function of Jε is also given by (8), where we can
regard φ as the polar coordinate angle in the xn, x1-plane (note that
ρJε(−φ) = ρJε(φ)). It is well known that the curvature of a planar C2

curve given in polar coordinates by r = r(θ) is

(10)
2(r′)2 − rr′′ + r2

((r′)2 + r2)3/2
.

Using this, we find that the curvature of Jε is

(1 + ε cos3 φ+ 2ε sin2 φ cosφ)(1 + ε cos3 φ)4/3

((1 + ε cos3 φ)2 + ε2 cos4 φ sin2 φ)3/2
.

When ε is sufficiently small, the curvature is positive and hence Jε is
convex. Also, the curvatures when φ = 0 and φ = π are (1+ ε)−2/3 and

(1 − ε)−2/3, respectively. It follows that Jε is not centrally symmetric,
since a center of symmetry would have to lie on the xn-axis, and φ = 0
and φ = π correspond to antipodal points in ∂Jε. q.e.d.

The body K in Theorem 3.1 will be K = Kε for a suitable ε. From
now on we assume that ε < ε0. It can be seen numerically that one can
take ε0 = 0.91, but note that in any case ε0 < 1 by the definition of
Kε. Since Kε is a body of revolution about the xn-axis, for any fixed
t ∈ R, the function AKε,u(t), u ∈ Sn−1 defined by (1) is rotationally
symmetric. Therefore we can write AKε,u(t) = AKε, φ(t), where we can
either consider φ ∈ [0, π] as the angle between u and en or as an element
φ ∈ S1, as explained at the end of Section 2.

Lemma 3.3. Let n ≥ 3 and let Kε be as in Lemma 3.2. Then

(i) For each φ ∈ S1, the parallel section function AKε, φ(t) has a

maximum at a unique point t = tε(φ).
(ii) There is a positive ε1(n) ≤ ε0 such that

(11) tε(φ) = Tε(φ)ε,

where Tε(φ) ∈ C∞(S1) for all 0 < ε < ε1(n).
(iii) For k = 0, 1, . . . , there is a constant c1(k, n) such that

(12)

∣∣∣∣
dkTε(φ)

dφk

∣∣∣∣ ≤ c1(k, n),

for all 0 < ε < ε1(n) and φ ∈ S1.
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Proof. (i) The Brunn-Minkowski inequality (see [6] or [7, Section B.2])

implies that for each φ the function AKε, φ(t)
1/(n−1) is concave and hence

AKε, φ(t) is unimodal, i.e., increases and then decreases with t. There-
fore, if its maximum is not attained at a unique point, it is attained
at all points in a closed interval [t1, t2], say, t1 6= t2. Now the equality
condition of the Brunn-Minkowski inequality implies that the sections
Kε ∩ (u⊥ + tu), t ∈ [t1, t2] are all homothetic and hence, by convexity,
the union of these sections is a (possibly slanted) cylinder. Since Kε is
a body of revolution, it is easy to see that this is only possible when
the cylinder is a right spherical cylinder with its axis along the xn-axis.
However, this implies that Kε has vertical line segments in its boundary,
which clearly contradicts its definition via (8).

(ii) Let u ∈ Sn−1 and t ∈ R be such that tu ∈ intKε. Note that
for any v ∈ Sn−1 ∩ u⊥, we have ρKε−tu(v)v ∈ ∂(Kε − tu) and hence
x = tu+ ρKε−tu(v)v ∈ ∂Kε. Then ρKε

(x) = 1 and hence (9) yields

(13) 1 = (t2 + ρ2ε)
3/2 + ε(t cosφ+ ρεvn)

3,

where φ ∈ [0, π], v = (v1, . . . , vn), and where for brevity we write ρε =
ρKε−tu(v). If we set

(14) en = u cosφ+w sinφ,

where w ∈ Sn−1 ∩ u⊥, and s = 〈v,w〉, then
vn = 〈v, en〉 = 〈v,w〉 sin φ = s sinφ.

Then we can rewrite (13) as

(15) 1 = (t2 + ρ2ε)
3/2 + ε(t cos φ+ ρεs sinφ)

3,

where φ ∈ [0, π] and −1 ≤ s ≤ 1. Thus the radial function of (Kε −
tu) ∩ u⊥ = Kε ∩ (u⊥ + tu), as a function ρε = ρε(t, φ, s), is implicitly
defined by (15). We can also regard ρε as defined for φ ∈ S1 by setting

(16) ρε(t, φ, s) = ρε(t,−φ,−s),
for φ ∈ [−π, 0].

We claim that there is a positive δ1 ≤ ε0 such that for 0 < ε <
δ1, we have |tε(φ)| < 1/4 and the function ρε = ρε(t, φ, s) implicitly
defined by (15) is infinitely differentiable with respect to each variable
on (−1/4, 1/4) × S1 × [−1, 1]. (At the endpoints s = −1 and s = 1 of
[−1, 1] we take one-sided derivatives.) To see this, note first that by (8),
Kε → Bn in the Hausdorff metric as ε → 0+. Consequently, there is
a positive δ0 ≤ ε0 such that for 0 < ε < δ0, we have |tε(φ)| < 1/4 and
3/4 < ρKε

(φ) < 5/4 for all φ ∈ S1. Then 1/2 < ρε = ρKε−tu(v) < 3/2
when |t| < 1/4 and 0 < ε < δ0. Let Fε : R

4 → R be defined by

(17) Fε(x1, x2, x3, y) = (x21 + y2)3/2 + ε(x1 cos x2 + yx3 sinx2)
3 − 1.
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Then we can choose 0 < δ1 ≤ δ0 small enough to ensure that if 0 < ε <
δ1, then

∂Fε

∂y
= 3(x21 + y2)1/2y + 3ε(x1 cos x2 + yx3 sinx2)

2x3 sinx2

> 3/4− 3(7/4)2ε > 0,(18)

for all (x1, x2, x3, y) ∈ (−1/4, 1/4)× [−π, π]× [−1, 1]× (1/2, 3/2). Com-
paring (15) and (17) and noting that Fε is periodic with period 2π in
the variable x2, we see that the implicit function theorem implies that
for all 0 < ε < δ1, there is a unique function ρε = ρε(t, φ, s) that satis-
fies (15) and is infinitely differentiable with respect to each variable on
(−1/4, 1/4) × S1 × [−1, 1]. This proves the claim.

Differentiation of (15) with respect to t yields

(19)
∂ρε
∂t

= − (t2 + ρ2ε)
1/2t+ ε(t cos φ+ ρεs sinφ)

2 cosφ

(t2 + ρ2ε)
1/2ρε + ε(t cosφ+ ρεs sinφ)2s sinφ

.

Now ρε, s, and t are bounded above uniformly in ε for 0 < ε < δ0. Also,
since ρε > 1/2 when |t| < 1/4, the presence of the term (t2+ρ2ε)

1/2ρε in
the previous denominator guarantees that this denominator is bounded
below by a positive constant, uniformly in ε for 0 < ε < δ1. (We can
use δ1 here in view of (18).) Moreover, the same denominator appears
in ∂ρε/∂φ and ∂ρε/∂s, and powers of it appear in all higher derivatives
with respect to t, φ, and s. Therefore the partial derivatives of ρε of
any order are each bounded uniformly in ε for 0 < ε < δ1.

Next, we observe that if α is the angle between v and the w defined
by (14), then the set of points in Sn−1∩u⊥ having the same fixed angle
α at o is an (n − 3)-sphere of radius sinα. Then s = sinα and since
AKε,φ(t) = AKε−tu,φ(0), we have

AKε,φ(t) = Vn−1((Kε − tu) ∩ u⊥)

=
1

n− 1

∫

Sn−1∩u⊥

ρε(t, φ, cosα)
n−1 dv

=
ωn−2

n− 1

∫ π

0
ρε(t, φ, cosα)

n−1 sinn−3 α dα

=
ωn−2

n− 1

∫ 1

−1
ρε(t, φ, s)

n−1 dµ(s),(20)

where dµ(s) = (1−s2)(n−4)/2ds. (The geometry behind the substitution
in the integral is depicted in [7, Figure 8.4, p. 314]; compare the proof
of [7, Theorem C.2.9]. See also [10, Lemma 1.3.1(ii)].) Recalling that
the integrand in (20) can be regarded as defined for φ ∈ S1 via (16), we
see that we can regard AKε,φ(t) as an even function of φ ∈ S1 in the
sense that AKε,−φ(t) = AKε,φ(t) for all φ ∈ S1.

The restriction n ≥ 3 allows differentiation under the integral sign in
integrals with respect to dµ(s) such as (20) for which the integrand is



270 R. J. GARDNER, D. RYABOGIN, V. YASKIN & A. ZVAVITCH

continuously differentiable with respect to its variables. We shall use
this several times in the sequel without further comment.

At the unique point t = tε(φ) where AKε,φ(t) attains its maximum,
we have, by differentiating (20) with respect to t and using (19), that

A′
Kε,φ(t) = ωn−2

∫ 1

−1
ρε(t, φ, s)

n−2 ∂ρε
∂t

(t, φ, s) dµ(s)

= −ωn−2 ×∫ 1

−1
ρn−2
ε

(t2 + ρ2ε)
1/2t+ ε(t cos φ+ ρεs sinφ)

2 cosφ

(t2 + ρ2ε)
1/2ρε + ε(t cos φ+ ρεs sinφ)2s sinφ

dµ(s)

= 0,(21)

where ρε = ρε(t, φ, s).

When ε = 0, we have Kε = Bn, and from (15), ρ0 =
√
1− t2. Then

differentiation of (21) with ε = 0, with respect to t, yields

A′′
Kε,φ(t) = −ωn−2

∫ 1

−1
(1− t2)(n−3)/2

(
1− (n− 3)t2

1− t2

)
dµ(s) < 0

when n = 3 and when n ≥ 4 and |t| < 1/
√
n− 2. Since ρε and all its

derivatives are continuous with respect to ε, we have A′′
Kε,φ

(t) < 0 for

all sufficiently small ε > 0, |t| < 1/(2
√
n− 2), say, and φ ∈ S1. Now for

sufficiently small ε > 0, we have |tε(φ)| < 1/(2
√
n− 2), where tε(φ) was

defined in (i). Hence, by the implicit function theorem, for sufficiently
small ε > 0, the unique t with |t| < 1/(2

√
n− 2) that satisfies (21) is

t = tε(φ), and moreover tε(φ) ∈ C∞(S1). Summarizing, we have shown
that there is a positive ε1(n) ≤ δ1 such that for all 0 < ε < ε1(n),
t = tε(φ) satisfies (21) and tε(φ) ∈ C∞(S1).

Let 0 < ε < ε1(n). Rearranging (21), we obtain

(22) tε(φ) = −
∫ 1
−1 Φ(tε(φ), φ, s) dµ(s)∫ 1
−1Ψ(tε(φ), φ, s) dµ(s)

ε = Tε(φ)ε,

say, where

(23) Φ =
ρn−2
ε (tε(φ) cosφ+ ρεs sinφ)

2 cosφ

(tε(φ)2 + ρ2ε)
1/2ρε + ε(tε(φ) cos φ+ ρεs sinφ)2s sinφ

and

(24) Ψ =
ρn−2
ε (tε(φ)

2 + ρ2ε)
1/2

(tε(φ)2 + ρ2ε)
1/2ρε + ε(tε(φ) cos φ+ ρεs sinφ)2s sinφ

.

Here ρε = ρε(tε(φ), φ, s) and Φ and Ψ also involve t = tε(φ). Neverthe-
less, we have shown that tε(φ) = Tε(φ)ε, say, where Tε(φ) ∈ C∞(S1)
because tε(φ) ∈ C∞(S1). This completes the proof of (ii).

(iii) Let 0 < ε < ε1(n). In view of (22), (23), and (24) and the
previously established bounds |tε(φ)| < 1/4 and 1/2 < ρε < 3/2 that
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hold when 0 < ε < ε1(n), there is a constant c1(0, n) such that |Tε(φ)| ≤
c1(0, n) for all φ ∈ S1. This proves (12) for k = 0.

To prove (12) for k = 1, note that from (22) we obtain

Tε(φ)

∫ 1

−1
Ψ(Tε(φ)ε, φ, s) dµ(s) +

∫ 1

−1
Φ(Tε(φ)ε, φ, s) dµ(s) = 0.

Differentiating this equation with respect to φ and denoting by Φi and
Ψi the derivatives of Φ and Ψ with respect to the ith variable, i = 1, 2,
we get

T ′
ε(φ)

∫ 1

−1
Ψ dµ(s)

+Tε(φ)

∫ 1

−1
(Ψ1T

′
ε(φ)ε+Ψ2) dµ(s) +

∫ 1

−1
(Φ1T

′
ε(φ)ε+Φ2) dµ(s) = 0.

This yields

(25) T ′
ε(φ) = −

∫ 1
−1 (Tε(φ)Ψ2 +Φ2) dµ(s)∫ 1

−1 (Ψ + ε(Tε(φ)Ψ1 +Φ1)) dµ(s)
.

We have already shown that Tε(φ), ρε, and the partial derivatives of
ρε with respect to φ of any order are each bounded uniformly in ε
for 0 < ε < ε1(n). Furthermore we have that ρε is bounded below
by a positive constant, uniformly in ε. It then follows from (23) and
(24) that the partial derivatives Φi and Ψi, i = 1, 2, are all bounded
uniformly in ε. From (24) we also deduce that Ψ is bounded below by a
positive constant, uniformly in ε. These facts and (25) show that T ′

ε(φ)
is bounded uniformly in ε, proving (12) for k = 1.

Differentiation of (23) and (24) with respect to the variables tε(φ)
and φ, together with the previously established facts just mentioned,
reveals that the partial derivatives of Φ(tε(φ), φ, s) and Ψ(tε(φ), φ, s)
with respect to its first and second variables, of any order, are each
bounded uniformly in ε for 0 < ε < ε1(n). This and the fact that Ψ is
bounded below by a positive constant, uniformly in ε, allow the proof
of (iii) to be completed by repeatedly differentiating (25) with respect
to φ and using induction on k. q.e.d.

Lemma 3.4. Let n ≥ 3, let Kε be as in Lemma 3.2, and let 0 < ε <
ε1(n). Then mKε

∈ C∞
e (Sn−1) and there is a rotationally symmetric

function gε ∈ C∞
e (Sn−1) such that

(26) (n − 1)(R−1mKε
)(u) = 1 + (R−1gε)(u)ε,

for u ∈ Sn−1, where R is the spherical Radon transform. Moreover,

there is a constant c2(k, n) such that

(27)

∣∣∣∣
dkgε(φ)

dφk

∣∣∣∣ ≤ c2(k, n),
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for all 0 < ε < ε1(n) and φ ∈ S1.

Proof. Let 0 < ε < ε1(n). In the notation of the previous lemma,
using (20), we have

mKε
(φ) = max

t∈R
AKε,φ(t) = AKε,φ(tε(φ))

=
ωn−2

n− 1

∫ 1

−1
ρε(tε(φ), φ, s)

n−1 dµ(s),(28)

for φ ∈ S1. We know from the paragraph after (15) that ρε(t, φ, s) is
infinitely differentiable with respect to each of its variables and also that
tε(φ) ∈ C∞(S1) by Lemma 3.3(ii). It follows that mKε

(φ) ∈ C∞
e (S1)

and therefore mKε
(u) ∈ C∞

e (Sn−1).
We wish to rewrite the previous equation in a more convenient form.

To this end, we first use (15) to obtain

1− ρε =
(t cosφ+ ρεs sinφ)

3(1 + (t2 + ρ2ε)
3/2)

(1 + ρε)(1 + t2 + ρ2ε + (t2 + ρ2ε)
2)

ε+
t2

1 + ρε
.

When t = tε(φ), this and (11) imply that

ρε(tε(φ), φ, s) = 1− Uε(φ, s)ε,

say, where
(29)

Uε(φ, s) =
(Tε(φ)ε cos φ+ ρεs sinφ)

3 (1 + (Tε(φ)
2ε2 + ρ2ε)

3/2
)

(1 + ρε)
(
1 + Tε(φ)2ε2 + ρ2ε + (Tε(φ)2ε2 + ρ2ε)

2
) +

Tε(φ)
2ε

1 + ρε
.

Therefore

(30) ρε(tε(φ), φ, s)
n−1 = 1 + fε(φ, s)ε,

say, where

(31) fε(φ, s) =
n−1∑

j=1

(−1)j
(
n− 1

j

)
Uε(φ, s)

jεj−1.

By Lemma 3.3(iii), Tε(φ) and all its derivatives are bounded above uni-
formly in ε. Also, we showed in the proof of Lemma 3.3(ii) (paragraph
after (15)) that ρε and all its derivatives with respect to φ are bounded
uniformly in ε, and that ρε is bounded below by a positive constant,
uniformly in ε. These facts and repeated differentiation with respect to
φ of (31) and (29) show that for every k = 0, 1, . . . , there is a constant
a(k, n) such that

(32)

∣∣∣∣
dkfε(φ, s)

dφk

∣∣∣∣ ≤ a(k, n),

for all 0 < ε < ε1(n), all φ ∈ S1, and all −1 ≤ s ≤ 1.
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From (28) and (30), we obtain

(33) AKε, φ(tε(φ)) =
ωn−2

n− 1

∫ 1

−1
(1 + fε(φ, s)ε) dµ(s).

Note that when ε = 0, Kε = Bn, tε(φ) = 0, and AKε, φ(tε(φ)) = κn−1.
Hence, or by direct integration, we obtain

(34)
ωn−2

n− 1

∫ 1

−1
1 dµ(s) = κn−1.

Let

(35) gε(u) = gε(φ) = ωn−2

∫ 1

−1
fε(φ, s) dµ(s),

for u ∈ Sn−1 and φ ∈ S1. From (33) and (34) we obtain

mKε
(u) = max

t∈R
AKε,u(t) = κn−1 + gε(u)ε/(n − 1),

for all u ∈ Sn−1. Now gε(u) ∈ C∞
e (Sn−1) follows from mKε

(u) ∈
C∞
e (Sn−1). We also have

(n− 1)(R−1mKε
)(u) = R−1 ((n− 1)κn−1) + (R−1gε)(u)ε

= 1 + (R−1gε)(u)ε,

for all u ∈ Sn−1. Finally, (27) follows directly from (32) and (35). q.e.d.

Lemma 3.5. Let p ∈ {1, . . . , n − 1} and let g ∈ C∞(Rn \ {o}) be

homogeneous of degree −n+ p. Let

Gu(z) = (1− z2)(n−3)/2

∫

Sn−1∩u⊥

g(zu+
√

1− z2 v) dv,

for −1 ≤ z ≤ 1. If g is even, then

ĝ(u) =





(−1)(p−1)/2πG
(p−1)
u (0), if p is odd,

(−1)p/2(p− 1)!
(∫ 1

−1 |z|−p
(
Gu(z)−

∑p−1
k=0G

(k)
u (0)zk/k!

)
dz

+2
∑{G(k)

u (0)/(k!(1 + k − p)) : k = 0, . . . , p − 2, k even}
)
,

if p is even,

for u ∈ Sn−1. If g is odd, then

ĝ(u) =





(−1)p/2πG
(p−1)
u (0)i, if p is even,

(−1)(p+1)/2(p − 1)!×(∫ 1
−1 |z|−p sgn z

(
Gu(z) −

∑p−1
k=0G

(k)
u (0)zk/k!

)
dz

+2
∑

{G(k)
u (0)/(k!(1 + k − p)) : k = 1, . . . , p − 2, k odd}

)
i,

if p is odd,

for u ∈ Sn−1.
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Proof. The Fourier transform of a real even function is real and the
Fourier transform of a real odd function is purely imaginary. Using
these well-known facts, the four formulas for ĝ(u) in the statement of the
lemma are obtained by taking real or imaginary parts, as appropriate, in
the more general formulas [9, Equations (3.6) and (3.7), p. 395], which
apply to any function g ∈ C∞(Sn−1), extended to a homogeneous of
degree −n + p function, p ∈ {1, . . . , n − 1}, on Rn \ {o} as in (2) with
f = g. q.e.d.

Lemma 3.6. Let n ≥ 3 and let Kε be as in Lemma 3.2. For 0 < ε <
ε1(n), define

(36) ρLε
(u) =

(
(n− 1)(R−1mKε

)(u)
)1/(n−1)

,

for all u ∈ Sn−1. Then there is a positive ε2(n) ≤ ε1(n) such that ρLε

is the radial function of an origin-symmetric star body Lε in Rn with

ρLε
∈ C∞(Sn−1), for all 0 < ε < ε2(n).

Proof. Let 0 < ε < ε1(n) and let gε ∈ C∞
e (Sn−1) be the function

from Lemma 3.4. Extend gε to a homogeneous of degree −1 function
in C∞

e (Rn \ {o}) as in (2) with f = gε and p = n− 1. Then, by (7), we
have

(R−1gε)(u) =
π

(2π)n
ĝε(u),

for u ∈ Sn−1. From this, (26), and (36), we conclude that

(37) ρLε
(u) =

(
1 +

π

(2π)n
ĝε(u)ε

)1/(n−1)

,

for all u ∈ Sn−1.
Define

(38) Gε,u(z) = (1− z2)(n−3)/2

∫

Sn−1∩u⊥

gε(zu+
√

1− z2 v) dv,

for −1 ≤ z ≤ 1. Since (27) holds for all φ ∈ S1 (and not just for
φ ∈ [0, π]), it is not difficult to check that the rotationally symmetric
function gε(x/|x|), x ∈ Rn \ {o}, has each of its partial derivatives with
respect to xi, i = 1, . . . , n, of any order bounded on Sn−1, uniformly in
ε. From this and (38) we see that for k = 0, 1, . . . , there are constants
c3(k, n) such that

(39) |G(k)
ε,u(0)| ≤ c3(k, n),

for all 0 < ε < ε1(n) and u ∈ Sn−1.
Next, we apply Lemma 3.5 for the case when g is even (with g

and Gu replaced by gε and Gε,u, respectively). Suppose first that n
is even. By (39) and Lemma 3.5 with p = n − 1, it follows that

ĝε(u) = (−1)(n−2)/2πG
(n−2)
ε,u (0) is bounded on Sn−1. From (37) we con-

clude that there is a positive ε2(n) ≤ ε1(n) such that ρLε
(u) > 0 for all
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u ∈ Sn−1, and hence such that Lε is an origin-symmetric star body, for
all 0 < ε < ε2(n).

Now suppose that n is odd. By Lemma 3.5 with p = n−1, we obtain
ĝε(u) = (−1)(n−1)/2(n− 2)!(Iε(u) + Σε(u)), where

Iε(u) =

∫ 1

−1
|z|−n+1

(
Gε,u(z)−

n−2∑

k=0

G(k)
ε,u(0)

zk

k!

)
dz

and

Σε(u) = 2
∑{

G
(k)
ε,u(0)

k!(2 + k − n)
: k = 0, . . . , n− 3, k even

}
.

By (39), Σε(u) is bounded on Sn−1. The integral Iε(u) over the range
[0, 1] can be written as

I+ε (u) =

∫ 1/2

0
z−n+1

(
Gε,u(z)−

n−2∑

k=0

G(k)
ε,u(0)

zk

k!

)
dz

+

∫ 1

1/2
z−n+1

(
Gε,u(z) −

n−2∑

k=0

G(k)
ε,u(0)

zk

k!

)
dz.(40)

Using (39) again, we see that the second integral in (40), as a function
of u, is bounded on Sn−1. By Taylor’s theorem, the first integral in (40)
is equal to

∫ 1/2

0

G
(n−1)
ε,u (c(z))

(n − 1)!
dz,

for some 0 < c(z) < 1/2. It follows from (38) that as a function of

u, G
(n−1)
ε,u (z) is bounded on Sn−1, uniformly in z for 0 ≤ z ≤ 1/2.

Therefore I+ε (u) is bounded on Sn−1. Similarly, the integral Iε(u) over
the range [−1, 0] is bounded on Sn−1. Consequently, Iε(u) itself and
therefore ĝε(u) are bounded on Sn−1. Then, as for the case when n is
even, we conclude from (37) that there is a positive ε2(n) ≤ ε1(n) such
that Lε is an origin-symmetric star body, for all 0 < ε < ε2(n). q.e.d.

Lemma 3.7. Let Lε be as in Lemma 3.6, where 0 < ε < ε2(n).
Then there is a positive ε3(n) ≤ ε2(n) such that Lε is convex for all

0 < ε < ε3(n).

Proof. Let 0 < ε < ε2(n) and let gε be as in Lemma 3.6. Since Lε is a
body of revolution whose radial function is given by (37), its intersection
with the x1, xn-plane is a curve whose radial function is

(41) r(φ) =

(
1 +

π

(2π)n
ĝε(sinφ e1 + cosφ en) ε

)1/(n−1)

.

It suffices to prove that this curve is convex for small ε.
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We claim that the first and second partial derivatives of ĝε with re-
spect to x1 and xn are bounded on Sn−1 uniformly in ε for small ε.
Once this has been proved, it follows that the first and second deriva-
tives of ĝε(sinφ e1 + cosφ en) with respect to φ are bounded uniformly
in ε for small ε. The required convexity is then an easy consequence of
the polar coordinate formula (10) for curvature, (41), and the fact that
r(φ) is close to 1 when ε is small.

It remains to prove the claim above. By [13, Lemma 3.16], ĝε is an
infinitely differentiable function that is homogeneous of degree −n +
1 on Rn \ {o}. Therefore for q = 1, . . . , n, ∂ĝε/∂xq is an infinitely
differentiable function that is homogeneous of degree −n on Rn \ {o}.

Let ψ be a test function with support in Rn \ {o} and let q ∈
{1, . . . , n}. Denote by 〈∂ĝε/∂xq, ψ〉 the action of the distribution
∂ĝε/∂xq and note that since ψ has support in Rn \ {o}, the deriva-
tive ∂ĝε/∂xq can be regarded in both the distributional and the usual
sense. Let hε,q(x) = xqgε(x) for x ∈ Rn\{o}. Using first (4) with f = gε
and then (5) with f = hε,q, we obtain

〈
∂ĝε
∂xq

, ψ

〉
= −i〈ĥε,q, ψ〉 = −i〈|x|2ĥε,q(x), |x|−2ψ(x)〉

= i〈∆̂hε,q(x), |x|−2ψ(x)〉 = i〈|x|−2△̂hε,q(x), ψ(x)〉.
This gives

(42)
∂ĝε
∂xq

= i|x|−2△̂hε,q

on Rn \{o}, because by [19, Theorem 6.25], distributions that are equal
on test functions with support in Rn \ {o} can differ at most by deriva-
tives of the delta function.

Let g(x) = △hε,q(x) = △(xqgε)(x) for x ∈ Rn \ {o}. Then, with
(42) in hand, the desired bounds for ∂ĝε/∂xq on Sn−1 will follow from
corresponding bounds for ĝ. To this end, observe that since xqgε is an
infinitely differentiable odd function on Rn \{o} that is homogeneous of
degree 0, g is an infinitely differentiable odd function on Rn \ {o} that
is homogeneous of degree −2. Therefore ĝ is an infinitely differentiable
function on Rn \ {o} that is homogeneous of degree −n + 2 and which
can be computed by Lemma 3.5. Letting

Gu(z) = (1− z2)(n−3)/2

∫

Sn−1∩u⊥

g(zu+
√

1− z2 v) dv,

for −1 ≤ z ≤ 1, and using (27), we see that for k = 0, 1, . . . , there are
constants c4(k, n) such that

(43) |G(k)
u (0)| ≤ c4(k, n),

for all 0 < ε < ε2(n) and u ∈ Sn−1. Bounds for ĝ now follow from
Lemma 3.5 for the case when g is odd and p = n − 2. Indeed, it
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follows immediately from this and (43) that when n is even, ĝ(u) =

(−1)(n−2)/2πG
(n−3)
u (0) is bounded on Sn−1 uniformly in ε for small

ε. The case when n is odd is handled in exactly the same way as in
Lemma 3.6 and we omit the details.

Bounds for the second partial derivatives of ĝε on Sn−1 are obtained
in an entirely analogous fashion, as follows. Let q, r ∈ {1, . . . , n} and
let jε,q,r(x) = xqxrgε(x) for x ∈ Rn \ {o}. An argument similar to the
one that showed (42) gives

∂2ĝε
∂xq∂xr

= |x|−2△̂jε,q,r

on Rn \ {o}. Here △̂jε,q,r is an infinitely differentiable even function on

Rn \ {o} that is homogeneous of degree −1. Bounds for △̂jε,q,r on Sn−1

are then obtained via (43) and Lemma 3.5 for the case when g is even
and p = n− 1. Again, we omit the details since the argument is exactly
the same as for the first partial derivatives of ĝε. q.e.d.

Proof of Theorem 3.1. Let n ≥ 3 and 0 < ε < ε3(n). Let K = Kε

be defined by (8) and let L = Lε be defined by (36). By Lemmas 3.2
and 3.7, K and L are convex bodies of revolution about the xn-axis.
Lemma 3.2 shows that ρK ∈ C∞(Sn−1) and that K is not centrally
symmetric. From Lemma 3.6, we get that ρL ∈ C∞(Sn−1) and that L is
origin symmetric. The Brunn-Minkowski theorem implies thatmL(u) =
Vn−1(L∩u⊥) for all u ∈ Sn−1. By Lemma 3.4, we havemK ∈ C∞

e (Sn−1).
Therefore, by (36) and the fact that R : C∞

e (Sn−1) → C∞
e (Sn−1) is a

continuous bijection, we obtain

mL(u) = Vn−1(L ∩ u⊥) =
1

n− 1
(Rρn−1

L )(u)

= (R(R−1mK))(u) = mK(u),

for all u ∈ Sn−1. q.e.d.

4. Concluding remarks

The definition (8) of the body K = Kε appears to be essentially the
simplest that allows our construction to work. For example, if we define

ρKε
(φ) = (1 + ε cosφ)−1 ,

where 0 < ε < 1 and 0 ≤ φ ≤ π is the angle with the positive xn-axis,
then K = Kε is an ellipsoid. In particular, it is centrally symmetric. If
K ′ denotes the origin-symmetric translation of K, then our construction
would yield IL = CK = CK ′ = IK ′. This would imply K ′ = L and
hence that K and L are equal up to a translation. Of course the formula

ρKε
(φ) =

(
1 + ε cos2 φ

)−2
,
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gives a K = Kε that is already origin symmetric.
Klee [11], [12] (see also [3, p. 24] and [7, Problem 8.8(ii)]) also asked

whether a convex body in Rn, n ≥ 3, whose inner section function is
constant, must be a ball. The hypothesis is actually weaker than that of
Bonnesen’s question in [1] of whether a convex body in Rn, n ≥ 3, must
be a ball if both its inner section function and its brightness function are
constant. Today, Bonnesen’s question (see [3, p. 24] and [7, Problem
8.9(ii)]) is one of the oldest open problems in convex geometry. (For n =
2, a counterexample is again provided by any convex body of constant
width that is not a disk; this follows from the fact, mentioned in the
introduction, that in the plane, the cross-section body and projection
body coincide.)
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