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Abstract

We find a one-parameter family of coordinates {Ψh}h∈R which
is a deformation of Penner’s simplicial coordinate of the deco-
rated Teichmüller space of an ideally triangulated punctured sur-
face (S, T ) of negative Euler characteristic. If h > 0, the decorated
Teichmüller space in the Ψh coordinate becomes an explicit con-
vex polytope P (T ) independent of h, and if h < 0, the decorated
Teichmüller space becomes an explicit bounded convex polytope
Ph(T ) so that Ph(T ) ⊂ Ph′(T ) if h < h′. As a consequence,
Bowditch-Epstein and Penner’s cell decomposition of the deco-
rated Teichmüller space is reproduced.

1. Introduction

Decorated Teichmüller space of a punctured surface was introduced
by Penner in [15] as a fiber bundle over the Teichmüller space of com-
plete hyperbolic metrics with cusp ends. He also gave a cell decompo-
sition of the decorated Teichmüller space invariant under the mapping
class group action. To give the cell decomposition, Penner used the
convex hull construction and introduced the simplicial coordinate Ψ in
which the cells can be easily described. In [4], Bowditch-Epstein ob-
tained the same cell decomposition using the Delaunay construction.
The corresponding results for the Teichmüller space of a surface with
geodesic boundary have also been obtained. Using Penner’s convex
hull construction, Ushijima [19] found a mapping class group invariant
cell decomposition, and following the approach of Bowditch-Epstein [4],
Hazel [10] obtained a natural cell decomposition of the Teichmüller space
of a surface with fixed geodesic boundary lengths. As a counterpart of
Penner’s simplical coordinate Ψ, Luo [12] introduced a coordinate Ψ0 on
the Teichmüller space of an ideally triangulated surface with geodesic
boundary, and Mondello [14] pointed out that the Ψ0 coordinate gave
a natural cell decomposition of the Teichmüller space.
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In [13], Luo deformed the Ψ0 coordinate to a one-parameter family of
coordinates {Ψh}h∈R of the Teichmüller space of a surface with geodesic
boundary, and proved that, for h > 0, the image of Ψh is an explicit
open convex polytope independent of h. For h < 0, Guo [6] proved
that the image of Ψh is an explicit bounded open polytope. It is then a
natural question to ask if there is a corresponding deformation of Pen-
ner’s simplicial coordinate Ψ. The purpose of this paper is to provide
an affirmative answer to this question. We give a one-parameter family
of coordinates {Ψh}h∈R of the decorated Teichmüller space of an ide-
ally triangulated punctured surface so that Ψ0 coincides with Penner’s
simplicial coordinate Ψ (Theorem 1.1). We also describe the image of
Ψh (Theorem 1.2) and show that Ψh is the unique possible deformation
of Ψ (Theorem 5.1). As an application, Bowditch-Epstein and Penner’s
cell decomposition of the decorated Teichmüller space is reproduced us-
ing the Ψh coordinate (Corollary 1.4). The main results of this paper
can be considered as a counterpart of the work of [6], [13] and [8].

To be precise, let T be a triangulation of a closed surface S and let
V , E and F be the set of vertices, edges and triangles of T respectively.
We call T = {σ − V | σ ∈ F} an ideal triangulation of the punctured
surface S = S − V , and V the set of ideal vertices (or cusps) of S. As a
convention in this paper, S is assumed to have negative Euler character-
istic. Let Tc(S) be the Teichmüller space of complete hyperbolic metrics
with cusp ends on S. According to Penner [15], a decorated hyperbolic
metric (d, r) ∈ Tc(S)×RV>0 on S is the equivalence class of a hyperbolic
metric d in Tc(S) such that each cusp v is associated with a horodisk
Bv centered at v so that the length of ∂Bv is rv. The space of deco-
rated hyperbolic metrics Tc(S)×RV>0 is the decorated Teichmüller space.

Let us recall Penner’s simplicial coordinate Ψ. Let (d, r) ∈ Tc(S) ×
RV>0 be a decorated hyperbolic metric and let e be an edge of T . If a
and a′ are the generalized angles (see Section 2) facing e, and b, b′, c
and c′ are the generalized angles adjacent to e, then Penner’s simplicial
coordinate Ψ: Tc(S)× RV>0 → RE is defined by

Ψ(d, r)(e) =
b+ c− a

2
+
b′ + c′ − a′

2
.

An edge path (t0, e1, t1, . . . , en, tn) in a triangulation T is an alternat-
ing sequence of edges ei with ei 6= ei+1 for i = 1, . . . , n− 1 and triangles
ti so that adjacent triangles ti−1 and ti share the same edge ei for any
i = 1, . . . , n. An edge loop is an edge path with tn = t0. A fundamental
edge path is an edge path so that each edge in the triangulation appears
at most once, and a fundamental edge loop is an edge loop so that each
edge in the triangulation appears at most twice. In [15], Penner proved
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Figure 1. Penner’s simplicial coordinate.

that for any vector z ∈ RE>0 such that
∑k

i=1 z(ei) > 0 for any fun-
damental edge loop (e1, t1, . . . , ek, tk), there exists a unique decorated
complete hyperbolic metric (d, r) on S so that Ψ(d, r) = z. By using a
variational principle on decorated ideal triangles, Guo and Luo [7] were
able to prove that Penner’s simplicial coordinate Ψ: Tc(S)×RV>0 → RE
is a smooth embedding with image the convex polytope

P (T ) =

{
z ∈ RE |

k∑
i=1

z(ei) > 0

for any fundamental edge loop (e1, t1, . . . , ek, tk)

}
.

Let (S, T ) be an ideally triangulated punctured surface. To de-
form Penner’s simplicial coordinate, we define for each h ∈ R a map
Ψh : Tc(S)× RV>0 → RE by

Ψh(d, r)(e) =

∫ b+c−a
2

0
eht

2
dt+

∫ b′+c′−a′
2

0
eht

2
dt,

where a and a′ are the generalized angles facing e, and b, b′, c and c′ are
the generalized angles adjacent to e as in Figure 1. The main theorems
of this paper are the following

Theorem 1.1. Suppose that (S, T ) is an ideally triangulated punctured
surface. Then for all h ∈ R, the map Ψh : Tc(S) × RV>0 → RE is a
smooth embedding.

Theorem 1.2. For h ∈ R and an ideally triangulated punctured surface
(S, T ), let Ph(T ) be the set of points z ∈ RE such that

(a) z(e) < 2
∫ +∞
0 eht

2
dt for each edge e ∈ E,

(b)
∑n

i=1 z(ei) > −2
∫ +∞
0 eht

2
dt for each fundamental edge path (t0, e1,

t1, . . . , en, tn),
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(c)
∑n

i=1 z(ei) > 0 for each fundamental edge loop (e1, t1, . . . , en, tn).

Then we have Ψh(Tc(S) × RV>0) = Ph(T ). Furthermore, if h > 0, then
conditions (a) and (b) become trivial, and the image of Ψh is the open
convex polytope P (T ), hence independent of h; and if h < 0, then the
image Ph(T ) is a bounded open convex polytope so that Ph(T ) ⊂ Ph′(T )
if h < h′.

Clearly Ψ0 coincides with Penner’s simplicial coordinate Ψ and Ψh

is a deformation of Ψ. Theorem 1.1 is proved in Section 2 using the
strategy of Guo-Luo [7]. We set up a variational principle from the de-
rivative cosine law of decorated ideal triangles whose energy function Vh
is strictly concave. For i = 1, . . . , |E|, each variable of Vh is a smooth
monotonic function of the edge length li in the decorated hyperbolic
metric (d, r), and Ψh is the gradient of Vh, hence is a smooth embed-
ding. We study various degenerations of decorated ideal triangles in
Section 3 with which we will prove Theorem 1.2 in Section 4. We will
also prove that {Ψh}h∈R is the unique possible deformation of Penner’s
simplicial coordinate by using a variational principle (Theorem 5.1).

The Delaunay cell decomposition of a decorated hyperbolic surface
will be reviewed in Section 6 and we will prove the following

Theorem 1.3. Suppose (S, T ) is an ideally triangulated punctured sur-
face, and (d, r) ∈ Tc(S) × RV>0 is a decorated hyperbolic metric so that
the horodisks associated to the ideal vertices do not intersect. Then for
all h ∈ R, the corresponding Delaunay decomposition Σd,r coincides with
the ideal triangulation T if and only if Ψh(d, r)(e) > 0 for each e ∈ E.

Bowditch-Epstein [4] and Penner [15] showed that there is a natu-
ral cell decomposition of the decorated Teichmüller space Tc(S) × RV>0

invariant under the mapping class group action. One interesting conse-
quence of Theorems 1.1, 1.2 and 1.3 is the following. Let A(S)−A∞(S)
be the fillable arc complex as in [9], and let |A(S)− A∞(S)| be its un-
derlying space. Penner [15] provided a mapping class group equivariant
homeomorphism

Π: Tc(S)× RV>0 → |A(S)−A∞(S)| × R>0

so that the restriction of Π to each simplex of maximum dimension is
given by the simplicial coordinate Ψ. Using Penner’s method, we have
the following

Corollary 1.4. Suppose that S is a punctured surface of negative Euler
characteristic.

(a) For all h > 0, there is a homeomorphism

Πh : Tc(S)× RV>0 → |A(S)−A∞(S)| × R>0
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equivariant under the mapping class group action so that the restric-
tion of Πh to each simplex of maximum dimension is given by the
Ψh coordinate.

(b) The cell structures for various h > 0 are the same as Penner’s.

Acknowledgments. The author would like to thank Feng Luo for
instructive discussions on this subject and suggestions for improving
this paper, Shiu-chun Wong for making several crucial suggestions on
polishing the writing of this paper, Ren Guo, Julien Roger and Jian
Song for useful suggestions and Tianling Jin for helpful discussions.
The author is also very grateful to the referee for the carefully reading
and making many valuable suggestions on both the mathematics and
the writing of this paper.

2. A variational principle on decorated ideal triangles

Let (S, T ) be an ideally triangulated punctured surface with a set
of ideal vertices V and a set of edges E. We assume that S has neg-
ative Euler characteristic. The proof of Theorem 1.1 goes as follows.
By Penner [15], there is a smooth parametrization of the decorated Te-
ichmüller space Tc(S) × RV>0 by RE using the edge lengths. From the
cosine law of decorated ideal triangles [15], we construct for each h ∈ R
a smooth strictly convex function Vh on a convex subset of RE so that
its gradient is Ψh. By a variational principle, for each h ∈ R, the map
Ψ: Tc(S)×RV>0 → RE is a smooth embedding. This variational princi-
ple, whose proof is elementary, is: If X is an open convex set in Rn and
f : X → R is smooth strictly concave, then the gradient ∇f : X → Rn
is injective. Furthermore, if the Hessian of f is negative definite for all
x ∈ X, then ∇f is a smooth embedding.

A decorated ideal triangle ∆ in the hyperbolic plane H2 is an ideal
triangle such that each ideal vertex v is associated with a horodisk Bv
centered at v. If e1 and e2 are two edges adjacent to an ideal vertex v of
∆, then the generalized angle of ∆ at v is defined to be the length of the
intersection of ∂Bv and the cusp region enclosed by e1 and e2. (In [15],
Penner called the generalized angles the h-lengths of a decorated ideal
triangle, and in [7], Guo and Luo defined the generalized angle to be
twice of the generalized angle defined here.) If e is an edge of ∆ with
ideal vertices u and v, then the generalized edge length (or edge length
for simplicity) of e in ∆ is the signed hyperbolic distance between the
intersection of e and ∂Bu and the intersection of e and ∂Bv (Figure
2 (a)). Note that if Bu ∩ Bv 6= ∅, then the generalized edge length of
e is either zero or negative (Figure 2 (b)). In a decorated hyperbolic
metric (d, r) ∈ Tc(S)×RV>0, each triangle σ in T is isometric to an ideal

triangle and the decoration r ∈ RV>0 induces a decoration on σ. If e ∈ E
is an edge and σ is an ideal triangle adjacent to e, then the generalized
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edge length ld,r(e) of e is defined to be the generalized edge length of e
in σ. It is clear that ld,r(e) does not depend on the choice of σ.

1

3 2

l l

l1

32

v

v v
3

2

1

u

v

l(e) < 0

e

Bv

Bu

(a ) (b )

Figure 2. Generalized angles and edge lengths.

Penner [15] defined the length parametrization

L : Tc(S)× RV>0 →RE

(d, r) 7→ld,r
and showed that L is a diffeomorphism. (The exponential of half of the
generalized edge length, which is called the λ-length in [15], is sometimes
called Penner’s coordinate in the literature.) Penner also proved the
following cosine law of decorated ideal triangles. Suppose that ∆ is a
decorated ideal triangle with edge lengths l1, l2 and l3 and opposite
generalized angles θ1, θ2 and θ3. For i, j, k = 1, 2, 3,

(1) θi = e
li−lj−lk

2 and eli =
1

θjθk
.

As a consequence, there is the sine law of decorated triangles:

(2)
θ1
el1

=
θ2
el2

=
θ3
el3
.

For i, j, k = 1, 2, 3 and xi =
θj+θk−θi

2 , let µ(xi) =
∫ xi
0 eht

2
dt and

ui =
∫ li
0 e−he

−t
dt. Denote by U ⊂ R3 the set of all possible values of

u = (u1, u2, u3).

Lemma 2.1. For each h ∈ R, the differential 1-form ωh=
∑3

i=1 µ(xi)dui
is closed in U and the function Fh defined by the integral Fh(u) =

∫ u
0 ωh

is strictly concave in U . Furthermore,

∂Fh
∂ui

=

∫ xi

0
eht

2
dt.
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Proof. Consider the matrix H = [∂µ(xi)∂uj
]3×3. The closedness of ωh is

equivalent to that H is symmetric, and the strict concavity of Fh will
follow from the negative definiteness of H. It follows from the partial

derivatives of (1) that ∂xi
∂li

= −xi+xj+xk
2 and ∂xi

∂lj
= xk

2 . We have

∂µ(xi)

∂ui
=

ehx
2
i

e−he
−li

∂xi
∂li

= −xi + xj + xk
2

e
h

(
θ2i +θ2j+θ2k

4
+

3θjθk−θiθk−θiθj
2

)
,

and for i 6= j, we have

∂µ(xi)

∂uj
=

ehx
2
i

e−he
−lj

∂xi
∂lj

=
xk
2
e
h

(
θ2i +θ2j+θ2k

4
+
θjθk+θiθk−θiθj

2

)
,

from which we see that H is symmetric. Let

c =
1

2
e
h

(
θ2i +θ2j+θ2k

4
−
θjθk+θiθk+θiθj

2

)
> 0

and let D be the diagonal matrix whose (i, i)-th entry is ehθjθk . The
matrix H can be written as cDMD, where

M =

−(x1 + x2 + x3) x3 x2
x3 −(x1 + x2 + x3) x1
x2 x1 −(x1 + x2 + x3)

 .
The negative definiteness of H is equivalent to that of M , i.e., the pos-
itive definiteness of −M . This follows from the direct calculation that
each leading principal minor is positive using Sylvester’s criterion. q.e.d

Proof of Theorem 1.1. For a decorated hyperbolic metric (d, r) ∈
Tc(S) × RV>0, let ld,r ∈ RE be its length parameter. The integral

u(e) =
∫ ld,r(e)
0 e−he

−t
dt is a smooth monotonic function of ld,r(e), and

the possible values of u form an open convex cube U in RE . With
ui = u(ei), the energy function Vh : U → R is defined by

Vh(u) =
∑

{ei,ej ,ek}

Fh(ui, uj , uk),

in which the summation is taken over all of the decorated ideal triangles.
By Lemma 2.1, Vh is smooth and strictly concave in U and

∂Vh
∂ui

= Ψh(ei),

i.e., ∇Vh = Ψh. By the variational principle, the map Ψh = ∇Vh : U →
RE is a smooth embedding. q.e.d
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3. Degenerations of decorated ideal triangles

To describe the image of Ψh, we study degenerations of decorated
ideal triangles. Suppose ∆ is a decorated ideal triangle with edge lengths
l1, l2 and l3 and opposite generalized angles θ1, θ2 and θ3.

Lemma 3.1.

(I) If {(l1, l2, l3)} converges to (−∞, c2, c3) with c2, c3 ∈ (−∞,+∞],
then {θ1} converges to 0, and we can take a subsequence so that
at least one of {θ2} and {θ3} converges to +∞.

(II) If {(l1, l2, l3)} converges to (−∞,−∞, c3) with c3 ∈ (−∞,+∞],
then {θ3} converges to +∞, and we can take a subsequence so
that at least one of {θ1} and {θ2} converges to a finite number.

(III) If {(l1, l2, l3)} converges to (−∞,−∞,−∞), then we can take a
subsequence such that at least two of {θ1}, {θ2} and {θ3} converge
to +∞.

Proof. For (I), if {(l1, l2, l3)} converges to (−∞, c2, c3), then { l1−l2−l32 }
converges to −∞. By cosine law (1), {θ1} = {e

l1−l2−l3
2 } converges to

0. Let a2 = l2−l1−l3
2 and a3 = l3−l1−l2

2 , so {a2 + a3} = {−l1} con-
verges to +∞. Thus, by taking a subsequence if necessary, at least one
of {a2} and {a3}, say {a2}, converges to +∞, and {θ2} = {ea2} con-
verges to +∞. For (II), if {(l1, l2, l3)} converges to (−∞,−∞, c3), then

{ l3−l1−l22 } converges to +∞, and {θ3} = {e
l3−l1−l2

2 } converges to +∞.

Letting a1 = l1−l2−l3
2 and a2 = l2−l1−l3

2 , we have {a1 + a2} = {−l3}
converges to −c3. Thus, either both {a1} and {a2} converge to a fi-
nite number, or by taking a subsequence if necessary, at least one of
{a1} and {a2}, say {a1}, converges to −∞. In the former case, both
{θ1} = {ea1} and {θ2} = {ea2} converge to a finite number, and in the
latter case, {θ1} = {ea1} converges to 0. For (III), we have by cosine
law (1) that {θ1θ2} = {e−l3} converges to +∞. Thus, by taking a sub-
sequence if necessary, at least one of {θ1} and {θ2}, say {θ1}, converges
to +∞. Since {θ2θ3} = {e−l1} converges to +∞ as well, by taking a
subsequence, at least one of {θ2} and {θ3} converges to +∞. q.e.d

We call a converging sequence of decorated ideal triangles in (I), (II)
and (III) of Lemma 3.1 a degenerated decorated ideal triangle of type I,
II and III respectively. If a is the generalized angle facing an edge e in
a decorated triangle ∆, and b and c are the generalized angles adjacent
to e, then we call x(e) = b+c−a

2 the x-invariant of e in ∆.

Corollary 3.2. If ∆ is a degenerated decorated ideal triangle of type I,
II or III, then by taking a subsequence if necessary, there is an edge e
of ∆ such that {l(e)} converges to −∞ and {x(e)} converges to +∞.
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Proof. If ∆ is of type I and {l1} converges to −∞, then by Lemma

3.1 (I), {x1} = { θ2+θ3−θ12 } converges to +∞. If ∆ is of type II and
{(l1, l2, l3)} converges to (−∞,−∞, c3), then by Lemma 3.1 and tak-
ing a subsequence if necessary, at least one of {θ1} and {θ2}, say {θ1},
converges to a finite number, and {θ3} converges to +∞. Thus, {l1}
converges to −∞ and {x1} = { θ2+θ3−θ12 } converges to +∞. If ∆ is of
type III, then there are at least two of {θ1}, {θ2} and {θ3} that converge
to +∞. Suppose {θ3} is one of the two that converge to +∞. Since
{x1+x2} = {θ3} converges to +∞, by taking a subsequence if necessary,
at least one of {x1} and {x2}, say {x1}, converges to +∞. Thus, {l1}
converges to −∞ and {x1} converges to +∞. q.e.d

We call an edge e as in Corollary 3.2 where l(e) → −∞ and x(e) →
+∞ a bad edge of ∆, and otherwise, e is a good edge. Note that there
may be more than one bad edge in a degenerated ideal triangle.

Lemma 3.3. Let {∆(m)} be a sequence of decorated ideal triangles that
converges to a degenerated decorated ideal triangle ∆ of type I, II or
III. Then we can take a subsequence so that for m sufficiently large, the
length of each bad edge of ∆(m) is strictly less than the length of each
good edge.

Proof. If ∆ is of type I, then by Lemma 3.1, the length of the only bad
edge converges to −∞ and the length of other two edges converge to
a finite number. For m sufficiently large, the length of the bad edge is
less than the lengths of the good edges.

v

v v23

1 v

v v23

1

-oo

-oo -oo

-oo

c c

+oo +oo +oo

(1) (2)

<oo

<oo

<oo

Figure 3. Type II.

If ∆ is of type II, we may assume that {(l(m)
1 , l

(m)
2 , l

(m)
3 )} converges to

(−∞,−∞, c) with c ∈ (−∞,+∞]. By Lemma 3.1, there are two cases
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to be considered (Figure 3).

Case 1. Suppose that θ
(m)
3 converges to +∞ and both θ

(m)
1 and θ

(m)
2

converge to a finite number. In this case, both l1 and l2 are bad and con-
verge to −∞. The only good edge length l3 converges to c ∈ (−∞,+∞].

Hence for m sufficiently large, l
(m)
1 < l

(m)
3 and l

(m)
2 < l

(m)
3 .

Case 2. Suppose that θ
(m)
3 converges to +∞, and one of θ

(m)
1 and θ

(m)
2 ,

say θ
(m)
2 , converges to +∞ and θ

(m)
1 converges to a finite number. In

this case l1 is bad. If l2 is also bad, then both l1 and l2 converge to
−∞, and l3 converges to c ∈ (−∞,+∞]. Hence for m sufficiently large,

l
(m)
1 < l

(m)
3 and l

(m)
2 < l

(m)
3 . If l2 is good, then θ

(m)
1 < θ

(m)
2 for m suffi-

ciently large, since θ
(m)
1 converges to a finite number and θ

(m)
2 converges

to +∞. By sine law (2), l
(m)
1 < l

(m)
2 .

v

v v23

1 v

v v23

1

-oo

-oo -oo

-oo
+oo +oo

+oo+oo

+oo

-oo -oo

(1) (2)

<oo

Figure 4. Type III.

If ∆ is of type III, then by Lemma 3.1, we also consider two cases
(Figure 4).

Case 1. Two of θ
(m)
1 , θ

(m)
2 and θ

(m)
3 , say θ

(m)
1 and θ

(m)
2 converge to +∞,

and θ
(m)
3 converges to a finite number. In this case, l3 is bad. Since

θ
(m)
3 < θ

(m)
1 and θ

(m)
3 < θ

(m)
2 for m sufficiently large, by sine law (2),

l
(m)
3 < l

(m)
1 and l

(m)
3 < l

(m)
2 . If one of l1 and l2, say l2, is also bad,

then x
(m)
2 =

θ
(m)
1 +θ

(m)
3 −θ(m)

2
2 converges to +∞. Since θ

(m)
3 converges to

a finite number, θ
(m)
2 < θ

(m)
1 for m sufficiently large. By sine law (2),

l
(m)
2 < l

(m)
1 .
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Case 2. All of θ
(m)
1 , θ

(m)
2 and θ

(m)
3 converge to +∞. In this case,

since x
(m)
i + x

(m)
j = θ

(m)
k converges to +∞, by taking a subsequence

if necessary, at least two of x
(m)
1 , x

(m)
2 and x

(m)
3 , say x

(m)
1 and x

(m)
2 ,

converge to +∞. Therefore, l3 is the only possible good edge length,

and x
(m)
3 converges to a finite number. For m sufficiently large, θ

(m)
1 =

x
(m)
2 +x

(m)
3 < x

(m)
1 +x

(m)
2 = θ

(m)
3 and θ

(m)
2 = x

(m)
1 +x

(m)
3 < x

(m)
1 +x

(m)
2 =

θ
(m)
3 . By sine law (2), l

(m)
1 < l

(m)
3 and l

(m)
2 < l

(m)
3 . q.e.d

Lemma 3.4.

(a) If {(l1, l2, l3)} converges to (+∞, f2, f3) with f2, f3 ∈ R, then {(θ1, θ2,
θ3)} converges to (+∞, 0, 0).

(b) If {(l1, l2, l3)} converges to (+∞,+∞, f3) with f3 ∈ R, then {θ3}
converges to 0.

(c) If {(l1, l2, l3)} converges to (+∞,+∞,+∞), then we can take a sub-
sequence such that at least two of {θ1}, {θ2} and {θ3} converge to
0.
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0 0
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0

0
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Figure 5. Type IV and other types.
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We call a converging sequence of decorated ideal triangles in (a) of
Lemma 3.4 a degenerated decorated ideal triangle of type IV (Figure 5).

Proof. For (a), if {(l1, l2, l3)} converges to (+∞, f2, f3), then by co-

sine law (1), {θ1} = {e
l1−l2−l3

2 } converges to +∞, {θ2} = {e
l2−l1−l3

2 }
converges to 0, and {θ3} = {e

l3−l1−l2
2 } converges to 0. For (b), if

{(l1, l2, l3)} converges to (+∞,+∞, f3), then { l3−l1−l22 } converges to

−∞, and {θ3} = {e
l3−l1−l2

2 } converges to 0. For (c), if {(l1, l2, l3)}
converges to (+∞,+∞,+∞), then we have by cosine law (1) that
{θ1θ2} = {e−l3} converges to 0. Thus, by taking a subsequence if nec-
essary, at least one of {θ1} and {θ2}, say {θ1}, converges to 0. Since
{θ2θ3} = {e−l1} converges to 0 as well, by taking a subsequence, at least
one of {θ2} and {θ3} converges to 0. q.e.d

4. The image of Ψh

The image of Ψh is described in Theorem 1.2. The main task of this
section is to give a proof of this theorem. To show that the image of Ψh

is indeed Ph(T ), we make use of the following propositions which are
proved in this section.

Proposition 4.1. Ψh(Tc(S)× RV>0) ⊂ Ph(T ) for all h ∈ R.

Proposition 4.2. For all h ∈ R, the image Ψh(Tc(S)× RV>0) is closed
in Ph(T ).

Proof of Theorem 1.2. Let P (T ) be defined as in Theorem 1.2. For
h > 0, P (T ) = Ph(T ) is determined by finitely many strict linear in-
equalities corresponding to the fundamental edge loops and hence is an
open convex polytope independent of h. For h < 0, Ph(T ) is likewise
determined by fundamental edge loops and fundamental edge paths.
Moreover, since each edge e can be regarded as a fundamental edge path,

conditions (a) and (b) imply that −2
∫ +∞
0 eht

2
dt < z(e) < 2

∫ +∞
0 eht

2
dt

for each e ∈ E. Thus, Ph(T ) is bounded. The monotonicity of the

function f(h) =
∫ +∞
0 eht

2
dt implies that Ph(T ) ⊂ Ph′(T ) if h < h′,

and the fact that limh→−∞ f(h) = limh→−∞
√

π
−2h = 0 implies that⋂

h∈R<0
Ph(T ) = ∅. By Theorem 1.1 and the Invariance of Domain

Theorem, Ψh(Tc(S) × RV>0) is open in Ph(T ). By Proposition 4.2,

Ψh(Tc(S) × RV>0) is closed in Ph(T ). Connectedness of Ph(T ) there-

fore implies that Ψh(Tc(S)× RV>0) = Ph(T ). q.e.d

The following Lemma 4.3 will be used in the proof of Propositions
4.1 and 4.2.

Lemma 4.3. If r ∈ R and x > 0, then
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(a) for each h ∈ R, ∫ x+r

0
eht

2
dt+

∫ x−r

0
eht

2
dt > 0,

(b) for each h > 0,∫ x+r

0
eht

2
dt+

∫ x−r

0
eht

2
dt > 2

∫ x

0
eht

2
dt.

Proof. For (a), let f(x) =
∫ x+r
0 eht

2
dt +

∫ x−r
0 eht

2
dt. Since f ′(x) =

eh(x+r)
2

+ eh(x−r)
2
> 0, the function f is strictly increasing, hence

f(x) > f(0) = 0 for x > 0. For (b), let g(x) =
∫ x+r
0 eht

2
dt+

∫ x−r
0 eht

2
dt−

2
∫ x
0 e

ht2dt. We have that g(0) = 0 and g′(x) = eh(x+r)
2

+ eh(x−r)
2 −

2ehx
2
> 0. The last inequality follows from the convexity of the func-

tion F (t) = eht
2

for h > 0. Since g is increasing, g(x) > g(0) = 0 for
x > 0. q.e.d

Proof of Proposition 4.1. For h > 0, fix a decorated hyperbolic metric
(d, r) ∈ Tc(S)×RV>0. For any fundamental edge loop (e1, t1, . . . , ek, tk),
let ai be the generalized angle adjacent to ei and ei+1 (where ek+1 = e1).
Let the generalized angles of ti facing ei and ei+1 respectively be bi and

ci. By definition, the contribution of
∑k

i=1 z(ei) from ti is

∫ ai+bi−ci
2

0
eht

2
dt+

∫ ai+ci−bi
2

0
eht

2
dt,

which is strictly larger than 0 from Lemma 4.3 (a) since ai > 0.

For h < 0, let e be any edge in the ideal triangulation T , and let
a and a′ be the generalized angles facing e. Let b, c, b′ and c′ be the
generalized angles adjacent to e. Then

Ψh(d, r)(e) =

∫ b+c−a
2

0
eht

2
dt+

∫ b′+c′−a′
2

0
eht

2
dt < 2

∫ +∞

0
eht

2
dt.

Thus, condition (a) in the definition of Ph(T ) is satisfied. Given a
fundamental edge path (t0, e0, t1, . . . , en, tn), let θi be the generalized
angle in ti adjacent to ei and ei+1 for i = 1, . . . , n− 1, and let βi and γi
respectively be the generalized angles of ti facing ei and ei+1. Denote by
a0 the generalized angle of t0 facing e0, and by an the generalized angle
of tn facing en. Let b0 and c0 be the generalized angles of t0 adjacent
to e0, and let bn and cn be the generalized angles of tn adjacent to en.
We have
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n∑
i=1

Ψh(d, r)(ei)

=

∫ b0+c0−a0
2

0
eht

2
dt+

n−1∑
i=1

(∫ θi+γi−βi
2

0
eht

2
dt+

∫ θi+βi−γi
2

0
eht

2
dt

)

+

∫ bn+cn−an
2

0
eht

2
dt

>

∫ b0+c0−a0
2

0
eht

2
dt+

∫ bn+cn−an
2

0
eht

2
dt

>− 2

∫ +∞

0
eht

2
dt,

where the first inequality is by Lemma 4.3 (a). Thus, condition (b) is
satisfied. Given a fundamental edge loop (e1, t1, . . . , en, tn) with en+1 =
e1, let θi for i = 1, . . . , n be the generalized angle in ti adjacent to ei
and ei+1, and let βi (resp. γi) be the generalized angle in ti facing ei
(resp. ei+1). Again by Lemma 4.3 (a),

n∑
i=1

Ψh(d, r)(ei) =

n∑
i=1

(∫ θi+γi−βi
2

0
eht

2
dt+

∫ θi+βi−γi
2

0
eht

2
dt

)
> 0.

Thus, condition (c) is satisfied, and Ψh(Tc(S)× RV>0) ⊂ Ph(T ). q.e.d

To prove Proposition 4.2, we use Penner’s length parametrization.
For each sequence {l(m)} in RE such that {Ψh(l(m))} converges to a

point z ∈ P (T ), we claim that {l(m)} contains a subsequence converg-

ing to a point in RE . Let θ(m) be the generalized angles of the deco-
rated ideal triangles in (S, T ) in the decorated hyperbolic metric l(m).

By taking a subsequence if necessary, we may assume that {l(m)} con-
verges in [−∞,+∞]E and that for each generalized angle θi, the limit

limm→∞ θ
(m)
i exists in [0,+∞]. In the case that h > 0, we need the

following

Lemma 4.4. If h > 0, then limm→∞ θ
(m)
i ∈ [0,+∞) for all i.

Proof. Suppose to the contrary that limm→∞ θ
(m)
1 = +∞ for some

generalized angle θ1. Let e2 and e3 be the edges adjacent to θ1 in the
triangle t1, and θ2 and θ3 respectively be the generalized angles facing e2
and e3. Take a fundamental edge loop (en1 , tn1 , . . . , enk , tnk) containing
(e2, t1, e3). By Lemma 4.3, we have
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k∑
i=1

z(eni) = lim
m→∞

k∑
i=1

Ψh(l(m))(eni)

> lim
m→∞

∫ θ
(m)
1 +θ

(m)
2 −θ(m)

3
2

0
eht

2
dt+

∫ θ
(m)
1 +θ

(m)
3 −θ(m)

2
2

0
eht

2
dt


> lim
m→∞

2

∫ θ
(m)
1
2

0
eht

2
dt

= +∞.

This contradicts the assumption that z ∈ P (T ). q.e.d

Proof of Proposition 4.2. For h > 0, by taking a subsequence of {l(m)},
we may assume that limm→∞ l

(m) = l ∈ [−∞,+∞]E . If l were not in
RE , then there would exist an edge e ∈ E so that l(e) = ±∞. Let ∆

be a decorated ideal triangle adjacent to e, and let θ
(m)
1 and θ

(m)
2 be the

generalized angles in ∆ adjacent to e in the metric l(m). By (1),

el
(m)(e) =

1

θ
(m)
1 θ

(m)
2

,

and θ
(m)
i ∈ (0,+∞) for i = 1, 2.

Case 1 If l(e) = −∞, then el(e) = 0. By the identity above, one of

limm→∞ θ
(m)
i for i = 1, 2 must be +∞. This contradicts Lemma 4.4.

Case 2 If l(e) = +∞, then el(e) = +∞. By the identity above, one

of limm→∞ θ
(m)
i for i = 1, 2 must be zero. Suppose without loss of

generality that limm→∞ θ
(m)
1 = 0. Let e1 be the edge in the decorated

ideal triangle ∆ opposite to θ2, and let θ3 be the generalized angle in ∆
facing e. By (1), we have

el
(m)(e1) =

1

θ
(m)
1 θ

(m)
3

.

By Lemma 4.4, θ
(m)
3 is bounded above, hence l(e1) = +∞. For any

decorated ideal triangle ∆ adjacent to e with l(e) = +∞, we have an
edge e1 in ∆ and a generalized angle θ1 adjacent to e and e1 so that

l(e1) = +∞ and limm→∞ θ
(m)
1 = 0. Applying this logic to e1 and the

decorated ideal triangle ∆1 adjacent to e1 other than ∆, we obtain the

next angle θ2 and edge e2 in ∆1 so that l(e2) = +∞ and limm→∞ θ
(m)
2 =

0. Since there are only finitely many edges and triangles, this yields a
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fundamental edge loop (ek,∆k, . . . , en,∆n) in T such that l(ei) = +∞
for i = k, . . . , n and limm→∞ θ

(m)
i = 0, where θi is the generalized angle

in ∆i−1 adjacent to ei−1 and ei. Denote respectively by βi and γi the

generalized angles of ∆i−1 facing ei−1 and ei, and let β̄i = limm→∞ β
(m)
i

and γ̄i = limm→∞ γ
(m)
i . By Lemma 4.4, both β̄i and γ̄i are finite real

numbers, and we have
n∑
i=k

z(ei) = lim
m→∞

n∑
i=k

Ψh(l(m))(ei)

= lim
m→∞

n∑
i=k

∫ θ
(m)
i

+β
(m)
i
−γ(m)
i

2

0
eht

2
dt+

∫ θ
(m)
i

+γ
(m)
i
−β(m)

i
2

0
eht

2
dt


=

n∑
i=k

∫ β̄i−γ̄i
2

0
eht

2
dt+

∫ γ̄i−β̄i
2

0
eht

2
dt


= 0.

This contradicts the assumption that z ∈ P (T ).

For h < 0 and each sequence {l(m)} in RE so that {Ψh(l(m))} con-

verges to a point z ∈ Ph(T ), we claim that {l(m)} contains a subsequence
converging to a point in RE . By taking a subsequence if necessary, we
may assume that {l(m)} converges to l ∈ [−∞,+∞]E . If l were not in
RE , there would exist an edge e so that l(e) = ±∞.

Case 1. If l(e) = −∞ for some e ∈ E, then there is a degenerated
decorated ideal triangle ∆ of type I, II or III. By Corollary 3.2, there
is a bad edge e1 in ∆. Let ∆1 be the other decorated ideal triangle
adjacent to e1, and let x0 and x1 respectively be the x-invariants of e1
in ∆ and ∆1. If e1 is bad in ∆1, then

z(e1) = lim
m→∞

Ψh(l(m))(e1) = lim
m→∞

(∫ x
(m)
0

0
eht

2
dt+

∫ x
(m)
1

0
eht

2
dt

)

= 2

∫ +∞

0
eht

2
dt,

which contradicts the assumption that z ∈ Ph(T ). Therefore e1 has to
be a good edge in ∆1. Since l(e1) = −∞, the decorated triangle ∆1 is
degenerated of type I, II or III. By Corollary 3.2, there is a bad edge e2
in ∆1. For the same reason, e2 has to be good in the other decorated
ideal triangle ∆2 adjacent to e2, and there is a bad edge e3 in ∆2. Seri-
ally applying this logic and using that there are finitely many edges, we
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find an edge loop (ek,∆k, . . . , en,∆n) with en+1 = ek so that for each
i = k, . . . , n the edge ei is good in ∆i and the edge ei+1 is bad in ∆i.
By Lemma 3.3, we can take a subsequence so that l(m)(ei) > l(m)(ei+1)

for m sufficiently large. Thus, we have l(m)(ek) > l(m)(en+1), which
contradicts that en+1 = ek.

In light of Case 1, we may assume that l ∈ (−∞,+∞]E .

Case 2. If l(e) = +∞ for some e ∈ E, let ∆1 be a decorated ideal
triangle adjacent to e. If ∆1 is not of type IV, then by Lemma 3.4,
there is an edge e1 of ∆1 and an generalized angle θ1 adjacent to e

and e1 so that l(e1) = +∞ and limm→∞ θ
(m)
1 = 0 (see Figure 5). The

other decorated ideal triangle ∆2 adjacent to e1 is either of type IV or
contains an edge e2 and a generalized angle θ2 adjacent to e1 and e2 so

that l(e2) = +∞ and limm→∞ θ
(m)
2 = 0. Again, the serial application

of this procedure terminates with an edge ep and a decorated ideal
triangle ∆p+1 adjacent to ep so that l(ep) = +∞ and ∆p+1 is of type
IV, or since there are only finitely many edges, produces a fundamental
edge loop (ek,∆k, . . . , en,∆n) such that l(ei) = +∞ for i = k, . . . , n and

limm→∞ θ
(m)
i = 0, where θi is the generalized angle in ∆i adjacent to ei

and ei+1. If it yields such a fundamental edge loop (ek,∆k, . . . , en,∆n),
denote by βi (resp. γi) the generalized angle in ∆i facing ei (resp. ei+1)

for i = k, . . . , n. Let β̄i = limm→∞ β
(m)
i and γ̄i = limm→∞ γ

(m)
i , so that

n∑
i=k

z(ei) = lim
m→∞

k∑
i=1

Ψh(l(m))(ei)

= lim
m→∞

k∑
i=1

∫ θ
(m)
i

+β
(m)
i
−γ(m)
i

2

0
eht

2
dt+

∫ θ
(m)
i

+γ
(m)
i
−β(m)

i
2

0
eht

2
dt


=

k∑
i=1

∫ β̄i−γ̄i
2

0
eht

2
dt+

∫ γ̄i−β̄i
2

0
eht

2
dt


= 0,

which contradicts the assumption that z ∈ Ph(T ). If it terminates with
ep and ∆p+1 of type IV, then we consider the other decorated ideal
triangle ∆0 adjacent to e. If ∆0 is not of type IV, then it contains an edge
e−1 and a generalized angle θ0 adjacent to e−1 and e so that l(e−1) =

+∞ and limm→∞ θ
(m)
0 = 0. As before, either there is a fundamental edge

loop, contradicting the assumption that z ∈ Ph(T ), or the procedure
terminates with an edge e−q and a decorated ideal triangle ∆−q adjacent
to e−q so that l(e−q) = +∞ and ∆−q is of type IV. If the procedure
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stops at e−q and ∆−q of type IV, we get a fundamental edge path
(∆−q, e−q, . . . , ep,∆p+1), where e0 = e, such that ∆−q and ∆p are of

type IV with l(e−q) = +∞ and l(ep) = +∞, and limm→∞ θ
(m)
i = 0,

where θi is the generalized angle of ∆i adjacent to ei−1 and ei for i =
1 − q, . . . , p. Denote by a−q the generalized angle of ∆−q facing e−q,
and by ap the generalized angle of ∆p+1 facing ep. Let b−q and c−q be
the generalized angles of ∆−q adjacent to e−q, and let bp and cp be the
generalized angles of ∆p+1 adjacent to ep. We find

p∑
i=−q

z(ei) = lim
m→∞

p∑
i=−q

Ψh(l(m))(ei)

= lim
m→∞

∫ b
(m)
−q +c

(m)
−q −a

(m)
−q

2

0
eht

2
dt+

∫ b
(m)
p +c

(m)
p −a(m)

p
2

0
eht

2
dt

+

p∑
i=1−q

∫ θ
(m)
i

+β
(m)
i
−γ(m)
i

2

0
eht

2
dt+

∫ θ
(m)
i

+γ
(m)
i
−β(m)

i
2

0
eht

2
dt




=

∫ −∞
0

eht
2
dt+

∫ −∞
0

eht
2
dt

+

p∑
i=1−q

∫ β̄i−γ̄i
2

0
eht

2
dt+

∫ γ̄i−β̄i
2

0
eht

2
dt


=− 2

∫ +∞

0
eht

2
dt,

which contradicts the assumption that z ∈ Ph(T ). q.e.d

5. Uniqueness of the energy function

Let ∆ be a decorated ideal triangle with edge lengths l1, l2, l3 with

opposite generalized angles θ1, θ2, θ3 and set xi =
θj+θk−θi

2 for i, j, k =
1, 2, 3. The following theorem shows that Ψh is the unique possible
deformation of Penner’s simplicial coordinate by using the variational
principle stated in Section 2.

Theorem 5.1. Let µ and u be two non-constant smooth functions. Up
to an overall scale, there is a unique closed 1-form ω =

∑3
i=1 µ(xi)du(li)

which is given by

wh =

3∑
i=1

∫ xi

eht
2
dtd

(∫ li

e−he
−t
dt

)
for some h ∈ R.
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The proof of Theorem 5.1 makes use of the following lemma.

Lemma 5.2. Let f and g be two non-constant smooth functions on R.

If f(xi)
g(lj)

is symmetric in i, j = 1, 2, then there are constants h, c1 and c2
so that

f(t) = eht
2+c1 and g(t) = e−he

−t+c2 .

Proof. By taking ∂
∂lk

in the equality f(xi)
g(lj)

=
f(xj)
g(li)

, we have f ′(xi)
g(lj)

∂xi
∂lk

=
f ′(xj)
g(li)

∂xj
∂lk

for i, j, k = 1, 2, 3. We deduce from (1) that ∂xi
∂lj

= xk
2 ,

so f ′(xi)
g(lj)

xj
2 =

f ′(xj)
g(li)

xi
2 . Thus, f ′(xi)

f ′(xj)
xj
xi

=
g(lj)
g(li)

= f(xi)
f(xj)

, which implies

f ′(xi)
f(xi)

1
xi

=
f ′(xj)
f(xj)

1
xj

and f ′(t)
f(t)

1
t = 2h1 for some h1 ∈ R. Solving this

ordinary differential equation for f , we find

f(t) = eh1t2+c1

for some c1 ∈ R. By taking ∂
∂xk

in the equality g(li)
f(xj)

=
g(lj)
f(xi)

, we have

g′(li)
f(xj)

∂li
∂xk

=
g′(lj)
f(xi)

∂lj
∂xk

for i, j, k = 1, 2, 3. From (1) again, we deduce that

∂li
∂xj

= − 1
θk

, so − g′(li)
f(xj)

1
θj

= −g′(lj)
f(xi)

1
θi

. Thus, g′(li)
g′(lj)

eli

elj
= g′(li)

g′(lj)
θi
θj

=
f(xj)
f(xi)

=

g(li)
g(lj)

, which implies g′(li)
g(li)

eli =
g′(lj)
g(lj)

elj and g′(t)
g(t) e

t = h2 for some h2 ∈ R.

Solving this ordinary differential equation for g, we find

g(t) = e−h2e−t+c2

for some c1 ∈ R. From f(t) = eh1t2+c1 and the equality f(xi)
g(lj)

=
f(xj)
g(li)

,

we conclude that h1 = h2. q.e.d

Proof of Theorem 5.1. The differential 1-form ω =
∑3

i=1 µ(xi)du(li) is

closed if and only if ∂µ(xi)
∂u(lj)

= µ′(xi)
u′(lj)

∂xi
∂lj

is symmetric in i and j. Since

∂xi
∂lj

=
∂xj
∂li

= xk
2 , ω is closed if and only if µ′(xi)

u′(lj)
is symmetric in i and j.

By Lemma 5.2, if µ′(xi)
u′(lj)

is symmetric in i and j, then µ′(xi) = ehx
2
i+c1

and u′(li) = e−he
−li+c2 for some constants h, c1 and c2. q.e.d

6. Ψh and the Delaunay decomposition

We first review the construction of the Delaunay decomposition asso-
ciated to a decorated hyperbolic metric following Bowditch-Epstein [4].
Suppose S is a punctured surface with a set of ideal vertices V , and
let (d, r) be a decorated hyperbolic metric on S so that the horodisks
associated to the ideal vertices do not intersect. Let Bv be the horodisks
associated to the ideal vertex v, and let B =

⋃
v∈V Bv. The spine Γd,r

of S is the set of points in S which have at least two distinct shortest
geodesics to ∂B. The spine Γd,r is shown [4] to be a graph whose edges
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are geodesic arcs on S.

Let e∗1, . . . , e
∗
N be the edges of Γd,r. By construction each interior

point of an edge e∗i has exactly two distinct shortest geodesics to ∂B.
For each edge e∗i , there are two horodisks B1 and B2 (possibly coin-
cide) so that points in the interior of e∗i have precisely two shortest
geodesics to ∂B1 and ∂B2. Let ei be the shortest geodesic from ∂B1 to
∂B2. It is known that ei intersects e∗i perpendicularly, and {e1, . . . , eN}
are disjoint. The components of S \ {e1, . . . , eN} consists of decorated
polygons (ideal polygons with horodisks associated to the ideal vertices)
which are the 2-cells of the Delaunay decomposition Σd,r. The 1-cells
of Σd,r consist of the edges {e1, . . . , eN} and the arcs on ∂B which are
the intersection of ∂B with the ideal polygons. For a generic decorated
hyperbolic metric (d, r), each 2-cell of Σd,r is a decorated ideal triangle,
and Σd,r is a decorated ideal triangulation of S.

Let D be a 2-cell of Σd,r. We call the hyperbolic circle on S tangent
to all arcs of D ∩ ∂B the inscribed circle of D. By the construction of
the Delaunay decomposition, for each 2-cell D of Σd,r, there is exactly
one vertex v∗ of the spine Γd,r lying in the interior of D. Moreover, v∗

is of equal distance to all arcs of D ∩ ∂B, hence is the center of the
inscribed circle of D. Thus, the center of the inscribed circle of each
2-cell D of the Delaunay decomposition is in the interior of D. We need
the following proposition of Penner [17] whose proof is included here to
the convenience of the readers.

Lemma 6.1. ([17]) Suppose ∆ is a decorated ideal triangle with edge
lengths li > 0 and opposite generalized angles θi for i = 1, 2, 3. Then

xi =
θj+θk−θi

2 > 0 for i = 1, 2, 3 if and only if the center of the inscribed
circle of ∆ is in the interior of ∆.

Proof. For i = 1, 2, 3 let Bi be the horodisks associated to the ideal ver-
tices of ∆, and let Zi be the point of tangency of the inscribe circle of
∆ and ∂Bi. Label the intersection of the horodisks and the edges of ∆
by X1, Y1, X2, Y2, X3 and Y3 cyclically as in Figure 6(a). For two points
A and B in the hyperbolic plane H2, let AB be the geodesic segment
connecting A and B, and let |AB| the length of AB. If the center v of
the inscribed circle is in the interior of ∆, then xi = |XiZi+1| > 0 for
i = 1, 2, 3. If v is on XiYi, or v and ∆ are on different sides of XiYi for
some i ∈ {1, 2, 3}, then xi = −|XiZi+1| 6 0. See Figure 6 (b). q.e.d

Proof of Theorem 1.3. Let (d, r) be a decorated hyperbolic metric so
that the associated Delaunay decomposition Σd,r is a decorated ideal
triangulation of S. For each edge e of Σd,r, let ∆ and ∆′ be the deco-
rated ideal triangles adjacent to e, and let θ1 and θ′1 respectively be the
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Figure 6. The inscribed circle.

generalized angles of ∆ and ∆′ facing e, and θ2, θ3, θ
′
2 and θ′3 be the gen-

eralized angles adjacent to e. Let x(e) = θ2+θ3−θ1
2 and x′(e) =

θ′2+θ
′
3−θ′1
2 .

From Lemma 6.1 and the fact that the center of the inscribed circle of
each 2-cell of the Delaunay decomposition is in the interior of the 2-cell,
we conclude that x(e) and x′(e) are positive, and

Ψh(d, r)(e) =

∫ x(e)

0
eht

2
dt+

∫ x′(e)

0
eht

2
dt > 0.

On the other hand, if T is an ideal triangulation of S such that
Ψh(d, r)(e) 6 0 for some edge e, then at least one of x(e) and x′(e),
say x(e), is less than or equal to zero. By Lemma 6.1, the center of the
inscribed circle of ∆ is not in the interior of ∆. Since the center of the
inscribed circle of each 2-cell of the Delaunay decomposition has to be
in the interior of the 2-cell, T cannot be the Delaunay decomposition
Σd,r of S. q.e.d

7. Further questions

Suppose ∆ is a decorated ideal triangle with edge lengths l1, l2 and
l3 and opposite generalized angles θ1, θ2 and θ3. For each h 6= −1, the
differential 1-form ωh =

∑3
i=1 θ

h+1
i de−(h+1)li is closed in R3. However,

the primitive Fh(u) =
∫ u
0 ωh is not strictly concave on R3. Let (S, T ) be

an ideally triangulated punctured surface. For each h 6= −1, we define
a map Φh : Tc(S)× RV>0 → RE by

Φh(d, r)(e) = θh+1 + θ′h+1,
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where θ and θ′ are the generalized angles facing e. To the best of the
author’s knowledge, there is no counterexample to the following

Conjecture 7.1. The map Φh : Tc(S) × RV>0 → RE is a smooth em-
bedding, and the image of Φh is a convex polytope.

The motivation of this conjecture is as follows. Penner’s simplical
coordinate Ψ and its deformation Ψh are in some sense analogues to
Colin de Vedière’s invariant [5] for circle packings in a different setting,
and the quantities Φh are the corresponding analogues to Rivin’s invari-
ant [18] for the polyhedra surfaces in this setting, see also [1] and [11].

By Corollary 1.4, for each h > 0, there is a homeomorphism

Πh : Tc(S)× RV>0 → |A(S)−A∞(S)| × R>0

equivariant under the mapping class group action. If h 6= h′, then
Π−1h′ Πh is a self-homeomorphism of the decorated Teichmüller space
equivariant under the mapping class group action. These self-homeomor-
phisms deserve a further study. We do not know yet if these self-
homeomorphisms are smooth on the decorated Teichmüller space. As
suggested by the referee of this article, it also seems natural to ask if
these self-homeomorphisms have bounded distortion.

The Weil-Pertersson Kähler form on the Teichmüller space was com-
puted in the length coordinates in [16]. How to express the Weil-
Petersson symplectic form on the decorated Teichmüller space in terms
of the simplicial coordinate Ψ and in terms of the Ψh coordinate, and
how to relate the Ψh coordinate to the quantum Teichmüller space are
interesting problems ([2], [3], [14] and [17]).
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