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ON HYPERBOLIC GAUSS CURVATURE FLOWS

Kai-Seng Chou & Weifeng Wo

Abstract

Contrast to the hyperbolic mean curvature flows studied in
[HKL], [LS], and [KW], a new hyperbolic curvature flow is pro-
posed for convex hypersurfaces. This flow is most suited when the
Gauss curvature is involved. The equation satisfied by the graph
of the hypersurface under this flow gives rise to a new class of fully
nonlinear Euclidean invariant hyperbolic equations.

Introduction

In the mean curvature flow, one studies the motion of a hypersurface
whose velocity is equal to its mean curvature along its normal direc-
tion in the Euclidean space. Many results have been obtained over the
years, and one may consult the survey Huisken and Polden [HP] and
the books Ecker [E], Giga [Gi], and Zhu [Z] for detailed discussions.
From the point of view of differential equations, the mean curvature
flow is a quasilinear parabolic equation that is invariant under the Eu-
clidean motion. In view of the intimate relation between the heat and
the wave equations, it is natural to consider the hyperbolic version of
the mean curvature flow. In Yau [Y], it is proposed to study the motion
of a hypersurface whose acceleration, instead of the velocity, is equal to
its mean curvature along the normal direction. In He, Kong, and Liu
[HKL], local solvability of this problem is established, and properties
such as formation of singularities in finite time and asymptotic behav-
ior of the flow are examined. However, this most direct analog of the
mean curvature flow differs from its parabolic counterpart by not being
reducible to a Euclidean invariant hyperbolic equation. In LeFloch and
Smoczyk [LS], the motion law

(1)
∂2X

∂t2
= Fn− gij

〈∂X

∂t
,
∂2X

∂pj∂t

〉∂X

∂pi

is studied. Here, F is the driving force and gij is the inverse of the
induced metric on the hypersurface X(p, t) in R

n+1. These authors call
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(1) the hyperbolic mean curvature flow for the following specified choice
of F :

F =
1

2

(∣

∣

∣

∂X

∂t

∣

∣

∣

2
+ n

)

H,

where H is the mean curvature of X. This flow has the advantage of
being derived from a Hamiltonian principle, and hence possesses some
conservation laws. Besides, when the initial velocity is along the normal
direction, the velocity of the hypersurface keeps pointing in the normal
direction afterward. A flow with such property is called a normal flow.
For a normal flow, the graph of the hypersurface satisfies a quasilinear
Euclidean invariant hyperbolic equation. Normal flows are emphasized
in [LS]. Subsequently, the hyperbolic curve shortening problem, that
is, taking n = 1 and F to be the curvature of a plane curve in (1), is
studied in Kong and Wang [KW] where several criteria on finite time
blow-up for graphs are obtained. In Kong, Liu, and Wang [KLW], they
further study the problem for closed convex curves.

Aside from the mean curvature flow, there are other curvature flows
for convex hypersurfaces, notable ones including the Firey’s model on
worn stones [F] and the motion by the affine normal [A1] and [ST]
which applies to image analysis. They depend on the Gauss curvature
rather than the mean curvature. The reader may look up [HP] and
[Gi] for more information. The differential equations derived from these
flows are no longer quasilinear. Usually, they are fully nonlinear. For
flows involving the Gauss curvature, they are parabolic Monge-Ampère
equations.

In this paper we propose a hyperbolic version of these fully nonlinear
curvature flows. For any driving force F , consider

(2)
∂2X

∂t2
= Fn− bij

∂F

∂pi

∂X

∂pj
,

where bij is the inverse of the second fundamental form on the uniformly
convex hypersurface. A flow is called normal preserving if

〈 ∂2X

∂pk∂t
,n

〉

= 0,

for each k = 1, . . . , n. It can be shown that if this condition is fulfilled
initially, then it holds for all time under (2). For any normal preserving
flow, its graph (x, t, u(x, t)) satisfies a fully nonlinear Euclidean invariant
hyperbolic equation. For instance, taking F to be the negative recipro-
cal of the Gauss curvature, we obtain the hyperbolic Monge-Ampère
equation

detD2
x,tu = −(1 + |∇u|2)n+1

2 ,
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and, taking it to be the Gauss curvature, we obtain the new equation

detD2
x,tu =

(detD2
xu)

2

(1 + |∇u|2)n+1

2

,

where D2
x,tu is the matrix (∂2u/∂xi∂xj), i, j = 0, . . . , n and x0 = t. It

is interesting to observe that this equation relates the Monge-Ampère
operator in space-time to the Monge-Ampère operator in space. It is
hyperbolic, and yet the solution is convex in (x, t). Different choices of
F produces many new fully nonlinear hyperbolic equations.

This paper is organized as follows. In Section 1 we present a leisure
study on the reducibility of a geometric motion to a differential equa-
tion for its graph for plane curves. It serves as a motivation for the
introduction of normal and normal-preserving flows. Next, we discuss
the motions for hypersurfaces in Section 2. We shall show that, among
other things, when expressed in terms of the support function H for the
convex hypersurface, the equation for (2) becomes

∂2H

∂t2
= −F,

which is the exact analog of

∂H

∂t
= −F,

the corresponding equation arising from

∂X

∂t
= Fn.

In Section 3 we establish the local solvability of (2) for a large class
of F based on Caffarelli, Nirenberg, and Spruck [CNS] theory of fully
nonlinear elliptic equations. Finally, preliminary discussions on topics
such as finite time blow-up and asymptotic behavior will be given in
Section 4.

We would like to thank Prof. Xu-Jia Wang for drawing our attention
to hyperbolic mean curvature flows and Prof. De-Xing Kong for sending
us some of his works.

1. Plane Curves

We start by reviewing the reduction of the curve shortening problem
to a quasilinear parabolic equation. Consider the curve shortening prob-
lem or the more general problem where a family of plane curves γ(p, t)
is driven by the motion law

(1.1)
∂γ

∂t
= Fn+Gt,

where n and t are, respectively, the unit normal and tangent vectors
of the curve γ(·, t), and F and G are functions depending on γ and its
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derivatives with respect to p. The normal n is the inner one when the
curve is closed. Supposing for p ∈ (a, b) and t ∈ (t0, t1) the curve γ(p, t)
can be expressed in the form of a graph (x, u(x, t)), x = x(p, t), we have

(1.2) γt = xt(1, ux) + (0, ut).

Taking the inner product with the choice n = (−ux, 1)/
√

1 + u2x and t =

(1, ux)/
√

1 + u2x, we see that (1.1) is split into two equations, namely,

(1.3) ut =
√

1 + u2x F

and

(1.4) xt =

√

1 + u2x G− ut
1 + u2x

.

In the special case where F depends only on k, the curvature of γ, the

formula k = uxx/(1+u
2
x)

3

2 tells us that (1.3) is an evolution equation for
u. In principle, one can solve (1.1) by first solving (1.3) for u and then
determining x from (1.4). For instance, in the curve shortening problem
F (k) = k and G ≡ 0, so (1.3) and (1.4) become

(1.5) ut =
uxx

1 + u2x

and

(1.6) xt =
−ut

1 + u2x
(x, t),

respectively. In case a solution u has been found for (1.5), x can be
readily solved as the solution of the ODE (1.6). It is routine to verify that
then (x, u(x, t)) constitutes a solution for the curve shortening problem.

Before proceeding further, we point out that for motions which only
depend on the geometry of the curves, one should require the motion law
to be a “geometric” one. Specifically, this means that solutions of (1.1)
are preserved under any reparametrization as well as Euclidean motions.
It turns out that the flow (1.1) is geometric when F and G depend only
on the curvature and its derivatives with respect to the arc-length. For
any geometric flow (1.1), the corresponding equation (1.3) is Euclidean
invariant in the following sense. In the case under a Euclidean motion
R, (y, v) = R(x, u), the graphs (x, u(x, t)) go over to graphs (y, v(y, t)),
and then v satisfies the same equation (1.3) with x and u replaced by
y and v respectively. The reader is referred to Olver [O] for discussions
on group invariant differential equations.

Now, consider the motion of curves where the velocity is replaced by
the acceleration

(1.7)
∂2γ

∂t2
= Fn+Gt.
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As the highest order of time derivative involved is 2, the functions F
and G are allowed to depend on γ, γt and their derivatives with respect
to p. Typical geometric flows are formed from those F and G depending
on 〈γt,n〉, 〈γt, t〉, 〈γt, γts〉, k, etc., and their derivatives with respect to
the arc-length. All these are invariants under reparametrizations and
Euclidean motions.

When the curves are expressed as graphs γ = (x, u(x, t)), we have

γtt = xtt(1, ux) + (0, uxxx
2
t + 2uxtxt + utt).

Taking inner product with n and t, respectively, yields

(1.8) utt + 2xtuxt + x2tuxx =
√

1 + u2x F

and

(1.9) xtt =
G− uxF
√

1 + u2x
.

The situation is different from (1.1). In general, (1.8) not only depends
on u and its derivatives but also on xt. In other words, (1.8) and (1.9)
are coupled.

Is there some choice of xt so that (1.8) reduces to an equation for u
only? To examine this possibility, we note that from (1.8)

xt =
−uxt ±

√

u2xt − uxxutt + uxx
√

1 + u2x F

uxx
.

When (1.8) is reducible to an equation of the form utt = Ψ(ux, ut, uxx, uxt)
for some function Ψ, plugging this equation into the above expres-
sion, one sees that xt must be equal to Φ(ux, ut, uxx, uxt) for some
function Φ, assuming that F contains first and second derivatives of
u only. Motivated by this, we introduce the following definitions. A
flow (1.7) is called reducible (to an equation) if there exists a function
Φ(z1, z2, z3, z4) such that whenever the flow is expressed as a graph
(x, u(x, t)), xt = Φ(ux, ut, uxx, uxt) must hold. For any reducible flow,
the equation obtained by substituting xt = Φ into (1.8) is called the
associated equation of the flow. We may assume the variables of the
function F can be expressed in terms of u and its derivatives.

Two remarks are in order. First, flows that are not reducible exist. At
the end of this section we will show that the flow (1.7) where F = k and
G ≡ 0 is not reducible. Second, when one is concerned with the initial
value problem for (1.7), it is natural to wonder if the flow is reducible
for any initial values γ(0) and γt(0). The answer is no. To see this, let
us assume locally γ(0) = (f1(p), f2(p)) and γt(0) = (g1(p), g2(p)). As
we have freedom in choosing the parameter, we may assume x = p,
that is, f1 is the identity map. Then the relation xt = Φ at t = 0 gives
the compatibility condition g1 = Φ(f ′2, g2− f ′2g1, f ′′2 , (g2 − f ′2g1)′). When
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the initial curve is fixed, that is, f2 is given, this condition sets up a
constraint between g1 and g2.

For a given function F , we will find two classes of “constrained” flows,
namely, the normal and normal-preserving flows, and the corresponding
functions G so that the flows are reducible. Our approach is based on
the observation that any associated equation of a reducible flow must
be Euclidean invariant, so we start by classifying all Euclidean invariant
equations. Of course, this is of interest in itself. After obtaining these
equations, we may compare them with (1.8) to guess what the constraint
Φ should be.

We examine the quasilinear case first. Consider

(1.10) utt = auxx + buxt + c,

where the coefficients a, b, and c depend on x, u, ux, and ut.

Proposition 1.1. Any Euclidean invariant equation (1.10) is of the
form

b =
2uxut
1 + u2x

+
ϕ(z)

√

1 + u2x
,

a =
1

1 + u2x
− b2

4
+

χ(z)

1 + u2x
,

c =
√

1 + u2x ψ(z), z =
ut

√

1 + u2x
,

where ϕ, χ, and ψ are arbitrary functions.

Proof. The Euclidean group acts linearly on (x, u) and trivially on
t. Its Lie algebra of infinitesimal symmetries is spanned by

{∂x, ∂u, −u∂x + x∂u}.
According to Lie’s theory of symmetries, (1.10) is Euclidean invariant
if and only if

pr(2)v(utt − auxx − buxt − c) = 0,

on utt = auxx+buxt+c, where v is any infinitesimal symmetry and pr(2)v
is the second order prolongation of v. By the prolongation formula [O],

pr(2)∂x = ∂x, and so

pr(2)∂x(utt − auxx − buxt − c) = −axuxx − bxuxt − cx = 0,

which implies that a, b, c are independent of x. Similarly, they are also
independent of u. Now, for the rotation r ≡ −u∂x + x∂u, the second
prolongation is given by

pr(2)r = −u∂x + x∂u + (1 + u2x)∂ux + uxut∂ut + 3uxuxx∂uxx

+(2uxuxt + utuxx)∂uxt + (uttux + 2utuxt)∂utt .
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Its action on (1.10) gives

uxx
(

aux(1 + u2x) + autuxut
)

+ 3auxuxx + uxt
(

bux(1 + u2x) + butuxut
)

+

b(2uxuxt + utuxx) + cux(1 + u2x) + cutuxut = uttux + 2utuxt,

on utt = auxx + buxt + c. We eliminate utt in this equation using (1.10).
Then the variables uxx, uxt, ux, and ut become free. By setting the
coefficients of uxx and uxt to zero, we obtain

aux(1 + u2x) + autuxut + 2aux + but = 0

and
bux(1 + u2x) + butuxut + bux − 2ut = 0,

while the lower-order terms give

cux(1 + u2x) + cutuxut − cux = 0.

These are first-order linear PDE’s for the coefficients. The second and
third equations are readily solved to yield

b =
2uxut
1 + u2x

+
1

ut
ϕ1

( ut
√

1 + u2x

)

and

c =
√

1 + u2xψ
( ut
√

1 + u2x

)

.

Plugging b into the first equation gives

a =
1

1 + u2x
− b2

4
+

1

u2t
χ1

( ut
√

1 + u2x

)

.

Here, ϕ1, χ1, and ψ are arbitrary functions. Clearly the proposition
holds. q.e.d.

Taking ϕ = χ = ψ = 0, we obtain the simplest Euclidean invariant
equation,

(1.11) utt − 2
uxut
1 + u2x

uxt +
u2xu

2
t

(1 + u2x)
2
uxx =

uxx
1 + u2x

.

Comparing this equation with (1.8) where F = k, we see that Φ =
−uxut/(1 + u2x). The meaning of this constraint becomes clear after
using (1.2); it means that 〈γt, γp〉 = 0 for all time. A flow with this
property is called a normal flow. With this constraint at hand, G could
be determined from (1.9), but here we use a different reasoning that
is based on the fact that (1.7) must preserve this constraint. In other
words, if 〈γt, γp〉 = 0 at t = 0, then it holds for all time. Keeping this in
mind, we compute

0 =
∂

∂t
〈γt, γp〉

= 〈γtt, γp〉+ 〈γt, γpt〉
= G|γp|+ 〈γt, γts〉|γp|,
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from which we deduce G = −〈γt, γts〉. Note that it is independent of F .
Later we will see that G depends on F for a normal preserving flow. It
is routine to check that for any given F and G in (1.7), starting from an
initial velocity satisfying 〈γt(0), γp(0)〉 = 0, the flow (whenever it exists)
is normal if and only if G = −〈γt, γts〉. In the following we show that any
quasilinear Euclidean invariant equation (1.10) arises as the associated
equation of some normal flow.

Proposition 1.2. Any Euclidean invariant equation (1.10) is the
associated equation of the normal flow

(1.12)
∂2γ

∂t2
= Fn− 〈γt, γts〉t,

where F is of the form F1+F2k+F3〈γt, γts〉, and Fi, i = 1, 2, 3, depend
on 〈γt,n〉 only.
Proof. First, note that

〈γt,n〉 =
ut

√

1 + u2x

and 〈γt, t〉 = 0. We also claim

〈γt, γts〉 =
utuxt

(1 + u2x)
3/2

− uxu
2
tuxx

(1 + u2x)
5/2

.

To see this, we first use orthogonality to get γt = 〈γt,n〉n. It follows
that

γts = 〈γt,n〉ns + (〈γts,n〉+ 〈γt,ns〉)n,
and so

〈γt, γts〉 = 〈γt,n〉〈γts,n〉,
after using Frenet’s formula. Now, γts = xts(1, ux) + xt(0, uxx)xs +
(0, utx)xs, where xs = 1/(1 + u2x), hence

〈γts,n〉 =
xtuxx
1 + u2x

+
utx

1 + u2x
,

and the claim follows.
Putting these into (1.8), we obtain

utt =
√

1 + u2x

[

F1 + F2
uxx

(1 + u2x)
3/2

+ F3

( utuxt
(1 + u2x)

3/2
− uxu

2
tuxx

(1 + u2x)
5/2

)

]

+
2uxut
1 + u2x

uxt −
u2xu

2
t

(1 + u2x)
2
uxx.

Comparing this with Proposition 1.1, we simply take F3(z) = ϕ/z,
F2(z) = 1−ϕ2(z)/4+χ(z), and F1(z) = ψ(z) to obtain this proposition.
q.e.d.

Next, we consider the fully nonlinear equation

utt = f(x, u, ux, ut, uxx, uxt).(1.13)
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Parallel to Proposition 1.1, we have the following proposition:

Proposition 1.3. Any Euclidean invariant equation (1.13) is of the
form

utt =
u2xt
uxx

+
√

1 + u2x Φ(z1, z2, z3),(1.14)

where Φ(z1, z2, z3) is an arbitrary function, z1 = ut/
√

1 + u2x, z2 =

uxx/(1 + u2x)
3/2, and

z3 =
uxt

1 + u2x
− uxutuxx

(1 + u2x)
2
.

Proof. As in the proof of Proposition 1.1, f is independent of x and
u by Euclidean invariance. From the action of the infinitesimal rotation,
the prolongation formula gives

(1+u2x)fux+uxutfut+3uxuxxfuxx+(2uxuxt+utuxx)fxt = uxutt+2utuxt,

on utt = f . By eliminating utt, we can solve f from the above equation.
By a direct computation,

f = − u2xu
2
t

(1 + u2x)
2
uxx +

2uxut
(1 + u2x)

uxt + (1 + u2x)
1

2Φ1(z1, z2, z3),

for some function Φ1. The proposition now follows from letting Φ =
z23/z2 +Φ1(z1, z2, z3). q.e.d.

Comparing (1.14) with (1.8), we see that they are identical if we
choose

(1.15) xt = − uxt
uxx

.

This condition is readily checked to be equivalent to

(1.16) 〈γts,n〉 = 0.

A flow (1.7) is called a normal preserving flow if (1.16) holds for all
time. To understand this definition, recall that the angle between the
curve and the x-axis, α, is related to ux by tanα = ux. From

sec2 α
∂α

∂t
= uxxxt + uxt = 0,

we see that α is independent of time during the flow. As the normal
angle of the curve is equal to α + π/2, it is also constant in time. In
other words, n(p, t) is equal to n(p, 0), justifying the terminology.
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As in the quasilinear case, we can determineG for a normal preserving
flow. In fact,

∂

∂t
〈γtp,n〉 = 〈γttp,n〉+ 〈γtp,nt〉

=
∂F

∂p
+ |γp|kG+ 〈γtp, t〉〈n, tt〉

=
∂F

∂p
+ |γp|kG+ 〈γts, t〉〈γtp,n〉.

This is an ODE of the form dy/dt = a + by. Clearly, (1.7) preserves
normal preserving flows if and only if G = −k−1Fs. In fact, all fully
nonlinear Euclidean invariant equations arise from this way.

Proposition 1.4. Any Euclidean invariant equation (1.13) is the
associated equation of a normal preserving flow

(1.17) γtt = Fn− 1

k
Fst,

where F depends on 〈γt,n〉, k, and 〈γt, γts〉.
Proof. Plug (1.15) into (1.8) and then use Proposition 1.3. q.e.d.

Affine invariant motion laws (1.1) have been studied in connection
with image processing. We may consider its hyperbolic analogs. Recall
that the affine group is a subgroup of the Euclidean group whose infin-
itesimal symmetries are spanned by

{∂x, ∂u, u∂x, x∂u, x∂x − u∂u}.
We have the following proposition:

Proposition 1.5. Any affine invariant equation (1.13) is of the form

(1.18) utt =
u2xt
uxx

+ utΦ
(uxx
u3t

)

,

for some function Φ.

The proof of this proposition is similar to that of Proposition 1.3 and
is omitted.

Hyperbolic versions of the curve shortening problem can be found by
choosing different F and G in (1.7). In [LS],

F =
1

2
(1 + |γt|2)k, G = −〈γt, γts〉

is chosen. From the above discussion, any normal flow is reducible with
associated equation given by

(1.19) utt =
1 + u2x + u2t − 2u2xu

2
t

2(1 + u2x)
2

uxx + 2
uxut
1 + u2x

uxt.
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In [KW], the choice is

F = k, G = −〈γt, γts〉.
Again, any normal flow is reducible and its associated equation is simply
given by (1.11). Both equations are quasilinear hyperbolic. Now we may
take

F = k, G = −k−1ks

in (1.7). Any normal-preserving flow is reducible, and its associated
equation is

(1.20) uttuxx − u2xt =
u2xx

1 + u2x
,

This is a fully nonlinear, hyperbolic equation as long as the curve is
uniformly convex.

The affine curve shortening problem, which is sometimes called the
fundamental equation of image processing [AGLM], refers to F = k1/3

and G = −k−5/3ks/3 in (1.1), and is studied in [A1] and [ST]. Taking

Φ(z) = z1/3 in (1.18), we obtain its hyperbolic version

uttuxx − u2xt = u
4

3
xx.

Very often, in the study of the motions of convex curves, it is useful to
express the flow in terms of the support function rather than the graph
(see Chou and Zhu [CZ]). Recall that the normal angle θ ∈ [0, 2π) of a
curve satisfies

n = −(cos θ, sin θ), t = (− sin θ, cos θ),

and the support function is a function of the normal angle given by

h(θ, t) = 〈γ(p, t), −n〉,
where γ(p, t) is the point on the curve whose normal angle is equal to θ.
Any closed convex curve can be determined from its support function.
In fact, for γ = (x, u(x, t)), we have

x = h cos θ − hθ sin θ,

u = h sin θ + hθ cos θ.

Differentiating the first of these relations in x and t, we have

1 = −(h+ hθθ)θx sin θ,

0 = ht cos θ − hθt sin θ − (h+ hθθ)θt sin θ.

Therefore,

θx = − k

sin θ
and

θt = k
(ht cos θ − hθt sin θ

sin θ

)

,
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after using the formula

k = θs =
1

hθθ + h
.

By differentiating the second relation, we obtain

ux =
1

k
θx cos θ = − cot θ,

uxx =
1

sin2 θ
θx = − k

sin3 θ
,

uxt =
1

sin2 θ
θt = − k

sin3 θ
(ht sin θ − hθt sin θ),

ut = ht sin θ + (h cos θ + hθθ cos θ)θt + hθt cos θ =
ht
sin θ

,

utt =
htt
sin θ

+
( htθ
sin θ

− ht cos θ

sin2 θ

)

θt =
htt
sin θ

− k

sin3 θ
(htθ sin θ − ht cos θ)

2.

Using these formulas, we can express equations (1.19), (1.11), and (1.20)
in terms of the support function. For (1.19) and (1.11), the equations
are

htt =
2h2tθ − 1− h2t
2(hθθ + h)

and

htt =
h2tθ − 1

hθθ + h
,

respectively. As for (1.20), the equation is

htt = − 1

hθθ + h
,

which is the exact analog of the curve shortening problem when ex-
pressed in terms of the support function

ht = − 1

hθθ + h
.

In concluding this section, let us show that the flow (1.7) is not re-
ducible when F (k) = k and G ≡ 0. To formulate the result, put the
constraint xt = Φ(ux, ut, uxx, uxt) into (1.8) to get

(1.21) utt + 2Φuxt +Φ2uxx =
uxx

1 + u2x
.

Equation(1.9) now reads as

(1.22) xtt =
−uxuxx
(1 + u2x)

2
.
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Proposition 1.6. There is no such smooth function Φ(z1, z2, z3, z4)
satisfying (i) that (1.21) is solvable locally in space and time for arbitrary
smooth initial data u(0) and ut(0), and (ii) that the constraint xt =
Φ(ux, ut, uxx, uxt) fulfills (1.22).

Proof. From the constraint we have
(1.23)
xtt = Φz1(uxxΦ+uxt)+Φz2(uxtΦ+utt)+Φz3(uxxxΦ+uxxt)+Φz4(uxxtΦ+uxtt).

On the other hand, from (1.21) we have

uxtt =
uxxx
1 + u2x

− 2uxu
2
xx

(1 + u2x)
2
− 2uxxtΦ− uxxxΦ

2

−(2uxt + 2uxxΦ)(Φz1uxx +Φz2uxt +Φz3uxxx +Φz4uxxt).

Eliminating the term uxtt in (1.23) by this equation and then identifying
it with (1.22), we obtain a relation of the form Auxxt +Buxxx +C = 0,
between ux, ut, uxx, uxt, uxxt, and uxxx. By our assumption (i), all these
variables are free. It follows that A = B = 0, that is,

(1.24) Φz3 +Φz4 [−Φ− (2z4 + 2z3Φ)Φz4 ] = 0,

and

(1.25) Φz3Φ+ Φz4

[

− Φ2 − (2z4 + 2z3Φ)Φz3 +
1

1 + z21

]

= 0,

for all (z1, z2, z3, z4). The lower-order term C also vanishes, but we do
not need it.

We solve for Φz3 from (1.24) and plug it into (1.25) to get

Φz4

[

(

1−(2z4+2z3Φ)Φz4

)(

Φ+(2z4+2z3Φ)Φz4

)

−
(

−Φ2+
1

1 + z21

)

]

= 0.

Thus, either Φz4 = 0 or

Φz4 = ± 1

(2z4 + 2z3Φ)
√

1 + z21
.

If Φz4 = 0, then Φz3 = 0 and xt = Φ(ux, ut). It is easy to see that this
is impossible. We take

(1.26) Φz4 =
1

(2z4 + 2z2Φ)
√

1 + z21
.

(The other case can be treated similarly.) From (1.24), we have

(1.27) Φz3 =
Φ
√

1 + z21 + 1

(2z4 + 2z3Φ)(1 + z21)
.
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By differentiating (1.26), we have

Φz4z3 = − 2Φ + 2z3Φz3

(2z4 + 2z3Φ)2
√

1 + z21

= − 2Φ

(2z4 + 2z3Φ)2
√

1 + z21

− 2z3

(2z4 + 2z3Φ)2
√

1 + z21

Φ
√

1 + z21 + 1

(2z4 + 2z3Φ)(1 + z21)
.

And similarly from (1.27),

Φz3z4 =
Φz4

(2z4 + 2z3Φ)
√

1 + z21
− (Φ

√

1 + z21 + 1)(2 + 2z3Φz4)

(2z4 + 2z3Φ)2(1 + z21)

=
1

(2z4 + 2z3Φ)(1 + z21)
− 2Φ

(2z4 + 2z3Φ)2
√

1 + z21

− 2

(2z4 + 2z3Φ)(1 + z21)
− 2z3(Φ

√

1 + z21 + 1)

(2z4 + 2z3Φ)3(1 + z21)
.

We find

Φz4z3 − Φz3z4 =
1

(2z4 + 2z3Φ)(1 + z21)
6= 0;

the contradiction holds, so the flow (1.7) (F = k and G ≡ 0) is not
reducible. q.e.d.

2. Hypersurfaces

In this section, we study the geometric motion of hypersurfaces given
by

(2.1)
∂2X

∂t2
= Fn+Gj ∂X

∂pj
,

where X(·, t) is a hypersurface in R
n+1 at each t. The notion of a normal

flow extends trivially to all dimensions, namely, X(p, t) is a normal flow
if Xt(p, t) is orthogonal to the hypersurface at X(p, t) for each t.

Proposition 2.1. The flow (2.1) is normal if and only if it is given
by (1) and

〈

Xt,
∂X

∂pj

〉

= 0, j = 1, . . . , n,

at t = 0.

Proof. From (2.1) we have

(2.2)
∂

∂t

〈

Xt,Xk

〉

= Gjgjk +
〈

Xt,Xtk

〉

,
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where Xk ≡ ∂X/∂pk. From this, it is readily seen that the proposition
holds. q.e.d.

Now, we write down the equation for the graph of the flow. Let
X(p, t) = (x, u(x, t)), where x = (x1, . . . , xn) depends on (p, t). We
have

∂X

∂t
=

(∂x

∂t
,
∂u

∂xi

∂xi

∂t
+
∂u

∂t

)

and

∂2X

∂t2
=

(∂2x

∂t2
,
∂2u

∂xi∂xj

∂xi

∂t

∂xj

∂t
+
∂u

∂xi

∂2xi

∂t2
+ 2

∂2u

∂xi∂t

∂xi

∂t
+
∂2u

∂t2

)

.

Taking inner product of the last expression with n yields

(2.3) utt + 2ujtx
j
t + uijx

i
tx

j
t = F

√

1 + |∇u|2.
To determine xt, we use the orthogonality condition 〈Xt,Xk〉 = 0 to

get

xitgki + utuk = 0,

for each k. Using gki = δki + ukui and g
ki = δki − ukui/(1 + |∇u|2), we

have

xkt = −gkiuiut = −
(

δki −
ukui

1 + |∇u|2
)

uiut.

So, the associated equation is

(2.4) utt −
2utui

1 + |∇u|2uit +
u2tuiuj

(1 + |∇u|2)2uij = F
√

1 + |∇u|2.

When F = A+BH, where H is the mean curvature of X(·, t) and A, B
depend on X up to its first order derivatives, (2.4) is hyperbolic if and
only if B is positive.

When it comes to the fully nonlinear case, we consider uniformly
convex hypersurfaces only. A family of (uniformly convex) hypersurfaces
X(·, t) is called normal preserving if its normal at X(p, t) is equal to its
normal at X(p, 0), or equivalently, ∂n/∂t = 0.

Proposition 2.2. Let X(·, t) be a family of uniformly convex hyper-
surfaces satisfying (2.1). It is normal preserving if and only if it is given
by (2) and

〈∂Xt

∂pj
,n

〉

= 0, j = 1, . . . , n,

at t = 0.

Proof. As ∂n/∂t is always orthogonal to n, the flow is normal pre-
serving if and only if

〈∂n

∂t
,
∂X

∂pk

〉

= 0, k = 1, . . . , n.
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We compute

∂

∂t
〈nt,Xk〉 = − ∂

∂t
〈n,Xkt〉

= −〈nt,Xkt〉 − 〈n,Xktt〉
= −〈nt,Xkt〉 − Fk −Gi〈Xki,n〉.

Using
∂n

∂t
= gij

〈∂n

∂t
,
∂X

∂pj

〉∂X

∂pi
,

we have

∂

∂t

〈∂n

∂t
,
∂X

∂pk

〉

= −gij
〈∂X

∂pi
,
∂2X

∂pk∂t

〉〈∂n

∂t
,
∂X

∂pj

〉

− ∂F

∂pk
−Gi

〈 ∂2X

∂pk∂pi
,n

〉

.

This is a system of ODE of the form

∂

∂t
y = By + a,

where y = (y1, . . . , yn), yk = 〈nt,Xk〉, and ak = −Fk −Gi〈Xki,n〉. Now
it is clear that the flow is normal preserving if and only if ak ≡ 0 for all
k. The proposition follows from the Weigarten equation

bij =
〈

n,
∂2X

∂pi∂pj

〉

.

q.e.d.
To obtain the equation for the graph of a normal-preserving flow, we

use the normal-preserving condition to obtain uijx
j
t + uit = 0 for each

i. It follows that

xit = −uijujt, i = 1, . . . , n.

Plugging this into (2.3) yields

utt − uijuitujt =
√

1 + |∇u|2 F.
We claim that this equation can be rewritten as

(2.5) detD2
x,tu = detD2

xu
√

1 + |∇u|2 F.

For, first of all, using uij = cij(detD
2
xu)

−1, where cij is the (i, j)−
cofactor of D2

xu, it suffices to show

detD2
x,tu = utt detD

2
xu− cijuitujt.

Denoting x0 = t, we compute the determinant of the Hessian matrix
D2

x,tu by expanding it along the first column

detD2
x,tu =

n
∑

j=0

(−1)juj0mj0
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wheremj0 is the (j, 0)-minor of D2
x,tu . By expanding along the first row

(u01, u02, . . . , u0n) of the n× n-matrix obtained from D2
x,tu by deleting

its 0th column and jth row, we have

mj0 = (−1)j+1u0icij .

It follows that

detD2
x,tu =

n
∑

j=0

(−1)juj0mj0

= u00 detD
2
xu+

n
∑

1

(−1)juj0(−1)j+1u0icij

= u00 detD
2
xu− cijui0uj0,

and (2.5) holds.
The equation for the support function of a normal-preserving flow

assumes a simple form.
Recall that for any convex hypersurface X in R

n+1, its support func-
tion H is a function of homogeneous one defined in R

n+1/{0} satisfying

H(z) = 〈z,X(p)〉, |z| = 1,

where X(p) is any point on the hypersurface whose unit outer normal
is z. It is well known that any uniformly convex hypersurface can be
recovered by its support function via the formula

Xi(z) =
∂H

∂zi
(z), i = 1, . . . , n,

where the unit outer normal z is used to parametrize the hypersurface.
Consider now X(., t), a family of uniformly convex, closed hypersur-

faces that is normal preserving. We may parametrize the initial hyper-
surface by its unit outer normal z. By the normal-preserving property,
z is always the unit outer normal at the point X(z, t) for all t. In par-
ticular, we have n = −z. By taking inner product of (2.1) with z, we
have

F =
〈∂2X

∂t2
,−z

〉

= −
n+1
∑

1

zj
∂

∂zj

∂2H

∂t2

= −∂
2H

∂t2
,

after using Euler’s identity for homogeneous functions. We have the
following equation for the support function of a normal-preserving flow

(2.6)
∂2H

∂t2
= −F.
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3. Local Solvability

We will establish the local solvability for the normal-preserving flow
(2) where F is a function depending on the principal curvatures of the
hypersurface. This will be achieved by reducing it to a fully nonlin-
ear hyperbolic equation. Local solvability for fully nonlinear hyperbolic
equations is more or less standard. Here, we present it in a way so that
the regularity requirement on extending the solution further in time is
clear. We will not discuss local solvability for normal flows, which is re-
lated to quasilinear hyperbolic equations. The reader may consult [LS]
for typical results.

Consider the initial value problem for the flow (2), that is,

(3.1)











∂2X

∂t2
= Fn− bij

∂F

∂zi

∂X

∂zj
,

X(0) and Xt(0) are given,

for a normal-preserving flow. Due to the definition of a normal-preserving
flow, we may always take the independent variable z to be the unit
outer normal of X(·, t). Here, F is a curvature function. Following the
formulation in Urbas [U1], which is based on Caffarelli, Nirenberg, and
Spruck’s theory of fully nonlinear elliptic equations [CNS], we take it
to be a function f(R1, . . . , Rn), where R1, . . . , Rn are the principal radii
of curvature for a uniformly convex hypersurface in R

n+1. The smooth
function f is symmetric in the positive cone Γ+ = {R = (R1, . . . , Rn) :
Ri > 0, i = 1, . . . , n}. Moreover, it satisfies the monotonicity condition

(3.2)
∂f

∂Rj
(R1, . . . , Rn) < 0, j = 1, . . . , n, (R1, . . . , Rn) ∈ Γ+.

Theorem 3.1. Consider (3.1) under (3.2), where X(0) is a uniformly
convex hypersurface in R

n+1 parametrized by its unit outer normal and
Xt(0) satisfies 〈∂Xt(0)/∂zj ,n〉 = 0, j = 1, . . . , n. Suppose X(0) ∈
Hk(Sn) and Xt(0) ∈ Hk−1(Sn), k > n/2 + 2. There exists a positive
T ≤ ∞ such that (3.1) has a unique solution X(t) in C([0, T ),Hk(Sn))
⋂

C1([0, T ),Hk−1(Sn)) that is parametrized by its unit outer normal
and uniformly convex at each t. It is smooth provided X(0) and Xt(0)
are smooth. Moreover, it is maximal in the sense that if T is finite, ei-
ther the minimum of the principal radii of curvatures of X(t) tends to
zero or

||X(t)||C2(Sn) → ∞,

as t approaches T .

To prove this theorem, we look at the initial value problem for the
associated equation satisfied by the support functions H(z, t) of the
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hypersurfaces. By (2.6),

(3.3)







∂2H

∂t2
= −f(R1, . . . , Rn), (z, t) ∈ Sn × [0, T ),

H(0) and Ht(0) are given ,

where H(0) is the support function of a uniformly convex hypersurface
and Ht(0) is of homogeneous degree 1. Our first job is to express the
right-hand side of the equation in (3.3) in terms of the support function
and its derivatives.

Let X be a uniformly convex hypersurface with support function H
that is of homogenous degree 1. We may fix a point on Sn and consider
the restriction of H on the tangent space through this point. For a
typical choice, take the point to be the south pole (0, . . . , 0,−1) and
set, for x ∈ R

n,

u(x1, . . . , xn) = H(x1, . . . , xn,−1) =
√

1 + |x|2H
(x1, . . . , xn,−1

√

1 + |x|2
)

.

The second fundamental form of the hypersurface at the point X(z) is
given by

bij(x) =
uij(x)

√

1 + |x|2
, z =

(x,−1)
√

1 + |x|2
.

The radii of principal curvatures are the eigenvalues of the induced
metric of X with respect to the second fundamental form, i.e., det{gij−
Rbij} = 0. It turns out they are the eigenvalues of the matrix (sij) given
by

sij = (1 + |x|2) 1

2 (δik + xixk)ujk;

see [U1]. This matrix is not symmetric. However, observing that the
symmetric matrix given by

(3.4) ŝij =
(

δik +
xixk

1 + (1 + |x|2) 1

2

)(

δjl +
xjxl

1 + (1 + |x|2) 1

2

)

ukl

shares the same eigenvalues with (bij) [CNS], we know there exists a
smooth function F such that

F (ŝij) = f(R1, . . . , Rn)

by our assumptions on f . The eigenvalues of the matrix (∂F/∂zij) are
given precisely by ∂f/∂R1, . . . , ∂f/∂Rn [CNS], and so (3.2) is equiva-
lent to

(3.5)
∂F

∂zij
(A) < 0,

on all positive definite matrices A.
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Restricting on the hyperplane xn+1 = −1, (3.3) becomes

(3.6)







∂2u

∂t2
= −(1 + |x|2)F (ŝij),

u(0) and ut(0) are given ,

where (ŝij) is in (3.4).
The above discussion leads us to the general fully nonlinear hyperbolic

equation

(3.7)















∂2v

∂t2
= φ(x,D2

xv), (x, t) ∈ R
n × [0, T ),

v(0) = f,
∂v

∂t
(0) = g,

where the smooth function φ(x, zij) satisfies φ(x, zij) = φ(x, zji) and
the ellipticity condition: There exists a symmetric matrix Z0 such that
for any symmetric matrix Z satisfying Z0 + Z is positive definite,

(3.8)
∂φ

∂zij
(x,Z) > 0.

Clearly, this condition is satisfied for (3.6) under (3.5) for v being u−u(0)
and Z0 the Hessian of u(0).

We would like to solve (3.7) locally in time. To do this we first reduce
it to a quasilinear system of second order equations. In fact, for each
k = 1, . . . , n, vk = ∂v/∂xk satisfies



















∂2vk
∂t2

= aij
∂2vk
∂xi∂xj

+ bk,

vk(0) =
∂f

∂xk
,
∂vk
∂t

(0) =
∂g

∂xk
,

where aij = φzij (x,D
2
xv) and bk = φxk

(x,D2
xv). Let us consider a

second-order, quasilinear system for v = (v1, . . . , vn),

(3.9)



















∂2vk

∂t2
= aij

∂2vk

∂xi∂xj
+ bk,

v(0) and
∂v

∂t
(0) are given,

where aij = aij(x,Dxv), b
k = bk(x,Dxv), and Dxv = (∇v1, . . . ,∇vn).

Clearly, v = (∂v/∂x1, . . . , ∂v/∂xn) solves (3.9) whenever v is a solution
of (3.7). On the other hand, we assert that if v solves (3.9) with v(0) =
∇f and vt(0) = ∇g, then a solution to (3.7) can be found.

We differentiate (3.9) in xl to obtain

vkltt = φzijv
k
lij + φzijzmnv

m
lnv

k
ij + φzijxl

vkij + φxkzijv
i
lj + φxkxl

.
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It follows that

(vkl − vlk)tt = φzij (v
k
l − vlk)ij + φzijzmn(v

m
lnv

k
ij − vmknv

l
ij)

+φzijxl
vkij − φzijxk

vlij + φzkzijv
i
lj − φxlzijv

i
kj

= φzij (v
k
l − vlk)ij + φzijzmn [v

i
lj(v

k
m − vmk )n + vmkn(v

i
l − vli)j ]

+φzijxl
(vki − vik)j + φzijxk

(vil − vli)j ,

after using

φzijzmnv
m
lnv

k
ij = φzijzmnv

i
ljv

k
mn.

Thus, ωkl ≡ vkl − vlk satisfies

(3.10)



















∂2ωkl

∂t2
= aij

∂2ωkl

∂xi∂xj
+ cklmij

∂ωij

∂xm

ωkl(0) = 0,
∂ωkl

∂t
(0) = 0,

for some functions cklmij . One can show that the solution to this linear

system is identically zero (see the remark below), so vkl = vlk for each

k, l and there exists a potential function ṽ such that ∂ṽ/∂xk = vk.
Consequently,

∂2ṽ

∂t2
= φ(x,D2

xṽ) + c(t)

holds for some function c(t). At t = 0

ṽ(x, 0) = f(x) + c1 and ṽt(x, 0) = g(x) + c2,

for some constants c1 and c2. A solution for (3.7) is found by taking
v(x, t) = ṽ(x, t) + χ(t) where χ solves χ′′ = −c(t), χ(0) = −c1, and
χ′(0) = −c2.

We have reduced the solvability of (3.7) to that of (3.9). A further
step is to reduce (3.9) to a first-order, quasilinear system.

Consider the following system for an R
(n+2)n-valued function w

(3.11)























































∂wk

∂t
= wk0,

∂wk0

∂t
= aij

∂wki

∂xj
+ bk,

∂wkj

∂t
=
∂wk0

∂xj
,

w(0) given ,

where w = (w1, w10, w11, . . . , w1n, . . . , wn, wn0, wn1, . . . , wnn) and the
coefficients aij and bk are evaluated at (x,w11, . . . , w1n, . . . , wn1, . . . , wnn).
When w(0) = (v1(0), v1t (0), v

1
1(0), . . . , v

n
1 (0), . . . , v

n(0), vnt (0), v
n
1 (0), . . . ,
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vnn(0)) and the initial data v(0) and vt(0) are given in (3.9), the function
w = (v1, v1t , v

1
1 , . . . , v

1
n, . . . , v

n, vnt , v
n
1 , . . . , v

n
n) solves (3.11). Conversely,

let w be a solution of (3.11) satisfying these special initial values. Then,
for k, l = 1, . . . , n,

∂

∂t

(

wlk − ∂wl

∂xk

)

=
∂wl0

∂xk
− ∂

∂xk

∂wl

∂t
= 0,

whence v ≡ (w1, . . . , wn) solves (3.9).
To solve (3.11), we note that for each k, wk ≡ (wk, wk0, . . . , wkn)

satisfies

∂wk

∂t
=

















0 0 0 · · · 0
0 0 a11 · · · an1

0 1 0 · · · 0
0 0 0 · · · 0
· · · ·
0 0 0 · · · 0

















∂wk

∂x1
+

















0 0 0 · · · 0
0 0 a12 · · · an2

0 0 0 · · · 0
0 1 0 · · · 0
· · · ·
0 0 0 · · · 0

















∂wk

∂x2
+

· · ·+

















0 0 0 · · · 0
0 0 a1n · · · ann

0 0 0 · · · 0
0 0 0 · · · 0
· · · ·
0 1 0 · · · 0

















∂wk

∂xn
+ b,

where b = b(x,w). By multiplying this system with the matrix R that
is the the n-copies direct sum of the (n+ 2)× (n+ 2) matrix

R =













1 0 0 · · · 0
0 1 0 · · · 0
0 0
· · aij

0 0













,

we obtain

(3.12) R∂w

∂t
= Aj ∂w

∂xj
+ c,

where Aj ’s are now symmetric and c ≡ Rb. When (3.12) is derived
from (3.9), R is positive definite under (3.8), and so this is a quasilinear
symmetric hyperbolic system.
Remark 3.1. We sketch how to show that (3.10) only admits the trivial
solution. By introducing the new variable W = (wkl, wkl

t , w
kl
j ), we can

make (3.10) into a first-order linear system for W with zero initial data.
By multiplying this system with the matrix that is the n2 copies direct
sum of R given above, we can turn it into a linear hyperbolic system. By
the energy estimate, we deduce the Grownall’s inequality d||W ||2L2/dt ≤
C||W ||L2 . It follows that W vanishes identically.
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The theory of quasilinear symmetric hyperbolic systems is well known.
Consider a general system (3.12) where R, Aj , and c are smooth func-
tions of (x,w) ∈ R

n ×U , U an open set in R
N for some N . Moreoever,

R and Aj ’s are symmetric N ×N matrices, and all eigenvalues of R are
positive in R

n × U . The following facts can be found or derived easily
from Taylor [T].
Fact (a). For any w(0) ∈ Hk(Rn), k > N/2 + 1, with w ∈ V where V
is an open set compactly contained in U , (3.12) has a unique classical
solution w defined on some interval [0, T ), T > 0,w(t) ∈ V, which
belongs to C([0, T ),Hk(Rn))

⋂

C1([0, T ),Hk−1(Rn)),
Fact (b). Suppose ||w(t)||C1 is uniformly bounded for t ∈ [0, T ). Then
there exists T1 > T such that the solution extends to C([0, T1),H

k(Rn))
with w(t) in U .
Fact (c). w(x, t) is smooth in R

n × [0, T ) if w(0) is smooth at t = 0.
By choosing a suitable U for our situation, we deduce from these

facts that there exists a unique solution to (3.12) on a maximal interval
[0, Tmax), Tmax ≤ ∞, in the sense that when Tmax is finite, either λ(t),
the lowest eigenvalue of (wij(t)) + Z0, i, j = 1, . . . , n where Z0 is the
Hessian of u(0)—see (3.8)—satisfies

inf
t
λ(t) → 0

or

sup
t

||w(t)||C1 → ∞,

as t ↑ Tmax.
Proof of Theorem 3.1.

Set v = u− u(0) in (3.6) and consider the problem

(3.13)











∂2v

∂t2
= −(1 + |x|2)F (ŝij),

v(0) = 0 and vt(0) is given,

where

ŝij =
(

δik +
xixk

1 + (1 + |x|2) 1

2

)(

δjl +
xjxl

1 + (1 + |x|2) 1

2

)

(u(0)ij + vij)

and vt(0) is a function compactly supported in R
n that is equal to

ut(0) in the unit ball B1 = {x ∈ R
n : |x| < 1}. From our discussion

for u(0) ∈ Hk+2(Rn) and vt(0) ∈ Hk+1(Rn), k > n/2 + 1, problem
(3.13) has a solution v(t), t ∈ [0, T ). Then u = v + u(0) solves the
equation in (3.6). By finite speed of propagation of solutions (Mizohata
[M]) for hyperbolic equations, there exists a time T > 0 such that
the values of v(x, t), (x, t) ∈ B1/2 × [0, T ) depend only on the initial
values in B1. Hence, u solves (3.6) in B1/2 × [0, T ). Passing through
the tangent space at each point z on the unit sphere, we can obtain a
similar solution in [0, T (z)). The balls obtained by projecting all B1/2
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on these tangent spaces to the sphere form an open cover of the sphere.
We can choose finitely many balls to cover the sphere. Letting T =
min{T (z1), . . . , T (zN )} where zj , j = 1, . . . , N, are centers of these balls,
it is clear that one can construct H(z, t) on [0, T ) by putting these
solutions u together. We have shown that (3.3) is locally solvable.

Letting Xk(z, t) = ∂H/∂zk, we have

〈∂X

∂zk
,
∂n

∂t
,
〉

= −
〈 ∂2X

∂zk∂t
,n

〉

= −
n
∑

j=1

zj
∂

∂zj

∂Ht

∂zk
= 0,

by Euler’s identity for homogeneous functions. It follows that X satisfies
the normal-preserving condition. By Proposition 2.2, it solves (3.1) on
[0, T ).

The assertion on smoothness ofX follows from Fact (c) above. Finally,
from the expression relating X and H we see that the C3−norm of H is
controlled by the C2-norm of X. The proof of Theorem 3.1 is completed.

4. Finite Time Blow-up

After establishing the local solvability for some normal-preserving
flows driven by curvatures, we turn to other properties of the flows such
as the formation of finite-time singularities and long-time behavior. In
the literature, numerous results concerning these topics are available for
fully nonlinear parabolic flows. As a preliminary study, we shall focus on
the Gauss curvature flow. We take F = Kα, α > 0, whereK is the Gauss
curvature of the hypersurface in (3.1), and we call the resulting flow the
contracting Gauss curvature flow. Its parabolic counterpart has been
studied by several authors, including [F], [T], [C], [A3], and [A4]. A
common feature is, for any closed uniformly convex hypersurface X(0),
that X(t) contracts to a point in finite time and its ultimate shape is
largely known when α is less than or equal to 1/n. To examine the
same question for the hyperbolic case, we first consider a special case,
namely, the initial hypersurface is a sphere and its initial velocity is
given by R1n, for some real number R1. Under these assumptions, this
flow reduces to an ODE for R(t), the radius of the sphere at time t,







R′′ = − 1

Rnα
,

R(0) = R0 > 0, R′(0) = R1.

The following proposition is easily proved.

Proposition 4.1. Let c = R2
1/2−R1−nα

0 /(nα−1). For α ∈ (1/n,∞),
(a) when R1 < 0 and c ∈ R, the sphere contracts to a point in finite
time,
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(b) when R1 > 0 and c < 0, the sphere expands first and then contracts
to a point in finite time; when c ≥ 0, it expands to ∞ and

R(t) =

{

O(t), c > 0,

O(t
2

nα+1 ), c = 0,

as t→ ∞.
For α ∈ (0, 1/n], c is always positive, and

(c) when R1 ≥ 0, the sphere expands first and then contracts to a point
in finite time,
(d) when R1 < 0, the sphere contracts to a point in finite time.

Thus, unlike the parabolic case, inward acceleration does not neces-
sarily mean contraction for the hypersurface. The initial velocity plays a
role. Nevertheless, for α ∈ (0, 1/n], although the sphere may expand for
a while, it eventually contracts to its center in finite time. For uniformly
convex hypersurfaces with general initial data, we have the following
proposition:

Proposition 4.2. Any normal preserving contracting Gauss curva-
ture flow blows up in finite time for for α ∈ (0, 1/n].

Proof. Let H(·, t) be the support function of this flow. By (2.6), it
satisfies











∂2H

∂t2
= −Kα,

H(0) and Ht(0) are given.

Let us assume it exists for all time and draw a contradiction. First of
all, we have

σn =

∫

X
Kds

≤
(

∫

X
Kα+1ds

)
1

α+1
(

∫

X
ds
)

α
α+1

=
(

∫

Sn

Kαdz
)

1

α+1

A(t)
α

α+1 ,

where σn = |Sn| and A(t) is the surface area of X(t). On the other
hand, from

H(z, t) = H(z, 0) +

∫ t

0

∂H

∂t
(z, s)ds ≤ H(z, 0) + sup

z

∂H

∂t
(z, 0)t,

we see that the growth of the support function is at most linear. There-
fore, the surface area satisfies

A(t) ≤ C(1 + tn),
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for some constant C. It follows that
∫

Htt = −
∫

Kα

≤ − σα+1
n

A(t)α

≤ − σα+1
n

C(1 + tn)

≤ C1 − C2t
1−αn,

for some constants C1 and C2. When nα = 1, the term C2t
1−nα should

be replaced by C2 log t. Therefore,
∫

H(z, t)dz =

∫

H(z, 0)dz +

∫ t

0

∫

Ht(z, s)dzds

≤
∫

H(z, 0)dz + C1t−
C2

2− nα
t2−nα,

becomes negative for large time. The same conclusion holds when nα =
1. However, the integral of H(t) is the mean width of the convex body
enclosed by X(t) (see [S]) and it cannot be negative. To see this we note
that when the origin is contained inside the convex body, the support
function is nonnegative everywhere, and so this integral is nonnegative.
When one uses different coordinates to represent the support functions,
they differ from each other only by a linear function; hence the integrals
are the same. Thus, we have arrived at a contradiction. We conclude
that the solution of (3.1) cannot exist for all time when nα is less than
or equal to 1. q.e.d.

A natural question is: Could the hypersurface develop a singularity
before it contracts to a point under this contracting flow? We believe
this is possible, although an example is out of our hand. Nevertheless, we
present a noncompact example where an isolated singularity develops
in finite time for α in (0, 1/n).

Let C be a convex cone based at the origin in R
n+1 whose cross section

is bounded by a closed, uniformly convex hypersurface. According to
Urbas [U1], there exists a uniformly convex hypersurface X∗ sitting
inside C and asymptotic to its boundary at ∞ satisfying

〈

X∗,n
〉

= Kα.

Consider the ODE for α ∈ (0, 1/n),

φ′′ =
1

φnα
, φ(0) = 1, φ′(0) = φ1 < 0.

When φ1 satisfies φ
2
1 > 2/(1−nα), it is easy to see that it has a solution

in [0, T ) for some T and φ(t) → 0, as t ↑ T . Letting X(t) = φ(t)X∗,
it is readily verified that X(t) solves the contracting Gauss curvature
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flow with X(0) = X∗, and geometrically it collapses to the boundary of
C as t approaches T . We see that the curvature blows up only at the
origin. Away from the origin, the hypersurface remains smooth, while
its Gauss curvature vanishes.

Next we present a necessary condition for the existence of global
normal preserving flows (3.1) when F is positive. It leads to a criterion
for finite time blow-up for special initial velocity.

Proposition 4.3. Let X be a normal preserving flow solving (3.1) in
Sn× [0,∞) where F > 0. Then its support function H(z, t) must satisfy

Ht(z, 0) +Ht(−z, 0) ≥ 0, for all z.

Proof. Let X be a global normal-preserving solution of (3.1). Then

X̃ ≡ (t,X(t)) is a hypersurface in [0,∞)×R
n+1. When expressed locally

as a graph of some function, the Gauss curvature of X̃ is of the same
sign as the determinant of the Hessian matrix of this function, which is
positive by (2.5) when F is positive. Therefore, X̃ is a uniformly convex

hypersurface in [0,∞) × R
n+1. In a coordinate system, X̃ is expressed

as the union of the graphs of two uniformly convex functions u(x, t),
and v(x, t) defined in the closure of some convex domain Ω satisfying
v < u in Ω. Given a point X(z0, 0) on the initial hypersurface, we may
choose a coordinate system such that this point is (x0, u(x0, 0)) and its
unit outer normal is (0, . . . , 0, 1); that is, ∇u(x0, 0) = (0, . . . , 0) holds.
Let (y0, v(y0, 0)) be the unique point on X(0) satisfying ∇v(y0, 0) =
(0, . . . , 0). Its unit outer normal is given by (0, . . . , 0,−1). So the tangent
hyperplanes at (x0, u(x0, 0)) and (y0, v(y0, 0)) are parallel in R

n+1.

The tangent hyperplanes of X̃ at (0, x0, u(x0)) and (0, y0, v(y0)) are
given, respectively, by

P1 = {(t, x, u) : ut(x0, 0)t = u− u(x0, 0)}
and

P2 = {(t, x, u) : vt(y0, 0)t = u− v(y0, 0)}.
When X̃ is global, P1 always sits above P2, so they never intersect.
It means that these two hyperplanes either do not intersect or they
intersect at negative time. When the latter happens, the intersection
time is given

T =
v(y0, 0)− u(x0, 0)

ut(x0, 0) − vt(y0, 0)
< 0.

It follows that

(4.1) ut(x0, 0) ≥ vt(y0, 0)

must hold.
We express (4.1) in terms of the support function. By differentiating

the relation X(0) = (x, u(x, 0)), we have Xt = (xt, ut + ujx
j
t). As the

outer normal of X(0) at z0 is (0, . . . , 0, 1), ut(x0, 0) = 〈Xt(z0, 0), z0〉 =
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Ht(z0, 0). Similarly, we haveHt(−z0, 0) = −vt(y0, 0), and henceHt(z0, 0)+
Ht(−z0, t) ≥ 0 from (4.1). q.e.d.

Condition (4.1) can be rewritten as 〈Xt(z, 0), z〉+〈Xt(−z, 0),−z〉 ≥ 0
for all outer normal z. Noting that 〈Xt(z, 0), z〉 is the “outer normal
speed” along z, the sum of the inner normal speed along z and −z may
be called the “net outer normal speed” along z. This condition implies
the following criterion for finite time blow-up: The solution cannot exist
for all time when the “net outer normal speed” is negative for some z.
In fact, an upper bound on its life span is given by

inf
{ −the width along z

the net outer normal speed along z
: z ∈ P

}

,

where P is the subset of the upper hemisphere consisting of all z along
which the net inner normal speed is negative. Note that the width along
z is given by H(z, 0)+H(−z, 0) and is equal to u(x0, 0)−v(y0, 0) in the
above proof.

Finally, we consider the expanding Gauss curvature flow by taking
F = −K−β, β > 0, in (3.1). Results on parabolic expanding Gauss
curvature flows can be found in, for instance, Urbas [U1, U3] and Chow
and Tsai [CT]. The hypersurface expands to infinity in infinite time and
becomes round when β is less than or equal to 1/n. When β = 1 and
n = 2, it is known that the surface expands to infinity like a sphere
in finite time by Schnürer [S]. In the hyperbolic case, we examine the
motion of a sphere first. Indeed, when X(0) is a sphere of radius R0 and
Xt(0) has constant normal speed R1, we have the following proposition:

Proposition 4.4. Let c = R2
1/2−R1+nβ

0 /(nβ + 1). For β > 0:
(a) When R1 > 0 and c ∈ R, the sphere expands to infinity as t ↑ T ,
where T is finite when β ∈ (1/n,∞) and is infinite when β ∈ (0, 1/n].
In fact, as t→ ∞,

R(t) =











O(t
2

1−nβ ), β <
1

n
,

O(et), β =
1

n
.

(b) When R1 < 0 and c < 0, the sphere first contracts and then expands
to infinity behaving like in (a); when R1 < 0 and c ≥ 0, the sphere
contracts to a point in finite time.

There is a special case, namely, β = 1 and n = 1, where a rather
complete analysis is possible. In this case, the expanding flow becomes,
in terms of its support function, a linear problem

(4.2)

{

htt = hθθ + h,
h(0) = f, ht(0) = g.
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The solution can be represented by the cosine series, namely,

h(θ, t) =
a0 − a′0

2
e−t +

a0 + a′0
2

et + (a1 + a′1t) cos θ

+

∞
∑

2

(

aj cos
√

j2 − 1 t+
a′j

√

j2 − 1
sin

√

j2 − 1 t
)

cos jθ,

provided

f(θ) = a0 +

∞
∑

1

(aj cos jθ + bj sin jθ)

and

g(θ) = a′0 +
∞
∑

1

(a′j cos jθ + b′j sin jθ).

For some choice of f and g, we show that a uniformly convex ini-
tial curve may develop an isolated singularity in finite time. If we take
a0 = 2, a2 = −1/3, a′0 = −4, all other coefficients vanish in the above
expression for h. Then we have

(hθθ + h)(θ, t) = 3e−t − et + cos
√
3t cos 2θ,

which is positive at t = 0. However, there exists a time T ∼ 0.3 such that
hθθ +h is positive on [0, T ) but vanishes at (±π/2, T ). As the curvature
of the solution curve is given by the reciprocal of hθθ + h, the flow is
regular in [0, T ) and develops two isolated singularities at T .

On the other hand, the flow behaves nicely for a class of initial values.

Proposition 4.5. Consider (4.2) where the initial values are smooth
and satisfy fθθ + f, gθθ + g > 0. Then the flow remains smooth and
expands to infinity like a circle.

Proof. It suffices to show that hθθ+h is positive for all t. We note that
ϕ = hθθ + h satisfies the one-dimensional wave equation with a zeroth
order term ϕtt = ϕθθ +ϕ, and the initial values ϕ(0) = fθθ + f, ϕt(0) =
gθθ + g are positive. Therefore, we may apply the maximum principle
for one-dimensional wave equation; see section 2 in chapter 4 of Protter
and Weinberger [PW] to obtain the desired conclusion. The asymptotic
behavior of the flow can be read off from the formula of the support
function. q.e.d.
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Inc., Boston, MA, 2004, MR 2024995, Zbl 1058.53054.

[F] W. Firey, Shape of worn stones, Mathematika 21 (1974), 1–11, MR 0362045,
Zbl 0311.52003.

[GH] M. Gage & R.S. Hamilton, The heat equation shrinking convex plane curves,

J. Differential Geom. 23 (1986), 69–96, MR 0840401, Zbl 0621.53001.

[Gi] Y. Giga, Surface Evolution Equations. A Level Set Approach, Birkhäuser
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