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LOCALLY STRONGLY CONVEX AFFINE
HYPERSURFACES WITH PARALLEL CUBIC FORM

Zejun Hu, Haizhong Li & Luc Vrancken

Abstract

We give a complete classification of locally strongly convex
affine hypersurfaces of Rn+1 with parallel cubic form with respect
to the Levi-Civita connection of the affine Berwald-Blaschke met-
ric. It turns out that all such affine hypersurfaces are quadrics
or can be obtained by applying repeatedly the Calabi product
construction of hyperbolic affine hyperspheres, using as build-
ing blocks either the hyperboloid, or the standard immersion of
one of the symmetric spaces SL(m,R)/SO(m), SL(m,C)/SU(m),
SU∗(2m

)

/Sp(m), or E6(−26)/F4.

1. Introduction

In this paper, we study affine hypersurfaces of Rn+1. The study of
affine differential geometry originates with the work of Blaschke and
his coworkers at the beginning of the twentieth century [Bl]. A more
modern structural approach to this field was given by Nomizu at the
1984 conference Differential Geometry Meeting in Münster [N].

In the case that the hypersurface is nondegenerate, it is well known
how to induce an affine connection ∇ and a symmetric bilinear form h,
called the affine metric, on M . This is done by constructing a canonical
transversal vector field to the immersion, called the affine normal. The
classical Pick-Berwald theorem states that the induced affine connection
coincides with the Levi-Civita connection of the affine metric if and only
if the hypersurface is a quadric. For that reason, the difference tensor

K(X,Y ) = ∇XY − ∇̂XY,

where ∇̂ is the Levi-Civita connection of the affine metric, plays a fun-
damental role in affine differential geometry.

Here in this paper, we will always assume that the hypersurface is
locally strongly convex, i.e., the affine metric is definite. In this case,
if necessary by changing the sign of the affine normal, we may always
assume that the affine metric is positive definite. In particular, we will
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be interested in the question when the difference tensor K is parallel
with respect to the Levi-Civita connection of the affine metric. As

(1.1) h(K(X,Y ), Z) = −1
2(∇h)(X,Y,Z) = −1

2C(X,Y,Z),

this is equivalent with demanding that the cubic form C is parallel with
respect to the Levi-Civita connection ∇̂. The above question was ini-
tiated by the work of Bokan, Nomizu, and Simon [BNS], who showed
that such hypersurfaces are necessarily affine hyperspheres. Actually,
using [DVY] and [HLSV] we can see that such hypersurfaces, provided
the difference tensor does not vanish identically, are necessarily hyper-
bolic homogeneous affine hyperspheres. Following the work of [BNS],
further results in low dimensions were obtained in [MN], [V1], [DV1],
[DVY], and [HLSV]. For all dimensions, a similar problem was stud-
ied in [LW] for centroaffine hypersurfaces of Rn+1 under the additional
condition that the Blaschke metric is flat.

Note that from a global point of view, locally strongly convex hyper-
bolic affine hyperspheres have been widely studied; see amongst others
the works of [C], [CY], and the recent survey paper [Lo] (see references
there). Even assuming such global conditions, the class of hyperbolic
affine hyperspheres is surprisingly large. Even more, locally, in arbi-
trary dimensions one is still far away from a complete understanding of
such hypersurfaces. Worthwhile to mention from a local point of view
are the classification of the affine hyperspheres with constant sectional
curvature (see [VLS] for the locally strongly convex case, or [V2] for
the general case with non-vanishing Pick invariant) and the Calabi con-
struction ([C], [DV2]) of hyperbolic affine hyperspheres which allows
to associate with two hyperbolic affine hyperspheres ψ1 : M1 → Rn1+1

and ψ2 :M2 → Rn2+1 two new immersions ϕ and ϕ̃: for p ∈M1, t ∈ R,

ϕ(p, t) = (c1e
t√

n1+1ψ1(p), c2e
−
√
n1+1t) ∈ Rn1+2,

and, for p ∈M1, q ∈M2, t ∈ R,

ϕ̃(p, q, t) = (c1e

√

n2+1
n1+1 t

ψ1(p), c2e
−
√

n1+1
n2+1 t

ψ2(q)) ∈ Rn1+n2+2,

which are both again hyperbolic affine hyperspheres. Here, ϕ and ϕ̃
are respectively called the Calabi product of an affine hypersphere and
a point, and the Calabi product of two hyperbolic affine hyperspheres.
Note that a straightforward calculation (see [HLV]) shows that the
Calabi product of hyperbolic affine hyperspheres with parallel difference
tensor again has parallel difference tensor.

A decomposition theorem, which can be seen as a converse of the
previous statement, was obtained in [HLV]. In this paper we further
develop the techniques started in [HLSV] in order to obtain the follow-
ing complete classification.



AFFINE HYPERSURFACES WITH PARALLEL CUBIC FORM 241

Classification Theorem. Let Mn be an n-dimensional (n ≥ 2) locally

strongly convex affine hypersurface in Rn+1 with ∇̂C = 0. Then M is
a quadric (i.e., C = 0) or a hyperbolic affine hypersphere with C 6= 0;
in the latter case either

(i) Mn is obtained as the Calabi product of a lower dimensional hy-
perbolic affine hypersphere with parallel cubic form and a point, or

(ii) Mn is obtained as the Calabi product of two lower dimensional
hyperbolic affine hyperspheres with parallel cubic form, or

(iii) n = 1
2m(m + 1) − 1, m ≥ 3, and (Mn, h) is isometric with

SL(m,R)/SO(m), and the immersion is affinely equivalent to the
standard embedding of SL(m,R)/SO(m) →֒ Rn+1, or

(iv) n = m2 − 1, m ≥ 3, and (Mn, h) is isometric with
SL(m,C)/SU(m), and the immersion is affinely equivalent to the

standard embedding of SL(m,C)/SU(m) →֒ Rm2

, or
(v) n = 2m2 −m− 1, m ≥ 3, and (Mn, h) is isometric with

SU∗(2m
)

/Sp(m), and the immersion is affinely equivalent to the

standard embedding of SU∗(2m
)

/Sp(m) →֒ Rn+1, or

(vi) n = 26 and (M26, h) is isometric with E6(−26)/F4, and the im-
mersion is affinely equivalent to the standard embedding of
E6(−26)/F4 →֒ R27.

Note that the above theorem implies that all hyperbolic affine hyper-
spheres with parallel cubic form can be obtained by applying repeatedly
the Calabi product construction of hyperbolic affine hyperspheres, using
either the hyperboloid, or the standard immersion of one of the sym-
metric spaces SL(m,R)/SO(m), SL(m,C)/SU(m), SU∗(2m

)

/Sp(m),
or E6(−26)/F4 as building blocks.

The paper is organized as follows. In section 2, we review relevant
materials and some lemmas, which include the decomposition of the
tangent space into 3 orthogonal distributions D1 (which is 1 dimen-
sional), D2, and D3, and the definition and properties of a bilinear map
L from D2 × D2 to D3. In section 3, we introduce, for any unit vector
v ∈ D2, a linear map P (v) : D2 → D2 and study its properties. In
section 4, we use the previous results to obtain a direct sum decompo-
sition for D2. We prove that there exist an integer k0 and unit vectors
v1, . . . , vk0 ∈ D2 such that D2 = {v1} ⊕ Vv1(0) ⊕ · · · ⊕ {vk0} ⊕ Vvk0 (0).

Here Vvj (0) is the eigenspace of P (vj) with eigenvalue 0. We also find
that dimVv1(0) = · · · = dimVvk0 (0), which we denote by p, can only be
equal to 0, 1, 3, or 7. In the final four sections, we consider each of the
four cases separately and in each case we obtain a complete classification
of the affine hypersurfaces with parallel cubic form.
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2. Preliminaries and Lemmas

For a locally strongly convex hypersurface F : Mn →֒ Rn+1, denote
by h the affine metric and let S be the affine shape operator. Mn is
called an affine hypersphere if S = λ id, where λ = H := 1

n trS is the
affine mean curvature. Assuming that the affine normal is chosen such
that h is positive definite, F is called a proper affine hypersphere if
H 6= 0; if H > 0, the proper affine hypersphere is called elliptic, for
H < 0 hyperbolic. If H = 0, the affine hypersphere is called improper
or parabolic.

The curvature tensor R̂ of ∇̂ is related to S and K by an equation of
Gauß type

R̂(X,Y )Z =1
2 {h(Y,Z)SX − h(X,Z)SY + h(SY,Z)X − h(SX,Z)Y }
− [KX ,KY ]Z.

In particular, for affine hyperspheres we have S = H id and thus

(2.1) R̂(X,Y )Z = H ·
(

h(Y,Z)X − h(X,Z)Y
)

− [KX ,KY ]Z.

We also recall the definition of the curvature tensor acting as derivation:

(2.2)

(

R̂(X,Y )K
)

(Z,W ) =R̂(X,Y )K(Z,W )

−K(R̂(X,Y )Z,W )−K(Z, R̂(X,Y )W ).

Moreover, K satisfies the apolarity condition, namely trKX = 0 for all
X, and has the property that h(K(X,Y ), Z) is totally symmetric in
X,Y and Z.

Now we assume thatMn is an n-dimensional, locally strongly convex
affine hypersurface in Rn+1 which has parallel cubic form, i.e., ∇̂C = 0,
or equivalently ∇̂K = 0. Thus, according to [BNS], Mn is an affine
hypersphere.

Since ∇̂C = 0 implies that h(C,C) is constant, there are two cases.
If h(C,C) = 0, then C = 0 and Mn is an open part of a quadric.
Otherwise, C never vanishes, and we assume this from now on. Then,
according to [DVY], Mn is a locally homogeneous hyperbolic affine
hypersphere.
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Note that the vanishing of ∇̂K implies by the Ricci identity that

(R̂(X,Y )K)(Z,W ) = 0.

Using this property, following an idea first introduced by Ejiri [E], and
since then widely applied and very useful for solving various problems
(see e.g. [DVY] and [VLS]), a special orthonormal basis with respect
to the affine metric can be constructed.

Lemma 2.1 (see [DVY], [HLSV]). Let Mn be a hyperbolic affine
hypersphere such that S = H · id with H < 0, and with parallel cubic
form. Then, for every x0 ∈ Mn, there exists an orthonormal basis
{ej}1≤j≤n, satisfying Ke1ej = λjej , and there exists a number r, 1 ≤
r < n, such that

(2.3)
λ2 = λ3 = · · · = λr =

1
2λ1,

λr+1 = · · · = λn = − r+1
2(n−r) λ1 =: µ

and

(2.4) −H = λ21
(r+1)2 +2(r+1)(n−r)

4(n−r)2
.

Therefore, for a locally strongly convex affine hypersurface with parallel
cubic form, considering that it is affine homogeneous, we will restrict
our discussions to a fixed point x0 ∈ Mn, and deal with (n − 1) cases
{Cr}1≤r≤n−1 as follows:

Case C1 : λ2 = λ3 = · · · = λn = − λ1

n−1 .

Case Cr : λ2 = · · · = λr = 1
2 λ1 and λr+1 = · · · = λn = − r+1

2(n−r)λ1 for

2 ≤ r ≤ n− 1.

To discuss these cases, we first recall the following observations:

Lemma 2.2 (see [HLSV]). If r > 1
3 (2n − 1), then the Case Cr does

not occur.

From Lemma 2.2 we see that only the cases {Cr}1≤r≤n̄ are left to
be studied, where n̄ denotes the largest integer less than or equal to
(2n − 1)/3.

Lemma 2.3 (see [HLSV]). If 2n ≡ 1 mod 3, then for the Case Cn̄,
we have:

h(Kejek, el) = 0, for all j, k, l ≥ n̄+ 1.

For case Cr with r ≤ n̄, we define D2 := span{e2, . . . , er} and D3 :=
span{er+1, . . . , en}. Then we have

Lemma 2.4 (see [HLSV]). (1) For the Case Cr, if v ∈ D2 and w ∈ D3,
then Kvw ∈ D2. (2) If dimD2 ≥ 1, then for any v1, v2, v3 ∈ D2,
h(Kv1v2, v3) = 0.
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For the general case Cr with dimD2 ≥ 1, we recall from [HLSV] the
definition of the bilinear map L on D2 ×D2 with image in D3 by

(2.5) L(v1, v2) := K(v1, v2)− 1
2λ1h(v1, v2)e1, v1, v2 ∈ D2.

Then we have

Lemma 2.5 (see [HLSV]). Assume that dimD2 ≥ 1. Then we have
(1) L is isotropic in the sense that (see [O], [V3])

(2.6) h(L(v, v), L(v, v)) = n+1
4(n−r) λ

2
1 (h(v, v))

2, v ∈ D2.

Moreover, linearizing the above expression, it follows for orthonormal
vectors X,Y,Z, and W in D2 that

(2.7) h(L(X,X), L(X,Y )) = 0,

(2.8) h(L(X,X), L(Y, Y )) + 2h(L(X,Y ), L(X,Y )) = n+1
4(n−r)λ

2
1,

(2.9) h(L(X,X), L(Y,Z)) + 2h(L(X,Y ), L(X,Z)) = 0,

(2.10)
h(L(X,Y ), L(Z,W )) + h(L(X,Z), L(W,Y ))

+ h(L(X,W ), L(Y,Z)) = 0.

(2) For Case Cr with Im (L) 6= D3, we have

(2.11) K(L(v1, v2), w) = − (n+1)(r+1)
4(n−r)2

h(v1, v2)λ
2
1 w,

where v1, v2 ∈ D2 and w ∈ D3 such that w ⊥ Im (L).
We remark that the operator L and its properties will play a crucial

role in our investigations. Besides the many properties it possesses which
we will derive in the next two sections, we will see from the fifth and
later sections that TrL = 0 if and only if the dimension n is completely
determined, and moreover in that case it is surprisingly related to the
normed division algebras; the latter appears only in dimension 1, 2, 4,
and 8: the real numbers, complex numbers, quaternions, and octonions.

The first property of L allows us to calculate the difference tensor on
the image of L. It states;



AFFINE HYPERSURFACES WITH PARALLEL CUBIC FORM 245

Lemma 2.6. For Case Cr with r ≥ 2, let {v1, . . . , vr−1} be an or-
thonormal basis of D2; then we have

(2.12)

K(L(vp, vj), L(vk, vℓ))

= − r+1
2(n−r)λ1h(L(vp, vj), L(vk, vℓ))e1

− (n+1)(r+1)λ2
1

4(n−r)2
h(vp, vj)L(vk, vℓ)

+

r−1
∑

m=1

h(L(vp, vm), L(vk, vℓ))L(vj , vm)

+

r−1
∑

m=1

h(L(vj , vm), L(vk, vℓ))L(vp, vm).

Proof. From the computation

(2.13)

R̂(e1, v1)v2 = Hh(v1, v2)e1 −Ke1Kv1v2 +Kv1Ke1v2

= Hh(v1, v2)e1 −Ke1

[

λ1

2 h(v1, v2) e1 + L(v1, v2)
]

+ λ1

2 Kv1v2

=
(

H − λ2
1

2

)

h(v1, v2) e1 −Ke1L(v1, v2)

+ λ1

2

[

λ1

2 h(v1, v2)e1 + L(v1, v2)
]

=
(

H − λ2
1

4

)

h(v1, v2) e1 +
n+1

2(n−r)λ1L(v1, v2),

we have for v, ṽ ∈ D2 that

R̂(e1, v)ṽ = − (n+1)2λ2
1

4(n−r)2 h(v, ṽ)e1 +
(n+1)
2(n−r)λ1L(v, ṽ).

As our hypersurface has parallel cubic form, we have that

(2.14)
R̂(e1, vp)K(vj , L(vk, vℓ))

= K(R̂(e1, vp)vj , L(vk, vℓ)) +K(vj, R̂(e1, vp)L(vk, vℓ)).

As K(vj , L(vk, vℓ)) ∈ D2 (Lemma 2.4 (1)), we can write:

K(vj, L(vk, vℓ)) =
r−1
∑

m=1

h(K(vj , L(vk, vℓ)), vm)vm

=
r−1
∑

m=1

h(L(vj , vm), L(vk, vℓ))vm.
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Using the above formulas, we find that

R̂(e1, vp)K(vj , L(vk, vℓ))

=

r−1
∑

m=1

h
(

L(vj , vm), L(vk, vℓ)
)

R̂(e1, vp)vm

=

r−1
∑

m=1

h
(

L(vj , vm), L(vk, vℓ)
)

(

− (n+1)2λ2
1

4(n−r)2 h(vp, vm)e1

+ (n+1)
2(n−r)λ1L(vp, vm)

)

= − (n+1)2λ2
1

4(n−r)2
h
(

L(vj , vp), L(vk, vℓ)
)

e1

+ (n+1)
2(n−r)λ1

r−1
∑

m=1

h(L(vj , vm), L(vk, vℓ))L(vp, vm).

On the other hand, we have

R̂(e1, vp)L(vk, vℓ) = −K(e1,K(vp, L(vk, vℓ))) +K(vp,K(e1, L(vk, vℓ)))

= −1
2λ1K(vp, L(vk, vℓ))− (r+1)

2(n−r)λ1K(vp, L(vk, vℓ))

= − (n+1)
2(n−r)λ1K(vp, L(vk, vℓ))

= − (n+1)
2(n−r)λ1

r−1
∑

m=1

h(L(vp, vm), L(vk, vℓ))vm.

It follows that

K
(

vj, R̂(e1, vp)L(vk, vℓ)
)

= − (n+1)
2(n−r)λ1

r−1
∑

m=1

h(L(vp, vm), L(vk, vℓ))K(vj , vm)

= − (n+1)
4(n−r)λ

2
1

r−1
∑

m=1

h(L(vp, vm), L(vk, vℓ))h(vj , vm)e1

− (n+1)
2(n−r)λ1

r−1
∑

m=1

h(L(vp, vm), L(vk, vℓ))L(vj , vm)

= − (n+1)
4(n−r)λ

2
1h(L(vp, vj), L(vk, vℓ))e1

− (n+1)
2(n−r)λ1

r−1
∑

m=1

h(L(vp, vm), L(vk, vℓ))L(vj , vm).
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Finally, we obtain that

K(R̂(e1, vp)vj , L(vk, vℓ))

= K(−(n+ 1)2λ21
4(n − r)2

h(vp, vj)e1 +
(n+1)
2(n−r)λ1L(vp, vj), L(vk, vℓ))

=
(n+1)2(r+1)λ3

1

8(n−r)3
h(vp, vj)L(vk, vℓ) +

(n+1)
2(n−r)λ1K(L(vp, vj), L(vk, vℓ)).

Therefore, combining all the three terms, we find that

(n+1)
2(n−r)λ1K(L(vp, vj), L(vk, vℓ))

= − (n+1)2(r+1)λ3
1

8(n−r)3
h(vp, vj)L(vk, vℓ) +

(n+1)
4(n−r)λ

2
1h(L(vp, vj), L(vk, vℓ))e1

+ (n+1)
2(n−r)λ1

r−1
∑

m=1

h(L(vp, vm), L(vk, vℓ))L(vj , vm)

− (n+1)2λ2
1

4(n−r)2
h(L(vj , vp), L(vk, vℓ))e1

+ (n+1)
2(n−r)λ1

r−1
∑

m=1

h(L(vj , vm), L(vk, vℓ))L(vp, vm)

= − (n+1)(r+1)
4(n−r)2

λ21h(L(vj , vp), L(vk, vℓ))e1

− (n+1)2(r+1)λ3
1

8(n−r)3
h(vp, vj)L(vk, vℓ)

+ (n+1)
2(n−r)λ1

r−1
∑

m=1

(

h(L(vp, vm), L(vk, vℓ))L(vj , vm)

+ h(L(vj , vm), L(vk, vℓ))L(vp, vm)
)

.

Simplifying the above expression, we get (2.12). q.e.d.
We note that equation (2.12) has very important consequences which

will be used in sequel sections. For example, we have

Lemma 2.7. For Case Cr with r ≥ 3, let {v1, . . . , vr−1} be an orthonor-
mal basis of D2; then for p 6= j, we have

(2.15)

0 =
(

(n+1)(2n−r+1)λ2
1

4(n−r)2
− 4h(L(vj , vp), L(vj , vp))

)

L(vp, vj)

+
∑

m6=p

[

h(L(vp, vm), L(vj , vj))

− 2h(L(vj , vm), L(vp, vj))
]

L(vj, vm).

In particular, if L(v1, v2) 6= 0 and L(v1, vm) is orthogonal to L(v1, v2)
for all m 6= 2, then

(2.16) h(L(v1, v2), L(v1, v2)) =
(n+1)(2n−r+1)λ2

1

16(n−r)2
.
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Proof. These are direct consequences of (2.12). We interchange the
couples of indices {p, j} and {k, ℓ} to find the following condition:

(2.17)

0 = − (n+1)(r+1)λ2
1

4(n−r)2

(

h(vp, vj)L(vk, vℓ)− h(vk, vℓ)L(vp, vj)
)

+
r−1
∑

m=1

h(L(vp, vm), L(vk, vℓ))L(vj , vm)

+
r−1
∑

m=1

h(L(vj , vm), L(vk, vℓ))L(vp, vm)

−
r−1
∑

m=1

h(L(vk, vm), L(vp, vj))L(vℓ, vm)

−
r−1
∑

m=1

h(L(vℓ, vm), L(vp, vj))L(vk, vm).

Now we take j = k = ℓ 6= p; then equation (2.17) reduces to

0 =
(n+1)(r+1)λ2

1

4(n−r)2
L(vp, vj) +

r−1
∑

m=1

h(L(vp, vm), L(vj , vj))L(vj , vm)

+

r−1
∑

m=1

h(L(vj , vm), L(vj , vj))L(vp, vm)

− 2

r−1
∑

m=1

h(L(vj , vm), L(vp, vj))L(vj , vm)

=
[

(n+1)(r+1)λ2
1

4(n−r)2 + h(L(vp, vp), L(vj , vj)) + h(L(vj , vj), L(vj , vj))

− 2h(L(vj , vp), L(vp, vj))
]

L(vp, vj)

+
∑

m6=p

(

h(L(vp, vm), L(vj , vj))− 2h(L(vj , vm), L(vp, vj))
)

L(vj, vm).

Using the isotropy condition, this immediately gives (2.15). Then (2.16)
follows by taking j = 1 and p = 2 in the equation (2.15), and by using
(2.9). q.e.d.

If dimD2 ≤ 2 or dim(Im (L)) = 1, then by theorems 4.1, 5.1, 6.1,
6.2 of [HLSV], we have the conclusions in the Classification Theo-
rem. Recall also from lemma 7.1 of [HLSV] that if dimD2 ≥ 3 and
dim(Im (L)) ≥ 2, then dim(Im (L)) ≥ 3. Hence from now on, even if
sometimes not necessary, we can assume that dimD2 = r − 1 ≥ 3 and
dim(Im (L)) ≥ 3.
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Now for a pair v1, v2 ∈ D2 of orthonormal vectors, we define a function
g by

(2.18) g(v1, v2) = h(L(v1, v2), L(v1, v2)).

Note that the set of such vectors can be identified with the (r − 1)-
dimensional unit hypersphere, and as such we can choose (v1, v2) such
that the absolute maximum for g is attained. We extend v1, v2 to get an
orthonormal basis {v1, v2, . . . , vr−1} of D2. Observe that, for all k ≥ 3,
we have

d
dt

∣

∣

t=0
g(v1, cos t v2 + sin t vk) = 0, d

dt

∣

∣

t=0
g(cos t v1 + sin t vk, v2) = 0.

This implies (see (7.2) of [HLSV]):

(2.19) h(L(v1, v2), L(v1, vk)) = 0 = h(L(v1, v2), L(v2, vk)), ∀ k ≥ 3.

Then by (2.7), Lemma 2.7, and noting that L(v1, v2) 6= 0, we find
that (2.16) holds. We have proved

Lemma 2.8. For Case Cr with r ≥ 4 and dim(Im (L)) ≥ 2, if v1, v2 ∈
D2 are orthogonal unit vectors, then the function g attains maximum in
(v1, v2) if and only if

(2.20) h(L(v1, v2), L(v1, v2)) =
(n+1)(2n−r+1)

16(n−r)2
λ21.

Moreover, if we further take v3 orthogonal to the couple v1, v2 such
that h(L(v1, v3), L(v1, v3)) is the maximum of g over the complement of
span{v1, v2} in D2, then from

d
dt

∣

∣

t=0
g(v1, cos t v3 + sin t vk) = 0,

we further have

h(L(v1, v3), L(v1, vk)) = 0

for all k ≥ 4. Therefore, taking j = 1 and p = 3 in (2.15), we see that

(2.21)
(

h(L(v1, v3), L(v1, v3))− (n+1)(2n−r+1)
16(n−r)2 λ21

)

L(v1, v3) = 0.

3. A map P (v) : D2 → D2 for unit vector v ∈ D2

In this section, we define for any given unit vector v ∈ D2 a linear
map P (v) : D2 → D2 by

(3.1) h(v∗, P (v)ṽ∗) = h(L(v, v∗), L(v, ṽ∗)), v∗, ṽ∗ ∈ D2.

It is easily seen that P (v) is well defined and it is a symmetric operator
with respect to h. In fact, we can write

P (v)ṽ∗ =
r
∑

k=2

h(L(v, ek), L(v, ṽ
∗))ek.

Moreover, we have
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Lemma 3.1. For any unit vector v ∈ D2, the operator P (v) : D2 →
D2 has σ = n+1

4(n−r)λ
2
1 as an eigenvalue with multiplicity one, and the

corresponding eigenspace is spanned by v. The remaining eigenvalues of

P (v) are 0 and (n+1)(2n−r+1)
16(n−r)2 λ21.

Proof. According to (2.7), if v∗ ⊥ v, then

h(v∗, P (v)v) = h(L(v, v∗), L(v, v)) = 0.

This implies that P (v)v = σv. By definition and (2.6) we have

σ = h(v, P (v)v) = h(L(v, v), L(v, v)) = n+1
4(n−r)λ

2
1.

Next, we set v = v1 and σ = σ1. We take an orthonormal basis {vm} of
D2 consisting of eigenvectors of P (v) such that P (v)vm = σmvm, 1 ≤
m ≤ r − 1. We take the product of formula (2.15) for j = 1 and any
p ≥ 2 with L(v1, vp). We have

(3.2)
h(L(v1, vp), L(v1, vp))

(

(n+1)(2n−r+1)
4(n−r)2

λ21

− 4h(L(v1, vp), L(v1, vp))
)

= 0.

Here we have used the fact that, for all m 6= p,

h(L(v1, vp), L(v1, vm)) = h(vp, P (v)vm) = h(vp, σmvm) = 0.

By (3.2), we get either h(L(v1, vp), L(v1, vp)) = 0, or

h(L(v1, vp), L(v1, vp)) =
(n+1)(2n−r+1)

16(n−r)2
λ21.

On the other hand, we have σp = h(vp, P (v)vp) = h(L(v1, vp), L(v1, vp)).
This completes the proof. q.e.d.

In the following we denote by Vv

(

(n+1)(2n−r+1)
16(n−r)2

λ21

)

and Vv(0) the

eigenspaces of P (v) with respect to the eigenvalues (n+1)(2n−r+1)
16(n−r)2

λ21 and

0, respectively.

Lemma 3.2. Let u, v ∈ D2 be two unit orthogonal vectors. Suppose
that u ∈ Vv(0). Then we have (i) L(u, v) = 0, (ii) L(u, u) = L(v, v),
(iii) v ∈ Vu(0), (iv) P (u) = P (v) on {u, v}⊥.
Proof. As u ∈ Vv(0), we have h(L(u, v), L(u, v)) = h(u, P (v)u) = 0, i.e.,
L(u, v) = 0. By (2.6) and (2.8) we have

h(L(u, u), L(u, u)) = h(L(v, v), L(v, v)) = h(L(u, u), L(v, v)) = σ.

Applying the Cauchy-Schwarz inequality, we obtain L(u, u) = L(v, v).
On the other hand, for any w ⊥ v, the fact that L(u, v) = 0 implies that

h(w,P (u)v) = h(L(u, v), L(u,w)) = 0.

It follows that P (u)v = βv and β = h(v, P (u)v) = h(L(u, v), L(u, v)) =
0. Hence v ∈ Vu(0).
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To prove the final assertion, we take any unit vector u1 ∈ {u, v}⊥ and
use (2.8) to see that

h(u1, P (v)u1) = h(L(u1, v), L(u1, v))

= n+1
8(n−r)2λ

2
1 − 1

2h(L(u1, u1), L(v, v))

= n+1
8(n−r)2

λ21 − 1
2h(L(u1, u1), L(u, u))

= h(L(u1, u), L(u1, u)) = h(u1, P (u)u1).

Similarly, for orthonormal vectors u1, u2 ∈ {u, v}⊥, by (2.9) we have

h(u1, P (v)u2) = h(L(u1, v), L(u2, v))

= −1
2h(L(u1, u2), L(v, v))

= −1
2h(L(u1, u2), L(u, u))

= h(L(u1, u), L(u2, u)) = h(u1, P (u)u2).

Note also that

h(u, P (v)u1) = h(L(u, v), L(u1, v))
= 0 = h(L(u, u), L(u1, u)) = h(u, P (u)u1),

h(v, P (v)u1) = h(L(v, v), L(u1, v))
= 0 = h(L(u, v), L(u1 , u)) = h(v, P (u)u1).

In summary, we have proved P (u) = P (v) on {u, v}⊥. q.e.d.

Lemma 3.3. Let v, ṽ ∈ D2 be two unit orthogonal vectors. Then the
equality

(3.3) h(L(v, ṽ), L(v, ṽ)) = (n+1)(2n−r+1)
16(n−r)2

λ21

holds if and only if ṽ ∈ Vv

(

(n+1)(2n−r+1)
16(n−r)2 λ21

)

. Moreover, if we assume

u ∈ Vv(0) and (3.3) holds, then u ∈ Vṽ
(

(n+1)(2n−r+1)
16(n−r)2 λ21

)

.

Proof. If ṽ ∈ Vv

(

(n+1)(2n−r+1)
16(n−r)2 λ21

)

, then

h(L(v, ṽ), L(v, ṽ)) = h(ṽ, P (v)ṽ) = (n+1)(2n−r+1)
16(n−r)2

λ21.

Conversely, if h(L(v, ṽ), L(v, ṽ)) = (n+1)(2n−r+1)
16(n−r)2

λ21, then the function

g attains maximum at (v, ṽ). It follows that, for any w ⊥ ṽ,

h(w,P (v)ṽ) = h(L(v, ṽ), L(v,w)) = 0.

Therefore, we have P (v)ṽ = τ ṽ and τ = h(ṽ, P (v)ṽ) = (n+1)(2n−r+1)
16(n−r)2 λ21.

This proves the first claim.
Now we assume (3.3). If u ∈ Vv(0), then by the facts

v ∈ Vv(σ), ṽ ∈ Vv

(

(n+1)(2n−r+1)
16(n−r)2

λ21

)

,
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we see that u, v, ṽ are orthonormal vectors and therefore, by Lemma
3.2, P (u)ṽ = P (v)ṽ. It follows that

h(L(u, ṽ), L(u, ṽ)) = h(ṽ, P (u)ṽ) = h(ṽ, P (v)ṽ) = (n+1)(2n−r+1)
16(n−r)2

λ21

and thus u ∈ Vṽ

(

(n+1)(2n−r+1)
16(n−r)2

λ21

)

. q.e.d.

Lemma 3.4. Let u1, u2, u3 ∈ D2 be orthonormal vectors satisfying the
condition

h(L(u1, u3), L(u1, u3)) = h(L(u2, u3), L(u2, u3)) =
(n+1)(2n−r+1)

16(n−r)2
λ21.

Then for any vector v ∈ D2, we have h(L(u1, u2), L(u3, v)) = 0.

Proof. By Lemma 3.3, we see that u1, u2 ∈ Vu3

(

(n+1)(2n−r+1)
16(n−r)2 λ21

)

. Us-

ing the linearity of the assertion, we may assume that v is an eigenvector
of P (u3).

We choose an orthonormal basis {vm} of D2 consisting of eigenvectors
of P (u3) such that v1 = u1, v2 = u2, v3 = u3. We now use (2.17) for
p = 1, j = 2, k = ℓ = 3 to obtain

(3.4)

0 = (n+1)(r+1)
4(n−r)2 λ21L(v1, v2) +

r−1
∑

m=1

h(L(v1, vm), L(v3, v3))L(v2, vm)

+

r−1
∑

m=1

h(L(v2, vm), L(v3, v3))L(v1, vm)

− 2
r−1
∑

m=1

h(L(v3, vm), L(v1, v2))L(v3, vm).

As m = 3 and k = 1, 2, it follows that

h(L(vk, vm), L(v3, v3)) = 0,

and if k = 1, 2 and m 6= k, 3, we have that

h(L(vk, vm), L(v3, v3)) = −2h(vk, P (v3)vm) = 0;

we see that (3.4) reduces to

0 = (n+1)(r+1)
4(n−r)2 λ21L(v1, v2)− 2

r−1
∑

m=1

h(L(v3, vm), L(v1, v2))L(v3, vm)

+ h(L(v1, v1), L(v3, v3))L(v2, v1) + h(L(v2, v2), L(v3, v3))L(v1, v2).

Furthermore, from (2.8) and the assumption, we find that

(n+1)(r+1)
4(n−r)2 λ21 + h(L(v1, v1), L(v3, v3)) + h(L(v2, v2), L(v3, v3))

= (n+1)(r+1)
4(n−r)2

λ21 +
n+1

2(n−r)λ
2
1 − 2h(L(u1, u3), L(u1, u3))

− 2h(L(u2, u3), L(u2, u3)) = 0.
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Therefore, from (3.4) we get
∑r−1

m=1 h(L(v3, vm), L(v1, v2))L(v3, vm) = 0,
or equivalently, by Lemma 3.2,

(3.5)
∑

vm 6∈Vu3 (0)

h(L(v3, vm), L(v1, v2))L(v3, vm) = 0.

Now note that for vp, vq 6∈ Vu3
(0), we have

h(L(v3, vp), L(v3, vq)) = h(vp, P (v3)vq) = 0, if p 6= q.

Then (3.5) implies that if vm 6∈ Vu3
(0), then h(L(u1, u2), L(u3, vm)) = 0.

On the other hand, if vm ∈ Vu3
(0), then h(L(u3, vm), L(u3, vm)) =

h(vm, P (u3)vm) = 0 and hence L(u3, vm) = 0. Therefore we also have
h(L(u1, u2), L(u3, vm)) = 0.

We have now completed the proof of Lemma 3.4. q.e.d.

4. A decomposition of D2

In this section, we introduce a direct sum decomposition for D2, which
turns out crucial for our purpose.

Pick any unit vector v1 ∈ D2 and write τ = (n+1)(2n−r+1)
16(n−r)2

λ21; then by

Lemma 3.1, we have a direct sum decomposition for D2

D2 = {v1} ⊕ Vv1(0)⊕ Vv1(τ),

where here and later on, we denote also by {·} the vector space spanned
by its elements. If Vv1(τ) 6= ∅, we take an arbitrary unit vector v2 ∈
Vv1(τ). Then by Lemma 3.3 we have:

v1 ∈ Vv2(τ), Vv1(0) ⊂ Vv2(τ), Vv2(0) ⊂ Vv1(τ).

From this we deduce that

D2 = {v1} ⊕ Vv1(0)⊕ {v2} ⊕ Vv2(0)⊕
(

Vv1(τ) ∩ Vv2(τ)
)

.

If Vv1(τ)∩Vv2(τ) 6= ∅, we further pick a unit vector v3 ∈ Vv1(τ)∩Vv2(τ).
Then

D2 = {v3} ⊕ Vv3(0) ⊕ Vv3(τ)

and by Lemma 3.3 we have

v1, v2 ∈ Vv3(τ), Vv1(0), Vv2(0) ⊂ Vv3(τ).

It follows that

D2 = {v1} ⊕ Vv1(0)⊕ {v2} ⊕ Vv2(0)⊕ {v3} ⊕ Vv3(0)

⊕
(

Vv1(τ) ∩ Vv2(τ) ∩ Vv3(τ)
)

.

Considering that dimD2 = r − 1 is finite, by induction, we get

Proposition 4.1. There exist an integer k0 and unit vectors v1, . . . , vk0
of D2 such that

(4.1) D2 = {v1} ⊕ Vv1(0)⊕ · · · ⊕ {vk0} ⊕ Vvk0 (0).
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In what follows, we will study the decomposition (4.1) in more detail.

Lemma 4.1. (i) With the assumption dim(Im (L)) ≥ 2, we have k0 ≥ 2.
(ii) For any unit vector u1 ∈ Vv1(0), we have {v1} ⊕ Vv1(0) = {u1} ⊕

Vu1
(0).
(iii) For any unit vectors u1, ũ1 ∈ {v1}⊕Vv1(0) and u1 ⊥ ũ1, we have

L(u1, ũ1) = 0.

Proof. (i) If k0 = 1 and D2 = {v1}⊕Vv1(0), then for any unit vector v ∈
Vv1(0) we have L(v1, v) = 0 and thus L(v, v) = L(v1, v1). This implies
that dim(Im (L)) = 1, contradicting the assumption dim(Im (L)) ≥ 2.

(ii) If we have w ∈ Vv1(0) such that w ⊥ u1, then by Lemma 3.2,
P (u1)w = P (v1)w = 0 and therefore w ∈ Vu1

(0). Similarly, if w ∈
Vu1

(0) such that w ⊥ v1, then w ∈ Vv1(0). This proves the assertion.
(iii) Let {u10 = v1, u

1
1, . . . , u

1
p} be an orthonormal basis of {v1}⊕Vv1(0).

By (ii) we see that

{v1} ⊕ Vv1(0) = {u1j} ⊕ Vu1
j
(0), 1 ≤ j ≤ p.

This shows that u1j ∈ Vu1
ℓ
(0) for j 6= ℓ. Then we have L(u1j , u

1
ℓ ) = 0 and

L(u1j , u
1
j ) = L(u1ℓ , u

1
ℓ ) for all j 6= ℓ. In particular, we have L(u1, ũ1) = 0

and L(u1, u1) = L(v1, v1). q.e.d.

Lemma 4.2. In the decomposition (4.1), if we pick a unit vector u2 ∈
Vv2(0), then there exists a unique unit vector u1 ∈ Vv1(0) such that
L(v1, u2) = L(v2, u1).

Proof. Let {uℓ1, . . . , uℓpℓ} be an orthonormal basis of Vvℓ(0), 1 ≤ ℓ ≤ k0
such that u21 = u2. Then

{v1, . . . , vk0 ;u11, . . . , u1p1 ; . . . ;u
k0
1 , . . . , u

k0
pk0

} := {ũm}1≤m≤r−1

forms an orthonormal basis of D2. Now we use (2.12) with p = k =
2, ℓ = 1 and vj = u21, together with the facts that L(v2, u2) = 0 and
h(L(v1, v2), L(v1, v2)) = τ being a maximum, and we obtain

(4.2)

0 = K(L(v2, u2), L(v1, v2))

= − (r+1)
2(n−r)λ1h(L(u2, v2), L(v1, v2))e1

+
r−1
∑

m=1

h(L(v2, ũm), L(v1, v2))L(u2, ũm)

+
r−1
∑

m=1

h(L(u2, ũm), L(v1, v2))L(v2, ũm)

= h(L(v2, v1), L(v1, v2))L(u2, v1)

+
r−1
∑

m=1

h(L(u2, ũm), L(v1, v2))L(v2, ũm).
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To deal with the last summation, we first use Lemma 3.4 and that
h(L(v1, v2), L(v1, v2)) = τ is a maximum to see that

h(L(u2, vℓ), L(v1, v2)) = 0, 1 ≤ ℓ ≤ k0.

For ℓ ≥ 3 and 1 ≤ q ≤ pℓ, we have

h(L(v1, u
ℓ
q), L(v1, u

ℓ
q)) = h(uℓq, P (v1)u

ℓ
q) = τ

= h(uℓq, P (v2)u
ℓ
q) = h(L(v2, u

ℓ
q), L(v2, u

ℓ
q)).

Then by Lemma 3.4 we obtain

h(L(u2, u
ℓ
q), L(v1, v2)) = 0, 3 ≤ ℓ ≤ k0, 1 ≤ q ≤ pℓ.

By Lemma 4.1 (iii), we see that if 2 ≤ j ≤ p2, then L(u2, u
2
j ) = 0. If

j = 1, then by u21 = u2 and (2.9) we have

h(L(u2, u
2
1), L(v1, v2)) = −2h(L(u2, v1), L(u2, v2)) = 0.

Putting the above results into (4.2), we get

(4.3) τL(v1, u2) = −
p1
∑

m=1

h(L(u2, u
1
m), L(v1, v2))L(v2, u

1
m).

Let us choose u1 = − 1
τ

∑p1
m=1 h(L(u2, u

1
m), L(v1, v2))u

1
m; then clearly

we have u1 ∈ Vv1(0) and L(v1, u2) = L(v2, u1).
Suppose ũ1 =

∑p1
m=1 amu

1
m ∈ Vv1(0) such that L(v1, u2) = L(v2, ũ1);

then by (4.3) we get

(4.4)

p1
∑

m=1

(

am + 1
τ h(L(u2, u

1
m), L(v1, v2))

)

L(v2, u
1
m) = 0.

Note that as u1m ∈ Vv1(0) ⊂ Vv2(τ), it implies that

h(L(v2, u
1
j ), L(v2, u

1
ℓ)) = h(u1j , P (v2)u

1
ℓ ) = τδjℓ,

i.e., { 1√
τ
L(v2, u

1
m)}1≤m≤p1 consists of orthonormal vectors. Then (4.4)

shows that

am = − 1
τ h(L(u2, u

1
m), L(v1, v2)), 1 ≤ m ≤ p1.

This clearly proves the uniqueness of u1.
To show that vector u1 ∈ Vv1(0) satisfying L(v1, u2) = L(v2, u1) must

be of unit length, we write u1 = αũ1, where ũ1 ∈ Vv1(0) ⊂ Vv2(τ) is
unit. Then, at one side as u2 ∈ Vv2(0) ⊂ Vv1(τ),

h(L(v2, u1), L(v2, u1)) = h(L(v1, u2), L(v1, u2)) = h(u2, P (v1)u2) = τ.

On the other side, we have

h(L(v2, u1), L(v2, u1)) = α2h(L(v2, ũ1), L(v2, ũ1))

= α2h(ũ1, P (v2)ũ1) = α2τ.

Hence α2 = 1 and u1 is a unit vector. q.e.d.
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To generalize Lemma 4.1 (ii), we can show the following

Lemma 4.3. If u1 ∈ {v1} ⊕ Vv1(0) is a unit vector, then

{v1} ⊕ Vv1(0) = {u1} ⊕ Vu1
(0).

Proof. According to Lemma 4.1 (ii), we need only to consider the case
that u1 6∈ Vv1(0) and u1 6= v1.

If dimVv1(0) = 0, there is nothing to prove. We now assume p1 =
dimVv1(0) ≥ 1 and let {u11, . . . , u1p1} be an orthonormal basis of Vv1(0)

such that u1 = cos θv1 + sin θu11.
If p1 ≥ 2, then by Lemma 4.1 (ii) we have {v1} ⊕ Vv1(0) = {u12} ⊕

Vu1
2
(0). It follows that u1 ∈ {u12} ⊕ Vu1

2
(0). However, we have u1 ⊥

u12; this implies that u1 ∈ Vu1
2
(0). By Lemma 4.1 (ii) again we get

{u12} ⊕ Vu1
2
(0) = {u1} ⊕ Vu1

(0). Hence {u1} ⊕ Vu1
(0) = {v1} ⊕ Vv1(0) as

claimed.
Finally, if p1 = 1: denote ũ1 = − sin θv1 + cos θu11. Then {v1} ⊕

Vv1(0) = {u1} ⊕ {ũ1}. Therefore, to show that {v1} ⊕ Vv1(0) = {u1} ⊕
Vu1

(0), it suffices to show that {ũ1} = Vu1
(0).

For that purpose, we take at this point an orthonormal basis {v1, v2 =
u11, v3, . . . , vr−1} of D2. Then by (2.6), (2.8), and the fact L(v1, u

1
1) = 0

we have the following calculation:

h(v1, P (u1)ũ1) = h(L(v1, u1), L(ũ1, u1))

= sin θ cos2 θ
(

h(L(v1, v1), L(u
1
1, u

1
1))− h(L(v1, v1), L(v1, v1))

)

= 0.

Similarly,

h(v2, P (u1)ũ1) = h(L(u11, u1), L(ũ1, u1))

= sin2 θ cos θ
(

h(L(u11, u
1
1), L(u

1
1, u

1
1))− h(L(u11, u

1
1), L(v1, v1))

)

= 0.

For each v = v3, . . . , vr−1 ∈ Vv1(τ), as Lemma 3.3 gives that u11 ∈ Vv(τ),
we easily obtain

h(v, P (u1)ũ1) = h(L(v, u1), L(ũ1, u1))

= h
(

cos θL(v, v1) + sin θL(v, u11), sin θ cos θ(L(u
1
1, u

1
1)− L(v1, v1))

)

= sin θ cos2 θ h(L(v, v1), L(u
1
1, u

1
1))− sin2 θ cos θ h(L(v, u11), L(v1, v1))

= −2 sin θ cos2 θ h(v1, P (u
1
1)v) + 2 sin2 θ cos θ h(u11, P (v1)v) = 0.

From the above calculations, we have proved P (u1)ũ1 = 0, i.e., ũ1 ∈
Vu1

(0). We only need to prove dimVu1
(0) = 1. Assume dimVu1

(0) ≥ 2;
pick û1 ∈ Vu1

(0), such that 〈û1, ũ1〉 = 0. By Lemma 4.1 (iii), L(ũ1, û1) =
0. By Lemma 3.2 (i), L(u1, ũ1) = 0, L(u1, û1) = 0. Noting v1 =
cos θu1−sin θũ1, u

1
1 = sin θu1+cos θũ1, we have L(v1, ũ1) = L(cos θu1−

sin θũ1, ũ1) = 0, thus ũ1 ∈ Vv1(0), but u
1
1 ∈ Vv1(0). Noting 〈û1, u11〉 = 0,
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we have dimVv1(0) ≥ 2, a contradiction with p1 = 1. We have completed
the proof of the lemma. q.e.d.

Lemma 4.4. In the decomposition (4.1), if for 1 ≤ ℓ ≤ k0 we write
Vℓ = {vℓ} ⊕ Vvℓ(0), then we have:

(1) For any unit vector a ∈ Vj ,

(4.5) K(L(a, a), L(a, a)) = − (n+1)(r+1)
8(n−r)2 λ31e1 +

(n+1)(2n−3r−1)
4(n−r)2 λ21L(a, a).

(2) For any unit vectors a ∈ Vj, b ∈ Vℓ, j 6= ℓ,

(4.6) K(L(a, a), L(a, b)) = (n+1)(2n−3r−1)
8(n−r)2

λ21L(a, b),

(4.7)
K(L(a, a), L(b, b)) = (n+1)(r+1)2

16(n−r)3
λ31e1

− (n+1)(r+1)λ2
1

4(n−r)2
(L(a, a) + L(b, b)),

(4.8) K(L(a, b), L(a, b)) = − r+1
2(n−r)λ1τe1 + τ(L(a, a) + L(b, b)).

(3) For unit vectors a ∈ Vj , b ∈ Vℓ, c ∈ Vq and j, ℓ, q being distinct,

(4.9) K(L(a, b), L(a, c)) = τL(b, c),

(4.10) K(L(a, a), L(b, c)) = − (n+1)(r+1)
4(n−r)2

λ21L(b, c).

(4) For orthogonal unit vectors a1, a2 ∈ Vj and unit vectors b ∈
Vℓ, c ∈ Vq with j, ℓ, q being distinct, we have that

(4.11) K(L(a1, b), L(a2, c)) = τL(b, c′),

where c′ ∈ Vq is the unique unit vector satisfying L(a2, c) = L(a1, c
′).

Proof. We take an orthonormal basis of D2 in such a way that it consists
of all the orthonormal basis of Vj, 1 ≤ j ≤ k0. Then (1)–(4) are
direct consequences of Lemma 2.6. Take (4.9), for example: we combine
Lemma 2.6 with the fact h(L(a, b), L(a, c)) = h(b, P (a)c)) = τh(b, c) =
0 and the isotropic properties of L. Then we get (4.9). From (4.9),
Lemmas 4.2 and 4.3, we can get (4.11). q.e.d.

Proposition 4.2. In the decomposition (4.1), if k0 ≥ 2, then

dimVv1(0) = · · · = dimVvk0 (0).

Moreover, the dimension which we denoted by p can only be equal to
0, 1, 3, or 7.

Proof. As a direct consequence of Lemma 4.2, for any j 6= ℓ, we can
define a one-to-one linear map from Vvj (0) to Vvℓ(0), which preserves
length of vectors. Hence Vvj (0) and Vvℓ(0) are isomorphic and have the
same dimension which we denote by p. To make the following discussion
meaningful, we now assume p ≥ 1.

Set Vℓ = {vℓ} ⊕ Vvℓ(0), 1 ≤ ℓ ≤ k0. Let {vℓ, uℓ1, . . . , uℓp} be an
orthonormal basis of Vℓ. For each j = 1, . . . , p, Lemmas 4.2 and 4.3
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show that we can define a linear map Tj : V1 → V1 such that for any
unit vector v ∈ V1, Tj(v) is the unique element of Vv(0) ⊂ V1 satisfying

(4.12) L(v, u2j ) = L(v2,Tj(v)).

We remark that we can uniquely define Tj(v) ∈ {v} ⊕ Vv(0) = V1
by (4.11), without having to assume that Tj(v) ∈ Vv(0). In fact, if we
have a unit vector x ∈ Vv(0) such that L(v2, ax + bv) = L(v, u2j ), then

from the definition of Tj(v) we have L(v2, ax−Tj(v)) = −bL(v2, v). As
the function g defined by (2.18) attains a maximum at (v2, v), it follows
that L(v2, w) ⊥ L(v2, v) for all w ⊥ v. Hence we see that b = 0 and
ax = Tj(v).

The linear map Tj : V1 → V1 has the fundamental properties:

(P1) h(Tj(v),Tj(v)) = h(v, v), i.e., Tj preserves the length of vectors.
(P2) For all v ∈ V1, we have Tj(v) ⊥ v.
(P3) T2

j = −id.
(P4) For all j 6= ℓ and v ∈ V1, we get that h(Tj(v),Tℓ(v)) = 0.

Since the properties (P1) and (P2) can be easily seen from Lemma 4.2
and the definition of Tj , we only need to verify explicitly (P3) and (P4).

For any unit vector v ∈ V1, we have

(4.13) L(v2,T
2
j (v)) = L(Tj(v), u

2
j ).

Using the fact {Tj(v)}⊕VTj(v)(0) = V1 and u2j ∈ Vv2(0) ⊂ VTj(v)(τ), we
have

(4.14)
h
(

L(Tj(v), u
2
j ), L(Tj(v), u

2
j )
)

= h
(

L(v2,Tj(v)), L(v2,Tj(v))
)

= h(L(v, v2), L(v, v2)) = τ.

Since v,Tj(v), v2, u
2
j are orthonormal vectors, by L(v2, u

2
j ) = 0, (2.10),

and (4.12) we see that

0 = h
(

L(v, v2), L(Tj(v), u
2
j )
)

+ h
(

L(v,Tj(v)), L(v2, u
2
j)
)

+ h
(

L(v, u2j ), L(v2,Tj(v))
)

= h
(

L(v, v2), L(Tj(v), u
2
j )
)

+ h
(

L(v2,Tj(v)), L(v2,Tj(v))
)

.

Applying (4.14) and the Cauchy-Schwarz inequality, we deduce

(4.15) L(Tj(v), u
2
j ) = −L(v, v2).

Combining (4.13) and (4.15), we get L(T2
j (v)+v, v2) = 0. As T2

j(v)+

v ∈ V1 ⊂ Vv2(τ), it follows that

0 = h
(

L(T2
j (v) + v, v2), L(T

2
j (v) + v, v2)

)

= h
(

T2
j(v) + v, P (v2)(T

2
j (v) + v)

)

= τh
(

T2
j(v) + v,T2

j (v) + v
)

.

Hence T2
j(v) = −v for a unit vector v and then by linearity for all v ∈ V1,

as claimed by (P3).
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To verify (P4), we note that, if j 6= ℓ, by definition

Tj(v),Tℓ(v) ∈ Vv(0); L(v2,Tj(v)) = L(v, u2j ) ⊥ L(v, u2ℓ ) = L(v2,Tℓ(v)).

If we assume Tℓ(v) = aTj(v) + x, where x ⊥ Tj(v) and x ∈ Vv(0), then

0 = h
(

L(v2,Tj(v)), L(v2,Tℓ(v))
)

= h
(

L(v2,Tj(v)), aL(v2,Tj(v)) + L(v2, x)
)

= ah
(

L(v2,Tj(v)), L(v2,Tj(v))
)

= aτ.

Thus a = 0 and therefore Tj(v) ⊥ Tℓ(v), as claimed.

We now look at the unit hypersphere Sp(1) ⊂ V1; then the above
properties (P1)–(P4) show that at v ∈ Sp(1)

TvS
p(1) = {T1(v), . . . ,Tp(v)}.

Hence, by the properties (P1)–(P4), Sp(1) is parallelizable. Then, ac-
cording to R. Bott and J. Milnor [BM] and M. Kervaire [Ke], the
dimension p can only be equal to 1, 3, or 7. q.e.d.

From theorems 4.1, 5.1, 6.1, and 6.2 in [HLSV], and combining with
the above Proposition 4.2, we see that, in order to complete the proof
of the Classification Theorem, it is sufficient to deal with the four cases
that p = 0, 1, 3, 7. These will be carried out in the remaining sections
and the results are stated as Theorem 5.1, Theorem 6.1, Theorem 7.1,
and Theorem 8.1, respectively.

5. Hypersurfaces in Rn+1 with p = 0

In this section, we will prove the following theorem.

Theorem 5.1. Let Mn be a locally strongly convex affine hypersurface
of Rn+1 which has parallel and non-vanishing cubic form. If dimD2 =
r − 1 ≥ 2 and p defined in the previous section satisfies p = 0, then
n ≥ 1

2r(r + 1)− 1. Moreover, either we have

(i) n = 1
2r(r + 1), and Mn can be decomposed as the Calabi product

of a hyperbolic affine hypersphere with parallel cubic form and a point,
or

(ii) n > 1
2r(r + 1), and Mn can be decomposed as the Calabi product

of two hyperbolic affine hyperspheres both with parallel cubic form, or
(iii) n = 1

2r(r + 1) − 1, and up to a suitable homothetic transforma-
tion, Mn is affine equivalent to an open part of the standard embedding
SL(r,R)/SO(r) →֒ Rn+1, which is explicitly described at the end of this
section.

Proof. In the present situation, the decomposition (4.1) reduces to

D2 = {v1} ⊕ · · · ⊕ {vk0}.
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Then dimD2 = k0 = r − 1 and {v1, . . . , vk0} forms an orthonormal
basis of D2. According to Lemma 3.4 and the fact that for j 6= ℓ,
vj ∈ Vvℓ(τ), we have

(5.1) h(L(vj , vℓ), L(vj , vℓ)) = τ, j 6= ℓ,

(5.2) h(L(vj , vℓ1), L(vj , vℓ2)) = 0, j, ℓ1, ℓ2 distinct,

(5.3) h(L(vj1 , vj2), L(vj3 , vj4)) = 0, j1, j2, j3, j4 distinct.

It follows that
{

1√
τ
L(vj , vℓ)

}

1≤j<ℓ≤k0
consists of 1

2(r − 1)(r − 2) or-

thonormal vectors. For {L(vj , vj)}1≤j≤k0 , we note that

(5.4) h(L(vj , vj), L(vj , vj)) =
n+1

4(n−r)λ
2
1, 1 ≤ j ≤ k0,

(5.5)

h(L(vj , vj), L(vℓ, vℓ)) =
n+1

4(n−r)λ
2
1−2τ = − (n+1)(r+1)

8(n−r)2
λ21, 1 ≤ j 6= ℓ ≤ k0,

(5.6) h(L(vj , vj), L(vj , vℓ)) = 0, 1 ≤ j 6= ℓ ≤ k0,

(5.7) h(L(vj , vj), L(vℓ1 , vℓ2)) = 0, 1 ≤ j, ℓ1, ℓ2 distinct and ≤ k0.

Then {Lj := L(v1, v1)+ · · ·+L(vj , vj)−jL(vj+1, vj+1)}1≤j≤r−2 are r−2
mutually orthogonal vectors which are all orthogonal to L(vj , vℓ), j 6= ℓ.
Moreover, we easily have h(Lj , Lj) = 2j(j + 1)τ 6= 0. Hence

(5.8)







wjℓ =
1√
τ
L(vj , vℓ), 1 ≤ j < ℓ ≤ r − 1;

wj =
1√

2j(j+1)τ
Lj, 1 ≤ j ≤ r − 2

are 1
2(r − 1)(r − 2) + (r − 2) orthonormal vectors in Im (L) ⊂ D3.

Finally, it is easily known that TrL = L(v1, v1) + · · · + L(vk0 , vk0) is
orthogonal to the above 1

2(r − 1)(r − 2) + (r − 2) vectors and satisfies

(5.9) h(TrL,TrL) = (n+1)(r−1)(2n−r2−r+2)
8(n−r)2

λ21.

The above results imply that

n = 1 + dimD2 + dimD3 ≥ 1 + (r − 1) + 1
2(r − 1)(r − 2) + (r − 2)

= 1
2r(r + 1)− 1.

Moreover, by (5.9) we see that TrL = 0 if and only if n = 1
2r(r+1)−1.

So, there are three cases to be considered: (i) n = 1
2r(r + 1); (ii)

n > 1
2r(r + 1); (iii) n = 1

2r(r + 1)− 1.

For Case (i) and Case (ii), we define a unit vector

t = 4(n−r)√
2(n+1)(r−1)(2n−r2−r+2) λ1

TrL.

In Case (i), the previous results and particularly (5.9) show that
{t; wjℓ | 1 ≤ j < ℓ ≤ r − 1; wj |1 ≤ j ≤ r − 2} is an orthonormal basis
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of Im (L) = D3. By direct calculations with application of Lemma 2.4,
Lemma 4.4, and (5.1)–(5.8), we have

Lemma 5.1. From the above assumptions, we obtain that

(5.10)



































































K(t, e1) = − r+1
2(n−r)λ1t,

K(t, t) = − r+1
2(n−r)λ1e1 +

2n−2r2−r+3
(n−r)(2n−r2−r+2)

√

(n+1)(2n−r2−r+2)
2(r−1) λ1t,

K(t, vj) =
1

2(n−r)

√

(n+1)(2n−r2−r+2)
2(r−1) λ1vj , 1 ≤ j ≤ r − 1,

K(t, wj) =
1

n−r

√

(n+1)(2n−r2−r+2)
2(r−1) λ1wj , 1 ≤ j ≤ r − 2,

K(t, wjℓ) =
1

n−r

√

(n+1)(2n−r2−r+2)
2(r−1) λ1wjℓ, 1 ≤ j < ℓ ≤ r − 1.

Put T = αe1 + βt, T ∗ = −βe1 + αt, where

(5.11) α =
√

2n−r2−r+2
(2n−r+1)r , β =

√

2(n+1)(r−1)
(2n−r+1)r .

Then {T, T ∗; vj |1≤j≤r−1; wm |1≤m≤r−2; wkℓ |1≤k<ℓ≤r−1} is an orthonor-
mal basis of Tx0

M . By Lemma 5.1 we easily obtain the following

Lemma 5.2. Under the above assumptions, it holds

(5.12)











K(T, T ) = η1T, K(T, vj) = η2vj, 1 ≤ j ≤ r − 1,

K(T, T ∗) = η2T
∗, K(T,wj) = η2wj, 1 ≤ j ≤ r − 2,

K(T,wjℓ) = η2wjℓ, 1 ≤ j < ℓ ≤ r − 1,

where η1 and η2 are defined by

(5.13)











η1 =
n−r2−r+1
(n−r)r

√

(2n−r+1)r
2n−r2−r+2

λ1,

η2 =
2n−r2−r+2
2(n−r)r

√

(2n−r+1)r
2n−r2−r+2

λ1,

which satisfy the relation

(5.14) η1η2 − η22 = − (r+1)(2n−r+1)
4(n−r)2

λ21 = λ.

Based on the conclusions of Lemma 5.2, we can apply theorem 4
of [HLV] to conclude that in Case (i), Mn can be decomposed as the
Calabi product of a hyperbolic affine hypersphere with parallel cubic
form and a point.

For Case (ii), we see that

{t; wjℓ | 1 ≤ j < ℓ ≤ r − 1; wj |1 ≤ j ≤ r − 2}
is still an orthonormal basis of Im (L). But now we no longer have
that Im (L) coincides with D3. Denote ñ = n − 1

2r(r + 1) and choose
w̃1, . . . , w̃ñ in the orthogonal complement of Im (L) in D3 such that

{t; wjℓ |1≤j<ℓ≤r−1; wj |1≤j≤r−2; w̃m |1≤m≤ñ}
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is an orthonormal basis of D3. Then, besides (5.10), we further use (2)
of Lemma 2.5 to get, for 1 ≤ m ≤ ñ,

(5.15) K(t, w̃m) = − r2−1
(n−r)(2n−r2−r+2)

√

(n+1)(2n−r2−r+2)
2(r−1) λ1w̃m.

Now we define T and T ∗ as in Case (i). Similar to Lemma 5.2, we
can easily show the following

Lemma 5.3. For Case (ii), it holds

(5.16)



















K(T, T ) = η1T, K(T, vj) = η2vj , 1 ≤ j ≤ r − 1,

K(T, T ∗) = η2T
∗, K(T,wj) = η2wj , 1 ≤ j ≤ r − 2,

K(T,wjℓ) = η2wjℓ, 1 ≤ j < ℓ ≤ r − 1,

K(T, w̃m) = η3w̃m, 1 ≤ m ≤ ñ,

where η1, η2, and η3 are defined by (5.13) and

(5.17) η3 = − r+1
2(n−r)

√

(2n−r+1)r
2n−r2−r+2

λ1,

which satisfy the relation η2 6= η3, 2η2 6= η1 6= 2η3, and

(5.18) η1 = η2 + η3, η2η3 = − (r+1)(2n−r+1)
4(n−r)2 λ21 = λ.

Based on the conclusions of Lemma 5.3, we can apply theorem 3 of
[HLV] to conclude that in Case (ii), Mn can be decomposed as the
Calabi product of two hyperbolic affine hyperspheres both with parallel
cubic form.

Finally, for Case (iii), we have that

D3 = {wjℓ}1≤j<ℓ≤r−1 ⊕ {wj}1≤j≤r−2.

It follows that

(5.19) {e1; vj |1≤j≤r−1; wjℓ |1≤j<ℓ≤r−1; wj |1≤j≤r−2}

is an orthonormal basis of Tx0
M . Now, applying Lemma 2.4, Lemma

4.4, and the previous (5.1)–(5.7), we can calculate all the components
of the difference tensor with respect to the basis (5.19). Particularly,
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according to the definition of {wj}, we easily derive the following for-
mulas:

(5.20)



















































































L(v1, v1) =

r−1
∑

j=2

√

2τ
j(j−1) wj−1,

L(v2, v2) =

r−1
∑

j=3

√

2τ
j(j−1) wj−1 −

√
τ w1,

L(v3, v3) =
r−1
∑

j=4

√

2τ
j(j−1) wj−1 −

√

2×2τ
3 w2, . . .

L(vr−2, vr−2) =
√

2τ
(r−1)(r−2) wr−2 −

√

2(r−3)τ
r−2 wr−3,

L(vr−1, vr−1) = −
√

2(r−2)τ
r−1 wr−2.

To calculate K(vj, wl) and K(vj, wj1j2), we use Lemma 2.4 to obtain

K(vj , wℓ) =

r−1
∑

m=1

h(K(vj , wℓ), vm)vm =

r−1
∑

m=1

h(L(vj , vm), wℓ)vm

= 1√
2ℓ(ℓ+1)τ

r−1
∑

m=1

h

(

L(vj , vm),

ℓ
∑

m̃=1

L(vm̃, vm̃)− ℓL(vℓ+1, vℓ+1)

)

vm

= 1√
2ℓ(ℓ+1)τ

h

(

L(vj , vj),

ℓ
∑

m̃=1

L(vm̃, vm̃)− ℓL(vℓ+1, vℓ+1)

)

vj,

and
K(vj , wj1j2) =

1√
τ
K(vj , L(vj1 , vj2))

= 1√
τ

r−1
∑

m=1

h(L(vj , vm), L(vj1 , vj2))vm.

Then, by (5.1)–(5.5), we easily obtain the following

Lemma 5.4.

(i) If j ≤ ℓ, then K(vj , wℓ) =
1√

2ℓ(ℓ+1)τ

(n+1)(2n−r+1)
8(n−r)2

λ21vj.

(ii) K(vℓ+1, wℓ) = −
√

ℓ
2(ℓ+1)τ

(n+1)(2n−r+1)
8(n−r)2

λ21vℓ+1.

(iii) If j > ℓ+ 1, then K(vj , wℓ) = 0.
(iv) If j 6= j1, j2, then K(vj , wj1j2) = 0.
(v) If j < ℓ, then K(vj, wjℓ) =

√
τ vℓ, K(vℓ, wjℓ) =

√
τ vj.

Similarly, we use Lemma 4.4 to carry out tedious calculations for getting
K(wj , wℓ), K(wj, wkℓ), andK(wjk, wpq) in terms of the basis (5.19). For
simplicity, this will be omitted.

Now let us consider the standard embedding of SL(r,R)/SO(r) →
Rr(r+1)/2 with affine structure as stated in section 6 of [HLSV], which
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is a hyperbolic affine hypersphere with parallel cubic form. Denote Ejk

the r × r matrix which has (j, k) entry 1 and all others 0. Then with
respect to the metric h(X,Y ) = 4

r tr (XY ) of SL(r,R)/SO(r) at I, we
can choose an orthonormal basis as follows:

(5.21)















































ẽ1 =
1√

4(r−1)

(

(r − 1)Err − E11 − · · · − Er−1,r−1

)

,

ṽj =
√

r
8

(

Erj +Ejr

)

, 1 ≤ j ≤ r − 1;

w̃j =
√

r
4j(j+1)

(

j
∑

m=1

Emm − jEj+1,j+1

)

, 1 ≤ j ≤ r − 2;

w̃jℓ =
√

r
8

(

Eℓj + Ejℓ

)

, 1 ≤ j < ℓ ≤ r − 1.

By using the formula K(X,Y ) = KXY = XY + Y X − 2
r tr (XY )I

and EjkEpq = Ejqδkp, it can be seen easily that, if we define






















L̃1 = L(ṽ1, ṽ1)− L(ṽ2, ṽ2) = K(ṽ1, ṽ1)−K(ṽ2, ṽ2),

L̃2 = L(ṽ1, ṽ1) + L(ṽ2, ṽ2)− 2L(ṽ3, ṽ3)

= K(ṽ1, ṽ1) +K(ṽ2, ṽ2)− 2K(ṽ3, ṽ3), . . .

L̃r−2 = K(ṽ1, ṽ1) + · · ·+K(ṽr−2, ṽr−2)− (r − 2)K(ṽr−1, ṽr−1),

then the following relations hold:

(5.22)







w̃j =
L̃j

‖L̃j‖
, 1 ≤ j ≤ r − 2;

w̃jℓ =
K(ṽj ,ṽℓ)

‖K(ṽj ,ṽℓ)‖ =
L(ṽj ,ṽℓ)

‖L(ṽj ,ṽℓ)‖ , 1 ≤ j < ℓ ≤ r − 1.

Moreover, we have the calculation for the difference tensor at I:

(5.23)















Kẽ1 ẽ1 =
r−2√
r−1

ẽ1, Kẽ1 ṽj =
r−2

2
√
r−1

ṽj , 1 ≤ j ≤ r − 1;

Kẽ1w̃j = − 1√
r−1

w̃j, 1 ≤ j ≤ r − 2;

Kẽ1w̃jℓ = − 1√
r−1

w̃jℓ, 1 ≤ j < ℓ ≤ r − 1.

Since SL(r,R)/SO(r) → Rr(r+1)/2 has parallel cubic form, if we iden-
tify {ẽ1; ṽj |1≤j≤r−1; w̃j |1≤j≤r−2; w̃jℓ |1≤j<ℓ≤r−1} in (5.21) with the ba-

sis (5.19) of M r(r+1)/2−1, then due to the facts (5.22) and (5.23), we see

that the difference tensor of SL(r,R)/SO(r) → Rr(r+1)/2 is exactly the

same as that of M r(r+1)/2−1 → Rr(r+1)/2 corresponding to λ1 = r−2√
r−1

,

or equivalently λ = −1.
Now for the locally strongly convex Cr affine hypersphereMn → Rn+1

with p = 0 and n = 1
2r(r+1)−1, we see from the above discussion that,

by applying a homothetic transformation to make λ = −1, if necessary,
M r(r+1)/2−1 and the standard embedding SL(r,R)/SO(r) → Rr(r+1)/2

have affine metric h and cubic form C with identically the same affine
invariant properties. Applying Cartan’s lemma (cf. lemma 1.35 of [CE])
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together with the fundamental uniqueness theorem of affine differential
geometry, we obtain that M r(r+1)/2−1 and SL(r,R)/SO(r) are locally
affine equivalent.

This completes the proof of Theorem 5.1. q.e.d.

6. Hypersurfaces in Rn+1 with p = 1

In this section, we will prove the following theorem.

Theorem 6.1. Let Mn be a locally strongly convex affine hypersurface
of Rn+1 which has parallel and non-vanishing cubic form. If dimD2 =
r − 1 = 2k0 ≥ 2 and p as determined in section 4 satisfies p = 1, then
n ≥ 1

4(r + 1)2 − 1.
Moreover, if k0 = 1, thenMn can be decomposed as the Calabi product

of two hyperbolic affine hyperspheres both with parallel cubic form. If
k0 ≥ 2, then either we have

(i) n = 1
4(r + 1)2, and Mn can be written as the Calabi product of a

hyperbolic affine hypersphere with parallel cubic form and a point, or
(ii) n > 1

4(r + 1)2, and Mn can be written as the Calabi product of
two hyperbolic affine hyperspheres both with parallel cubic form, or

(iii) n = 1
4 (r + 1)2 − 1, and up to a homothetic transformation, Mn

is affine equivalent to an open part of the standard embedding
SL( r+1

2 ,C)/SU( r+1
2 ) →֒ Rn+1.

To prove the theorem, we first prove the following

Lemma 6.1. Suppose dimD2 = r − 1 ≥ 3 and p = 1. Then from
the decomposition (4.1) there exists unit vector uj ∈ Vvj (0), 1 ≤ j ≤
k0 = 1

2(r − 1), such that the orthonormal basis {v1, u1; . . . ; vk0 , uk0} of
D2 satisfies the relations

(6.1) L(vj, uℓ) = −L(uj , vℓ), L(vj , vℓ) = L(uj, uℓ), 1 ≤ j, ℓ ≤ k0.

Proof. We have the decomposition (4.1) with dimVvj (0) = 1, 1 ≤ j ≤
k0. Let Vv2(0) = {u2}; here u2 is a unit vector.

According to Lemma 4.2, for each j 6= 2, we have a unique unit vector
uj ∈ Vvj (0) satisfying the relation

(6.2) L(vj ,−u2) = L(uj , v2), 1 ≤ j ≤ k0, j 6= 2.

Claim 6.1. Based on the above definition, the relations

(6.3) L(uj , u2) = L(vj , v2), 1 ≤ j ≤ k0

hold.
In fact, if j = 2, then u2 ∈ Vv2(0) implies that L(u2, v2) = 0 and thus

L(u2, u2) = L(v2, v2).
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Next, for each j 6= 2, we use the fact L(uj , vj) = 0, (6.2), and (2.10)
to see that

h(L(uj , u2), L(vj , v2)) = h(L(vj ,−u2), L(uj , v2))
= h(L(vj ,−u2), L(vj ,−u2)) = h(u2, P (vj)u2) = τ.

On the other hand, h(L(uj , u2), L(uj , u2)) = h(L(vj , v2), L(vj , v2)) =
τ . Then by the Cauchy-Schwarz inequality we get L(uj , u2) = L(vj, v2).
This finishes the proof of the claim.

Claim 6.2. L(uj, uℓ) = L(vj , vℓ), 1 ≤ j, ℓ ≤ k0, j, ℓ 6= 2.
For j = ℓ, the fact that uj ∈ Vvj (0) implies L(vj, uj) = 0. It follows

that L(uj , uj) = L(vj , vj).
Next, for dimD2 ≥ 6, we fix j, ℓ 6= 2 such that j 6= ℓ. By Lemma 4.2,

there exists a unique unit vector in Vvj (0), denoted uj(ℓ), such that

(6.4) L(vj, uℓ) = −L(uj(ℓ), vℓ).
Since both unit vectors uj, uj(ℓ) ∈ Vvj (0) and dimVvj (0) = 1, we

have two possibilities: uj(ℓ) = uj or uj(ℓ) = −uj .
(1) If uj(ℓ) = uj, then we have L(vj , uℓ) = −L(uj , vℓ). By using

(2.10) and L(uj , vj) = 0 we have

h(L(uj , uℓ), L(vj , vℓ)) = h(L(vj ,−uℓ), L(uj , vℓ))
= h(L(vj ,−uℓ), L(vj ,−uℓ)) = h(uℓ, P (vj)uℓ) = τ.

On the other hand, h(L(uj , uℓ), L(uj , uℓ)) = h(L(vj , vℓ), L(vj , vℓ)) =
τ . Then by the Cauchy-Schwarz inequality the claim L(uj, uℓ) = L(vj , vℓ)
follows.

(2) If uj(ℓ) = −uj, then we have L(vj , uℓ) = L(uj , vℓ). We will show
that this is impossible.

In fact, by (2.10) and L(uj , vj) = 0 we have

h(L(vj , vℓ), L(uj , uℓ)) = −h(L(vj , uℓ), L(uj , vℓ))
= −h(L(vj , uℓ), L(vj , uℓ)) = −τ.

Since h(L(uj , uℓ), L(uj , uℓ)) = h(L(vj , vℓ), L(vj , vℓ)) = τ , by the Cauchy-
Schwarz inequality we obtain L(uj, uℓ) = −L(vj , vℓ). Hence we have

(6.5) K(L(uj , uℓ) + L(vj , vℓ), L(v2, uj)) = 0.

On the other hand, by using (6.2) and Lemma 4.4, we find that

K(L(uj , uℓ), L(v2, uj)) = τL(uℓ, v2) = −τL(vℓ, u2),
K(L(vj , vℓ), L(v2, uj)) = K(L(vj , vℓ),−L(vj , u2)) = −τL(vℓ, u2).
Combining the above with (6.5), we get L(vℓ, u2) = 0, which is a

contradiction. So we complete the proof of Claim 6.2.
We have now completed the proof of Lemma 6.1. q.e.d.

Remark 6.1. For p = 1 we have dimD2 = 2k0. Denote Vj = {vj} ⊕
Vvj (0) = {vj} ⊕ {uj}, 1 ≤ j ≤ k0. For each 1 ≤ j ≤ k0, we define
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a linear map J : Vj → Vj by setting Jvj = uj , Juj = −vj. Then
J : D2 → D2 is an almost complex structure and Lemma 6.1 shows that
it satisfies the relations

(6.6) L(Ju, v) = −L(u, Jv), L(Ju, Jv) = L(u, v)

for all u, v ∈ D2.

Proof of Theorem 6.1. Let r−1 = 2k0. If k0 = 1, then the dimension
of the image of L would be 1, which is a case we have treated in theorem
5.1 of [HLSV], and in that case it follows that Mn can be decomposed
as the Calabi product of two hyperbolic affine hyperspheres both with
parallel cubic form.

We now assume that k0 ≥ 2 and let {v1, u1; . . . , vk0 , uk0} be the
orthonormal basis of D2 as constructed in Lemma 6.1. According to
Lemma 3.4 and that for j 6= ℓ, uj , vj ∈ Vvℓ(τ) = Vuℓ

(τ), we have

(6.7) h(L(vj , uℓ), L(vj , uℓ)) = h(L(vj , vℓ), L(vj , vℓ)) = τ, j 6= ℓ,

(6.8)

h(L(uj , vℓ1), L(uj , vℓ2)) = h(L(vj , uℓ1), L(vj , uℓ2))

= h(L(vj , vℓ1), L(vj , vℓ2))

= 0, j, ℓ1, ℓ2 distinct,

(6.9) h(L(vj1 , vj2), L(vj3 , vj4)) = 0, j1, j2, j3, j4 distinct,

(6.10) h(L(vj , vℓ), L(vj1 , uℓ1)) = 0, j 6= ℓ and j1 6= ℓ1.

Thus
{

1√
τ
L(vj , vℓ)

}

1≤j<ℓ≤k0
∪
{

1√
τ
L(vj , uℓ)

}

1≤j<ℓ≤k0
consists of k0(k0−

1) = 1
4(r − 1)(r − 3) orthonormal vectors. For

{L(vj , vj) = L(uj, uj)}1≤j≤k0 ,

we note that

(6.11) h(L(vj , vj), L(vj , vj)) =
n+1

4(n−r)λ
2
1, 1 ≤ j ≤ k0,

(6.12)
h(L(vj , vj), L(vℓ, vℓ)) =

n+1
4(n−r)λ

2
1 − 2τ

= − (n+1)(r+1)
8(n−r)2

λ21, 1 ≤ j 6= ℓ ≤ k0,

(6.13)
h(L(vj , vj), L(vj , vℓ)) = h(L(vj , vj), L(vj , uℓ))

= 0, 1 ≤ j 6= ℓ ≤ k0,

(6.14)
h(L(vj , vj), L(vℓ1 , vℓ2)) = h(L(vj , vj), L(vℓ1 , uℓ2))

= 0, 1 ≤ j, ℓ1, ℓ2 distinct ≤ k0.

Similar to the previous section, we see that

{Lj := L(v1, v1) + · · ·+ L(vj , vj)− jL(vj+1, vj+1)}1≤j≤k0−1
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are k0−1 = 1
2(r−3) mutually orthogonal vectors which are orthogonal to

all L(vj, vℓ) and L(vj , uℓ), j 6= ℓ. Moreover, we easily have h(Lj , Lj) =
2j(j + 1)τ 6= 0. Hence

(6.15)



















wjℓ =
1√
τ
L(vj , vℓ), 1 ≤ j < ℓ ≤ k0;

w′
jℓ =

1√
τ
L(vj , uℓ), 1 ≤ j < ℓ ≤ k0;

wj =
1√

2j(j+1)τ
Lj , 1 ≤ j ≤ k0 − 1

are 1
4(r + 1)(r − 3) orthonormal vectors in Im (L) ⊂ D3.

Finally, it is easily verified that 1
2TrL = L(v1, v1) + · · · + L(vk0 , vk0)

is orthogonal to the above (r + 1)(r − 3)/4 vectors and satisfies

(6.16)

1
4h(TrL,TrL) =

(n+1)k0(n−k0(k0+2))
4(n−r)2

λ21

=
(n+1)(r−1)λ2

1

8(n−r)2

[

n− 1
4(r + 1)2 + 1

]

.

The above results imply that

n = 1+dimD2+dimD3 ≥ 1+ (r− 1)+ 1
4(r+1)(r− 3) = 1

4(r+1)2− 1.

Moreover, from (6.16) we see that TrL = 0 if and only if n = 1
4(r +

1)2− 1. Then, there are three cases to be considered: (i) n = 1
4(r+1)2;

(ii) n > 1
4 (r + 1)2; (iii) n = 1

4(r + 1)2 − 1.

For Case (i) and Case (ii), we define a unit vector

t = 4(n−r)√
2(n+1)(r−1)[4n−(r−1)(r+3)] λ1

TrL.

In Case (i), the previous results show that {t; wjℓ, w
′
jℓ | 1 ≤ j < ℓ ≤

1
2(r− 1); wj |1 ≤ j ≤ 1

2(r− 3)} is an orthonormal basis of Im (L) = D3.
By direct calculations and applying Lemma 2.4, Lemma 4.4, and (6.7)–
(6.14), we have

Lemma 6.2. From the above assumptions, it follows that
(6.17)






























































K(t, e1) = − r+1
2(n−r)λ1t,

K(t, t) = − r+1
2(n−r)λ1e1 +

2n−(r−1)(r+2)
n−r

√

2(n+1)
(r−1)[4n−(r−1)(r+3)] λ1t,

K(t, vj) = 1
2(n−r)

√

(n+1)[4n−(r−1)(r+3)]
2(r−1) λ1vj , 1 ≤ j ≤ 1

2 (r − 1),

K(t, uj) = 1
2(n−r)

√

(n+1)[4n−(r−1)(r+3)]
2(r−1) λ1uj , 1 ≤ j ≤ 1

2 (r − 1),

K(t, wj) = 1
n−r

√

(n+1)[4n−(r−1)(r+3)]
2(r−1) λ1wj , 1 ≤ j ≤ 1

2 (r − 3),

K(t, wjℓ) = 1
n−r

√

(n+1)[4n−(r−1)(r+3)]
2(r−1) λ1wjℓ, 1 ≤ j < ℓ ≤ 1

2 (r − 1),

K(t, w′
jℓ) = 1

n−r

√

(n+1)[4n−(r−1)(r+3)]
2(r−1) λ1w

′
jℓ, 1 ≤ j < ℓ ≤ 1

2 (r − 1).

Put T = αe1 + βt, T ∗ = −βe1 + αt, where

(6.18) α =
√

4n−(r−1)(r+3)
4n+(r−1)(2n−r−1) , β =

√

2(n+1)(r−1)
4n+(r−1)(2n−r−1) .
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Then

{T, T ∗; vj , uj |1≤j≤(r−1)/2; wm |1≤m≤(r−3)/2; wkℓ, w
′
kℓ |1≤k<ℓ≤(r−1)/2}

forms an orthonormal basis of Tx0
M . By Lemma 6.2 we easily obtain

the following

Lemma 6.3. From the above assumptions, we deduce that

(6.19)























K(T, T ) = ξ1T, K(T, T ∗) = ξ2T
∗,

K(T, vj) = ξ2vj , K(T, uj) = ξ2uj, 1 ≤ j ≤ 1
2 (r − 1),

K(T,wj) = ξ2wj , 1 ≤ j ≤ 1
2 (r − 3),

K(T,wjℓ) = ξ2wjℓ, K(T,w′
jℓ) = ξ2w

′
jℓ, 1 ≤ j < ℓ ≤ 1

2 (r − 1),

where ξ1 and ξ2 are defined by

(6.20)











ξ1 = (n−r)[4n−(r−1)(r+3)]−(n+1)(r2−1)
(n−r)[4n−(r−1)(r+3)]

√

4n−(r−1)(r+3)
4n+(r−1)(2n−r−1) λ1,

ξ2 = 2n−r+1
2(n−r)

√

4n−(r−1)(r+3)
4n+(r−1)(2n−r−1) λ1,

which satisfy the relation

(6.21) ξ1ξ2 − ξ22 = − (r+1)(2n−r+1)
4(n−r)2 λ21 = λ.

Based on the conclusions of Lemma 6.3, we can again apply theorem
4 of [HLV] to conclude that in Case (i),Mn is decomposed as the Calabi
product of a hyperbolic affine hypersphere with parallel cubic form and
a point.

For Case (ii), we see that {t; wjℓ, w
′
jℓ | 1 ≤ j < ℓ ≤ 1

2 (r−1); wj |1 ≤
j ≤ 1

2(r− 3)} is still an orthonormal basis of Im (L). But now Im(L)  

D3. Denote ñ = n− 1
4(r+1)2 ≥ 1 and choose w′

1, . . . , w
′
ñ in the orthog-

onal complement of Im (L) in D3, such that

{t; wjℓ, w
′
jℓ | 1 ≤ j < ℓ ≤ 1

2(r− 1); wj |1 ≤ j ≤ 1
2(r− 3); w′

j |1 ≤ j ≤ ñ}
is an orthonormal basis of D3. Then, (6.17) together with (2) of Lemma
2.5 gives that

(6.22) K(t, w′
j) = − r+1

2(n−r)

√

2(n+1)(r−1)
4n−(r−1)(r+3)λ1w

′
j , 1 ≤ j ≤ ñ.

Now we define T and T ∗ as in Case (i). Similar to Lemma 6.3, we
can establish the following

Lemma 6.4. For Case (ii), we have that

(6.23)



































K(T, T ) = ξ1T, K(T, T ∗) = ξ2T
∗,

K(T, vj) = ξ2vj , K(T, uj) = ξ2uj, 1 ≤ j ≤ 1
2 (r − 1),

K(T,wj) = ξ2wj , 1 ≤ j ≤ 1
2 (r − 3),

K(T,wjℓ) = ξ2wjℓ, K(T,w′
jℓ) = ξ2w

′
jℓ, 1 ≤ j < ℓ ≤ 1

2 (r − 1),

K(T,w′
j) = ξ3w

′
j , 1 ≤ j ≤ ñ,
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where ξ1, ξ2, and ξ3 are defined by (6.20) and

(6.24) ξ3 = − r+1
2(n−r)

√

4n+(r−1)(2n−r−1)
4n−(r−1)(r+3) λ1,

which satisfy the relations ξ2 6= ξ3, 2ξ2 6= ξ1 6= 2ξ3, and

(6.25) ξ1 = ξ2 + ξ3, ξ2ξ3 = − (r+1)(2n−r+1)
4(n−r)2

λ21 = λ.

Based on the conclusions of Lemma 6.4, we can as in the previous section
apply theorem 3 of [HLV] to conclude that in Case (ii), Mn is decom-
posed as the Calabi product of two hyperbolic affine hyperspheres both
with parallel cubic form.

Finally, for Case (iii), we have TrL = 0 and thus

D3 = {wjℓ}1≤j<ℓ≤(r−1)/2 ⊕ {w′
jℓ}1≤j<ℓ≤(r−1)/2 ⊕ {wj}1≤j≤(r−3)/2.

It follows that

(6.26) {e1; vj , uj |1≤j≤(r−1)/2; wjℓ, w
′
jℓ |1≤j<ℓ≤(r−1)/2; wj |1≤j≤(r−3)/2}

is an orthonormal basis of Tx0
M . Now, applying Lemma 2.4, Lemma

4.4, (6.1), and the previous formulas from (6.7) up to (6.14), we can
calculate all components of the difference tensor with respect to the
basis (6.26).

Now, we look at the homogeneous space SL(m,C)/SU(m) and recall

its standard embedding into Rm2

.
Let s(m) be the set of Hermitian (m,m)-matrices, SL(m,C) be the

set of complex (m,m)-matrices of determinant 1, and SU(m) = {A ∈
SL(m,C) | tĀA = Im} be the set of unitary (m,m)-matrices with deter-
minant 1. Let X be the action of SL(m,C) on s(m) defined as follows:

X : SL(m,C)× s(m) → s(m) s.t. (A,X) 7→ XA(X) = AX tĀ.

Let F : s(m) → C be given by F (X) := det(X). Consider the hypersur-
face of s(m) satisfying the equation det(X) = 1; we take the connected
component M that lies in the open set of s(m) consisting of all Hermit-
ian positive definite matrices. Then the mapping f : SL(m,C) → s(m),
defined by f(A) := A tĀ, is a submersion onto M , and it satisfies
f(AB) = XA(f(B)); hence f is equivariant. M is the orbit of I under
the action X. The isotropy group is SU(m). Hence M is diffeomorphic
to SL(m,C)/SU(m). This is an irreducible, homogeneous, symmetric
space of non-compact type, and the involution at the identity matrix I
is given by A 7→ tĀ−1. We denote this symmetric space by M ′.

Clearly f(A) = f(B) if and only if B−1A ∈ SU(m) and therefore the
map f : SL(m,C) → s(m) induces an embedding f : SL(m,C)/SU(m)
→ s(m). Let π : SL(m,C) →M ′ be the natural projection; then there
is an immersion f ′ :M ′ → s(m) such that f = f ′ ◦ π. Now we consider

(6.27) f : SL(m,C)/SU(m) → Rn+1 = s(m), n+ 1 = m2
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with a transversal vector field ξA = f(A) for any A ∈ SL(m,C)/SU(m).
Then ξ is equiaffine and equivariant.

Consider the Cartan decomposition of the Lie algebra sl(m,C) = s0⊕
su(m), where su(m) denotes the set of skew-Hermitian (m,m)-matrices
and s0 := {X ∈ s(m) | tr (X) = 0}. If X ∈ s0 then f∗(X) = X. Now
s0 can be considered as the tangent space of M ′ at π(I).

Since f is equivariant, it is sufficient to compute the invariant objects
of the immersed hypersurface M ′ in terms of s0.

The embedding f : SL(m,C)/SU(m) → Rn+1 = s(m) with ξ = f
has a Blaschke structure that can be expressed algebraically in terms of
the Lie algebra as follows (cf. [BD] for the case m = 3):

(6.28)

{

K(X,Y ) = XY + Y X − 2
m tr (XY )Im,

h(X,Y ) = 4
m tr (XY ), S = −Im.

Here h is the natural Riemannian metric on the symmetric space M ′;
this implies that the Levi-Civita connection of h is given by ∇̂XY =
1
2 [X,Y ]. From this it follows easily that the difference tensor K satisfies
(

∇̂XK
)

(X,X) = 0. As M = f ′(M ′) is an affine hypersphere, we get

that ∇̂K is totally symmetric [BNS]; then from
(

∇̂XK
)

(X,X) = 0
and polarization of the multilinear symmetric expression over Tx0

(M)

at x0 ∈M it follows that ∇̂K = 0.
Now we choose m = 1

2 (r + 1). Denote Ejk (resp. E′
jk) the m × m

matrix which has (j, k) entry 1 (resp.
√
−1) and all other entries 0. Then

with respect to the metric h(X,Y ) = 4
m tr (XY ) of SL(m,C)/SU(m)

at I, we can choose an orthonormal basis as follows:
(6.29)







































ẽ1 = 1√
4(m−1)

(

(m− 1)Emm − E11 − · · · − Em−1,m−1

)

,

ṽj =
√

m
8

(

Emj + Ejm

)

, ũj =
√

m
8

(

E′
mj − E′

jm

)

, 1 ≤ j ≤ m− 1;

w̃j =
√

m
4j(j+1)

(

E11 + · · ·+ Ejj − jEj+1,j+1

)

, 1 ≤ j ≤ m− 2;

w̃jℓ =
√

m
8

(

Eℓj + Ejℓ

)

, w̃′
jℓ =

√

m
8

(

E′
jℓ − E′

ℓj

)

, 1 ≤ j < ℓ ≤ m− 1.

By using the formula K(X,Y ) = XY + Y X − 2
m tr (XY )Im and

EjkEpq = Ejqδkp, E′
jkEpq = EjkE

′
pq = E′

jqδkp, E′
jkE

′
pq = −Ejqδkp,

we can show that L(X,Y ) = K(X,Y ) − 1
2λ1h(X,Y )ẽ1, where λ1 =

m−2√
m−1

, satisfies

L(ṽj , ũℓ) = −L(ũj, ṽℓ), L(ṽj, ṽℓ) = L(ũj , ũℓ), 1 ≤ j, ℓ ≤ m− 1.
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Furthermore, if we define






















L̃1 = L(ṽ1, ṽ1)− L(ṽ2, ṽ2) = K(ṽ1, ṽ1)−K(ṽ2, ṽ2),

L̃2 = L(ṽ1, ṽ1) + L(ṽ2, ṽ2)− 2L(ṽ3, ṽ3)

= K(ṽ1, ṽ1) +K(ṽ2, ṽ2)− 2K(ṽ3, ṽ3), . . .

L̃m−2 = K(ṽ1, ṽ1) + · · ·+K(ṽm−2, ṽm−2)− (m− 2)K(ṽm−1, ṽm−1),

then the relations hold:

(6.30)























w̃j =
L̃j

‖L̃j‖
, 1 ≤ j ≤ m− 2;

w̃jℓ =
K(ṽj ,ṽℓ)

‖K(ṽj ,ṽℓ)‖ =
L(ṽj ,ṽℓ)

‖L(ṽj ,ṽℓ)‖ , 1 ≤ j < ℓ ≤ m− 1;

w̃′
jℓ =

K(ṽj ,ũℓ)
‖K(ṽj ,ũℓ)‖ =

L(ṽj ,ũℓ)
‖L(ṽj ,ũℓ)‖ , 1 ≤ j < ℓ ≤ m− 1.

Moreover, we have the following calculation for the difference tensor
at I:

(6.31)



























Kẽ1 ẽ1 = m−2√
m−1

ẽ1,

Kẽ1 ṽj =
m−2

2
√
m−1

ṽj , Kẽ1 ũj =
m−2

2
√
m−1

ũj, 1 ≤ j ≤ m− 1;

Kẽ1w̃j = − 1√
m−1

w̃j , 1 ≤ j ≤ m− 2;

Kẽ1w̃jℓ = − 1√
m−1

w̃jℓ, Kẽ1w̃
′
jℓ = − 1√

m−1
w̃′

jℓ, 1 ≤ j < ℓ ≤ m− 1.

Since SL(m,C)/SU(m) → Rm2

has parallel cubic form, if we identify
{

ẽ1; ṽj , ũj |1≤j≤m−1; w̃jℓ, w̃
′
jℓ |1≤j<ℓ≤m−1; w̃j |1≤j≤m−2

}

in (6.29) with the

basis (6.26) of Mn, then due to the facts (6.30) and (6.31), we see that

the difference tensor of SL(m,C)/SU(m) → Rm2

is exactly the same
as that of Mn → Rn+1 corresponding to λ1 = m−2√

m−1
, or equivalently

λ = −1.
Now for the locally strongly convex Cr affine hypersphereMn → Rn+1

with p = 1 and n = 1
4 (r + 1)2 − 1, we see from the above discussion

that, by applying a homothetic transformation to make λ = −1, if neces-

sary,M (r+1)2/4−1 and the standard embedding SL( r+1
2 ,C)/SU( r+1

2 ) →֒
R(r+1)2/4 have affine metric h and cubic form C with identically the same
affine invariant properties. According to Cartan’s lemma and the fun-
damental uniqueness theorem of affine differential geometry, we obtain

thatM (r+1)2/4−1 and SL( r+1
2 ,C)/SU( r+1

2 ) are locally affine equivalent.
We have completed the proof of Theorem 6.1. q.e.d.

7. Hypersurfaces in Rn+1 with p = 3

In this section, we will prove the following theorem.

Theorem 7.1. Let Mn be a locally strongly convex affine hypersurface
of Rn+1 which has parallel and non-vanishing cubic form. If dimD2 =
r − 1 = 4k0 ≥ 4 and p = 3, then n ≥ (r − 1)(r + 5)/8. Moreover,
if k0 = 1, then Mn can be decomposed as the Calabi product of two
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hyperbolic affine hyperspheres both with parallel cubic form. If k0 ≥ 2,
then either

(i) if n = 1
8 (r − 1)(r + 5) + 1, then Mn is the Calabi product of a

hyperbolic affine hypersphere with parallel cubic form and a point, or
(ii) if n ≥ 1

8(r − 1)(r + 5) + 2, then Mn is the Calabi product of two
hyperbolic affine hyperspheres both with parallel cubic form, or

(iii) if n = 1
8 (r − 1)(r + 5), then up to a homothetic transforma-

tion, Mn is affine equivalent to an open part of the standard embedding
SU∗( r+3

2 )/Sp( r+3
4 ) →֒ Rn+1.

In order to prove the theorem, we first show the following

Lemma 7.1. Suppose dimD2 = r − 1 ≥ 4 and p = 3. Then from
the decomposition (4.1) there exist unit orthogonal vectors xj, yj , zj ∈
Vvj (0), 1 ≤ j ≤ k0 = (r − 1)/4, such that the orthonormal basis
{v1, x1, y1, z1; . . . ; vk0 , xk0 , yk0 , zk0} of D2 satisfies the relations

(7.1)



















L(xj , xℓ) = L(yj, yℓ) = L(zj , zℓ) = L(vj , vℓ),

L(vj , xℓ) = −L(xj, vℓ) = −L(yj, zℓ) = L(yℓ, zj),

L(vj , yℓ) = −L(yj, vℓ) = −L(zj , xℓ) = L(xj , zℓ),

L(vj , zℓ) = −L(zj , vℓ) = −L(xj, yℓ) = L(xℓ, yj)

for all 1 ≤ j, ℓ ≤ k0.
Proof. If k0 = 1, then by using Lemma 4.1 it is easily seen that we
have the conclusion. Hence we will suppose k0 ≥ 2 and we have the
decomposition (4.1) with dimVvj (0) = 3, 1 ≤ j ≤ k0.

Denote Vj = {vj}⊕Vvj (0). Let us fix an orthonormal basis {x1, y1, z1}
of Vv1(0). Then according to Lemma 4.2, for each j 6= 1, we have unique
unit vectors xj, yj , zj ∈ Vvj (0) satisfying the relations

(7.2)

{

L(vj ,−x1) = L(xj , v1), L(vj,−y1) = L(yj, v1),

L(vj ,−z1) = L(zj , v1), 2 ≤ j ≤ k0.

Claim 7.1. Based on their definitions in (7.2), {xj , yj , zj} is an or-
thonormal basis of Vvj (0).

In fact, for j 6= 1, taking the inner products between the expressions
in (7.2), together with the fact that xj , yj, zj ∈ Vv1(τ) and x1, y1, z1 ∈
Vvj (τ), gives the desired result. For example, the equations

τh(xj , yj) = h(L(v1, xj), L(v1, yj))

= h(−L(vj , x1),−L(vj , y1)) = τh(x1, y1) = 0

give that yj ⊥ xj .

Claim 7.2. Based on their definitions in (7.2), {xj , yj , zj} satisfies the
relations

(7.3) L(xj , x1) = L(yj, y1) = L(zj , z1) = L(vj , v1),
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(7.4)
L(xj , y1) = −L(x1, yj), L(xj, z1) = −L(x1, zj),
L(y1, zj) = −L(yj, z1)

for all 1 ≤ j ≤ k0.
In fact, as seen previously, we only need to consider the case j 6= 1.
First, we use the fact L(xj, vj) = 0 (see Lemma 4.1), (7.2), and (2.10)

to see that

h(L(xj , x1), L(vj , v1)) = h(L(vj ,−x1), L(xj , v1))
= h(L(vj ,−x1), L(vj ,−x1)) = h(x1, P (vj)x1) = τ.

On the other hand, from Lemma 4.3 we see that xj ∈ Vv1(τ) = Vx1
(τ)

and hence

h(L(xj , x1), L(xj , x1)) = τ = h(L(vj , v1), L(vj , v1)).

Then the Cauchy-Schwarz inequality implies that L(xj, x1) = L(vj, v1).
Similar discussions will finish the proof for the other cases in (7.3).

To verify (7.4), we use the fact L(xj , yj) = L(xj, zj) = L(yj, zj) = 0,
(7.3), and (2.10) to see that

h(L(xj , y1), L(x1, yj)) = −h(L(xj , x1), L(y1, yj))
= −h(L(vj , v1), L(v1, vj)) = −h(vj , P (v1)vj) = −τ,

h(L(xj , z1), L(x1, zj)) = −h(L(xj , x1), L(z1, zj)) = −τ,
h(L(zj , y1), L(z1, yj)) = −h(L(zj , z1), L(y1, yj)) = −τ.

On the other hand, from Lemma 4.3 we see that

xj , yj, zj ∈ Vv1(τ) = Vx1
(τ) = Vy1(τ) = Vz1(τ)

and hence

h(L(xj , y1), L(xj , y1)) = τ = h(L(x1, yj), L(x1, yj)),

h(L(xj , z1), L(xj , z1)) = τ = h(L(x1, zj), L(x1, zj)),

h(L(zj , y1), L(zj , y1)) = τ = h(L(z1, yj), L(z1, yj)).

Now the Cauchy-Schwarz inequality implies that all equations in (7.4)
hold.

Claim 7.3. The orthonormal basis {xj , yj, zj}1≤j≤k0 can be chosen to
satisfy

L(xj, y1) = L(zj , v1), L(yj , z1) = L(xj , v1),

L(zj , x1) = L(yj, v1), 1 ≤ j ≤ k0.

Again, we need only to consider the cases for j 6= 1. Note that by
Lemma 4.3 we have

V1 = {v1}⊕Vv1(0) = {y1}⊕Vy1(0), Vj = {vj}⊕Vvj (0) = {xj}⊕Vxj (0).

Then by Lemma 4.2, we have a unique unit vector αj ∈ Vyj (0) =
span {vj , xj , zj} such that L(xj , y1) = L(v1, αj). It is easily seen from
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Claim 7.2 that L(xj , y1) = −L(x1, yj) is orthogonal to L(v1, xj) and
L(v1, vj). Hence we have

(7.5) L(xj , y1) = εjL(v1, zj), εj = ±1, j ≥ 2.

Similar arguments show that

(7.6) L(yj, z1) = ǫjL(xj , v1), L(zj , x1) = ζjL(yj , v1),

where ǫj = ±1, ζj = ±1, and j ≥ 2.
On the other hand, from (7.5), (7.6), and making use of (2.10) and

(7.4), we have the following results:

ǫjτ = h(L(yj , z1), L(xj , v1)) = −h(L(y1, zj), L(xj , v1))
= h(L(y1, xj), L(zj , v1)) = εjh(L(v1, zj), L(zj , v1)) = εjτ,

ζjτ = h(L(zj , x1), L(yj , v1)) = h(L(z1, xj), L(y1, vj))

= −h(L(z1, vj), L(xj , y1)) = −εjh(L(z1, vj), L(zj , v1)) = εjτ.

It follows that

(7.7) ζj = ǫj = εj = ±1.

Now, for any j 6= ℓ and j, ℓ ≥ 2, we first use L(xj , y1) = εjL(v1, zj)
and Lemma 4.4 to see that

εℓτL(xj , xℓ) = K(L(xj, y1), εℓL(y1, xℓ)) = K(L(xj , y1), L(v1, zℓ))

= K(εjL(v1, zj), L(v1, zℓ)) = εjτL(zj , zℓ).

It follows that

(7.8) L(xj , xℓ) = εjεℓL(zj , zℓ).

Similarly, we use L(yj, z1) = εjL(xj, v1), L(zj , x1) = εjL(yj, v1) and
Lemma 4.4 to get

εℓτL(yj, yℓ) = K(L(yj, z1), εℓL(yℓ, z1)) = K(L(yj , z1), L(v1, xℓ))

= K(εjL(v1, xj), L(v1, xℓ)) = εjτL(xj , xℓ),

εℓτL(zj , zℓ) = K(L(zj , x1), εℓL(zℓ, x1)) = K(L(zj , x1), L(v1, yℓ))

= K(εjL(v1, yj), L(v1, yℓ)) = εjτL(yj, yℓ),

and so we obtain

(7.9) L(xj, xℓ) = εjεℓL(yj, yℓ),

(7.10) L(zj , zℓ) = εjεℓL(yj, yℓ).

From (7.8), (7.9), and (7.10) we have proved that ε2 = · · · = εk0 .
Therefore, if necessary by changing the sign of z1 and hence the sign of
all other z’s, we may assume ε2 = 1, and thus we have completed the
proof of Claim 7.3.

Claim 7.4. L(xj, xℓ) = L(yj, yℓ) = L(zj , zℓ) = L(vj , vℓ), 2 ≤ j, ℓ ≤ k0.
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In fact, for j = ℓ, the fact that xj , yj, zj ∈ Vvj (0) implies that
L(vj , xj) = L(vj , yj) = L(vj , zj) = 0. It now follows that L(xj, xj) =
L(yj, yj) = L(zj , zj) = L(vj , vj).

Next, for dimD2 ≥ 12, we fix j, ℓ ≥ 2 such that j 6= ℓ. Then from the
proof of Claim 7.3 and (7.8)–(7.10), we have

(7.11) L(xj, xℓ) = L(yj , yℓ) = L(zj , zℓ).

By Lemma 4.2, there exists a unique unit vector α ∈ Vvℓ(0) =
span {xℓ, yℓ, zℓ} such that L(vj , xℓ) = L(xj , α). It can easily be seen
from (2.10) and (7.11) that L(vj , xℓ) is orthogonal to both L(xj , yℓ) and
L(xj , zℓ). Hence considering that they have the same length, we may
assume

(7.12) L(vj, xℓ) = ajℓL(xj, vℓ), ajℓ = ±1.

From (7.12) and Lemma 4.4 we have the calculation

τL(x1, xℓ) = K(L(vj , xℓ), L(vj , x1)) = ajℓK(L(xj , vℓ), L(vj , x1))

= ajℓK(L(xj, vℓ),−L(v1, xj)) = −τL(v1, vℓ)ajℓ,
which together with Claim 7.2 shows that it must be the case ajℓ = −1.
This, together with very similar arguments, then shows that

(7.13)
L(vj , xℓ) = −L(xj, vℓ), L(vj , yℓ) = −L(yj, vℓ),
L(vj , zℓ) = −L(zj , vℓ).

Applying the conclusion L(vj , xℓ) = −L(xj, vℓ) and (2.10), we have

h(L(xj , xℓ), L(vj , vℓ)) = −h(L(xj , vℓ), L(vj , xℓ))
= h(L(xj , vℓ), L(xj , vℓ)) = τ.

Note also that

h(L(xj , xℓ), L(xj , xℓ)) = h(L(vj , vℓ), L(vj , vℓ)) = τ,

so that by the Cauchy-Schwarz inequality we get L(xj , xℓ) = L(vj , vℓ),
which together with (7.11) gives Claim 7.4.

Claim 7.5. With respect to the above chosen {xj , yj , zj}1≤j≤k0, we have

L(xj, yℓ) = L(zj , vℓ), L(yj , zℓ) = L(xj , vℓ),

L(zj , xℓ) = L(yj , vℓ), 1 ≤ j, ℓ ≤ k0.

In fact, according to Claims 7.2, 7.3 and (7.2), it is sufficient to con-
sider the cases that 2 ≤ j < ℓ ≤ k0.

By using Claims 7.2, 7.3 and Lemma 4.4, we have the following com-
putations:

τL(xj , yℓ) = K(L(y1, xj), L(y1, yℓ)) = K(L(v1, zj), L(y1, yℓ))

= K(L(v1, zj), L(v1, vℓ)) = τL(zj , vℓ),

τL(yj, zℓ) = K(L(z1, yj), L(z1, zℓ)) = K(L(v1, xj), L(z1, zℓ))

= K(L(v1, xj), L(v1, vℓ)) = τL(xj, vℓ),
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τL(zj , xℓ) = K(L(x1, zj), L(x1, xℓ)) = K(L(v1, yj), L(x1, xℓ))

= K(L(v1, yj), L(v1, vℓ)) = τL(yj, vℓ).

From these results, Claim 7.5 immediately follows.
Combining the above Claims, we complete the proof of Lemma 7.1.

q.e.d.

Remark 7.1. Having fixed the orthonormal basis of D2 satisfying (7.1),
we can now define three almost complex structures J1, J2, J3 : D2 → D2

such that for all 1 ≤ j ≤ k0,

(7.14)
J1vj = xj , J1xj = −vj; J2vj = yj,

J2yj = −vj; J3vj = zj, J3zj = −vj,
and furthermore J1, J2, and J3 satisfy

(7.15) J1 ◦ J1 = J2 ◦ J2 = J3 ◦ J3 = −id, J1J2 = −J2J1 = J3.

Then we define a quaternionic structure {J1, J2, J3} on D2. It is impor-
tant to remark that (7.1) is equivalent to the following relations:

(7.16) L(Ju, v) = −L(u, Jv), L(Ju, Jv) = L(u, v)

for all J = J1, J2, J3 and u, v ∈ D2.

Proof of Theorem 7.1. Let r − 1 = 4k0. If k0 = 1, then similar
reasoning as in the proof of Theorem 6.1 shows that Mn can be decom-
posed as the Calabi product of two hyperbolic affine hyperspheres both
with parallel cubic form. Hence in the remaining part of the proof we
assume that k0 ≥ 2 and let

{v1, x1, y1, z1; . . . ; vk0 , xk0 , yk0 , zk0}
be the orthonormal basis of D2 as constructed in Lemma 7.1. Applying
Lemma 3.4 and the fact that for j 6= ℓ, vj, xj , yj , zj ∈ Vvℓ(τ) = Vxℓ

(τ) =
Vyℓ(τ) = Vzℓ(τ), we easily show that

(7.17)
h(L(vj , xℓ), L(vj , xℓ)) = h(L(vj , yℓ), L(vj , yℓ))

= h(L(vj , zℓ), L(vj , zℓ)) = h(L(vj , vℓ), L(vj , vℓ)) = τ, j 6= ℓ,

(7.18)

h(L(xj , vℓ1), L(xj , vℓ2)) = h(L(vj , xℓ1), L(vj , xℓ2))

= h(L(yj , vℓ1), L(yj , vℓ2)) = h(L(vj , yℓ1), L(vj , yℓ2))

= h(L(zj , vℓ1), L(zj , vℓ2)) = h(L(vj , zℓ1), L(vj , zℓ2))

= h(L(vj , vℓ1), L(vj , vℓ2)) = 0, j, ℓ1, ℓ2 distinct,

(7.19)

h(L(vj1 , vj2), L(vj3 , vj4)) = h(L(vj1 , xj2), L(vj3 , xj4))

= h(L(vj1 , yj2), L(vj3 , yj4)) = h(L(vj1 , zj2), L(vj3 , zj4))

= 0, j1, j2, j3, j4 distinct,

(7.20)
h(L(vj , vℓ), L(vj1 , xℓ1)) = h(L(vj , vℓ), L(vj1 , yℓ1))

= h(L(vj , vℓ), L(vj1 , zℓ1)) = 0, j 6= ℓ and j1 6= ℓ1.
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For {L(vj , vj) = L(xj , xj) = L(yj, yj) = L(zj , zj)}1≤j≤k0 , we note
that

(7.21) h(L(vj , vj), L(vj , vj)) =
n+1

4(n−r)λ
2
1, 1 ≤ j ≤ k0,

(7.22)
h(L(vj , vj), L(vℓ, vℓ)) =

n+1
4(n−r)λ

2
1 − 2τ

= − (n+1)(r+1)
8(n−r)2

λ21, 1 ≤ j 6= ℓ ≤ k0,

(7.23)
h(L(vj , vj), L(vj , vℓ)) = h(L(vj , vj), L(vj , uℓ))

= 0, 1 ≤ j 6= ℓ ≤ k0,

(7.24)
h(L(vj , vj), L(vℓ1 , vℓ2)) = h(L(vj , vj), L(vℓ1 , uℓ2)) = 0,

1 ≤ j, ℓ1, ℓ2 distinct and ≤ k0.

Similar to the previous section, we deduce that

{Lj := L(v1, v1) + · · ·+ L(vj , vj)− jL(vj+1, vj+1)}1≤j≤k0−1

are k0 − 1 = 1
4(r− 5) mutually orthogonal vectors which are orthogonal

to all of the vectors

L(vj , vℓ), L(vj , xℓ), L(vj , yℓ), L(vj , zℓ), j 6= ℓ.

Also, we have h(Lj , Lj) = 2j(j + 1)τ 6= 0. Hence, the following vectors

(7.25)



















wjℓ =
1√
τ
L(vj , vℓ), w′

jℓ =
1√
τ
L(vj , xℓ),

w′′
jℓ =

1√
τ
L(vj , yℓ), w′′′

jℓ =
1√
τ
L(vj , zℓ), 1 ≤ j < ℓ ≤ k0;

wj =
1√

2j(j+1)τ
Lj, 1 ≤ j ≤ k0 − 1

consist of 2k0(k0 − 1) + k0 − 1 = 1
8(r+1)(r− 5) orthonormal vectors in

Im (L) ⊂ D3.
Finally, from Lemma 7.1, (7.21), and (7.22) it is easily known that

the vector

TrL = 4
(

L(v1, v1) + · · ·+ L(vk0 , vk0)
)

is orthogonal to the above (r + 1)(r − 5)/8 vectors and it satisfies

(7.26) h(TrL,TrL) = (n+1)(r−1)
8(n−r)2

λ21
[

8n− (r − 1)(r + 5)
]

.

The above results imply that

n = 1+dimD2+dimD3 ≥ 1+(r−1)+ 1
8(r+1)(r−5) = 1

8(r−1)(r+5).

Moreover, from (7.26) we see that TrL = 0 if and only if it holds
n = 1

8(r − 1)(r + 5).
Now, as in the previous sections, we separate the discussion into the

following three cases: (i) n = 1
8 (r− 1)(r +5) + 1; (ii) n > 1

8(r− 1)(r+

5) + 1; (iii) n = 1
8 (r − 1)(r + 5).
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For Case (i) and Case (ii), we define a unit vector

t = 4(n−r)√
2(n+1)(r−1)[8n−(r−1)(r+5)] λ1

TrL.

In Case (i), the previous results show that
{

t; wjℓ, w
′
jℓ, w

′′
jℓ, w

′′′
jℓ |1≤j<ℓ≤(r−1)/4; wj |1≤j≤(r−5)/4

}

is an orthonormal basis of Im (L) = D3. By direct calculations with
application of Lemma 4.4, (7.1) and (7.17)–(7.24), we easily verify the
following

Lemma 7.2. Under the above notations, we have

(7.27)



































K(t, e1) = − r+1
2(n−r)λ1t,

K(t, t) = − r+1
2(n−r)λ1e1 +

4n−(r−1)(r+3)
n−r

√

2(n+1)
(r−1)[8n−(r−1)(r+5)] λ1t,

K(t, u) = 1
4(n−r)

√

2(n+1)[8n−(r−1)(r+5)]
r−1 λ1u,

K(t, w) = 1
2(n−r)

√

2(n+1)[8n−(r−1)(r+5)]
r−1 λ1w,

where

(7.28)











u = vj, xj , yj , zj , 1 ≤ j ≤ 1
4(r − 1);

w = wm, wjℓ, w
′
jℓ, w

′′
jℓ, w

′′′
jℓ,

1 ≤ m ≤ 1
4(r − 5), 1 ≤ j < ℓ ≤ 1

4(r − 1).

Put T = αe1 + βt, T ∗ = −βe1 + αt, where

(7.29) α =
√

8n−(r−1)(r+5)
8n+(r−1)(2n−r−3) , β =

√

2(n+1)(r−1)
8n+(r−1)(2n−r−3) .

Then
{

T, T ∗; vj , xj , yj, zj |1≤j≤(r−1)/4; wm |1≤m≤(r−5)/4

}

∪
∪
{

wkℓ, w
′
kℓ, w

′′
kℓ, w

′′′
kℓ |1≤k<ℓ≤(r−1)/4

}

forms an orthonormal basis of Tx0
M . Moreover, by Lemma 7.2 we easily

obtain the following

Lemma 7.3. Under the above notations, it holds

(7.30) K(T, T ) = ν1T, K(T, u) = ν2u,

where ν1 and ν2 are defined by

(7.31)











ν1 =
(n−r)[8n−(r−1)(r+5)]−(n+1)(r2−1)

(n−r)[8n−(r−1)(r+5)]

√

8n−(r−1)(r+5)
8n+(r−1)(2n−r−3) λ1,

ν2 =
2n−r+1
2(n−r)

√

8n−(r−1)(r+5)
8n+(r−1)(2n−r−3) λ1,

and u = T ∗, vj , xj , yj, zj , wm, wkℓ, w
′
kℓ, w

′′
kℓ, w

′′′
kℓ with indices satisfying

1 ≤ m ≤ 1
4(r − 5); 1 ≤ j ≤ 1

4(r − 1); 1 ≤ k < ℓ ≤ 1
4(r − 1).
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From (7.31), we can verify the relation

(7.32) ν1ν2 − ν22 = − (r+1)(2n−r+1)
4(n−r)2 λ21 = λ.

Then, based on the conclusions of Lemma 7.3, we can apply theorem 4
of [HLV] to conclude that in Case (i), Mn is decomposed as the Calabi
product of a hyperbolic affine hypersphere with parallel cubic form and
a point.

For Case (ii), we see that
{

t; wjℓ, w
′
jℓ, w

′′
jℓ, w

′′′
jℓ |1≤j<ℓ≤(r−1)/4; wj |1≤j≤(r−5)/4

}

is still an orthonormal basis of Im (L). But now Im (L) does not coincide
with D3. Denote ñ = n− 1

8(r− 1)(r+5)− 1 ≥ 1 and choose w′
1, . . . , w

′
ñ

in the orthogonal complement of Im (L) in D3 such that
{

t; wjℓ, w
′
jℓ, w

′′
jℓ, w

′′′
jℓ |1≤j<ℓ≤(r−1)/4; wj |1≤j≤ (r−5)/4; w

′
j |1≤j≤ ñ

}

is an orthonormal basis of D3. Then, besides (7.27), we further use (4)
of Lemma 2.5 to get

(7.33) K(t, w′
j) = − r+1

2(n−r)

√

2(n+1)(r−1)
8n−(r−1)(r+5)λ1w

′
j , 1 ≤ j ≤ ñ.

Now we define T and T ∗ the same as in Case (i). Similar to Lemma
7.3, we have the following

Lemma 7.4. For Case (ii), we have that

(7.34) K(T, T ) = ν1T, K(T, u) = ν2u, K(T,w′
j) = ν3w

′
j , 1 ≤ j ≤ ñ,

where ν1, ν2, and ν3 are defined by (7.31) and

(7.35) ν3 = − r+1
2(n−r)

√

8n+(r−1)(2n−r−3)
8n−(r−1)(r+5) λ1,

and u = T ∗, vj , xj , yj , zj , wm, wkℓ, w
′
kℓ, w

′′
kℓ, w

′′′
kℓ with indices varying as

follows:

1 ≤ m ≤ 1
4(r − 5); 1 ≤ j ≤ 1

4(r − 1); 1 ≤ k < ℓ ≤ 1
4(r − 1).

It can be easily seen that ν2 6= ν3, 2ν2 6= ν1 6= 2ν3, and

(7.36) ν1 = ν2 + ν3, ν2ν3 = − (r+1)(2n−r+1)
4(n−r)2 λ21 = λ.

Thus, based on the conclusions of Lemma 7.4, we can apply theorem 3
of [HLV] to conclude that in Case (ii), Mn is decomposed as the Calabi
product of two hyperbolic affine hyperspheres both with parallel cubic
form.

Finally, for Case (iii), we have TrL = 0 and thus

D3 = {wjℓ, w
′
jℓ, w

′′
kℓ, w

′′′
kℓ}1≤j<ℓ≤(r−1)/4 ⊕ {wm}1≤m≤(r−5)/4.
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It follows that

(7.37)

{

e1; vj , xj, yj , zj |1≤j≤(r−1)/4

}

∪
∪
{

wjℓ, w
′
jℓ, w

′′
kℓ, w

′′′
kℓ |1≤j<ℓ≤(r−1)/4; wm |1≤m≤(r−5)/4

}

is an orthonormal basis of Tx0
M . Now, applying Lemma 2.4, Lemma

4.4, (7.1), and the previous formulas from (7.17) up to (7.24), we can
calculate all the components of the difference tensor with respect to the
basis (7.37).

Now, for m ≥ 3, we look at the homogeneous space SU∗(2m
)

/Sp(m)

and recall its standard embedding into R2m2−m.
Let H be the quaternion field over R. Then the quaternionic general

linear group GL(m,H) has a well-known complex representation

U∗(2m) = {A ∈ GL(2m,C) |AJ = JĀ}, where J =

(

0 Im
−Im 0

)

and Im is them×m identity matrix. The Lie algebra u∗(2m) of U∗(2m)
is given by

u∗(2m) =

{(

α β
−β̄ ᾱ

)∣

∣

∣

∣

α, β ∈ gl(m,C)

}

.

The quaternionic analogue of the set of Hermitian (m,m)-matrices
and that of the complex special linear group SL(m,C) are given by

S∗(m) = {A ∈ U∗(2m) | Ā = tA}
and

SU∗(2m) = {A ∈ SL(2m,C) |AJ = JĀ} = SL(2m,C) ∩U∗(2m).

The compact Lie subgroup Sp(m), which is also called the quaternion
unitary group, is defined by

Sp(m) = {A ∈ SU(2m) |AJ = JĀ} = SU∗(2m) ∩ SU(2m).

The Lie algebra u∗(2m) has a direct sum decomposition

u∗(2m) = sp(m)⊕ s∗(m),

where
sp(m) = {Y ∈ u∗(2m) |Y ∗ + Y = 0}

=

{(

α β
−β̄ ᾱ

)∣

∣

∣

∣

α∗ + α = 0, tβ − β = 0

}

,

s∗(m) = {X ∈ u∗(2m) |X∗ −X = 0}

=

{(

α β
−β̄ ᾱ

)∣

∣

∣

∣

α∗ − α = 0, tβ + β = 0

}

are the Lie algebras of Sp(m) and S∗(m), respectively.
Let ψ be the action of SU∗(2m) on S∗(m) as follows:

ψ : SU∗(2m)× S∗(m) → S∗(m) s.t. (A,X) 7→ ψA(X) = AX tĀ.
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Let F : S∗(m) → C be given by F (X) := det(X).
Consider the hypersurface of S∗(m) satisfying the equation det(X) =

1; we take the connected componentM that lies in the open set of S∗(m)
consisting of all Hermitian positive definite matrices. Then the mapping
f : SU∗(2m) → S∗(m), defined by f(A) := A tĀ, is a submersion onto
M , and it satisfies f(AB) = ψA(f(B)); hence f is equivariant. M is
the orbit of I under the action ψ. The isotropy group is Sp(m). Hence
M is diffeomorphic to SU∗(2m)/Sp(m). This is an irreducible, homo-
geneous, symmetric space of non-compact type, and the involution at
the identity matrix I is given by A 7→ tĀ−1. We denote this symmetric
space by M ′.

Clearly f(A) = f(B) if and only if B−1A ∈ Sp(m); then the map
f : SU∗(2m) → S∗(m) induces an embedding f : SU∗(2m)/Sp(m) →
S∗(m). Let π : SU∗(2m) →M ′ be the natural projection; then there is
an immersion f ′ :M ′ → S∗(m) such that f = f ′ ◦ π. Now we consider

(7.38) f : SU∗(2m)/Sp(m) → Rn+1 = S∗(m), n+ 1 = 2m2 −m

with a transversal vector field ξA = f(A) for any A ∈ SU∗(2m)/Sp(m).
Then ξ is equiaffine and equivariant.

Consider the Cartan decomposition of the Lie algebra su∗(2m) =
s∗0(m)⊕ sp0(m), where s∗0(m) = {X ∈ s∗(m) | tr (X) = 0} and sp∗0(m) =
{X ∈ sp(m) | tr (X) = 0}. If X ∈ s∗0(m), then f∗(X) = X. Now s∗0(m)
can be considered as the tangent space of M ′ at π(I).

Since f is equivariant, it is sufficient to compute the invariant objects
of the immersed hypersurface M ′ in terms of s∗0(m).

The embedding f : SU∗(2m)/Sp(m) → Rn+1 = S∗(m) with ξ = f
has a Blaschke structure that can be expressed algebraically in terms of
the Lie algebra as follows (cf. [BD] for the case m = 3):

(7.39)

{

K(X,Y ) = XY + Y X − 1
m tr (XY )I2m,

h(X,Y ) = 2
m tr (XY ), S = −I2m.

Here h is the natural Riemannian metric on the symmetric space M ′;
this implies that the Levi-Civita connection of h is given by ∇̂XY =
1
2 [X,Y ]. From this it follows easily that the difference tensor K satisfies
(

∇̂XK
)

(X,X) = 0. As M = f ′(M ′) is an affine hypersphere, we get

that ∇̂K is totally symmetric [BNS]; then from
(

∇̂XK
)

(X,X) = 0
and polarization of the multilinear symmetric expression over Tp(M) at

p ∈M , we obtain ∇̂K = 0.
Now we choose m = 1

4(r + 3). Denote Ejk (resp. E′
jk) the 2m× 2m

matrix which has (j, k) entry 1 (resp.
√
−1) and all other entries 0. Then

with respect to the metric h(X,Y ) = 2
m tr (XY ) of SU∗(2m)/Sp(m) at
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I2m, we can choose an orthonormal basis as follows:
(7.40)


































































































































































ẽ1 = 1√
4(m−1)

[

m(E2m,2m + Emm)−
2m
∑

j=1

Ejj

]

;

ṽj =
√

m
8

(

Emj + Ejm + E2m,m+j + Em+j,2m

)

, 1 ≤ j ≤ m− 1,

x̃j =
√

m
8

(

E′
mj − E′

jm − E′
2m,m+j + E′

m+j,2m

)

, 1 ≤ j ≤ m− 1,

ỹj =
√

m
8

(

Em,m+j − Ej,2m + Em+j,m − E2m,j

)

, 1 ≤ j ≤ m− 1,

z̃j =
√

m
8

(

E′
2m,j − E′

j,2m − E′
m+j,m + E′

m,m+j

)

, 1 ≤ j ≤ m− 1;

w̃jℓ =
√

m
8

(

Ejℓ + Eℓj + Em+ℓ,m+j + Em+j,m+ℓ

)

, 1 ≤ j < ℓ ≤ m− 1,

w̃′
jℓ =

√

m
8

(

E′
jℓ − E′

ℓj + E′
m+ℓ,m+j − E′

m+j,m+ℓ

)

, 1 ≤ j < ℓ ≤ m− 1,

w̃′′
jℓ =

√

m
8

(

Ej,m+ℓ − Eℓ,m+j − Em+j,ℓ + Em+ℓ,j

)

, 1 ≤ j < ℓ ≤ m− 1,

w̃′′′
jℓ =

√

m
8

(

E′
j,m+ℓ − E′

ℓ,m+j + E′
m+j,ℓ − E′

m+ℓ,j

)

, 1 ≤ j < ℓ ≤ m− 1;

w̃j =
√

m
4j(j+1)

[

j
∑

ℓ=1

Eℓℓ +

m+j
∑

ℓ=m+1

Eℓℓ

− j(Ej+1,j+1 + Em+j+1.m+j+1)
]

, 1 ≤ j ≤ m− 2.

By using the formula K(X,Y ) = XY + Y X − 1
m tr (XY )I2m and

EjkEpq = Ejqδkp, E′
jkEpq = EjkE

′
pq = E′

jqδkp, E′
jkE

′
pq = −Ejqδkp,

we can show that, for λ1 =
m−2√
m−1

L(X,Y ) = K(X,Y )− 1
2λ1h(X,Y )ẽ1

satisfies

(7.41)



















L(x̃j , x̃ℓ) = L(ỹj, ỹℓ) = L(z̃j , z̃ℓ) = L(ṽj , ṽℓ),

L(ṽj , x̃ℓ) = −L(x̃j, ṽℓ) = −L(ỹj, z̃ℓ) = L(ỹℓ, z̃j),

L(ṽj , ỹℓ) = −L(ỹj, ṽℓ) = −L(z̃j, x̃ℓ) = L(x̃j , z̃ℓ),

L(ṽj , z̃ℓ) = −L(z̃j , ṽℓ) = −L(x̃j, ỹℓ) = L(x̃ℓ, ỹj)

for all 1 ≤ j, ℓ ≤ m− 1. If we define






















L̃1 = L(ṽ1, ṽ1)− L(ṽ2, ṽ2) = K(ṽ1, ṽ1)−K(ṽ2, ṽ2),

L̃2 = L(ṽ1, ṽ1) + L(ṽ2, ṽ2)− 2L(ṽ3, ṽ3)

= K(ṽ1, ṽ1) +K(ṽ2, ṽ2)− 2K(ṽ3, ṽ3), . . .

L̃m−2 = K(ṽ1, ṽ1) + · · ·+K(ṽm−2, ṽm−2)− (m− 2)K(ṽm−1, ṽm−1),

then by the definition in (7.40) we have

(7.42) w̃j = L̃j/‖L̃j‖, 1 ≤ j ≤ m− 2.
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Further direct calculations also show that

(7.43)



































w̃jℓ =
K(ṽj ,ṽℓ)

‖K(ṽj ,ṽℓ)‖ =
L(ṽj ,ṽℓ)

‖L(ṽj ,ṽℓ)‖ ,

w̃′
jℓ =

K(ṽj ,x̃ℓ)
‖K(ṽj ,x̃ℓ)‖ =

L(ṽj ,x̃ℓ)
‖L(ṽj ,x̃ℓ)‖ ,

w̃′′
jℓ =

K(ṽj ,ỹℓ)
‖K(ṽj ,ỹℓ)‖ =

L(ṽj ,ỹℓ)
‖L(ṽj ,ỹℓ)‖ ,

w̃′′′
jℓ =

K(ṽj ,z̃ℓ)
‖K(ṽj ,z̃ℓ)‖ =

L(ṽj ,z̃ℓ)
‖L(ṽj ,z̃ℓ)‖ .

, 1 ≤ j < ℓ ≤ m− 1,

Moreover, we have the following calculation for the difference tensor
at I2m:
(7.44)














Kẽ1 ẽ1 =
m−2√
m−1

ẽ1; Kẽ1w̃j = − 1√
m−1

w̃j, 1 ≤ j ≤ m− 2;

Kẽ1u = m−2
2
√
m−1

u, for u = ṽj, x̃j, ỹj, z̃j , 1 ≤ j ≤ m− 1;

Kẽ1w = − 1√
m−1

w, for w = w̃jℓ, w̃
′
jℓ, w̃

′′
jℓ, w̃

′′′
jℓ, 1 ≤ j < ℓ ≤ m− 1.

Since SU∗(2m)/Sp(m) → S∗(m) = R2m2−m is of parallel cubic form,
if we identify

{

ẽ1; ṽj , x̃j , ỹj , z̃j |1≤j≤m−1; w̃jℓ, w̃
′
jℓ, w̃

′′
jℓ, w̃

′′′
jℓ |1≤j<ℓ≤m−1; w̃j |1≤j≤m−2

}

in (7.40) with the basis (7.37) ofMn, then due to the facts (7.42), (7.43),
and (7.44), we see that the difference tensor of SU∗(2m)/Sp(m) →
R2m2−m is exactly the same as that of Mn → Rn+1 corresponding to
λ1 =

m−2√
m−1

, or equivalently λ = −1.

Now for the locally strongly convex Cr affine hypersphereMn → Rn+1

with p = 3 and n = (r − 1)(r + 5)/8 = (r + 1)(r + 3)/8 − 1, we
see from the above discussion that, by applying a homothetic transfor-
mation to make λ = −1, if necessary, M (r+1)(r+3)/8−1 and the stan-
dard embedding SU∗( r+3

2 )/Sp( r+3
4 ) →֒ R(r+1)(r+3)/8 has affine metric

h and cubic form C with identically the same affine invariant proper-
ties. According to Cartan’s lemma and the fundamental uniqueness
theorem of affine differential geometry, we obtain that M (r+1)(r+3)/8−1

and SU∗( r+3
2 )/Sp( r+3

4 ) are locally affine equivalent.
We have completed the proof of Theorem 7.1. q.e.d.

8. Hypersurfaces in Rn+1 with p = 7

In this section, we will prove the following theorem.

Theorem 8.1. Let Mn be a locally strongly convex affine hypersurface
of Rn+1 which has parallel and non-vanishing cubic form. If dimD2 =
r−1 = 8k0 ≥ 8 and p that is determined by the previous section satisfies
p = 7, then k0 = (r − 1)/8 ≤ 2.



AFFINE HYPERSURFACES WITH PARALLEL CUBIC FORM 285

Moreover, if k0 = 1, thenMn can be decomposed as the Calabi product
of two hyperbolic affine hyperspheres both with parallel cubic form. If
k0 = 2, then n ≥ 26 and either

(i) n = 27, Mn is the Calabi product of a hyperbolic affine hypersphere
with parallel cubic form and a point, or

(ii) n ≥ 28, Mn is the Calabi product of two hyperbolic affine hyper-
spheres both with parallel cubic form, or

(iii) n = 26, up to a homothetic transformation, Mn is affine equiv-
alent to an open part of the standard embedding E6(−26)/F4 →֒ R27.

Similar to the previous sections, we first prove the following

Lemma 8.1. Suppose dimD2 = r − 1 = 8k0 and p = 7. Then from
the decomposition (4.1), if k0 ≥ 2, we can choose orthonormal basis
{xj}1≤j≤7 for Vv1(0) and orthonormal basis {yj}1≤j≤7 for Vv2(0) so that
by identifying ej(v1) = xj and ej(v2) = yj, we have the following rela-
tions:

(8.1)
L(ej(v1), eℓ(v2)) = −L(v1, ejeℓ(v2))

= −L(eℓej(v1), v2), 1 ≤ j, ℓ ≤ 7,

where ejeℓ denotes a product defined by the following multiplication ta-
ble.

. e1 e2 e3 e4 e5 e6 e7

e1 −id e3 −e2 e5 −e4 −e7 e6
e2 −e3 −id e1 e6 e7 −e4 −e5
e3 e2 −e1 −id e7 −e6 e5 −e4
e4 −e5 −e6 −e7 −id e1 e2 e3
e5 e4 −e7 e6 −e1 −id −e3 e2
e6 e7 e4 −e5 −e2 e3 −id −e1
e7 −e6 e5 e4 −e3 −e2 e1 −id

More precisely, (8.1) can be equivalently written out in the following
form:

(8.11)
L(v1, v2) = L(x1, y1) = L(x2, y2) = L(x3, y3) = L(x4, y4)

= L(x5, y5) = L(x6, y6) = L(x7, y7),

(8.12)
L(x1, v2) = −L(v1, y1) = L(x2, y3) = −L(x3, y2) = L(x4, y5)

= −L(x5, y4) = −L(x6, y7) = L(x7, y6),

(8.13)
L(x2, v2) = −L(v1, y2) = −L(x1, y3) = L(x3, y1) = L(x4, y6)

= L(x5, y7) = −L(x6, y4) = −L(x7, y5),

(8.14)
L(x3, v2) = −L(v1, y3) = L(x1, y2) = −L(x2, y1) = L(x4, y7)

= −L(x5, y6) = L(x6, y5) = −L(x7, y4),
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(8.15)
L(x4, v2) = −L(v1, y4) = −L(x1, y5) = −L(x2, y6)

= −L(x3, y7) = L(x5, y1) = L(x6, y2) = L(x7, y3),

(8.16)
L(x5, v2) = −L(v1, y5) = L(x1, y4) = −L(x2, y7) = L(x3, y6)

= −L(x4, y1) = −L(x6, y3) = L(x7, y2),

(8.17)
L(x6, v2) = −L(v1, y6) = L(x1, y7) = L(x2, y4) = −L(x3, y5)

= −L(x4, y2) = L(x5, y3) = −L(x7, y1),

(8.18)
L(x7, v2) = −L(v1, y7) = −L(x1, y6) = L(x2, y5) = L(x3, y4)

= −L(x4, y3) = −L(x5, y2) = L(x6, y1).

Proof. Let k0 ≥ 2 and that we have the decomposition (4.1) with
dimVvj (0) = 7, 1 ≤ j ≤ k0.

Denote Vj = {vj} ⊕ Vvj (0). First we choose arbitrary orthonormal
vectors x1, x2 ∈ Vv1(0). Next we can use Lemma 4.2 and Lemma 4.3
to consecutively find unit vectors y1, y2 ∈ Vv2(0), x3 ∈ Vv1(0), and
y3 ∈ Vv2(0) satisfying the following:

(8.2) L(y1, v1) = −L(x1, v2), L(y2, v1) = −L(x2, v2),

(8.3) L(y1, x2) = −L(v2, x3), L(y3, v1) = −L(x3, v2).
Now we pick an arbitrary unit vector x4 ∈ Vv1(0) so that it is orthog-

onal to all x1, x2, and x3. Then we can take unit vectors x5, x6, x7 ∈
Vv1(0) and unit vectors y4, y5, y6, y7 ∈ Vv2(0) inductively such that the
following hold:

(8.4) L(x4, y1) = −L(y4, x1) = −L(v2, x5) = L(v1, y5),

(8.5)
L(x4, y2) = −L(v2, x6) = L(v1, y6),

L(x4, y3) = −L(v2, x7) = L(v1, y7).

As before we first have

Claim 8.1. Based on the above definition, x3 ⊥ x1, x3 ⊥ x2; y1, y2, y3
are mutually orthonormal.

In fact, by (8.2) and (8.3) we have the computation

τh(x3, x1) = h(L(v2, x3), L(v2, x1)) = h(−L(y1, x2), L(v1, y1))
= −h(x2, P (y1)v1) = −τh(x2, v1) = 0,

hence we get x3 ⊥ x1. Similarly, we have x3 ⊥ x2 and y2 ⊥ y1 ⊥ y3 ⊥ y2.
Next from (8.2) and (8.3), using Claim 8.1 and an argument similar

to Claim 7.2, we get the relation

(8.6) L(x1, y1) = L(x2, y2) = L(x3, y3) = L(v1, v2).
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Now we exploit the condition that L(y1, x2) = −L(v2, x3). The equa-
tion (8.6), the Cauchy Schwartz inequality, and the isotropy conditions
imply the following relations:

(8.7) L(y1, x3) = −L(x1, y3) = L(x2, v2),

(8.8) L(x1, y2) = −L(y1, x2) = L(v2, x3),

(8.9) L(x2, y3) = −L(y2, x3) = −L(y1, v1).
Firstly, from (8.4) and the computation

τh(y4, y1) = h(L(y4, x1), L(y1, x1)) = h(−L(x4, y1), L(y1, x1))
= −h(x4, P (y1)x1) = −τh(x4, x1) = 0,

we have the following

Claim 8.2. y4 ⊥ y1.
Moreover, we have

Claim 8.3. The vectors {x4, x5, x6, x7} are mutually orthogonal. A
similar conclusion holds for the vectors {y4, y5, y6, y7}.

In fact, from (8.4) we get

τh(x5, x4) = h(L(x5, y1), L(x4, y1)) = h(L(x5, y1),−L(v2, x5))
= −h(y1, P (x5)v2) = −τh(y1, v2) = 0,

which shows that x5 ⊥ x4. Similarly, we can prove x6 ⊥ {x4, x5} and
x7 ⊥ {x4, x5, x6}.

From the above conclusions, we can use (8.4) again to see that

τh(y5, y4) = h(L(y5, v1), L(y4, v1)) = h(−L(x5, v2),−L(x4, v2))
= h(x5, P (v2)x4) = τh(x5, x4) = 0.

This proves y5 ⊥ y4. Similarly, we can prove y6 ⊥ {y4, y5} and y7 ⊥
{y4, y5, y6}.

As direct consequences of Claim 8.2 and Claim 8.3, we can use the
Cauchy-Schwarz inequality, L(x4, y1) = −L(y4, x1), and the isotropy
condition to obtain

L(x4, y4) = L(x1, y1) = L(v1, v2),

which implies

(8.10) L(v1, y4) = −L(v2, x4).
Furthermore, the equations in (8.4)–(8.6), the Cauchy-Schwarz in-

equality, and the isotropy condition yield the following relations:

(8.11) L(x4, y4) = L(x5, y5) = L(x6, y6) = L(x7, y7) = L(v1, v2),

(8.12)
L(v1, y5) = −L(v2, x5), L(v1, y6) = −L(v2, x6),
L(v1, y7) = −L(v2, x7),
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(8.13)
L(x4, y5) = −L(y4, x5), L(x4, y6) = −L(y4, x6),
L(x4, y7) = −L(y4, x7),

(8.14)
L(x5, y6) = −L(y5, x6), L(x5, y7) = −L(y5, x7),
L(x6, y7) = −L(y6, x7).

Moreover, using the equations in (8.2)–(8.6) and (8.7)–(8.10), similar
arguments to those above will give the following orthonormality of the
vectors:

{x1, x2, x3} ⊥ {x4, x5, x6, x7}, {y1, y2, y3} ⊥ {y4, y5, y6, y7}.
In conclusion, we have shown that {xj}1≤j≤7 is an orthonormal basis

of Vv1(0) and {yj}1≤j≤7 is an orthonormal basis of Vv2(0). Then us-
ing (8.6) and (8.11), the Cauchy-Schwarz inequality, and the isotropy
conditions, as before we further get the relations

(8.15) L(y4, x2) = −L(x4, y2), L(y4, x3) = −L(x4, y3),

(8.16)
L(y5, x1) = −L(x5, y1), L(y5, x2) = −L(x5, y2),
L(y5, x3) = −L(x5, y3),

(8.17)
L(y6, x1) = −L(x6, y1), L(y6, x2) = −L(x6, y2),
L(y6, x3) = −L(x6, y3),

(8.18)
L(y7, x1) = −L(x7, y1), L(y7, x2) = −L(x7, y2),
L(y7, x3) = −L(x7, y3).

Finally, based on the above relations from (8.2) to (8.18), using the
Cauchy-Schwarz inequality and the isotropy conditions, we can establish
the following relations:

(8.19)
L(x4, y5) = −L(v1, y1), L(x4, y6) = −L(v1, y2),
L(x4, y7) = −L(v1, y3),

(8.20)
L(x5, y1) = −L(v1, y4), L(x5, y2) = L(v1, y7),

L(x5, y3) = −L(v1, y6),

(8.21)
L(x5, y6) = L(v1, y3), L(x5, y7) = −L(v1, y2),
L(x6, y1) = −L(v1, y7),

(8.22)
L(x6, y2) = −L(v1, y4), L(x6, y3) = L(v1, y5),

L(x6, y7) = L(v1, y1),

(8.23)
L(x7, y1) = L(v1, y6), L(x7, y2) = −L(v1, y5),
L(x7, y3) = −L(v1, y4).
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For example, from the computation

h(L(x4, y5), L(v1, y1))
(8.2)
== −h(L(x4, y5), L(v2, x1))

(2.10)
== h(L(x4, v2), L(y5, x1))

(8.16)
== −h(L(x4, v2), L(x5, y1))

(2.10)
== h(L(x4, y1), L(x5, v2))

(8.4)
== h(L(x4, y1),−L(x4, y1)) = −τ

and the Cauchy-Schwarz inequality, we obtain L(x4, y5) = −L(v1, y1).
In order to provide another example, from the computation

h(L(x6, y1), L(v1, y7))
(8.5)
== h(L(x6, y1), L(x4, y3))

(8.17)
== −h(L(x1, y6), L(x4, y3))

(2.10)
== h(L(x1, y3), L(x4, y6))

(8.7)
== −h(L(x2, v2), L(x4, y6))

(8.13)
== h(L(x2, v2), L(y4, x6))

(2.10)
== −h(L(x2, y4), L(v2, x6))

(8.5),(8.15)
======−h(−L(x4, y2),−L(x4, y2)) = −τ

and the Cauchy-Schwarz inequality, we obtain L(x6, y1) = −L(v1, y7).
Finally, from the computation

h(L(x5, y6), L(v1, y3))
(8.3)
== −h(L(x5, y6), L(v2, x3))

(2.10)
== h(L(x5, v2), L(y6, x3))

(8.4)
== −h(L(x4, y1), L(y6, x3))

(2.10)
== h(L(x4, y6), L(y1, x3))

(8.7)
== h(L(x4, y6), L(x2, v2))

(8.2)
== −h(L(x4, y6), L(y2, v1))

(2.10)
== h(L(x4, y2), L(v1, y6))

(8.5)
== τ

and the Cauchy-Schwarz inequality, we immediately get L(x5, y6) =
L(v1, y3).

Following the above procedure, we can prove all of the relations in
(8.19)–(8.23), and thus we complete the proof of Lemma 8.1. q.e.d.

Lemma 8.2. Suppose dimD2 = r − 1 ≥ 8 and p = 7. Then for the
decomposition (4.1), if k0 ≥ 2, it must be the case that k0 = 2.
Proof. Suppose on the contrary that k0 ≥ 3. To choose a basis for
Vv3(0), we follow the same ideas as in Lemma 8.1 for Vv1(0) and Vv2(0).
Let x1, x2, x3 be given as in Lemma 8.1; then we have unique unit vectors
z1, z2 ∈ Vv3(0) and x̃3 ∈ Vv1(0) with the relations

(8.24)
L(z1, v1) = −L(x1, v3), L(z2, v1) = −L(x2, v3),
L(z1, x2) = −L(v3, x̃3).

Now we pick an arbitrary unit vector x4 ∈ Vv1(0) so that it is orthog-
onal to x1, x2, x3 and x̃3. Then we can choose unit vectors x̃5, x̃6, x̃7 ∈
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Vv1(0) and z3, z4, z5, z6, z7 ∈ Vv3(0) inductively by the following condi-
tions:

(8.25)
L(z3, v1) = −L(x̃3, v3),
L(x4, z1) = −L(z4, x1) = −L(v3, x̃5) = L(v1, z5),

(8.26)
L(x4, z2) = −L(v3, x̃6) = L(v1, z6),

L(x4, z3) = −L(v3, x̃7) = L(v1, z7).

Then, similar to the proof of Lemma 8.1, it can be shown that
{z1, z2, z3, z4, z5, z6, z7} forms an orthonormal basis of Vv3(0).

On the other hand, while

{y1, y2, y3, y4, y5, y6, y7} and {z1, z2, z3, z4, z5, z6, z7}
are orthonormal bases of Vv2(0) and Vv3(0), respectively, we have two
orthonormal bases for Vv1(0), namely,

{x1, x2, x3, x4, x5, x6, x7} and {x1, x2, x̃3, x4, x̃5, x̃6, x̃7}.
Obviously, the bases x3, x5, x6, x7 and x̃3, x̃5, x̃6, x̃7 are related by a ma-
trix belonging to SO(4). Let us write









x3
x5
x6
x7









=









b11 b12 b13 b14
b21 b22 b23 b24
b31 b32 b33 b34
b41 b42 b43 b44

















x̃3
x̃5
x̃6
x̃7









:= B









x̃3
x̃5
x̃6
x̃7









,

where B ∈ SO(4).
Now, having all the relations from (8.2) to (8.26), a similar method to

that in the proof of Lemma 8.1 will give the following further relations:

(8.27)
L(x1, v3) = −L(v1, z1) = L(x2, z3) = −L(x̃3, z2) = L(x4, z5)

= −L(x̃5, z4) = −L(x̃6, z7) = L(x̃7, z6),

(8.28)
L(x2, v3) = −L(v1, z2) = −L(x1, z3) = L(x̃3, z1) = L(x4, z6)

= L(x̃5, z7) = −L(x̃6, z4) = −L(x̃7, z5),

(8.29)
L(x̃3, v3) = −L(v1, z3) = L(x1, z2) = −L(x2, z1) = L(x4, z7)

= −L(x̃5, z6) = L(x̃6, z5) = −L(x̃7, z4),

(8.30)
L(x4, v3) = −L(v1, z4) = −L(x1, z5) = −L(x2, z6)

= −L(x̃3, z7) = L(x̃5, z1) = L(x̃6, z2) = L(x̃7, z3),

(8.31)
L(x̃5, v3) = −L(v1, z5) = L(x1, z4) = −L(x2, z7) = L(x̃3, z6)

= −L(x4, z1) = −L(x̃6, z3) = L(x̃7, z2),

(8.32)
L(x̃6, v3) = −L(v1, z6) = L(x1, z7) = L(x2, z4) = −L(x̃3, z5)

= −L(x4, z2) = L(x̃5, z3) = −L(x̃7, z1),
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(8.33)
L(x̃7, v3) = −L(v1, z7) = −L(x1, z6) = L(x2, z5) = L(x̃3, z4)

= −L(x4, z3) = −L(x̃5, z2) = L(x̃6, z1).

To see relations between the above given bases of Vv2(0) and Vv3(0),
we first have

Claim 8.4. L(v2, v3) = L(y1, z1) = L(y2, z2) = L(y3, z3) = L(y4, z4) =
L(y5, z5) = L(y6, z6) = L(y7, z7).

In fact, by Lemma 4.4 and the already established relations, we have

τL(y1, z1) = K(L(y1, x2), L(z1, x2))

(8.2),(8.8),(8.29)
=========K(L(v1, y3), L(v1, z3)) = τL(y3, z3),

τL(y2, z2) = K(L(v1, y2), L(v1, z2))

(8.2),(8.7),(8.28)
=========K(L(x1, y3), L(x1, z3)) = τL(y3, z3),

τL(v2, v3) = K(L(v2, x1), L(v3, x1))

(8.2),(8.9),(8.27)
=========K(L(x2, y3), L(x2, z3)) = τL(y3, z3),

τL(y4, z4) = K(L(v1, y4), L(v1, z4))

(8.17),(8.22),(8.30)
===========K(L(x2, y6), L(x2, z6)) = τL(y6, z6),

τL(y6, z6) = K(L(v1, y6), L(v1, z6))

(8.5),(8.26)
======K(L(x4, y2), L(x4, z2)) = τL(y2, z2),

τL(y5, z5) = K(L(v1, y5), L(v1, z5))

(8.4),(8.25)
======K(L(x4, y1), L(x4, z1)) = τL(y1, z1),

τL(y7, z7) = K(L(v1, y7), L(v1, z7))

(8.5),(8.26)
======K(L(x4, y3), L(x4, z3)) = τL(y3, z3).

Then Claim 8.4 immediately follows.
As direct consequences of Claim 8.4, we have

Claim 8.5. bkℓ = δkℓ, i.e., x̃3 = x3, x̃5 = x5, x̃6 = x6, x̃7 = x7.
In fact, by using Lemma 4.4 we get the following orthogonal decom-

position:

τL(y4, z4) = K(L(v1, y4), L(v1, z4))
(8.23)
== K(−L(x7, y3), L(v1, z4))

(8.30)
===−b41K(L(x̃3, y3), L(x̃3, z7)) + b42K(L(x̃5, y3), L(x̃5, z1))

+ b43K(L(x̃6, y3), L(x̃6, z2)) + b44K(L(x̃7, y3), L(x̃7, z3))

= −b41τL(y3, z7) + b42τL(y3, z1) + b43τL(y3, z2) + b44τL(y3, z3);
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τL(y4, z4) = K(L(v1, y4), L(v1, z4))
(8.22)
== K(−L(x6, y2), L(v1, z4))

(8.30)
===−b31K(L(x̃3, y2), L(x̃3, z7)) + b32K(L(x̃5, y2), L(x̃5, z1))

+ b33K(L(x̃6, y2), L(x̃6, z2)) + b34K(L(x̃7, y2), L(x̃7, z3))

= −b31τL(y2, z7) + b32τL(y2, z1) + b33τL(y2, z2) + b34τL(y2, z3);

τL(y4, z4) = K(L(v1, y4), L(v1, z4))
(8.20)
== K(−L(x5, y1), L(v1, z4))

(8.30)
===−b21K(L(x̃3, y1), L(x̃3, z7)) + b22K(L(x̃5, y1), L(x̃5, z1))

+ b23K(L(x̃6, y1), L(x̃6, z2)) + b24K(L(x̃7, y1), L(x̃7, z3))

= −b21τL(y1, z7) + b22τL(y1, z1) + b23τL(y1, z2) + b24τL(y1, z3);

τL(y4, z4) = K(L(v1, y4), L(v1, z4))
(8.18),(8.23)
====== K(L(x3, y7), L(v1, z4))

(8.30)
=== b11K(L(x̃3, y7), L(x̃3, z7))− b12K(L(x̃5, y7), L(x̃5, z1))

− b13K(L(x̃6, y7), L(x̃6, z2))− b14K(L(x̃4, y4), L(x̃7, z3))

= b11τL(y4, z4)− b12τL(y7, z1)− b13τL(y7, z2)− b14τL(y7, z3).

Applying Claim 8.4, we then get the claim immediately.

Claim 8.6. For the above bases of Vv2(0) and Vv3(0), there hold the
following relations:

(8.34) L(z1, y2) = −L(v3, y3), L(y4, z1) = L(v2, z5),

(8.35) L(y4, z2) = L(v2, z6), L(y4, z3) = L(v2, z7),

(8.36) L(y4, z6) = −L(v2, z2), L(y4, z7) = −L(v2, z3),

(8.37) L(y6, z2) = −L(v2, z4) = L(y7, z3).

In fact, using Lemma 4.4 we see that (8.34) and (8.35) follow from
the following calculations:

τL(z1, y2) = K(L(v1, z1), L(v1, y2))

(8.2),(8.7),(8.27)
=========K(−L(v3, x1), L(x1, y3)) = −τL(v3, y3),

τL(y4, z1) = K(L(v1, y4), L(v1, z1))

(8.10),(8.27)
====== K(−L(v2, x4),−L(x4, z5)) = τL(v2, z5),

τL(y4, z2) = K(L(v1, y4), L(v1, z2))

(8.10),(8.28)
====== K(−L(v2, x4),−L(x4, z6)) = τL(v2, z6),

τL(y4, z3) = K(L(v1, y4), L(v1, z3))

(8.10),(8.29)
====== K(−L(v2, x4),−L(x4, z7)) = τL(v2, z7).
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Moreover, from Claim 8.4 we can get L(v3, y6) = −L(v2, z6) and
L(z4, y2) = −L(y4, z2). Then from the calculations

h(L(y4, z6), L(v2, z2)) = h(−L(z4, y6),−L(v3, y2))
(2.10))
== −h(L(z4, y2), L(v3, y6)) = −h(−L(y4, z2),−L(v2, z6))

(8.35)
== −h(L(y4, z2), L(y4, z2)) = −τ,

h(L(y4, z7), L(v2, z3))
(2.10)
== −h(L(y4, z3), L(v2, z7))

(8.35)
== −h(L(v2, z7), L(v2, z7)) = −τ

and the Cauchy-Schwarz inequality, we immediately get (8.36).
Similarly, by using Claim 8.4 we have the following equations:

h(L(y6, z2), L(v2, z4))
(2.10)
== −h(L(y6, z4), L(v2, z2))

= h(L(y4, z6), L(v2, z2))
(8.36)
== −τ,

h(L(y7, z3), L(v2, z4))
(2.10)
== −h(L(z4, y7), L(v2, z3))

(8.36)
== h(L(z4, y7), L(y4, z7)) = −τ.

Then the Cauchy-Schwarz inequality implies the relations in (8.37).

To complete the proof of Lemma 8.2, we notice that from (8.23) and
(8.18), we have

(8.38) K(L(v1, y6) + L(x1, y7), L(x2, v3)) = 0.

On the other hand, by using Lemma 4.4, we have the following results:

K(L(v1, y6), L(x2, v3))
(8.28)
===K(L(v1, y6),−L(v1, z2)) = −τL(y6, z2),

K(L(x1, y7), L(x2, v3))
(8.28)
===K(L(x1, y7),−L(x1, z3)) = −τL(y7, z3).

These together with (8.38) give that

L(y6, z2) + L(y7, z3) = 0.

Combining the above equation with (8.37), we obtain L(y6, z2) =
L(y7, z3) = 0, which contradicts the fact that h(L(y6, z2), L(y6, z2)) = τ .
This completes the proof of Lemma 8.2. q.e.d.

Proof of Theorem 8.1. If k0 = 1, then as in the previous theorems,
we know that Mn can be decomposed as the Calabi product of two
hyperbolic affine hyperspheres both with parallel cubic form. Hence
we are left to consider the case that k0 = 2, r = 8k0 + 1 = 17, and
dimD2 = 16.
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Let {v1, v2;xj , yj|1≤j≤7} be the orthonormal basis of D2 as determined
in Lemma 8.1, which satisfies the relations (8.11)–(8.18). Then we easily
see that the image of L is spanned by

{

L(v1, v1), L(v1, v2), L(v2, v2); L(v1, yj) |1≤j≤7

}

.

Noting that TrL = 8
[

L(v1, v1) + L(v2, v2)
]

, which is orthogonal to
the above ten vectors, and by using (2.6) and (2.8), obviously satisfies

(8.39)

h(TrL,TrL) = 128
[

h(L(v1, v1), L(v1, v1))

+ h(L(v1, v1), L(v2, v2))
]

= 32(n+1)(n−26)
(n−17)2

λ21.

Define L1 = L(v1, v1)− L(v2, v2); then direct calculation shows that

(8.40) h(L1, L1) = 4τ 6= 0.

We now easily see that the following nine vectors

(8.41) w0 =
1

2
√
τ
L1, w1 =

1√
τ
L(v1, v2); wj+1 =

1√
τ
L(v1, yj)|1≤j≤7

consist of orthonormal vectors in Im (L) ⊂ D3. Then we have the con-
clusion

n = 1 + dimD2 + dimD3 ≥ 1 + 16 + 9 = 26,

and from (8.39) we see that n = 26 if and only if TrL = 0.
Now, we separate the discussions into the following three cases:
(i) n = 27; (ii) n ≥ 28; (iii) n = 26.
For Case (i) and Case (ii), we will define a unit vector

t = n−17√
32(n+1)(n−26) λ1

TrL.

First for Case (i), the previous results show that
{

t; wj, 0 ≤ j ≤ 8
}

is an orthonormal basis of Im (L) = D3. By direct calculations with
application of Lemma 2.4, Lemma 4.4, and (8.11)–(8.18), we easily verify
the following

Lemma 8.3. For Case (i) and under the above notations, we deduce
that

(8.42)



































K(t, e1) = − 9
n−17λ1t,

K(t, t) = − 9
n−17λ1e1 +

n−44
2(n−17)

√

2(n+1)
n−26 λ1t,

K(t, u) =

√
2(n+1)(n−26)

4(n−17) λ1u,

K(t, w) =

√
2(n+1)(n−26)

2(n−17) λ1w,

where u ∈ D2 and w = wj , 0 ≤ j ≤ 8.
Denote T = αe1 + βt, T ∗ = −βe1 + αt, where

(8.43) α =
√

n−26
3(n−8) , β =

√

2(n+1)
3(n−8) .



AFFINE HYPERSURFACES WITH PARALLEL CUBIC FORM 295

Then for Case (i), we see that
{

T, T ∗; v1, v2;xj , yj | 1≤ j≤ 7; wℓ | 0≤ ℓ≤ 8

}

forms an orthornormal basis of Tx0
M . Moreover, by Lemma 8.3 we

easily obtain the following

Lemma 8.4. For Case (i) and under the above notations, we find that

(8.44) K(T, T ) = ν1T, K(T, u) = ν2u,

where ν1 and ν2 are defined by

(8.45)











ν1 =
(n−8)(n−53)
(n−17)(n−26)

√

n−26
3(n−8) λ1,

ν2 =
n−8
n−17

√

n−26
3(n−8) λ1,

and u ∈
{

T ∗; v1, v2;xj , yj | 1≤ j≤ 7; wℓ | 0≤ ℓ≤ 8

}

.
From (8.45) and noting that r = 17, n = 27, we can verify the relation

(8.46) ν1ν2 − ν22 = − (r+1)(2n−r+1)
4(n−r)2

λ21 = λ.

Then, based on the conclusions of Lemma 8.4, we can apply theorem 4
of [HLV] to conclude that in Case (i), M27 is decomposed as the Calabi
product of a hyperbolic affine hypersphere with parallel cubic form and
a point.

For Case (ii), we see that
{

t; wj , 0 ≤ j ≤ 8
}

is still an orthonormal
basis of Im (L). But now Im (L)  D3. Denote ñ = n − 27 ≥ 1 and
choose w′

1, . . . , w
′
ñ in the orthogonal complement of Im (L) in D3 such

that
{t; wj

∣

∣

0≤j≤8; w
′
j | 1≤j≤ñ}

is an orthonormal basis of D3. Then, besides (8.42), we further use (2)
of Lemma 2.5 to get

(8.47) K(t, w′
j) = − 9

n−17

√

2(n+1)
n−26 λ1w

′
j , 1 ≤ j ≤ ñ.

Now we define T and T ∗ to be the same as in Case (i). Similar to
Lemma 8.4, we have the following

Lemma 8.5. For Case (ii), we have that

(8.48) K(T, T ) = ν1T, K(T, u) = ν2u, K(T,w′
j) = ν3w

′
j , 1 ≤ j ≤ ñ,

where ν1, ν2, and ν3 are defined by (8.45) and

(8.49) ν3 = − 9
n−17

√

3(n−8)
n−26 λ1,

and
u ∈ {T ∗; v1, v2; xj , yj |1≤j≤7; wj |0≤j≤8}.

It is easily seen that ν2 6= ν3, 2ν2 6= ν1 6= 2ν3, and

(8.50) ν1 = ν2 + ν3, ν2ν3 = − (r+1)(2n−r+1)
4(n−r)2

λ21 = λ.
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Thus, based on the conclusions of Lemma 8.5, we can apply theorem 3
of [HLV] to conclude that in Case (ii), Mn is decomposed as the Calabi
product of two hyperbolic affine hyperspheres both with parallel cubic
form.

Finally, for Case (iii), we have TrL = 0 and thus

D3 =
{

w0, w1, w2, w3, w4, w5, w6, w7, w8

}

.

It follows that

(8.51)
{

e1; v1, v2; xj , yj | 1≤ j≤ 7; wℓ | 0≤ ℓ≤ 8

}

is an orthonormal basis of Tx0
M . Now, applying Lemma 2.4, Lemma

4.4, (8.11)–(8.18), we can calculate all components of the difference ten-
sor with respect to the basis (8.51).

To complete the proof of Theorem 8.1 for this case, we will first review
the definitions of the exceptional non-compact Lie groups E6(−26) and
the compact Lie group F4. For references, among many others, we refer
to Baez [Ba] and Yokota [Y]. Then we will recall an explicit embedding
of E6(−26)/F4 into R

27, which was recently discovered by Birembaux and
Djoric [BD], and we will call it the standard embedding hereafter.

Let O be the octonions, i.e., the division Cayley algebra over the field
R of real numbers, which is an 8-dimensional R-vector space with ba-
sis {e0 = 1, e1, e2, e3, e4, e5, e6, e7}, and define a multiplication between
them, with e0 = 1 being the unit, as in the following table.

. e1 e2 e3 e4 e5 e6 e7

e1 −1 e3 −e2 e5 −e4 −e7 e6
e2 −e3 −1 e1 e6 e7 −e4 −e5
e3 e2 −e1 −1 e7 −e6 e5 −e4
e4 −e5 −e6 −e7 −1 e1 e2 e3
e5 e4 −e7 e6 −e1 −1 −e3 e2
e6 e7 e4 −e5 −e2 e3 −1 −e1
e7 −e6 e5 e4 −e3 −e2 e1 −1

We note that here we choose the same basis as in Wood [W] (see also
[DV3]). It is interesting to point out that the above table is closely
related to the one that appears in Lemma 8.1. We also note that to get
the basis in Baez ([Ba], p. 150) or in Yokota [Y] (the latter is implicitly
used in [BD]), we should have the permutation as

e1e2e3e4e5e6e7 → e6e1e5e7e2(−e3)e4|Baez,

e1e2e3e4e5e6e7 → e1e2e3e4e5(−e6)e7|Yokota.
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In O, the conjugate x̄, the real part R(x), an inner product (x, y),
and the length |x| are defined respectively by

7
∑

j=0

ajej = a0e0 −
7
∑

j=1

ajej , R
(

7
∑

i=0

ajej

)

= a0,

(

7
∑

j=0

ajej ,
7
∑

j=0

bjej

)

=
7
∑

j=0

ajbj = R(xȳ), |x| =
√

(x, x) =
√
xx̄,

where x =
∑7

j=0 ajej , y =
∑7

j=0 bjej , and aj , bj ∈ R. It is easily seen
that xy = ȳx̄ for x, y ∈ O.

Let M3(O) be the vector space of all 3 × 3 matrices with entries in
O and y3(O) be the subset of all Hermitian matrices with entries in O:

y3(O) = {X ∈ M3(O) |X∗ = X},
where X∗ = tX̄ denotes the conjugate transpose of X. Any element
X ∈ y3(O) is of the form

X = X(ξ, η) =





ξ1 η3 η̄2
η̄3 ξ2 η1
η2 η̄1 ξ3



 , ξi ∈ R, ηi ∈ O.

By identifying X = X(ξ, η) ∈ y3(O) with (ξ1, ξ2, ξ3, η1, η2, η3) ∈ R27, we
see that y3(O) ≃ R27 is a 27-dimensional R-vector space. In y3(O), the
multiplication X ◦ Y , called the Jordan multiplication, is defined by

X ◦ Y = 1
2(XY + Y X).

y3(O) equipped with the product ◦ is a real Jordan algebra. In y3(O),
we also define the trace tr(X) and a symmetric inner product (X,Y )
respectively by

tr(X) = ξ1 + ξ2 + ξ3; (X,Y ) = tr(X ◦ Y ).

Moreover, in y3(O) there is a symmetric cross product X × Y , called
the Freudenthal multiplication, defined by

X × Y = 1
2

[

2X ◦ Y − tr(X)Y − tr(Y )X + (tr(X)tr(Y )− tr(X ◦ Y ))I
]

(where I is the 3×3 unit matrix) and a totally symmetric trilinear form
(X,Y,Z) by

(X,Y,Z) = (X × Y,Z) = (X,Y × Z).

Despite noncommutativity and nonassociativity, the determinant of
a matrix in y3(O) can be well defined by:

detX = 1
3(X,X,X).

For X = X(ξ, η) ∈ y3(O), noting that X ◦X = X2, X ◦X ◦X = X3,
and

R(η1(η2η3)) = R(η2(η3η1)) = R(η3(η1η2)) (= R(η1η2η3)),
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we have the calculation

(8.52)
detX = 1

3tr(X
3)− 1

2tr(X) tr(X2) + 1
6(tr(X))3

= ξ1ξ2ξ3 − ξ1η1η̄1 − ξ2η2η̄2 − ξ3η3η̄3 + 2R(η1η2η3).

This shows that the determinant is invariant under all automorphisms
of y3(O). However, as stated in Baez ([Ba], p. 182) and Yokota ([Y],
section 3.15), the determinant is invariant under an even bigger group
of linear transformations, which is a 78-dimensional non-compact real
form of the exceptional Lie group E6. More precisely, the group of
determinant-preserving linear transformations of y3(O) turns out to be
a non-compact real form of E6. This real form is sometimes called
E6(−26), because its Killing form has signature −26. Hence we have

E6(−26) = {α ∈ IsoR(y3(O)) | det(αX) = det(X)},
where IsoR(y3(O)) denotes all R-linear isomorphisms of y3(O).

Recall that F4 denotes the full automorphism group of the Jordan
algebra y3(O):

F4 = {α ∈ IsoR(y3(O)) |α(X ◦ Y ) = αX ◦ αY }.
Using lemma 2.2.4 of Yokota [Y], we conclude

F4 = {α ∈ IsoR(y3(O)) | det(αX) = det(X), αI = I}
= {α ∈ IsoR(y3(O)) | det(αX) = det(X), (αX,αY ) = (X,Y )}
= {α ∈ E6(−26) |αI = I}.

Hence, we get the inclusion F4 → E6(−26) and that, within E6(−26), F4

is the stabilizer of I in y3(O). Moreover, as a closed subgroup of the
orthogonal group

O(27) = O(y3(O)) = {α ∈ IsoR(y3(O)) | (αX,αY ) = (X,Y )},
F4 is a compact Lie group. This shows that F4 is a compact subgroup
of E6(−26). From Baez ([Ba], p. 196), it is in fact maximal. It follows
that the Killing form of the Lie algebra e6(−26) is negative definite on
its 52-dimensional maximal compact Lie algebra f4 and positive definite
on the complementary 26-dimensional subspace, giving a signature of
26− 52 = −26.

Hence, using Yokota ([Y], theorem 3.15.1), we have a non-compact

homogeneous space M̃26 = E6(−26)/F4 ≃ R26. To obtain TIM̃
26, we

now consider the decomposition of the Lie algebra e6(−26) of E6(−26).
From Baez ([Ba], p. 191, theorem 5), we have

f4 = der(O)⊕ {X ∈ M3(O) |X∗ = −X, tr(X) = 0},
where der(O) is the derivations of the octonions and is the Lie algebra
g2 of the 14-dimensional automorphism group G2 of the octonions. It
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follows that

(8.53)
TIM̃

26 ≃ {X ∈ M3(O) |X∗ = X, tr(X) = 0}
= {X ∈ y3(O) | tr(X) = 0}.

Then M̃26 is locally isomorphic to (will be identified hereafter) the con-
nected component A of I in

{X ∈ M3(O) |X∗ = X,det(X) = 1},

which can be naturally immersed into y3(O) ≃ R27.

To choose local coordinates of M̃26 = E6(−26)/F4 ≃ A around the
unit matrix, we look atX = X(ξ, η) ∈ y3(O) and choose 26 real numbers
u1, . . . , u26 such that

(8.54)















ξ1 = 1 +
√
2
2 u1 +

√
6
2 u2, ξ2 = 1 +

√
2
2 u1 −

√
6
2 u2, ξ3 = 1−

√
2u1,

η1 =
√
6
2

7
∑

j=0

u3+jej , η2 =
√
6
2

7
∑

j=0

u11+jej , η3 =
√
6
2

7
∑

j=0

u19+jej .

For u = (u1, . . . , u26) around the origin (0, 0, 0, . . . , 0), detX 6= 0 and

det−
1
3 (X)X ∈ A. Write g(u) = detX(ξ, η); then using (8.52) and the

octonion multiplication table, we have the computation
(8.55)

g(u) = (1 +
√
2
2 u1 +

√
6
2 u2)(1 +

√
2
2 u1 −

√
6
2 u2)(1 −

√
2u1)

− 3
2 (1 −

√
2u1)

26
∑

j=19

u2j − 3
2 (1 +

√
2
2 u1 +

√
6
2 u2)

10
∑

j=3

u2j

− 3
2 (1 +

√
2
2 u1 −

√
6
2 u2)

18
∑

j=11

u2j

+ 3
√
6

2

[

u19(u3u11 − u4u12 − u5u13 − u6u14 − u7u15 − u8u16 − u9u17 − u10u18)

− u20(u3u12 + u4u11 + u5u14 − u6u13 + u7u16 − u8u15 − u9u18 + u10u17)

− u21(u3u13 − u4u14 + u5u11 + u6u12 + u7u17 + u8u18 − u9u15 − u10u16)

− u22(u3u14 + u4u13 − u5u12 + u6u11 + u7u18 − u8u17 + u9u16 − u10u15)

− u23(u3u15 − u4u16 − u5u17 − u6u18 + u7u11 + u8u12 + u9u13 + u10u14)

− u24(u3u16 + u4u15 − u5u18 + u6u17 − u7u12 + u8u11 − u9u14 + u10u13)

− u25(u3u17 + u4u18 + u5u15 − u6u16 − u7u13 + u8u14 + u9u11 − u10u12)

− u26(u3u18 − u4u17 + u5u16 + u6u15 − u7u14 − u8u13 + u9u12 + u10u11)
]

.

Adopting the above notations and the local coordinates (here we
change slightly the coordinates introduced by Birembaux and Djoric
in order to obtain an orthonormal basis at u = 0), Birembaux and
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Djoric [BD] defined the hypersurface F : R26 → R27 by

(8.56)
y 7→ F (u) = g−1/3(u)

(

1 +
√
2
2 u1 +

√
6
2 u2, 1 +

√
2
2 u1 −

√
6
2 u2,

1−
√
2u1,

√
6
2 u3, . . . ,

√
6
2 u26

)

.

To calculate the affine invariants of the above hypersurface, which
obviously gives a local embedding of A into R27, we set the notation:
∂F
∂uj

= Fj ,
∂g
∂uj

= gj , and fj ∈ R27 is a point where only the j-th

coordinate is 1 and the others are 0. Then we have det(F,F1, . . . , F26) =

−327/2

212
g−9(u) 6= 0.

Let us take F (u) as a local transversal vector field of the hypersurface.
Then we decompose Fjk = DFjFk as

(8.57) Fjk(u) = h(Fj , Fk)(u)F (u) +∇FjFk(u),

where ∇ is the induced connection and h is the second fundamental
form (the affine metric).

From (8.56) we have the results:

(8.58)















F1 = −1
3g

−1(u)g1(u)F (u) +
√
2
2 g

−1/3(u)(f1 + f2 − 2f3),

F2 = −1
3g

−1(u)g2(u)F (u) +
√
6
2 g

−1/3(u)(f1 − f2),

Fj = −1
3g

−1(u)gj(u)F (u) +
√
6
2 g

−1/3(u)fj+1, j = 3, . . . , 26,

and

(8.59)
Fjk(u) =

(

2
9g

−2(u)gj(u)gk(u)− 1
3g

−1(u)gjk(u)
)

F (u)

− 1
3g

−1(u)
[

gj(u)Fk(u) + gk(u)Fj(u)
]

, j, k = 1, 2, . . . , 26.

Comparing with (8.57), we conclude that, for j, k = 1, . . . , 26,

(8.60) h(Fj , Fk)(u) =
2
9g

−2(u)gj(u)gk(u)− 1
3g

−1(u)gjk(u),

(8.61) ∇FjFk(u) = −1
3g

−1(u)
[

gj(u)Fk(u) + gk(u)Fj(u)
]

.

It then follows that

(8.62)

(∇h)(Fj , Fk, Fℓ)(u)

= ∂
∂uj

(h(Fk, Fℓ))(u)− h(∇FjFk, Fℓ)(u)− h(Fk,∇FjFℓ)(u)

= 1
9g

−2(u)
[

gj(u)gkℓ(u) + gk(u)gjℓ(u) + gℓ(u)gjk(u)
]

− 4
27g

−3(u)gj(u)gk(u)gℓ(u)− 1
3g

−1(u)gjkℓ(u).

Using (1.1), namely

(∇h)(Fj , Fk, Fℓ)(u) = −2h
(

K(Fk, Fℓ), Fj

)

(u),
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we have the computation

(8.63) K(Fk, Fℓ)(u) = −1
2

26
∑

j,m=1

(∇h)(Fj , Fk, Fℓ)(u)h
jm(u)Fm(u),

where we set hjk(u) = h(Fj , Fk)(u) and denote by (hjk(u)) the inverse
of the matrix (hjk(u)).

From (8.60), noting that gj(0) = 0, gjk(0) = −3δjk for all j, k, we
easily get

(8.64) hjk(0) = hjk(0) = δjk, ∀j, k,
that is, {Fj(0)}1≤j≤26 is an orthonormal basis of TIM̃ with respect to
the affine metric h.

Using (8.62), (8.63), and (8.64), we have the computation, at u = 0,

(8.65)

K(Fk, Fℓ)(0) = −1
2

26
∑

j=1

(∇h)(Fj , Fk, Fℓ)(0)Fj(0)

= 1
6

26
∑

j=1

gjkℓ(0)Fj(0).

Using (8.55), we have the following calculations:

g111(0) = −g221(0) = −3
√
2, g112(0) = g222(0) = 0;

g12j(0) = gjjk(0) = 0, if 3 ≤ j, k ≤ 26,

gjj1(0) =

{

−3
√
2

2 , if 3 ≤ j ≤ 18,

3
√
2, if 19 ≤ j ≤ 26,

gjj2(0) =











−3
√
6

2 , if 3 ≤ j ≤ 10,
3
√
6

2 , if 11 ≤ j ≤ 18,
0, if 19 ≤ j ≤ 26.

Then by (8.65) we obtain

(8.66)
K(F1, F1)(0) = −

√
2
2 F1(0), K(F2, F2)(0) =

√
2
2 F1(0),

K(F1, F2)(0) =
√
2
2 F2(0),

(8.67) K(Fj , Fj)(0) =











−
√
2
4 F1(0)−

√
6
4 F2(0), if 3 ≤ j ≤ 10,

−
√
2
4 F1(0) +

√
6
4 F2(0), if 11 ≤ j ≤ 18,

√
2
2 F1(0), if 19 ≤ j ≤ 26.

Now, besides (8.66) and (8.67), we using (8.65) and (8.55) to write
down the other components of the difference tensor:

(8.68) K(F1, Fj)(0) =
1
6g1jj(0)Fj(0) =

{

−
√
2
4 Fj(0), if 3 ≤ j ≤ 18,

√
2
2 Fj(0), if 19 ≤ j ≤ 26;
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(8.69) K(F2, Fj)(0) =
1
6g2jj(0)Fj(0) =











−
√
6
4 Fj(0), if 3 ≤ j ≤ 10,

√
6
4 Fj(0), if 11 ≤ j ≤ 18,

0, if 19 ≤ j ≤ 26;

(8.70)
K(F3, F11)(0) =

√
6
4 F19(0),

K(F3, Fj)(0) = −
√
6
4 Fj+8(0), 12 ≤ j ≤ 18;

(8.71) K(F4, F11)(0) = −
√
6
4 F20(0), K(F4, F12)(0) = −

√
6
4 F19(0),

(8.72) K(F4, F13)(0) = −
√
6
4 F22(0), K(F4, F14)(0) =

√
6
4 F21(0),

(8.73) K(F4, F15)(0) = −
√
6
4 F24(0), K(F4, F16)(0) =

√
6
4 F23(0),

(8.74) K(F4, F17)(0) =
√
6
4 F26(0), K(F4, F18)(0) = −

√
6
4 F25(0);

(8.75) K(F5, F11)(0) = −
√
6
4 F21(0), K(F5, F12)(0) =

√
6
4 F22(0),

(8.76) K(F5, F13)(0) = −
√
6
4 F19(0), K(F5, F14)(0) = −

√
6
4 F20(0),

(8.77) K(F5, F15)(0) = −
√
6
4 F25(0), K(F5, F16)(0) = −

√
6
4 F26(0),

(8.78) K(F5, F17)(0) =
√
6
4 F23(0), K(F5, F18)(0) =

√
6
4 F24(0);

(8.79) K(F6, F11)(0) = −
√
6
4 F22(0), K(F6, F12)(0) = −

√
6
4 F21(0),

(8.80) K(F6, F13)(0) =
√
6
4 F20(0), K(F6, F14)(0) = −

√
6
4 F19(0),

(8.81) K(F6, F15)(0) = −
√
6
4 F26(0), K(F6, F16)(0) =

√
6
4 F25(0),

(8.82) K(F6, F17)(0) = −
√
6
4 F24(0), K(F6, F18)(0) =

√
6
4 F23(0);

(8.83) K(F7, F11)(0) = −
√
6
4 F23(0), K(F7, F12)(0) =

√
6
4 F24(0),

(8.84) K(F7, F13)(0) =
√
6
4 F25(0), K(F7, F14)(0) =

√
6
4 F26(0),

(8.85) K(F7, F15)(0) = −
√
6
4 F19(0), K(F7, F16)(0) = −

√
6
4 F20(0),

(8.86) K(F7, F17)(0) = −
√
6
4 F21(0), K(F7, F18)(0) = −

√
6
4 F22(0);

(8.87) K(F8, F11)(0) = −
√
6
4 F24(0), K(F8, F12)(0) = −

√
6
4 F23(0),

(8.88) K(F8, F13)(0) =
√
6
4 F26(0), K(F8, F14)(0) = −

√
6
4 F25(0),

(8.89) K(F8, F15)(0) =
√
6
4 F20(0), K(F8, F16)(0) = −

√
6
4 F19(0),

(8.90) K(F8, F17)(0) =
√
6
4 F22(0), K(F8, F18)(0) = −

√
6
4 F21(0);

(8.91) K(F9, F11)(0) = −
√
6
4 F25(0), K(F9, F12)(0) = −

√
6
4 F26(0),
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(8.92) K(F9, F13)(0) = −
√
6
4 F23(0), K(F9, F14)(0) =

√
6
4 F24(0),

(8.93) K(F9, F15)(0) =
√
6
4 F21(0), K(F9, F16)(0) = −

√
6
4 F22(0),

(8.94) K(F9, F17)(0) = −
√
6
4 F19(0), K(F9, F18)(0) =

√
6
4 F20(0);

(8.95) K(F10, F11)(0) = −
√
6
4 F26(0), K(F10, F12)(0) =

√
6
4 F25(0),

(8.96) K(F10, F13)(0) = −
√
6
4 F24(0), K(F10, F14)(0) =

√
6
4 F23(0),

(8.97) K(F10, F15)(0) =
√
6
4 F22(0), K(F10, F16)(0) =

√
6
4 F21(0),

(8.98) K(F10, F17)(0) = −
√
6
4 F20(0), K(F10, F18)(0) = −

√
6
4 F19(0).

Finally, if we denote A = {3, . . . , 10},B = {11, . . . , 18}, C = {19, . . . , 26},
then we have

(8.99)

{

K(Fj , Fk)(0) = 0,

if j 6= k and either j, k ∈ A or j, k ∈ B or j, k ∈ C.

Moreover, we note that in all the above equations from (8.70) up to
(8.98), the three subindexes can be arbitrarily permutated; for example,
from the first equation of (8.70), we also have

K(F3, F19)(0) =
√
6
4 F11(0), K(F11, F19)(0) =

√
6
4 F3(0).

It then follows that all components of the difference tensor are de-
scribed.

From (8.66) and (8.67), we can see immediately that TracehK = 0 at
u = 0. Consequently, F (0) is the affine normal at 0 and by homogeneity

of the hypersurface we conclude that M̃ is a locally strongly convex
affine hypersphere. Moreover, as has been straightforwardly calculated
by Birembaux and Djoric [BD], the hypersurfaces are in fact isotropic;
namely, in the present case we have

(8.100) h(K(v, v),K(v, v)) = 1
2h(v, v)h(v, v)

for all v =
∑

j vjFj . According to proposition 4 of Birembaux and Djoric

[BD], M̃ is an affine hypersphere with affine mean curvature λ = −1
and its cubic form is parallel with respect to Levi-Civita connection of
the affine metric h.

To simplify the above complicated formulas of calculating the differ-
ence tensor at u = 0, we have the crucial observation that similar results
still hold as for the standard embeddings SL(m,R)/SO(m) →֒ Rm(m+1)/2,
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SL(m,C)/SU(m) →֒ Rm2

, and SU∗(2m
)

/Sp(m) →֒ R2m2−m. To present
the details, we use (8.58) and the identification y3(O) ≃ R27 given by

y3(O) ∋





ξ1 η3 η̄2
η̄3 ξ2 η1
η2 η̄1 ξ3



 7→ (ξ1, ξ2, ξ3, u3, . . . , u26) ∈ R27,

where ξ1, ξ2, ξ3 ∈ R; η1 =
∑7

j=0 u3+jej , η2 =
∑7

j=0 u11+jej , η3 =
∑7

j=0 u19+jej ∈ O.
Let Ejk denote the 3×3 matrix which has (j, k) entry 1 and all other

entries 0. With the identification we notice the following relations, and
then we set

(8.101) F1(0) =
√
2
2 (f1 + f2 − 2f3) ≃

√
2
2 (E11 + E22 − 2E33) = ẽ1,

(8.102) F2(0) =
√
6
2 (f1 − f2) ≃

√
6
2 (E11 − E22) = −w̃0,

(8.103) F3(0) =
√
6
2 f4 ≃

√
6
2 (E23 + E32) = −ṽ1,

(8.104) Fj+3(0) =
√
6
2 fj+4 ≃

√
6
2 (E23 − E32)ej = x̃j , 1 ≤ j ≤ 7,

(8.105) F11(0) =
√
6
2 f12 ≃

√
6
2 (E13 + E31) = −ṽ2,

(8.106) Fj+11(0) =
√
6
2 fj+12 ≃

√
6
2 (E31 − E13)ej = −ỹj, 1 ≤ j ≤ 7,

(8.107) F19(0) =
√
6
2 f20 ≃

√
6
2 (E12 + E21) = w̃1,

(8.108) Fj+19(0) =
√
6
2 fj+20 ≃

√
6
2 (E12 − E21)ej = −w̃j+1, 1 ≤ j ≤ 7.

Then direct calculations show that, equivalently, the standard em-
bedding F : E6(−26)/F4 → R27 with affine normal F has a Blaschke
structure, at I, that can be expressed algebraically in terms of the Lie
algebra as follows:

(8.109)

{

K(X,Y ) = 1
2 (XY + Y X)− 1

3 tr (XY )I,

h(X,Y ) = 1
3 tr (XY ), S = −Id.

Remark 8.1. Having the above expressions, the isotropic condition
(8.100) is then changed equivalently to the relation

(8.110)
(

tr(X2)
)2

= 2 tr(X2 ◦X2)

for all X ∈ y3(O) with tr(X) = 0. By using properties of the octonions
multiplications, this can be verified easily by direct computations.

Completion of the proof of Theorem 8.1 for Case (iii).
From the definition (8.101)–(8.108), using (8.109) we can verify that

all the relations from (8.11) to (8.18), and (8.41), still hold for the above
˜ notations with τ = 3

8 or equivalently λ1 =
1√
2
, i.e., λ = −1. Since the
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standard embedding E6(−26)/F4 →֒ R27 is of parallel cubic form, if we

identify the following orthonormal basis of TIM̃
26:

{

ẽ1; ṽ1, ṽ2; x̃j , ỹj | 1≤ j≤ 7; w̃j |0≤ j≤ 8

}

defined in (8.101)–(8.108) with the basis (8.51) of Tx0
M26, then applying

Lemma 2.4 and Lemma 4.4, we can verify that the difference tensor of
the standard embedding E6(−26)/F4 →֒ R27 is exactly the same as that

of M26 → R27 corresponding to λ1 =
1√
2
, or equivalently λ = −1.

Now for the locally strongly convex C17 affine hypersphere M26 →
R27 with p = 7, we see from the above discussion that, by applying a
homothetic transformation to make λ = −1, if necessary, M26 and the
standard embedding E6(−26)/F4 →֒ R27 has affine metric h and cubic
form C with identically the same affine invariant properties. According
to Cartan’s lemma and the fundamental uniqueness theorem of affine
differential geometry, we obtain that M26 and the standard embedding
E6(−26)/F4 →֒ R27 are locally affine equivalent.

This completes the proof of Theorem 8.1. q.e.d.
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