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GEOMETRY OF MINIMAL ENERGY YANG–MILLS
CONNECTIONS

Mark Stern

Abstract

We prove that energy minimizing Yang–Mills connections on
compact homogeneous 4-manifolds are either instantons or split
into a sum of instantons on passage to the adjoint bundle. We
prove related results for Calabi–Yau 3-folds and for 3−dimensional
manifolds of nonnegative Ricci curvature.

1. Introduction

Let G be a compact Lie group and E a principal G−bundle on a
complete oriented Riemannian manifold, M . Let A denote a connection
on E and ∇A the associated covariant derivative on the adjoint bundle,
ad(E). The Yang–Mills energy of A is

YM(A) := ‖FA‖
2,

where FA denotes the curvature of A, and ‖ · ‖ denotes the L2 norm. A
connection is called a Yang–Mills connection if it is a critical point of
the Yang–Mills functional. A Yang–Mills connection, A, is called stable
if the second variation of the Yang–Mills functional is nonnegative at A.
It is called a local minimum of the Yang–Mills functional if it minimizes
YM(A) among all nearby connections. We call a connection abelian if
its curvature takes values in an abelian subalgebra of the adjoint bundle.

In four dimensions, FA decomposes into its self-dual and anti-self-dual
components,

FA = F+
A + F−

A ,

where F±
A denotes the projection onto the ±1 eigenspace of the Hodge

star operator. A connection is called self-dual (respectively anti-self-
dual) if FA = F+

A (respectively FA = F−
A ). A connection is called

an instanton if it is either self-dual or anti-self-dual. On compact ori-
ented 4-manifolds, an instanton is always an absolute minimizer of the
Yang–Mills energy. Not all Yang–Mills connections are instantons. See
[SSU] and [SS] for (unstable) examples of SU(2) Yang–Mills connec-
tions on S4 which are neither self-dual nor anti-self-dual. Moreover,
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not all stable abelian Yang–Mills connections are instantons; otherwise
every harmonic 2-form representing an integral cohomology class would
be self-dual or anti-self-dual, which is clearly false.

This leads to the
Converse question: In four dimensions are local minima for the Yang–
Mills energy necessarily direct sums of instantons and abelian connec-
tions?

Partial positive results for low rank G were obtained by Bourguignon,
Lawson, and Simons in [BLS] and [BL], where they use a variational
argument to show that if G = SU(2) or SU(3), and M is a compact
oriented 4-dimensional homogeneous space, then the connection is either
an instanton or abelian. In this note, we settle this question on the
(possibly reduced) adjoint bundle of E, for any compact group, G, when
M is a complete nonnegatively curved homogeneous manifold. We also
give related results for oriented 3−manifolds and Calabi–Yau geometries
in three complex dimensions.

Our main result is the following theorem.

Theorem 1.1. Let E be a principal G−bundle on a complete oriented
nonnegatively curved homogeneous Riemannian 4-manifold, M . Let A
be a finite energy, locally minimizing Yang–Mills connection on E. The
adjoint bundle, ad(E), contains two ∇A-stable subbundles, k+ and k−,
satisfying F±

A is a section of Λ2T ∗M ⊗ k±,

[k+, k−] = 0,

and the curvature of k+ is self-dual and that of k− is anti-self-dual.

Our proof of Theorem 1.1 extends the variational argument of Bour-
guignon, Lawson, and Simons. Let At be a smooth family of connections
on E with A0 = A. The assumption that A is a local minimum of the
Yang–Mills energy implies the variational inequality

(1.2)
d2

dt2
YM(At)|t=0 ≥ 0.

The proof of the theorem relies on choosing useful families of test con-
nections with the difference, At−A, constructed from FA. In [BL], the
test connection At = A + tiXF

+
A was used, where iX denotes interior

multiplication by the vector field X, and X runs over a basis of Killing
vector fields. Our results rely on recognizing this variation as only the
first term in an infinite family of related variations.

The curvature is the only natural object from which to construct
test variations, but we need a map from 2−forms to 1−forms in order
to create test variations from the curvature 2−form. In homogeneous
geometries, interior product with Killing vector fields provides such a
map. More generally, this suggests we seek new information on the
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geometry of locally minimizing Yang–Mills connections in special ge-
ometries where there exist natural maps

Φ : Λ2T ∗M ⊗ ad(E) → Λ1T ∗M ⊗ ad(E).

When such Φ exist, we can consider variations with dA
dt
(0) = Φ(FA)

and seek additional results. Covariant constant 3-forms induce natural
maps from 2-forms to 1-forms. Hence, one expects new results for G2

manifolds, Calabi-Yau 3 folds, and oriented 3-dimensional manifolds.
We note that for manifolds of dimension greater than 4, interesting sta-
ble Yang–Mills connections need not always exist. For example, Simons
(see [BL]) proved the nonexistence of nonflat stable Yang–Mills con-
nections on Sn, n > 4. This nonexistence result has subsequently been
generalized in many directions, for example [KOT], [OP], [P],[Sh], and
[X]. Our results below include no new existence results for minimizing
connections in higher dimensions.

On a Kahler m−fold with Kahler form ω, the curvature decomposes
as

FA = F
2,0
A + F

1,1
A0 +

1

m
(ΛFA)ω + F

0,2
A ,

where Λ denotes the adjoint of exterior multiplication by ω, and F 1,1
A0 =

F
1,1
A − 1

m
(ΛFA)ω. Define the energy E′(A) = ‖F 0,2

A ‖2.

Theorem 1.3. Let A be a G−connection on a bundle, E, on a com-
plete Calabi Yau threefold, M . Assume that A is a stable critical point
of E′. IfM is noncompact, assume also that F 0,2

A ∈ L4. Then F 0,2
A is co-

variant constant and takes values in an abelian subbundle of ad(E)⊗C.

If Hol(M) = SU(3), then E is holomorphic.

Some of our results for 3-manifolds are presumably already known
(see for example [JT, Chapter II, Corollary 2.3] for the case of R3), but
we include them here as they fall in the same family of techniques as
the preceding results. We say an n−manifold has local flat factors if it
is locally isometric to a product of an open subset in R

k, k ≥ 1, and an
(n− k)−manifold.

Theorem 1.4. Let E be a bundle on a complete 3-dimensional man-
ifold, M , with nonnegative Ricci curvature. Let A be a stable finite
energy Yang–Mills connection on E. If M is noncompact, assume also
that FA ∈ L4. Then

∇AFA = 0.

Moreover, FA takes values in a flat abelian subbundle of ad(E), and
FA = 0 unless M has local flat factors.

The additional assumption here that FA ∈ L4 if M is noncompact
is easily established under additional geometric hypotheses of bounded
geometry. (See Remark 2.18.) We remark that applying the preceding
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theorem to S3 gives an analytic proof (see Section 4) of the triviality of
π2(G) for all compact Lie groups G.

Acknowledgements. We wish to thank Savdeep Sethi for stimulating
conversations and for his interest in this work. We thank Benoit Char-
bonneau for helpful comments. We also thank the referee for his exten-
sive comments, especially his suggested extension (Proposition 2.17) of
our theorems to complete noncompact manifolds.

2. Preliminaries

Let M be a complete Riemannian manifold and E a principal G
bundle over M , with G a compact Lie group. Let ad(E) denote the
adjoint bundle of E, endowed with a G−invariant inner product. Let
Ap(M,ad(E)) denote the smooth p−forms with values in ad(E). Given
a connection A on E, we denote by ∇A the corresponding covariant de-
rivative on A∗(M,ad(E)) induced by A and the Levi-Civita connection
of M . Let dA denote the exterior derivative associated to ∇A.

We are interested in stable minima of the Yang–Mills energy

YM(A) = ‖FA‖
2,

where FA denotes the curvature of A. Critical points of this energy
satisfy the Yang–Mills equation

(2.1) d∗AFA = 0,

where d∗A denotes the (L2−)adjoint of dA. In addition, all connections
satisfy the Bianchi identity

(2.2) dAFA = 0.

If At is a smooth one parameter family of connections, then

(2.3)
d

dt
FAt = dAt(

dA

dt
).

More generally, if ψ ∈ A1(M,ad(E)) then

(2.4) FA+ψ = FA + dAψ + ψ ∧ ψ.

Here we note that our convention on exterior products of ad(E) valued
forms is normalized by

(dxI ⊗ vI) ∧ (dxJ ⊗ vJ) =
1

2
(dxI ∧ dxJ)⊗ [vI , vJ ].

As a notational convenience, we will often denote by e(w) exterior mul-
tiplication on the left by a form w (possibly with ad(E) coefficients).
Its adjoint is denoted e∗(w). Thus

e(w)h := w ∧ h, and 〈f, e(w)h〉 = 〈e∗(w)f, h〉.
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If A minimizes the Yang–Mills energy, then of course it satisfies the
inequality

(2.5) ‖FA‖
2 ≤ ‖FA+ψ‖

2,

for all smooth compactly supported ψ. Replacing ψ by tψ in (2.5),
using (2.4), and taking the limit as t → 0 leads to the second variation
inequality

(2.6) 0 ≤ ‖dAψ‖
2 + 2〈FA, ψ ∧ ψ〉.

When considering noncompact manifolds, we will consider variations
with ψ not compactly supported. Let {yj}

∞
j=1 be a sequence of functions,

0 ≤ yj ≤ 1, with limj→∞yj = 1 pointwise and |dyj| uniformly bounded.
If we assume merely that ψ ∈ C1 ∩L2 ∩L4, then replacing ψ by yjψ in
(2.6) yields 0 ≤ ‖dAψ‖

2+2〈FA, ψ∧ψ〉 upon passing to the limit. Hence
we may apply this variational inequality to ψ ∈ C1 ∩ L2 ∩ L4.

The ψ we will most often consider in (2.6) will be constructed from
FA and its derivatives. Hence we need to establish some standard es-
timates for ∇k

AFA to ensure these test variations are in L2 ∩ L4. Let
M be a complete noncompact homogeneous 4−manifold. Let A be a
finite energy Yang–Mills connection on a G−bundle E over M . Let
Br(p) denote the ball of radius r about p. The following lemma is a
specialization of [N, Lemma 3.1] to our context.

Lemma 2.7. There exist constants ǫ = ǫ(M,G) and C = C(M,G)
such that if

r4−n
∫

Br(p)
|FA|

2dv < ǫ, then sup
Br/4(p)

|FA|
2 ≤ Cr−n

∫

Br(p)
|FA|

2dv,

for r < 1
2 min{1, injectivity radius of M}, p ∈M .

CoverM with a collection of balls, {Bs(pi)}
∞
i=1, of radius s =

1
8 min{1,

injectivity radius of M}, and with a uniform bound on the number of
balls containing any point of M .

Corollary 2.8. For every δ > 0, supx∈B2s(pi) |FA|(x)
2 < δ, for i

sufficiently large.

Proof. As A is finite energy, for each δ > 0, there exists Nδ so that we
may remove a finite number of balls so that Cs−n

∫

B8s(pi)
|FA|

2dv < δ,

for i > Nδ. Now Lemma 2.7 yields the desired bound. q.e.d.

We specialize the existence and properties of the Uhlenbeck gauge to
our situation.

Lemma 2.9. (Uhlenbeck Gauge)[U1]. (See also [W, p.91 and p.145]).
Let A be a connection on a G−bundle. Fix q > n

2 . There exist constants
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β(q) = β(M,G, q), b(q) = b(M,G, q), and Ck,q such that if

(2.10)

∫

B2s(pi)
|FA|

qdv ≤ β(q),

then there exists a trivialization of E over B2s(pi) in which the connec-

tion form Â satisfies

d∗Â = 0, and

‖Â‖W 1,q(Bs(pi)) ≤ b(q)‖FA‖Lq .

If we assume also that A is a critical point of the Yang–Mills functional,
then ∀k

(2.11) ‖Â‖W k+1,q(Bs(pi)) ≤ Ck,q(1 + ‖Â‖W k,q(Bs(pi)) + ‖Â‖3W k,q(Bs(pi))
).

Corollary 2.12. |∇k
AFA| is pointwise bounded on M for all k.

Proof. By Corollary 2.8, |FA| is pointwise bounded, and the hypoth-
esis (2.10) holds for i sufficiently large. The result now follows from an
induction argument using (2.11) and the Sobolev embedding theorem.

q.e.d.

Lemma 2.13. For A a critical point of the Yang–Mills functional
with finite energy on a homogeneous manifold, ∇k

AFA ∈ L2 for all k.

Proof. The Yang–Mills equation and Bianchi identity imply that FA
satisfies the equation

(2.14) 0 = ∇∗
A∇AFA + (F̂A + R̂)(FA),

where, in a local orthonormal frame,

F̂A(FA) = −[Fij , Fjk]dx
i ∧ dxk,

and
R̂(FA) = −RijmkFjmdx

i ∧ dxk.

Here R denotes the Riemann curvature tensor. Assume now that the
sequence of cutoff functions, {ym}

∞
m=1, is C

k bounded for all k. Then

0 = 〈∇∗
A∇AFA + (F̂A + R̂)(FA), y

2
mFA〉L2

(2.15)

⇒ 0 = ‖∇AymFA‖
2
L2

− ‖[∇A, ym]FA‖
2
L2

+ 〈(F̂A + R̂)(FA), y
2
mFA〉L2

.

From Corollary 2.12, we see that |FA| is bounded in sup norm. Taking
m→ ∞, equation (2.15) now implies that

∇AFA ∈ L2.

Differentiating equation (2.14), we obtain

(2.16) 0 = ∇∗
A∇A∇AFA+(F̂A+R̂)(∇AFA)+[∇A,∇

∗
A∇A+(F̂A+R̂)]FA.

The quantity [∇A,∇
∗
A∇A + (F̂A + R̂)]FA is a sum of terms involving

at most one derivative of F and bounded coefficients. Hence taking
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the L2-inner product of (2.16) with ∇AFA and integrating by parts, we
obtain

‖∇2
AFA‖

2 ≤ c1‖∇AFA‖
2 + c2‖FA‖

2.

We now induct. Suppose that ∇b
AFA ∈ L2, for b ≤ k. Differentiating

(2.14) k times, gives ∇k
A(∇

∗
A∇A + (F̂A + R̂))FA = 0, and

0 = 〈∇k
A(∇

∗
A∇A + (F̂A + R̂))FA, y

2
m∇

k
AFA〉

≥ ‖∇Aym∇
k
AFA‖

2 − ‖dym ⊗∇k
AFA‖

2 −
∑

0≤j≤k

Cj‖∇
j
AFA‖

2,

for some constants Cj determined by the sup norms of |∇b
AFA|, b ≤ k

and the other coefficients of [∇k
A,∇

∗
A]. Taking the limit as m→ ∞ gives

∇k+1
A FA ∈ L2. q.e.d.

These bounds now allow us to construct test variations from covariant
derivatives of FA.

Proposition 2.17. Let M be a complete noncompact homogeneous
4−manifold. Let A be a smooth finite energy Yang–Mills connection on
a G−bundle E over M . Then ∇k

AFA ∈ L2 ∩ L4 ∩ C
∞, for all k.

Proof. We are left to show ∇k
AFA ∈ L4. By Kato’s inequality,

∇k+1
A FA ∈ L2 ⇒ d|∇k

AFA| ∈ L2. Hence the scalar function |∇k
AFA| ∈

W 1,2. The Sobolev embedding theorem holds (see [He]) on manifolds
of bounded geometry. Hence |∇k

AFA| ∈ L4. q.e.d.

Remark 2.18. The assumption of homogeneous geometry is stronger
than necessary in this section and can be replaced by weaker assump-
tions of bounded geometry. The constants in Lemmas 2.7 and 2.9 are
then replaced by constants depending on bounds on the injectivity ra-
dius, the Riemannian curvature, and its derivatives. These geometric
bounds would also then be used to bound the coefficients, Cj , in the
proof of Lemma 2.13.

3. Conservative Decompositions

Suppose that Λ2T ∗
M⊗ad(E) decomposes into two orthogonal subbun-

dles

(3.1) Λ2T ∗
M ⊗ ad(E) = Λ+(E) ⊕ Λ−(E),

such that ∇A preserves this decomposition. Let P± denote the projec-
tion onto these summands. We call such a decomposition conservative
if there exists a, b ∈ R, not both zero, so that

(3.2) a‖P+FA‖
2 + b‖P−FA‖

2 is independent of A.

The following elementary lemma clarifies the importance of conser-
vative decompositions.
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Lemma 3.3. Given a conservative decomposition, a connection min-
imizes YM(A) if and only if it minimizes ‖P−FA‖

2 (equivalently, if and
only if it minimizes ‖P+FA‖

2).

Proof. By (3.1) we have ‖FA‖
2 = ‖P+FA‖

2 + ‖P−FA‖
2. The lemma

then follows readily from (3.2). q.e.d.

Consequently, for energy minimizing connections and conservative de-
compositions we have the additional critical point equation :

(3.4) 0 = d∗AP
−FA

and the refined variational inequalities:

(3.5) ‖P−FA‖
2 ≤ ‖P−FA+ψ‖

2,

and

(3.6) 0 ≤ ‖P−dAψ‖
2 + 2〈P−FA, ψ ∧ ψ〉.

The following elementary lemma shows how to begin to extract infor-
mation about the curvature from the variational inequalities (3.5) and
(3.6).

Lemma 3.7. Let ψ ∈ A1(M,ad(E)) satisfy ψ ∈ L2 ∩ L4,

0 = P−dAψ, and 0 = 〈P−FA, ψ ∧ ψ〉.

Then

e∗(ψ)P−FA = 0.

Proof. Consider the variation At = A + tψ + t
3

2w, for w ∈ A1(M,

ad(E)) arbitrary. Then expanding (3.5) we have

‖P−FA‖
2 ≤ ‖P−FA‖

2 + 2〈P−FA, dA(tψ + t
3

2w)

+t2ψ ∧ ψ + 2t
5

2ψ ∧ w〉+ t2‖P−dAψ‖
2 +O(t3).

Invoking (3.4) and our hypotheses on ψ, this reduces to

0 ≤ 2〈P−FA, 2t
5

2ψ ∧ w〉+O(t3).

Replacing w by −w, we see that

0 = 〈e∗(ψ)P−
A , w〉

for all w, and the lemma follows. q.e.d.

In the following sections we will consider 1−forms ψ constructed from
FA that satisfy the hypotheses of Lemma 3.7 and use them to uncover
information about FA and A.
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4. Dimension 4: (Anti-)Self-Duality and Homogeneous
Spaces

In this section we assume that M is a 4-dimensional oriented Rie-
mannian homogeneous space with nonnegative sectional curvature. De-
note the group of isometries ofM byK and its Lie algebra by k. Identify
k with the Lie algebra of Killing vector fields on M . Fixing a base point
o ∈M and a metric on k induces a decomposition k = p⊕ u, where u is
the Lie algebra of the isotropy group of o and therefore also the kernel of
the evaluation map k → ToM . Because K is the product of an abelian
and a compact group, we may choose the metric on k to be invariant
under the adjoint action of K and so that for every x the evaluation map
k → TxM is an isometry when restricted to the orthogonal complement
of its kernel.

Let {Xj}
D
j=1 be a basis of k. Let φj,t : M → M , j = 1, . . . ,D, t ∈ R,

be the associated one parameter families of isometries. We define a
pullback map

φ∗j,t : (Λ
2T ∗

M ⊗ ad(E))φj,t(x) → (Λ2T ∗
M ⊗ ad(E))x

by defining the action of φ∗j,t on the ad(E) factor to be parallel transport

along the curve t → φj,t(x). Fix j. Away from a fixed point of φj,t,
we may choose a local frame that is parallel on the integral curves of
Xj through all points in a neighborhood of x. In such a frame the
connection form, which we also denote A, satisfies

(4.1) ijA = 0, and ijFA = ijdAA,

where ij = iXj denotes interior multiplication by Xj .
Given a local frame {sa}a for ad(E), we write an ad(E) valued p−form

f as
∑

a f
a ⊗ sa. Then we have

φ∗j,tdAf =
∑

a

φ∗j,t(df
a)⊗ φ∗j,tsa +

∑

a,b

(−1)pφ∗j,tf
a ⊗ φ∗j,t(A

b
asb)

= dAφ
∗
j,tf + 2(φ∗j,tA−A) ∧ φ∗j,tf.

(4.2)

In four dimensions (oriented) we have the decomposition of Λ2T ∗M⊗
ad(E) given by the decomposition into self-dual and anti-self-dual sum-
mands:

Λ2T ∗M ⊗ ad(E) = (Λ2
+T

∗M ⊗ ad(E)) ⊕ (Λ2
−T

∗M ⊗ ad(E)).

Thus the projections onto the summands are given by

P± =
1

2
(1± ∗),

where ∗ denotes the Hodge star operator. Let p1(A,E) denote the first
pontrjagin form of E determined by the connection A. Recall that

(4.3) ‖F+
A ‖2 − ‖F−

A ‖2 = c

∫

M

p1(A,E),
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where c > 0 is determined by normalization of the inner product on
ad(E). Chern–Weil theory says that the right hand side is independent
of A on compact manifolds. On noncompact manifolds it is constant
under variations of A that decay suitably at ∞. Hence P± define a
conservative decomposition. Because d∗A = − ∗ dA∗, we have for this
decomposition

dAP
±FA = 0.

Having lifted the action of φ∗j,t to ad(E), we obtain an extension of

the Lie derivative Lj = LXj to ad(E) valued forms. It satisfies the usual
relation

Lj = dAij + ijdA,

and of course

Ljf =
d

du |u=0
φ∗j,uf.

Because φj,t is an isometry we have

φ∗j,tP
− = P−φ∗j,t,

and hence, infinitesimally,

(4.4) [Lj , P
−] = 0.

4.1. Variations. Set

F±
A = P±FA.

The stability results in [BLS] and [BL] followed in large part from con-
sideration of the variations A + tijF

+
A . Our theorems in 4-dimensions

rely on recognizing these variations as an approximation to the varia-
tions A+ ijF

+
j (t), where

F+
j (t) :=

∫ t

0
φ∗j,sF

+
A (x)ds.

Heuristically, this variation may be thought of as an attempt to test
whether the isometry invariance of the Yang–Mills energy extends to
isometry invariance when only a self-dual component of the connection
is shifted by the isometry.
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Next we use (4.2) to expand FA+ijF+

j (t).

F
A+ijF

+

j (t) = FA + dAijF
+
j (t) + ijF

+
j (t) ∧ ijF

+
j (t)

= FA + LjF
+
j (t)− 2ij

∫ t

0
(A− φ∗j,sA) ∧ φ

∗
j,sF

+
A (x)ds

+ ijF
+
j (t) ∧ ijF

+
j (t)

= FA +

∫ t

0

d

ds
φ∗j,sF

+
A (x)ds

+ 2ij

∫ t

0

∫ s

0

∂

∂u
φ∗j,uA ∧ φ∗j,sF

+
A (x)duds

+ ij

∫ t

0

∫ t

0
φ∗j,uF

+
A (x) ∧ ijφ

∗
j,sF

+
A (x)duds.

Using (4.1), we have

∂

∂u
φ∗j,uA = φ∗j,uijdAA = φ∗j,uijFA.

This and additional manipulations give

(4.5) FA+ijF+

j (t) = F−
A + φ∗j,tF

+
A − 2Φj(t),

where

Φj(t) =

∫ t

0

∫ s

0
φ∗j,uijFA ∧ ijφ

∗
j,sF

+
A (x)duds

−
1

2

∫ t

0

∫ t

0
ijφ

∗
j,uF

+
A (x) ∧ ijφ

∗
j,sF

+
A (x)duds

=

∫ t

0

∫ s

0
φ∗j,uijFA ∧ ijφ

∗
j,sF

+
A (x)duds

−
1

2

∫ t

0

∫ s

0
φ∗j,uijF

+
A ∧ ijφ

∗
j,sF

+
A (x)duds

−
1

2

∫ t

0

∫ t

s

ijφ
∗
j,uF

+
A (x) ∧ ijφ

∗
j,sF

+
A (x)duds.

Changing the order of integration in the last term and cancelling reduces
the preceding to

(4.6) Φj(t) =

∫ t

0

∫ s

0
ijφ

∗
j,uF

−
A (x) ∧ ijφ

∗
j,sF

+
A (x)duds.

For later application it is useful to Taylor expand Φj. We have for
all integers B,

(4.7) Φj(t) =

a+b=B
∑

a,b≥0

ta+b+2ijL
a
jF

−
A (x) ∧ ijL

b
jF

+
A (x)

(a+ 1)!b!(a+ b+ 2)
+O(tB+3).
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With this notation, (3.5) becomes

(4.8) ‖F−
A ‖2 ≤ ‖F−

A − 2P−Φj(t)‖
2,

or in a more useful form:

(4.9) 〈F−
A ,Φj(t)〉 ≤ ‖P−Φj(t)‖

2,

Equivalently

(4.10) ‖F+
A ‖2 = ‖φ∗j,tF

+
A ‖2 ≤ ‖φ∗j,tF

+
A − 2P+Φj(t)‖

2,

The right hand side of (4.9) is evidently O(t4), implying the nonpos-
itivity of the O(t2) terms in the left hand side. The Taylor expansion
(4.7) gives for each j

(4.11) 0 ≥ 〈F−
A , ijF

−
A ∧ ijF

+
A 〉 (no j sum).

Switching the roles of P− and P+, we similarly deduce

(4.12) 0 ≥ 〈F+
A , ijF

+
A ∧ ijF

−
A 〉 (no j sum).

Lemma 4.13. Let f+ be a self-dual 2-form and f− an anti-self-dual
2-form. Let {e1, e2, e3, e4} be a local orthonormal frame for TM . Then
∑

a ieaf
+∧ ieaf

+ is self-dual, and
∑

a ieaf
−∧ ieaf

− is anti-self-dual. If
φ1, φ2, and φ3 are ad(E) valued 2-forms, then

∑

a

〈φ1, ieaφ2 ∧ ieaφ3〉 =
∑

a

〈φ3, ieaφ1 ∧ ieaφ2〉.

Proof. This is an elementary computation. q.e.d.

As proved in [BLS],[BL], we now obtain our first commutation result:

Proposition 4.14.

0 = [F+
st , F

−
ij ],

for all indices s, t, i, j.

Proof. Summing (4.11), we obtain

0 ≥
∑

j

〈F−
A , ijF

−
A ∧ ijF

+
A 〉.

Because the evaluation map k → TmM is an isometry on the orthogonal
complement to its kernel, the pointwise inner product,

∑

j

〈F−
A , ijF

−
A ∧ ijF

+
A 〉(m) =

∑

a

〈F−
A , ieaF

−
A ∧ ieaF

+
A 〉(m),

for a local orthonormal frame {ea}
4
a=1. Applying Lemma 4.13, we see

that
∑

a

〈F−
A , ieaF

−
A ∧ ieaF

+
A 〉(m) =

∑

a

〈ieaF
−
A ∧ ieaF

−
A , F

+
A 〉(m) = 0.
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Hence the inequality (4.11) is actually an equality for each j:

(4.15) 0 = 〈F−
A , ijF

−
A ∧ ijF

+
A 〉 = 〈F+

A , ijF
−
A ∧ ijF

−
A 〉 (no j sum).

Symmetrically we obtain

(4.16) 0 = 〈F−
A , ijF

+
A ∧ ijF

+
A 〉 (no j sum).

On the other hand, we have

P−dAijF
+
A = −P−ijdAF

+
A + LjP

−F+
A = 0.

Hence ψ = ijF
+
A satisfies the hypotheses of Lemma 3.7, implying

e∗(ijF
+
A )F−

A = 0.

Expanding this equality in components, using the duality relations, and
allowing Xj(m) to run over a basis of TmM , we obtain the claimed
commutation result:

0 = [F+
st , F

−
ij ],

for all indices s, t, i, j. q.e.d.

4.2. Inductive hypothesis. In order to move beyond the commuta-
tion of the self-dual with the anti-self-dual components of the curvature
to the construction of ∇A stable subbundles k+ and k− of ad(E) with
self-dual (respectively anti-self-dual) curvature, we wish to prove the
following proposition.

Proposition 4.17. [∇i
AF

+
A ,∇

j
AF

−
A ] = 0 for all i and j.

In this and the next subsection, we prove this proposition by induction
on i+ j.

Denote by AN the inductive hypothesis:

(4.18) AN : [∇i
AF

+
A ,∇

j
AF

−
A ] = 0, for i+ j < N.

We have established A1 in Proposition 4.14. We will show AN implies
AN+1. Assume AN holds, for some N ≥ 1. In the inductive hypoth-
esis, powers of covariant derivatives can be replaced by powers of Lie
derivatives, since they differ by lower order terms.

Observe that

(4.19) AN ⇒ Φj(t) = O(tN+2).

Hence AN and equation (4.9) imply

(4.20) 〈F−
A ,Φj(t)〉 ≤ O(t2N+4).

Set

Sj(t) = 〈F−
A ,Φj(t)〉.

Then Sj(0) = 0, and

(4.21) S′
j(t) = 〈F−

A ,

∫ t

0
ijφ

∗
j,uF

−
A ∧ ijφ

∗
j,tF

+
A du〉
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= 〈F−
A , φ

∗
j,t

∫ 0

−t
ijφ

∗
j,uF

−
A ∧ ijF

+
A du〉.

Hence S′
j(0) = S′′

j (0) = 0.

In order to use the variational inequality (4.20) we need to estimate
Sj(t). Taylor expanding S

′
j gives

S′
j(t) = 〈F−

A ,

a+b=m
∑

a,b≥0

ta

a!
Laj

∫ 0

−t
ij
ub

b!
LbjF

−
A ∧ ijF

+
A du〉+O(tm+2)

Hence

Sj(t) = 〈F−
A ,

a+b=m
∑

a,b≥0

(−1)bta+b+2

a!(b+ 1)!(a+ b+ 2)
Laj [ijL

b
jF

−
A ∧ ijF

+
A ]〉+O(tm+3)

= 〈F−
A ,

a+b=m
∑

a,b≥N

(−1)bta+b+2

a!(b+ 1)!(a + b+ 2)
Laj [ijL

b
jF

−
A ∧ ijF

+
A ]〉+O(tm+3)

Hence, using AN to eliminate lower order terms, (4.20) implies

(4.22) 〈F−
A , (−1)NLNj [ijL

N
j F

−
A ∧ ijF

+
A ]〉 ≤ 0.

Lemma 4.23. If AN holds then

〈F−
A , L

N
j [ijL

N
j F

−
A ∧ ijF

+
A ]〉 = 0.

Proof. Set S(Xj , N) = 〈F−
A , L

N
j [ijL

N
j F

−
A ∧ ijF

+
A ]〉. The inequality

(−1)NS(Xj , N) ≤ 0 holds when Xj is replaced by any Killing vector.
We will show that the average of S(Xj , N) over the unit sphere of k is
zero. Hence S(Xj , N) is zero for each j (and each choice of basis of k). To

see this we consider S(
∑

k y
kXk, N) and integrate the resulting degree

2N + 2 homogeneous polynomial in y over the unit sphere. Integration
of homogeneous degree 2N+2 polynomials over the sphere projects onto
the span of the radial function, (r2)N+1. Expanding in a multi-index
notation where LJ = Lj1 · · ·Lj|J|

, we write

S(
∑

k

ykXk, N) =
∑

|I|=N,|J |=N

dimk
∑

m,p=1

yIyJymyp〈F−
A , LI [imLJF

−
A ∧ ipF

+
A ]〉.

That integration over the unit sphere projects onto radial functions im-
plies that upon integration of S, we are left with a linear combination
of coefficients, 〈F−

A , LI [imLJF
−
A ∧ ipF

+
A ]〉, of S where the indices are

contracted pairwise. We will see that all such contractions vanish. The
condition AN allows us to replace the Lie derivatives by covariant deriva-
tives, as the difference vanishes in the inner product. We can also drop
commutators of derivatives by AN , as all such commutations drop the
degree of the differentiation and thus lead to terms which vanish by AN .
We can then use the Yang–Mills equation and AN to equate to zero all
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inner products containing
∑

k ikLkF
±
A terms or

∑

k L
2
kF

±
A terms. We

also invoke Lemma 4.13 to remove terms with paired indices m = p on
the interior products. Thus m and p must both pair with elements of I,
for if p pairs with an Ljr , we can use the Leibniz formula, AN and the
Yang–Mills equation to eliminate the corresponding term. This leaves
two Lj terms which must pair with each other, but since

0 = −(dAd
∗
A +∗

A dA)F
±
A

=
∑

j

L2
jF

±
A (modulo terms vanishing in the inner product by AN ),

we find the average vanishes. Hence

〈F−
A , L

N
j [ijL

N
j F

−
A ∧ ijF

+
A ]〉 = 0,

as claimed. q.e.d.

Now we apply a variant of Lemma 3.7 to obtain a commutation result.

Lemma 4.24. If AN holds then

e∗(ijL
N
j F

+
A )F−

A = 0.

Proof. Once again we let ψ be a smooth compactly supported ad(E)
valued 1−form. Then

‖F−
A ‖2 ≤ ‖F−

A+ijF
+

j (t)+tpψ
‖2

= ‖F−
A − 2P−Φj(t) + tpdAψ + t2pψ ∧ ψ + 2tpψ ∧ ijF

+
j (t)‖2

= ‖F−
A ‖2 − 4Sj(t) + 4tp〈F−

A , ψ ∧ ijF
+
j (t)〉 +O(t2N+4 + t2p).

Lemma 4.23 implies Sj(t) = O(t2N+3). Hence Taylor expanding again,
we get

0 ≤

N
∑

b=0

4tp〈F−
A , ψ ∧

tb+1

(b+ 1)!
ijL

b
jF

+
A 〉+O(t2N+3 + t2p)

= 4tp〈F−
A , ψ ∧

tN+1

(N + 1)!
ijL

N
j F

+
A 〉+O(t2N+3 + t2p + tN+p+2).

Choosing p = N + 3
2 gives

0 ≤ 〈F−
A , ψ ∧ ijL

N
j F

+
A 〉.

Replacing ψ with −ψ makes the inequality an equality, and we conclude

0 = e∗(ijL
N
j F

+
A )F−

A

as desired. q.e.d.
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4.3. An Algebraic Reduction. We now complete our induction ar-
gument by proving the following proposition.

Proposition 4.25. The assumption AN implies AN+1.

Proof. Assume AN holds. By Lemma 4.24, e∗(ijL
N
j F

+
A )F−

A = 0 for
all j. The Lie derivative Lj differs from the covariant derivative ∇j by
zero order terms which commute with every element of ad(E). Hence
we have

(4.26) 0 = e∗(ij∇
N
j F

+
A )F−

A .

Fix a point x and a basis for the infinitesimal isometries so that Xj(x) =
ej , j = 1, 2, 3, 4 is an orthonormal basis of TxM . Then expanding (4.26)
in this frame, yields for all k and t,

(4.27)
∑

s

[∇N
k F

+
ks, F

−
st ] = 0 (no k sum).

In fact, replacing ek by u1e1 + · · · u4e4, for any (u1, u2, u3, u4) ∈ R
4, we

have for all t,

(4.28)
∑

a,s

[(
∑

j

uj∇j)
NuaF+

as, F
−
st ] = 0.

Set

pik(u) = [(
∑

j

uj∇j)
NF+

1i , F
−
1k],

and let pik,a := ∂pik
∂ua

. In our local orthonormal frame, duality implies

that the components of F+
A and F−

A (and their covariant derivatives)

satisfy F±
12 = ±F±

34, F
±
13 = ±F±

42, and F±
14 = ±F±

23, and consequently

each term
[(

∑

j u
j∇j

)N
uaF+

as, F
−
st

]

in (4.28) is equal to pik(u) for some

i and k. Thus we may expand (4.28) as

0 = u1(p22 + p33 + p44)− u2(p34 − p43)(4.29)

+ u3(p24 − p42)− u4(p23 − p32).

0 = u1(p34 − p43) + u2(−p22 + p44 + p33)(4.30)

− u3(p32 + p23)− u4(p42 + p24).

0 = u1(−p24 + p42)− u2(p23 + p32)(4.31)

+ u3(−p33 + p44 + p22)− u4(p43 + p34).

0 = u1(p23 − p32)− u2(p24 + p42)− u3(p34 + p43)(4.32)

+ u4(−p44 + p33 + p22).

In addition to these equations, we have the Yang–Mills equations and
the Bianchi identities. These are best encoded as relations between the
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derivatives of the pij as follows.

4
∑

i=2

pik,i = N [(uj∇j)
N−1(d∗AF

+)1, F
−
1k] = 0,

and

pik,a(u) = N [(uj∇j)
N−1F+

1i,a, F
−
1k]

= N [(uj∇j)
N−1F+

1a,i, F
−
1k] +N [(uj∇j)

N−1F+
ai,1, F

−
1k]

= pak,i(u) +N [(uj∇j)
N−1F+

ai,1, F
−
1k].

This reduces to the following 12 equations.

p2k,2 + p3k,3 + p4k,4 = 0.(4.33)

p2k,1 − p4k,3 + p3k,4 = 0.(4.34)

p2k,4 − p4k,2 − p3k,1 = 0.(4.35)

p2k,3 + p4k,1 − p3k,2 = 0.(4.36)

We may also use AN to shift the derivative to the F−
A term, yielding

the following relations among the derivatives.

4
∑

k=2

pik,k = −N [(uj∇j)
N−1F+

1i , (d
∗
AF

−
A )1] = 0,

and

pik,a = N [(uj∇j)
N−1F+

1i,a, F
−
1k] = −N [(uj∇j)

N−1F+
1i , F

−
1k,a]

= −N [(uj∇j)
N−1F+

1i , F
−
ak,1]−N [(uj∇j)

N−1F+
1i , F

−
1a,k]

= N [(uj∇j)
N−1F+

1i,1, F
−
ak] + pia,k.

This yields 12 additional equations.

pi2,2 + pi3,3 + pi4,4 = 0.(4.37)

pi2,1 + pi4,3 − pi3,4 = 0.(4.38)

pi2,4 + pi3,1 − pi4,2 = 0.(4.39)

pi2,3 − pi4,1 − pi3,2 = 0.(4.40)

Homogeneity allows us to reconstruct the pik readily from their deriva-
tives:

(4.41) pik =
1

N
uapik,a.

Hence, equations (4.33) - (4.40) allow in (4.29) - (4.32) the replacement
of p22, p23, p24, p32, and p42 by linear combinations of p33, p44, p34, and
p43. It is more convenient, however, to differentiate (4.29) - (4.32) and
make the replacement at the level of derivatives.

Denote the quantities on the righthand side of equations (4.29) -
(4.32) by I1, I2, I3, and I4, respectively. Differentiating Ij and replacing
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the derivatives of p22, p23, p24, p32, and p42 by linear combinations of
derivatives of p33, p44, p34, and p43 gives

0 = I1,1 = (p22 + p33 + p44)

+ u1(p43,2 − p34,2 + 2p33,1 + 2p44,1)− u2(p34,1 − p43,1)

+ u3(2p44,3 − p34,4 − p43,4)− u4(p43,3 + p34,3 − 2p33,4)

(4.42)

0 = I2,2 = u1(p34,2 − p43,2)− (p22 − p44 − p33)

+ u2(p34,1 − p43,1 + 2p44,2 + 2p33,2)

+ u3(2p33,3 + p34,4 + p43,4) + u4(p43,3 + p34,3 + 2p44,4)

(4.43)

0 = I3,3 = u1(2p44,1 + p43,2 − p34,2)

− u2(p34,1 − p43,1 + 2p33,2)− (p33 − p44 − p22)

+ u3(−2p33,3 + 2p44,3 − p43,4 − p34,4)− u4(p43,3 + p34,3)

(4.44)

0 = I4,4 = u1(p43,2 − p34,2 + 2p33,1)

− u2(p34,1 − p43,1 + 2p44,2)− u3(p34,4 + p43,4)

+ u4(2p33,4 − 2p44,4 − p34,3 − p43,3) + (−p44 + p33 + p22).

(4.45)

Combining (4.42) and (4.43) and using (4.41) gives

0 = I1,1 + I2,2 =2p33 + 2p44 + 2u1(p33,1 + p44,1) + 2u2(p33,2 + p44,2)

+ 2u3(p33,3 + p44,3) + 2u4(p33,4 + p44,4)

=2(N + 1)(p33 + p44).

Hence p33 = −p44. Similarly 0 = I1,1 − I3,3 = (N + 1)2p33, and we
conclude that

(4.46) 0 = p33 = p44.

Take the u2 derivative of I1 and use the relations (4.33) - (4.40) and
(4.46) to replace all pij,k in the resulting equation by derivatives of
p34 − p43. This yields

0 = I1,2 =− u1(p34,1 − p43,1)− (p34 − p43)− u2(p34,2 − p43,2)

− u3(p34,3 − p43,3)− u4(p34,4 − p43,4)

=− (N + 1)(p34 − p43).

Hence p34 = p43. Similarly 0 = I3,4 = −(N + 1)(p43 + p34), and we
conclude

(4.47) 0 = p34 = p43.

Using homogeneity, (4.46), (4.47), and (4.33) - (4.40), we deduce that
all remaining pik vanish. We conclude: for all i, k,

0 = [(uj∇j)
NF+

1i , F
−
1k].
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Hence for all i, k, s, t

0 = [∇NF+
si , F

−
tk ].

Finally we have, via application of AN , that for 0 ≤ a ≤ N,

0 = [∇aF+
si ,∇

N−aF−
tk ].

Hence AN+1 holds. This completes our proof of Proposition 4.25, and,
by induction, our proof of Proposition 4.17. q.e.d.

4.4. Splitting. Define subsheaves of the sheaf of sections of ad(E) by
setting k+x ⊂ ad(E)x (respectively k−x ) to be the subspace generated by
the components of ∇aF+(x), (respectively ∇aF−(x)) as a runs through
all nonnegative integers. By definition, the subsheaves K± of sections
of ad(E) which take values in k± are preserved by the connection. This
gives a reduction of the adjoint bundle (which need not be proper - for
example when A is an instanton).

Fix a point o on M. Choose a gauge in a neighborhood of o in which
the connection form A satisfies d∗A = 0. (See, for example, [U1] or
[W] for the existence of such gauges). In this gauge the Yang–Mills
equations become a nonlinear elliptic system for A. The homogeneous
manifolds we are considering are all real analytic, and this system has
analytic coefficients. Hence A and FA are real analytic in this gauge
(See [M]. See also [JT, Chapter V, Theorem 1.1] ).

Fix a point o in M and analytic coordinates in a neighborhood of
o. Let X1(x), · · · ,Xd(x) be linear combinations of components (in the
analytic coordinate system) of ∇a

AF
+
A (x), any a, such that {X1(o), · · · ,

Xd(o)} is a basis of k
+
o . ThenX1(x), · · · ,Xd(x) are linearly independent

in a neighborhood of o. Suppose that these vectors do not span k+x , x
near o. Then there exists an analytic local section, Xd+1, constructed
from the components of the covariant derivatives of F+

A which, at x, is
linearly independent of X1(x), · · · ,Xd(x). Then X1 ∧ · · · ∧Xd ∧Xd+1

vanishes to infinite order at o. By analyticity, this implies X1 ∧ · · · ∧
Xd ∧Xd+1 is identically zero in a neighborhood of o, contradicting our
assumption. Thus we see that when they are nonzero, k+ and k− define
subbundles of ad(E) (although one of these is the zero bundle when A
is an instanton). This gives the following theorem.

Theorem 4.48. Let E be a principal G−bundle on a complete, ori-
ented, nonnegatively curved homogeneous Riemannian manifold, M .
Let A be a locally minimizing Yang–Mills connection on E. The ad-
joint bundle, ad(E), contains two ∇A−stable subbundles, k+ and k−,
satisfying F±

A is a section of Λ2T ∗M ⊗ k±,

[k+, k−] = 0,

and the curvature of k+ is self-dual and that of k− is anti-self-dual.
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Proof. The connection ∇A preserves k± by construction. Hence the
curvature of each subbundle is simply the restriction of the adjoint ac-
tion of FA to that subbundle. By Proposition 4.17, [k+, k−] = 0; in
particular, F±

A acts trivially on k∓, and the curvature operator on k±

is F±
A , yielding the asserted self-duality and anti-self-duality. q.e.d.

Remark 4.49. Observe that in passing to the adjoint bundle and
therefore the adjoint representation of the curvature, we may lose some
information about the curvature. In the extreme case of a line bundle,
the adjoint bundle is trivial and its induced curvature vanishes. More
generally, we lose information about any summand of the curvature in
the kernel of the adjoint representation.

Corollary 4.50. Let M be a compact homogeneous 4-manifold. Let
E be a principal G−bundle over M with locally minimizing Yang–Mills
connection A. Suppose the first Pontrjagin number of E is greater than
or equal to zero (respectively less than or equal to zero). Then if the
Yang–Mills energy of A is greater than the topological lower bound deter-
mined by the first Pontrjagin number of E, ad(E) has a nontrivial sub-
bundle with anti-self-dual curvature (respectively self-dual curvature).

Proof. From equation (4.3), we have for some c > 0, ‖F+
A ‖2−‖F−

A ‖2 =

c
∫

M
p1(A,E). The topological lower bound is then ‖F+

A ‖2 + ‖F−
A ‖2 ≥

|c
∫

M
p1(A,E)|. The hypotheses of the corollary imply

‖F+
A ‖2 + ‖F−

A ‖2 > |‖F+
A ‖2 − ‖F−

A ‖2|,

which is possible only if both ‖F+
A ‖ and ‖F−

A ‖ are nonzero. Hence both
k+ and k− have positive dimension. q.e.d.

5. Dimension 3

We now consider applications of the variational inequality to three
dimensions.

Theorem 5.1. Let Y be a complete 3-dimensional manifold with
nonnegative Ricci curvature. Let A be a Yang–Mills minimizing con-
nection on a bundle E on Y . If M is noncompact, assume further that
FA ∈ L4. Then

∇AFA = 0,

and
Ric(∗FA, ∗FA) = 0.

Moreover, FA takes values in a flat abelian subbundle of ad(E), and
FA = 0 unless M has local flat factors.

Proof. The variational inequality (2.5) gives

‖FA‖
2 ≤ ‖FA+t∗FA

‖2 = ‖FA + t2(∗FA) ∧ (∗FA)‖
2.
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Hence,

(5.2) 0 ≤ 〈FA, (∗FA) ∧ (∗FA)〉.

Let R denotes the Riemann curvature. Combining the Yang–Mills
equation and the Bochner formula, we have

0 = ‖dA ∗ FA‖
2 + ‖d∗A ∗ FA‖

2

= ‖∇A ∗ FA‖
2 +

∫

Y

Ric(∗FA, ∗FA)dv + 2〈FA, (∗FA) ∧ (∗FA)〉.

Thus if the Ricci curvature of Y is nonnegative, we conclude from
this Bochner formula and inequality (5.2) that

0 = 〈FA, (∗FA) ∧ (∗FA)〉,

and

(5.3) ∇AFA = 0.

If the Ricci curvature is strictly positive at some point, then FA = 0.
Equation (5.3) implies that the subbundle H of ad(E) generated by the
components of FA is stable under ∇A.

Applying Lemma 3.7 with P− = 1 and ψ = ∗FA, we deduce

0 = [Fij , Fst],

for all i, j, s, t. Hence H is an abelian flat subbundle of ad(E). Now
∇AFA = 0 implies the Riemannian curvature acts trivially on the sub-
bundle of T ∗M determined by FA. Thus M has local flat factors unless
FA = 0.

q.e.d.

Up to diffeomorphism, the only simply connected 3-manifold with
strictly positive Ricci curvature is S3 (see [Ha]). Uhlenbeck’s com-
pactness theorem [U1] implies that every G−bundle on a compact 3-
manifold has a Yang–Mills minimizing G−connection. Theorem 5.1
then implies the minimizing connection is flat on S3 and its smooth
finite quotients. On S3 it is therefore trivial as a G−bundle. As G-
bundles on S3 are classified by π2(G), this gives an analytic proof of the
well known fact that

π2(G) = 0

for all compact connected Lie groups. (See [Bo, Section 18]). We sim-
ilarly deduce that all G−bundles on T 3 admit G−connections with co-
variant constant curvature.
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6. Calabi–Yau 3-folds

Let M be a compact Calabi–Yau 3-fold, with Kahler form ω and
nonzero covariant constant (3, 0) form Ω. Let L := e(ω). Let A be a
connection on a G−bundle, E, over M .

Decompose the curvature, FA as

FA = F
2,0
A + F

1,1
A0 + φAω + F

0,2
A ,

where

φA :=
1

3
L∗FA.

The Kahler identity (see for example [We, Theorem 3.16, p.187])

(6.1) LFA = ∗(F 2,0
A + 2φAω − F

1,1
A0 + F

0,2
A )

implies, after wedging with FA, taking the trace, and integrating, that
(6.2)

4‖F 0,2
A ‖2 + 9‖φA‖

2 − ‖FA‖
2 = −

∫

tr(F ∧ F ) ∧ ω = c

∫

M

p1(A,E) ∧ ω

and is therefore independent of the connection.
Define two new energies,

E′(A) := 4‖F 0,2
A ‖2, and E′′(A) = 9‖φA‖

2.

Minimizing the Yang–Mills energy is therefore equivalent to minimizing
E′(A) + E′′(A):

(6.3) YM(A) = E′(A) + E′′(A) + topological constant.

The energy functional E′′ plays an important role in the study of
Hermitian–Einstein connections. (See [K], [D], [UY], and [LT]). Recall
that a connection on a holomorphic vector bundle on a Kahler manifold
is called Hermitian–Einstein if φA = αIE , for some constant α. Here
IE denotes the identity endomorphism. Hermitian–Einstein connections
are critical points of E′′.

We now study stable critical points of E′(A). Critical points of E′

satisfy

(6.4) ∂̄∗AF
0,2
A = 0.

Define an ad(E) valued (0, 1) form, ψA, so that

(6.5) e∗(ψA)Ω̄ = F
0,2
A .

More explicitly, in a local special unitary frame,

ψA = F
2,0
23 dz̄

1 + F
2,0
31 dz̄

2 + F
2,0
12 dz̄

3.

Applying ∂̄∗A to each side of (6.5) gives

e∗(∂̄AψA)Ω̄ = 0,
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and therefore

(6.6) ∂̄AψA = 0.

The Bianchi identity implies ∂AF
2,0
A = 0, which is equivalent to

(6.7) ∂̄∗AψA = 0.

Assume now that A is a stable critical point of E′. By definition, the
second variation of E′(A) is then positive:

0 ≤ ‖∂̄Aη
0,1‖2 + 2Re〈F 0,2

A , η0,1 ∧ η0,1〉,

for all ad(E) valued (0, 1) forms η0,1. Taking η = λψA+ λ̄ψ̄A, λ ∈ C, as
our test variation and applying (6.6) gives

0 ≤ ‖∂̄AλψA‖
2 + 2Re〈F 0,2

A , λψA ∧ λψA〉 = 2Reλ̄2〈F 0,2
A , ψA ∧ ψA〉.

Choosing λ2 = −〈F 0,2
A , ψA ∧ ψA〉, we see that 〈F 0,2

A , ψA ∧ ψA〉 = 0. We
may now argue as in Lemma 3.7 to deduce

0 = e∗(ψA)F
0,2
A .

In components, this is equivalent to

(6.8) 0 = [F 0,2
su , F

0,2
ab ],

all s, u, a, b. The components of F 0,2
A thus generate an abelian subalgebra

of ad(E)⊗ C. In particular,

(6.9) ψA ∧ ψA = 0,

and

(6.10) F
0,2

A+t(λψA+λ̄ψ̄A)
= F

0,2
A ,

for all t. We can also show that

(6.11) φA+t(λψA+λ̄ψ̄A) = φA,

for all t. To see this, first observe that for a general smooth one param-
eter family of connections, At,

d

dt
φAt =

d

dt

1

3
L∗FAt =

1

3
L∗dAt

d

dt
At =

1

3
(i∂̄∗At

− i∂∗At
)
d

dt
At.

Here we have used the Hodge identities:

(6.12) [L∗, ∂̄A] = −i∂∗A, and [L∗, ∂A] = i∂̄∗A.

Choosing At = A+ t(λψA + λ̄ψ̄A), λ ∈ C, we have

1

3
(i∂̄∗At

− i∂∗At
)
d

dt
At =

1

3
(iλ∂̄∗At

ψAt − iλ̄∂∗At
ψ̄At) = 0.

Note that here we have used ψA = ψAt for this variation (see (6.10))
to extend (6.7) from ∂̄∗AψA = 0 to ∂̄∗At

ψA = 0. We have the following
lemma.
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Lemma 6.13. If A is an E′ minimizing connection, then

(6.14) YM(A+ t(λψA + λ̄ψ̄A)) = YM(A), ∀t, λ.

Proof. This follows immediately from (6.3),(6.10), and (6.11). q.e.d.

The preceding lemma implies that the quartic polynomial in t,
YM(A + t(λψA + λ̄ψ̄A)), is in fact constant. Hence its t, t2, t3, and t4

coefficients vanish. The four resulting equations, simplified by applying
(6.9), are:

0 =〈FA, dA(λψA + λ̄ψ̄A)〉.(6.15)

0 =‖dA(λψA + λ̄ψ̄A)‖
2 + 4|λ|2〈FA, ψA ∧ ψ̄A〉(6.16)

0 =〈dA(λψA + 2|λ|2λ̄ψ̄A), ψA ∧ ψ̄A〉(6.17)

0 =|λ|4‖ψA ∧ ψ̄A)‖
2.(6.18)

The quartic relation immediately implies

(6.19) 0 = ψA ∧ ψ̄A,

and therefore the subalgebra of ad(E)⊗C generated by the components

of F 0,2
A and F

2,0
A is abelian. Simplifying the quadratic relation (6.16)

with (6.19) yields

0 = dA(λψA + λ̄ψ̄A),

for all λ. The Bochner formula now gives

0 = ‖dA(λψA + λ̄ψ̄A)‖
2 + ‖d∗A(λψA + λ̄ψ̄A)‖

2 = ‖∇A(λψA + λ̄ψ̄A)‖
2.

Here we have used the vanishing of the Ricci curvature on Calabi–Yau
manifolds and (6.9) and (6.19) to eliminate the curvature terms from
the Bochner formula. Hence

(6.20) ∇AψA = 0.

We conclude this discussion with the following theorem.

Theorem 6.21. Let A be a G-connection on a bundle, E, on a com-
plete Calabi–Yau 3-fold, M . Assume A is a stable critical point of E′.
If M is noncompact, assume also that F 0,2

A ∈ L4. Then FA−F 1,1
A is co-

variant constant and takes values in an abelian subbundle of ad(E)⊗C.

If Hol(M) = SU(3), then (E, ∂̄A) is holomorphic.

Proof. Let Rijdx
i ∧ dxj denote the Riemann curvature tensor viewed

as an ad(T ∗M) valued 2−form. The vanishing of ∇Aψ, (6.20) implies
0 = [∇i,∇j ]ψA = (ad(Fij)+Rij)ψA for all i, j. Because ψA takes values
in an abelian subalgebra of ad(E), [Fij , ψA] ⊥ RijψA. Hence RijψA = 0,
and the components of ψA are in the kernel of the Riemann curvature
operator. This reduces the Riemannian holonomy group, unless ψA = 0,
which implies F 0,2

A = 0. Recall that (E, ∂̄A) determines a holomorphic

structure if and only if F 0,2
A = 0. Thus we have the dichotomy: ψA 6= 0
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implies a reduction of the holonomy of M , and ψA = 0 implies (E, ∂̄A)
is holomorphic. q.e.d.
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