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ON A CHARACTERIZATION OF THE

COMPLEX HYPERBOLIC SPACE

Ovidiu Munteanu

Abstract

Consider a compact Kähler manifold Mm with Ricci curvature
lower bound RicM ≥ −2 (m+ 1) . Assume that its universal cover

M̃ has maximal bottom of spectrum λ1

(
M̃
)

= m2. Then we

prove that M̃ is isometric to the complex hyperbolic space CH
m.

1. Introduction

Complete Riemannian manifolds with negative Ricci curvature lower
bound have been investigated by many authors. An important approach
is to see how the spectrum of the Laplacian interacts with the geometry
of the manifold. A classical result that we recall here is S.Y. Cheng’s
comparison theorem [C], which states that the hyperbolic space H

n

has the greatest bottom of spectrum among all complete Riemannian
manifolds with Ricci curvature at least the Ricci curvature of Hn.

Therefore, if the Ricci curvature of a complete noncompact Riemann-
ian manifold Nn of dimension n is bounded below by RicN ≥ − (n− 1) ,
then the bottom of the spectrum of the Laplacian has an upper bound

λ1 (N) ≤ (n−1)2

4 . This result is sharp, but we should point out that
there are in fact many manifolds with maximal λ1, and more examples
can be found by considering hyperbolic manifolds N = H

n/Γ obtained
by the quotient of Hn by a Kleinian group Γ (see [S]).

While in general we cannot determine the class of manifolds with λ1

achieving its maximal value, recently there has been important progress
in some directions.

P. Li and J. Wang have studied the structure at infinity of a com-
plete noncompact Riemannian manifold that has RicN ≥ − (n− 1) and

maximal bottom of spectrum λ1 (N) = (n−1)2

4 . They proved that either
the manifold is connected at infinity (i.e., it has one end) or it has two
ends. In the case where it has two ends, it must split as a warped prod-
uct of a compact manifold with the real line [L-W2]. Their result has
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since been extended in many other situations, e.g., Kähler manifolds,
quaternionic Kähler manifolds, or locally symmetric spaces.

Recently X. Wang [W] has obtained an interesting result in a dif-
ferent setting. Suppose Nn is a compact Riemannian manifold with

RicN ≥ − (n− 1). Consider π : Ñ → N its universal cover and assume

that λ1(Ñ) = (n−1)2

4 . Then Wang proved that Ñ is isometric to the
hyperbolic space H

n.
It should be pointed out that in Wang’s theorem if the manifold N

is assumed to have negative curvature (and removing the lower bound
on Ricci curvature assumption) then stronger results are already known
from the work of Ledrappier, Foulon and Labourie, and Besson, Cour-
tois, and Gallot [L, F-L, B-C-G]. Indeed, let h denote the volume
entropy of N , i.e.,

h = lim
R→∞

log V ol
(
B̃p(R)

)

R
,

where B̃p (R) is the geodesic ball of radius R centered at p in Ñ .

Then, assuming N has negative curvature and λ1(Ñ) = 1
4h

2 from the
works cited above, it results that N is locally symmetric.

However, Wang’s theorem is quite powerful because it does not as-
sume the metric has negative curvature.

It is a natural question to investigate these issues on Kähler manifolds.
A first question that one should ask is if Cheng’s estimate can be

improved in this case. The model space that we work with is now the
complex hyperbolic space CH

m. Recently, Li and Wang have proved
[L-W1] that, for a complete noncompact Kähler manifold Mm of com-
plex dimension m, if the bisectional curvature is bounded from below by
BKM ≥ −1, then λ1 (M) ≤ m2 = λ1 (CH

m) . Moreover, if the bottom
of spectrum λ1 (M) achieves its maximal value, then the manifold is
either connected at infinity or it has two ends, and in this latter case
it is diffeomorphic to the product of a compact manifold with the real
line and the Kähler metric on M has a specialized form.

We recently improved Li and Wang’s results for complete Kähler
manifolds that have a Ricci curvature lower bound, RicM ≥ −2 (m+ 1) ,
which is a weaker assumption than BKM ≥ −1. We proved that the
same estimate for λ1 holds under the Ricci curvature lower bound, and,
moreover, if the bottom of spectrum achieves its maximal value, the
manifold has the same structure at infinity as in Li and Wang’s theorem
(see [M]). To obtain these results we developed a new argument, a
sharp integral estimate for the gradient of a certain class of harmonic
functions. We should point out that a sharp pointwise gradient estimate
for harmonic functions is not known to be true for Kähler manifolds.

In this paper we will use our argument to prove the following result.
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Theorem 1. Let Mm be a compact Kähler manifold of complex di-

mension m and Ricci curvature bounded below by RicM ≥ −2 (m+ 1) .

Assume its universal cover π : M̃ → M has maximal bottom of spec-

trum, λ1

(
M̃
)

= m2. Then M̃ is isometric to the complex hyperbolic

space CH
m.

We want to comment now about the particular case when M has
negative curvature.

For Kähler manifolds with bisectional curvature lower boundBKM ≥
−1, it follows from [L-W1] that the volume entropy verifies the sharp
estimate h ≤ 2m. So maximal bottom of spectrum in this case implies
λ1 = 1

4h
2. However, for only Ricci curvature lower bound RicM ≥

−2 (m+ 1), it is not known whether h ≤ 2m, so it is not clear how
to apply the Besson-Courtois-Gallot theorem in the negative curvature
case.

Acknowledgment. The author would like to express his deep gratitude
to his advisor, Professor Peter Li, for continuous help, encouragement,
and many valuable discussions.

2. Proof of the Theorem

First, let us set the notation. We use the notations in [L-W, M].

Denote ds2 = hαβ̄dz
αdz̄β the Kähler metric on M̃ and let Re

(
ds2
)
be

the Riemannian metric on M̃.
Suppose that {e1, e2, . . . , e2m} with e2k = Je2k−1 for k ∈ {1, 2, . . . ,m}

is an orthonormal frame with respect to the Riemannian metric on M̃ ;

then {v1, . . . , vm} is a unitary frame of T 1,0
x M̃ , where

vk =
1

2

(
e2k−1 −

√
−1e2k

)
.

With respect to any such unitary frame the following formulas hold:

∇f · ∇g = 2 (fαfᾱ + gαgᾱ) ,

∆f = 4fαᾱ.

In the statement of the theorem, the Ricci curvature lower bound refers
to the Riemannian metric and it is equivalent to saying

Ricαβ̄ ≥ − (m+ 1) δαβ̄

with respect to any unitary frame.
To prove the theorem we follow the same approach as in [W], namely,

we use the Kaimanovich entropy. This is defined using the minimal

Martin boundary of M̃ , and the idea is that it can be bounded from

below in terms of λ1

(
M̃
)
and from above based on the Ricci curvature
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assumption. The fact that λ1

(
M̃
)
is maximal then implies equality in

these bounds, which will prove the theorem.
We first recall some facts about the Kaimanovich entropy.
There are a few equivalent formulations of this entropy. First, it can

be defined as a limit of the heat kernel:

β(M̃ ) = lim
t→∞

(
−1

t

∫

M̃
p (t, x, y) log p (t, x, y) dy

)
,

where p is the heat kernel on M̃. This expression is useful because it
can be shown that (a result of Ledrappier [L])

β(M̃) ≥ 4λ1

(
M̃
)
.

There is another very useful formula for β, using the minimal Martin

boundary of M̃. Let us quickly recall some known facts (see e.g., [A]).

Let H
(
M̃
)
denote the space of harmonic functions on M̃, with the

topology of uniform convergence on compact sets. Observe that, for

O ∈ M̃ fixed,

KO =
{
u ∈ H

(
M̃
)
: u (O) = 1, u > 0

}

is a compact and convex subset of H
(
M̃
)
. Denote with ∂∗M̃ the set

of extremal points of KO, i.e., points in KO that do not lie in any open
line segment in KO. Note that a point of KO is extremal if and only
if it is a minimal positive harmonic function normalized at O; therefore

∂∗M̃ is the minimal Martin boundary of M̃. Since KO is a metric space
and it is compact and convex, by a theorem of Choquet it results that
for any positive harmonic function h there is a unique Borel measure
µh on the set of extremal points of KO so that

h (x) =

∫

∂∗M̃
ξ (x) dµh (ξ) .

In particular, for h = 1 there exists a unique measure ν on ∂∗M̃ so that

for any x ∈ M̃, ∫

∂∗M̃
ξ (x) dν (ξ) = 1.

Let Γ denote the group of deck transformations on M̃ ; then there is a

natural action of Γ on ∂∗M̃ , defined by

(γξ) (x) =
ξ
(
γ−1x

)

ξ (γ−1O)
,

for any ξ ∈ ∂∗M̃ and for any γ ∈ Γ.
It is important to know how the measure ν is changed by the action

of Γ on ∂∗M̃ . It can be seen, using the uniqueness property of ν, that
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if γ∗ν denotes the push forward measure, i.e., (γ∗ν) (B) = ν
(
γ−1B

)
for

any Borel set B ⊂ ∂∗M̃ , then

dγ∗ν (ξ)

dν (ξ)
= ξ (γO) .

For x ∈ M̃ , define

ω (x) =

∫

∂∗M̃
ξ−1 (x) |∇ξ|2 (x) dν (ξ) ,

and notice that ω descends on M. Indeed, for any γ ∈ Γ we have that

|∇ξ|2 (γx) = |∇ (γ∗ξ)|2 (x) ,

where γ∗ξ is the pull back of ξ, i.e., γ∗ξ = ξ ◦γ. Then it is easy to check
using the Radon-Nikodym derivative that for η = γ−1ξ we have

∫

∂∗M̃
ξ−1(γx) |∇ξ|2 (γx)dν(ξ)

=

∫

∂∗M̃
η−1(x) |∇η|2 (x) 1

η(γ−1O)
dγ−1

∗
ν(η)

=

∫

∂∗M̃
η−1 (x) |∇η|2 (x) dν (η) .

Hence it clearly follows that

ω (γx) =

∫

∂∗M̃
ξ−1 (γx) |∇ξ|2 (γx) dν (ξ)

=

∫

∂∗M̃
η−1 (x) |∇η|2 (x) dν (η)

= ω (x) .

We have shown that in fact ω is a well-defined function on M . This
function can be used now to give another formula for the Kaimanovich
entropy. Everywhere in this paper we will denote by dv0 the normalized
Riemannian volume form of M , i.e.,

dv0 =
1∫

M

√
gdx

(
√
gdx) .

By a formula of Kaimanovich ([K]; see also [L, W]) the entropy can
also be expressed as

β(M̃) =

∫

M
ωdv0

=

∫

M

(∫

∂∗M̃
ξ−1 (x) |∇ξ|2 (x) dν (ξ)

)
dv0.
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Therefore, using Ledrappier’s inequality for β(M̃), we have the follow-
ing:

(1) 4λ1

(
M̃
)
≤
∫

M

(∫

∂∗M̃
ξ−1 (x) |∇ξ|2 (x) dν (ξ)

)
dv0.

For Riemannian manifolds, X. Wang has used this inequality together
with the sharp Yau’s gradient estimate ([L-W2]) to prove his result in
the Riemannian setting.

For our problem, a sharp pointwise gradient estimate for Kähler man-
ifolds is not known to be true. In [M] we developed an argument which
makes possible to get sharp integral estimates for the gradient of a cer-
tain class of harmonic functions. This argument is based on successive
integration by parts and the use of Ricci identities and it can be adapted
to this setting.

Our goal is to show that
∫

M

(∫

∂∗M̃
ξ−1 (x) |∇ξ|2 (x) dν (ξ)

)
dv0 ≤ 4m2.

Let u = log ξ. Then a simple computation shows that

uαβ̄ = ξ−1ξαβ̄ − ξ−2ξαξβ̄.

For a fixed x ∈ M̃ consider∫

∂∗M̃
ξ (x)

∣∣uαβ̄
∣∣2 (x) dν (ξ) .

We first claim that this integral is a finite number (depending on x).

Indeed, since ∂∗M̃ is compact and dν is a finite measure, it suffices
to show the integrand is bounded. But this is true because for fixed
x we can bound

∣∣ξαβ̄
∣∣ (x) ≤ C (x) ξ (O) = C (x) . This can be seen

as follows. Consider BO(R) a geodesic ball of radius R big enough
so that x ∈ BO(R). Note that there exists a constant A > 0 so that
∆
∣∣ξαβ̄

∣∣ ≥ −A
∣∣ξαβ̄

∣∣ on BO(R). Such a constant A can be chosen to

depend on the lower bound of the bisectional curvature on BO(R), using
the Bochner formula. Using now the mean value inequality we get that
there exists a constant C1 depending on R and A so that

∣∣ξαβ̄
∣∣2 (x) ≤ C1

∫

BO(R)

∣∣ξαβ̄
∣∣2 .

It is known that by using integration by parts and suitable cut-off func-
tions there exists a constant C2 so that

∫

BO(R)

∣∣ξαβ̄
∣∣2 ≤ C2

∫

BO(2R)
ξ2.

The right side of this inequality can now be bounded by C3ξ
2 (O) ,

using the Harnack inequality. Obviously, these constants will depend
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on R; nevertheless, it follows that for x fixed
∣∣ξαβ̄

∣∣ (x) will be bounded
uniformly in ξ, which was our claim.

The second claim is that the function thus obtained actually descends
on M. This claim can be showed as above, now using the fact that since
M is Kähler, the deck transformations are holomorphic. Therefore for
γ ∈ Γ and γ∗ξ the pull back of ξ we have

∣∣∣(log ξ)αβ̄
∣∣∣
2
(γx) =

∣∣∣(log(γ∗ξ))αβ̄
∣∣∣
2
(x) .

The rest of the proof follows the same line as for the gradient of ξ (see
above).

Therefore it makes sense to consider the following quantity:
∫

M

∫

∂∗M̃
ξ(x)

∣∣uαβ̄
∣∣2 (x)dν(ξ)dv0

=

∫

M

∫

∂∗M̃
ξ−1(x)

∣∣ξαβ̄
∣∣2 (x)dν(ξ)dv0

−2

∫

M

∫

∂∗M̃
ξ−2 (x) (ξαβ̄ξᾱξβ) (x) dν (ξ) dv0

+
1

16

∫

M

∫

∂∗M̃
ξ−3 (x) |∇ξ|4 (x) dν (ξ) dv0,

where each of the integrals on the right side are also well-defined by a
similar discussion.

We now want to justify integration by parts to show that
∫

M

∫

∂∗M̃
ξ−1 (x)

∣∣ξαβ̄
∣∣2 (x) dν (ξ) dv0

=

∫

M

∫

∂∗M̃
ξ−2 (x) (ξαβ̄ξᾱξβ) (x) dν (ξ) dv0.

Consider (Ui) a covering of M with small open sets and let ρi be a
partition of unity subordinated to this covering. We can choose (Ui) so

that each Ui is diffeomorphic to an open set Ũi ⊂ M̃ via π. We then
have

∫

M

∫

∂∗M̃
ξ−1 (x)

∣∣ξαβ̄
∣∣2 (x) dν (ξ) dv0

=

∫

M

∫

∂∗M̃
ξ−1 (x) ξαβ̄ (x)

(
ξᾱ (x)

∑

i

ρi (π (x))

)

β

dν (ξ) dv0

=
∑

i

∫

M

∫

∂∗M̃
ξ−1 (x) ξαβ̄ (x) (ξᾱ (x) ρi (π (x)))β dν (ξ) dv0

=
∑

i

∫

Ui

∫

∂∗M̃
ξ−1 (x) ξαβ̄ (x) (ξᾱ (x) ρi (π (x)))β dν (ξ) dv0



618 OVIDIU MUNTEANU

=
∑

i

∫

Ũi

∫

∂∗M̃
ξ−1 (x) ξαβ̄ (x) (ξᾱ (x) ρi (π (x)))β dν (ξ) dv0

= −
∑

i

∫

Ũi

∫

∂∗M̃

(
ξ−1 (x) ξαβ̄ (x)

)
β
(ξᾱ (x) ρi (π (x))) dν (ξ) dv0

=
∑

i

∫

Ũi

∫

∂∗M̃
ξ−2 (x) (ξαβ̄ξᾱξβ) (x) ρi (π (x)) dν (ξ) dv0

=
∑

i

∫

Ui

∫

∂∗M̃
ξ−2 (x) (ξαβ̄ξᾱξβ) (x) ρi (π (x)) dν (ξ) dv0

=
∑

i

∫

M

∫

∂∗M̃
ξ−2 (x) (ξαβ̄ξᾱξβ) (x) ρi (π (x)) dν (ξ) dv0

=

∫

M

∫

∂∗M̃
ξ−2 (x) (ξαβ̄ξᾱξβ) (x) dν (ξ) dv0.

Let us point out that everywhere in these formulas (and in the paper) a
priori the integrals on the minimal Martin boundary are taken for any

(parameter) x ∈ M̃. Then it can be justified that in fact these integrals

on ∂∗M̃ are invariant by the group of deck transformations, so they are
well-defined functions on M . With this in mind, in the third line from

the top one should also justify that for each i the functions on M̃ defined
by x →

∫
∂∗M̃

ξ−1(x)ξαβ̄(x)(ξᾱ(x)ρi(π(x)))βdν(ξ) descend on M. This

can be done by the same argument, and using that γ∗ (ρi ◦ π) = ρi◦π, for
any γ ∈ Γ. It is also important that the function in ξ which is integrated
on the minimal Martin boundary (for example ξ → ξ−1ξαβ̄ (ξᾱρi ◦ π)β)
be homogeneous of degree 1 in ξ. Thus we want to remark that not any
integration by parts is allowed by this procedure of lifting the integrals
on the universal covering. Finally, notice that we have also used that
ξαβ̄β = 0, which follows from the fact that ξ is harmonic.

This argument will be applied below every time we integrate by parts.
To simplify the writing, we will henceforth omit the argument x and

the measure dν, but we always assume the integrals on ∂∗M̃ are taken

with respect to dν and that all the functions integrated on ∂∗M̃ depend

on x ∈ M̃. Each of these integrals on the minimal Martin boundary is
invariant by the group of deck transformations so it legitimately defines
a function on M.

We have thus proved that

∫

M

∫

∂∗M̃
ξ
∣∣uαβ̄

∣∣2 = −
∫

M

∫

∂∗M̃
ξ−2(ξαβ̄ξᾱξβ)

+
1

16

∫

M

∫

∂∗M̃
ξ−3 |∇ξ|4 .
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Let us use again integration by parts to see that

−
∫

M

∫

∂∗M̃
ξ−2(ξαβ̄ξᾱξβ) =

∫

M

∫

∂∗M̃
ξα
(
ξ−2ξᾱξβ

)
β̄

(2)

= −1

8

∫

M

∫

∂∗M̃
ξ−3 |∇ξ|4 +

∫

M

∫

∂∗M̃
ξ−2ξᾱβ̄ξαξβ.

Note that the inequality

∣∣ξᾱβ̄ξαξβ
∣∣ ≤ 1

4
|ξαβ| |∇ξ|2

holds on M̃ , so that we get

2

∫

M

∫

∂∗M̃
ξ−2ξᾱβ̄ξαξβ(3)

≤
∫

M

∫

∂∗M̃
2
(
ξ−1/2 |ξαβ |

)(1

4
ξ−3/2 |∇ξ|2

)

≤ m

m+ 1

∫

M

∫

∂∗M̃
ξ−1 |ξαβ|2 +

1

16

m+ 1

m

∫

M

∫

∂∗M̃
ξ−3 |∇ξ|4 .

Moreover, again integrating by parts we have

∫

M

∫

∂∗M̃
ξ−1 |ξαβ|2 =

∫

M

∫

∂∗M̃
ξ−2ξᾱβ̄ξαξβ −

∫

M

∫

∂∗M̃
ξ−1ξαξᾱβ̄β

≤
∫

M

∫

∂∗M̃
ξ−2ξᾱβ̄ξαξβ +

m+ 1

4

∫

M

∫

∂∗M̃
ξ−1 |∇ξ|2 .

In the second line above, we have used the fact that ξ is harmonic, the
Ricci identities, and the lower bound of the Ricci curvature:

−ξαξᾱβ̄β = −ξαξβ̄ᾱβ
= −ξαξβ̄βᾱ −Ricαβ̄ξᾱξβ

= −Ricαβ̄ξᾱξβ

≤ (m+ 1) ξαξᾱ

=
m+ 1

4
|∇ξ|2 .

Plug this inequality into (3) and it follows that

m+ 2

m+ 1

∫

M

∫

∂∗M̃
ξ−2ξᾱβ̄ξαξβ ≤ m

4

∫

M

∫

∂∗M̃
ξ−1 |∇ξ|2

+
1

16

m+ 1

m

∫

M

∫

∂∗M̃
ξ−3 |∇ξ|4 .
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Getting back to (2), we obtain

−
∫

M

∫

∂∗M̃
ξ−2ξαβ̄ξᾱξβ ≤

(
−1

8
+

1

16

(m+ 1)2

m (m+ 2)

)∫

M

∫

∂∗M̃
ξ−3 |∇ξ|4

+
m(m+ 1)

4 (m+ 2)

∫

M

∫

∂∗M̃
ξ−1 |∇ξ|2 .

We have thus proved that∫

M

∫

∂∗M̃
ξ
∣∣uαβ̄

∣∣2 ≤ 1

16

1

m (m+ 2)

∫

M

∫

∂∗M̃
ξ−3 |∇ξ|4

+
m(m+ 1)

4 (m+ 2)

∫

M

∫

∂∗M̃
ξ−1 |∇ξ|2 .

The estimate from below is straightforward:

∣∣uαβ̄
∣∣2 ≥

∑

α

|uαᾱ|2 ≥
1

m

∣∣∣∣∣
∑

α

uαᾱ

∣∣∣∣∣

2

=
1

16m
ξ−4 |∇ξ|4 .

Hence, this shows that

(4)

∫

M

∫

∂∗M̃
ξ−3 |∇ξ|4 ≤ 4m2

∫

M

∫

∂∗M̃
ξ−1 |∇ξ|2 .

Finally, using the Schwarz inequality and the fact that
∫
∂∗M̃

ξ = 1, we
get

∫

M

∫

∂∗M̃
ξ−1 |∇ξ|2 ≤

(∫

M

∫

∂∗M̃
ξ−3 |∇ξ|4

) 1

2

(∫

M

∫

∂∗M̃
ξ

) 1

2

=

(∫

M

∫

∂∗M̃
ξ−3 |∇ξ|4

) 1

2

.

Combined with (4) and (1) this gives indeed that

4λ1

(
M̃
)
≤
∫

M

(∫

∂∗M̃
ξ−1 (x) |∇ξ|2 (x) dν (ξ)

)
dv0 ≤ 4m2,

as claimed.
Since by hypothesis λ1

(
M̃
)
= m2, it follows that all inequalities used

in this proof will be (pointwise) equalities on M̃ for almost all ξ ∈ ∂∗M̃.
Indeed, this is true because everywhere in our proof the inequalities

were proved by integrating on ∂∗M̃ some inequalities at x ∈ M̃ that

hold for each ξ ∈ ∂∗M̃ .
Tracing back our argument, in [M] we proved that for B = 1

2m log ξ

we have the following equalities on M̃ :

|∇B| = 1

HessB (X,Y ) = −g (X,Y ) + g (∇B,X) g(∇B,Y )

−g (J∇B,X) g (J∇B,Y ) ,
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where HessB denotes the real Hessian of B.
From the work of Li and Wang [L-W] we know that in this case, if the

manifold M̃ has bounded curvature then it is isometric to CH
m. This

is always the case for our setting, since M̃ covers a compact manifold,
so its curvature is bounded. q.e.d.
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