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CUSP SHAPES UNDER CONE DEFORMATION

Jessica S. Purcell

Abstract

A horospherical torus about a cusp of a hyperbolic manifold
inherits a Euclidean similarity structure, called a cusp shape. We
bound the change in cusp shape when the hyperbolic structure
of the manifold is deformed via cone deformation preserving the
cusp. The bounds are in terms of the change in structure in a
neighborhood of the singular locus alone.

We then apply this result to provide information on the cusp
shape of many hyperbolic knots, given only a diagram of the knot.
Specifically, we show there is a universal constant C such that if
a knot admits a prime, twist reduced diagram with at least C
crossings per twist region, then the length of the second shortest
curve on the cusp torus is bounded. The bound is linear in the
number of twist regions of the diagram.

1. Introduction

1.1. Motivation. The interplay between geometry and topology is an
important theme in the study of 3–manifolds. Since Thurston’s work
in the late 1970s, it has been known that any Haken 3–manifold has
a geometric decomposition [23]. Recently, Perelman has announced a
proof that any closed, orientable 3–manifold has such a decomposition
(the geometrization conjecture). However, it is important not only to
know the existence of a geometric structure on a 3–manifold, but also
to understand the relation between that structure and the topological
description of the manifold.

Often a 3–manifold is described topologically, for example by a com-
binatorial diagram indicating a knot complement in S3, or a Dehn filling
description (see Definition 1.1 below). However, relating this topological
description to the geometry of the manifold seems to be very difficult,
and remains an important problem in the area. There are few tools
available to give geometric data from topological information. In this
paper, we present a new such tool.

We are particularly interested in topological descriptions of 3–man-
ifolds with torus boundary. These include all knot and link complements
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in S3, as well as knot and link complements in other 3–manifolds. It
is a classic result due to Wallace and Lickorish that every closed, ori-
entable 3–manifold is given by a Dehn filling on a link complement in
S3 ([25], [18]). Thus these manifolds are of fundamental importance in
the subject.

We will also focus only on those manifolds which are hyperbolic. The
link complements of Wallace and Lickorish above can be taken to be
hyperbolic. Thurston showed that on any such cusped hyperbolic man-
ifold “most” Dehn fillings are hyperbolic. That is, only a finite number
of slopes per link component need be excluded; then any Dehn filling
on remaining slopes yields a hyperbolic manifold [23]. Additionally, for
knots in S3, any knot that is not a torus or satellite knot is known to be
hyperbolic [24]. Therefore, in some sense, most 3–manifolds are hyper-
bolic. Mostow–Prasad rigidity implies that the hyperbolic structure on
these finite volume manifolds is unique [19], [20]. However, this unique
structure is little understood.

Given a hyperbolic manifold with torus boundary components, i.e.,
given a cusped hyperbolic manifold, the geometric structure on the man-
ifold allows us to associate a Euclidean similarity structure, called a cusp
shape, to each boundary component. The cusp shapes of a manifold are
geometric quantities which we will relate to a manifold’s topological
description.

There are several reasons one might be interested in knowing the cusp
shape of a manifold. Cusp shape is an interesting piece of geometric
information by itself. It also can be used to give a rough lower bound
on the volume of the manifold, by calculating cusp volumes and using
packing arguments such as those of Böröczky [5]. (See, however [10]:
this lower bound may not be very sharp.) More importantly, knowing
the cusp shape, we also obtain information on the geometry of manifolds
obtained by Dehn filling. For example, we can find all filling slopes which
might not yield a hyperbolic manifold [3], [15], [14].

Our main results give explicit bounds on the change in cusp shape
of a 3–manifold with multiple cusps under all but finitely many Dehn
fillings, where one cusp is left unfilled. This is essentially the content
of Theorems 1.2, 1.3, and 1.4 below. The first, Theorem 1.2, is the
most general, bounding cusp information. In Theorem 1.3, we give
a differential inequality bounding the normalized lengths of curves on
cusps. In Theorem 1.4, we bound the change in height of the cusp shape.

We also apply these results to the case of knots in S3. Given only a
diagram of a large class of knots, we are able to determine bounds on the
height of cusps. This is the content of Theorem 1.8. Note that similar
results, relating the geometry of a knot to its diagram, are rare. In fact,
we know only of results relating volumes to a diagram. Lackenby found
lower bounds on volumes of alternating knots based on a condition of
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a diagram, and upper bounds for general knots [16]. The lower bounds
were improved by Agol, Storm and Thurston [4], and the upper by Agol
and D. Thurston in an appendix to Lackenby’s paper [16]. Using cone
deformations, we found similar bounds on volumes for another class of
knots [21]. Using negatively curved metrics, we recently improved these
results with Futer and Kalfagianni [11].

However, as far as we are aware, the results of this paper are the first
of their kind giving actual geometric bounds on cusp shape based only
on a diagram.

1.2. Cone deformations. Our primary technique is cone deformation,
which we will now describe. Using properties of cone deformations, we
obtain geometric information on the topological process of Dehn filling.

Definition 1.1. Given a manifold M with torus boundary ∂M and
specified slope s on ∂M , we obtain a new manifold by gluing a solid torus
to ∂M such that s bounds a disk in the solid torus. This is called the
Dehn filling of M along s, or sometimes Dehn surgery, and the resulting
manifold is denoted M(s). More generally, if M has n torus boundary
components with slopes s1, . . . , sn, then we obtain M(s1, . . . , sn) in the
same manner.

A geometric description of Dehn filling was investigated by Thurston
[23]. Given a complete hyperbolic structure on a manifold M with torus
boundary, he showed the structure could be deformed through incom-
plete hyperbolic structures with singularities at the core of the added
solid torus to structures whose completion is again non-singular. These
structures are exactly hyperbolic structures on Dehn filled manifolds
M(s). The space of deformations is called hyperbolic Dehn surgery
space.

We restrict our attention to particular paths through hyperbolic Dehn
surgery space in which the incomplete hyperbolic manifolds are all cone
manifolds. That is, the completion gives a manifold with cone singu-
larities along the core of the added solid torus, with cone angle α. (A
more complete definition of a cone deformation is given in Definition
2.1 below.)

We have some control over cone deformations. Local rigidity results
due to Hodgson and Kerckhoff [13], extended by Bromberg in the case of
geometrically finite manifolds [9], give control on the change in geometry
of the entire manifold, knowing only information on the change in a
neighborhood of the singular locus.

This geometric control has been used recently to prove several inter-
esting results in 3–manifold theory. Hodgson and Kerckhoff used it to
give universal bounds on the number of exceptional Dehn surgery slopes
for finite volume manifolds [14]. In the infinite volume case, cone de-
formations lie at the heart of drilling and grafting theorems, described
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by Bromberg in [8]. These have recently been used to resolve problems
in the field of Kleinian groups, such as the Bers density conjecture [7],
and existence of type preserving sequences of Kleinian groups [6]. This
paper gives another application of cone deformations, to finite volume
manifolds with cusps.

1.3. Cusp shapes. Let M be a manifold admitting a hyperbolic struc-
ture, with a torus boundary component T . Under the hyperbolic struc-
ture on M , T will be a cusp. We take a horoball neighborhood of this
cusp. Its boundary is a horospherical torus, which inherits a Euclidean
structure from the hyperbolic structure on M . The structure is indepen-
dent of choice of horoball neighborhood, up to scaling of the Euclidean
metric. Thus we obtain a class of Euclidean similarity structures on T ,
which we call the cusp shape of the torus T .

Now, suppose the hyperbolic structure of M is changing under a cone
deformation with singularities along a link Σ in M disjoint from T . Σ
is called the singular locus of the deformation. T will remain a cusp
throughout the deformation, and its cusp shape will be changing with
the change of geometry of M . We bound this change in terms of the
change in geometry in a neighborhood of Σ.

Theorem 1.2. Suppose we have the following:

• M a complete finite volume hyperbolic 3–manifold with a cusp T .
• X = X0 a complete finite volume hyperbolic 3–manifold which

can be joined to M = Xτ by a smooth one–parameter family of
hyperbolic cone manifolds Xt, such that cone angles go from 0 at
time t = 0 to 2π at time τ .

• A singular locus, say with n components, such that the tube radius
about each component is larger than R1 ≥ 0.56 for all t.

• A horoball neighborhood Ut of the cusp of Xt which deforms to
T at time τ . Let γ(t) denote the path ∂Ut travels through the
Teichmüller space of the torus, endowed with Teichmüller metric
‖ · ‖.

Then there exists a parameterization of the deformation such that we
have the following bound for ∂Ut:

2 ‖γ′(t)‖2Area(∂Ut) ≤ n C(R1).

Here C(R1) is a strictly decreasing function of R1 which approaches 0
as R1 approaches infinity. Moreover, we can assume τ ≤ (2π)2.

Also interesting is the application of Theorem 1.2 to lengths of curves
on the cusp in question. Let β be a slope on the cusp torus, and again
let γ(t) be the path that the cusp shape ∂Ut traces through the Te-
ichmüller space of the torus. Let Lt be the normalized length of β
under the deformation, with derivative L̇ = d

dtLt (see Section 3.3 for
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more information). Then Lt will satisfy:

(1) −‖γ′(t)‖Lt ≤ L̇ ≤ ‖γ′(t)‖Lt.

Combining equation (1) with the result of Theorem 1.2, we may
bound the change in normalized length of a curve under a cone de-
formation.

Theorem 1.3. Let the set up be as in Theorem 1.2 above. Let Lt be
the normalized length of a slope on a cusp torus under the cone defor-
mation, with derivative L̇ = d

dtLt. Then there exists a parameterization
of the cone deformation such that the change in Lt is bounded by the
following inequality:

−
(√

n C(R1)

2Area(∂Ut)

)
Lt ≤ L̇ ≤

(√
n C(R1)

2Area(∂Ut)

)
Lt .

Finally, we use Theorem 1.3 to bound the normalized length of the arc
perpendicular to the shortest curve on the cusp torus, and then bound
the length of this shortest curve below. We then obtain an estimate
that is independent of time.

Theorem 1.4. Let the notation be as in Theorem 1.2 above. Denote
by h(M) the normalized height of the cusp torus ∂Uτ . That is, h(M) is
the normalized length of the arc perpendicular to the shortest curve on
∂Uτ that runs from the shortest curve back to the shortest curve (this arc
might not be closed). Similarly, let h(X) denote the normalized height
of ∂U0. Then there exists a parameterization of the cone deformation
such that the change in normalized height is bounded in terms of R1

alone:

−(2π)2
√

n C(R1)

(1 − e−2R1)
√

2
≤ h(M) − h(X) ≤ (2π)2

√
n C(R1)

(1 − e−2R1)
√

2
.

1.4. Applications to knot theory. In the last part of this paper we
give specific applications of Theorem 1.4. We determine bounds on the
cusp shape of a knot based solely on a diagram of that knot.

Before we state the results, we review some definitions.

Definition 1.5. Let K ⊂ S3 be a knot with diagram D(K). Define
a twist region to be a region of D(K) where two strands of the diagram
twist around each other maximally. Precisely, if D(K) is viewed as a 4–
valent planar graph with over–under crossing information at each vertex,
then a twist region is a maximal string of bigons in the complement of
the graph arranged end to end, or a single vertex of the graph adjacent
to no bigons.
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We also require the diagram to be reduced, in the sense of the follow-
ing two definitions. These definitions are illustrated elsewhere (see e.g.,
[15], [12]).

Definition 1.6. A diagram D(K) is prime if when any simple closed
curve γ intersects D(K) transversely in two points in the interiors of
edges, then γ bounds a subdiagram containing no crossings of the orig-
inal diagram.

Definition 1.7. The diagram D(K) is twist reduced if when any
simple closed curve γ intersects D(K) transversely in four points in the
interiors of edges, with two of these points adjacent to one crossing and
two others adjacent to another crossing, then γ bounds a subdiagram
consisting of a (possibly empty) collection of bigons arranged end to end
between these two crossings.

Any diagram of a prime knot or link can be simplified into a prime,
twist reduced diagram. If the diagram is not prime, then crossings on
one side of a simple closed curve are extraneous and can be removed.
If the diagram is not twist reduced, then performing flypes will amal-
gamate two twist regions adjacent to a simple closed curve into one,
reducing the number of twist regions.

For a hyperbolic knot complement, we can choose a horoball neigh-
borhood about the cusp such that a meridian on the boundary of that
horoball has length 1 (see e.g., [2]). Consider the geodesic arc orthog-
onal to the meridian which runs from meridian to meridian on this
horospherical torus. Define the length of this arc to be the height of the
cusp. Note that when the meridian is the shortest curve on the cusp
(as will be the case in the knots of this paper), this definition of height
agrees with that in Theorem 1.4.

Let K be a knot in S3 which admits a prime, twist reduced diagram
with at least 2 twist regions, with each twist region containing at least
6 crossings. Then it was shown in [12] that S3 − K is hyperbolic. The
following theorem gives bounds on the cusp shape.

Theorem 1.8. Let K be a knot in S3 which admits a prime, twist
reduced diagram with a total of n ≥ 2 twist regions, with each twist
region containing at least c ≥ 116 crossings. In a hyperbolic structure
on S3 −K, take a horoball neighborhood U about K. Normalize so that
the meridian on ∂U has length 1. Then the height H of the cusp of
S3 − K satisfies:

H ≥ n (1 − f(c))2.

Here f(c) is a positive function of c which approaches 0 as c increases
to infinity.

Additionally, H ≤ n(
√

n − 1 + f(c))2.
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The function f is given explicitly in Section 6. We can plug in values
of c to obtain more specific estimates. For example, in Corollary 6.7 we
let c = 145. Then 1 − f(c) is approximately 0.8154.

Note that the shortest non-meridional slope on the cusp of S3 − K
will have length at least that of the height. So Theorem 1.8 implies
that in this case, the shortest non-meridional slope has length at least
n (1 − f(c))2.

By results of Hodgson and Kerckhoff [14], Dehn filling along a slope
with normalized length at least 7.515 results in a hyperbolic manifold.
Corollary 6.7 implies that for a complicated knot, the shortest non-
meridional slope will have normalized length at least

√
n(0.8154). Thus

the normalized length of a slope will be larger than 7.515 whenever
n ≥ 85. Thus we have the following corollary to Theorem 1.8:

Corollary 1.9. Let K be a knot in S3 which admits a prime, twist
reduced diagram with at least 85 twist regions and at least 145 cross-
ings per twist region. Then any non-trivial Dehn filling of S3 − K is
hyperbolic.

Corollary 1.9 is proven without any reference to the geometrization
conjecture. If we assume that conjecture, then we recently proved (with
Futer [12]) that the numbers 85 and 145 could be reduced to 4 and 6
respectively. However, note the proof of that result gives no geometric
information on cusp geometry.

The numbers of crossings, 116 and 145, can be reduced significantly
for certain classes of knots. We illustrate this in Section 6.4 for 2–bridge
knots.

1.5. Organization of this paper. In Section 2, we review background
information on cone deformations.

In Section 3, we begin the proofs of Theorems 1.2, 1.3, and 1.4 using
information set up in Section 2. This leads us to results which contain
certain boundary terms.

In Section 4, we give bounds on these boundary terms, which allow
us to conclude the proof of Theorems 1.2 and 1.3.

We complete the proof of 1.4 in Section 5.
Finally, in Section 6 we apply the results of the previous sections to

knots, and present the proof of Theorem 1.8.
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reading this paper, and for many helpful suggestions, corrections, and
comments.
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2. Background on Cone Deformation

In this section, we will recall definitions associated with cone deforma-
tions and review relevant results from work of Hodgson and Kerckhoff
([13], [14]).

Definition 2.1. Let M be a 3–manifold containing a closed 1–man-
ifold Σ. A hyperbolic cone structure on M is an incomplete hyperbolic
structure on X = M −Σ, whose completion is singular along Σ. A cross
section of a component of Σ is a hyperbolic cone with angle α, where α
is constant along that component. (For a more complete description of
the metric on M , see [13].) The set Σ is called the singular locus of M .
M with this structure is called a hyperbolic cone manifold. A hyperbolic
cone deformation on M is a smooth one–parameter family of hyperbolic
cone structures Xt.

2.1. Infinitesimal deformations. Now, we may study deformations
by considering possible “derivatives at time t” of Xt, or infinitesimal de-
formations of hyperbolic structure, for any time t. Each of these infini-
tesimal deformations corresponds to an element in a certain cohomology
group H1(X; E), where recall X = M − Σ. We will be manipulating
elements of H1(X; E), so we recall some information on their structure.

2.1.1. Cohomology. Given ω in H1(X; E), ω is a one–form on X
with values in the vector bundle E of infinitesimal isometries of X. The
bundle E has fiber sl(2, C), which is the Lie algebra of infinitesimal
isometries of H

3. Recall that this Lie algebra has a complex structure.
Geometrically, if s represents an infinitesimal translation in the direction
of s, then is represents an infinitesimal rotation with axis in the direction
of s. Thus on X we can identify E with the complexified tangent bundle
TX ⊗ C, and write any ω ∈ H1(X; E) in complex form: ω = v + iw.

By the Hodge theorem proved in [13], in each cohomology class of
H1(X; E) there is a harmonic representative of the form

ω = η + i ∗ Dη,

where η is a unique TX-valued 1–form on X = M − Σ that satisfies:

D∗η = 0,

(2) D∗Dη + η = 0.

Here D is the exterior covariant derivative on such forms and D∗ is its
adjoint.

Thus we may assume that our cone deformation is chosen such that
at each time t, the infinitesimal deformation of hyperbolic structure of
Xt corresponds to a harmonic element ω in H1(X; E).
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2.1.2. Tubular and Horoball neighborhoods. For purposes of this
paper, we are particularly interested in the effect of the deformation in
a neighborhood of the singular locus or in a horoball neighborhood of
a cusp. So in this subsection, we will review a decomposition of ω (and
η) into a nice form in these types of neighborhoods.

Select a component of the singular locus Σ of M . Let V be a tubular
neighborhood of that component, with tube radius R. V is a solid
torus with a singular core curve. During the cone deformation, the
geometric structure on V is changing in meridional, longitudinal, and
radial directions. We can write ω in V to reflect this:

(3) ω = ω0 + ωc.

Here only ω0 = η0 + i ∗ Dη0 changes the holonomy of the meridian and
longitude on the torus ∂V , and ωc is a correction term.

We can further decompose ω0 as follows:

(4) ω0 = u ωm + (x + iy)ωℓ.

Here, u, x, and y are real numbers. The 1–forms ωm and ωℓ are standard
forms, calculated in [13], which depend only on the tube radius R of V .
The form ωm = ηm+i∗Dηm gives the change in the meridional direction.
In particular, it represents the infinitesimal deformation which decreases
the cone angle but doesn’t change the real part of the complex length
of the meridian. The form ωℓ = ηℓ + i∗Dηℓ stretches the singular locus,
but leaves the holonomy of the meridian unchanged.

Since we will use the explicit formula for the standard form ωℓ in a
calculation in a later section, we will restate that form here. Let e1, e2,
and e3 be an orthonormal frame for V in cylindrical coordinates, with
e1 pointing in the radial direction and e2 tangent to the meridian. Let
R be the radius of the tube V . Recall ωℓ is a (TX ⊗C)–valued 1–form,
which can be viewed as an element of Hom(TX, TX ⊗C). Thus it can
be described as a matrix in the cylindrical coordinates e1, e2, e3.

(5) ωℓ(R) =




(cosh R)−2 0 0
0 −1 −i tanhR
0 −i tanhR 1 + (cosh R)−2


 .

Now, so far, our decomposition of ω has been in a tubular neigh-
borhood V of a component of the singular locus. We can do a similar
decomposition of ω in a horoball neighborhood U of a cusp. In fact,
we may consider U as a tubular neighborhood of a 1–dimensional sub-
manifold of M on which the cone angle remains 0 throughout the defor-
mation, and the tube radius is infinite. Again we may decompose ω as
ω0 + ωc, where only ωc affects the holonomy of the torus ∂U . But now,
since the cone angle at the core of U is not changing, the meridional
part of ω0 is identically 0. Thus in this case,

ω0 = (x + iy)ωℓ,
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where again x and y are real numbers, and ωℓ is a standard form. Since
the tube radius of U is infinite, to write down the formula for ωℓ explic-
itly we let R go to infinity in equation (5).

(6) ωℓ(∞) =




0 0 0
0 −1 −i
0 −i 1


 .

2.2. Boundary terms. Our proof of Theorem 1.2 will involve certain
boundary terms. In this section, we define these terms. We explain how
they arise and recall certain properties. They will be used in the proof
of Theorem 1.2.

Using results of the last section, we may always assume that we have
a harmonic representative ω = η + i ∗Dη. Thus η satisfies equation (2).

Let N be any submanifold of X = M−Σ with boundary ∂N oriented
by the outward normal. When we take the L2 inner product of equation
(2) with η and integrate by parts over N , we obtain the boundary
formula ([14, Lemma 2.3]):

(7) B(N) =

∫

∂N
η ∧ ∗Dη = ‖η‖2

N + ‖ ∗ Dη‖2
N

Here ‖·‖ denotes the L2–norm on N . We will apply equation (7) to sub-
manifolds of X = M − Σ involving tubular or horoball neighborhoods.

First, we will introduce some notation. Let Vj be a tubular neighbor-
hood of a component (the j-th component) of the singular locus, or a
horoball neighborhood of a cusp. Using similar notation to that of [14],
define

bVj
(ζ, ξ) =

∫

∂Vj

∗Dζ ∧ ξ,

where ∂Vj is oriented such that the tangent vector orthogonal to ∂Vj

is an outward normal when viewed from Vj . We will be considering
bVj

(η, η) in this paper, and we review results concerning this term.
The decomposition (3) of ω in Vj into ω0 + ωc, and η into η0 + ηc

decomposes the term bVj
(η, η):

(8) bVj
(η, η) = bVj

(η0, η0) + bVj
(ηc, ηc).

That is, cross terms vanish ([14, Lemma 2.5]). Additionally, the term
bVj

(ηc, ηc) is actually non-positive ([14, Lemma 2.6]), so we find

(9) bVj
(η, η) ≤ bVj

(η0, η0).

Now, let V be a tubular neighborhood of the entire singular locus Σ,
as well as horoball neighborhoods of cusps. Thus V is a union of tubular
neighborhoods Vj of components Σj of the singular locus and horoball
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neighborhoods Uj . Then letting N = X − V in equation (7),

B(X − V ) = ‖η‖2
X−V + ‖ ∗ Dη‖2

X−V =

∫

∂V
∗Dη ∧ η(10)

=
∑

j

bVj
(η, η) +

∑

k

bUj
(η, η).(11)

The first sum is over all components of the singular locus, the second
over all horoball neighborhoods of cusps. This equation, along with
equation (9), implies

(12) 0 ≤
∑

j

bVj
(η, η)+

∑

k

bUk
(η, η) ≤

∑

j

bVj
(η0, η0)+

∑

k

bUk
(η0, η0).

Notice η0 = (η0)j depends on the neighborhood Vj or Uj . However,
using the notation bVj

(η0, η0), it should be clear that we are referring
to the decomposition of η particular to Vj in this context, and similarly
for Uj . We will further simplify notation, using the following definition.

Definition 2.2. Let Σj be a component of the singular locus Σ.
Let Vj be a tubular neighborhood of Σj of radius R. We let bj be the
boundary term:

bj = bVj
(η0, η0).

Remark. Note that for our applications of the results of this section,
the one–form ω corresponds to an infinitesimal deformation of hyper-
bolic structure at time t. Thus ω, η, η0, bj , etc. will all depend on time
t in our applications in future sections.

To avoid a notational nightmare, in the sequel we will assume the time
t has been fixed, and continue writing these terms without reference to
t, except occasionally where we feel recalling the dependency on t will
help avoid confusion.

3. Change in Cusp Shape

In Section 2, we set up notation and reviewed known results. Given
this information, we are ready to begin the proof of Theorem 1.2.

3.1. Boundary relations. Restrict to the case when we have a single
cusp.

We will let U be a horoball neighborhood of the one cusp, and V1, . . . ,
Vn be tubular neighborhoods of the components of the singular locus Σ,
each with radius R. Here, we are letting n be the total number of com-
ponents of Σ. We will assume throughout that these neighborhoods are
chosen such that all intersections of distinct neighborhoods are trivial.

Let ω ∈ H1(X; E) correspond to a harmonic infinitesimal deforma-
tion of hyperbolic structure at time t, and decompose ω in tubular
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neighborhoods and horoball neighborhoods as in the previous section,
and consider boundary terms.

By Equation (12), we see immediately that

(13) −bU (η0, η0) ≤
n∑

j=1

bj .

Again, note that η0 in the term bU (η0, η0) refers to the decomposition
of η valid only in the horoball neighborhood U . Also, recall that the
terms of equation (13) all depend on time t, but we are suppressing t
for notational purposes.

Now, we will analyze the left hand side of (13). Recall that in a
horoball neighborhood of a cusp, ω0 can be written as a complex mul-
tiple of the form ωℓ = ωℓ(∞) in equation (6). That is, there are real
numbers a and b (for fixed t) such that

(14) ω0 = (a + ib)




0 0 0
0 −1 −i
0 −i 1


 .

Lemma 3.1. Using the notation above,

−bU (η0, η0) = 2(a2 + b2)Area (∂U).

Proof. By Equation (14), we may write η0 = Re(ω0) and ∗Dη0 =
Im(ω0) as:

(15) η0 =




0 0 0
0 −a b
0 b a


 =




0
−a
b


ω2 +




0
b
a


ω3

and:

∗Dη0 =




0 0 0
0 −b −a
0 −a b


 =




0
−b
a


ω2 +




0
−a
b


ω3.

Here ω1, ω2, and ω3 are forms dual to the vectors e1, e2, and e3 giving
cylindrical coordinates on U . Recall in particular that e1 is radial, and
e2 is tangent to a meridian.

We then may compute −bU (η0, η0) explicitly in terms of the constants
a and b:

−bU (η0, η0) =

∫

∂U
η0 ∧ ∗Dη0 =

∫

∂U
2(a2 + b2)ω2 ∧ ω3.

Since ω2 ∧ ω3 is the area form for the torus ∂U , we have:

−bU (η0, η0) = 2(a2 + b2)Area(∂U).

q.e.d.
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Notice that Equation (13) and Lemma 3.1 imply:

(16) 0 ≤
∑

j

bj ,

and that we have equality by equation (11) if and only if η is trivial on
X − V , which happens only when the deformation is trivial.

3.2. Teichmüller Space. We now turn our attention to the term (a2+
b2) in Lemma 3.1. This term is closely related to the change in metric
of the torus ∂U .

Under the hyperbolic metric on X = M−Σ, the boundary ∂U inherits
a Euclidean structure. This gives a point in the Teichmüller space of
the torus, T (T 2).

Remark. We view T (T 2) as the space of flat structures on the torus.
To each flat structure ζ is associated a unit area Euclidean metric gζ ,
and vice versa. However, in the following discussion we will refer to
both the flat structure and its associated metric, and so we will con-
tinue to distinguish between the two. We use Greek letters γ, ζ to
denote points in T (T 2), and g with appropriate subscripts to denote
the induced metric on the torus.

As the metric on X changes under the cone deformation, the point
in T (T 2) will also change, tracing out a smooth path γ(t), with tangent
vector γ′(t). The tangent vector γ′(t) is an infinitesimal change of the
flat structure on the torus. Our 1–form ω encodes the infinitesimal
deformation of the hyperbolic cone structure Xt on X = M −Σ. So we
may relate γ′(t) to ω, or more particularly, to a2 + b2. We will do so
using the Teichmüller metric on T (T 2).

Definitions of the Teichmüller distance vary by constant factors in
the literature. We will use the convention that the Teichmüller distance
between two points, σ and τ in T (T 2), is defined to be

d(σ, τ) =
1

2
inf
f

log Kf ,

where f : σ → τ is a Kf–quasiconformal map, with Kf the smallest
such constant. (See for example [17].)

Lemma 3.2. Let γ(t) denote the path of ∂U through T (T 2). Let
γ′(t) denote its tangent vector. Then

√
a2 + b2 =

∥∥γ′(t)
∥∥ ,

where the metric is the Teichmüller metric.

Proof. Fix t = t0, and consider the flat structure on the torus given
by ∂Ut0 = γ(t0). We may assume it has unit area. Recall that any
Teichmüller geodesic through γ(t0) is given as follows. Select two or-
thogonal geodesic foliations F1 and F2 on the torus. Select λ > 0.
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For any u ∈ R, obtain a new metric by multiplying vectors along F1

by exp(−λ u) and multiplying vectors along F2 by exp(λ u). This is a
“stretch–squeeze” map, which preserves the area of the torus. It gives
a one–parameter family of flat structures on the torus, which we denote
by ζ(u).

Teichmüller’s theorem says that in the case of the torus, this stretch–
squeeze map has the minimal quasiconformal distortion, so is a Te-
ichmüller geodesic. For each u, the derivative of the map ζ(u) takes
an infinitesimal circle to an infinitesimal ellipse, the ratio of whose
axes is exp(2uλ). Thus for any u, the distance between the structure
ζ(0) = γ(t0) at time 0 and ζ(u) at time u is

d(ζ(0), ζ(u)) =
1

2
inf
f

log Kf =
1

2
log(e2uλ) = λ u.

Therefore, λ = ‖ζ ′(u)‖, where the norm is given with respect to the
Teichmüller metric. In particular, λ = ‖ζ ′(0)‖.

On the other hand, for any point on the torus, let u1 and u2 be
orthonormal vectors in the directions of F1 and F2 respectively. Then
when we write the infinitesimal change of metric induced by ζ ′(0) in
coordinates given by u1 and u2, we obtain at every point a diagonal
matrix Λ with −λ, λ on the diagonal, since at each time u those vectors
are just multiplied by e−λ u, eλ u, respectively. Thus if we let gu be the
metric on the torus induced by ζ(u), we have

d

du

∣∣∣∣
u=0

gu(x, y) = 2g0(Λ x, y).

Now we relate this discussion to the term a2 + b2.
Recall the infinitesimal deformation of the hyperbolic cone structure

of X is encoded by the one–form ω. In particular, the infinitesimal
change in metric is given by the real part η. That is, if we let gt be the
metric on X at time t, then

(17)
d

dt

∣∣∣∣
t0

gt(x, y) = 2gt0(η(t0)x, y).

(See the displayed equation on p. 374 of [14].)
We are interested in the infinitesimal change in the metric on ∂Ut0 .

Since η decomposes into η0 + ηc, and only η0 changes the holonomy of
∂U , we know the infinitesimal change in metric on ∂Ut0 is given by η0.

We have an explicit formula for η0, written in orthonormal coordi-
nates with respect to the metric gt0 , given by e1, e2, e3, where e1 is
radial and e2 points in the direction of the meridian. Consider again
equation (15). Since the first row and column for the matrix of η0 are
zero, we see that η0 actually has no effect on or contribution to the
change of metric in the radial direction of U . Hence, η0 itself gives the
infinitesimal change of metric on the torus ∂Ut0 , or γ′(t0) = η0(t0).
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When we write η0 in orthonormal coordinates e2, e3 on the torus, we
discard the first row and column of the matrix of equation (15), and
obtain the 2 × 2 matrix

(18) A =

[
−a b
b a

]
.

Here the first column of A gives the infinitesimal change in the merid-
ional direction, the second the change in the direction orthogonal to the
meridian. That is, if we restrict the metric gt to ∂Ut, we may rewrite
equation (17) as

d

dt

∣∣∣∣
t=t0

gt(x, y) = 2gt0(η0(t0)x, y) = 2 〈Ax, y〉 .

Hence A is a matrix representation of γ′(t0), the infinitesimal change
of metric of the torus ∂Ut0 .

We can diagonalize A. For any point on the torus, there exist or-
thonormal vectors u1 and u2 such that when we put A into coordinates
given by u1 and u2, A is diagonal with −

√
a2 + b2 and

√
a2 + b2 on the

diagonal. Moreover, since A does not depend on the point on the torus
(that is, for any point on the torus we obtain the same matrix A), u1 and
u2 determine orthogonal geodesic foliations F1 and F2. These, in turn,
determine a Teichmüller geodesic ζ(u) with ζ(0) = γ(t0), whose initial
tangent vector ζ ′(0) agrees with A at every point, and has Teichmüller

norm ‖ζ ′(0‖ =
√

a2 + b2. Thus infinitesimally, γ(t) and ζ(u) agree near

t = t0 and u = 0, respectively. Hence ‖γ′(t0)‖ = ‖ζ ′(0)‖ =
√

a2 + b2.
q.e.d.

Remark. In the proof of Lemma 3.2, we showed that for any time t,
γ(t) agrees infinitesimally with an explicit Teichmüller geodesic which is
completely determined by the matrix A. We will use this again below.

Finally, putting Lemmas 3.1, and 3.2 together with Equation (13),
we have completed the proof of the following theorem.

Theorem 3.3. Let Xt be a hyperbolic cone deformation with a cusp.
That is, for each time t, the hyperbolic cone manifold Xt has a cusp
which remains a cusp throughout the deformation. Let Ut be a horoball
neighborhood of the cusp. Let γ(t) denote the path ∂Ut travels through
the Teichmüller space of the torus. Then the change in ∂Ut is bounded
by the following inequality:

2 ‖γ′(t)‖2Area (∂Ut) ≤
∑

bj(t).

The sum on the right hand side is over all components of the singular
locus.

Note Theorem 3.3 gives an inequality identical to that of Theorem
1.2, except for the boundary terms bj on the right hand side. We will
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bound these, and complete the proof of Theorem 1.2, in Section 4. First,
we set up a similar theorem to Theorem 1.3.

3.3. Normalized lengths on the torus. We are interested in deter-
mining how normalized lengths of curves on the torus ∂U change over
the deformation.

Definition 3.4. Let β be a slope on the torus T , that is, an isotopy
class of simple closed curves. The normalized length of β is defined to
be:

Normalized length(β) =
Length(β)√

Area(T )
,

where Length(β) is defined to be the length of a geodesic representative
of β on T .

Lemma 3.5. Let β be a slope on ∂Ut. Let Lt(β) denote its normalized

length, with derivative L̇(β). Then Lt(β) satisfies:

(19) −‖γ′(t)‖Lt(β) ≤ L̇(β) ≤ ‖γ′(t)‖Lt(β).

Proof. Fix a time t = t0. We will show the lemma for t0.
We saw in the proof of Lemma 3.2 that γ(t) agrees infinitesimally

with an explicit Teichmüller geodesic ζ(u) determined by the matrix
A of equation (18) when t = t0 and u = 0. More specifically, ζ(u)

multiplies vectors along F1 by exp(−u
√

a2 + b2), and multiplies vectors

along F2 by exp(u
√

a2 + b2), where F1 and F2 are orthogonal geodesic
foliations (determined by the matrix A) on the torus ∂Ut0 . Thus we
will prove the lemma by showing it is true when the change in metric
on ∂Ut0 is given by ζ(u).

Now, Lt(β) is defined to be the length of a geodesic representative of β

divided by
√

Area(∂Ut). Without loss of generality, we may assume that
Area(∂Ut) = 1, since γ′(t) is given by a trace free (hence area preserving)
matrix A. Thus Lt(β) is just the length of a geodesic representative of
β at time t0.

Let β̂t0 : I → ∂Ut0 be a geodesic representative of β at time t0. Then

β̂t0 makes some angle θ with the foliation F1. For any u, ζ(u) takes β̂t0

to a new geodesic, still with slope β, and length Lu(β) = αu(θ)Lt0(β).
Here

αu(θ) =

√
cos2 θ exp(−2u

√
a2 + b2) + sin2 θ exp(2u

√
a2 + b2)

is maximized when θ = π/2 and minimized when θ = 0. Thus we have

exp(−
√

a2 + b2 u)Lt0(β) ≤ Lu(β) ≤ exp(
√

a2 + b2 u)Lt0(β).
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Since d
dt

∣∣
t=t0

Lt(β) = d
du

∣∣
u=0

Lu(β),

−
√

a2 + b2 Lt0(β) ≤ d

dt

∣∣∣∣
t=t0

Lt(β) ≤
√

a2 + b2 Lt0(β).

q.e.d.

Combining this with the inequality of Theorem 3.3, we obtain the
following theorem.

Theorem 3.6. Let Lt be the normalized length of a slope on a cusp
torus ∂Ut under a cone deformation, with derivative L̇ = d

dtLt. Then
the change in Lt is bounded by the following inequality:

−
(√ ∑

bi(t)

2Area (∂Ut)

)
Lt ≤ L̇ ≤

(√ ∑
bi(t)

2Area (∂Ut)

)
Lt.

Proof. Solving for ‖γ′(t)‖ in the inequality of Theorem 3.3, we find

‖γ′(t)‖ ≤
√ ∑

bj(t)

2Area(∂Ut)
.

The result is given by substituting this into Equation (19). q.e.d.

3.3.1. Normalized height. For our applications, the curve on the
torus we are particularly interested in is the one running orthogonal
to the meridian. When we are dealing with link complements in S3,
as in a future section of this paper, there is a well defined meridian on
a cusp torus. Otherwise, choose the shortest nontrivial simple closed
curve on the initial cusp torus to be the meridian (for our applications
to knots and links in S3, these choices will agree).

We will be interested in estimating the length of the next shortest
nontrivial simple closed curve. This length will be at least as long as
the length of the arc orthogonal to the meridian.

At time t, let pt denote the geodesic arc perpendicular to the meridian,
running from meridian to meridian on ∂Ut. This arc will generally
not be a closed curve. Let ht be the normalized length of pt, that is,
ht = Length(pt)/

√
Area(∂Ut). We refer to ht as the normalized height

of the torus at time t. Denote its derivative at time t by ḣ.

Lemma 3.7. The normalized height ht satisfies

−
√

a2 + b2 ht ≤ ḣ ≤
√

a2 + b2 ht.
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Proof. Let µ denote the meridian slope, with Lt(µ) its normalized
length at time t. Then htLt(µ) = 1. Thus

ḣ

ht
+

L̇(µ)

Lt(µ)
= 0.

By Lemma 3.5 and Lemma 3.2,

−
√

a2 + b2 ≤ L̇(µ)

Lt(µ)
≤
√

a2 + b2.

Hence −
√

a2 + b2 ht ≤ ḣ ≤
√

a2 + b2 ht. q.e.d.

Again Lemma 3.7, combined with the inequality of Theorem 3.3, gives

(20) −
(√ ∑

bi

2Area(∂Ut)

)
ht ≤ ḣ ≤

(√ ∑
bi

2Area(∂Ut)

)
ht.

We simplify equation (20) by noting the area of Ut is given by the
length of the meridian times the actual length of the arc pt. Recall that
the length of pt is

√
Area(∂Ut)Lt(pt) =

√
Area(∂Ut)ht. So denoting the

length of the meridian of ∂Ut by mt, we have
√

Area(∂Ut) = mtht.

Putting this into Equation (20), we obtain:

Theorem 3.8. Let M be a hyperbolic 3–manifold with a cusp, and
let X be a hyperbolic 3–manifold which can be joined to M by a smooth
family of hyperbolic cone manifolds. Let ht denote the normalized height
at time t of the cusp which deforms to the cusp of M , and let mt denote
the length of its meridian. Finally, denote by ḣ the derivative of ht.
Then

(21) −
√∑

bi(t)

mt

√
2

≤ ḣ ≤
√∑

bi(t)

mt

√
2

.

4. Bounding the boundary terms

In this section, we finish the proofs of Theorems 1.2 and 1.3 by finding
a parameterization of the cone deformation for which we may bound the
sum

∑
bj .

In order to bound
∑

bj , we need more explicit formulas for the bj .
Recall that bj was defined in Definition 2.2 as:

bj = bVj
(η0, η0).

Here η0 is the real part of the 1–form ω0 in the j-th component Vj of a
tubular neighborhood of the singular locus. Thus we begin by revisiting
our decomposition of ω0 in Vj .
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4.1. Convex combinations of deformations. Recall that corresp-
onding to an infinitesimal deformation is the 1–form ω0. We want ω0 to
have certain desired properties.

By Equation (4), we can decompose ω0 = (ω0)j in Vj as

(ω0)j = uj ωm + (xj + iyj)ωℓ,

with uj , xj , and yj in R, and where ωm and ωℓ were computed in [13].
In [14], it was shown that if the singular locus has just one component,

then the entire cone deformation can be parameterized by the square of
the cone angle t = α2. In this case, u = u1 was determined explicitly
in [14]: u = −1/(4α2), where α is the cone angle at the core of the
singular solid torus V = V1.

When we have multiple components of the singular locus, we may
not necessarily be able to parameterize the cone deformation in this
manner. However, we do have the following information.

First, for each j in {1, . . . , n}, locally we have a deformation given
by changing the j-th cone angle only and leaving the others fixed. This
is a deformation with only one component of the singular locus, so the
methods of [14] apply, and this deformation can be parameterized by
t = α2

j . Then

(ω0)j = − 1

4α2
j

ωm + (xjj + iyjj)ωℓ.

Changing the angle in the j-th tube Vj and leaving the others fixed
also affects the k-th tube Vk. Since there is no change of cone angle in
this tube, (ω0)k can be expressed as

(ω0)k = (xjk + iyjk)ωℓ.

Any of these j deformations may be scaled by a factor sj ≥ 0, and
we may take non-negative linear combinations. These correspond to
new local deformations, in which the rates of change of cone angles
vary according to the choice of the sj . In a neighborhood of the j-th
component, write:

(22) (ω0)j = − sj

4α2
j

ωm +
n∑

k=1

(skxkj + i skykj)ωℓ.

Given a point s̄ = (s1, s2, . . . , sn), we may use these equations for
ω0 to compute the forms η0 explicitly, and thus compute the boundary
terms bj = bj(s̄) explicitly. Hodgson and Kerckhoff did the calculations
without the extra s̄ (p. 382 of [14]). When the s̄ is put in, we obtain:
(23)

bj(s̄)

Area(∂Vj)
= s2

j c +

((∑

k

skxkj

)2
+
(∑

k

skykj

)2
)

a + sj

(∑

k

skxkj

)
b.
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Here the terms a, b, and c are constants in terms of R which agree with
those on p. 383 of [14]. However, we are not immediately concerned
with their values. More importantly, a is always negative, b and c always
positive.

From the formula (23) we obtain the following information.

1) bj(s̄) is quadratic in s̄.
2) If any sj = 0 for some s̄, then bj(s̄) ≤ 0.

We also know that the sum of all the bj ’s is strictly positive, provided
s̄ 6= (0, 0, . . . , 0), by equation (16), as well as the remark right after that
equation. We will use this information in §4.2.
4.2. Selecting local deformations. Each choice of s̄ = (s1, . . . , sn)
corresponds to a local deformation with 1–form (ω0)j expressed in Vj

as in equation (22). In terms of the deformation, varying s̄ varies the
rates at which the cone angles are changing (instantaneously). When
s̄ = (1, . . . , 1), all cone angles are changing at the same rate. It might
be convenient to let s̄ = (1, . . . , 1), to simplify calculations. However,
such a choice may not give us the bounds on

∑
bj that we need.

In particular, we would like to select s̄ such that we may use certain
inequalities from [14]. (These inequalities appear in the proof of Lemma
4.3 in this paper.) In order to use these inequalities, we will need to
find s̄ such that each bj(s̄) ≥ 0.

The existence of such an s̄ has been discovered by Hodgson and Ker-
ckhoff, but their result is unpublished, so we include it as Lemma 4.1
here.

Lemma 4.1 (Hodgson–Kerckhoff). There is an s̄ 6= 0 for which
bj(s̄) ≥ 0 for all j = 1, 2, . . . , n.

Proof. It suffices, by rescaling, to restrict s̄ to the simplex

T = {s̄ = (s1, . . . , sn)|
∑

j

sj = n, sj ≥ 0}.

We first set up some notation.
Let the j-th vertex of T be denoted tj . So tj = (0, . . . , 0, n, 0, . . . , 0)

where the single non-zero value is in the j-th location. Notice that at
tj , bi(tj) ≤ 0 for all i 6= j. Because the sum of the bi is always strictly
positive, we must have bj(tj) > 0.

Let the face of T opposite tj be denoted fj . That is, on fj the j-th
coordinate is always 0. Notice that on fj , bj ≤ 0. We will assume that
bj < 0 on fj . If not, consider instead level sets of bj for values ǫ > 0
arbitrarily close to 0. Below, we will be finding points where all the bj

are positive. Taking a limit will at least give points where the bj are
nonnegative.

We will also assume level sets bj = 0 intersect transversely. If not,
take an arbitrarily small perturbation of the quadratic functions (keep-
ing them quadratic).
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First, we note that the set where bj > 0 is an open neighborhood of tj
in T . This is because on any line from tj to fj , bj goes from positive to
negative. Because bj(s) is quadratic in s, bj = 0 on this line in exactly
one value. Thus the level set bj = 0 separates tj from fj . It has a
well–defined positive and negative side.

Now, we prove the following sublemma by induction:

Lemma 4.2. Consider the k − 1 simplex Sk of T where si = 0 for
all i > k. There exists a nonempty open set Bk ⊆ Sk where bj > 0 for
all j ≤ k. Furthermore, the set Ek ⊆ Sk where bj = 0 for all j < k is
an odd number of points, each on the boundary of Bk.

Notice that in the above statement, when k = n, the simplex Sn is
all of T . Then if the statement is true, Bn is an open set on which all
the bj are positive, so this will prove Lemma 4.1.

An additional fact we will pick up from the proof is that the set En

where bj = 0 for j = 1, 2, . . . , n − 1 is an odd number of points. (We
will use this additional fact in the proof of Lemma 4.4 below.)

Proof. We first prove Lemma 4.2 when k = 2. In this case, S2 is
the 1–simplex from t1 to t2. At t1, b1 > 0. At t2, b1 < 0. Since b1 is
quadratic, somewhere on S2 is a single point e2 where b1 = 0. Notice
that b2(e2) must be positive. This is because each bj(e2) ≤ 0 for j > 2
(since the corresponding coordinates sj are all zero). Since b1(e2) is
zero, and the sum

∑
bi > 0, this forces b2 > 0. Then in this case, E2

contains the single point e2. B2 is nonempty, with e2 on its boundary.

t3

t2

e3

t1
B2

{b2 = 0}

B̂2

{b1 = 0} = Ê2

e2 ∈ E2

Figure 1. Proof of Lemma 4.1 when k = 3.

We will now prove the lemma by induction for k + 1. For reference,
an example of the case when k + 1 = 3 is illustrated in Figure 1.

Sk+1 is the k subsimplex of T with vertices t1, t2, . . . , tk+1, on which
sk+2 = · · · = sn = 0. It has as one boundary face the k − 1 simplex
Sk, on which sk+1 = sk+2 = · · · = sn = 0. On any other face of Sk+1,
sk+2 = · · · = sn = 0, and also sj = 0 for some j < k + 1.

By induction, we are assuming that on the face Sk the set Bk, where
bj > 0 for all j ≤ k, is a nonempty open set. By continuity, the set
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B̂k in Sk+1 where the same bj > 0 must also be nonempty. The set

Êk ⊂ Sk+1 where bj = 0 for j < k is a 1–manifold with boundary. A

neighborhood of Ek in Êk lies in the boundary of B̂k.
Consider Êk. As a 1–manifold, it consists of closed components and

arcs. The part of its boundary contained in Sk is the set Ek, so it consists
of an odd number of points. Hence there must be an odd number of arc
components of Êk with exactly one endpoint in Sk.

Consider the other boundary components of Êk. They must lie on
faces of Sk+1. Recall the set {bj = 0} does not intersect any face fj

where sj = 0. Thus the only possible additional face of intersection of

Êk and Sk+1 is the face on which sk = sk+2 = · · · = sn = 0, spanned
by vertices t1, . . . , tk−1 and tk+1 (note this face is in fk). By induction
(using the induction hypothesis with vertices renumbered), there are an

odd number of intersection points of Êk on this face of Sk+1.

Thus there must be an odd number of arcs of Êk running from Sk to
the face fk. Along any of these arcs, bk goes from positive (at a point
of Ek on Sk) to negative (since bk < 0 on fk). Thus it must be zero at
an odd number of interior points. Each of these points is in Ek+1. We
may also have points of Ek+1 coming from the intersection of {bk = 0}
with closed components of Êk, or with arc components of Êk with both
endpoints of the arc on the same face (either Sk or fk). In the former
case, {bk = 0} must intersect any closed component an even number of
times, and in the latter case bk has the same sign on both endpoints,
so again {bk = 0} intersects the arc an even number of times. Thus the
total number of points in Ek+1 is odd.

At each point in Ek+1, we have b1 = b2 = · · · = bk = 0, and we have
bk+2 through bn all less than or equal to zero. Since the sum of all the
bj is positive, bk+1 must be positive. This implies Bk+1 is a nonempty
open set, and the points of Ek+1 are on its boundary. q.e.d.

This completes the proof of Lemma 4.1. q.e.d.

Now, as mentioned above, the choice of s̄ is tied to the rates at
which the cone angles are varying. Lemma 4.1 implies that a desired s̄
exists, but gives us no further information about s̄. In particular, some
cone angle may reach 2π before the others. When this happens, the
hyperbolic structure in the corresponding tube about the singular locus
is nonsingular. We may thus view the deformation from this point on
as a deformation on a cone manifold with one fewer component of the
singular locus. We do this, obtaining deformations with fewer and fewer
singular components, until each cone angle has reached 2π.

4.3. Boundary bound. In this subsection, we will show that there
exists a parameterization of the cone deformation such that the sum of
the terms bj is of order n. We first need two lemmas. Lemma 4.3 gives
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us an initial bound on each bj . Lemma 4.4 will allow us to improve this
bound. It is in the proof of Lemma 4.3, giving the initial bounds on the
bj , that we use the positivity result of Lemma 4.1.

Finally, in Theorem 4.6 at the end of this subsection, we put these
lemmas together to record the main result of the section: the bound on
the sum

∑
bj .

Lemma 4.3. Suppose we have a cone deformation given as a linear
combination of deformations, as above, where cone angles go from 0 to
2π along the singular locus. Suppose also that S = (s1, . . . , sn) is chosen
such that for each time t, bj(S) ≥ 0 for all j. Suppose the tube radius
R is bounded below by R1 ≥ 0.56 for each t. Then

bj(S) ≤ s2
j C(R1),

where C(R1) is a function of R1 alone which approaches 0 as R1 ap-
proaches infinity.

Proof. First, since we’re considering a fixed Vj , we will drop the sub-
script j in our notation throughout the proof (i.e., Vj = V, (η0)j = η0,
sj = s, etc).

Modify a calculation (p. 382 and 383 of [14]) to include s, and equa-
tion (17) of that paper can be written:

bj(S)

Area(∂V )
≤ s2

8m4
,

where m = α sinh2 R is the length of a meridian on ∂U .
We will bound the term Area(∂V ) s2/(8m4).
Let A = Area(∂V ). Let h denote the height of ∂V , i.e., the length of

an arc perpendicular to the meridian. So h = ℓ cosh R, where ℓ is the
length of the singular locus of the solid torus V , and A = mh.

Consider

Φ =
8m4

A
=

8m3

h
=

8α3 sinh3 R

ℓ cosh R
.

We will bound Φ below, therefore bounding its reciprocal above.
Let

Υ(R) =
3.3957 tanhR

2 cosh 2R
.

It was shown in [14] (see Theorem 4.4, Corollary 5.1, and the comments
on the multicusp case on p. 411), that αℓ ≥ Υ(R).

Then

Φ =
8α3 sinh3 R

ℓ cosh R
=

4α3

ℓ

1

Υ(R)
g(R)

where

g(R) =
2Υ(R) sinh3 R

cosh R
= 2Υ(R) tanh R sinh2 R =

3.3957 tanh4 R

1 + tanh2 R
.
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So

Φ ≥ 4α3

ℓ

1

αℓ
g(R) = 4

(α

ℓ

)2

g(R).

Note that g(R) is increasing with R. Hence since R ≥ R1, g(R) is
bounded below by g(R1). Thus we focus on the term α/ℓ in Φ.

Define u = α/ℓ. In our hyperbolic cone deformation, the initial cone
angle α is zero. As α approaches 0, u approaches L2

0, where L0 is the
normalized length of the curve which becomes the meridian (i.e., bounds
a singular solid disc) under the cone deformation (see equation (37) of
[14]). We will estimate u = (u0 + ∆u) = (L2

0 + ∆u).
Reworking the calculations of [14] to include the speed s, and tak-

ing derivatives with respect to cone angle α rather than time, we may
rewrite Proposition 5.6 of that paper as:

1

α

du

dα
≥ −2(1 + tanh2 R)

3.3957 tanh3 R
= −2 tanhR

g(R)
,

provided that R ≥ R1 ≥ 0.531.
It is at this step, to use Proposition 5.6 of [14], that we have required

S to be chosen so that bj(S) > 0.
Thus

∆u ≥
∫ α=2π

α=0

−2α
tanh R

g(R)
dα ≥ −tanhR1

g(R1)

∫ 2π

0

2αdα = −(2π)2
tanhR1

g(R1)
.

So

u2 ≥ (L2
0 − (2π)2 tanh(R1)/g(R1))

2,

provided the term L2
0 − (2π)2 tanh(R1)/g(R1) is non–negative. We can

ensure this quantity is non–negative by ensuring L2
0 is large. This can

be done following [14]. The following result is essentially Equation (47)
of that paper.

(24) L2
0 ≥ 2(2π)2

3.3957(1 − tanhR)
exp

(∫ tanh R

1

F (w)dw

)
= I(R),

provided the tube radius is at least R throughout the deformation. Here
F (w) = −(1+4w+6w2+w4)/((w+1)(1+w2)2) is an integrable function.

The right hand side I(R) of (24) is increasing with R, so it can be
bounded below by a constant in terms of R1.

L2
0 ≥ I(R1).

Now if R1 ≥ 0.56, then I(R1) − 2(2π)2 tanh(R1)/g(R1) ≥ 0.
Putting this together,

Φ ≥ 4

(
I(R1) − (2π)2

tanhR1

g(R1)

)2

g(R1).

The right hand side of the above equation is a constant, C̃0(R1).
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Thus we have

bj(S) ≤ A

8m4
s2 =

1

Φ
s2 ≤ s2

C̃0(R1)
= s2 C(R1).

q.e.d.

The result of Lemma 4.3 gives us a bound on the sum of the bj in
terms of s̄. If we could choose s̄ = (1, . . . , 1) (all cone angles increasing
at the same rate), then Lemma 4.3 would give a bound on

∑
bj of

order n. However, our choice of s̄ comes from Lemma 4.1. By the
proof of that lemma, we may assume only that s̄ is in the simplex
T = {s̄ | ∑ sj = n, sj ≥ 0}. A priori, s̄ could be close to a vertex of T ,
say (n, 0, . . . , 0), in which case Lemma 4.3 gives only a bound of order
n2 on

∑
bj .

For our applications, we need the bound of order n. We will obtain
this better estimate by again revisiting the choice of the point s̄ =
(s1, s2, . . . , sn). This is done in Lemma 4.4.

Lemma 4.4. There exists a point S = (s1, . . . , sn) in T such that
each bj(S) ≥ 0, j = 1, . . . , n, and for any index j with sj 6= min{s1, . . . ,
sn}, we have bj(S) = 0.

Proof. First, we set up some notation.

Notation. Let B = {s̄ | bj(s̄) ≥ 0, j = 1, . . . , n} (so the interior of B
is the set Bn of Lemma 4.2). Again we may normalize such that the
points s̄ lie in the simplex T = {(s1, . . . , sn)|∑ si = n, si ≥ 0}.

We define some sets in B. For each j = 1, 2, . . . , n, let ej be the set of
all points in B such that bj > 0 and for i 6= j, bi = 0. Note for j = n, en

corresponds to the set En in Lemma 4.2. (So in particular, en consists
of an odd number of points.)

Let b{i,j} be the set b{i,j} = B ∩ (∩k 6=i,j{bk = 0}). Note b{i,j} has
dimension 1, with components with boundary in ei and ej .

In general, let I be a k-element subset I ={i1, i2, . . . , ik} ⊆ {1, . . . , n}.
Let bI = B ∩ (∩j /∈I{bj = 0}). Notice bI is bounded by components bIj

where j ∈ I, and Ij is the (k − 1)-element set obtained by removing j
from I.

Now we define some sets in the simplex T = {s̄|∑ si = n}. Let Ti be
the region in which si ≤ sj for all indices j. Ti has dimension n−1. Let
T{i,j} = Ti ∩ Tj . Thus each Ti is bounded by faces T{i,j} where j ranges
over all elements of {1, . . . , n} − {i}, as well as faces on ∂T . Generally,
let I be a k-element subset of {1, . . . , n}. Let TI = ∩j∈ITj . Note the
boundary faces of TI are the faces given by TI∪{k}, where k ranges over
all elements of {1, . . . , n} − I, as well as faces in ∂T . See Figure 2 for
an illustration when n = 3.
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T{2,3}

T{1,2}

T2

(1, 1, 1) = T{1,2,3}

T{1,3}

(0, 3, 0)(3, 0, 0)

(0, 0, 3)

T1

T3

Figure 2. Faces TI illustrated when n = 3.

We will make transversality assumptions that allow us to ignore the
boundary faces of TI on ∂T . In particular, assume that B lies in the
interior of T , so the sets bI do not meet ∂T . If this is not the case, we
may apply the argument below to level sets bI = ǫ, then take the limit
as ǫ → 0. Since B is closed, we will obtain the desired result. Similarly,
we will assume that the bI ’s and the TI ’s all intersect transversely.

We will use the transversality assumption that B does not meet ∂T
in the arguments below. In particular, we will be considering the in-
tersection of subsets of B with boundary faces of TI . Since B does not
meet ∂T , this allows us to ignore the faces of TI which lie on ∂T in our
argument.

Now, note the lemma will be immediately true if we can find some
index j such that ej is in the region Tj : for on ej , bi = 0 for all i 6= j,
and in Tj , sj is minimum. So assume this never happens.

Generally, if for some k-element set I⊆{1, . . . , n}, bI∩TI is nonempty,
we obtain a point which satisfies the lemma. So we will assume this also
never happens. We will show that in this case, the point (1, 1, . . . , 1)
is in B, thus concluding the proof. To prove this, we need another
sublemma.

Lemma 4.5. Let #(·) denote the number of elements of a finite set.
Assuming that each bI ∩ TI is empty,

∑

I

#(bI∪{n} ∩ ∂TI) ≡
∑

J

#(bJ∪{n} ∩ ∂TJ) ≡ 1 mod 2,

where the first sum is over all (k+1)-element subsets I of {1, . . . , n−1},
and the second sum is over all k-element subsets J of {1, . . . , n − 1}.

Check that the statement of the lemma makes sense: Note if J is a
k-element set, then bJ∪{n} is k-dimensional. TJ is (n − k) dimensional,
so its boundary faces are (n−k−1)-dimensional. Thus the intersections
in the statement of the lemma are 0-dimensional manifolds, consisting
of a finite number of points.
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Also notice that when k = (n − 2) in the above lemma, there exists
only one (k+1)-element subset I, namely I = {1, . . . , n−1}. So bI∪{n} is
the whole set B. On the other hand, the boundary ∂TI in this case must
be the point in the intersection of all the Ti, or the point (1, . . . , 1). Thus
the first sum counts the number of times the point (1, . . . , 1) appears in
B. Hence, showing this number is odd will finish the proof of Lemma
4.4.

Proof. We prove Lemma 4.5 by induction on k.
We start by showing what essentially is the case k = 0. That is, we

show
n−1∑

i=1

#(b{i,n} ∩ ∂Ti) ≡
n−1∑

i=1

#(en ∩ Ti) mod 2.

Since we are assuming en ∩ Tn = ∅, the second sum in the above
equation is just the number of points of en (since en is disjoint from
each Ti∩Tj by transversality). That number of points is odd by Lemma
4.2, so this will give us the basis step of our induction.

Consider b{i,n} ∩ Ti. This is a 1–manifold, consisting of closed curves
and arcs. Each arc has two endpoints. So

n−1∑

i=1

#∂(b{i,n} ∩ Ti) ≡ 0 mod 2.

On the other hand,

n−1∑

i=1

#∂(b{i,n} ∩ Ti) =
n−1∑

i=1

#(∂b{i,n} ∩ Ti) +
n−1∑

i=1

#(b{i,n} ∩ ∂Ti).

So
∑

i6=n #(b{i,n} ∩ ∂Ti) has the same parity as
∑

i6=n #(∂b{i,n} ∩ Ti).
Consider ∂b{i,n} ∩ Ti. Note ∂b{i,n} consists of points in ei and en. By

assumption, ei is never in Ti. Thus

n−1∑

i=1

#(∂b{i,n} ∩ Ti) =
n−1∑

i=1

#(en ∩ Ti) = #(en).

So
∑

i6=n #(b{i,n} ∩ ∂Ti) is odd.
Our proof for general k follows essentially the same lines as the proof

above.
Suppose 1 ≤ k ≤ n − 2. We need to show

∑

I

#(bI∪{n} ∩ ∂TI) ≡
∑

J

#(bJ∪{n} ∩ ∂TJ) mod 2,

where the first sum is over (k +1)-element subsets of {1, . . . , n− 1} and
the second is over k-element subsets.

Fix some (k + 1)-element subset I, and again consider bI∪{n} ∩ TI .
This is a 1–manifold. Its components are closed curves and arcs. Again
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the number of endpoints of these arcs is even. So when we sum over all
such I, ∑

I

#∂(bI∪{n} ∩ TI) ≡ 0 mod 2.

On the other hand,
∑

I

#∂(bI∪{n} ∩ TI) =
∑

I

#(∂bI∪{n} ∩ TI) +
∑

I

#(bI∪{n} ∩ ∂TI).

Thus we consider
∑

I #(∂bI∪{n} ∩ TI). We want it to have the same
parity as

∑
J #(bJ∪{n}∩∂TJ), where J ranges over all k-element subsets

of {1, . . . , n − 1}. We show now that the two sums are actually equal,
which concludes the proof.

Consider ∂bI∪{n}. This consists of bI , as well as things of the form
bIj∪{n} where Ij is the k-element set obtained from I by removing the
element j ∈ I. Since, by assumption, bI ∩ TI is empty, ∂bI∪{n} ∩ TI is
the union of sets bIj∪{n} ∩ TI , where j ranges over all elements of I.

Then

(25)
∑

I

#(∂bI∪{n} ∩ TI) =
∑

I

∑

j∈I

#(bIj∪{n} ∩ TI).

We will change our method of counting in (25) above. Replace the
terms Ij with k-element subsets J of {1, . . . , n−1}. We will run through
all such J . Then I will run through the (k + 1)-element subsets given
by J ∪ {i}, where i is some element of {1, . . . , n − 1} − J . So the right
hand side of equation (25) is equal to

∑

J

∑

i∈{1,...,n−1}−J

#(bJ∪{n} ∩ TJ∪{i}).

On the other hand, we know the boundary ∂TJ is equal to the union
of all faces TJ∪{j}, where j ranges over all elements of {1, . . . , n} − J .
The only such face we are missing in our sum above is TJ∪{n}. But by
assumption, the intersection of bJ∪{n} with TJ∪{n} is trivial. Thus

∑

J

∑

i∈{1,...,n−1}−J

#(bJ∪{n} ∩ TJ∪{i}) =
∑

J

#(bJ∪{n} ∩ ∂TJ).

q.e.d.

This concludes the proof of Lemma 4.4. q.e.d.

Lemmas 4.3 and 4.4 together give the desired bound on
∑

bj :

Theorem 4.6. Let X be a hyperbolic manifold with n + k cusps
connected to a manifold M with k cusps by a cone deformation. (So in
particular, there are n components of the singular locus, and cone angles
at each component go from 0 to 2π.) Suppose during the deformation, the
tube radius about the singular locus remains larger than R1 ≥ 0.56. Then
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the deformation can be parameterized so that at each time: min sj = 1
and the sum of the boundary terms satisfies

n∑

j=1

bj ≤ n C(R1).

Moreover, we can assume the deformation has reached the hyperbolic
structure on M by time t = (2π)2.

Proof. By Lemma 4.4, we may find a value S in T such that each
bj(S) ≥ 0 and such that if for any index j, sj 6= min{s1, . . . , sn},
then bj(S) = 0. Denote the minimum value of the sj by s: s =
min{s1, . . . , sn}. Then Lemma 4.3 implies that

(26)
n∑

j=1

bj =
∑

{j|bj 6=0}

bj ≤
∑

{j|bj 6=0}

s2 C(R1) ≤ ns2 C(R1).

First, we need to check that s is not equal to zero. Suppose not. That
is, suppose s = 0. Then by (26),

∑n
j=0

bj = 0. Recall that by equation

(16) and the remark right after it, the sum of all bj ’s equal zero only if
the entire deformation is trivial. But this is possible only if each sj = 0.
Since the point (0, 0, . . . , 0) is not in the simplex T , this is impossible.

Now, recall the terms sj affect the rate of change of the deformation.
Thus we may rescale them without changing the tube radius. For the
point S in T , divide each sj by s. Replace S by this rescaled point, and
denote the rescaled point by the same notation: S = (s1, . . . , sn). So
each sj ≥ 1. Also, s = min{sj} = 1.

Thus equation (26) gives:

n∑

j=1

bj ≤ n C(R1).

Finally, to notice that the deformation is complete by time t = (2π)2

as claimed, recall that if sj = 1 throughout the deformation, then the
cone angle is changing at a rate at which αj will reach 2π at time
t = (2π)2. (See the discussion at the beginning of §4.1.) Since sj ≥ 1
always, the rate of change may only be faster. Thus each cone angle
reaches 2π by the time t = (2π)2. q.e.d.

When we combine Theorem 4.6 with the results of Theorem 3.3 and
Theorem 3.6, we have completed the proofs of Theorems 1.2 and 1.3.

5. Bounding the meridian

We now show that the length of the shortest nontrivial simple closed
curve on the cusp torus is bounded throughout the cone deformation,
provided the tube radius about the singular locus stays large. Recall
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here that we are calling this shortest curve the meridian of the torus.
The following lemma is the last piece needed to complete the proof of
Theorem 1.4.

Lemma 5.1. Suppose M is a hyperbolic cone manifold with one cusp,
and with singular locus Σ. Suppose the tube radius R about the singular
locus is at least log(2/

√
3). Then there exists a horoball neighborhood U

of the cusp such that the meridian of ∂U has length at least 1 − e−2R.

Proof. Let X = M − Σ. X admits an incomplete hyperbolic metric.
Expand the tube V = ∪Vi about the singular locus Σ until the tube hits
itself. Each Vi has the same tube radius R. Next expand the horoball
U about the cusp until it either becomes tangent to itself or to V .

We obtain a region Ω by continuing to expand U as follows. First,
choose a particular lift Ua of U in the universal cover. Because U is

embedded in H
3 by the developing map on the universal cover X̃ of X,

we can assume the developing map is one to one on Ua and takes ∂Ua

to the plane z = 1 in H
3.

Take Ω = Ua ∪ S, where S is the set consisting of all points x in

X̃ such that the distance dist(x, ∂Ua) < dist(x, ∂Ub) for Ub any other
lift of U , and also such that the distance dist(φ(x), ∂U) < dist(∂U,Σ),
where φ is the covering projection. Note that Ω is embedded in H

3 by
the developing map. That is, the developing map is one to one on Ω.

Let p be a point on ∂U closest to Σ, and let p0 and p1 be lifts of p
on ∂Ua such that the projection of the path from p0 to p1 is shortest on
∂U . Let a0 be the point in the universal cover on a lift of Σ such that
the path from p0 to a0 has length equal to the minimum distance from
p0 to Σ. Similarly, let a1 be the point on a lift of Σ such that the path
from p1 to a1 has length equal to the minimum distance from p1 to Σ.
Note the interiors of the paths between p0 and a0 and between p1 and
a1 are contained in Ω.

a0 a1

p1

d

p0

H β

length(β) = L

Figure 3. The top edge of the quadrilateral maps to the
shortest path on ∂U under the covering projection.

Then note that the interior of the geodesic β from a0 to a1 is also in
Ω, along with all the points in the quadrilateral with sides given by β
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and the paths from p0 to p1, from p0 to a0, and from p1 to a1. This
is because, first, all points x in this quadrilateral (except the endpoints
of β) have dist(φ(x), ∂U) < dist(∂U,Σ). Also, if any x were closer to
some other lift Ub of U , then there would be points in the quadrilateral
equidistant to two different lifts of U . All points equidistant to two
different lifts of U lie on some totally geodesic planes of H

3. Hence
some geodesic must intersect β but not the paths from p0 to a0, p1 to
a1, or the path on the horosphere ∂Ua from p0 to p1. This is impossible.

Now let H be the length of the paths from p0 to a0 and from p1 to
a1. Let L be the length of β. We know that H ≥ R and L ≥ 2R since
the distance between any two components of the lift of Σ is greater than
or equal to 2R. We let d be the length of the path on the horosphere
∂Ua between p0 and p1. Since Ω is embedded by the developing map,
we can assume the quadrilateral is of the form shown in Figure 3.

Then solving for d in terms of H and L, d = 2e−H sinh(L/2).

Case 1: H = R. Then d ≥ 2e−R sinh(R) = 1 − e−2R.

Case 2: H > R. Then U must be tangent to itself, say at a point
q, and not necessarily tangent to the tube about Σ. Then the image of
Ω under the developing map must contain some portion of the region
above the geodesic surface equidistant from a horizontal plane (the lift
of ∂Ua) and some other horosphere.

This geodesic surface is some portion of the (Euclidean) hemisphere
with radius 1, tangent to the lift of ∂Ua at a lift q0 of q. See Figure 4.
The image of Ω under the developing map contains a neighborhood of
points on this hemisphere about q0. If it were to contain all the points
on the hemisphere between the dotted lines in Figure 4 (that is, points
whose projection to C have Euclidean distance at most 1/2 from the
projection of q0 to C), then d ≥ 1.

Let x be one of these points. That is, the projection of x to C has
Euclidean distance at most 1/2 from the projection of q0 to C. Note
x will lie in Ω provided dist(φ(x), ∂U) < dist(∂U,Σ) = H, or provided
H is large enough. But now, dist(φ(x), ∂U) = log(1/height(x)), where
height(x) denotes the z–coordinate of x in H

3. Thus this distance is at
most log(2/

√
3).

√
3/2

q0

1

x

Figure 4.
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Since H > R, we can ensure d ≥ 1 by restricting to R ≥ log(2/
√

3).
q.e.d.

When we plug the result of Lemma 5.1 into Theorem 3.8, along with
the bound on

∑
bj of the previous section, we may complete the proof

of Theorem 1.4.

Theorem 1.4. Let M = Xτ be a hyperbolic 3–manifold with a
cusp, and let X = X0 be a hyperbolic 3–manifold which can be joined to
M by a smooth family of hyperbolic cone manifolds Xt with tube radius at
least R1 ≥ 0.56, and with n components of the singular locus. Let Ut be
a horoball neighborhood about the cusp. Let h(M) denote the normalized
height of the cusp torus ∂Uτ . Let h(X) denote the normalized height of
∂U0. Then the hyperbolic cone deformation can be parameterized such
that the change in normalized height is bounded in terms of R1 alone:

−(2π)2
√

n C(R1)

(1 − e−2R1)
√

2
≤ h(M) − h(X) ≤ (2π)2

√
n C(R1)

(1 − e−2R1)
√

2
.

Proof. Theorem 3.8, combined with Theorem 4.6 and Lemma 5.1,
implies that

−
√

n C(R1)

(1 − e−2R1)
√

2
≤ ḣ ≤

√
n C(R1)

(1 − e−2R1)
√

2

and that the total time of the deformation is t = (2π)2. We integrate the
above inequality over the deformation. The bounds on the left and right
are independent of t. Thus we obtain the conclusion of the theorem.
q.e.d.

6. Cusp shapes of hyperbolic knots

We will now apply the results of the previous sections to determine
bounds on the shapes of cusps of knot complements. In particular, let
K be a hyperbolic knot with a prime, twist reduced diagram, where
prime and twist reduced are defined in Definitions 1.6 and 1.7. We will
bound the normalized height of the cusp of S3 −K, using Theorem 1.4.
We need the following:

1) An initial hyperbolic manifold X with n + 1 cusps.
2) A cone deformation deforming X to the knot complement S3−K.
3) A lower bound on the tube radius (R ≥ R1 ≥ 0.56).

Given these pieces, we will obtain bounds on normalized height.

6.1. An initial manifold. Begin with a prime, twist reduced diagram
of the knot K. At each twist region of the diagram, add a closed curve
encircling two strands, called a crossing circle. We now have a diagram
of a link, which we call J . The link complement S3−J is homeomorphic
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to the complement of the link L obtained from J by removing pairs of
crossings from each twist region. See Figure 5.

Figure 5. Left to right: The link K. The link K with
crossing circles added. The link L.

These links with crossing circles added have been studied by many
people, including Adams [1], Lackenby, Agol and Thurston [16]. Many
of the properties of these links were addressed in previous papers (see
[21], and [12] with Futer).

The links are useful to us in the cone manifold setting because first of
all, symmetries of the diagram of L allow us to determine the hyperbolic
structure on S3−L explicitly. Secondly, S3−L is related to the original
knot complement via Dehn filling. In particular, if 2mi crossings were
removed from the i-th twist region to go from the diagram of J to that
of L, then by performing a 1/mi Dehn filling on the corresponding i-th
crossing circle of S3 − L, we re-insert these crossings and put back the
crossing circle, obtaining S3 − K (see e.g., [22], Chapter 9).

Thus, starting with a hyperbolic augmented link L, we can determine
information including shapes of the cusps. Next, we can find conditions
which will ensure the Dehn filling above can be obtained by a hyper-
bolic Dehn filling via cone deformation. Hence we will have the first
two pieces needed to bound the normalized height of the cusp K: The
initial manifold M with hyperbolic structure will be S3 − L. It will be
connected by cone deformation to S3 − K.

6.1.1. The geometry of S3−L. We note in [12] that if K has at least
2 twist regions, then the augmented link complement S3 −L will admit
a complete, finite volume hyperbolic structure. This can be shown by
work of Adams [1], using the geometrization of Haken manifolds. It can
also be shown more directly using Andreev’s theorem. The proof using
Andreev’s theorem gives a packing of circles related to S3 −L which we
will need again in Section 6.4, so we include it here.

Theorem 6.1. If K has a prime, twist reduced diagram with at least
2 twist regions, then the augmented link complement S3 − L will admit
a complete, finite volume hyperbolic structure.

Proof. We prove the lemma by finding the hyperbolic structure. To
do so, we decompose S3 − L into two ideal polyhedra, as in [16] and
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[12]. We then find a hyperbolic structure on the polyhedra which gives
a nonsingular hyperbolic structure on S3 − L after gluing.

To find the polyhedra, first remove all remaining single crossings at
crossing circles. That is, if the number of crossings in a twist region of
the diagram of K was odd, then S3 − L will still have a single crossing
at that twist region. Remove it. The new link has components lying
flat in the projection plane bound together by crossing circles. Call it
L′.

Slice S3 −L′ along the projection plane. This cuts the manifold into
two identical pieces, one on either side of the plane. Each 2–punctured
disk encircled by a crossing circle has been sliced in half. Slice along
these remaining halves of disks, opening them up into two faces. This
gives an ideal polyhedral decomposition of the manifold. The edges are
given by the intersection of the 2–punctured disks with the projection
plane. On each of the two polyhedra, we have one face per planar region
of the diagram of L′, and two triangular faces per 2–punctured disk.
Shade the faces arising from 2–punctured disks, giving each polyhedron
a checkerboard coloring. The edges meet in 4–valent ideal vertices. At
each vertex, two white faces are separated by two shaded faces. (See
[12] or [16] for pictures.)

The gluing pattern on the polyhedra is given by following the above
process in reverse: First, on each polyhedron fold the pairs of triangular
shaded faces together at their common vertex. Then glue each white
face to its corresponding face on the opposite polyhedron via the identity
map. This gives back S3 − L′.

To obtain S3 − L, we use the same two polyhedra, but make the
following change in gluing. For crossing circles encircling a single cross-
ing of the diagram of L, rather than glue shaded triangles across their
common vertex on a single polyhedron, we insert a half–twist by gluing
each triangle of one polyhedron to the opposite triangle of the other.
See Figure 6.

Figure 6. Left: Gluing 2–punctured discs with no cross-
ings. Right: Gluing 2–punctured discs with a single
crossing.

Now our goal is to find a hyperbolic structure on these two polyhedra.
We show the two polyhedra actually have totally geodesic faces in H

3,
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meeting in dihedral angles of π/2. Since faces are glued in pairs, and
edges in 4’s, the gluing will give a complete hyperbolic structure on
S3 − L.

Note any totally geodesic plane in H
3 extends to give a circle on the

boundary S2 at infinity. Conversely, given a collection of circles on S2,
we can view those circles as boundaries of planes in H

3. We obtain
our polyhedra by finding appropriate circle packings, then cutting away
half–spaces bounded by hemispheres in H

3. Our tool is a corollary of
Andreev’s theorem noted by Thurston in [23]:

Theorem 6.2 (Andreev). Let γ be a triangulation of S2 such that
each edge has distinct ends and no two vertices are joined by more than
one edge. Then there is a packing of circles in S2 whose nerve is isotopic
to γ. This circle packing is unique up to Möbius transformation.

Recall that the nerve of a circle packing is the graph obtained by
adding a vertex for each circle, and an edge connecting two vertices if
and only if the corresponding circles are tangent.

We begin by finding a triangulation of S2 associated with one of the
polyhedra described above. For each white face, take a vertex. Connect
two vertices by an edge if and only if the two corresponding white faces
meet at a vertex of the polyhedron. This gives a triangulation γ of S2.
Note if we draw vertices of γ on top of white faces of the polyhedron,
and edges of γ through the vertices of the polyhedron, that each triangle
of γ circumscribes a shaded face of the polyhedron.

To apply Andreev’s theorem, we need to show this triangulation γ
satisfies the conditions: each edge has distinct ends, and no two vertices
are joined by more than one edge. To show these conditions, we consider
the graph dual to γ, as follows.

Consider the original link diagram. We view it as a 4–valent graph.
Replace each twist region of the graph by a single edge, as in Figure 7.

Figure 7. Create a trivalent graph by replacing each
twist region with an edge.

Since each crossing is part of some twist region, this gives a trivalent
graph Γ. Note the dual graph to Γ is isotopic to the triangulation γ.
We use properties of the dual Γ to show the triangulation γ satisfies the
conditions necessary for Andreev’s theorem.

Lemma 6.3. No edge of γ has a single vertex at both endpoints.
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Proof. Consider the graph Γ. If its dual γ has an edge with one vertex
at both endpoints, then the graph Γ must be of the form in Figure 8
(a).

(a)

e

(b)

D D′
· · ·

Figure 8. (a.) Form of Γ if γ has an edge with a single
vertex at both endpoints. (b.) Corresponding form of
original link diagram.

Note then if the edge e was an original edge of the 4–valent link dia-
gram, then we have a simple closed curve intersecting the link diagram
transversely in a single point. This is impossible.

If instead the edge e replaced a twist region in the original 4-valent
link diagram, then the original diagram had the form of Figure 8 (b).
However, note that one of the subdiagrams D and D′ must contain
crossings else the original diagram has at most one twist region. Without
loss of generality, say D contains crossings. Then the dashed simple
closed curve enclosing D intersects the link diagram transversely in two
points, but both its interior and its exterior contain crossings. This
contradicts the fact that the original diagram was prime. q.e.d.

Lemma 6.4. No two vertices of γ are joined by more than one edge.

Proof. Suppose two vertices of γ are joined by two distinct edges.
Then consider the dual graph Γ. Γ must be of the form shown in Figure
9 (a), where region B and region B′ are the same.

Give the edge e1 an orientation, say e1 points in the direction of the
edge a. This gives the region A an orientation, and hence assigns to the
edge e2 an orientation. Now, trace a path of edges around the region B,
listing the edges in the order they occur. Our list begins with e1, then
a, etc. Note e2 must appear in the list before the edge d, else region B
would be cut off from region B′. Also, edge b must occur before edge c,
by the orientation on e2. Hence the graph Γ has the form illustrated in
Figure 9 (b).

Case 1: Edges e1 and e2 both were edges of the original 4–valent
link diagram. Then there is a simple closed curve intersecting e1 and e2

transversely in the original link diagram and intersecting the diagram
in no other points. Since the original diagram has crossings on either
side of the region A, this contradicts the fact that we started with a
prime diagram.
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(a)

a

B· · ·
d

· · ·

...
A...

b

· · · B′

c

· · ·

e1

e2

(b)

B e1

A

e2

Figure 9. Form of Γ when γ has two vertices connected
by two distinct edges. In (a), the edges of γ are the
dashed lines, with one of the vertices in A and the other
at ∞.

Case 2: Edges e1 and e2 both replaced twist regions in the original
link diagram. Then the original link diagram must have been of the form
in Figure 10 (a). Then since the original diagram was twist reduced,
either the subdiagram D or D′ must be a string of bigons. But then
rather than two distinct twist regions, our diagram must have had only
one twist region. Thus edges e1 and e2 would not have been distinct.

(a)

D D′

· · ·

· · ·
(b)

D D′

· · ·

Figure 10. Possible forms of the original link diagram
if γ contains two vertices connected by two distinct edges.

Case 3: One of edge e1 or e2 is from the original link diagram, the
other replaced a twist region. Then the original link diagram must have
been of the form shown in Figure 10 (b). Now note that the simple
closed curve bounding subdiagram D intersects the link transversely in
only three points. This is impossible.

Since these are the only three cases, these contradictions prove the
lemma. q.e.d.

Now Lemmas 6.3 and 6.4 are enough to show that Andreev’s theorem
applies, and there is a circle packing of S2 whose nerve is γ.

Complete the proof of Theorem 6.1 by slicing off half–spaces bounded
by geodesic hemispheres in H

3 corresponding to each circle in the circle
packing. These give the geodesic white faces of the polyhedron. The
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shaded faces are obtained by slicing off hemispheres in H
3 correspond-

ing to each circle of the dual circle packing. Note white and shaded
hemispheres meet at right angles.

Thus the polyhedron for the flat augmented link is totally geodesic
in H

3, and hence the flat augmented link is hyperbolic. q.e.d.

6.1.2. Normalized lengths on cusps. To apply results on cone defor-
mations, we will need the following information on normalized lengths
of particular curves on the cusps of S3 − L.

Proposition 6.5. Let K and L be as above. In the prime, twist
reduced diagram of K, let n be the number of twist regions. Let ci be
the number of crossings in the i-th twist region. Then on cusps of L,
we have the following normalized lengths.

1) For a cusp corresponding to a crossing circle, let si be the slope
such that Dehn filling S3−L along si re-inserts the ci crossings at
that twist region. Then the normalized length of si is at least

√
ci.

2) For the cusp corresponding to the link component in the projec-
tion plane, the normalized height (i.e., the normalized length of
the curve orthogonal to a meridian) is at least

√
n, and at most√

n(n − 1).

Proof. This can be deduced from results of [12]. However, given the
circle packing associated to S3 − L developed in the previous section,
we are able to streamline the proof somewhat.

First, recall the polyhedra obtained in the proof of Theorem 6.1. Note
each cusp will be tiled by rectangles given by the intersection of the cusp
with the totally geodesic white and shaded faces of the polyhedra. Two
opposite sides of each of these rectangles come from the intersection of
the cusp with shaded faces of the polyhedra, or from the 2–punctured
disks in the diagram of L, and the other two sides come from white
faces. Call the sides shaded sides and white sides, respectively.

For part (1), note any crossing circle intersects a single 2–punctured
disk in a longitude. Half of the longitude is given by the intersection
with one polyhedron, the other half by intersection with the other. The
crossing circle intersects no other shaded faces. Thus the crossing circle
cusp is tiled by exactly two identical rectangles.

When the crossing circle encircles no single crossing, or half twist,
then two white faces intersect the cusp in meridians. In this case, ci is
even, ci = 2mi, and the slope si is 1/mi. It is given by one step along a
white side of a rectangle (a meridian), plus 2mi = ci steps along shaded
sides of the rectangle.

When the crossing circle encircles a single crossing, then the two
rectangles tiling the cusp are sheared. In this case, a meridian is given
by one step along a white side, plus (or minus) a step along a shaded
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side. Now ci = 2mi + 1 is odd, and the slope si = 1/mi is given by a
step along a white side, plus (or minus) a step along a shaded side, plus
(or minus) 2mi steps along shaded sides.

In either case, the slope is given by a single step along a white side
plus (or minus) ci steps along a shaded side. Let w denote the length
of a white side, and let s denote the length of a shaded side. Thus the
normalized length of si is:

√
w2 + c2

i s
2

√
2ws

=

√
w

2s
+ c2

i

s

2w
.

Let u = w/(2s). Then for constant ci, this quantity is minimized when
u = ci/2, and the minimum value is

√
ci.

For part (2), we need to know more about the possible lengths of the
white sides of rectangles tiling the cusp. For a given rectangle, consider
the corresponding vertex in one of the polyhedra. On the sphere S2 at
infinity, this vertex will look like a point of tangency of two circles in
the packing given by Andreev’s theorem. Since the nerve of this circle
packing is a triangulation of S2, the point of tangency corresponds to
an edge on two distinct triangles of this nerve. Thus there are two
additional circles tangent to the two given circles, as in Figure 11.

Figure 11. The form of the packing of circles about any
vertex. Dashed circles correspond to the shaded faces of
the polyhedron at this vertex.

Now, apply a Möbius transformation taking the vertex, or the point
of tangency of the circle packing, to infinity. This takes the two tangent
circles to two parallel lines. It takes the two additional tangent circles to
circles tangent to both the parallel lines, as in Figure 12. Note this also
gives the similarity structure of the rectangle under consideration. If we
normalize so that the shaded side (coming from the intersection with a
2–punctured disk) has length 1, then the circle lying under the dashed
line in Figure 12 has diameter 1. Since circles in the circle packing do
not overlap, this forces a white side (i.e., without dashes in the figure)
to have length at least 1.
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Figure 12. Result of taking point of tangency to infinity.

For an upper bound on the length of a white side, note it is longest
when all circles in the circle packing are lined up in a row, tangent to
the two parallel lines. In this case, when a shaded side has length 1,
the length of the white side will be the number of circles between the
parallel lines, minus 1. To find the number of circles possible, we use an
Euler characteristic argument. Note there will be 2n shaded faces in one
of the polyhedra, coming from opening up n crossing circles. These each
correspond to a single face of the triangulation of S2 used in Andreev’s
theorem. Because it is a triangulation, the number of edges equals 3/2
the number of faces, or 3n. Then by an Euler characteristic argument,
there are n + 2 vertices. Recall each vertex gave a circle in our circle
packing. Since two of these circles become our parallel lines, there are
n circles packed between these. Thus the maximum length of a white
side is n − 1.

Now, note that the cusp in the projection plane intersects each 2–
punctured disk 2n times, each time in a meridian. Half of this meridian
will come from the intersection of one polyhedron (the “top” half), the
other half from the intersection of the other polyhedron. Thus the
meridian runs along two shaded sides of rectangles. Still normalizing
so each shaded side has length 1, this implies a meridian has length 2.
The curve giving the height H of the cusp runs along 2n white sides
of the rectangles (one for each 2–punctured disk of intersection). The

normalized height will be given by H/
√

2H =
√

H/2. The height H will
be minimal when each of the 2n white sides it runs along are of minimal
length, or length 1. Thus the minimal normalized height is

√
n.

Similarly, the height H will be maximal when each white side is of
maximal length, or length n − 1. Thus the maximal normalized height
is
√

n(n − 1). q.e.d.

6.1.3. Hyperbolic cone deformation on S3 − L. If the normalized
lengths of the slopes on which Dehn filling was performed were suffi-
ciently large, then Hodgson and Kerckhoff showed that the Dehn filling
could be realized by a hyperbolic cone deformation [14]. Proposition
6.5 indicates that to attain these minimal normalized slope lengths, we
need only ensure that there are sufficiently many crossings in each twist
region. In particular, by [14], provided

√
cj ≥ 10.6273, or provided
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that there are at least 113 crossings per twist region of the prime, twist
reduced diagram of K, then the Dehn filling of S3 − L can be realized
by a hyperbolic cone deformation.

Actually, we will see that the number of crossings in each twist region
needs to be larger than 113 to apply Theorem 4.6. For now, however,
note that we may ensure a hyperbolic cone deformation does exist from
S3 − L to S3 − K by putting conditions on the diagram of K.

6.2. Finding values for tube radius. We need to ensure that the
tube radius remains larger than R1 = 0.56 throughout the cone defor-
mation. We can do so by again applying work of Hodgson and Kerckhoff
[14]. They show that in the neighborhood of the j-th component of the
singular locus, we can increase the cone angle from 0 to 2π, maintaining
the tube radius R ≥ R1, provided equation (24) of the proof of Lemma
4.3 holds.

That is, consider a particular component of the singular locus Σj .
The singular locus consists of crossing circles of the link L. At the j-th
crossing circle, the hyperbolic cone deformation performs Dehn filling
along a slope of the form 1/nj . Let L0 denote the normalized length of
this slope in S3 −L. We can then increase the cone angle from 0 to 2π,
maintaining the tube radius bound R ≥ R1, provided the normalized
length L2

0 is larger than the increasing function I(R1) defined in equation
(24).

So to ensure R ≥ R1 ≥ 0.56, we compute that L2
0 must be at least

113.044. By Proposition 6.5, we know L2
0 is at least ci, where ci is the

number of crossings in the i-th twist region. Thus by ensuring there are
at least 114 crossings in the i-th twist region, we will guarantee that
our tube radius is at least 0.56. For general R1, we have the following
result.

Lemma 6.6. Let K, L be as above, such that we have a cone de-
formation from S3 − L to S3 − K. Fix R1 ≥ 0.531. Then R ≥ R1

throughout the deformation provided the number of crossings in each
twist region is at least I(R1), where I(R1) is defined in equation (24).

6.3. Proof of Theorem 1.8.

Theorem 1.8. Let K be a knot in S3 which admits a prime, twist
reduced diagram with a total of n ≥ 2 twist regions, with each twist
region containing at least c ≥ 116 crossings. In a hyperbolic structure
on S3 −K, take a horoball neighborhood U about K. Normalize so that
the meridian on ∂U has length 1. Then the height H of the cusp of
S3 − K satisfies:

H ≥ n (1 − f(c))2.

Here f(c) is a positive function of c which approaches 0 as c increases
to infinity. Additionally, H ≤ n(

√
n − 1 + f(c))2.
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Proof. If K admits a prime, twist reduced diagram with at least 2
twist regions, then we may form the augmented link L from the diagram
of K. We have seen in §6.1.3 that, provided there are at least 113
crossings in each twist region of the diagram of K, then S3−L and S3−K
are connected by a hyperbolic cone deformation Xt, with X0 = S3 −L,
Xτ = S3 − K. The singular locus will consist of the crossing circle
components of L. There will be n of these.

By results of Section 6.2, if there are at least 114 crossings per twist
region then the tube radius of the deformation is at least R1 = 0.56.
Then by Theorem 1.4,

−(2π)2
√

n C(R1)

(1 − e−2R1)
√

2
≤ hτ − h0 ≤ (2π)2

√
n C(R1)

(1 − e−2R1)
√

2
,

where ht denotes the normalized height of the cusp at time t.
And so:

(27) h0 − (2π)2
√

n C(R1)

(1 − e−2R1)
√

2
≤ hτ ≤ h0 + (2π)2

√
n C(R1)

(1 − e−2R1)
√

2
.

We may now apply part (2) of Proposition 6.5. This implies that the
initial normalized height h0, i.e., the normalized height on S3 − L, is
between

√
n and

√
n(n − 1).

Plug this into the left hand side of the above equation and we find:

(28) hτ ≥ √
n

(
1 − (2π)2

√
C(R1)

(1 − e−2R1)
√

2

)
.

For the right hand side, we find:

(29) hτ ≤ √
n

(
√

n − 1 + (2π)2
√

C(R1)

(1 − e−2R1)
√

2

)
.

The term C(R1) can be computed explicitly using the formulas in the
proof of Lemma 4.3. Recall C(R1) is strictly decreasing, approaching 0
as R1 approaches infinity. Thus the function

f̄(R1) = (2π)2
√

C(R1)

(1 − e−2R1)
√

2
,

which appears in both (28) and (29), is decreasing with R1, approaching
0. The graph of f̄ , as well as that of I(R), is shown in Figure 13.

When R1 = 0.56, 1 − f̄(R1) is negative. Since hτ is known to be
positive, this doesn’t give a very good estimate in (28). To get a better
estimate, we increase R1. The value 1−f̄(R1) becomes positive when R1

is about 0.6624. However, as R1 increases, so does I(R1), so by Lemma
6.6, we need to increase the number of crossings in each twist region to
guarantee that the tube radius remains larger than R1 throughout the
deformation. In particular, c must be at least 116 to ensure R1 ≥ 0.6624.
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Figure 13. Graphs of f̄(R) and I(R). Here f̄(R) gives
the bounds in Theorem 1.8 for given tube radius R. I(R)
gives the number of crossings required to guarantee tube
radius R.

In general, let f(c) = f̄(I−1(c)). Since I(R) is strictly increasing for
R ≥ 0.56, this is well defined. Then for c ≥ 116, 1 − f(c) is positive.

To finish the proof, note that we can scale so that the meridian of
the cusp of S3 −K has length 1. Then the actual height H of the cusp
of S3 − K will be at least (hτ )

2. q.e.d.

Notice in Figure 13 that f̄ is close to 0 for values of R near 2. However,
for R this size, I(R), or the number of crossings required per twist
region, is nearly 700. We find a nice compromise by choosing R = 1.0.
Then I(R) is not much larger than 116, and yet 1 − f̄ is already over
0.8. We use this fact in the following corollary, which gives more explicit
numbers to the results of Theorem 1.8.

Corollary 6.7. Let K be as in the previous theorem, with at least
c ≥ 145 crossings in each twist region. Then when the meridian of the
cusp of S3 − K is normalized to have length 1, the height of the cusp
satisfies:

H ≥ n (0.81544)2.

Proof. Letting c ≥ 145 in the above theorem ensures that R > R1 =
1.0. Then 1 − f(c) = 1 − f̄(1.0) ≥ 0.81544. q.e.d.

6.4. Example: 2–bridge knots. The requirement of Theorem 1.8
that there be at least 116 crossings per twist region was based on the
worst case analysis. This came from Proposition 6.5, in which we showed
that in the worst possible case, the normalized length of a slope was at
least the square root of the number of crossings. When we are dealing
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with particular classes of knots, we can often make significantly better
estimates, and reduce the number of crossings required. In this section,
we present a particular example of such a class of knots: 2–bridge knots.

We will determine the circle packing obtained from the proof of The-
orem 6.1 for a 2–bridge knot. A 2–bridge knot with an even number of
twist regions will have a corresponding augmented link L of the form of
Figure 14, except possibly with single crossings added at some crossing
circles. The picture for an odd number of twist regions is similar.

· · ·

· · ·

· · ·

· · ·

Figure 14. Augmented link of a 2–bridge knot with an
even number of twist regions, and an even number of
crossings per region.

In any case, the link will correspond to a trivalent graph Γ of the form
shown in Figure 15. Note each region of the graph complement gives
a circle in the circle packing, with tangencies across edges. Thus each
circle will be tangent to the circles corresponding to regions A and D.
The circle packing associated with this graph is of the form in Figure
16.

D

B1

C1

C2

· · ·

· · ·

· · ·

· · ·
A

Cn−2

B2

Cn−3

Figure 15. Trivalent graph associated with a 2–bridge knot.

Recall that the shape of cusps can be determined by analyzing the
rectangles we get from taking points of tangency of the circles in Figure
16 to infinity. In particular, we are interested in the cusp shapes which
correspond to crossing circles in the link L. The rectangles tiling these
cusps come from the tangencies of circle A with certain of the Bi and
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D

A

B1 C1

C2

...

Cn−1
B2

Figure 16. Circle packing associated with a 2–bridge knot.

Ci, and from tangencies of D with certain of the Bi and Ci. Thus we
find the general shape of rectangles of this form.

When we take a point of tangency between A and Bi to infinity, i = 1
or 2, the two circles tangent to both A and Bi are D and a Cj . These
are tangent to each other. Thus our rectangle in this case is a square.
Similarly for points of tangency between D and Bi.

A crossing circle coming from one of these points of tangency will
therefore be tiled by two squares, with a longitude running across two
shaded sides. Then the slope si along which Dehn filling is performed

will have normalized length
√

1 + c2
i /
√

2. Note this is larger than

I(0.6624), implying that the results of Theorem 1.8 apply, provided
ci ≥ 16. It is larger than I(1.0), implying the results of Corollary 6.7
hold, when ci ≥ 17. Thus the number of crossings in our theorem has
gone from 116 to 16, and 145 to 17.

When we take a point of tangency between A and Ci, or between D
and Ci to infinity, we get a 1 by 2 rectangle. This is because the circles
A and Ci are tangent to two distinct circles Ci−1 and Ci+1, or possibly
a Bi, which are each tangent to D. Since D is also tangent to A and
Ci, in the picture at infinity we have two parallel lines, A and Ci, with
three full sized circles tangent to each other and also to the lines A and
Ci.

In this case, the crossing circle is tiled by two 1 by 2 rectangles,
stacked to form a square. The slope si will have normalized length√

4 + c2
i /
√

4. It will be larger than I(0.6624) provided ci ≥ 22, and

larger than I(1.0) provided ci ≥ 24.
We can also make improvements on the initial normalized height, i.e.,

the value h(X) of Theorem 1.4. To compute h(X), we determine the
shape of the rectangles tiling the cusp corresponding to the knot strand.
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These include all rectangles obtained by taking a point of tangency
of the circle packing of Figure 16 to infinity, except those tangencies
corresponding to crossing circle cusps.

Each circle tangency of the form C2k tangent to D will give a rectangle
on the knot strand cusp. Similarly, those tangencies of circles C2k+1

tangent to A will give rectangles on the knot strand cusp. As we saw
above, these rectangles will each have dimensions 1 by 2. The side
of length 2 will contribute to the height. There will be (n − 2) of
these rectangles, since each Cj contributes one. Thus these rectangles
contribute 2n − 4 to the height.

Each circle tangency Ci tangent to Ci+1 also gives a rectangle on the
knot strand cusp, as do the tangencies B1 with C1 and Cn−2 with B2.
Each of these rectangles is a square, contributing 1 to the height, and
there are (n − 1) such rectangles.

The tangencies of B1 and D and of B2 and A (or D if n is odd) also
contribute rectangles of dimension 1 by 1 to the knot strand. Finally,
the tangency of A to D gives a rectangle with dimensions 1 by (n− 1),
contributing (n − 1) to the height. Thus the total height of the cusp is

(2n − 4) + (n − 1) + 2 + (n − 1) = 4n − 4.

(When n = 2 this argument needs to be modified slightly: there are
no Ci’s, but B1 and B2 are tangent. Tangencies of A and B2, D and
B1, and A and D also contribute to the height. These all give 1 by 1
rectangles, and hence the height is 4 = 4n − 4 in this case as well.)

A meridian runs along the widths of two rectangles in the cusp tiling.
Hence it has length 2. Thus the normalized height h(X) is given by:

h(X) =
4n − 4√

(4n − 4)(2)
=
√

2(n − 1).

This information will show:

Proposition 6.8. Let K be a 2–bridge knot in S3 which admits a
prime, twist reduced diagram with n ≥ 2 twist regions and at least c ≥ 24
crossings in each twist region. In a hyperbolic structure on S3 − K,
normalized such that the meridian has length 1, the height of the cusp
of S3 − K satisfies:
(√

2(n − 1) −√
n(0.18456)

)2

≤ H ≤
(√

2(n − 1) +
√

n(0.18456)
)2

.

Proof. Let L be the augmented link corresponding to K. Provided
we have at least n ≥ 2 twist regions, Theorem 6.1 implies S3 − L is
hyperbolic. We have seen in the above discussion that, provided we have
at least c ≥ 24 crossings in each twist region, the slope on each crossing
circle of L on which we perform Dehn filling has normalized length at
least I(1.0). This implies that a cone deformation exists from S3 − L
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to S3 − K for which the tube radius is at least R1 = 1.0 throughout.
Then Theorem 1.4 implies the normalized height of the cusp of S3 −K
satisfies:

−
√

n(2π)2
√

C(1.0)

(1 − e−2.0)
≤ hτ −

√
2(n − 1) ≤

√
n(2π)2

√
C(1.0)

(1 − e−2.0)
.

Using the formulas for C(1.0) from the proof of Lemma 4.3, we find
√

2(n − 1) −√
n(0.18456) ≤ hτ ≤

√
2(n − 1) +

√
n(0.18456).

We obtain the final result by noting that if we scale such that the merid-
ian has length 1, then the height is at least (hτ )

2. q.e.d.
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