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V A N I S H I N G T H E O R E M S O N C O M P L E T E K A H L E R 
M A N I F O L D S A N D T H E I R A P P L I C A T I O N S 

LEI NI 

1. In troduct ion 

Semi-positive line bundles over compact Kahler manifolds have been 
the focus of studies for decades. Among them, there are several strad­
dling vanishing theorems such as the Kodaira-Nakano Vanishing The­
orem, Vesentini-Gigante-Girbau Vanishing Theorems and Kawamata-
Viehweg Vanishing Theorem. As a corollary of the above mentioned 
vanishing theorems one can easily show that a line bundle over compact 
Kahler manifolds with negative degree has no non-trivial holomorphic 
sections. The high cohomology vanishing theorems for non-compact 
complex manifolds were also studied by several authors. Among them, 
there are the Nakano's vanishing theorem for Nakano-positive vector 
bundle over weakly 1-complete manifolds, and Andreotti-Vesentini's 
vanishing theorem for the q-complete manifolds. In the case where M is 
a non-compact manifold there are also many works on the finite dimen-
sionness of cohomology group. One of these results proved by N. Mok 
in [16] gave the finite dimensional estimate for the space of L2-sections 
in the case where M is a complete noncompact Kahler manifold with 
finite volume. 

In this paper we first show some vanishing theorems for the L ­
sections of the holomorphic vector bundles over complete nonparabolic 
Kahler manifolds. By applying the vanishing results and the L2-estimate 
of d of Andreotti-Vesentini, we show, among other things, that if M is 
a non-parabolic Kahler manifold with nonnegative Ricci curvature and 
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E is a quasi-positive line bundle over M, then the degree of E has to 
be infinity. 

On the other hand, a uniformization type theorem for simply-con­
nected complete Kahler manifold M m of complex dimension m, which 
was proved twenty years ago by [22], says that if M has non-positive sec­
tional curvature and the sectional curvature decays faster than quadratic, 
then M is isometric-biholomorphic to C m. This can be interpreted as a 
gap phenomenon of the sectional curvature on Kahler manifolds (A more 
general theorem in Riemannian category was proved later by Greene and 
Wu in [8]). As a corollary of the result we mentioned in the preceding 
paragraph we show that there is also a similar gap phenomenon for the 
Ricci curvature over complete Kahler manifolds when the manifold M 
is non-parabolic. More precisely, we show that 

Suppose M m is a complete non-parabolic Kahler manifold with non-
negative Ricci curvature. If the Ricci curvature is quasi-positive (i.e., 
the Ricci curvature is semipositive and at least positive at one point) 
then the total scalar curvature R M S(x) dv = oo. Similarly if M m has 
quasi-negative Ricci curvature (i.e., Ricci curvature is seminegative and 
strictly negative at least at one point) then R M S(x) dv = —oo. 

Since a manifold of dimension n (real dimension) with nonnegative 
Ricci curvature has at most polynomial volume growth of order n we 
can conclude from the above statement that if a nonparabolic Kahler 
manifold has nonnegative Ricci curvature which is positive at least at 
one point then the Ricci curvature can not decay very fast. This can 
be interpreted as an analogy of the gap theorem of Siu-Yau for Ricci 
curvature. 

The above result is also a natural generalization of one of Huber 's 
theorems (cf. [11]), which says that a complete Riemann surface with 
integrable curvature is parabolic. From our vanishing theorem one can 
conclude that 

If M m has quasi-positive (quasi-negative) Ricci curvature and inte­
grable scalar curvature, then M is parabolic. 

The generalization of above mentioned Huber's theorem along an­
other direction was proved by Peter Li and S. T. Yau in [15], where they 
proved the Liouville type theorem for bounded pluriharmonic functions 
instead of harmonic functions. But their assumption on the Ricci cur­
vature is more flexible than our case. 

When M is parabolic we show that the fniteness of the degree of a 
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semi-positive line bundle E implies the finite dimensionness of the space 
of L2 holomorphic sections of that line bundle. This together with our 
vanishing theorem generalizes a previous result of Mok in [16]. 

Suppose ( M m, h) is a complete Kahler manifold, and (E, g) is a Her-
mitian holomorphic line bundle over M. Let C(E,g) be the curvature 
form of (E,g), and S(x) be the trace of C(E,g) with respect to h. If 
R M S+(x) dv < oo ; and S(x) is bounded from above, we have 

dim(H°L2(M,E p)) <Cp m, 

for some constant C = C(M,E). 

Applying the above result to the canonical bundle of M we have 
an upper bound for the L2 plurigenus in terms of the integral of the 
negative part of the scalar curvature. 

By the technique of deforming Hermitian metric on the line bundle 
we are able to prove similar vanishing result when S(x), the trace of the 
curvature form, belongs to L p(M). Using the L2 8-method, in the case 
where M has quasi-positive (quasi-negative) Ricci curvature, we show 
similar results on the relation between the growth of scalar curvature 
and the volume growth of the manifold. More precisely we show the 
following result. 

Let M m be a complete Kahler manifold with quasi-positive Ricci cur­
vature of complex dimension m. If the scalar curvature S(x) belongs to 
L p(M) for some p > 1, then 

Z°° 1 
-dt = oo for any point x G M. 

l {V x(Vt))p 

This result also can be thought of as a generalized Huber's theorem 

since the parabolicity is equivalent to R^° * t- dt = oo in the case 

where M has nonnegative Ricci curvature. 
In the second part of this paper, by using the vanishing theorems, the 

results we proved about the quasi-strictly plurisubharmonic functions 
and the technique of solving Poincare-Lelong equation as in [17], we 
prove a general version of Mok-Siu-Yau's gap theorem. More precisely, 
we have: 

T h e o r e m 1.1. Suppose M m is a complete noncompact Kahler man­
ifold of complex dimension m > 2 with bounded nonnegative holomor­
phic bisectional curvature. Suppose M is a Stein manifold and satisfies 
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for some p > 1 

(1.1) Z S p(x) dv x < oc, 
M 

and for every ö > 0 there is a positive number B{8) such that for any 
x0 

Z°° i 
(1.2) r dt < B < oo, 

where S(x) is the scalar curvature and V xo(r) is the volume of the ball 
centered at xo with radius r. Then M is isometrically biholomorphic to 
a flat complete Kahler manifold. In particular, if either 

(i) M is simply-connected or 

(ii) M has maximum volume growth, 

then M is isometrically biholomorphic to C m. 

Even in the case where M has maximum volume growth the above 
result still provides a generalization of Mok-Siu-Yau's theorem since 
(1.2) is a consequence of volume comparison and (1.1) is weaker than 
the pointwise decay assumption in [17]. If we replace the condition that 
M is a Stein manifold by that M is a Zariski open subset of a smooth 
compact Kahler manifold M we can relax (1.2) by 

Z°° 1 
(1.3) dt < oo for some point xQ G M. 

l (V x0(Vt))p 

In this case we will include complex cylinders T k x C m_k, where T k is an 
Abelian variety. These cases are excluded by the Steinness assumption 
in Theorem 1.1. 

Corollary 1.2. Suppose M m is a complete noncompact Kahler 
manifolds of complex dimension m > 2 with bounded nonnegative holo-
morphic bisectional curvature. Suppose M is a Zariski open subset of a 
smooth compact Kahler manifold M and satisfies (1.1) and (1.3). Then 
M is isometrically biholomorphic to a flat complete Kahler manifold. 
In particular, if either 

(i) M is simply-connected or 
(ii) M has maximum volume growth, 

then M is isometrically biholomorphic to C m. 
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2. Vanishing Theorems 

Let (M, h) be a complete Kahler manifold, (E, g) be a Hermitian 
vector bundle on M. For simplicity we only prove the theorem for the 
case that E is a line bundle. The proof for general case can follow 
verbatim from this special case. Let c\(E,g) = —p-ddlogg be the 
first Chern class of E. As in the compact case (see for example [9]) we 
define the degree of a vector bundle to be 

deg(E) = Z c1(E)A(iüh)n-1. 
M 

It is well-known that the degree is a holomorphic invariant of E and 
independent of the choice of Hermitian metrics on E. 

To prove our vanishing theorem we first need Bochner type formulae 
just as other vanishing theorems 

Proposition 2.1 (cf. [12]). Let (E,g) be a Hermitian vector bun­
dle over a Kahler manifold (M, h). Let D be the Hermitian connection 
of E and @(E,g) be its curvature. Let K be the mean curvature of E. 
If Ç is a holomorphic section of E, then we have 

(2.1) öäHell2 = < g, DÇADÇ>-< 0(£), £ >, 

(2.2) glieli2 = Tr h(< g, DÇ A DÇ >) - K& 0, 

where 
<g,DÇADÇ>=g ij D iKD j 

and 

K(Z,0 = haß < eaßÜU > (Tr h(< 0(£),e >))• 

K is called the mean curvature sometimes. 
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Remark. We also denote Tr h(< g,DÇ A D£ >) by ||D£||2 = 
Xi,j,a,ßhaPDai Dßij g ij. 

Proof. See [12] for a proof. 

As a corollary of the above proposition we can have the following 
differential inequality. It also follows as a corollary of the Poincare-
Lelong equation if E is a line bundle. 

Corollary 2.2. Let (E,g) be a Hermitian vector bundle over a 
Kahler manifold (M,h). Let D be the Hermitian connection of E and 
@(E,g) its curvature. Let K be the mean curvature of E. If £ is a 
holomorphic section of E and f = ||£||, then we have 

(2-3) f A f - j V f j 2 > - 2 K ( e , e ) . 

In particular, if E is a line bundle we will have 

(2-4) fAf- jVf j2>-2S(x) f2 , 

where K(Ç,Ç) = (Tr h(< 9(0,C >)) = ^^ßh^R j ^ i ^ and 

S(x) = Zaßh<*PRaß. 

Proof. For a real function f we have 

jVfj2 = 2(jD'fj2 + jD"fj2) = ijD'fj2. 

On the other hand, direct calculation shows that 

jVfj' 

and 

1Vf2 

2 
1jVf 2 2 

2 

j v f j = 4jD'fj2 = 4jD'<e,e>j2 = 4j<De,e>j2-

Using Cauchy-Schwarz inequality we have 

jVfj < D f = ^,ja,ßh^Dai Dß^g ij 

Now (2.3) and (2.4) follow easily from the above inequality and (2.2). 

Now we can prove our first vanishing theorem. The key here is a 
theorem of Li-Yau (cf. [15]). 
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Theorem 2.3. Let (M,h) be a complete Kahler manifold, and let 
(E, g) be a Hermitian holomorphic line bundle over M. Suppose that M 
is nonparabolic and S+(x), the positive part of S(x) = Tr h(p=ci(E)), 

is integrable. Then H°L2(M,E) = {0}. 

Proof. Let f = ||£||. By above corollary we will have f satisfies the 
following differential inequality 

fAf-\Vf\2>-2qS+(x)f2, 

and f G L2(M). On the other hand, the following theorem of [15] 
implies that if f satisfies the above differential inequality and 

S+(x) dv h < oo, S+(x) > 0, 
M 

then f = 0, which is contradictory to the fact that £ is nontrivial. Here 
is the statement of Li-Yau's theorem, for the convenience of the reader. 

Theorem (Li-Yau). Let M be a complete nonparabolic Rieman-
nian manifold. Assume u is a nonnegative function on M and satisfies 

Au - ^ - > Ku q+1 - Su, 
u 

for some q > 0 and for some function K > 0 and S on M. If we assume 
that S+ is integrable and 

Z u = o{r2), 

for some positive constant p and fixed point qo G M, then u must be 
identically zero. 

In the case where (M, h) is parabolic we can have the following finite 
dimensionality result which generalizes one of Mok's previous theorems. 
We can also regard this as a generalization of Li-Yau's vanishing result. 

Theorem 2.4. Let (M m,h) be a complete Kahler manifold of com­
plex dimension m, and let (E, g) be a Hermitian holomorphic line bundle 
over M. Suppose that S+(x), the positive part of 

S(x) (= Tr h(-j=cl(E))), 

is integrable and S(x) is bounded from above, then there exists a constant 

C = C{M, ||S+(x)||Li) > 0 

such that dim(H°2(M, E q)) < Cq m. 
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Remarks. Just as before, we can state the similar result for vector 
bundles. When E in Theorem 2.4 is a quasi-positive line bundle we 
know that the above upper bound is the sharpest. 

Proof. By the so-called Siegel-Poincare argument we know that 
in order to prove our dimension estimate we only need a multiplicity 
estimate for the zero divisor of any L2-holomorphic section. 

Let £ G H ̂ 2(M,E q) be any L2 holomorphic section of E q. First we 
claim that \\DÇ\\ G L2(M). The proof of claim follows from the Bochner 
formula directly. By Proposition 2.1 we know 

g l i e l i 2 = l l^ l l 2 - qS{x)\\i\\2. 

Let ip be a cut-off function supported in B(xo,2r) and be equal to 1 
in B(xo,r). Multiplying ip2 on both sides and integrating by parts we 
have 

- i Z < V| |e | |2 ,V</?>^dv+q Z S(x)\\Ç\\2ip2 dv = Z \\D£\\2ip2 dv. 
* M M M 

By assumption there exists a constant A > 0 such that 

S(x) < A. 

Similar calculation as in Corollary 2.2 yields 

jV||£||2j2 = 4 j < D £ , £ > j 2 < 4||D£||2||£||2. 

Combining above inequalities gives 

A Z IICIIV dv + \\DÇ\\ llf|| jVtpjtp dv > | | D £ | | V dv. 
M M M 

Schwarz inequality implies that 

2A Z ((CUV dv + Z ||e||2jV</?j2 dv > Z | | D £ | | V dv. 
M M M 

Letting r —> oo we have 

2A Z \\if dv > Z \\DÇ\\2 dv. 
M M 

Now we can do the multiplicity estimate. By the Poincare-Lelong equa­
tion we obtain 
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Using the definition of the multiplicity of analytic variety and integrat­
ing above equality it is sufficient to show that 

1ddlogUf A h n"1 = T- Z AlogUf dv < 0. 
M 2TT 47T M 

The existence of the above integral will be explained in the following 
argument. First, for any e > 0, we can show that 

Alog(||e||2 + e ) > - 4 q S + ( x ) . 

Then the integrals R M A log(||£||2 + e) and R M A log ||£||2 make sense (see 
Royden's Real Analysis page 93, exercise. 13). Furthermore, we have 

Z AlogHell2 < lim Z Alog(||e||2 + e). 

In order to show that Alog(||£||2 + e) > —^qS+(x)J around any point 
x, we choose local holomorphic coordinates (zi,z2, • • •, z n) with x to be 
the origin such that the Kahler metric haß(x) = oaß and dhaß(x) = 0. 
We also choose the holomorphic basis e for E q such that £ = £oe and 
g(x) = 1 and dg(x) = 0. Direct calculation as in [16] shows that 

-Alog(||£||2 + e) > -qS(x) "f" (x) + J ° \\ 

Now the only thing left is to show that 

Z Alog(||£||2 + e) < 0. 
M 

This follows directly from the integrability of ||D£||2. 
Let ip be a cut-off function supported in B p(r), where p is a fixed 

point in M, and r is the distance function to p. Then 

Z Alog(||e||2 + e )^ 2dv = -2 Z < T^jl ,V<p><pdv 
M M llsll + e 

< - Z nDeii lien i v ^ d v 

<-(Z i D 2 ? 2 dv)H Z lien2 |v^ i 2 dv)i 
e
 M M 

Letting r - > o o w e have our claim. 

As a conclusion we arrive at the following theorem. 
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T h e o r e m 2.5 . Let (M m,h) be a complete Kahler manifold and 
(E,g) be a semi-positive Hermitian line bundle over M. Let C(E,g) 
be the curvature form of (E, g) and S(x) be the trace of C(E, g) with 
respect to h. If R M S+(x) dv < oo we have the following: 

(i) If S(x) is bounded from above, then d i m ( i L 2 (M, E p)) < Cp m, for 
some constant C = C(M,E). 

(ii) If M is nonparabolic, then H L 2 (M,E p) = {0}. 

As a corollary we obtain 

Corollary 2.6. Let (M m,h) be a complete Kahler manifold. Sup­
pose that the integral of the negative part of the scalar curvature is finite, 
and p qL2 = d i m ( i L ^ 2 (M, K q M)) is the L2 q-th plurigenus of M. Then if 
the scalar curvature is bounded from below, then there exists a constant 
C = C(M) such that 

p q,L* < Cq n. 

If M is nonparabolic, then 

p q,L2 = 0) for all q-

In the next we are going to establish the vanishing theorem for the 
case where S+(x) G L p(M) for some p > 1. The method of proving 
these types of vanishing theorems is to deform the metric on the line 
bundle along the opposite direction of the positive part of S(x), and 
then to apply Theorem 2.3. The idea of deforming metrics as above was 
used first by Donaldson [6] to prove the existence of Hermitian-Einstein 
metric on stable vector bundles. But in our case since our bundle is of 
rank one we have an easy situation. In [20] we treated the vector bundle 
case and proved the existence of Hermitian-Einstein metrics for vector 
bundles over a class of complete Kahler manifolds. 

Let go be the Hermitian metric on E at the starting time, and 
So(x) = 4:(—tr h(ddloggo))+ and u(t,x) be the solution of the following 
heat-equation 

du 
—— = Au — Snlx) 

(2.5) dt v ' 

u(0,x) = 0 . 

We deform the metric by g t = go exp(u). Direct calculation shows that 

S{t,x) = -4tr h(dd logg t) 
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= -Au + (-4tr h(ddlogg0)) 

= -u t - {-4tr h{ddloggo))-. 

If we can solve the above equation for [0, oo) x M and show that uQO (x) = 
l im^oo u(t, x) exists with uoo{x) < 0 and lim t-^oo u t(t,x) = 0, we will 
have, for the g00 = g0 e x p ^ ) , 

SocOx) = - ( - 4 t r h(ddloggo))- < 0. 

Since uQO < 0 we know ||£||g0 > ||^||goo- Then the vanishing of L2-
sections of (E^g ^) will imply the vanishing of L2-sections of (E,go). 
Once we also know that M is nonparabolic we will be able to apply 
Theorem 2.3 to prove the vanishing theorem for L2-sections of (E,go). 

T h e o r e m 2.7. Let M be a complete Kahler manifold with nonneg­
ative Ricci curvature, and let (E, g) be a Hermitian line bundle on M. 
If S+(x) = (—tr h(dd log go)) + belongs to L p(M) for some p > 1 and 

Z 0 0 1 
-dt < 00, for some point xQ G M, 

l (V x0(Vt))p 

thenH L2(M,E) = {0}. 

Proof. Let H(x, y, t) be the heat-kernel of M. One can easily verify 
that 

(2.6) u(t,x) = — ds H(x,y,t — s)So(y) dv y, 
o M 

provides a solution of (2.5) and 

(2.7) u t(t,x) = - H(x,y,t)S0(y)dv y. 
M 

Clearly u(t,x) < 0, and v(t,x) = u t(t,x) satisfies the heat equation 

(2.8) v t = Av, 

v(0,x) = So(x). 

By the reasoning in the paragraph before Theorem 2.7 we only need to 
verify that 

u(oo,x) = — ds H(x,y,s)So(y) dv y 
o M 



100 l e i n i 

exists and 

lim u t(t,x) = lim — Z H(x,y,t)So(y)dv y = 0. 
t—S>00 t—>00 M 

But this follows from the well-known heat-kernel estimate of Li-Yau. 
More precisely, 

-u t(t,x) = H(x,y,t)S0(y)dv y 
JM 

<(Z (H(x,y,t)q dv y)q ( Z (S0(y))p dv y 

< lsup(H(x,y,t))q-q ( Z H(x,y,t)dv y)q) \\S0(y)\\p 
\yeM M J 

< sup(H(x,y,t))q-q\\S0(y)\\p. 
yeM 

Here we have used the fact that 

Z H(x,y,t)dv y = l. 
M 

By the heat-kernel estimate of [15] one has that 

H(xìyìt)<c(n)V-l{p t). 

Combining the above estimates gives 

u t{t,x) < C(n) L . — HS^Hp . 
{V x(p t)) q 

By the assumption that M has nonnegative Ricci curvature and 

1 Z ° i 
—dt = -dt < oo, 

{V x(p t))~ l {V x(p t))-p 
one can easily see that 

uoo(x) = - ds H(x,y,s)S0(y) dv y 
o M 

exists and 

lim u t(t,x) = lim — Z H(x,y,t)So(y)dv y = 0. 
t—S-OO t—>00 M 
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Thus we complete our proof by noting the fact that under our assump­
tion M is a nonparabolic manifold. 

Remark . When M has nonnegative Ricci curvature one can think 
the above theorem as a general version of Theorem 2.3 since whenp —> 1, 
the condition on the volume growth becomes R-,00 ) r\dt < oo, which 

V x0(Vt) 
is equivalent to the assumption that M is nonparabolic. 

From the proof of the above theorem one can see that the only thing 
needed to prove the vanishing theorem is a good enough estimate of the 
heat kernel. Because of that , using an upper bound for the heat kernel 
proved by A. Grigor'yan, one can have the following theorem: 

T h e o r e m 2.8. Let M m be a complete Kahler manifold with com­
plex dimension m, and E be a Hermitian line bundle on M. Suppose 
S+(x) = (—tr h(ddloggo))+ belongs to L p(M) for some p > 1, and M 
satisfies one of the following conditions; 

a) M covers a compact manifold with superpolynomial growth deck 
transformation group T, or 

b) M has positive X\(M). 
ThenH°L2{M,E) = {0}. 

Proof. As in the proof of the last theorem we only need to estimate 

u t(t,x) = - H(x,y,t)S0(y)dv y. 
M 

As before we have that 
q - 1 

-u t(t,x) < sup (H(x,y,t)) q ||So(y)||p 
yeM 

= sup (H(x,y,t))p HSoyiip-
yeM 

While Grigor'yan's estimate says that H(x, y, t) has exponential decay 
(cf. [10]). More precisely, 

a 

H(x,y,t) < Const exp(—ctQ+2), for some c > 0 , l > a > 0 

under the assumption a) and 

H(x,y,t) < Constexp(—Ait), for t > 1 

under the assumption b). In both cases, 

uoo(x) = - ds H(x,y,s)S0(y) dv y 
o M 
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exists and 

lim u t(t,x) = lim — Z H(x,y,t)So(y)dv y = 0. 
t—S-OO t—>00 M 

Moreover, 
oo 

Z H(x,y,t) dt < oo, 
o 

which implies that M is a non-parabolic manifold. Thus we complete 
our proof by the same reasoning as in the proof of the last theorem. 

Applying another heat kernel estimate due to Nash [18] we can state 
the following result. 

Theorem 2.9. Let M m be a complete Kahler manifold with complex 
dimension m(real dimension n = 2m) such that L2-Sobolev inequality 
holds on M, i.e., 

|V</>|2>C S||</>||2_n, for any <j><=C c> (M), 
M n~2 

and let E be a Hermitian line bundle on M. If 

S+(x) = {-tr h(dd log g0))+ 

belongs to L p(M) for some m > p > I, then H L2(M,E) = {0}. 

Proof. As in the proof of the last theorem we only need to estimate 

u t(t,x) = - H(x,y,t)S0(y)dv y. 
M 

As before we have that 

-u t{t,x) < sup (H(x,y,t)) q ||So(y)||p 
yeM 

j_ 
= sup (H(x,y,t))p ||So(y)llp-

yeM 

Under our assumption H(x,y,t) can be estimated by ^-, thanks to an 
argument of Nash (cf. [18]). More precisely 

H(x,y,t)<C(M)±. 

This estimate implies that M is nonparabolic since integrating H(x, y, t) 
along the direction of time gives a positive Green's function. Under our 
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condition that m > p, our argument of the proof of the last theorem 
completes the proof. 

When at the critical case, i.e., S+(x) G L m(M) we still have the 
following vanishing theorem. This vanishing theorem can be thought of 
as a gap theorem. 

Theorem 2.10. Let M m be a complete Kahler manifold with com­
plex dimension m (real dimension n = 2m) such that L2-Sobolev in­
equality holds on M, i.e., 

\^<f>r>C SU\\n, forany<peC™(M), 
M n~2 

and let E be a Hermitian line bundle on M. If S+(x) = (—tr h(dd log go)) 
is bounded and belongs to L m(M) with 

\ m 

S m(x) < C S, 
M J 

thenH0L2(M,E) = {0}. 

Proof. We argue by contradiction. Let £ be a non-trivial L2 

holomorphic sections. By (2.4), for f(x) = ||£||(x), 

fAf-|Vf|2>-2S+(xOf2. 

Let r(x) be the distance function to a fixed point p G M, and ip(t) be a 
function satisfying that 

f 1 for t < 1 
^ ) = \ 0 fort>2, 

-C < i/)'(t) < 0. 

Futher, let cf>(x) = VK R ) satisfy 

±i \ _ / * for x G B p(R) 
<P[x)~ 0 forxGMnB p(2R), 

|V</>|2 < C\R-2. 

Multiplying <f>2 on both side of the basic differential inequality and in­
tegrating over M we have 

Z (Af)f</>2 - Z | V f 1 V > - 2 Z S+f24>2. 
M M M 
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Integrating by parts yields 

2 Z S+f2</>2 > 2 Z |Vf| V + 2 Z < Vf, V</> > f 0 
M M M 

>{2-e)Z |V(f0)|2 - 2 ( 2 - e ) Z <Vf,V</>> 
M M 

- ( 2 - e ) Z \V<P\2f 
M 

+ 2 Z < Vf,V</> >f<t> + e Z | V f | V -
M M 

2 Z S+f2<f>2 + (2 - e) Z |V</>|2f2 

M M 

>(2-e) Z |V(f<^)|2 

M 

-2(l-e) Z <Vf,V</> >f</> +e Z | V f | V 
M M 

>(2-e) Z \V{f4>)\2-eZ IVfIV 
M M 

M M 

Thus 

e
 M 

2 V^ ~~ c) 2 2 >(2-e) \V(f4>)\2-{^—^- |V0| 
M

 e
 M 

By Holder inequality, we have 

1 n —2 

S m)m(Zw)n n + ( P - « > + ^ ^ ) Z m?f-M \M \ e M 
> ( 2 - e ) |V(f0)| 

M 

2 

> ( 2 - e ) C S (f0) — 
M 

n —2 
2n_ n 

Let R —7- oo. Then 

J_ n —2 n - 2 
\ m { Z 2n \ n / Z In n 

Sy) f—A >(2-e)C S( f—* 
M M M 
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Using the assumption of the theorem and choosing a small enough e, 
one can conclude that 

n - 2 

which implies that £ is a trivial section. In the proof we have used the 
fact that 

n — 2 

{Z M f - ' < 0 ° ' 
which follows from the fact |Vf| G L2(M) (cf. Theorem 2.4) and the 
Sobolev inequality. 

3. Applications of the vanishing theorems 

As before, we only state and prove our results for the line bundle 
case. We can easily see from the proof that they are also true for the 
vector bundle case. 

Theorem 3.1. Suppose M m is a complete nonparabolic Kahler 
manifold of complex dimension m with non-negative Ricci curvature, 
and E is a quasi-positive (quasi-negative) holomorphic hermitian vector 
bundle over M. Then deg(E) = oo. 

The proof of the theorem is based on the L2—estimate of 8 of 
Andreotti-Vesentini [2]. 

Theorem 3.2 cf. [2], [5]). Let (E,g) be a Hermitian line bundle 
with semi-positive curvature on complete Kahler manifold (M, h) of di­
mension n. Suppose ip : M —>• [—oo, 0] is a function of class C°° outside 
a discrete subsets s of M and, near each point p G S, ip(z) = A p log \z\2 

where A p is a positive constant and z = (z\, z2, • • •, z n) are local holo­
morphic coordinates centered at p. Assume that 

e(E,gexp(-(p)) = Q(E,g) + ddip > 0 

on M n S, and e : M —> [0,1] be a continuous function such that 
@(E,g) + ddip > e h on M n S. Then, for every C°° form 9 of 
type (n,l) with values in L on M which satisfies 

BO = 0 and Z €~1\6\2e~'p dv h < oo, 
M 
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there exists a C°° form r] of type (n,0) with values in L on M such that 

Br/ = 9 and / \rj\ e~v dv h < l e~ \9\ e~v dv h < oo. 
M M 

From this existence theorem we can easily show the following corol­
laries. 

Corollary 3 .3 . Let (E,g) be a Hermitian line bundle with quasi-
positive curvature on a complete Kahler manifold M with nonnegative 
Ricci curvature. Then there exists a positive number qo such that there 
exists nontrivial L2 holomorphic sections on E q for q > qo- Moreover, 
there even exists a constant C = C(m, M, E) such that 

dim(H°L2(M,E q)) >Cq m. 

Remark . The above corollary was first proved in [1]. The dimension 
estimate was given in [19] for covering spaces. The construction was also 
used by Siu-Yau in [23] earlier. 

Proof. Let E q = E q (g> K M . It is easy to see E q is semi-positive 
since M has nonnegative Ricci curvature. Thus we can apply Demailly's 
theorem to E q. The only thing left is to construct the weighted function 
if. It is quite standard that for any point o G M we can construct ip 
as follows: Let UQ be a coordinates neighborhood around o, U i be two 
nested neighborhoods of o satisfying that U<2 C U\, U\ C U$, p(x) be a 
cut-off function which equals zero outside UQ and equals 1 inside U\, and 
ip = p(x) log(|z(x) —z(p)\2). If o is one of the points where @(E,g) is 
positive, we can arrange Uo to be the neighborhood such that @(E,g) 
is positive for any x G Uo. Then we can find a positive number qo such 
that qo@(E,g) + ddp > 0 on M and qo&(E,g) + ddpp > 0 for any 
p G U2 and x G Uo. Since 

G{E q) + dd<p= qG(E) + Ricci(M) + dd<p, 

applying Demailly's theorem we can now use the singularity of ip to 
construct holomorphic sections on Ç10(MÎK M{S>E q) = Q° (M, E q) with 
prescribed local vanishing behavior around o. One can refer to [23] or 
[19] for detailed estimate of the lower bounds. 

Corollary 3 .4 . Suppose that M is a complete Kahler manifold with 
quasi-negative Ricci curvature. Then there exists a positive number qo 
such that there exist nontrivial L2 holomorphic sections on K q M, where 
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K M is the canonical bundle of M. Moreover, there exists a constant 
C = C(m, M) such that 

dim(H°L2(M,K M))>Cq m. 

Proof. One only needs to notice that in this case K M is quasi-
positive line bundle and E q = K q^ . Then 

G{E q) + ddtp = {q-l)G(E) + dd<p>0 

on M and e(E*) + ddipp > 0 on U0. 

The proof of Theorem 3.1 now easily follows from above Corollary 3.3 
and the vanishing Theorem 2.3. By the same reasoning and applying 
Corollaries 3.3 and 3.4, we can have the following result which was 
mentioned before in the introduction. 

Corollary 3 .5 . Suppose M m is a complete non-parabolic Kahler 
manifold with nonnegative Ricci curvature. If the Ricci curvature is 
quasi-positive, then the total scalar curvature R M S(x) dv = oo. Simi­
larly if M n has quasi-negative Ricci curvature (i.e., Ricci curvature is 
nonpositive and strictly negative at one point), then R M S(x) dv = — oo. 

The following generalization of Huber's theorem (cf. [11]) follows 
verbatim; 

T h e o r e m 3.6 . Suppose M m is a complete Kahler manifold with 
nonnegative (nonpositive) Ricci curvature. If the Ricci curvature is quasi-
positive (quasi-negative) and the total scalar curvature R M S(x) dv < oo 
R M S(x)dv > —oo,), then M is parabolic, i.e., there is no non-trivial 

bounded subharmonic functions on M. 

Remark . One certainly needs the assumption that M has quasi-
positive Ricci curvature since the examples constructed by [24] provide 
Ricci flat nonparabolic complete Kahler manifolds. 

The above result can be thought as an upper bound on the volume 
growth for the Kahler manifolds with quasi-positive Ricci curvature and 
integrable scalar curvature. By applying the vanishing Theorem 2.7 and 
Corollaries 3.3 and 3.4, we can get more information on the relation 
between scalar curvature and the volume growth. This kind of relation 
between the integrability of certain curvature quantity and the volume 
growth was studied by [15] and [7] earlier. But the known results are on 
the integrability of the lower bound of the Ricci curvature in the case of 
Riemannian manifolds. Our result is totally a Kahler phenomenon and 
new. 
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T h e o r e m 3.7. Let M be a complete Kahler manifold with quasi-
positive Ricci curvature. If the scalar curvature S(x) belongs to L p(M) 
for some p Z I, then 

°° i 
-dt = oo, for any point x G M. 

Recall the order of a Riemannian manifold M is defined as (cf. [4]) 

O(M) = inf ja : lim inf — r < oo}. 

As a corollary of Theorem 3.7 we have 

Corollary 3 .8 . Let M be a complete Kahler manifold with quasi-
positive Ricci curvature. If the scalar curvature S(x) belongs to L p(M) 
for some p > I, then O(M) < 2p. 

Similarly, by applying the vanishing Theorems 2.8, 2.9 together with 
Corollaries 3.3 and 3.4, we can have some restrictions on the complete 
Kahler manifolds with quasi-negative Ricci curvature. 

T h e o r e m 3 .9 . Let M be a complete Kahler manifold with quasi-
negative Ricci curvature. If the scalar curvature S(x) belongs to L p(M) 
for some p > I, then Ai(M) = 0. 

Proof. The proof follows easily from Theorem 2.8 and Corollary 
3.4. 

In the case where p > m, this is a consequence of the volume growth 
estimate of [15], and it is true for Riemannian manifolds. But for p < m 
it is a new result even though we do not know whether it is only true 
for Kahler manifolds or not. 

T h e o r e m 3 .10 . Let M m be a complete Kahler manifold of complex 
dimension m with nonpositive sectional curvature and quasi-negative 
Ricci curvature. If the scalar curvature S(x) belongs to L p(M) for some 
1 < p < m, then the fundamental group iri(M) of M must be an infinite 
group. 

Proof. If M is simply-connected, it is well-know that the Sobolev 
inequality holds on M. By applying Theorem 2.9 we have vanishing 
result which will be contradictory to Corollary 3.4. For the case where 
M has finite fundamental group, we can lift everything to the universal 
cover and apply the preceding argument. 

As a corollary we have the following restriction on the possible 
Kahler metrics defined on C m and B m. 
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Corollary 3 .11 . There is no such Kahler metric toh on either C m 
or B m that h has nonpositive sectional curvature, Ricc(h) is quasi-
negative and the scalar curvature S(x) belongs to L p(M) for some p < 
m. 

There are examples showing that for p > m there do exist complete 
Kahler metrics on both C m and B m satisfying all the described prop­
erties of the above corollary. For the critical case when p = m one can 
has a similar result by using Theorem 2.10 and Corollary 3.4. We leave 
this to the interested reader. 

As a final remark, it might be interesting to understand when one 
can have a complex splitting theorem under any one of the assumptions 
in Theorem 3.1 to Theorem 3.6. In the last section of this paper we will 
address this question under the assumption that M has nonnegative 
holomorphic bisectional curvature. 

4. Quasi -str ict ly p lur isubharmonic funct ions 

In this section we first study the plurisubharmonic functions on com­
plete nonparabolic Kahler manifolds with nonnegative Ricci curvature. 
The simplest model of this type of Kahler manifolds is C n with the stan­
dard flat metric. Other nontrivial examples are the quasi-projective 
Kahler manifolds constructed in [24], which has flat Ricci form and 
maximum volume growth. Over C n one can show easily that any non-
constant plurisubharmonic function have at least logarithmical growth. 
In this section we first show that the same property holds for the quasi-
strictly pluriharmonic functions (see the following definition) on Ricci 
nonnegative Kahler manifolds. 

Definit ion. A plurisubharmonic function f defined on a complex 
manifold M is called quasi-strictly pluriharmonic if there is a point 
p G M such that 

ddf (p) > 0. 

Propos i t i on 4 . 1 . Let M be a nonparabolic complete Kahler mani­
fold with nonnegative Ricci curvature. If f is a quasi-strictly plurisub­
harmonic function on M, then 

(4.1) lim sup g}z) > 0, 

where r is the distance function to a fixed point p o G M. 
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R e m a r k s , i) For parabolic Riemannian manifolds Peter Li and L. 
F. Tam showed in [13] that for the nonconstant subharmonic functions 
similar inequality as (4.1) holds. More precisely they showed that if f 
is a non-constant subharmonic function (by parabolicity we know that 
f cannot be bounded from above), then there exists a constant C > 0 
such that 

ii) For a nonparabolic manifold (4.1) will not hold for subharmonic 
functions anymore since one can have bounded subharmonic functions 
by definition. Proposition 4.1 can be thought as a generalization of 
Li-Tam's result on Kahler category. On the other hand it is not clear 
whether the quasi-strict pluriharmonicity assumption is necessary or 
not. 

Proof. The proof of Proposition 4.1 follows the same line as in the 
proof of theorems in the last section. 

Without loss of generality we assume that ddf > 0 around point 
pQ. Now we apply Theorem 3.2 to construct L2 holomorphic functions 
with respect to certain weighted norm. Just as in Corollary 3.3 we let 
E be the trivial line bundle, correspondingly E = K^ . Now we apply 
Demailly's theorem to E . In our case we use p = (n + l)p(x)ppo +Cf, 
where ipo is the function with singularity at po as in Corollary 3.2, p is 
a cut-off function, and C is a positive constant. We can always choose 
C large enough to have 

@(E,gexp(-<p)) = Ricci{M) + ddp > 0 

around point po and nonnegative outside that neighbourhood. Similarly 
Demailly's theorem implies that there exists a nonconstant holomorphic 
function u such that 

(4.2) Z \u\2 e-f dv < oo. 

Now the proof of theorem follows from an argument by contradiction. 
Assume that the theorem is not true. We can find R » 1 such that 

(4-3) f < i l o g ( r ( z ) ) , 

where C is the positive constant we used in above paragraph. Since p 
is a cut-off function, from (4.2) one can find a compact set K C B(R) 
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such that 

Iu 2 e Cf < oo. 
M\K 

Combining (4.2) and (4.3) we have that 

\\2 
o I I 2 u 

u\ dv < \u\ dv + r dv 

< Z |u|2 dv + RI \u\2 e~Cf. 
B p0(R) p0(R1)\p0(R) 

This implies that 

Z \u\2 dv = O(Ri). 
B po^Ri) 

On the other hand, it is easy to see that \u\ is a subharmonic func­
tion. Therefore if we denote g = \u\, then Ag2 > 2|Vg|2 and for cut-off 
function ip, 

2 Z |Vg|2^2 dv < Z (Ag2)ip2 dv 

= - 4 < Vg, V(p > gip dv 
M 

< Z \Vg\2ip2 dv + 4 Z \Vip\2g2 dv. 
M M M M 

By choosing suitable cut-off function, the above inequality leads to that 
g = 0, so that we have u is a constant, which is a contradiction. 

Corollary 4 .2 . Let M be as in Proposition 4-1- Then there is no 
quasi-strictly plurisubharmonic function bounded from above on M. 

When M is a Zariski open subset of a smooth compact Kahler man­
ifold M we do not need to assume the quasi-strict pluriharmonicity. In 
fact we can show: 

Propos i t i on 4 .3 . Suppose (M, LÜ\), a complete Kahler manifold, is 
a Zarisiki open subset of some compact Kahler manifold ( M , ^ ) , where, 
restricted to M, LO\ and UJI are two different metrics. Then there is no 
non-constant bounded plurisubharmonic function on M. 

Proof. First we should point out that when we refer to metric 
property in the proof of this proposition we always mean UJ^. Assume 
f is a plurisubharmonic function on M. Then with respect to W2, f is 



112 l e i n i 

a subharmonic function. The proposition will be proved if we can show 
that f can be extended to be a subharmonic function on M. Since f 
is bounded this can be done. The following argument is adapted from 
[21]. _ 

As we observed we only need to show that as a L1 function on M (the 
integrability follows from the fact f is bounded and plurisubharmonic) 
f satisfies 

Z_fA<pdv>0, for all <p G C™(M). 
M 

By induction we can assume Y = M — M is smooth and of codimention 
k < m (here m is the complex dimension of M). Let G Y(x) be the 
Green's function of Y. By defintion we have that 

G YAipdv = — ipdv Y. 
M Y 

It can be constructed from the regular Green's function. By the con­
struction of the G Y(x) we also have the following asymptotic expansion: 

d{x,Y)-^k-^ for k > 2, 
G Y x ' log(x,Y) for k = 1. 

As in [21], we can approximate G Y(x) by a sequence of smooth functions 
4>N(x) with the properties 

and 

Then 

4>N{x) = N, for x close to Y, 

_\Acf>N\dv < C 
M 

Z_\V<P\dv <C. 
M 

/ fAipdv = lim / f ( l - —N<pN)A(pdv 

+ 2N Z_f< V N , V ^ > dv 
-W M 

^ l i m (Z f ̂  Nrdv + 2Z ^ f < V N , V ^ > dv N^°° M~ N M N 
> o. 
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The value of f at a point p G Y can be assigned to be the sub-limit 
of the average over small balls centered at p. Since any subharmonic 
function on a compact Riemannian manifold is a constant function, we 
conclude that f is a constant function. This completes the proof of the 
proposition. 

5. Gap t h e o r e m 

In this section we apply the results from the previous sections to 
study the complete Kahler manifolds with nonnegative holomorphic bi-
sectional curvature. Much work have been done on the following con­
jecture of Yau and Green-Wu. 

Conjecture . Suppose M is a complete noncompact Kahler manifold 
with positive holomorphic bisectional curvature. Then M is biholomor-
phic to C m. 

In [17] N. Mok, Y. T. Siu and S. T. Yau proved above conjecture 
under some extra conditions on the volume growth and scalar curvature. 
More precisely, they proved the following gap theorem 

T h e o r e m (Mok-S iu-Yau) . Suppose M is a complete noncompact 
Kahler manifold of complex dimension m > 2 with bounded nonnegative 
holomorphic bisectional curvature. Suppose M is a Stein manifold and 
there exist constants 0 < e, Co, C\ < +oo such that 

(5.1) Vol(B(x0,r)) >C0r
2m, 0 < r + oo, 

and 

(5.2) 0 < S(x) < — 1-^—, xeM, 
r(x,xo)z+e 

where S(x) is the scalar curvature and r(x,xo) is the distance between 
x and xo. Then M is isometrically biholomorphic to C m with the flat 
metric. 

In this section we will prove an improved version of above theorem. 

T h e o r e m 5 .1 . Suppose M is a complete noncompact Kahler mani­
fold of complex dimension m > 2 with bounded nonnegative holomorphic 
bisectional curvature. Suppose M is a Stein manifold and satisfies for 
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some p > 1 

(5.3) Z S p(x) dv x < oo, 
M 

and for any ö > 0 there is a positive number B{8) such that for any xo 

Z°° i 
(5.4) / r dt < B < oo, 

s {V0(p t)Vp 

where S(x) is the scalar curvature, and V xo(r) is the volume of the ball 
centered at xo with radius r. Then M is isometrically biholomorphic to 
a flat complete Kahler manifold. In particular, if either 

(i) M is simply-connected or 
(ii) M has maximum volume growth, 

then M is isometrically biholomorphic to C m. 

Remarks, (i) As before one can see that the assumption (5.4) only 
makes sense when p < m, the complex dimension of the manifold. 

(ii) It is not hard to check that if M satisfies (5.1) and (5.2), then 
there exists a positive number p with 1 < p < m such that (5.3) and 
(5.4) hold. Hence the above theorem does generalize Mok-Siu-Yau's 
theorem. 

We first state and prove the following important step in the proof 
of our theorem. 

Theorem 5.2. Suppose M is a complete noncompact Kahler mani­
fold of complex dimension m > 2 with bounded nonnegative holomorphic 
bisectional curvature. Suppose M satisfies (5.3) and (5.4). Then there 
exists a solution u of Au = S(x) such that u is bounded from above with 
lim x^oo u(x) = 0 and satisfies automatically ddu = —ddlogh, where 
h = det(haß). 

Proof. Before we start the proof we fix our notation. Here we 
denote Ricci(h) = —p^lddlogh and the scalar curvature S(x) = 
—4tr/j(ô9 log h). And u solves the Poincare-Lelong equation in the sense 
that p ^ l d d u = Ricci(h). In the following we will divide the proof of 
Theorem 5.2 into several steps. 

The first step of the proof is the following proposition which reduces 
the Poincare-Lelong equation to a scalar equation. 

Proposition 5.3 ([17], [3]). Let M be a complete Kahler manifold 
of nonnegative holomorphic bisectional curvature. Suppose p is a d-
closed (1,1) form on M, and f is the trace p with respect to the Kahler 
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metric. Let u be a solution of jAu = f. Then k p—Iddu — pk2 is 
subharmonic, where k • k denotes the norms measured in terms of the 
Kahler metric. 

Because of Proposition 5.3, if we can solve the scalar equation Au = 
S(x) and show that k p—Tddu — pk2 —> 0 as x —> oo, where p is the 
Ricci form, we can conclude that u solves the Poincare-Lelong equation 
by the subharmonicity of k p—lddu — /9k2 and the maximum principle. 

From the proof of Theorem 2.7 one can easily see that, under our 
assumption, 

oc 

u(x) = — dt Z H(x,y,t)S(y) dv y 
o M 

provides a solution of the scalar equation Au = S(x) with u(x) < 0. As 
the second step of the proof we want to show that lim x^oo u(x) = 0, 
which implies that u is bounded also. 

By the explicit expression of u(x) we know that 

oo ö OO 

u(x) = v dt = ( Z + Z )v dt, 
O o ö 

where as in the proof of Theorem 2.7, v = R M H(x, y, t)S(y) dv y satisfies 
the scalar heat equation and the following estimate 

j v j - {C (n )kSk L p ( p ) " f o r t > l . 

Now we can show that lim x^ Z u(x) = 0 as follows; 

/ 6 oo 

l i m juj(x) < l i m I jvj dt + jvj dt 
x-^oo x-^oo 0 s 

oo 

^ ^ k S k LOO + l i m Z jvj dt. 
x^ooö 

On the other hand 

jvj dt = I Z H(x,y,t)S(y)dv y I dt 
ö ö Z M 

H(x,y,t)S(y)dv y dt 
6 \B p(R) J 

oo 

+ / H(x,y,t)S(y)dv y dt 
ö MBJR) Ö MnB p(R) 
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<kSk Z Z H(x,y,t)dv y dt 
s \ B p(R) ) 

-
oo 

+ / , H q kSk L p(MnB p(R)) 
s Z MnB p(R) 

<kSk L°° G{x,y)dv y + kSk L p(MnB{R)) ( ) dt. 
Bp{R) S V x{p t) 

For any e > 0 we can find a R » 1 such that ||<S , | |L(MnB p(R)) < e-
Thus we have 

Z°° Z Z°° ( 1 \ p 
lim jvj dt < k S k L°° lim G(x,y)dv y + e -=- dt 

x^°°s x ^ ° ° B p(R) S V x{p t)J 

=e Z ( - p dt< eB. 

Since e is any positive number, we have 

oo 
lim Z jvj dt = 0 

x^°°s 

and 

lim u(x) < 8kSk LOO, 
x—>oo 

for any positive number <5. Therefore 

lim u(x) = 0. 
x—>oo 

To prove our theorem the only thing we need to show is that 

k p ^ Ï d d u - pk2 ->0 

as x —> oo. By Proposition 5.3 we have k p — Iddu — pk2 is subharmonic. 
Therefore we can reduce the pointwise estimate to the L2-estimate due 
to the mean-value property proved by Li-Schoen. Now we come to the 
third step of the proof; 

Integral e s t i m a t e of k p ^ l d d u — pk2. Let A be the upper-bound 
of S(x). Then for p < 2, 

kPk dv < S (x) dv x M M 
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(5.5) < A2~p S p(x) dv x. 
M 

And for p Z 2, 

IIPII dv < S (x) dv 
B x(R) B x(R) 

(5-6) , v p 

<l Z S p(x) dv\ {V x{R))p 
\ B x{R) J 

Similarly we have 

(5.7) Z |Au|2 < A2-p Z S p(x) dv x, for p < 2 
M M 

and 
2 

(5.8) \Au\2 < S p(x) dv (V x ( R ) ) p , for p > 2. 
B x(R) B x(R) 

Let (f)(r(x)) be the cut-off function as in the proof of Theorem 2.10. 
Integrating by parts shows 

(Au)2^2 = Z uiiu jjfi2 

B x(R) B x(R) 

u iij u j4>2 - 2 Z Uii u j(/)(/)j. 
B x(R) B x(R) 

Ricci identity yields 

(Au)V2 = - Z u iji u jfi2 

B x(R) B x(R) 

+ Ric(Vu,Vu)(f)2 - 2 
B x(R) B 

u ij u ij4>2 + u ij u j(f)(f)i 

(R) B x(R) 

u ij u ij4>2 + Z 
B x(R) B x(R) 

Ric(Vu,Vu)4>2 

(R) B x{R) 
+ Z Ric(Vu,Vu)(f)2 - 2 Z 

B x(R) B 

1 

B ( R ) B x(R) 

2 

>2 u ) V - 2 u m r 

B4R) 
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By direct calculation we obtain 

(5.9) Z (u ijfcf)2 < 6 Z |Vu|2|V</>|2 + 4 Z |Au|V-
B x(R) B x(R) B x(R) 

From Li-Scheon's mean-value inequality, volume doubling property for 
Ricci nonnegative manifolds and (5.5) - (5.9) for p < 2 it follows that 

\\p^ïddu — p\\2(x) 

1 

V x R) B x(R) 
< C ( M ) 7 7 7 R T y-iddu-p\\z(y)dv y 

( 5 - 1 0 ) l 2*2 2 <C{M)-— (u ijY4>z+ \\P\\ 
V x(R) B x{R) B x{R) 

1 Z 2 2 A ^-p\\S(x)\p L 

C ( M ) V R B R V u | 2 | V 0 | 2 + 
L p 

B(R) V x(R) 

Moreover, for p > 2 we have 

l o c u — p|| (x 

1 
< C M V T R T B \W-lddu - p\\z(y)dv y 

(5-n) -^TA u ) V + M 2 

R B x(R) B x{R) 
p - 2 

x(R) B x(R) B x(R) 

<C{M)(-x-Z IVuI'IVtf+S L VR»'p' 
V ( R ) 

Once we can show that V4Ry R B j-R |Vu|2(y) is bounded, we can finish 
our proof by taking R —> oo. 

Gradient e s t i m a t e . From above we know since u is bounded from 
above and below and u is subharmonic, by replacing u with u + A we 
can always assume that u > 0 in order to get the integral estimate for 
the gradient. But this is not hard to have. In fact with a little more 
effort one can show that 

lim B x Rì[ = 0. 
R^oo V x(R) 

For our use the standard reversed Poincare inequality will be enough. 
For completeness we can sketch the proof here. 

file:///W-lddu
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First let (f) be the cut-off function satisfying 

1 for x £ B p(R) 
x 0 forxGMnB p(2R), 

jr</>j2 < C\R-2. 

Then 

0 < <b2uAu 

4>2jruj2 -2 4>ur4>ru. 

BX(2R) 

BX(2R) BX(2R) 

(p2jruj2 < - 2 
BX(2R) 

4>2jruj2 < - 2 </>ur</>ru 

2 

2 2 2 2 <//jruj u ̂  jr(/)j 
BX(2R) BX(2R) 

which implies that 

jruj2 <^ 
BX(R) R BX(2R) 

C 
—V x{2R)kuk2Loo. 

Hence by (5.10) and (5.11) we complete our proof of Theorem 5.2. 
The proof of Theorem 5.1 follows the same line of reasoning as in 

[17]. We will argue by contradiction that the solution of the Poincare-
Lelong equation constructed in Theorem 5.2 is a trivial solution. 

Since we assume that M is a Stein manifold, M can be embedded as 
a closed complex submanifold of some C N with coordinates (z\,..., z N)-
Let ip(x) be the restriction of P i=i jz i j2 to M. Suppose u is not iden­
tically zero. Then M c = fu < cg is relatively compact for every c < 0 
since u{x) —> 0 as x —> oo. By the Sard's theorem we can always choose 
c such that r u does not vanish on the boundary of M c. Let x be a 
point on dM c such that ip is maximum (on M c). Then x is a strictly 
pseudoconvex boundary point of M c. Since u is a defining function for 
M c, ddu is positive definite on the complex tangent space of dM c at x. 
Thus ôôexp(u) = exp(u)ôôu + exp(u)ôuAôu is then positive definite at 
x, and therefore we have constructed a quasi-strictly plurisubharmonic 
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function on M, which is bounded from above. By Theorem 4.3 we know 
it has to be constant, then u is a constant function. 

When M is a Zariski open subset of a smooth compact Kahler man­
ifold M we can relax the assumption of Theorem 5.1. More precisely 
we can have the following results; 

Theorem 5.4. Suppose M m is a complete noncompact Kahler man­
ifolds of complex dimension m > 2 with bounded nonnegative holomor-
phic bisectional curvature. Suppose M is a Zariski open subset of a 
smooth compact Kahler manifold M and satisfies (5.3) and 

Z°° 1 
(5.12) - dt < oo for some point xQ G M. 

l ( x 0 ( p t))-p 

Then M is isometrically biholomorphic to a flat complete Kahler man­
ifold. In particular, if either 

(i) M is simply-connected or 

(ii) M has maximum volume growth, 

then M is isometrically biholomorphic to C m. 

Proof. The proof follows the same line as of Theorem 5.1. Notice 
that if we replace (5.4) by (5.12), we can still solve the Possion equation 
Au = S(x) as in Theorem 2.7. The thing we lose here is that we can 
not say lim x^0Ou(x) = 0. But under the boundedness assumption of 
S(x) we do know that u is bounded by tracing the proof of Theorem 
5.2. On the other hand, all estimates on the first and second derivatives 
in the proof of Theorem 5.2 remain valid under our assumption here. 
Therefore we know that u also solves the Poincare-Lelong equation 

p ^ l d d u = Ricci(h). 

Now we can use Proposition 4.3 to conclude that u is a constant function 
since it is a bounded plurisubharmonic function. We therefore conclude 
that M is flat. 

In [17], they also considered the case where M has nonnegative Rie-
mannian sectional curvature and maximum volume growth. We close 
this section by the following generalization. The proof is simply a combi­
nation of our construction of u in the proof of Theorem 5.1, Proposition 
4.1, Lemma 2 of [17] applying to the Buseman function and the piecing 
arguement of [17]. 
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Corollary 5.5. Let M m be a complete Kahler manifold with non-
negative Riemannian sectional curvature and maximum volume growth. 
If S(x) G L p(M) for some p < m, then M is isometrically biholomor-
phic to C m. 

References 

[I] A. Andreotti & E. Vesentini, Sopra un teorema di Kodaira, Ann. Scuola Norm. 
Sup. Pisa (3) 15 (1961) 283-309. 

[2] , Carlement estimates for the Laplace-Beltrami operator on complex mani­
folds, Inst. Hautes Etudes Sci. Publ. Math. 25 (1965) 81-130. 

[3] R. L. Bishop & S. I. Goldberg, On the second cohomology group of a Kahler manifold 
of positive curvature, Proc. Amer. Math. Soc. 16 (1965) 119-122. 

[4] S. Y. Cheng & S. T. Yau, Differential equations on Riemannian manifolds and their 
applications, Comm. Pure. Appl. Math. 28 (1975) 333-354. 

[5] J.-P. Demailly, L2 vanishing theorems for positive line bundles and adjunction the­
ory, Transcendental Methods in Algebraic Geometry, CIME, Cetraro, (1994), Lec­
ture Notes in Math. 1646, Springer, 1996. 

[6] S. K. Donaldson, Infinite determinants, stable bundles and curvature, Duke Math. 
J. 54 (1987) 231-247. 

[7] S. Gallot, Isoperimetric inequalities based on integral norms of Ricci curvature, 
Asterisque, 1988, 157-158. 

[8] R. E. Greene & H. Wu, Gap Theorems for noncompact Riemannian manifolds, 
Duke. Math. J. 49 (1982) 731-756. 

[9] P. Griffiths & J. Harris, Principles of algebraic geometry, John Wiley, New York, 
1978. 

[10] A. Grigor'yan, Heat kernel upper bounds on a complete non-compact manifold, 
Rev. Math. Iberoamericana. 10 (1994) 395-452. 

[II] A. Huber, On subharmonic functions and differential geometry in large, Comment. 
Math. Helv. 32 (1957) 13-72. 

[12] S. Kobayashi, Differential geometry of complex vector bundles, Princeton, 1986. 

[13] P. Li & L. F. Tam, Complete surfaces with finite total curvature, J. Differential 
Geom. 33 (1991) 139-168. 

[14] P. Li & S. T. Yau, On the parabolic kernel of the Schrodinger operator, Acta Math. 
156 (1986) 153-201. 



122 l e i n i 

[15] , Curvature and holomorphic mappings of complete Kahler manifolds, Com­
positio Math. 73 (1990) 125-144. 

[16] N. Mok, Bounds on the dimension of L2 holomorphic sections of vector bundles 
over complete Kahler manifolds of finite voulme, Math. Z. 191 (1986) 303-317. 

[17] N. Mok, Y. T. Siu & S. T. Yau, The Poincaré-Lelong equation on complete Kahler 
manifolds, Compositio Math. 44 (1981) 183-218. 

[18] J. Nash, Continuity of solutions of parabolic and elliptic equations, Amer. J. Math. 
80 (1958) 931-954. 

[19] T. Napier & M. Ramachandran, The L2 d-method, weak Lefshectz theorems, and 
the topology of Kahler manifolds, J. Amer. Math. Soc. 11 (1998) 375-396. 

[20] L. Ni & H. Ren, Hermitian-Einstein metrics on holomorphic vector bundles over 
complete Kahler manifolds, Preprint. 

[21] C. T. Simpson, Constructing variations of Hodge structure using Yang-Mills theory 
and applications to uniformization, J. Amer. Math. Soc. 1(1988) 867-918. 

[22] S. T. Siu & S. T. Yau, Complete Kahler manifolds with nonpositive curvature faster 
than quadratic decay, Ann. of Math. 105 (1977) 225-264. 

[23] , Compactification of negatively curved complete Kahler manifolds of finite 
volume, Sem. differential geom. Ann. of Math. Stud. Vol. 102, Princeton Univ. 
Press, Princeton, 1982, 363-380. 

[24] G. Tian & S. T. Yau, Complete Kahler manifolds with zero Ricci curvature. 1, J. 
Amer. Math. Soc. 3 (1990) 579-610. 

Purdue University 


