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Abstrac t 

We show that any compact orientable hyperbolic 3-cone-manifold with cone 
angles at most IT can be continuously deformed to a complete hyperbolic 
manifold homeomorphic to the complement of the singularity. This together 
with the local rigidity by Hodgson and Kerckhoff implies the global rigidity 
for compact orientable hyperbolic 3-cone-manifolds under the same angle 
assumption. 0. In troduct ion 

A hyperbolic 3-cone-manifold is a riemannian 3-manifold of con­
stant negative sectional curvature with cone-type singularity along sim­
ple closed geodesics (see [7], [8]). To each component of the singularity, 
is associated a cone angle. The cone angle is a positive real number 
and possibly attains 2n. In this particular case, the singular set is not 
singular and simply a finite union of disjoint simple closed geodesics. 
The hyperbolic 3-cone-manifold is a generalization of the hyperbolic 
3-orbifold with vertexless singularity. 

We are concerned with the deformations of a hyperbolic 3-cone-
manifold with constant topological type. The hyperbolic Dehn filling 
theory by Thurston in [14], which describes deformations of a complete 
hyperbolic manifold in more wild setting, is a pioneering work of this 
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subject. One important progress from a rather classical viewpoint was 
made recently by Hodgson and Kerckhoff [7]. They proved the local 
rigidity when cone angles are < 2-K. It corresponds to Weil [18] and 
Garland [4] rigidity for hyperbolic manifolds of finite volume. 

In [9], we showed as one of applications of the local rigidity that 
the underlying space of a nonsingular part of a compact hyperbolic 3-
cone-manifold admits a complete hyperbolic structure of finite volume. 
We come back to this result later. The purpose of the present paper 
is to connect that complete structure with the original singular struc­
ture by a continuous family of cone-manifolds with constant topological 
type under the assumption that initial cone angles are < n. The main 
theorem is 

T h e o r e m . LetC be a compact orientable hyperbolic 3-cone-manifold 
and U a singular set which forms a link in C. If the cone angles as­
signed to the components of U all are at most n, then C admits an angle 
decreasing continuous family of deformations to the complete hyperbolic 
manifold homeomorphic to the nonsingular part C — S. 

There are two immediate corollaries related to the representations in 
the group of orientation preserving isometries of the hyperbolic 3-space 
H 3 , isomorphic to PSL2(C). For cone-manifolds, we have a holonomy 
representation of a nonsingular part, so that meridional loops of the 
singularity are mapped to elliptic elements. The representation so ob­
tained could be neither faithful nor discrete. Nevertheless, the local 
rigidity in [7] asserts that a neighborhood of this wild representation 
is parameterized up to conjugacy by Dehn filling coefficients [14] which 
are geometrically well understood. 

One corollary is about the global rigidity. Weil and Garland rigid­
ity states that any nearby discrete faithful representations of a group 
in P S L ( C ) with finite volume quotients are conjugate. In the case of 
cone-manifolds, the local rigidity says in particular that nearby rep­
resentations of a holonomy representation of a nonsingular part with 
constant rotation angles for meridians are conjugate. Mostow [11] and 
Prasad [12] rigidity for a hyperbolic manifold of finite volume then as­
serts that any discrete faithful representations in PSL2(C) are not only 
locally but globally conjugate each other. This global rigidity implies 
a geometric consequence that homeomorphic hyperbolic manifolds of 
finite volume are isometric. We state the global rigidity for hyperbolic 
3-cone-manifolds rather in terms of this geometric terminologies. 
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Corollary 1. Let C be a compact orientable hyperbolic 3-cone-
manifold with singularity S where cone angles assigned to the com­
ponents of U all are < n. If ( C , U') is homeomorphic to (C, S) so 
that the corresponding cone angles all are the same, then C and C are 
isometric. 

The other corollary is about liftability of PSL2(C)-representations 
into SL2(C). The liftability has been discussed particularly for discrete 
subgroups in P S L ^ C ) . As was pointed out in [2], the liftability de­
pends only on the component of the space of representations. The main 
theorem will be proved by connecting the holonomy representation of 
a cone-manifold with that of a complete structure by a particular path 
in the space of representations. Since the holonomy representation of a 
complete hyperbolic manifold is known to lift in [14], we have 

Corollary 2 . The holonomy representation of a compact orientable 
hyperbolic 3-cone-manifold can be lifted to a SL2(C)-representation if 
the cone angles assigned all are at most n. 

It is quite unlikely that the angle assumptions in Theorem and Corol­
laries are necessary, though the argument we develop here uses its ad­
vantage. More progress should be expected. 

A fairly large part of the proof of the main theorem is due to 
Thurston's strategy for the geometrization of orbifolds [15], [16] together 
with the local rigidity by Hodgson and Kerckhoff. The over all logic of 
Thurston's argument and some of its details can be found in [13]. We 
convey its minimal essentials for our purpose here, and hence the expo­
sition will be reasonably self-contained. 

This paper is organized as follows. In the first section, we will review 
some basic facts about hyperbolic 3-cone-manifolds. Also we improve 
the results in [9] from more Riemannian geometric viewpoints due to 
Steve Kerckhoff. The second section is to introduce two main machiner­
ies, the local rigidity and the pointed Hausdorff-Gromov topology. They 
are fundamental when cone angles are < 2n. The third section is to es­
tablish a few tools to control the local geometry of cone-manifolds away 
from the singularity when cone angles are < n. This section contains a 
technical but the most crucial part of the analysis. In section 4, we es­
tablish a discrete setting of the problem. Then we study what happens 
when tubular neighborhoods of the singularity in the deformations are 
uniformly thick in section 5, and when otherwise in section 6. In the 
final section, we study what happens to continuous families and prove 
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Theorem and Corollaries. 
The author would like to thank Steve Kerckhoff for careful attention 

to this work and for showing him a quick idea to prove Theorem 1.2.1 in 
full generality, Teruhiko Soma and the members of the Saturday Seminar 
at Tokyo Institute of Technology, especially Shigenori Matsumoto, for 
their invaluable suggestions, and the Centre Emile Borel of the Institut 
Henri Poincare for their hospitality, where he finished the first version 
of this paper. 

In addition, the author would like to thank the referee for pointing 
out an earlier work by Qing Zhou [19] which discusses similar deforma­
tions. Zhou's argument together with the local rigidity now established 
by Hodgson and Kerchkhoff [7] lead to another proof of the existence of 
an angle decreasing family in the main theorem provided that the initial 
cone angles all are at most 2-7r/3. Also. Zhou proved Theorem 1.2.1 in 
slightly different manner. 

1. Hyperbo l i c 3-cone-manifolds 

In this section, we assemble a few standard notions and notation 
which we use throughout this paper, improve the results in [9], and 
discuss an upper bound of the volume of hyperbolic 3-cone-manifolds 
with the same topological type. 

1.1. Prel iminar ies . 

Let X be a metric space with a metric d. An R-neighborhood of x G X 
for R > 0 is the set of points in X from which the distance to x is < R, 
and denoted by 

B R(X,x) = {y£Xjd{y,x) < R}. 

If X is a riemannian manifold, the closure of B R(X,x) is homeo-
morphic to a closed ball at least for sufficiently small R. The injectivity 
radius of X at x G X is the first supremum of such radii, and denoted 
by inj x X . If X has a boundary dX, we choose the supremum by fur­
thermore requiring that B R(X,x) does not touch dX. The injectivity 
radius of X is the infimum of injectivity radii of the points in X, and is 
denoted by 

inj X (:= inf {inj x X j x G X}). 
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The injectivity radius for manifolds with nonempty boundary by this 
definition would not be interesting since the points close to the boundary 
always make it vanishing. 

Let C be an orientable hyperbolic 3-cone-manifold of finite volume 
with compact singularity. The singular set U is assumed to form a link 

u = s1 u • • • u sn 
of n components. To each component j of S, associated is a cone 
angle j G (0, oo). The angle set A of C is a vector 

A = (a\--- ,an) 

of cone angles. 
C carries a nonsingular but incomplete hyperbolic structure on the 

complement of the singularity 

N = C - U. 

C itself inherits a metric induced from a riemannian metric on N. We 
assume that C is complete with respect to this metric. In particular, 
the metric completion of N is identical to C. We have a developing map 
of N from its universal covering space N, 

D c : N ->• H 3 , 

and a holonomy representation 

/ 9 C : n = 7 T 1 ( N ) ^ P S L 2 ( C ) . 

They are called a developing map and a holonomy representation of a 
cone-manifold C. A developing map is a local isometry, but never be 
injective. A holonomy representation is hardly discrete nor faithful. 

Let m j , j = 1,2, ••• , n, be an oriented meridional loop for each 
component of U. The image C(m j) of a meridian m j by the holonomy 
representation is an elliptic element rotating H 3 by j about the axis, 
though the rotation angle of C{m j) makes sense only modulo 2ir. 

The injectivity radius of C at x G N = C — S is to be the injectivity 
radius of N at x and denoted by 

inj x C( := in j x N). 

The global injectivity radius of a cone-manifold C by this definition 
would not be interesting since if the singular set is nonempty, then the 
points close to the singularity always make it vanishing. 
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Def in i t ion . A topological type of a cone-manifold C is a homeo-
morphism type of a pair (C,S). We say C is homeomorphic to C\ for 
short if there is a homeomorphism between (C,S) and (Ci , I7i ) . More 
strong relation is an isomorphism type. Two cone-manifolds are isomor­
phic if they share not only topological types but also cone angles, more 
precisely if there is a homeomorphism between (C,S) and (Ci,Si) so 
that the corresponding components of the singularity share the same 
cone angles. Such a homeomorphism is called an isomorphism. A self 
isomorphism is called an automorphism as usual. The strongest relation 
is an isometry type whose definition would be obvious. 

R e m a r k . The global rigidity is the claim that the isomorphism 
type and the isometry type are the same. 

1.2. Nonsingular pa r t s . 

The following theorem was proved in [9] under an extra angle assump­
tion using Hodgson-Kerckhoff's local rigidity. Here we present a quick 
argument, due to Steve Kerckhoff, which does not use the local rigidity 
and works without any angle assumption. As we mentioned in the in­
troduction, Zhou also showed the following theorem in [19] in slightly 
different manner. 

T h e o r e m 1.2.1. The underlying space of a nonsingular part N 
of an orientable hyperbolic 3-cone-manifold C of finite volume carries 
a complete negatively curved metric. In particular it is homeomorphic 
to an interior of a compact irreducible atoroidal 3-manifold with toral 
boundary which admits no Seifert fibrations. Moreover, it admits a com­
plete hyperbolic structure of finite volume. 

Proof. In the cylindrical coordinates around each component of the 
singularity E, the metric has the form 

dô2 + sinh2 ô dO2 + cosh2 8 d\2 , 

where ö is the distance from the singularity, A is the distance along 
the singularity, and 6 is the angular measure around the singularity. 
Choose e > 0 small enough so that an e-tubular neighborhood of S is 
a disjoint union of an e-tubular neighborhood of each component of U. 
Also choose monotone C°°-functions ip(ö) and ip(ö) in terms of ö so that 

O(1/1) if S-tO, 
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and 

m if S > e, 

if S -+ 0, 

where O( ) is the Landau symbol, and modify the metric in an e-tubular 
neighborhood of each component of U by 

<p2{ô)dô2 + sinh2 8d62 + ip2(ô)d\2. 

This gives a complete metric on the nonsingular part N = C — U since 
ip(S) diverges when ö —> 0. 

Let us compute the sectional curvature for this new metric. For 
notational convenience, we set ö = xi, 9 = x ̂  and A = x%. By a 
computation of the Christoffel symbols, we have the evaluation of the 
connection with respect to this basis: 

<p'/<p • d/dxi 
coth<5 • d/dx2 
ip' /ip • d/dx3 

coth<5 • d/dx2 
sinh 6 cosh 6/ip2 • d/dxi 

0 

ip' /ip • d/dx3 
0 

iptß'/(p2 • d/dxi 

It is symmetric and hence the Riemannian curvature tensor 

R(X,Y,Z) = ([VX,VY] - V[XjY])(Z) 

has been diagonalized, i.e., < R(X,Y, Z),W >= 0 unless X / Y and 
either (X,Y) = (Z,W) or (X,Y) = (W,Z). Thus the sectional curva­
tures 

K(X,Y) 
<R(X,Y,X),Y > 

\XP-\\Y\\2-<X,Y >2 

i j 
all are convex combinations of the three sectional curvatures K 
K(d/dx i,d/dx j) with {i,jg = {1,2,3g. By a direct computation, we 
have 

1 fip'cothö 
K\2 = —T 1 

1 frj>" ip'ip' 
K = jr M -

(f* 1p (ftp 

K 23 
tß! coth S 
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Then these three values stay negative away from zero for 0 < S < 
e by choosing ip and ip appropriately, and the volume change is still 
bounded. Hence the nonsingular part N admits a complete negatively 
curved metric of finite volume. 

The topological properties in the statement all are now easily de­
rived from the negativity of the new metric. Then by Thurston's uni-
formization theorem for Haken manifolds [10], [16], N admits a complete 
hyperbolic structure. q.e.d. 

It is convenient to adopt the convention that we regard a com­
plete hyperbolic manifold with preferred meridional elements as a cone-
manifold. 

Def in i t ion . Let M be a complete orientable hyperbolic 3-cone-
manifold of finite volume with prescribed meridional elements not only 
for the components of U but for some cusps. We call M also a cone-
manifold. The topological type of M is a pair of the Dehn filled resultant 
of M along prescribed meridional curves for cusps in question and the 
union of U and surgery cores. The cone angles which should be assigned 
to the components for cusps all are zero. 

N o t a t i o n . If C is a compact orientable hyperbolic 3-cone-manifold 
in the original sense, then the nonsingular part together with the com­
plete structure obtained by Theorem 1.2.1 is a cone-manifold in this 
new sense by assigning original meridional elements of C. We let C comp 
be this particular cone-manifold without singularity. The topological 
types of C and C comp are the same. 

Corollary 1.2.2. The group of automorphisms of an orientable 
hyperbolic 3-cone-manifold of finite volume up to isotopy is finite. 

Proof. Here we duplicate the proof in [9]. Any automorphism of C 
induces a homeomorphism of C comp preserving meridians. By Mostow-
Prasad rigidity, it is homotopic to an isometry of C comp. Moreover 
by Waldhausen's theorem [17], this homotopy can be attained by an 
isotopy. The isotopy extends to an automorphism of C. Hence the 
group of automorphisms of C up to isotopy is realized as a subgroup of 
the isometry group of C comp, which is finite. q.e.d. 

R e m a r k . The existence of the singularity in the proof is needed to 
apply Waldhausen's result, and in fact the argument does not cover the 
case without singularity. This finiteness up to isotopy for nonsingular 
case had been a difficult question and was settled very recently by Gabai, 
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Meyerhoff and Thurston [3] in full generality, though the fniteness up 
to homotopy is a consequence of Mostow rigidity. 

Corollary 1.2.3. An orientable hyperbolic 3-cone-manifold of fi­
nite volume admits only finitely many toral cusps which are foliated by 
horotori. 

Proof. Since the end of C comp consists of finitely many toral ends, 
the end of C consists of finitely many components homeomorphic to 
the torus time R at least topologically. To get a complete end, ev­
ery element of a fundamental group of each end component must be 
mapped by the holonomy representation to a parabolic element with a 
common fixed point at the sphere at infinity S ^ . A small neighborhood 
of each component is then foliated by the quotient of horospheres by 
the holonomy image. q.e.d. 

We conclude this subsection by the following observation for loops 
in a hyperbolic 3-cone-manifold. Every loop in a hyperbolic manifold 
admits a length shortening free homotopy to either a closed geodesic 
(including a point) or an arbitrary short loop tending to the cusp. This 
will not be true for cone-manifolds in general, but we have its weaker 
version. 

L e m m a 1.2.4. Any loop in the nonsingular part N of an orientable 
hyperbolic cone-manifold C of finite volume admits a length shortening 
homotopy to either a closed geodesic, an arbitrary short loop tending to 
the cusp or a piecewise geodesic loop hitting the singularity U. 

Proof. Let £ be an arbitrary loop in the nonsingular part N. Fix 
a point p on £, and we straight £. Then it defines a length shortening 
homotopy to at least a piecewise geodesic loop hitting the singularity 
U. If U does not obstruct the straightening, the length shortening 
homotopy reaches to a geodesic path £' based at p. We then homotop 
£' to a shorter geodesic path by sliding the reference point. This length 
shortening homotopy either terminates at some stage or tends to the 
cusp. When it terminates, either the homotopy hits S or it reaches to 
a closed geodesic. q.e.d. 

R e m a r k . The proof is valid even when C is of infinite volume, or 
the singularity is noncompact. 
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1.3. V o l u m e s . 

The volume of a hyperbolic cone-manifold C can be expressed in terms 
of an integral over the canonical section of the associated flat H 3 -bundle 
over N. To say more precise, let N be the universal covering space of N. 
Each element t G IT = -K\ (N) acts on e by a deck transformation and on 
H 3 by C{i) £ C(n ) . Denote by E the fiber product N x H3 / (IT x C). 
It is a H 3 -bundle over N with a structure group in PSL2(C e The 
developing map TC • N —> H 3 defines a section id x DQ • N —>• N x H 3 

which descends to a canonical one so : N —> E with respect to the 
hyperbolic structure on N. The volume of C is then identified with the 
integral, 

(1.1) v o l C = Z s*0dv, 
N 

where dv is the volume form of H 3 . 

L e m m a 1.3.1. Suppose C is compact. If a section si : N —> E 
agrees with the canonical one so on a small tubular neighborhood of S, 
then 

sì dv = s' dv N N 
In particular, the volume defined in (1.1) depends only on the behavior 
of the section near the singularity. 

Proof. Since H 3 is contractible, there is a homotopy s t of sections 
connecting so and s\. Let N£ be a compact exterior of an e-tubular 
neighborhood of U. Choose e small enough so that so = si on that 
neighborhood of U. Then by Stokes, 

s\dv — Z s*üdv = Z s\dv — Z s'Q dv 
N N Ne Ne 

s*t dv 
dNsx[0,l] 

d(s t dv). 
Nex[0,l] 

The last integral is zero. q.e.d. 

Propos i t i on 1.3.2. Given a compact orientable hyperbolic 3-cone-
manifold C with the angle set A = ( a 1 , - - - ,an), there is a constant 
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V max so that if a hyperbolic cone-manifold C\ homeomorphic to C has 
an angle set A\ = (a\, • • • , n) with j < j for all 1 < j < n, then 
volCi < V max. 

Proof. Take a fine geodesic triangulation K of C so that S is a 
subcomplex, and a star neighborhood of U is a closed regular neigh­
borhood. Since cj < j for all j , we may choose a homeomorphism 
ip : (C, S) —> (Ci, S\) so that any 3-simplex in a regular neighborhood 
of S is mapped to an honest geodesic simplex in C\. 

Let K ( ° ) be the preimage of the 0-skeleton K^> in the universal 
cover e i g Then the developing map Dc^ defines the map id x Dc 1 j K : 

K g —> Ni x H 3 which extends to an equivariant continuous map of 
e i by straightening. Since it is equivariant, it descends to a section 
si : N\ —> E\ = e i x H 3 / ( I I i x C ) - s\ is identical to the canonical 
section so : N\ —> E\ near H\. Hence by the previous lemma, we have 

volCi = Z s* dv. 
Ni 

The right-hand side is a total sum of the signed volumes of 3-
simplices appeared by straightening. However since the volume of a 
3-simplex is uniformly bounded by a constant v% (= the volume of a 
regular ideal tetrahedra), this sum is bounded by V max = kv ^, where k 
is the number of 3-simplices in K. The constant V max obviously depends 
on only C and not C\. q.e.d. 

R e m a r k . A number of tetrahedra needed to triangulate a neigh­
borhood of the singularity S in C depends in fact on the cone angles. 
However it is bounded by some constant depending on only the upper 
bound of the cone angles and not any particular C. 

2. Cone angles < 2ir 

In this section, we review two machineries to study deformations of 
a hyperbolic 3-cone-manifold C when cone angles are at most 2n. One 
is the local rigidity by Hodgson and Kerckhoff [7] and the other is the 
pointed Hausdorff-Gromov topology studied in [5]. 

2 .1 . Local rigidity. 

Let us recall what the deformation of a hyperbolic 3-cone-manifold C 
is. 
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Def in i t ion . A deformation of a hyperbolic 3-cone-manifold C is 
a hyperbolic 3-cone-manifold C\ together with a reference homeomor-
phism £1 : (C, 17) —> (Ci,£i). Two deformations (Ci ,£i ) and ( C2,^2) 
of C are equivalent if there is an isometry ip : C\ —> C2 so that £2 is 
isotopic to ip o Çt. A composition of a developing map " C ^ with a lift 
£1 of £1 defines a continuous map £ C ° ii • N ->• H 3 . The developing 
map is well defined up to multiplication of isometries of H 3 , and hence 
a deformation can be considered as a point on a quotient space of the 
mapping space A4(N, H 3 ) by PSL2(C)-action on the images. The quo­
tient space carries a topology induced by a compact open topology on 
A4(N, H 3 ) . The set of equivalence classes of deformations of C carries 
a further quotient topology by the action on the source of the group 
of lifts of automorphisms of C which are isotopic to the identity. We 
say (Ci ,£i ) is a small deformation of (C,id) if it is close to C in this 
topology. 

R e m a r k . The reference homeomorphism for the deformation is 
to fix an isotopy class of the model. In fact, only its isotopy class is 
significant. 

The topology on the set of equivalence classes of deformations of C 
turns out to be not quite complicated by the local rigidity. To see this, 
we review a few topological properties of the space of representations of 
the group IT = 7ri(N) in PSL2(C). The space of such representations 
carries a natural algebraic topology. There is a canonical projection 
to the set of conjugacy classes Hom(IT,PSL2(C)) /PSL2(C). A small 
neighborhood of a conjugacy class represented by a holonomy represen­
tation of a cone-manifold will be well behaved. 

An orientation preserving isometry ip of H 3 can be represented by 
a matrix <P in SL2(C). The complex length of ip is a twice of an appro­
priate branch of the log of an eigenvalue of ^ . It measures how much 
ip translates H 3 with twist along an invariant geodesic. Since there are 
two choices to be made, we adopt the following convention. To each 
oriented meridional element m j , we choose a complex length of C{m j) 
by a multiple of its cone angle with the complex unit p—ï, which we 
denote by Cm j{C)- It is equal to aj p ^ \ . Then orient the invariant 
geodesic C of C(m j) so that the rotational direction of m j is counter 
clockwise. There are two ways to continuously extend this assignment of 
a complex length to that of transformation represented by p{m j) where 
p is close to C- Since p is close to C , the invariant geodesic j of p{m j) 
is also close to C and inherits an orientation. We choose the sign of 
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the real part according to whether p(m j) translates the point on j in 
positive or negative direction. 

This convention extends to a continuous map, which we denote 
by m defined on the component Hom C(IT,PSL2(C))/PSL2(C) of 
Hom(n, PSL2(C)) /PSL2(C) containing the conjugacy class of C- Ar­
ranging these maps, we obtain 

Cm : Hom C ( n , P S L 2 ( C ) ) / P S L 2 ( C ) - • C n, 

where Cm (p) = {£mi (p), • • • , m n (p) ) . 

T h e o r e m 2.1.1 (Hodgson-Kerckhoff's Local Rigidity [7]). If the 
cone angles assigned to the components of U in C all are positive and 
< 2n, then Cm is a local diffeomorphism near the conjugacy class rep­
resented by C-

In particular, the complex dimension of Hom(II, P S L ^ C ) ) / PSL2(C) 
near the class represented by C is equal to n, the number of components 
of S, and C represents a smooth point. 

Removing a small tubular neighborhood of S from C, we obtain a 
compact hyperbolic manifold with boundary. It is nearby deformations 
supported on all but a small neighborhood of the boundary are param­
eterized by holonomy representations [14]. The parameter in terms of 
complex lengths is more geometrically described in [7], [14]. For each 
value near Cm(C), there is a unique way to fill the boundary by the 
hyperbolic Dehn filling theory [14]. If the value of Cm is in purely 
imaginal part 0 = (9C)n C C n, then the filled resultant is a hyper­
bolic cone-manifold with the same topological type but with perturbed 
cone angles. Hence the local rigidity together with the hyperbolic Dehn 
surgery filling imply the unique existence of a small deformation of C 
if the perturbation of cone angles is small enough. Namely the possible 
range of perturbation is open. 

When we start with a noncompact 3-cone-manifold without singular­
ity such as C comp, then the existence of a small deformation is nothing 
but the conclusion of the hyperbolic Dehn filling theory for complete 
manifolds with a specified direction. In particular, there is a unique 
small deformation with perturbed cone angles for this case also. One 
can summarize the conclusion by 

Corollary 2 .1 .2 . Let C be an orientable hyperbolic 3-cone-manifold 
of finite volume so that the cone angles assigned to the components of 
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E all are at most 2n, possibly some or all of them are zero. Then there 
is a unique small deformation of C with perturbed cone angles if the 
perturbed cone angles are close enough to the initial ones. 

Remark. A continuous path on the space of representations, whose 
image by Cm is contained in purely imaginal part, does not always 
correspond to the deformations of a cone-manifold in the full range. 

2.2. Pointed Hausdorff-Gromov topology. 

We review the pointed geometric convergence of complete metric spaces 
due to Gromov in [5], which generalizes the idea of Hausdorff topology 
on the set of all compact subset in a complete metric space. 

Definition. Let (X,xo) and (Y,yo) be pointed complete metric 
spaces. A relation R C X x Y is an e-approximation between (X,xo) 
and (Y, yo) if the following hold: 

1. there is y G Y such that xoRy and <Y(yo,y) < £, 

2. there is x G X such that xRyo, and d X(xo,x) < e, 

3. pr X(Rn(Bl/£(X,x0) xB1/e(Y,y0)) =B1/e(X,x0), 

4. pr Y(Rn {B1/e(X,x0) x B1/e(Y,y0)) = B1/e(Y,y0), and 

5. for any x,x' G B1;/e(X, xo) and y,y' G B i / e ^ y o ) with xRy and 
x'Ry', we have \d X{x,x') — <Y(y,y')| < e. 

Definition. A sequence { X , x i)} of pointed complete metric spaces 
is said to converge geometrically to (Y, y) if for any e > 0, there exists 
io such that there is an e-approximation between (X i,x i) and (Y,y) for 
all i > iQ. 

An interesting class C of pointed complete metric spaces with respect 
to this convergence is the one whose member (X, x) has the property; 

(2.1) The closure of B R(X,x) is compact for all R > 0. 

It is shown in [5] that the geometrically convergent sequence {(X i,x i)} 
contained in the class C geometrically converges to a unique complete 
metric space up to isometry. Hence the geometric convergence defines 
a Hausdorff topology on the set of isometry classes of C. We call it the 
pointed Hausdorff-Gromov topology. 
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If furthermore we have some uniformity for the local structure of the 
metric spaces, then the set of isometry classes of such spaces together 
with the pointed Hausdorff-Gromov topology becomes precompact. In 
particular, any sequence in the space contains a subsequence converg­
ing geometrically to a unique metric space. The following criterion by 
Gromov is useful. 

Propos i t i on 2.2.1 (Gromov [5]). Let f(X i,x i)g be a sequence of 
pointed complete metric spaces with the property (2.1) for all i. Then 
the sequence contains a geometrically convergent subsequence if and only 
if there is a subsequence fkg C fig so that for any R, e > 0 ; 

min#fe-ba l l s covering B R(X k,x k)g 

is bounded by some constant depending only on R and e, where the 
minimum is taken over all e-coverings o fB R ( k , x k). 

The class of metric spaces we are concerned with is quite restricted, 
but not only hyperbolic cone-manifolds. We will work also on euclidean 
cone-manifolds as their rescaling limits. 

N o t a t i o n . Fix a number L < — 1, which will bound curvature. 
CfL Qi will be the set of pointed compact orientable cone-manifolds of 
constant sectional curvature = K, where K G [L,0], so that the cone 
angles assigned to the components of the singularity all are at most 6. 
CeK is a subset of CfL 0i consisting of cone-manifolds with a particular 
curvature constant K. 

R e m a r k . Each member of CfL 0i is compact and hence has the 

property (2.1). 

Choose C G C K and x G C not lying on U. Here we bound cone 
angles by 2n. The set of points in C which admit at least two shortest 
geodesic paths to x in C is called a cut locus of C with respect to the 
reference point x. The cut locus is a connected geodesic cell complex in 
C. The complement of the cut locus consists of shortest rays to x, 

P x = fy G C jy admits the unique shortest pa th to xg, 

and is called a Dirichlet fundamental domain of C about x. 

L e m m a 2 .2 .2 . The Dirichlet fundamental domain P x of C G C K 
about x is isometrically realized as an interior of a starshaped polyhedron 
in the simply connected 3-dimensional space H K of constant curvature 
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= K. The closure is a starshaped polyhedron. Furthermore if C G C K , 
that is to say, cone angles all are < n, then P x is convex. 

Proof. Obvious. q.e.d. 

We call this embedded compactified polyhedron a Dirichlet polyhe­
dron of C about x, and denote it again by P x. Namely, P x stands for 
an open dense subset in C, and simultaneously, a compact polyhedron 
in H K. 

Propos i t i on 2 .2 .3 . Fix a curvature bound L < — 1. Any sequence 

fC i g C C LQI with reference points x i G C i contains a subsequence con­

verging geometrically to a complete metric space (C*,x*). 

Proof. Let (C, xo) be a pointed compact orientable 3-cone-manifold 
with constant sectional curvature = K where L < K < 0. If xo 0 S, 
then 

min#fe-ba l l s covering B R(C, xo)g 

< min#fe-ba l l s covering B R(P xo,x0)g 

< min#fe-ba l l s covering B R(H K,xo)g 

< minbfe -ba l l s covering B R(H L,xo)g, 

where the minimum is taken all over e-ball coverings of the target. The 
last bound depends only on R and e, and not on any particular C or 
K. If xo G S, the same bound actually works by choosing the center of 
a Dirichlet polyhedron near xo but not on S. Thus the result follows 
from Gromov's Criterion. q.e.d. 

Def in i t ion . We call (C*,x*) a geometric limit of f ( C ^ x i)g. 

R e m a r k . If C* is compact, the isometry class of C* does not depend 
on the choice of the reference points x i G C i in the sequence. 

R e m a r k . The set of equivalence classes of deformations of an ori­
entable hyperbolic 3-cone-manifold C with cone angle < 2n carries a 
topology well described by the local rigidity. Assigning the isometry 
class of a deformation to each deformation, we get a map to the set 
of isometry classes of metric spaces in C^J[ together with the pointed 
Hausdorff-Gromov topology. It is not quite hard to see that this map 
is continuous. 
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3. Cone angles < IT 

In this section, we discuss three relative constants for hyperbolic 3-
cone-manifolds with cone angles < n, two of which dominate the local 
structure away from the singularity, and the other one of which is related 
with the geometry of a tubular neighborhood of the singularity. The 
angle condition "< 7r" does not explicitly appear, but instead the fact 
that the Dirichlet polyhedron is convex, which is a conclusion of the 
angle condition, will be used often. We also discuss how cusp opening 
deformations occur locally. 

3.1. Thin par t s . 

The constant in the following lemma is to claim that the injectivity 
radius decreases uniformly, like in the hyperbolic manifolds, away from 
the singularity. 

L e m m a 3 .1 .1 . Fix a curvature bound L < — 1. Given positive 
numbers D , I , R > 0, there is a constant U(D,I,R,L) > 0 such that 
if C G C?L 0 i ; x G C with d(x, U) > D and inj x C > I, then 

inj y C>U(D,I,R,L) 

for any y G C with d(y, U) > D and d(y, x) < R. 

Proof. Assume that there are no such uniform bounds. Then there 
is a sequence of cone-manifolds fC i g C CTL Qi and points x i, y i G C i such 
that 

1. d(x i,Ui), d{y i,Ui) > D , 

2. inj x i C i > I, 

3. d(y i,x i) < R and 

4. inj y. C i < 1/i. 

Take a Dirichlet polyhedron P y i of C i about y i in H K , where K i is 
a curvature constant of C i. There are points p i,q i on dP y i which are 
identified in C i and at tain the shortest distance to y i from dP y i. The 
union of these paths forms a homotopically nontrivial shortest loop i 
in C i based at y i. 

p i and q i are on the interior of the faces of P y i respectively. Since the 
cone angles are < n and hence the Dirichlet polyhedron P y i is convex, 
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P y i is bounded by the extension of two faces which support p i and q . If 
the faces tend to be parallel as i —> oo, then the volume of B R+I(C i, y i) 
approaches zero. This is a contradiction since it must contain the ball 
B I(C i,x i) whose volume admits nonzero lower bound by (2). 

If not, £i meets at y i with angle uniformly away from n. Let us 
lift £i to a geodesic segment s i in H K based at y i such that p i is the 
middle point. Then pi(£i) acts H K by either a loxodromic (translation 
with twist) motion or an elliptic rotation. In both cases, the orbit of s i 
by the action of a group generated by Pi{i forms a piecewise geodesic 
immersed line rounding around the axis of pi(£i). Since the corner of 
this line at the orbit of y i has an angle uniformly away from n with 
respect to i, and since the length of s i, which equals the length of i 
approaches zero when i —> oo, the immersed line must squeeze onto 
or into the axis of pi(£i) according to whether pi(£i) is loxodromic or 
elliptic. In particular in both cases, the axis of pi(£i) becomes close to 
y i when i —> oo. 

If there is a subsequence fkg C fig such that pk(£k) all are lox­
odromic, then the translation distance becomes also short. The path 
joining p k and q in H K k is equivariant tiny homotopic to the unit 
translation segment on the axis of Pk(£k)- This equivariant homotopy 
must induce a tiny homotopy in C k because of (1). Hence we obtain a 
very short closed geodesic in C k near y k. If we choose a new reference 
point z k on this geodesic, then the Dirichlet polyhedron about z k will 
be bounded by almost parallel faces. This is a contradiction as before. 

In the other case, Pk(£k) all but finitely many exceptions are el­
liptic. Then the axis of an elliptic element comes close to y k. Thus 
the length shortening tiny homotopy of k must hit the singularity by 
Lemma 1.2.4, though the hit singularity may not be the axis of Pk(£k)-
This contradicts (1). q.e.d. 

3.2. Local Margulis . 

The Margulis lemma for hyperbolic manifolds states that there is a 
universal constant depending only on the dimension which dominates 
the geometry and topology of thin parts. The cone-manifold admits 
in fact no such universal constant, however we may expect its relative 
version away from the singularity. The next lemma establishes that 
there is a Margulis like constant to control the geometry and topology 
of not absolute but relatively thin part with respect to the injectivity 
radius. We call it a local Margulis constant. 
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L e m m a 3 . 2 . 1 . Given positive numbers D, R > 0, there is a con­
stant V(D,R) such that if C G C^, d{x,E) >D and inj x C < V(D,R), 
then (B R.inj x C(C, x), x) is homeomorphic to (B R(E,e) ,e ) for some non-
compact euclidean manifold E with inj e E = 1. 

Proof. Assume that the conclusion is not true. Then there is a 
sequence of cone-manifolds fC i g C C7L1 and points x i G C i such that 

1. d(x i,Si) > D and 

2. inj x i C i < l/i, but 

3. (B R •inj x i C i(C i,x i)) never be homeomorphic to (B R(E,y),y) for 
some euclidean manifold with inj y E = 1. 

Then 

R<iD <D/ inj x i C i 

for i large enough, and we have 

R • inj x i C < D 

for sufficiently large i. Hence (B R.inj i C ( C i,x i),x i) is a subset of 

(B D(C i,x i),x i) for sufficiently large i. Notice that B D(C i,x i) is nonsin-

gular, so is B ̂ i x i C ( C i->x i -

Multiplying l / inj x i C i on the metric of C i, we obtain a cone-manifold 

C i of constant curvature = — (inj x i C i)2 > —1 such that inj i C i = 1. 

Thus we have a sequence of compact orientable cone-manifolds f C i g in 

Cuio l - Hence by Proposition 2.2.3, there is a subsequence fkg C {ig 

so that f(C k,x k)g converges geometrically to a complete metric space 

yC#, x* J. 
The limit x* of reference points fx k g admits a neighborhood which 

is a limit of balls of radius 1 whose curvature tend to zero. On the other 
hand, a euclidean ball of radius 1 could be a geometric limit of this 
sequence. Hence by the uniqueness of the geometric limit, x* admits 
a euclidean ball neighborhood. This point will be a reference point for 
the other part . 

To see a neighbor structure of the other part of C*, fix a constant 
R i > 0 and choose any y ̂  G C* with d(y „,,x*) < R\; then it is a limit 
of points fy k G C k g with, say, d(y k,x k) < 2R\. By rescaling, we have 

d{x kjSk) > D / i n j C k > kD, 
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and moreover, 

d(y k,~£k) >kD-2Ri>D 

for sufficiently large k. Therefore by Lemma 3.1.1, y k admits a ball 
neighborhood of radius > U(D,l,2Ri,—l). This radius bound does 
not depend on k, and hence a point y* admits a neighborhood which 
is a limit of balls of uniformly bounded radius whose curvature tend 
to zero. Thus x* admits a euclidean ball neighborhood. Now, since 
R i > 0 was arbitrary, a point with an arbitrary long distance from x* 
admits a euclidean ball neighborhood. This shows that C* is a euclidean 
manifold without singularity. Moreover inj ̂  C* = 1 and C* is certainly 
noncompact. 

Letting (E,e) = (C*,x*), we will see that E has the property in 
the claim. Triangulate E by geodesic tetrahedra of uniform size and 
shape at least in a large compact set. Since it is a geometric limit, 
we may choose an approximate map ipk from the 0-skeleton of a large 
compact set of E containing B D/inj C k(E,e) to a large compact set 

of C k containing B D/inj C k(C kjx k) for sufficiently large k, where 4 
vertices spanning an oriented simplex in E are mapped to 4-vertices 
spanning a simplex with the same orientation in the image. Hence (pk 

admits an obvious piecewise linear extension, which we denote again 
by ipk, over a large compact set of E. ipk might be locally branched 
along edges or vertices, however it will be a homeomorphism for further 
sufficiently large k, because otherwise, ik ^s would not be accurate ap­
proximations. In particular, the restriction of ipk for sufficiently large 
k induces a homeomorphism of (B R(E ,e ) , e ) to (B R(C k , x ) , x ) after 
some tiny smoothing and hence to (B R.inj C k{C k,x k),x k)- This is a 
contradiction. q.e.d. 

R e m a r k . A homeomorphism between {B R.inj x C{C,x),x) and 
(B R(E,e),e) can be chosen by the composition of an approximation 
and a rescaling, which is an almost equi-expansive map centered at x. 

To see more topological structures of B R(E,e), recall that a non-
compact euclidean manifold is a quotient of the euclidean space E 3 by 
a lattice V in Isom+ E 3 . T is isomorphic to either {0}, Z, Z © Z or the 
fundamental group of the Klein bottle. In particular, any two elements 
in r either mutually commute or anti-commute. 

L e m m a 3 .2 .2 . Let E be a noncompact euclidean manifold with a 

reference point e G E such that inj e E = 1. Then for any R > 0, the 
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image of •KI(B R(EÌ e), e) —> 7TI(B2R(E, e), e) induced by the inclusion is 
virtually abelian. 

Proof. -Ki(B R(E, e), e) is generated by geodesic loops of length < 2R, 
which are not smooth only at the reference point e. Choose any two 
such loops £i,Ì2- Since they commute or anti-commute in -KI(E), the 
lift of a loop represented by l\t<il~^ £%,-, where e = lor — 1, encloses a 
rectangular knot in E 3 where the edge length is at most 2R. 

The vertices are four lifts of the base point e. The preimage of 
B2R(E,e), which has twice in radius, contains a union of four balls 
of radius 2R whose center lie on the vertices of the knot. Thus the 
knot bounds a disk in the union of these four balls and hence l\l<it{ ^| 
becomes homotopic to zero in B2R(E,e). This shows that the image is 
generated by finitely many £7s where the generators mutually commute 
or anti-commute. Such a group is virtually abelian. q.e.d. 

3.3. Geomet ry of tubes . 

An abstract model for an equidistant tubular neighborhood of a sin­
gular geodesic in a cone-manifold will be useful for estimating several 
quantities. We call it a tube and discuss its geometry. 

Notation. Ta^^jT will be an equidistant tubular neighborhood of a 
singular component with radius S in a hyperbolic 3-cone-manifold where 
the length of a singular axis = a, the cone angle = 9 and the twisting 
factor = T. 

These four parameters determine the isometry class ofTajß!T. The 
boundary dTa^^jT carries an induced euclidean structure. A canonical 
rectangular fundamental domain of dTajßiT by the meridional direction 
and its vertical direction has magnitude 

(3.1) 6 sinh 8 x a cosh ö. 

The surface area and volume of a tube depend only on the first three 
parameters, 

(3.2) 

(3.3) 

In particular, 

(3.4) 

area öTo-^0,7- = 0a sinh ö cosh 6. 

1 2 
volTo-^0^ = -00-sinh ô. 

a r e a Ô T ^ ^ = 2 c o t h ^ . 
Ta,ö,e,T 
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The twisting factor r does not affect the surface area and volume in 
fact, but does affect the euclidean structure of the boundary. Since the 
gluing of the right and left edges has no twisting factor, by (3.1) we 
have 

(3.5) inj dT^5ft,T < 9 sinh ö. 

The second factor "a cosh <5" of (3.1) does not say much about injectivity 
radii. 

We will derive two implications from these quantities. They are 
about rank-2 cusp opening deformations of a tube, and the comparison 
of intrinsic and extrinsic injectivity radii of a point on the boundary of 
a tube embedded in a cone-manifold. 

First of all, consider a sequence fT i g of tubes which converges geo­
metrically to a rank-2 cusp neighborhood by taking reference points on 
the boundaries. There are essentially two different ways. The simplest 
one in one way can be seen by setting 

6i = 1/sinh i, 

Oi = 1/cosh i 

and making i —> 0 when i —> oo. Then öi —> oo and i —> 0. There 
are an elliptic and a loxodromic elements in PSL2(C) which generate T i 
for each i. In this deformations, they both approach parabolic elements 
which generate a rank-2 cusp when i —> oo. 

The other way involving a twisting factor r was discussed in [14]. 
To see one simple example, let 6 be a fixed positive constant and set 

Oi sinh öi cosh öi = 1/6. 

Choose Ti so that f<9T i g stays in a compact set in the moduli space of 
euclidean tori, we obtain a cusp opening family. In this case, öi —> oo 
and Oi —> 0 also. However, the elliptic elements associated to T i's diverge 
in P S L ( C ) , and a group generated by a loxodromic element converges 
geometrically (but not algebraically) to a rank-2 parabolic subgroup 
generating a cusp. 

Lemma 3.3.1. Let T i g be a sequence of tubes which converges 
geometrically to a rank-f cusp neighborhood. Suppose that area <9T i is 
constant and that 9T i stays in a compact set in the moduli space of 
euclidean tori. If f i > g is bounded away from zero, then the lengths of 
curves on dT i 's bounding a disk in T i diverge as i —>• oo. 
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Proof. Since the boundaries have bounded geometry and T ap­
proaches a rank-2 cusp neighborhood, <i —> oo. Since the length of a 
curve bounding a disk in T i is i sinhii, it must diverge if i is bounded 
away from zero. q.e.d. 

Secondly, consider a tube T K e T with constant sectional curvature 
= K, where K lies in [L,0] and is not necessarily —1. The modified 
formulas of the above ones for T K e T can be established according to 
the value of K, however its limiting behaviors caused by the limiting 
behavior of a, ô, 6 are essentially the same. 

Regarding a tube as a model of an equidistant tubular neighborhood 
T C C of some component of S, we compare the injectivity radii of dT 
and C at a point on dT. Notice that since dT is a euclidean torus, 
inj x dT does not depend on the choice of x G dT and is equal to inj dT. 

Lemma 3.3.2. Fix a curvature bound L < — 1. Given positive 
numbers D, I > 0, there is a constant W(D, I , L) such that if C G C7L Qi; 

T C C is an equidistant tubular neighborhood of a component of S with 
radius T > D, and inj dT < I , then 

(inj w C <) inj dT < W(D, I, L) • inj w C 

for any w G dT, where the inequality in ( ) on the left-hand side is 
obvious. 

Proof. Let K' be a curvature constant of C. Multiplying 1/ inj dT 
on the metric of C, we obtain C of constant curvature 

K = K'(inj dT)2 >I2L. 

Then T becomes a tubular neighborhood T with radius T > D/I and 
also inj dT = 1. 

Let T K g T be a tube isometric to T, where ô = radius T > D/I, 
and consider a natural inclusion of tubes 

K ,— K 
Tcr,ô-D/2I,e,T L Ta,ö,e,r-

Notice that the radius of the included tube is > D/2I. T K e r is a 
riemannian manifold with boundary, and the quantity inj x T K e T for 
x G 9T KÖ_D,2I g T can be considered as a positive periodic function in 
terms of r, so that we have the minimum for fixed a, 6,0, K, 

' ' T ' ' ' 
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Then J^Q{D/I) becomes a function of a > 0,6 > D/I,6 > 0, and 

0 > K > I2L. Since it approaches zero only when injdT^se T —> 0, it 

attains the positive minimum J(D, I , L) when the variables run so that 

inj dT^g g T = 1. In particular, i n j ^ T > J(D, I , L) for any ~x G T with 

d(x, dT) = D/2I. 
Set a constant U by U(D/2I, J{D, I , L),D/2I, I2L) in Lemma 3.1.1, 

and choose any w G dT• Then there is the unique nearest point ~x to 
w in T so that d(x,w) = d(~x,dT) = D/2I. Since d(~x, S) > D/2I, 
in j^C > i n j ^T > J(D,I,L) and d(w,S) > D/2I, we have a bound 
U < inj w C by Lemma 3.1.1. Multiplying the metric by inj ÔT, we 
obtain 

U • inj dT < inj w C. 

The proof is done by letting W = l/U. q.e.d. 

4. Choos ing geometr ica l ly convergent sequences 

In this section, we choose a geometrically convergent sequence of 
deformations of a compact orientable hyperbolic 3-cone-manifold C with 
singularity S. This is to see what happens in the limit in the next two 
sections. 

4 .1 . Maximal tubes . 

We will often split the discussions in the later section according to 
whether the reference point is close to the singularity or not. For this, 
it is convenient to introduce the maximal tubular neighborhood of the 
singularity. 

Def in i t ion . The maximal tube T about U C C is a union of open 
tubular neighborhoods T j ' s such that the following hold: 

(1) each component T j C T is an equidistant tubular neighborhood 
to the j t h component Uj C S of the singularity, 

(2) among ones having the property (1), the set of radii arranged in 
order of magnitude from the smallest one is maximal in lexico­
graphical order. 

By the second condition, the maximal tube T about U is uniquely 
determined. In fact, T can be constructed as follows. Since the com­
ponents of S are isolated, a ^-tubular neighborhood of S is a union 
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of disjoint tubular neighborhoods of Sj,s if S is very small. Thicken it 
gradually. Then some of components contact at a particular moment. 
Stop the growth of the components involved in contacting, and thicken 
the others furthermore. We will have the second contact moment. Do 
the same again. Continue this process up to the terminal moment, and 
we finally obtain the maximal tube T • 

Denote by <9T j an abstract boundary of T j . It is a euclidean torus. 
The actual boundary dT of T in C is a union of isometrically embedded 
tori with a finite number of contact points. 

4.2. Geometrical ly convergent sequences. 

Recall that A = ( a 1 , - - - ,an) is an angle set of a compact orientable 
hyperbolic 3-cone-manifold C, where aj < ir for all 1 < j< n. Choose 
a sequence of deformations (C i, i) of C such that 

1. i j < n for any i, and 

2. lini-j.oo a j exists and equals j 

To see what happens when i —> oo, we follow Thurston's strategy in [13] 
in the next two sections, that is, to analyze its possible geometric limit 
using hyperbolic geometry and 3-manifold topology. 

Let c i be the first contact point on <9î, that is to say, the point which 
admits two shortest pa th to Si from T - Then by Proposition 2.2.3, 
there is a subsequence fkg C fig so that f ( C k,cfc)g converges geomet­
rically to a complete metric space (Ct^c*). We arrange more. Let f k 
be the finest point on dT k, that is to say, the point on <9T k which at­
tains the minimum among finj x C j x G dT k g- By choosing a further 
subsequence fC k g with the same letter, we may assume that c k and f& 
stay on the components of dT k with constant reference numbers respec­
tively. Namely, c k always lies in cth component dT k c for any k, and f& 
does in dT f,; , where c and f here represent the reference numbers for 
the components. 

The properties of the sequence so chosen is summarized in 4.3 below. 
In fact, we only use the properties listed in 4.3 in the next two sections. 

4.3. P roper t i e s . 

A sequence of compact orientable hyperbolic 3-cone-manifold fC k g with 
the angle set A k = {k, • • • ,ak) has the properties: 
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(1) each C k is a deformation of C with a reference homeomorphism 
£k : C -> C k, 

(2) f (C k,cfc)g converges geometrically to (C ̂  ̂ c*) when k —> oo ; 

(3) oj k < -K for all 1 < j < n and any k, 

(4) oj k —> j when k —> oo ; 

(5) the first contact point c k lies on a component dT k c with a constant 
reference number c, 

(6) the finest points f k lies on a component dT k with a constant ref­
erence number f and 

(7) there is a constant V max such that volC k < V max. 

R e m a r k . The above sequence is assumed to have only a geometric 
limit, and the algebraic convergence with respect to the identification 
by Çk is not guaranteed. For instance, let C be a hyperbolic surface 
with homotopically nontrivial automorphism ip : C —> C which cannot 
be realized by an isometry, and define ^ : C —> C k = C by 

id, if k odd, 

ip, if k even. 

Then the sequence fC k g converges geometrically to C, but a sequence 
of holonomy representations fpk g does not converge algebraically. 

R e m a r k . The property (7) is not a direct consequence of Proposi­
tion 1.3.2, however the bound above can be obtained by modifying its 
proof only a little because of the property (3). See also the remark after 
Proposition 1.3.2. 

5. Thick t u b e 

In this section, we study what happens to a geometric limit C* of a 
sequence fC k g of the deformations of C in 4.3 when maximal tubes of 
the singularity are uniformly thick. 

k 
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5.1. Brief outl ine. 

The underlying assumption throughout this section is 

A s s u m p t i o n 1. There is a constant D\ > 0 such that 

D\ < radius T k j 

for any 1 < j < n and any k. 

Under the Assumption 1 above, we prove the following propositions 
in this section. 

Propos i t i on 5 .1 .1 . Under the Assumption 1, there is a constant 
I\ > 0 such that 

I < inj f, C k. 

for any k. 

The conclusion of this proposition is equivalent to the Assumption 1 
since inj ffc C k < min, radius T k j • The proof involves analysis of the local 
structure of cone-manifolds away from the singularity. 

Using the conclusion of Proposition 5.1.1, we show 

Propos i t i on 5 .1 .2 . Under the conclusion of Proposition 5.1.1, C* 
is a hyperbolic 3-cone-manifold of finite volume homeomorphic to C, 
where some components of U possibly disappear and create cusps. 

Propos i t i on 5 .1 .3 . Under the conclusion of Proposition 5.1.1, a 
sequence f k g of holonomy representations of fC k g contains a subse­
quence converging algebraically to the holonomy representation p* of C* 
with respect to the identification by ^ . 

Def in i t ion . A sequence fC k g of deformations is said to converge 
strongly if it converges geometrically to a cone-manifold C* homeo­
morphic to C, and a sequence fpk g of their holonomy representations 
converges algebraically to p* with respect to the identification by k. 

This definition is compatible for the existing one for discrete groups. 

Corollary 5 .1 .4 . Under the Assumption 1, fC k g contains a sub­
sequence which converges strongly to a hyperbolic 3-cone-manifold C* 
homeomorphic to C. If j > 0 for all 1 < j < n, then C* is compact. 

Proof. This is a direct consequence of three propositions above. 
Suppose that the Assumption 1 is the case. By Proposition 5.1.1, the 
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injectivity radius of the first contact points of maximal tubes are uni­
formly bounded away from zero. Then by Propositions 5.1.2, 5.1.3, C* 
is a strong limit of fC k g after taking a subsequence. In particular, the 
angle set of C* is equal to B = (/31, • • • , ßn). If ßj > 0 for all 1 < j < n, 
then C* admits no ends and hence is compact. q.e.d. 

5.2. Boundary of tubes . 

Supposing that the Assumption 1 is the case throughout this subsection, 
we prove Proposition 5.1.1 

L e m m a 5 .2 .1 . There is a constant I2 such that 

area 9T < I , 

for any 1 < j < n and any k. 

Proof. By the comparison (3.4) of the volume and the surface area 
of a tube, and by the volume bound (7) in 4.3, we have 

area dT k = 2 coth radius T vol T k < 2V max c o t h D i . 

Let I2 be the last term. q.e.d. 

Proof of Proposition 5.1.1. Assume contrarily that inj f C k —> 0, 
and we will get a contradiction. 

Choose the first contact point p k on dT k on which f k lies, p k may 
not be the absolute first contact point c k since we require that p k lies on 
the component dT k which might be different from dk c. p k is the point 
where dT k either meets the other component of dT k or contacts itself. 

Very locally, p k appears as a contact point of two components, one dT k 
f from the left-hand side and the other dT k from the right-hand side. 

The reference numbers f and f' might be the same. 
One obvious inequality is 

( i n jdT k ) 2 < a r e a d T k ( < I 2 ) , 

and the right-hand side of which is bounded by I2 by the above lemma. 
Let W be a constant W(Di, ^/h, — 1) in Lemma 3.3.2. Then since 

f f 1 — 

r a d i u s T k > D\ and inj dT k < p I , we have 

(5.1) inj dT k f < W • inj f C k (< W • inj pfc C k) 
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by Lemma 3.3.2. If we regard p k as a point on dT k , since radius 7 f > 
f i— D\ and inj dT k < p h , then again we have 

(5.2) in jdT f <W-inj p k C k. 

Hence B W-inj C k(C k,p k) contains a homotopically nontrivial loop £\ 

based at p k on the left dT k , and also t<i based at p k on the right dT k . 
Let V(Di, 2W) be a local Margulis constant with respect to D\ and 

2W in Lemma 3.2.1. Since we assumed that inj f C k —> 0, (5.1) and 
(5.2) imply that 

(inj p k C k < ) in jdT k f <V(DU2W) 

for sufficiently large k. Thus (B2Winj C k(C k,p k),p k) is homeomorphic 
by an almost equi-expansive map to (B2W(E, e), e) for some noncompact 
euclidean manifold E with inj e E = 1 by Lemma 3.2.1 and the remark 
after that . Furthermore by Lemma 3.2.2, the homomorphism, 

TTi(B W(E,e),e) ->• Tr1(B2W(E,e),e), 

induced by the inclusion has a virtually abelian image. Hence so does 

vri(B W.inj C k{C k,p k),p k) ->• vri(B2W-inj p, C k(C k,p k),p k), 

because of the choice of a homeomorphism of (B2Winj C k(C k,p k)jp k) 

which we have made. Thus the nontrivial loops £i,Ì2 representing el­
ements of 7Ti(B W.inj C k(C kìp k)ìp k) are virtually commutative, in par­
ticular, in n for suffk ciently large k. 

On the other hand, consider the developed image near p k. p k lifts to 
a contact point of lifts of dT k from the left-hand side and that of dT k 

from the right-hand side. In particular, pk{£\) leaves the left-hand lift 
of dT k invariant, on the other hand, pkiß-'i) leaves the right-hand lift of 
dT k invariant. Hence their action on H 3 U S^, do not have common 
fixed point at all, and they are not commutative even virtually in k(II). 
This is a contradiction. q.e.d. 

5.3. Geometric limits. 

We assume the conclusion of Proposition 5.1.1 that the injectivity radius 
of the points on dT k is uniformly bounded from below by I\ > 0, and 
prove Proposition 5.1.2. 



498 SADAYOSHI KOJIMA 

L e m m a 5 .3 .1 . Under the conclusion of Proposition 5.1.1, if there 
is a constant D j > 0 such that radius T k j < D j , then j > 0 and there 
is a constant S j > 0 such that 

S j < l e n g t h ^ . 

for any k. 

Proof. If j = 0, then the j t h component j k of the angle set ap­

proaches zero as k —> oo. Since r a d i u s T k < D j, inj dT j —> 0 by (3.5). 

This contradicts the conclusion of Proposition 5.1.1 because 

(I<) inj f k C k<injdT j . 

If flength 1 j g contains a subsequence converging to 0, since 

area dT k = 0k length Uk sinh radius T k cosh radius T k 

< 7T s inhD j coshD j length X1j, 

by (3.2), it follows that (If < (injdT k)2 < ) a r e a 9 k can be arbitrary 
close to 0. This is again a contradiction. q.e.d. 

L e m m a 5.3 .2 . C* is a hyperbolic 3-cone-manifold of finite volume 
possibly with compact singularity. 

Proof. It is sufficient to show that each point x* G C* admits a 
hyperbolic ball neighborhood possibly with singularity along a geodesic 
segment. The argument is quite parallel to that in Lemma 3.2.1. 

Since I i < inj ffc C k < inj cfc C k, the limit c* G C* of the reference 
points fc k g admits a neighborhood which is a limit of hyperbolic balls 
of uniformly bounded radii by I\. Hence it admits a hyperbolic ball 
neighborhood. 

Fix a constant R > 0 and choose any x* G C* with d(x*,c*) < R. 
If it is a limit of points x k G C k — T k g, since d ^ x , 17) > D i and we 
may assume d(x k,c k) < f R, x k admits a hyperbolic ball neighborhood 
of radius > U(Di,Ii,2R, —1) by Lemma 3.1.1, where the radius bound 
does not depend on k. Hence again x* admits a hyperbolic open ball 
neighborhood. 

If x* is a limit of points fx k G T k g, we may assume that fx k g is 
contained in a component T k with a constant reference number x by 
taking further subsequence if necessary. When r a d i u s T k —> oo, since 
dT k does not degenerate by the conclusion of Proposition 5.1.1, we may 
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assume that d(x k,c k) < 2R, d(x k, Ex) —> oo, and d(x k,^ k) > D\. Then 
x k admits a hyperbolic ball neighborhood of radius > U(Di,Ii, 2R, — 1) 
by Lemma 3.1.1 where the radius bound does not depend on k, and 
hence so does x*. When r a d i u s T x is bounded not only from below 
by Assumption 1 but also from the above, length I k has a uniform 
lower bound away from zero by Lemma 5.3.1, and each point within 
T x has a possibly singular ball neighborhood of uniform radius where 
the singularity occurs only along a geodesic segment. Hence x* admits 
a hyperbolic ball neighborhood possibly with cone singularity along a 
geodesic segment. 

Since R > 0 was arbitrary, the above argument shows that every 
point on C* admits a hyperbolic ball neighborhood possibly with a cone 
singularity. The singularity appears only in the limit of T x whose radius 
is bounded. There are only finitely many such components. Moreover 
the length of a core of such a component is bounded since in general by 
(3.5) we have 

( I i <) inj 0T < èx sinh radius T x, 

so that the formula in (3.2) implies the estimate, 

l e n g t h ^ = area 3T ^ 
k sinh radius T x cosh radius T x I cosh radius D\ 

Hence the singular set is compact. q.e.d. 

By Corollary 1.2.3, C* has finitely many toral ends. Choose disjoint 
horotoral neighborhoods of the ends of C* so that the minimum I3 of the 
injectivity radii of C* at points on their boundaries is < I\. We let C cut 
be a compact hyperbolic cone-manifold with toral boundary obtained 
from C* by truncating such cusp neighborhoods. We thus have 

I = m in fmx C*jx G ÖC cut g < I -

L e m m a 5 .3 .3 . There is an approximate homeomorphism 

(fk : C*ut —> C k for sufficiently large k. 

Proof. We just repeat the last paragraph in the proof of Lemma 3.2.1. 
Choose a fine triangulation of C cut by 3-simplices whose faces either 
are totally geodesic or lie on dC cut so that cut is contained in the 1-
skeleton. Since C* is a geometric limit, we may choose a map from the 
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0-skeleton of C* to C k for sufficiently large k, where 4 vertices span­
ning an oriented simplex in C cut are mapped to 4-vertices spanning a 
simplex with the same orientation also in C k, and vertices on U^ ut are 
mapped to points on k. Then its obvious piecewise linear extension 
is necessarily an into-approximate homeomorphism ipk : C*ut —> C k for 
sufficiently large k. q.e.d. 

L e m m a 5.3 .4 . ipk can be modified by an isotopy to a homeomor­
phism, which we again denote by ipk, so that each component of 
<fk(dC ̂  ut) bounds an equidistant tubular neighborhood of either a short 
geodesic or a component of Uk in C k for further sufficiently large k. 
Moreover the isotopy can be chosen so that the injectivity radii of the 
components of ipk(dC ^ ut) is uniformly bounded from below by some pos­
itive constant. 

Proof. Choose a component doC cut of dC cut and let H k be the 
image of doC*ut by ipk, namely H k = ipk(doC cut). Since the nonsingular 
part N k = C k — ^ k is irreducible and atoroidal as a 3-manifold by 
Theorem 1.2.1, H k either is incompressible and boundary parallel or 
bounds a solid torus Z k in N k. In particular H k separates N k. 

If H k is incompressible, it is isotopic to a component of dT k- Hence 
it is isotopic to a horotorus bounding an equidistant tubular neigh­
borhood of a component of Uk- Choose a horotorus H k isotopic to a 
corresponding component of dT k so that 

injH k = I / 2 . 

It exists certainly in T k since the minimum of the injectivity radius of 
components of dT k is > inf fj. C k > I > I - Moreover, since ipk does not 
change injectivity radius very much, it is contained outside the image 
of C cut by ipk- Hence we can choose isotopy of H k to H k by pushing 
H k outside ipk(C cut). In particular, the isotopy is covered by an isotopy 
of C cut fixing the complement of a small collar neighborhood of doC cut, 
and the covering isotopy does not affect the other component of dC cut. 

Suppose next that H k bounds a solid torus Z k in N k- We will show 
that the solid torus Z k bounded by H k contains a simple closed geodesic 
isotopic to the core of Z k. To see this, we will first extend pk to an 
embedding ipk of the union of C cut and a collar F of doC cut which lies 
in the complement of C cut. The choice of F is rather technical and will 
be made below. Set 

I = infjinj x C k | x G H k}. 
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This constant depends on k in fact, however since injectivity radius does 
not change very much by an approximation ik, we may assume that k 
is bounded from below by some positive constant for sufficiently large 
k. Then we set a positive constant I4 by 

I 4 = min{inf{I f c},I3}. 

We now choose a collar F of <9oC*ut so that the second shortest geodesic 
on the boundary component diC cut of F other than doC cut has length 
< I4/2. The same argument of the previous lemma shows that the 
extension (pk over C*ut Ug0C cut F exists by taking further sufficiently 
large k. 

Let l\ and £2 be the shortest two geodesics on d\C ^ ut. They are not 
homotopic each other because d\C cut has a euclidean structure. Since 
(f>k does not change the length very much, we may assume that the 
length of (f>k(ii) and <Pk(^2) are < I . The new boundary component 
Hfc of <Pk{F) other than H k is contained in Z k. Since <Pk{£\) and ^ ( ^ 2 ) 
are nonhomotopic loops on H k, at least one of them, say ipk(£i), is 
homotopically nontrivial in Z k. Notice that <Pk{£\) has length < I4 and 
hence the length shortening homotopy of <Pk(£i) in Lemma f.2.4 does 
not go through the point with injectivity radius > I4/2. On the other 
hand, any point on H k has injectivity radius > I > I4. Thus the length 
shortening homotopy of tpk [£\ ) stays in Z k, and ipk [£\ ) shrinks to some 
nonzero multiple of a closed geodesic Iin Z k. Hence by Theorem 1.2.1, 
C k — (^ k U £) is atoroidal, and in particular H k is parallel to a torus 
bounding an equidistant tubular neighborhood of £. 

We would like to isotope H k to an equidistant torus to £ with uniform 
intrinsic injectivity radius. To see this, consider an increasing family of 
equidistant tubular neighborhoods of £ in Z k. At some first critical 
radius, the boundary of a neighborhood hits either H k or itself. If 
the later is the case, choose a homotopically nontrivial loop g in the 
critical equidistant tubular neighborhood which passes the contact point 
p. g is homotopic to some nonzero multiple of £, say d , since it lies in 
the solid torus Z k and p is a contact point of the critical equidistant 
tubular neighborhood. Then consider the developed image of the critical 
equidistant tubular neighborhood. The preimage of p contains points 
which cannot be joined by the action of Pk(£) since p is a contact point. 
Simultaneously, it must be an orbit of a point by the action of Pk{£d) 
since g is homotopic to £d. This is impossible. 

Hence the equidistant tubular neighborhood of £ grows up to the 
one H k which touches H k. Since each point of H k has injectivity radius 
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> I4 in C\, we have 

in jH > I 4 . 

Moreover, it is contained outside the image of C cut by (/?k. Hence we can 
choose an isotopy of H k to H k by pushing H k into Z k. In particular, 
the isotopy is covered by an isotopy of C cut fixing the complement of 
a small collar neighborhood of doC*ut. The covering isotopy does not 
affect the other component of dC cut and we are done. q.e.d. 

L e m m a 5.3.5 . For any geodesic loop t on dC cut, length(pk(£) is 
bounded by some positive constants from both above and below for all k, 
where ipk is a modified one in the previous lemma. 

Proof. The existence of a lower bound is a simple corollary to the 
previous lemma. Recall that the isotopy which we constructed pushes 
the boundary into an equidistant tubular neighborhood. Thus it is 
distance decreasing on the boundary. Since the original 

PkldoC™* '• doC*u —> H k 

is an approximation and does not change the distance very much even 
when k varies, it follows that a uniform upper bound exists. q.e.d. 

By taking a further subsequence and rearranging reference numbers 
of the components of U if necessary, we may assume that the j t h com­
ponent of dC cut is mapped by ipk to a torus bounding an equidistant 
tubular neighborhood of j k for 0 < j < s and of a short geodesic in C k 
for s < j < t and sufficiently large k. 

The following lemma finishes the proof of Proposition 5.1.2. 

L e m m a 5.3.6. There are no components of dC ^ ut which are mapped 
by ipk to the torus bounding an equidistant tubular neighborhood of a 
short geodesic. In other words, s = t, and there are no cusp openings 
away from the singularity. 

Proof. Assume contrarily that s < t. Filling the j t h component 
of the boundary of C cut for each s < j < t by an equidistant tubular 
neighborhood of a short geodesic which the j t h component of ik (dC cut) 
bounds in C k, we obtain a cone-manifold homeomorphic to C — Uj^s j . 
In other words, for each sufficiently large k, C cut produces an isometric 
hyperbolic cone-manifold by some Dehn filling on the last t — s compo­
nents of <9C cut. 
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If the number of slopes appeared in this Dehn filling on the j t h 
component is finite even as k varies, then by taking a further subse­
quence, we may assume that the slope is unique and does not depend 
on k. Denote the geodesic representative of a slope on dC cut by m. 
Then by Lemma 5.3.5, length <pk(m) is bounded from above by some 
constant not depending on k. On the other hand, since the equidistant 
tubular neighborhood of a short geodesic bounded by the j t h compo­
nent of ipk(dC cut) approaches a cusp, and since the cone angles of short 
geodesics stay 2ir, the lengths of curves on <fk(dC ̂  ut) bounding a disk 
in tubes must diverge by Lemma 3.3.1. This is a contradiction. 

Hence the number of slopes appeared in the Dehn fillings must be in­
finite for each component when k varies. Let us reconsider the situation 
not by cutting toral ends but by removing the singularity. Come back to 
the limiting cone-manifold C*. The nonsingular part N* = C* — 17* ad­
mits a hyperbolic structure by Theorem 1.2.1. We denote it by C*;comp. 
Then for each k, C*tcomp produces C comp by some Dehn filling on the 
last t — s cuspidal components of C*;comp. The filling slope on each 
component varies infinitely many as k varies. Hence such filling slopes 
accumulate to oo which corresponds to the complete structure C*;comp. 
This means that C*)comp produces C comp by infinitely many hyperbolic 
Dehn fillings. On the other hand, the slopes of hyperbolic Dehn fillings 
on a fixed hyperbolic manifold which produce the same manifold is only 
finitely many. This can be verified for instance by listing volumes (see 
[14]). Hence we get a contradiction. q.e.d. 

5.4. Algebraic l imits. 

We assume the conclusion of Proposition 5.1.1 throughout this subsec­
tion and prove Proposition 5.1.3 by lemmas below. We continue to use 
C cut in the previous subsection. C cut has s toral boundaries and each 
<Pk '• C*ut —> C k maps the j t h component of dC cut to a torus bounding 
an equidistant tubular neighborhood of k j . The cusp opening on C* 
does not simply imply ( j =) lim ^ o o 6j k = 0 for j < s as we pointed 
out in section 3.3. However in this case, we have 

L e m m a 5 .4 .1 . / j = 0 for all 1 < j < s. 

Proof. Suppose contrarily that j > 0 for some 1 < j < s and 
choose a meridional element m k bounding j k on ipk(dC ^ ut) for each k. 
If fipk (m k) j kg contains only finitely many isotopy classes of the curves 
on dC cut, then flength k (m k) jkg is bounded by Lemma 5.3.5. On 
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the other hand, since a singular solid torus bounded by this component 
of <fk(dC ̂  ut) approaches a cusp, the lengths of meridional elements on 
the boundary must diverge by Lemma 3.3.1. This is a contradiction. 

Thus it is enough to show that ipk (m k) j kg contains only finitely 
many isotopy classes of the curves on f C cut. Composing reference home-
omorphisms of (1) in 4.3, we obtain a homeomorphism 

k ° ^ k0
 : C ko ^ C k-

Then ^ ok~ (m k0) is isotopic to m k- Fixing ko and running k > ko, we 
have infinitely many homeomorphisms 

^ = k o Çk o k o k : C cut ->• C cut-

Since the interior of C cut is homeomorphic to C*, C cut admits only 
finitely many isotopy classes of automorphisms by Corollary 1.2.2. Hence 
there are only finitely many isotopy classes in f i k jk > kog. This is 
enough since tpki'Pk (m ko)) is isotopic to ik (m k). q.e.d. 

L e m m a 5.4 .2 . The angle set of C* is equal to B. 

Proof. Lemma 5.4.1 shows that j = 0 for j < s. Hence it is 
equal to the j t h component of the angle set of C* since the component 
corresponds to a cusp. 

The other component corresponds to a component of 17* in C*. As 
we have seen in the proof of Lemma 5.3.2, a tubular neighborhood of 

j for j > s is a limit of T k j 's whose cone angles are o j ' s . Thus the cone 
angle of Sj in this case is lim ^ o o cj which equals j by definition. 

q.e.d. 

L e m m a 5 .4 .3 . A sequence fpk g of holonomy representations of 
fC k g contains a subsequence converging algebraically to the holonomy 
representation of C* with respect to the identification by ^ . 

Proof. We eventually obtained an into-homeomorphism 

iPk : (C cut cut) ->• (C k -yjj<s ky j j > s k) 

for sufficiently large k by the lemmas in the previous subsection. On 
the other hand, there are reference homeomorphisms ^ : C —> C k of (1) 
in 4.3. Then the composition 

k o tpk : (C cut, cut) -+ (C - Uj^tj, Uj>s k) 
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is an into homeomorphism. There are only finitely many isotopy classes 
of such maps since otherwise, C would admit an infinite automorphism 
group, contradicting Corollary 1.2.2. Hence taking a further subse­
quence, we may assume that <k ° y>k s are isotopic for all k. Then the 
algebraic convergence is a consequence of a geometric convergence. 

q.e.d. 

6. T h i n t u b e 

In this section, we study what happens to a geometric limit C* of 
a sequence of deformations fC k g in 4.3 when the minimum of maximal 
tube radii goes to zero. The analysis involves noncompact euclidean 
3-cone-manifolds with noncompact singularity, whose definition would 
be obvious. 

6.1. Brief outl ine. 

The minimum of radius T k is attained by the cth component T k which 
contains the first contact point c k. The underlying assumption through­
out this section is 

A s s u m p t i o n 2 . If k —>• oo ; then 

radius T k —> 0 . 

Under the Assumption 2 above, we discuss possible degenerations in 
two propositions below. The technical assumption there will be satisfied 
by some natural setting which we will use later on. 

Propos i t i on 6 .1 .1 . Under the Assumption 2, if there is a constant 
V min > 0 such that vo lC k > V min, and if j is strictly less than n for 
all 1 < j < n, then C* is isometric to either the euclidean line E or the 
half line E>o-

R e m a r k . We do not know whether E>o really occurs as a geometric 
limit. 

Propos i t i on 6 .1 .2 . If furthermore ßc > 0, then the rescaling limit 
C* of f C k g by normalizing the radius of T k to be 1 is a euclidean cone-
manifold isometric to S 2 (a , ß, 7) x E ; where S 2 (a , ß, 7) is a euclidean 
2-cone-manifold over the 2-sphere with three cone points of cone angles 
a, ß, 7 such that 0 < a, ß, 7 < n and a + ß + 7 = 2n. 
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Remark. It is quite unlikely that both radius k c —> 0 and ßc = 0 
occur simultaneously, though we do not have a proof. 

6.2. Collapsing. 

Consider the Dirichlet polyhedron P c k of C k about the first contact 
point cfc, which we simply denote by P k from now on. Supposing that 
the Assumption 2 is the case, we analyze the limit of P k and prove 
Proposition 6.1.1. 

Lemma 6.2.1. Under the assumption of Proposition 6.1.1, 
{(-k)cfc)g converges geometrically to the euclidean line E or the half 
line E>o-

Proof. Imagine that c k is the contact point of T k c from the top 
side and T k from the bottom sides. The reference number c might 
be equal to c'. The shortest common orthogonal to k and k which 
goes through c k lifts to the geodesic segment g k C P k. It is in fact the 
segment realizing the length = 2 radius T k c, and by the Assumption 2, 
lengthg goes to zero as k —> oo. 

Let p kiq k be the terminal points of g k. Since we assume that / j is 
strictly less than n, P k is locally bounded by roof shaped faces near p k 
from the top and q k from the bottom respectively, where their ridges cor­
respond to c k and k . P k is convex, and it is bounded by the extension 
of these roofs from the top and bottom. Moreover since lengthg —> 0, 
and the volume is assumed to be bounded away from zero, the roof 
ridges become arbitrary close and parallel. Hence {P k g converges as a 
metric space to a connected closed subset of the euclidean line E. 

q.e.d. 

Proof of Proposition 6.1.1. Choose for each k a segment l k C E 
through cfc so that it is maximally embedded in P k. By the previous 
lemma, we have length k —> oo when k —> oo. Thus a long segment l k 
can be isometrically embedded in C k- Assigning to each point of C k the 
nearest point on the image of l ki we obtain a map ipk : C k —>• k C E. 
Then the relation R k between C k and E defined by R k = {(x,y) G 
C k x E\tfk(x) = yg is an approximation for some e where e —> 0 as 
k —> oo. q.e.d. 

6.3. Rescaling. 

In this subsection, under the conclusion of Proposition 6.1.1, we prove 
Proposition 6.1.2. 
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L e m m a 6 .3 .1 . If ßc > 0, then the rescaling limit of fC k g normal­
izing the radius of T k c to be 1 is a noncompact euclidean cone-manifold 
with nonempty singular set. 

Proof. Multiply 1/radius k c on the metric of C k, we obtain a cone-
manifold C k of constant curvature = — ( rad iusT k c)2, which is > — 1 
for large k. Then radius T k = 1. Notice that the estimate (3.5) is 
in fact valid for tubes with constant sectional curvature = K where 
— 1 < K < 0, because the bound in the hyperbolic case is the worst. 
Since ßc is strictly less than IT, inj dT k < 7rsinhl by this new estimate. 
Then by Lemma 3.3.2, we have a constant W = W(l, n sinh 1, —1) such 
that 

i n jdT c < W - m i c k C k. 

Since the cth component ßc of the angle set is positive by the assump­
tion, and length Uk diverges, we can embed a euclidean disk of radius 
ßc/2 into dT k by the euclidean case of (3.1). Therefore, inj &T k > ßc/2 
for sufficiently large k, inj k C k is uniformly bounded from below, and 
in particular, c* admits a euclidean ball neighborhood. 

On the other hand, each nonsingular component j k either becomes 
parallel to c k in C k or goes far away from c k. In particular, either 
length k j —> oo or d(c k , i j ) —> oo. This is true also in the rescaled 
setting. 

These two informations are good enough to conclude that f (C k, cfc)g 
converges geometrically to a euclidean cone-manifold (C*,~c*) since the 
singularity admits uniformly thick tubular neighborhood and its length 
does not degenerate, also the reference point stays in a uniformly thick 
part . The singular set is nonempty because c* has distance 1 t oc» . 

q.e.d. 

L e m m a 6.3 .2 . C* has two ends. 

Proof. That C* has two ends is equivalent to that C* converges to 
E instead of E>o-

Assume contrarily that C* converges to E>o, and choose R > 0 suffi­
ciently large so that 9 B R(C*, c*) is connected. 9 B R(C*, c*) can be seen 
in the Dirichlet polyhedron P* of C* about c* as an intersection of P* 
and the sphere of radius = R. The faces of P* intersecting 9 B R(E3 ,c ! t) 
for large R all must be parallel to the ray to the end, and hence the 
combinatorial structure of 9 B R(C*, c*) is very simple; it consists of one 
2-cell e with ß edges, where /z is equal to the number of faces of P* 
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intersecting 9 B R(E3 ,c ! t) . Also the topology of <9B R(C*,c*) does not 
change for sufficiently large R since <9B R(C*,c*) tends to be orthogonal 
to the ray to the end. 

To see more about vertices, we let ^ be the total angle of corners 
of e surrounding the i th vertex of <9B R(C*,c*) and v the number of 
vertices. Then by Gauss-Bonnet, we have the identity. 

— Z _ K R d A = Z Kg ds + (li — 2)ir — X i 
dB R(C«,c«) de i=l 

Z _ v 

= Kg ds - 2 7 T X ( O B R ( C * , c * ) ) + X ( 2 i r - V i ) , 
9e i=1 

where K R is a Gaussian curvature of <9B R(C*,c*) supported on the 
interior of e, and fög is a geodesic curvature along de. 

Let us see what happens when R —> oo. The left-hand side goes to 
zero since K R —> 0, and a r e a 9 B R(C*,c*) is bounded. The first term of 
the right-hand side approaches zero also since ng —> 0 and the length of 
de is bounded. For each vertex not on U*, i —> 2n, and on 17*, i i —> j 
where j is a cone angle of the singularity on which the i th vertex lies. 
Hence if R is large enough, the contribution of 27rx(9B R(C*,c*)), which 
is constant, and the contribution of the cone angles of U* n 9 B R(C*, c*) 
are identical. 

Since we have assumed that 0 < j < n for all j but c and 0 < 
ßc < 7T, this cancellation occurs only when x(<9B R(C*,c*)) = 2 and 
i7* fi 9 B R(C*,c*) consists of three points. This is a contradiction since 
a noncompact euclidean cone-manifold with one end must have even 
number of ends of singularity. q.e.d. 

The following classification of noncompact euclidean 3-cone-manifolds 
with two ends whose cone angles all are < n finishes the proof of Propo­
sition 6.1.2. 

L e m m a 6 .3 .3 . An orientable euclidean 3-cone-manifold E with 
nonempty singular set of cone angles < n and with two ends is a prod­
uct of a compact euclidean 2-cone-manifold and E . More precisely, E 
is isometric to either 

1. S2(7T, 7T,7T, 7r) X E o r 

2. S 2 ( a , ß , 7 ) x E , where a + ß + 7 = 2-n. 
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Proof. Choose a reference point e G E. A Dirichlet polyhedron P e 
is a convex polyhedron. Since E has two ends, there are two rays ri,r2 
in P e based at e. If r i Ur2 had bent at e, then P e cannot have two ends. 
Hence r\ U r ̂  is a straight line. Moreover, any face P e must be parallel 
to r\ U r2 by convexity and they surround r\ U r2- Let Q b e a polygon 
through e which intersects perpendicularly to the faces. It must be 
compact since otherwise, P e would not have two ends. Then dQ is glued 
with dQ via the identification of P e because P e is starlike, and hence 
the identifications do not contain any translation factor along r\ U r<i-
Thus Q becomes a euclidean sub-cone-manifold after identification, and 
E is the product of this sub-cone-manifold and E . 

The remaining is to classify compact euclidean 2-cone-manifolds 
with cone angles < n. However this is a routine application of Gauss-
Bonnet, so that we leave it to the reader. q.e.d. 

7. Cont inuous families 

In this section, we come back to a continuous family of deformations 
of a compact orientable hyperbolic 3-cone-manifold C, see what happens 
in the limit with the aid of the propositions in the previous sections, and 
prove the main theorem and its corollaries. 

7.1. Brief outline. 

Let fCgg be a continuous family of deformations of C parameterized by 
the angle assignment 

0 : [0,1) ^ G = (9C)n , 

where 

lim6(t) = B = (ß\... ,ßn). 
t-s-l 

We will first of all generalize the concept of strong convergence of a 
sequence to a continuous family of deformations. 

Def in i t ion . A continuous family fCQg of the deformations of C is 
said to converge strongly to C* if every subsequence f C k g in fC$g whose 
angle set tends to B converges strongly to C*. 

The following theorems, which we will prove in this section, are what 
we can conclude for angle monotone families from the analysis of the 
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previous sections. As we will see later in the proof, the strong conver­
gence of a family is very much likely derived from a strong convergence 
of a sequence together with the local rigidity. 

T h e o r e m 7 .1 .1 . If the family Cgg has a component-wise decreas­
ing angle assignment 9, and j > f for all 1 < j < n, then fCgg con­
verges strongly to a compact hyperbolic cone-manifold C* homeomorphic 
toC. 

R e m a r k . The positivity of / j is conjecturally unnecessary. How­
ever, the proof we present depends on Proposition 6.1.2 which involves 
this unclear hypothesis. Also it forces us to make a technical arrange­
ment in the proof of the main theorem. 

T h e o r e m 7.1.2 . If the family fCgg has a component-wise increas­
ing angle assignment 6 and / j < n for all 1 < j < n, then either 

1. volCg ->-0, 

2. CQ contains a sub-cone-manifold homeomorphic to S2 with three 
cone points so that the sum of their cone angles approaches 2n as 
9 ->• B, or 

3. fCgg converges strongly to a hyperbolic cone-manifold homeomor­
phic to C. 

The first theorem will be used to prove the main results in the final 
subsection. The second theorem above is just to note what we can 
conclude for angle increasing family, and it is not related to the main 
results directly. 

7.2. Splitting. 

The following example shows the degeneration discussed in Proposition 
6.1.2 really occurs in an angle increasing continuous family. 

E x a m p l e . Let a, ß, 7 be numbers such that 0 < a, ß, 7 < n and 
Ö+/3+7 = 2n. Consider a hyperbolic tetrahedron whose dihedral angles 
along ridges are (a — e) /2 , (ß — e) /2 , (7 — e) /2 in three opposite pairs, 
where e is a small nonnegative number. When e = 0, the tetrahedron 
has four ideal vertices. If e > 0, then the tetrahedron is of infinite 
volume. It becomes compact by truncating the ends by polar planes. 
The result is called a truncated tetrahedron. We thus obtain a family 
of polyhedra fA e ( a , ß, 7)g of finite volume parameterized by e > 0. 
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When e > 0, taking a double of A e ( a , ß, 7) along 4 hexagonal faces, 
we obtain a compact hyperbolic cone-manifold with geodesic boundary. 
Taking further double along the boundary, we obtain a family of closed 
hyperbolic 3-cone-manifolds fC£(a,ß,7)}. The singular set S consists 
of 6 circles each of which is assigned a — e, ß — e, 7 — e in pairs as their 
cone angles. If e —> 0, then the face of truncation becomes very tiny, 
and C£(a, ß, 7) splits into two noncompact hyperbolic cone-manifolds 
by tearing off the boundary of the first double. This family shows that 
the degeneration in Proposition 6.1.2 certainly occurs at the face of 
truncation. The reference point lies on the face of truncation, and the 
rescaling geometric limit is isometric to S 2 (a , ß, 7) x E. 

This example gives us a fairly general picture. In fact, using the 
following observation, we will show in the proof of Theorem 7.1.1 that 
the splitting degeneration caused by appearance of a euclidean sub-cone-
manifold such as this cannot occur in angle decreasing families. 

L e m m a 7 .2 .1 . Let L\,L2 be elliptic elements in P S L ^ C ) with axis 
£i,Ì2 respectively. If i\i2 is elliptic with axis £\2, and the total angle 
of rotations of L\,L2 and L\L<2 is > 2-K, then £i,Ì2 and l\2 meets at the 
unique point in H 3 . 

Proof. It is not quite hard to show that L\L2 is loxodromic if the union 
£1 U^2 does not lie on a geodesic plane in H 3 . Hence we may assume that 
£\ U^2 lies on a geodesic plane X. Replacing the role of t i , 1,2 by tj" , t\t2 
and ti>2,/<2~ ) we get geodesic planes Y and Z supporting £\ U £\2 and 
£\2 U £2 respectively. If three planes X, Y, Z meets in H 3 , then we are 
done. If not, they either meet at S^, or does not meet in H 3 U S^, and 
admits a geodesic plane meeting X, Y, Z perpendicularly. In both cases, 
the sum of three rotation angles must be < 2n and the assumption is 
not satisfied. q.e.d. 

7.3. Angle decreasing family. 

In this subsection, we prove Theorem 7.1.1 using propositions in the 
previous sections and the observation in Lemma 7.2.1. First of all, we 
have a lower bound of the volume. 

L e m m a 7 .3 .1 . If 0 is component-wise decreasing, then there is a 

constant V min > 0 such that 

V min < vol Cö(t) 

for all te [0,1). 
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Proof. Recall Schlaffli's variation formula revisited by Hodgson [6], 

d vol Cg = - Ì J2 length Zj d6j, 

j = i 

where Öj is the j t h component of 6. It says that the volume is an 
increasing function in angle decreasing deformations. Hence v o l C ^ ) > 
vol Cßf0\ = vol C. q.e.d. 

Proof of Theorem 7.1.1. Given an angle decreasing family fCgg, 
where / j > 0 for 1 < j < n, we set C i = Cg^i_i/i and choose a geo­
metrically convergent subsequence fC k g in 4.3 with canonical reference 
homeomorphisms f k g• 

Assume that fC k g satisfies the Assumption 2. Since the volume is 
bounded from below, and also since 0 < ßc < n, the rescaling geometric 
limit C* is by Proposition 6.1.2 isometric to the product S 2 (a , ß, 7) x E 
where a + /3 + 7 = 2-K. Since C* contains a euclidean 2-cone-manifold as 
a section, we can find a topologically same section by an approximation 
in a reasonably large neighborhood of cfc, say B R(C k, c k), for sufficiently 
large k. It is homeomorphic to the 2-sphere transversely intersecting 
Sk at three points. The total sum of the cone angles of these points is 
more than 2-K since the deformation is angle decreasing. 

Now, there are two components £\ and £2 of B R(C k,cfc) n Uk which 
admit the shortest common orthogonal g going through c k. Develop 
l\ U g U £2; then the images of £\ and £2 cannot have a common point 
even in their extensions. On the other hand, if we let two meridional el­
ements rounding £\ and £2 be m\ and m2 respectively, then since m\m2 
becomes a meridional element rounding the last component, pk{mim2) 
represents an elliptic element. Moreover the total angles of rotations of 
Pk{m\)-,Pk{m2) and pk{mim2) is > 2n. Thus by Lemma 7.2.1, the de­
veloped image of £\ and £2 must have common point in their extensions. 
This is a contradiction. 

Hence f C k g does not satisfy the Assumption 2, and the radius of 
the maximal tube must be uniformly bounded away from zero. We can 
now apply the results in section 5. In particular, the geometric limit C* 
is a strong limit of a sequence f C k g by Corollary 5.1.4. 

To see that C* is a strong limit of a family fCgg, let p* be a holon-
omy representation of C*. Since it is a holonomy representation of 
a cone-manifold C*, it can be deformed in a small range by Corol­
lary 2.1.2. Let us choose a small pa th on the space of representations 
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Hom(n, PSL2(C)) /PSL2(C) from p* supported on [0, e) so that the as­
sociated angle assignment is equal to 0(1 — t) where t G [0, e). This path 
and the path defined by fp$(t)go<t<i in the space of representations 
have common points accumulating p*, which are realized by holonomy 
representations fpk of fC k g in 4.3. Then they must be the same by 
the local rigidity at g* , since the paths are the image of the same angle 
assignment. q.e.d. 

7.4. Angle increasing family. 

In this subsection, we prove Theorem 7.1.2 and present one example for 
which the theorem can be applied. 

Proof of Theorem 7.1.2. Assume that vol C$ does not converge to 
zero; in other words, (1) is not the case. Choose a sequence (C k,cfc)g 
as in 4.3. If the Assumption 1 is the case, then by Corollary f . 1 . 4 , we 
have a strong limit C* of f C k g. C* is also a strong limit of a family fCgg 
by the same argument in Theorem 7.1.1, and we get the third case. If 
the Assumption 2 is the case, then by Proposition 6.1.2, the rescaling 
limit C* is isometric to S 2 (a , ß, 7) x E . Thus C* contains a euclidean 
sub-cone-manifold as its section. We then have a topologically same 
section in C k for sufficiently large k by an approximation and hence we 
are in the second case. q.e.d. 

E x a m p l e . This observation can be used for example to study an 
angle increasing family f89g on the 3-sphere singular along the figure 
eight knot (see [14]). Since an underlying space of 8$ is the 3-sphere, 
(2) does not occur. Hence the angle increasing deformation is possible 
as long as vol8# > 0. The A-polynomial in [1], which is 

(7.1) - M 4 + L ( M 8 - M 6 - 2 M 4 - M 2 + 1) - L 2 M 4 

for the figure eight knot for instance, represents a relation between an 
eigenvalue M of a meridian and an eigenvalue L of a longitude for 
SL2(C)-representations of a knot group. Then setting M = exp(t p ^ T / 2 ) 
in the equation (7.1) = 0, we obtain 

coshlog(—L) = = 1 + cost — cos2t. 

This shows that L is always real and the length of the singularity at t 
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is equal to 2log(—L). Thus by Schlaffli's formula, 

vol8ö = - Z log(-L)dt + vol 80 
Zo 

0 71/^ 

= — arccosh(l + cos t — cos 2t) dt — 6 Z log j2 sintj dt . 
o o 

Hence to find the deformable range is reduced to the computation of 
this integral. A numerical computation shows that 8$ survives as long 
as e < 2TT/3. 

7.5. Proof of Theorem and Corollaries. 

Proof of Theorem. Given a compact orientable hyperbolic 3-cone-
manifold (C,S) with an angle set A = (a1 ,--- ,an), we start with a 
complete structure C comp supported on the nonsingular part N = C—U. 
Since a small angle changing deformation of C comp uniquely exists by 
Corollary 2.1.2, there is an angle set B = (/31,--- , /n ) very close to 
(0, • • • ,0) such that C comp admits angle increasing deformations along a 
linear path £ : [0,1] —> 0 with ((1) = B. Moreover we can choose each 
/ j positive so that j = 2n/b j (< j) for some large integer b j . Let 
fCç(t)g be the associated family of deformations. The cone-manifold 
Cç(!) with the angle set B shares the topological type with C comp and 
hence C. Moreover C ̂ n\ is an orbifold. 

Choose a linear path 6 : [0,1] —> 0 between A and B such that 
0(0) = A and 0(1) = B. It is component-wise decreasing since / j < j . 
We have not known that the path 6 is supported by a continuous fam­
ily of deformations in the full range. But since there always exists a 
small deformation by Corollary 2.1.2, we may assume that C is actually 
deformable at least in the range [0, a>) for some 0 < LO < 1. Since 9 
is angle decreasing, the family converges strongly to a compact hyper­
bolic 3-cone-manifold C* by Theorem 7.1.1, where the angle set of C* 
is equal to 0{LO). Thus by Corollary 2.1.2, the deformation can extend 
further. The prolongation of the deformable range can be done up to 
when t reaches to 1. Hence we have obtained a continuous family of 
deformations fCgg for full range of 6. C^i) is homeomorphic to C. 
Moreover CWi) is an orbifold, and hence CWi) and Cç(i) are isometric 
by Mostow rigidity. We thus have connected two cone-manifolds C and 
C comp through fCeg and f C g . q.e.d. 

Proof of Corollary 1. Suppose we are given two cone-manifolds C 
and C which are isomorphic. They can be deformed along the same 
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angle decreasing path used in the proof of Theorem to the complete 
manifold C comp and C'co . The destinations are isometric by Mostow-
Prasad rigidity. Then the returning path to C and C must be the same 
since the cone angle is the only parameter by the local rigidity. q.e.d. 

Proof of Corollary 2. This is now obvious since our family is 
supported by a path of holonomy representations and one terminal cor­
responds to the complete structure which is liftable. q.e.d. 
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