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—RELATIVE FLOER THEORY ON 
THE COTANGENT BUNDLE 

YONG-GEUN OH 

1. In troduct ion and t h e m a i n result 

In the late 70's or the beginning of the 80's, Eliashberg proved 
the following theorem, which first indicated the existence of symplec­
tic topology that is supposed to be finer than differential topology. 

C°-rigidity t h e o r e m [Eliashberg]. The group Sympu)(P) of sym-

plectic diffeomorphisms on a symplectic manifold (P,w) is C°'-closed in 

Diff(P). 

Eliashberg's original proof [12] relies on a structure theorem on the 
combinatorial structure of the wave front set of certain Legendrian 
submanifolds in the one-jet bundle. The complete detail of the proof 
of this structure theorem, however, has not been published in the lit­
erature. The heart of his proof is some kind of non-squeezing theorem, 
which he proved using the above structure theorem. In a seminal pa­
per [28] in 1985, Gromov introduced the elliptic techniques of pseudo-
holomorphic curves and proved, among many other things, the following 
non-squeezing theorem. 

Non-squeez ing t h e o r e m [Gromov] . Let B2n(R) C C n be the 
standard R-ball in C n and wo be the canonical symplectic structure on 
C n. Then there is a symplectic embedding 
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iffR<r. Here Z2n{r) = B2(r) x C n" 1 C C n. 

This non-squeezing theorem is the beginning of the so called symplec-
tic capacity theory and in fact, the existence of any symplectic capacity 
function on the set of open sets in C n will provide a relatively straight­
forward proof of the C°-rigidity theorem using Eliashberg's argument in 
Section 2.3 [12]. Shortly after Gromov's work [28], Ekeland and Hofer 
[15], [16] used the variational method of the existence theory of periodic 
orbits of Hamiltonian systems on C n to construct other symplectic ca­
pacities. (We refer to [31] for a detailed exposition on the symplectic 
capacity theory.) This variational theory was culminated by Hofer [30] 
into the so called Hofer's geometry on the group D ̂ (P) of Hamiltonian 
diffeomorphisms. The above C°-rigidity is encoded into a remarkable bi-
invariant (Finsler) distance on the group. In [32], Lalonde and McDuff 
set the stage of Hofer's geometry on any symplectic manifold (P, w) 
by proving that Hofer's pseudo-norm on VcV(P) is nondegenerate on 
any (P,w). Unlikely from Hofer's proof on C n, Lalonde and McDuff 
used the Gromov theory of pseudo-holomorphic curves together with 
an ingenious method of constructing optimal symplectic embedding of 
balls. They also made more detailed investigation of Hofer's geometry 
on (P, to) in [33] e.g, concerning the geodesics on the geometry. 

On the other side of symplectic geometry, Arnold [1] in the 1960's, 
first predicted the existence of Lagrangian intersection theory (on the 
cotangent bundle) as the intersection theoretic version of the Morse 
theory and posed the celebrated Arnold's conjecture. We would like 
to recall that the intersection theoretic version of the degree theory of 
generic vector fields is the Lefschetz intersection theory. (We refer to 
our survey paper [42] for more explanations on this aspect.) 

Arnold's conjecture (on T*M). Let M be a compact n-manifold 
and 

Lo = (/>(o M), LI = o M, 

where o M C T*M is the zero section, and <f> is a Hamiltonian diffeo-
morphism. Then 

#(Lo n L i ) > CRN(M) for the transverse case 

> CR(M) in general, 
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where 

CR(M) := inf # { C r i t ( f ) j f G C°°(M)}, 

CRN(M) := inf # { C r i t ( f ) j f G C°°(M) is Morse}. 

Because of the lack of understanding of the invariants CRN(M) 
or CR(M), this conjecture is widely open. However, its cohomologi-
cal version was proven by Hofer [29] using the direct approach of the 
classical variational theory of the action functional which was inspired 
by Conley-Zehnder's earlier proof [11] of the (cohomological version) 
of Arnold's conjecture on the number of fixed points of Hamiltonian 
diffeomorphisms. Although the basic idea in [29] is simple in the pres­
ence of [11], carrying out all the details of the direct approach involves 
many tedious computations partly due to the lack of global coordinates 
on T*M (except the case where M = T n for which Chaperon [8] had 
earlier proved Hofer's result on T n using the idea of broken geodesics). 
Shortly after, a much simpler proof using a finite dimensional reduction 
of the action functional with the idea of broken geodesics was given by 
Laudenbach and Sikorav [34]. This approach has been further devel­
oped by Sikorav [53] and then culminated into the Viterbo's theory of 
generating functions [56]. This finite dimensional approach completely 
eliminates the infinite dimensional analysis (both the elliptic theory and 
the variational theory) but instead uses a rather sophisticated topolog­
ical machinery and geometric constructions. However, this approach 
still captures the C°-rigidity theory and most of the proofs involved 
are rather straightforward as Viterbo himself put it in [56]. The way 
how Viterbo used generating functions in the applications to symplectic 
topology is through the construction of certain symplectic invariants of 
Lagrangian submanifolds by the (finite dimensional) critical point the­
ory of generating functions, which up to normalization, depends only on 
the Lagrangian submanifold that is generated by the generating func­
tion used, but not on the individual generating function. The relation of 
these invariants to the (Hofer's) geometry (on the space) of Lagrangian 
submanifolds becomes obscure (or at least not apparent) during this 
process. 

One of the main goals of the present paper is to introduce the Floer 
theory of Lagrangian intersections as the major tool in the symplectic 
topology and to at tempt to incorporate different approaches to sym­
plectic topology mentioned above in one framework (Eliashberg's wave 
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front theory, Hofer's geometry and Viterbo's techniques of generating 
functions) and to lay the foundation not only to serious applications of 
the Floer theory and but also to the future development in the symplec-
tic topology. Recall that Floer introduced in [18] the Floer homology 
to study the Lagrangian intersection theory, more precisely the Arnold 
conjecture of Lagrangian submanifolds L C P with 7r2(P, L) = {e}. For 
example, Hofer's theorem mentioned above is a special case of Floer's 
[18], [20] (at least up to the orientation problem which we now solve in 
the present paper), if we set LQ = <P(o M), L\ = o M in the cotangent 
bundle. One crucial new point in our Floer theory in the present paper 
is a careful study of the filtration present in the Floer homology. This 
point was previously used by Floer and Hofer [23] in their symplectic 
homology theory but it is the first time to be carefully studied for the 
case of Lagrangian submanifolds. We will show that this relative case 
involves many new interesting geometric and algebraic constructions. 

Floer [18] defined the Floer homology by considering the Cauchy-
Riemann equation for the maps u : R x [0,1] —> T*M (we will concern 
only the cotangent bundle in this paper), 

n.ii 

du _i_ &u n 
dr ~r J dt ~ u ' 

u(T,0) G Lo = <P{o M) 

u ( T , 1 ) G LI = o M, 

which becomes the equation of a L2- type gradient flow of some real 
valued functional (a variation of the classical action functional), when 
it exists, on the space of paths 

n(L0, Lx) = { 7 : [0,1] -»• T*M j 7 (0) G L 0 , 7 ( l ) G Ll}-

(See Section 2.3 for its precise definition in the cases we study in this 
paper.) We call this functional Floer's (action) functional and denote 
it by a. This is defined up to addition of constant. The critical points of 
a correspond to the intersections of LQ and L\. We call this version of 
the Floer theory for the Lagrangian intersection the geometric version. 

On the other hand, when the Hamiltonian H generating (f> (or LQ) is 
given (i.e., LQ = (J)1H{o M)IL\ = o M)J the intersections of LQ = 4>1H{o M) 

and L\ = o M have one to one correspondence with the solutions of 
Hamilton's equation 

(1.2) z = X H(z), 
z(0) G o M, z{1) G o M, 
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which are nothing but the critical points of the classical action functional 

A H(I) = fi*e- J H(7(t),t)dt 

on the space of paths 

fì(M) = f 7 : [0,1] - • T*M j 7 (0 ) , 7(1) G o M g-

Here we denote by 9 the canonical one-form on T*M. Just like for the 
Floer's functional, one can study the intersection problem of <PH(o M) 
and o M by considering the L2- type gradient flow of A H on Q(M) (see 
Section 2.4 for the precise set-up), whose equation becomes 

(1.3) {u + J ( u - X H(u))=0, 

u(T, 0) G o M, u(T, 1) G o M-

We call this version of the Floer theory the dynamical version. 
One can easily transform (1.3) into the form of (1.1) through the 

map 

(1.4) u H- H ( ^ H ) " 1 u := u , 

J^(4>t H(4>1H)-1yJ = J H-

The advantage of (1.1) against (1.3) is that (1.1) involves only LQ and 
L\ not the diffeomorphism (f>lHJ and hence the geometry of the solutions 
will depend only on LQ and L\, although this time the almost complex 
structure apparently depends on H. Here we use the important fact 
that the space of compatible almost complex structures is symplectically 
invariant and contractible. The importance of this fact has been used 
often in symplectic geometry starting from [28], but not as extensively 
as in this paper. One important philosophy of ours is to transform the 
difficult problem of isotoping Lagrangian submanifolds into the trivial 
problem of isotoping compatible almost complex structures, which en­
ables us to easily get around, in our approach, the nontrivial question 
of the uniqueness problem in Viterbo's approach of generating functions. 
On the other hand, A H has a natural connection to both Hofer's geom­
etry and to generating functions. This is because the classical action 
functional A H on the space of paths free at the final time 

û = f 7 : [0,1] -»• T*M j 7(0) G o M g 
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is a canonical generating function in terms of the fibration 

n^M; p ( 7 ) : = T T ( 7 ( 1 ) ) . 

One crucial observation of ours is that although the Floer theory of A H 
on the whole space O cannot be done due to some analytical obstruction, 
it can be done nicely on the subset 

Q(S) = f7 : [0,1] - • T*M j 7(0) G o M, 7(1) e N*Sg C Q 

for any (compact) submanifold S C M. The critical points of A H jQ(S) 
is the set of solutions of 

(1.5) z = X H{z) 
z ( O ) G o M, z{l)eN*S. 

The gradient flow of the restricted functional A H\Q(S) with respect to 
a suitable metric on Çl(S) becomes 

u + J ( u - X H(uj)=0, 

;i-6) u(T,o)eo M, 

u(T, 1) G N*S = the conormal bundle of S, 

which is an elliptic boundary value problem of the (perturbed) Cauchy-
Riemann equation. (1.3) is a special case of (1.6) where S = M. Fol­
lowing Floer's standard construction, we now form the set 

CF(H, S) = the set of solutions of (1.5) 

and study the moduli space M J(H,S) of solutions of (1.6). There are 
two advantages of our dynamical version of the relative Floer theory 
(i.e., Floer theory for Lagrangian intersections) against the more stan­
dard geometric version as in [18] or [38]. First, there exists a canonical 
Z-grading on CF(H, S) that is provided by the Maslov index canoni-
cally assigned to the solutions of (1.5) (see Theorem 5.1 for the precise 
statement). Secondly, M J(H, S) carries coherent orientations (see The­
orem 5.2), which enables us to define the relative Floer homology with 
arbitrary coefficients. We would like to emphasize that for the standard 
geometric version as in [18], there is no canonical grading (see [19] the 
definition of a non-canonical grading). Furthermore, in the general rel­
ative Floer theory as in [18] or [38] unlikely from the non-relative Floer 
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theory (i.e., the Floer theory for the Hamiltonian diffeomorphisms) as 
in [21] and [22], each Floer cell itself M J(za, zß) is not necessarily ori­
entable, let alone talking about the existence of coherent orientations. 
This has forced us to look at the relative Floer theory only with Z2-
coefficients so far. Our solutions of both the canonical grading and the 
orientability of the Floer cells M J(za, zß) soly depend on the special 
circumstance in the framework of the dynamical version where we are 
looking at the fixed Lagrangian submanifolds, the co-normal bundles 
in the cotangent bundle with a given Hamiltonian generating the La­
grangian submanifold L = 4>H(o M)-

T h e o r e m I. Let us choose any generic choice of (H, S, J) inside 
its isotopy class [H,S,J] = [S]. 

(1) There exists a canonical Z-grading on CF(H,S : M). Denote 
by CF*(H, S : M) the Z-graded module (with arbitrary coefficients) gen­
erated byCF(H,S:M). 

(2) M J(H,S) carries a coherent orientation, denoted by a that is 
compatible to the gluing procedure in the sense of [22], [23], and so there 
exists a boundary map 

d(H,J) = d(H,J) •• CF*(H, S:M)^ CF*{H, S : M ) , 

that has degree -1 and hence, we can define the Floer homology 

HF* (H, S,J:M)= HF° (H, S,J:M) 

with arbitrary coefficients for such (H,S,J). We denote the set of co­
herent orientations by Or([H,S,J]) =: Or([S] : M), whose precise def­
inition we will refer to Section 5 below and to [22]. As the notation 
suggests, this set depends only on the isotopy class [H,S,J] = [S]. 

(3) For each fixed coherent orientation a and for each generic pair 
(Ha, Sa, Ja), (H@, S@,Jß) isotopic to each other, there exists a canon­
ical isomorphism 

ha
aß : HF°(Ha, Sa, Ja : M ) - • HF°(Hß, Sß, Jß : M ) , 

that preserves the canonical grading. 
(4) Furthermore, there exists a coherent orientation a, which we 

call the canonical coherent orientation and with respect to which there 
exists a canonical isomorphism 

F(H,S,J) •• H*(S, Z) -+ HF?(H, S,J:M), 
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which in particular shows that HF ^ ^H, S, J : M) is non-trivial. 

We will always suppress the canonical coherent orientation a pro­
vided in (4) from notation throughout the paper except when we need 
to emphasize the dependence on the coherent orientation. 

Using the fact that (1.6) is the gradient flow of A H \ÇL(S\ with respect 

to a L2-type metric on Çl(S) (depending on J) , we can also study the 
filtration, and define the relative homology groups 

HFÌa'b) (H, S, J : M) for b > a. 

Furthermore, we show (Theorem 5.4) that for fixed (H, S), there exists 
a canonical isomorphism 

HFÌa"b)(H, S, Ja : M) - • HFÌa"b)(H, S, Jß : M) 

for two generic Ja and Jß. Using these, one can define a number 

p(H, S, J) = inf{A \HFÌ-°°'X)(H, S, J, M) 
A 

->• HF*(H, S,J : M) is surjective}, 

and prove that p(H, S, J) is independent of J. We denote the common 
number by p(H, S). 

Theorem II. (1) p(H,S) is a (finite) critical value of A H\Q(S\ and 

continuous functions of S with respect to the C1-topology of embeddings. 

(2) If 4>Ha{o M) = 4>Hß(o M), then 

p(Ha,S)-p(H^S)=c(Ha,H ^), 

where c(Ha,H13) does not depend on the choice of S C M. 
(3) When H = 0, p(H, S) = 0 for all S C M. 
(4) We have 

[ -max(Hß-Ha)dt<p(Hß,S)-p(Ha,S)< [ - min (Hß-Ha)dt. 
o x o x 

In particular, 

/ - max Hdt < p(H, S) < - min Hdt. 
o x o x 
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(5) \p(H/3,S)—p(H13, S)\ < ||H13 — Ha\\Co which in particular implies 
that for each S C M, the function H H- p(H, S) is continuous with 
respect to the topology induced by the C°-norm of H. 

Two special cases are worthwhile to mention here: When S = {pt}, 
we define a function, for each q G M , 

f H(q):=p(H,{q}), 

which becomes a continuous function on M and which we call the basic 
phase function of H (or L = 4>1H(o M))- This function has the following 
remarkable property. 

T h e o r e m III . (1) The basic phase function f H depends only on 
L = H(o M) (up to addition of constant) and is smooth away from a 
set of co-dimension at least one and satisfies 

(1.7) osc(f H) := m a x f i j - minf H < \\H\\, 

where \\H\\ is the Hofer's norm. 
(2) At smooth points of q, it satisfies 

(q,df H{q)) G L = (f>1H(o M)-

In other words, the graph G f H C M x R of f H is a subset of the wave 
front set of L (independent of H). 

The existence of such a graph part in the wave front set of L was first 
observed by Sikorav in the theory of generating functions. One novelty 
of Theorem III is the canonical choice of such a graph. We note that in 
general there may be more than one graph parts in the wave front. The 
graph part given in Theorem III carries in its definition some geometric 
information which is to be carefully studied in the future. 

If we define the Hofer's distance between Lagrangian submanifolds 
(Hamiltonian isotopic to each other) by 

(1.8) d(L1,L2)= inf \\H\\, 
H:<j,H(Li)=L2 

(1.7) implies, by taking infimum over H i—>• L, 

osc(f L) := osc(f H) < d(L,o M)-

Combining Theorem III (2), (1.7) and the fact that only the zero sec­
tion contains the graph of a constant function in its wave front, we 
immediately prove 
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Corollary. The distance (1.8) is nondegenerate, i.e., d(Li,L2) = 0 
if and only if L\ = Li-

After we announced the proof of this corollary, Eliashberg and Siko-
rav [14] told us that they had known that this nondegeneracy can also 
be proven by the techniques of generating functions but the proof is not 
as straightforward as or conceptually as simple as ours (In fact, the com­
plete proof has not been written in the literature). One can pose the 
same nondegeneracy question on Lagrangian submanifolds on general 
(P,w). This general question, which was the motivation that initiated 
our research in this paper, is still open.1 We would like to compare 
this question with that of the symplectic displacement (or disjunction) 
energy of Lagrangian submanifolds (see [45] or [9]). 

In a sequel [43] to this paper, we study the case in which S = M 
in a detailed way and construct some cohomological invariants that are 
closely tied to the pants product in Floer cohomology and the group 
operation on the space of Hamiltonians H : P x [0,1] —> R, 

H#K(x, t) = H(x, t) + Kd^rHx), t). 

In this case, N*S = o M and so it reduces to the situation of (1.3) 
but contains many more interesting geometric and algebraic structures, 
which we refer to [43]. 

Many of the previous and recent works on the Floer homology (mostly 
for the study of Hamiltonian diffeomorphisms not for the Lagrangian 
intersections, though) has provided to us much insight, and analytical 
and geometrical background for the present work. We would like to cite 
here the references that influenced us most in writing this paper: First, 
the paper [56] by Viterbo on the generating function approach has con­
stantly provided the direction of our research, in which [23] has helped 
to formulate the definition of our invariants using the Floer theory. The 
paper [41] by the present author and [9] by Chekanov provided the first 
applications of the relative Floer theory to the problems of symplec­
tic topology beyond the Arnold conjecture, which has encouraged us 
to look for more applications, which in turn has led to the research in 
this paper. Next, [25], [26] and [6] taught us the Morse-Witten theory 
framework on the cup product in the classical homology theory. [47] 

1Note added in proof: 
Chekanov recently proved the nondegeneracy for arbitrary compact Lagrangian sub­
manifolds in tame symplectic manifolds in a preprint entitled "Hofer's symplectic 
energy and invariant metrics on the space of Lagrangian embeddings". 
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and [7] explained well its quantized picture, the pants product in the 
nonrelative Floer theory in a rigorous way. [25], [26] also described the 
similar picture in the relative context. We learned from the paper [9] 
by Chekanov an important calculation involving the action functional, 
from which many of the calculations we do in this paper were inspired. 
The papers [49], [50] contain an elegant exposition on the Maslov index, 
which has been useful in our solving both the grading and orientation 
problems. Finally, our joint paper [27] with Fukaya has provided a cru­
cial analytical step in [43] in relation to the pants product. Of course, 
without Floer's pioneering works [17] - [21], the present work would not 
have been possible. 

We would like to thank D. Milinkovic for having many fruitful discus­
sions during the preparation of this paper and Y. Eliashberg for sharing 
his insight on the uniqueness theorem for generating functions. This 
research is supported in part by an NSF grant and a UW Graduate Re­
search Award grant. The results of the present paper were announced 
and outlined in our survey paper [42, Section 7] in the Newton proceed­
ings for the program of Symplectic Topology in 1994. 

N o t a t i o n . 

(1) H#K(x, t) = H(x, t) + Kd^y^x), t). 

(2) H(x,t) =-H H x^t). 

(3) H(x,t) = -H(x,l-t). 

(4) H ac(P) = the set of asymptotically constant Hamiltonians on P. 

(5) D ̂  ac(P) = the set of Hamiltonian diffeomorphisms generated by 

H ac. 

(6) (f>H = the time-one map of the equation z = X H(z). 

(7) H H- (f) if and only if (f> = 4>H-

(8) o M = the zero section of T*M. 

(9) H H- L if and only if L = 4>H{o M)-

(10) H : [0,1] -+ T*M; z^t) = ^ ( ( H ) " 1 ( p ) ) . 

(11) fi = fz : [0,1] ->• T*M j z(0) G o M g-
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(12) N*S= the conormal bundle of S. 

(13) n(S) = fz G fi j z ( l ) G N*Sg. 

(14) fi(M) = fz : [0,1] - • T*M j z(0), z(l) G o M g-

Convent ions . 

(1) The Hamiltonian vector field X H is defined by X H cU> = dH. 

(2) An almost complex structure is called compatible to LO if the bilin­
ear form h , i = o>(-, J-) defines a Riemannian metric. 

2. Pre l iminar ies 

In this section, we give brief descriptions of the various aspects of 
symplectic topology that are relevant to the results we prove in the 
present paper. 

2.1 . Hofer's geometry . 

On a symplectic manifold (P,w), we denote by D ̂ (P) the set of 
Hamiltonian diffeomorphisms which is the collection of time-one maps 
4>lH of the Hamiltonian equation 

z = X H(z), 

where H : P x [0,1] —> R is the smooth function with compact sup­
port. We denote 4>H = <jH and by H c the set of such (time dependent) 
Hamiltonians and denote by 

(2.1) H^<f> 

if (j) = (j)lH, and say that H generates cj) or cj) is generated by H. As 
it will be clear in the later sections, it seems to be more natural to 
allow such Hamiltonians that are constant outside a compact set of 
P. When the manifold P has many "ends", one may even allow the 
Hamiltonian to have different constants on different ends. We call such 
H ' s asymptotically constant Hamiltonians. Although it is not essential 
to use this larger class of Hamiltonians in this paper, it seems most 
natural to look at when one studies compact symplectic manifolds with 
more than one boundary components or non-compact manifold with 
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more than one ends. Because of this and some normalization that we will 
adapt in this paper, we use the asymptotically constant Hamiltonians 
instead of compactly supported ones. 

We denote 

H ac(P) = fH : P x [0,1] ->• R j H is asymptotically constantg. 

For each H G H ac, we define the support of H as the intersection of 
the complements of open sets where H is constant and denote it by 
Supp H. Unlikely from H c(P), H ac(P) is invariant under the addi­
tion of constants. Since the Hamiltonian vector field associated to any 
Hamiltonian H G H ac(P) still has compact support, its flow will be 
well-defined and so we can consider the time one map 4>H '•= (jH for 
each H G H ac(P). We denote 

D C ( P ) = f4>H G S y m p j P ) j H G H ac(P)g. 

We would like to note that if P has only one end, then the two sets 
D f (P) and Vcj(P) coincide but are different in general. Just as in 
the case of 2?c(P), it is easy to check that D ̂  ac(P) is indeed a normal 
subgroup of Symp w (P) which is nicely encoded by the following corre­
spondences: When H ^ 4> and K t-> ip, we have 

(2.2) . H t(x) = -H^ix^t) ^ (H)-1. 

(2.3) . H#K(x,t):=H(x,t)+K(((f)t H)-1(x),t)^(f)t Ho(t)t K. 

(2.4) • H(<S>(x),t) h + ^ o ^ o S 

for any symplecticdiffeomorphism. 

It is easy to see that the operation # provides a group structure on 
H ac(P) or H c(P) with respect to which the zero function plays the role 
of the identity and H is the inverse of H. Recall that the Lie algebra of 
the group £>c(P) is the set of compactly supported (time independent) 
Hamiltonian h 's i.e., C c°(P). The Lie algebra of Vac(P) is the set of 
(time independent) Hamiltonian h 's that are asymptotically constant 
and whose asymptotic values c j ' s on the ends satisfy 

(2.5) ci + c2 + • • • + c = 0, 

where £ is the number of the ends of P . We denote by C b°(P) the 
set of such functions on P . Here the subscript b stands for the word 
"balanced". We denote the total oscillation of h G C ̂ (P) by 

(2.6) osc(h) := maxh(x) — minh(x). 
xGP x 6P 
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Note that osc : C b°(P) —> R + is invariant under the pull-back operation 
by diffeomorphisms on P. Now, Hofer's norm of H G H ac is defined to 
be 

kHk : = Z osc(H t)dt = Z m a x H t — minH t dt 

(2-7) Z o 

osc(H t o </t H)dt, 
o 

which is just the length of the path t H- (t H measured by the right-
invariant Finsler structure on D ac(P) given by (2.6) at 0 = id. Then 
we define the group norm k(pk, which corresponds to the distance from 
the identity to (p in terms of the Finsler structure by 

(2-8) Uk= inf kHk 

for 4> G D ̂  ac(P). Using (2.2)-(2.4), it is easy to check that k<pk satisfies 
the identities: 

(!) kidk = 0 . 

(2) k^-^ ^ k ^ - V k . 

(3) km<¥k + uk 
(4) k $ _ 1 o fio $ k = k(f)k for any symplectic diffeomorphism $ . 

Therefore, we have a bi-invariant (pseudo)-distance, the so called 
Hofer's distance on D ̂  ac(P) defined by 

(2.9) d ( ^ ) = k<rvk. 

It is a highly nontrivial fact to prove that this pseudo-distance on £>c (P) 
is indeed a distance or equivalently that the (pseudo)-norm in (2.8) is 
nondegenerate. The same applies to D ̂  ac(P). In fact, Lalonde-McDuff 
[32] proves that this fact is equivalent to the non-squeezing theorem on 
B2(r) x P. 

T h e o r e m 2.1 [Hofer (R2n), La londe-McDuff (in general ) ] . 
The norm defined as in (2.8) is non-degenerate, i.e., k(pk = 0 if and 
only if(f) = id. 
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Hofer's proof [30] uses a variational theory of the action functional 

A H(I) = Z pdq- Z H(rr(t),t)dt 

on the Sobolev space H^2(S\C n), while Lalonde-McDuff [32] showed 
that this theorem is a consequence of a general non-squeezing theorem, 
through an ingenious way of constructing optimal embedding of balls: 
"For any symplectic manifold (P2n,w), the standard ball B2^n+1>{R) C 
C n + 1 can be symplectically embedded into (B2(r) xP,wo®w) only if R < 
r ". After then, they used the theory of pseudo-holomorphic curves to 
prove the non-squeezing theorem, together with an ingenious "wrapping 
construction" of symplectic balls they call. 

We now develop the analogue of the Hofer's geometry on the space 
of Lagrangian submanifolds. As in the case of diffeomorphisms, we 
take the point of view of Finsler geometry. Let LQ be a fixed compact 
Lagrangian submanifold in (P,w) and denote by Aw(Lo : P) the set 
of Lagrangian submanifolds Hamiltonian isotopic to LQ. The tangent 
space of Aw(Lo : P) at L G Aw(Lo : P) can be canonically identified 
with 

C°°(L) := C°°(L)/fconstant functions on Lg 

via 

f •->•f :=we_1 |T»L(df), 

C°°{L) -+A(NL), 

where NL is the normal bundle of L in P. We now define a norm on 
this set by 

(2.10) osc L ( f ) := m a x f — m i n f 
x£L xdL 

for f G C°°(L), and a length of the Hamiltonian isotopy s H- L = fL s g 
between La and Lß by 

1 Z 1 

osc L s(f s)ds= / osc L(f s o (<ps H) ^ds, 
o o 

where f s G C°°(L s) is the element corresponding to the tangent vector 
at L s of the path L, i.e., 

d(L s), s G [0,1]. 
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For given two La, Lß G AW(LQ,P), we define the (pseudo)-distance by 

(2.11) d(La,Lß) = inf | |L| | , 

where the infimum is taken over all (f) G D ̂ (P) with <f>{L\) = L 2 - It 
immediately follows from (2.2)-(2.4) that d is symmetric and satisfies 
the triangle inequality. The main non-trivial question is whether this 
pseudo-distance is indeed nondegenerate i.e., whether it satisfies 

(2.12) d(LuL2) = 0 if and only if L1 = L2. 

Whether (2.12) holds in general is still an open question, but we will 
prove later, as a consequence of our construction of new symplectic 
invariants, that this is at least true for the case LQ = o M, P = T*M 
where M is any compact manifold. 

T h e o r e m 9 .3 . Let P = T*M, LO = —dO be the canonical symplectic 
structure and LQ = o M the zero section of T*M. Then the Hofer's 
distance defined as above is nondegenerate. 

The topology induced by this distance will be the one we will take 
as the topology given on the space of Lagrangian submanifolds when 
we consider the continuity property of various symplectic invariants; we 
will define in the later sections. 

2.2. Generat ing funct ions and Vi t erbo ' s invariants. 

For a given Lagrangian submanifold L C T*M, we call a function 
S : E —> R a generating function for L if L can be expressed as 

r / dS, , \ dS, . o 

3« 

where the map n : E —> M is a submersion (typically a vector bundle), 
and | S is the fiber derivative and fS (e) G T*M is (T x*7r)-1(dS'(e)) 
which is well-defined since we assume T xTT : T e E —> T x M is surjective. 
We denote the fiber critical set by 

(2.13) s S = { e e E | _ ( e ) = o } , 

and by i S : SS ->• T*M the map 

dS 
(2.14) i S(e) = (x,—(e)) for e G SS. 
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The well-known important facts on the generating function is that the 
map i S : ^ S —> T*M is a Lagrangian immersion and the identity 

(2.15) i*S9 = d(S\SS) on SS 

holds. An immediate consequence of (2.15) is that if L allows a generat­
ing function, it must be exact. When E is a (finite dimensional) vector 
bundle over M , one can introduce a special generating function called 
a generating function quadratic at infinity (abbreviated as GFQI): A 
generating function S : E —> R is called a GFQI if S(x, £) — Q(x, £) has 
compact support where Q(x,Ç) is a fiberwise nondegenerate quadratic 
form in £. 

The following is the basis of the Viterbo's construction of symplectic 
invariants. 

T h e o r e m 2.2 [Laudenbach-Sikorav [34], [53], V i t e r b o [56]]. 
If L = 4>{o M) for 4> G D ( T * M ) , then L has a GFQI. Moreover it is 
essentially unique up the stabilization and the fiber preserving diffeo-
morphisms. 

This has the consequence that the cohomology group H*(S b, S a) is 
independent of the choice of S but depends only on L if one normalizes 
S appropriately. Note that for c > 0 sufficiently large, we have 

(S c,S~c) = (Q c,Q~c) ~ (D(E-),S(E-)), 

and so 
H*(S c,S~c) ~ H * - k ( M ) , k = d i m D ( E - ) , 

which is independent of S as long as c is sufficiently big. Here we denote 
by E~ the negative bundle of the quadratic form Q, and by D(E~) and 
S(E~) the disc and the sphere bundle associated to E~. One denotes 

E°° = Q c, E'00 = Q-c 

for any such c. Now the Thom isomorphism provides the isomorphism 

H*(M) ->H*(D(E-),S(E-)) ^H^E00E-00), u ^ Tu := n*uUT E-

where T E- is the Thom class of the vector bundle E~. 

Definit ion 2.3. Let S be a GFQI for L = 4>{o M) C T*M. For each 
u G H*(M,R), we assign the number 

c(S,u) := inffA j j*xTu ^ 0 in H*(EX, E'00)g. 
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Under a suitable normalization, one proves that c(S, u) does not depend 
on S but only on L as long as S generates L. Therefore, one could define 
c(L,u), as invariants of L, by the common number 

c(L,u) := c(S,u) 

for suitably normalized S"s. However it is not completely clear what 
would be the best normalization in general. To define invariants of 
compactly supported Hamiltonian diffeomorphisms of R2n, Viterbo uses 
a compactification of Graph cj> C R2n x R2n which provides a natural 
normalization in this case. (See [56] for details.) One of the main 
theorems in [56] we would like to mention is the following. 

T h e o r e m 2.4 [Viterbo [56]]. Set j(L) = c(L,/jM) -c(L, 1) where 
1 G H(M,R), UM G H n(M,R) are the canonical generators respec­
tively. Then we have j(L) > 0 and 

7(L) = 0 if and only if L = o M-

2.3. A c t i o n functional: the canonical generat ing funct ion. 

For a notational convenience, we adopt the notation 

(2.16) H^L if L = 4H(o M). 

When H H- L is given, we consider the classical action functional 

A H(I) = J 1*0- J H(7(t),t)dt 

on the space of paths free at its final time 

CI = f7 : I - • T*M j 7 (0) G o M g-

The space O has the natural structure of the fiber bundle 

p-.n^M, p ( 7 ) : = 7 r ( 7 ( l ) ) , 

where n : T*M —> M is the canonical projection. We denote its fiber at 
q G M by iìq, i.e., 

Qq :=f 7 G fi j 7(1) G T*Mg 

= f7 : [0,1] - • T*M j 7 (0) G o M, 7 (1) G T*q Mg. 
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We recall the first variation formula of A H for general pa th 7, 

( 2 1 7 ) dA Hm=Zo M - V , e) - d H ( 7 ) 0 

-<e(o),ö(7(o))) + <e(i),ö(7(i))), 
where (v,0(p)) is the pairing 9(p)(v). This can be derived by a direct 
computation. When we restrict to 7 G f2 i.e., 7(0) G o M , (2.17) becomes 

(2.18) dA Hm= Z M7 ,e ) -dH(7)o + <e(i),ö(7(i))> 
o 

since öj o M = 0. From this, we see that the fiber derivative dA H satisfies that d A ( 7 ) = 0 if and only if 

(2.19) j\w-dH t(j) = 0, i.e., 7 = X H(rY). 

In other words, we have the fiber critical set of A H 

(99(]) ZA H = f 7 G O j 7 = X H(7)} 
{ } = f 7 G « j 7(t) = ^ ( H ) _ 1 ( p ) . p e L = ^H(o M)}. 

Furthermore, it follows from (2.19) that the map 

i A H • ^ A H -+ T*M defined as in (2.14) 

is nothing but 

(2.21) A H ( 7 ) = 7 ( l ) = H ( 7 ( O ) ) . 

Now, (2.18)-(2.21) precisely mean that A H : O —)• R is a generating 

function of L = CJ>H{o M)-

^From the description (2.20) of SA H, one can associate a number 

A H(z H) to each p G L where 

(2.22) z p H{t)=H(<pH)-\p)). 

We will adopt this definition for z p H throughout this paper. 

Definit ion 2.5. [Action s p e c t r u m of H]. We define for each 
H £Uac 

Spec(H) := fA H(z H) jp£L = H(o M)} 

and call it the action spectrum of H. 
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The following proposition shows that Spec(H) depends only on L 
up to addition of a constant, as long as H i->- L. 

Propos i t i on 2.6. Assume that M is connected and H,K G H ac. 

(1) If H,K ^ L i.e., L = <pHio M) = 4>1K(o M), then 

(2.23) A H(Zp H) - A K(Zp K) = c(H, K) 

for all all p G L. Furthermore, for a constant co 

(2-24) A H+cO(z p H+cO) - A H(z p H) = co 

for all p G L. Therefore by adding an appropriate constant, we can 
assume 

A HÌZ1H) = A K{Zp K) for all p G L 

as long as H,K i->- L. 

(2) For each H G H ac consider the subset of M x R 

W H = f(q,r) jq = ir{p), r = A H{z p H), p G Lg. 

Then W H is a wave front set of L = <PH(o M)-

Proof of (1). (2.24) follows immediately from the fact 

p p 
z H+c0 ~ z H 

and the definition of A H- Therefore we prove only (2.23). Since L is a 
smooth manifold, it is obvious that the function 

p i->- A H{z p H) - A K{z p K) := g(p) 

on L is a smooth function. Therefore it is enough to show that the func­
tion g is locally constant since we assume that M and so L is connected. 
Therefore we compute its derivative. For each v G T p L, p G L, 

dgip)iv) = dA Hiz p H)iv H) - dA Kiz p K)iv K) 

where £H and tv K are the variations of z p H and z p K respectively induced 
by v G T p L. More explicitly, we have 

H t = T ^ ( T H-i(v)), 

v Kit)=T K T4>Kliv)). 
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Since we assume v G T p L and L = 4>H{o M) = <PK(o M), we have 

H ( ! ) = K ( ! ) = v• 

By the variation formula (2.18), we obtain 

dA H(z H H) = h H(i), ö(H(i))i = hM(p) i , 
l ' dAi f (K)(K) = h^( i ) ,ö(K(i)) i = hv.ö(p)i, 

and hence dg(p)(v) = 0 for all v G T p L i.e., dg = 0. This finishes the 
proof of (1). q.e.d. 

Proof of (2). Before proving Proposition 2.6 (2), we recall the def­
inition of exact Lagrangian submanifolds: If L C T*M is an exact 
Lagrangian submanifold, then i*6 is exact, i.e., X*0 = df for some func­
tion f on L. The wave front of L is just the projection of the Legendrian 
lift 

L = f(p,r) G T*M x R j r = f(p),p G Lg 

to M x R by the map (vr x id) : T*M x R ->• M x R. The projection 
is nothing but 

W f := f(q,r) G M x R j q = n(p),r = f(p),p G Lg. 

Now if we restrict to the case L = 4>1H(o M)-, the formula (2.25) explicitly 
shows that one can take the function f defined by 

f(p):=A H(z p H)i H ( t ) : = ^ ( H ) _ 1 ( p ) 

for p G L. Hence the proof. q.e.d. 
Note that if H G H ac, then H + c0 is also in H ac which makes H ac 

more natural to consider than H c. 

Now we study the size of the set of critical values of A H jMS) as a 
subset of R, which is in general useful to prove the invariance property of 
the symplectic invariants that we shall define later. Similar results were 
used before in the study of periodic orbits and the associated invariants 
of Hamiltonian diffeomorphisms (see e.g., [31]). 

Propos i t i on 2.7. For each submanifold S C M, the set of critical 

values of A H jQ(S) is a compact nowhere dense subset ofR. We denote 

Spec(H, S) = the set of critical values of A H jQ(S) 

= fA H(Zp H) jp£<f>H(o M)nN*Sg. 
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Proof . Consider the function h : N*S —> R defined by 

h(p) := A H(Zp H) for p G N*S. 

^From the definitions of z H and A H-, it follows that h is a smooth 
function defined on N*S which is a finite dimensional manifold. By the 
variational formula (2.17), we get 

dh(p)(v) = - h 0 ( H ( 0 ) ) , TcH-Hv)i + h6(p),vi = - h 0 ( H ( 0 ) ) , TcH-Hv)i 

for all v G T p(N*S). If p G <pH{o M) D N*S, then z p H(0) G o M which 
implies that 6(z p H(0)) = 0 so that dh(p) = 0. Therefore all the points 
p G 4>H{o M)^N*S are critical points ofh, and the corresponding critical 
values are A H{z H)- Hence we have shown that 

Spec(H, S) C the set of critical values of h. 

However by the (classical) Sard's theorem, the set of critical values of h is 
of measure zero and therefore nowhere dense, and so is Spec(H, S). The 
compactness of Spec(H, S) immediately follows from that it is a closed 
subset of Spec(H) which is compact. Note that Spec(H) is compact 
because we assume that M is compact and so the wave front set of 
L = 4>H{o M) is compact for any H. q.e.d. 

For the later purposes, it is important to understand the relation 
between A H on Çl(S) and the Floer's action functional a S on the space 

n(L0,Lx) = f7 : [0,1] -»• T*M j 7 (0) G L 0 , 7 ( l ) G Lig 

when 

Lo = 4>H{o M)-, LI = N*S. 

The crucial property which the functional a S must have is that its gra­
dient flow in terms of certain L2- type metrics on Çl(Lo,Li) becomes 
the Cauchy-Riemann equation with Lagrangian boundary condition as 
in (1.1). We recall how the functional a S is defined in the case where 
L\ = <J){LQ) in [18]: Fix an intersection point po G LQ fl L\. For each 
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given 7 G Q(L0,Li 

F i g u r e 1 

we pick a surface T drawn as above (such a surface exists if one restricts 
to a certain component of Q(LQ,LI)), and define 

(2.26) a ( j ) = w. 

However in our case LQ = 4>H(o M) and L\ = N*S as above, this def­
inition does not work in general by two reasons: First, there may not 
exist the bounding surface T and secondly, even if there is, the value 
in (2.26) may depend on the choice of T. We refer readers to [38] for 
similar discussions concerning this point. So we will define the func­
tional a directly using the canonical one form 9 on T*M and the fact 
that 9\N*S = 0 and LQ is an exact Lagrangian submanifold. We choose 
f L0 '• LQ —> M such that 

(2-27) df Lo=e\Lo, 

and define 

(2-28) a ( T ) = f Ö + f Lo(7(0)) 

on the space il(Lo, L\). Using the variation formula (2.17), we compute 
f o r ^ G T ^ L c L x ) ) 

da S{lW) = ZWi,0)dt - té(O),0(7(O))> + (df Lo(7(0)U(0)> 

Wi,0)dt, 
o 

where the second equality comes from (2.27). Therefore the derivative 
a S will be the same as that of the Floer's original functional if it exists. 
We will still call a S as above the Floer's action functional. 
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Since f L0 is defined up to addition of a constant, so is a . Now we 
have the following important fact. 

Proposition 2.8. Let p\ and p% G 4>H p o M) H N*S, and consider 
them as constant paths in Q(LQ,LI). Let z H, i = 1,2 be the elements 
in Q.{M) defined as before, i.e., 

zPH(t) = 4t H(4>HHp i)) fori = 1,2. 

Then we have 

(2.29) A H(z H ) - A H(z H) = a S(p2)-a S(p1). 

By taking the function f L0 = A H(z H) for p G LQ = 4>H(o M), we may 
assume that 

(2.30) A H(z H) = a S(p) for all p G 4>H(o M) n N*S. 

Proof . We pick any curve 71 in 4>H(o M) with 7(0) = p\ and 
7(1) = p2- Then combining (2.25), (2.27) and that pi,p2 G ^(L0L1) 
are considered to be constant paths, we have 

(2.31) A^z H)-A^z H) = 4 * = 4 df Lo 
= f L0(p2) - f LOÌpI) = as(p2) -a S(pi), 

which finishes the proof. q.e.d. 

2.4. Semi-infinite cycles. 

The action functional A H on the space 

Q = f7 : [0,1] - • T*M j 7(0) G o M g 

as a generating function has an advantage over its finite dimensional ver­
sion in that it is canonical and does not involve any nontrivial choice. 
This enables us to capture the geometric insight of the symplectic in­
variants which we are going to construct, via the Floer theory, using the 
action functional. 

Recall from [56] and [55] that the proof of the uniqueness of GFQI 
of a given Lagrangian submanifold L = 4>H(o M) up to the stabilization 
and the gauge invariance forms one of the crucial ingredient in Viterbo's 
construction and requires some sophisticated topological machinery [56]. 
Of course, we have to pay off: the action functional is defined on the 
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infinite dimensional pa th space Q, for which it is well known (see e.g., 
[29]) that the classical critical point theory on T*M has serious limita­
tions in general cases other than when M = R n, i.e., T*M = R2n ~ C n. 
Still, however, it is very natural and conceptually simpler to develop 
analogues to Viterbo's work [56] directly working with the action func­
tional A H : ÎÎ —>• R. This a t tempt could be considered as the direct 
approach against the finite dimensional approximation in the critical 
point theory of the action functional. There are two major difficulties 
to overcome in this at tempt: 

(f ) The standard direct approach to the functional A H : ÎÎ —>• R for 
general M does not work by various reasons (e.g., lack of the global co­
ordinates, the failure of Palais-Smale conditions and etc.) - Analytical 
aspect -

(2) There does not exist the Thom isomorphism on the fibration 
p : Q —>• M in the classical algebraic topological sense, because the fiber 
Qq is infinite dimensional. More geometrically saying, it is not a priori 
obvious which mini-maxing sets one should choose to have the linking 
properties and so to pick out certain critical values of A H- - Topological 
aspect -

We will overcome these difficulties simultaneously via versions of 
the Floer theory of Lagrangian submanifolds. We would like to mention 
that Floer himself invented the Floer homology in the precisely same 
kind of reasons. 

The two difficulties mentioned here turn out to be inter-related. In 
the classical critical point theory, the mini-maxing sets are the ones 
that define nontrivial cycles in terms of the gradient flow of the given 
functional. In the literature [48], [5], [4] and so on, the choice of such 
cycles depend on the type of the given functional. Because the classical 
action functional is so called strongly indefinite, the notion of semi-
infinite cycles has been implicitly used in the literature related to the 
periodic orbit problem of the Hamiltonian system on R2n ~ C n. Mostly 
in the traditional direct approach, the global gradient flow of the action 
functional on the Sobolev space H1'2(S1, C n ) is well-defined and satisfies 
versions of Palais-Smale condition, and so one can apply the classical 
variational theory using the mountain-pass type lemma. With these 
experiences at hand, we will try to choose our semi-infinite cycles with 
respect to which the Floer theory on Q works well. 



524 YoNG-GEUN o h 

We start with the formula (2.18): 

dA H(l)(0= Z M7,0-dH(7)e)dt + he(l),ö(7(l))>. 
o 

As usual, we would like to write down the gradient flow of A H on O with 
respect to some metric on Q. We choose an almost complex structure J 
on T*M that is compatible with the symplectic structure: We say that 
J is compatible t o w , if the bilinear form h , ) defined by 

(2.32) h,)J:=u(;J-) 

defines a Riemannian metric. Then one can re-write (2.18) as 

(2.33) dA H(l)(0 = Z hJ(i-X H t(7)),0J dt+m), 0(7(1)))-
o 

When one tries to write down the equation corresponding to the 
gradient flow of — A H as in the Floer theory, one immediately encounters 
a difficulty due to the boundary term h£(1), 0(7(1)) in (2.33). To do the 
Floer theory correctly in the analytical point of view, one should try to 
get rid of the difficulty by choosing certain subset of ii so that if we 
restrict the functional A H thereto, the boundary term drops out for the 
gradient flow of the restricted function. It is a remarkable fact that this 
a t tempt of ours to overcome the analytical difficulty gives rise to the 
way to associating a semi-infinite cycle to each compact submanifold of 
M and hence solves the topological difficulty mentioned above as well. 

^From the definition of the canonical one-form 6 on T*M, we can 
re-write the boundary term as 

h£(1),0(7(1))) = hTX(1) ,7(1)) . 

M a i n Observat ion. The term hT7r£(l),7(l)) vanishes if one im­
poses the condition that 7(1) lies in the co-normal bundle N*S C T*M 
of any submanifold S C M and £(1) is tangent to N*S, because 6j N*S = 
0 for any submanifold S C M. 

We now assign to each compact submanifold S C M a semi-infinite 
cycle in O which is linked to, in terms of the gradient flow of the action 
functional A H, the fundamental cycle Q.{M) defined by 

n(M) = {7 : [0,1] - • T*M j 7 (0 ) ,7 (1) e o M }, 
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and in particular which cannot be pushed away to the infinity by the 
gradient flow of A H- This linking property, however, will be detected by 
the Floer homology theory. We would like to emphasize that this choice 
of the semi-infinite cycles does not depend on the Hamiltonian H at all 
as long as H is asymptotically constant, which will be a crucial ingre­
dient in defining our symplectic invariants of Lagrangian submanifolds 
in the later sections. 

E x a m p l e 2.9. 

(1) When S = fptg, we assign to each q G M the cycle 

nfqg := f7 G fi j 7 (1) G T*q Mg = fiq. 

Here we have used the fact that N*fqg = T*M. 

(2) When S = M, we have N*S = o M and so the corresponding cycle 
is the fundamental cycle 

fi(M) = f 7 G fi j 7(1) G o M g. 

In the rest of this paper, we will first develop the Floer theory to 
each submanifold S C M and then construct certain symplectic invari­
ants of Lagrangian submanifolds associated to each S. Although the 
basic construction of the Floer homology is standard, the construction 
of symplectic invariants using the Floer homology is new. In the course 
of doing these, we discover many new aspects in the Floer theory itself 
and so lay the foundation for serious applications of the Floer theory to 
the questions of symplectic topology. We refer readers to [43] for further 
results in this aspect. 

3 . A C7°-estimate 

We will concern the gradient flow of A H^/S-, with respect to certain 
L2- type metrics on fi(S') for the given compact submanifold S C M. 

It turns out to be very important to vary the metrics on Q(S) suitably 
depending on circumstances given, and so we first describe the class of 
the metrics on Q(S) in detail which we are going to use. 

We first note that if a Riemannian metric g is given to M , the associ­
ated Levi-Civita connection induces a natural almost complex structure 
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on T*M, which we denote by J g and which we call the canonical almost 
complex structure (in terms of the metric g on M). We are going to 
fix the Riemannian metric g on M once for all. This canonical almost 
complex structure has the following properties: 

(1) J g is compatible to the canonical symplectic structure w on T*M. 
(2) For every (q,p) G T*M, J g maps the vertical tangent vectors to 

horizontal vectors with respect to the Levi-Civita connection of g. 
(3) On the zero section o M C T*M, J g assigns to each v G T q M C 

T(qfi){T*M) the cotangent vector J g(v) = g(v, •) G T*M C T{qfi){T*M). 
Here we use the canonical splitting 

T(q,o)(T*M) = T q M © T*M. 

We consider the class of compatible almost complex structures J on 
T*M such that 

J = J g outside a compact set in T*M, 

and denote by j c the class 

j c := {J j J is compatible to wand J = J g 

outside a compact subset in T*Mg. 

We define the support of J and denote 

Supp J := the closure of {x G T*M j J(x) ^ J g(x)g. 

The main objects that we need in defining the metrics on Q is the 
following. 

Defini t ion 3 .1 . Let j c be as above. We define 

J c := {J : [0,1] —> j c j J = {J t go<t<i is a smooth pathg. 

Each given J G J c induces a smooth path of Riemannian metrics 
g J := LO(-, J t ) on T*M. We denote the corresponding norm by j • j J t on 
T t T*M). Using this, we define a metric on the space of paths in T*M. 
Let 7 : [0,1] —> T*M be a path and £, n be vector fields along 7. Define 
the inner product {(^,i]))J by 

(3.1) ((t,v))J--= Z mMt)J t dt 
o 
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and the associated norm by 

(3.2) iieii2J:= Z mj J dt. 
o 

Note that these are the inner products and norms of L2-type, i.e., do 
not involve derivatives of £. Using these, one can rewrite dA H on Q as 

dA H(i)(o= Z M T , e ) - d H t(7)e) + he(i),ö(7(i))) 
o 

(3.3) = Z hJ tW)-X H tbm,m)J t + m,ew))) 
o 

= hhJ(j-X H(1)),ç))J + m , ö(7(i))). 
Since we already mentioned that h£(1), 0(7(1)) drops out when we con­
sider the (negative) gradient flow of A HilS-, on the space 

n(S) = {7 : [0,1] - • T*M j 7(0) G o M, 7(1) G N*S}, 

the negative gradient flow of A H\Q(S\ in terms of the metric hh , ))J on 
Q(S) satisfies the equation 

(3.4) 

du+Jdu_X H(u)=0, dr 

u(T,0) G o M, 

u ( T , 1 ) eN*S, 

which is a perturbed Cauchy-Riemann equation with Lagrangian bound­
ary conditions. Here we should emphasize that J depends on time in 
general and N*S is not compact. Now all the necessary Fredholm prop­
erty and compactness properties used in [17], [18] for the case of compact 
Lagrangian submanifolds will apply to (3.4), provided we establish cer­
tain C°-estimates for (3.4). This C°-estimate is the first essential step 
for the Floer theory on noncompact symplectic manifolds. (See [23] for 
such an estimate for the periodic orbit problem, and [13] or [44] for the 
Lagrangian intersection). For the later purpose, we also have to consider 
the parametrized versions of (3.4). More generally, consider 

L : R x [ 0 , l ] x T*M ->• R, 

that is smooth and such that there exists a suitable K > 0 such that 

Ha(t,u) for T<-K, 
(3.5) 

HP(t,u) for T>K, 
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where Ha
JH

ß G H ac. Furthermore J is a smooth family 

J : R x [ 0 , l ] - > j 

satisfying 

J(T, t, u) = J g outside a compact set of T*M, 

< J(T, t, u) = Ja(t, u) for r < -K, 

J (T , t ,u) = Jß(t,u) f o r T > K . 

Finally consider an isotopy of submanifolds S = fSTg such that 

ST = Sa for r < -K, 

= Sß for T>K. 

Then we consider a smooth solution u : R x [0,1] -)• T*M of 

(u + J(u-X L(u))=0, 

(3-6) U(T,0)£o M, 

u ( T , 1 ) eN*ST. 

The following is the main theorem in this section. 

T h e o r e m 3.2. Assume that J,L and S as above. Then there exists 

a constant c = c(L, J, S) > 0 such that every solution u of (3.6) with 

(3.7) inf A L(T)(u{T)) > — °°) sup A L M u 1 " ) ) < °° 

satisfies 

(3.8) sup jp{r,t)j g < c, 
(r,t)ee 

where we write u(r,t) = (q(r, t),p(r, t)) in T*M, and j • |g is the norm 
on T*,tsM induced from the metric g on M. 

Proof . First, note that 

L(r) = Ha ifT<-K, 

= Hß if T>K, 

and so if r < —K, then 

A L(T)(u{T)) = A H<*(u{T)), 
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and hence 

s u p A Ha{u(T)) < OO 
re(-oo,-K) 

from the assumption (3.7). In particular, we have 

(3.9) 
K l du 

ÖT -oo O 

since it is the same as 

J°{t) + 
Uu ^ 
—- - X Ha (u 
at J"{t) 

dtdr < oo, 

A H°(u(-°°)) -A H*(u(-K)). 

Similarly at +oo we have 

(3.10) 
OO 1 

K O 

du 

8T Jß(t) + 
du ^ 

Jß(t) 
dtdr < oo. 

By the standard estimates, we can prove from (3.9) and (3.10) that 

lim u(T) = za, lim u(T) = z ̂  uniformly, 
T—> —OO T ^ - O O 

where za and z ̂  satisfy the equations, respectively, 

z« =X Ha(za), 

(0) G o M,za(l) G N*S° 

X H z 
zß(0)eo M,zß(l)£N*SP. 

Then it must hold that either the sup(Tt) jp(r,t)j g where 

u(r,t) = (q(r, t),p{r,t)) 

is realized at r = ±oo, or the supremum is realized at some point 
(TOtO) G ©• Since one can easily derive the C°-estimate of the Hamil-
tonian paths za,s from the assumption that L is asymptotically constant 
and so X L is of compact support, in the first case we are done by the 
C°-estimate of za,s. Therefore we consider only the second case. It will 
be enough to prove the following. 

Assert ion . If Supp LU Supp J C D R where D R C T*M is the disc 

bundle 

D R := {u G T*M j jpj g < R}, 

where u(r,t) = (q(r, t),p(r, t)), then u(ro,to) £ D R . 
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(3.11) — + J g— = 0 . 

Suppose the contrary that u(ro,to) 0 D R , say u(ro,to) G dD R>, 
R' > R and that there exists an open neighborhood Bf of (TO, to) in © 
for some e > 0 such that 

u(Be) C T*M\D R C T*M\ (Supp L U Supp J ) , 

and so u satisfies on Bf 

du du 

ör" + g~dt 

We consider two cases separately: the cases where (TO, to) £ Int 0 and 
(TO, to) G d@. Recall that the boundary dD R is of contact type, and 
it is J g-convex in the sense of Gromov [28]. The following lemma is 
well-known e.g. is proven in [36, Lemma 2.4]. 

L e m m a 3.3. Let (Z, w, J) be a calibration (or an almost Kahler 
structure) and its boundary A = dZ be J-convex. Then no J-holomorphic 
curve u in Z can touch A at an interior point of the domain of u. 

This immediately rules out the possibility (TO, to) G Int 0 . Now 
consider the case where (TO, to) G <90, i.e., to = 1. (The case to = 0 is 
trivially removed since we assume that u(T,0) G o M-) We consider the 
boundary curve 

T -^u{T,1) = (q{r, 1),p{T, 1)), 

which becomes tangent to dD^ R n N*S at (TO, 1). Since N*S fi dD^ is 
Legendrian in dD Ri, the curve is tangent to the contact distribution of 
dD r at (TO, 1) 

{£ G T{dD RI) j i _L J g J r , £ is the radial field on T*M}. 

Since u is J g-holomorphic, u is also tangent to the contact distribution 
at (TQ, 1) and in particular we have 

| j p M ) j » = 0. 
(ro,l) 

However, this contradicts to the strong maximum principle applied to 
the subharmonic function (with respect to J g) 

(r,t) ^ jp(r,t)j2 o n B e ( T 0 , l ) 

since we can assume Image u\B , ^ (jL dD Rt by choosing e slightly 
larger if necessary. This finishes the assertion and so the proof of The­
orem 3.2. q.e.d. 
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4. Regular parameters 

In this section, we describe the meaning of the "generic" parameters 
for which various moduli spaces that we are going to consider become 
smooth manifolds so that various versions of Floer homology which we 
introduce should be well-defined. 

First, we introduce a subset of H = H ac 

(4.1) Ho:={HeH\ <plH(o M) t o M}-

For any such Hamiltonian H G HQ, there are only finitely many solutions 
of 

(4.2) z = X H(z), 

z(0) G o M, z(l) G o M, 

i.e., critical points of A H on O or A H\Q(M\- For given H G HQ and 

a compact manifold So(C M), we denote by Emb (So : M) the set of 

embeddings of So into M and introduce its subset 

Emb H = Emb H(SQ : M ) = {S G Emb (S0 : M) \ N*S t 4>H(o M)}-

For such S G Emb H(So : M ) , there are only finitely many solutions of 

(4.3) ( z = X H z 
z(0) G o M, z(1) G N * S , 

i.e., critical points of A H]^S- We will also consider the isotopy class 

of a given embedding SQ for which we denote by 

Iso (So : M ) C Emb (S0 : M) 

and 

Iso H = Iso H(S 0 : M) = Iso (S0 : M) n Emb H(S 0 : M ) . 

By the standard transversality theorem, it follows that Emb H(So : M) 
is dense in Emb(So : M) in the C°°-topology. Next, we consider the 
regular property of the space of solutions 

(4-4) u(r,0)eo M, 

u ( T , 1 ) eN*S. 
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Then the proof of the following theorem will be standard now by com­
bining ideas in [17], [23], [24], [40] and [43]. 

T h e o r e m 4.1 . 
(1) Let H G HQ and S G Emb H(So : M). Then there exists a dense 

subset J H,S C J c such that all the solutions of (4-4) are regular, i.e., 
the linearization at every solution is surjective. 

(2) Let S C M and H G H S := fH G H0 j 4>H{o M) t N*Sg. Then 
there exists a dense subset J S,H C J c such that all the solutions of (4.4) 
are regular. 

We will also need the parameterized versions of this theorem. 

T h e o r e m 4.2. (1) Let Ha, H? G H0, S G Emb H° n Emb Hß and 

J G J Ha,S H J Hß S- Then there exists a dense subset of 

H HaHß := fH : [0,1] ^HjH° = Ha.H1 = H^H = f H s go<s<ig 

and K G R+ such that all the solutions of 

(4.5) 
' u + J u -X HPK(T)(u))=0, 

u(T,0) G o M, 
u { T , \ ) eN*S 

are regular. 

(2) Let Sa, Sß G Emb H(S 0 : M) and J G J S°,H H J Sß,H- Then 
there exists a dense subset of 

Emb HaHß := S : [0,1] —> Emb j S = fS s gi<s<i a smooth isotopy with 

SQ = S , Si = S j 

and K G R+ such that all the solutions of 

< u ( T , 0 ) G o M, 

are regular where K is the function as defined in Section 5. 

(3) Let Ja, Jß G J H,S- Then there exists a dense subset of 

JjaJß '•= {J : [0,1] ^ J c j J = f J s go<s<i is smooth and 

J ° = J « , J 1 = Jß) 
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and K G R_|_ such that all the solutions of 

u + J p ( u -X H(u))=0, 

u(r ,0 ) G o M, 

u ( r , l ) G N* S 

are regular. 

One could state more general version of this kind of theorem, but we 
state the theorems in a way that they are suitable for studying various 
invariance properties of the Floer homology which we define later. For 
the notational convenience, we denote 

(4.6) N reg(S) = {(H,J)eHxJ c j (4.4) is regular £}, 

(4.7) N reg(H) = {(S, J) G Emb(So : M) x J c j (4.4) is regular £}, 

(4.8) N reg = {(H, S) G H ac x Emb (S0 : M) j <pH{o M) tN*S}. 

It follows that 

Y H X J S,H C NTeg(S) CHXJ c, 
HenS 

Y {S} x J c N reg(H) C Emb(So : M ) x J c, 

SeEmb H 

and all the inclusions are dense. 

5. F loer h o m o l o g y of submanifo lds 

Let H G Ho, S G Emb H and J G J i ^S - The gradient trajectories of 
«H| jvSi on Q(S) with respect to the metric (( , ))J defined as in (3.1) 
are solutions of the following perturbed Cauchy-Riemann equation 

(5.1) 

(»u + J u - X H(u)=0, 

u ( T , 0 ) G o M, 

u ( T , 1 ) eN*S. 

We denote by AiJ(H, S) the set of bounded solutions of (5.1), i.e., those 
with 

(5.2) inf A H{u(T)) > —oo, sup A H{u(T)) < oo. 
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By the monotonically decreasing property of A H along the trajectory, 
we also have 

inf A H{u{T)) = lim A H{u(T)), 
T G R T—S-OO 

sup A H{u(T)) = lim A H{u{T)). 

Note that the stationary points for the flow (5.1) are solutions of the 
Hamilton's equation 

(5.3) tz = X H(z), 
z ( 0 ) G o M, z{\) G N*S, 

and each of them can be written as 

z(t) = <H H ( p ) ) = H(t ) 

for some p G o M H N* S and vice versa. We define 

CF(H, S:M) = {z: [0,1] - • T*M j z solves (5.3) 

= {z p H j peo MnN*S}. 

Because of the choice of H G Ho, S G Emb H, there are only finitely 
many elements in CF(H,S : M). The following two theorems, will 
be proven in the end of this section. We would like to emphasize that 
unlikely from the case of periodic orbit problems neither of the (canon­
ical) grading nor the coherent orientations exists in the general relative 
Floer theory as in [18] or [38]. (See [19] for the non-canonical grading 
assigned for the geometric version of the Floer homology of Lagrangian 
intersections.) The existence of these canonical grading and the coher­
ent orientations in our relative Floer theory soly depends on the special 
circumstance that we are looking at the Lagrangian submanifolds o M 
and N*S in the cotangent bundles T*M. Some more detailed discus­
sions on the coherent orientation in relation to the Poincare duality will 
be given in [43], and the complete treatment of the coherent orientation 
question will be carried out elsewhere in the more general context of 
Fukaya's A°°-structure. In this paper, since this orientation question is 
not the main issue, we will be content to give the complete proof of the 
orientability of the Floer cells M J(H,S : za,z ^) and to refer to [22], 
[23] for the details of providing the coherent orientations that are com­
patible to the gluing procedure. Those who feel uncomfortable about 
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the coherent orientation can safely take Z2-coefficients for the Floer ho­
mology at least in this paper, but we believe that it will be important 
to define the Floer homology with arbitrary coefficients for the more 
elaborate applications in the future. 

T h e o r e m 5.1 [Canonical grading] . For each solution z of (5.3), 
there exists a canonically assigned Maslov index that has the values in 
\Z. We denote this map by 

ßS :CF(H,S:M) ->• ±Z. 

Furthermore, [iS has the following properties: 

(f) /iS + ^ d i m S G Z and for each solution u of (5.1) with u(—oo) = 
za, u(+oo) = zß', we have the Fredholm index of u given by 

(5.4) Indexu = nS(za) - ßS(zß)-

(2) Consider the time-independent Hamiltonian F = f o n, f G 
C°°(M) which is defined as described after Theorem 5.5 below. Let 
p G Graph df fl N*S and so x = ir(p) G Crit(f\S). Denote by z x(t) = 
(x,tdf(x)) which is the Hamiltonian path of F with z x(0) G o M, z X ( 1 ) G 
N*S. Then we have 

(5.5) ßS(z x) =ßS f(x) - ^dimS 

where //S is the Morse index o f f S at x on S. 

T h e o r e m 5.2 [Coherent or ientat ion] , (f ) Let (H, S, J) be generic 
in the isotopy class [H,S,J]. For each za,z ^ G CF(H,S : M), there 
exists an orientation of M J ( z a , z ^), i.e., the determinant bundle 

D e t ^M J(za,zß) 

whose fiber at u G M J(za, zß) is the one-dimensional real vector space 

det(DdJtH(u)) := Amax(Ker D J,H(u)) <g> Amax(Coker D J,H(u)) 

is trivial. The same is true for the parametrized version of the Floer 
cells M(H, S, J) for the generic paths (H, S, J) as in Section 4-

(2) Furthermore there exist a coherent orientation (in the sense of 
[22], [23]) on the set of all M J(H, S) 's and MÇHS,J) over (H, S, J) 
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and the paths (H, S, J) in each isotopy class. We denote the set of such 
coherent orientations by Or([H, S, J] : M) = Or ([S] : M). 

For the moment, we postpone the proofs of these theorems until the 

end of this section and proceed. We define the grading on CF(H, S : M) 

by 
k = ßS{z) + ^dim S 

and form a Z-graded free abelian group (i.e., Z-module) CF*(H, S : M). 
In fact, we can also consider free G-module for any abelian group G. 

It is also possible and maybe more natural to give the grading to 
CF(H, S : M) by the Maslov index itself not by the above formula, 
allowing the shift by the half integer ^dim S, when we consider the 
assignment (H, S : M) H- CF(H, S : M) as a "functor" in a categorical 
approach. Compare this with the grading provided in the non-relative 
theory in [54], [7], [52] and [47]. But in this paper, we prefer to use 
the above integer grading which will coincide with the grading in the 
singular homology under the isomorphism in Theorem 5.5 below and 
which makes it easier to keep track of the grading under the pants 
product in [43]. 

We fix a coherent orientation a G Or ([S] : M). Now for each za,z ^ G 
CF(H,S : M) with n{za) - ß{zß) = 1 each element u G M J{za,zß) 
defines its flow orientation [uT]. We compare this flow orientation [uT] of 
the flow with the orientation a(u) induced from the coherent orientation 
defined in Theorem 5.2, we define the sign T(u) G { 1 , - 1 } by 

a (u) = T(u)[uT]. 

We define for such za and zß 

(5.6) nlHìJ){za,z ^):= £ r(u) 

uG.MJ(z ( z< 3 ) 

and a homomorphism ö(H,J) : CFt(H, S : M) -> CF,(H, S : M) by 

(5.7) H)J)0z = £ n ( H , J ) ( z z / z -
ß 

By definition, d?H Js has degree —1 with respect to the grading given by 
Theorem 5.1. By the standard compactness and cobordism argument 
(see [21], [35] or [38]), we can prove that d7H J-, satisfies 

3(HJ) ° dH,J) = °> 
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and so we are given a graded complex (CF*(H, S : M), d7H J ) . 

In the present paper, we will mainly concern Z or Z2 coefficients, 
and unless otherwise stated, we will always take Z as the coefficient. 

Definit ion 5.3. We define, for each regular parameter (H, S, J), 

HF?(H, S,J:M)= Ker Ö f H J / I m dHJ 

and call it the Floer homology of (H, S, J) on M (with respect to the 
coherent orientation a). 

The following theorem can be proven again by the standard com­
pactness argument. 

T h e o r e m 5.4. For two regular parameters (Ha,Sa,Ja) and 
(Hß,Sß\Jß) isotopic to each other, there is the canonical isomorphism 

ha
aß : HF°(Ha, Sa,Ja : M ) -)• HF°(Hß, Sß,Jß : M ) 

that preserves the grading. 

The proof of this theorem follows ideas from [21] and [38]. But we 
would like to recall how the construction of the isomorphism goes be­
cause when we study the filtration, it will be essential to understand the 
"best" way of choosing the chain homomorphism between CF*(Ha, Sa) 
and CF*(Hß, Sß) that induces the isomorphism in Theorem 5.4. 

We fix a monotone function p : R —> [0,1] such that 

P ( T ) = 0 i f r < - l , 

= 1 i f r > l , 

and define PK(T) = p(r/K) for K > 0. We choose a path from [0,1] to 
the parameter space 

{(H s, S s, J s)jse [0,1], (H°,S°, J ° ) =(Ha, Sa, Ja), 

{H1,S1,J1)=(Hß,Sß,Jß)} 

such that if we denote 

(H,S,J) = {(H0K(T\S K ( T \ J K ( T ) )} -oo<r<oo , 

then all the solutions of the equation 

' u + J ( u - X * ( u ) ) =0, 
(5.8) u ( T , 0 ) e o M l 

, u ( T , 1 ) eN*~S 
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become regular for sufficiently large K > 0. Again the space of 
(H, S, J, K) will be dense among the set of paths connecting (Ha, Sa,Ja), 
{Hß,Sß,Jß) and K G R. 

For each given za G CF*(Ha, Sa) and zß G CF.,(Hß, Sß), we define 

M K(za,zß) = {u : G ->• T*M j u solves (5.8) and 

lim u(T) = za, lim u(T) = ^ } . 
T - > - 0 0 T—S- + 00 

Using the orientations provided by Theorem 5.2, we define an integer 
similarly as in (5.6) 

ntJ
aß(z

a,zß):=#(M K(za,zß)) for ß{za) - ^zß) = 0, 

and the chain map haß : CF,(Ha, Sa) ->• CF*(Hß, Sß) by 

(5.9) h ( z H ^ n ^ z ' z -

We would like to emphasize that from the definition, only those pairs 
(za,zß) for which the equation (5.8) has a solution with the given asymp­
totic condition 

lim u(T) = za, lim u(T) = zß 

T—> — OO T - > + 0 0 

give nontrivial contribution in (5.9). This fact is the one which en­
ables us later to estimate the change of the filtration under the various 
homomorphisms between the Floer homology for different parameters. 

Finally, we also have the following theorem whose proof will be a 
modification, taking the canonical coherent orientation into account, to 
that in [46] which in turn follows Floer's idea in [20]. 

Theorem 5.5. Let (H, S, J) be regular and fix the coherent orien­
tation a G Or ([S] : M) provided as in Section 4 [22]. Then there exists 
an isomorphism 

F(H,S,J) •• H*(S, Z) - • HF?(H, S,J:M) 

that preserves grading, where H*(S,Z) is the singular homology of M. 
In particular, HF* (H, S, J : M) ^ {0}. We will call this coherent 
orientation the canonical coherent orientation. 

We briefly outline the idea of the proof in [20] and [46], incorpo­
rating the coherent orientation, to explain how the filtration on the 
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Floer homology HF*(H,S,J : M) is affected by the homomorphism 
F(HtStJ) : H*(S,Z) ->• HF*(H,S,J : M). We first choose a tubu­
lar neighborhood U of S which we identify with the normal bundle 
7To : NS —> S. Then we choose a smooth function fQ on S that is of 
Morse-Smale type and consider the function fQ O no on U. We extend 
this to M by a cut-off function and denote the extension by f. We now 
define the (time-independent) Hamiltonian 

H0= f on: T*M ->• R 

Then it is easy to prove, following the idea in [20] and [46], the solutions 
of the equation 

z = X Ho(z), 

z(0) G o M, z ( l ) G N*S 

have one-to-one correspondence with the critical points of f S = fo, the 
restriction of f to S. Furthermore, following the idea of [20] one can 
prove that any element u G M J g(Ho, S) is t-independent provided jfj C-2 
is sufficiently small. By the equation (1.6) and the choice of HQ, we see 
that any such u has the form 

u(r,t) =X{T) 

for some gradient trajectory \ of fj S = fo- Once this is proven, the 
assignment 

X£M g(fj S)^u(T,t):=x(T) 

provides a natural diffeomorphism between the Morse complex M g(f\S) 
and M J g(Ho, S). Furthermore under this natural diffeomorphism, the 
canonical coherent orientation u given in Theorem 5.5 induces a coher­
ent orientation on M g(f\S) that coincides with the standard orientation 
as in Section 7 [37] which is provided by giving orientations to the un­
stable manifolds of the Morse complex. Then combining this with Theo­
rem 7.4 [37] (from which one can easily derive that the Morse homology 
with this coherent orientation on the Morse complex is isomorphic to the 
singular homology), we obtain that the above diffeomorphism induces 
a natural isomorphism between H^S 1 , Z) and HF^(HQ, S, J g : M). For 
the general (H, S, J ) , we apply Theorem 5.2 to HF^(HQ, S, J g : M) and 
HF°(H, S, J : M). We would like to note that by making jfj C-2 as small 
as we want, the width of the action spectrum Spec(Ho? S) can be made 
arbitrarily close to zero. 

One immediate corollary of Theorem 5.5 is 
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Corollary 5.6. For any (H,S) G N-eg; the following holds 

#(N*Sn<pH(o M)) > rank H*(S, Z) , 

provided N*S t 4>H(o M)-

This corollary can be interpreted as that the cycle il(S) is linked to 
the fundamental cycle Q(M). It is also a consequence of the existence 
of generating function quadratic at infinity. 

E x a m p l e 5.7. Let a be the canonical coherent orientation as above. 

(1) When S = M , we have 

HF*(H,S,J :M) =HF*(H,M,J:M) ~ H*(M,Z). 

(2) When S = {pt}, we have 

HF?(H,{q},J:M)~Z. 

(3) When S ~ S1, we have 

HF?(H,S,J:M) ~ Z © Z . 

Now, we go back to the questions of grading and orientations. 

5.1 . Canonical grading. 

Let S C M be a given compact submanifold. We will assign a 
canonically defined half-integer, which we call the Maslov index of the 
Hamiltonian path z : [0,1] —> T*M, which is a solution of 

(5.10) z = X H{z) 
z(0) G o M, z(1) G N * S . 

The definition of the Maslov index of general pairs of Lagrangian paths 
in R2n (~ C n) has been given by [10] or [49], which we will use to define 
the Maslov index for solutions of (5.10). We will mostly follow the expo­
sition given in [49], [50] except slight differences of the conventions and 
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the notation used. We will define the Maslov index of z by trivializing 
the vector bundle z*TX over [0,1]. 

One could at tempt to define the Maslov index of the Hamiltonian 
paths in general (P,w) with general boundary conditions LQ,L\ C P, 
i.e., of the solutions 

(5.11) Iz = X H(z), 
z ( 0 ) G L0 , z(l) G Lx. 

However in this generality, there will be no canonical definition of the 
index since the definition in general depends on the choice of trivializa-
tion. 

The crucial observation of ours is that on X = T*M, there is a 
certain canonical class of symplectic trivialization 

$ : z*TX - • [0,1] x C n 

due to the fact that we are given a fixed Riemannian metric g on M 
and so the tangent bundle TX has the canonical splitting as the sum of 
Lagrangian subbundle 

TX = H © V, 

where V is the vertical tangent bundle the fiber V p of which is canon-
ically isomorphic to T*,p\M, and H is the horizontal subbundle with 
respect to the Levi-Civita connection of g the fiber H p of which is iso­
morphic to Tn(p)M under the map T-n : TX ->• TM. 

We now consider the class of symplectic trivializations $ : z*TX —> 
[0,1] x R" © (R n)* = [0,1] x C n that satisfies 

(5.12) $(H z{t}) = R", §{V z{t)) = (R nr = iR n 

for all t G [0,1]; we denote the class by T . Such a trivialization al­
ways exists because [0,1] is contractible. For example, such a $ can 
be obtained by the parallel transport along the paths which are the 
composition of two linear paths 

( 0 , 0 ) ^ ( T , 0 ) - ^ ( r , t ) . 

Here the parallel transport is with respect to the natural connection on 
u*TX induced by the Levi-Civita connection with respect to the metric 
g on M. The transition map between two such trivializations $ and \I/ 
in T is given by the form 

(5.13) $>o$-l(t,v) = (t,A^(t)v), A^(t) = Q(t)(B(Q*(t))-\ 
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where Q(t) G GL(n,R) and Q*(t) is the conjugate to Q(t). In other 
words, we have reduced the structure group of z*TX from Sp(2n, R) to 
a subgroup of Sp(2n,R) that is isomorphic to GL(n, R). Now note that 
each solution z of (5.10) has the form 

z(t) = t H ( H ( p ) ) > p G H o M) n N*S, 

where (t H is the Hamiltonian flow of H. For given such z, we choose a 
trivialization $ £ T . In this trivialization, we will have 

(5.14) $ ( T z (0)o M) = R", <f>(T z{1)N*S) = U*(BU£i 

where U$ C n isak = dim S dimensional subspace and (U&)1- C (n)* 
is the annihilator of U$. We denote 

(5.15) V* := $ ( T z ( 1 )N*S) = U* © U 

and define the symplectic path B<$, : [0,1] —> Sp(2n) by 

(5.16) B$(t) := $ o T^ H o $ - ! : C n =* {0} x C n - • {t} x C n = C n 

Following the definition of [49], we now consider the Maslov index 

/ / (Gr(B$) ,R n © V * ) , 

which becomes the same as /j,(B$(n),V®). 
The following lemma is the crucial lemma that enables us to define 

the canonical grading in this special circumstances of (5.10), which will 
not exist in the general context of (5.11). 

L e m m a 5.8. If<ï>, ̂  G T, then 

Proof . From (5.15) and (5.16), it follows that 

V* = Ay*(l)-V*, 

By(t) = AyQfâBç.fâAvç.iO)-1, 

so that 

^ ( B t f t - R " , ^ ) = / i ( A * ( t ) B * ( t ) A ^ ( 0 ) - 1 R n , A * ( l ) - V * ) . 



r e l a t i v e f l o e r t h e o r y 543 

Using the fact that Aqr$(t) has the block diagonal form as in (5.13), we 
have 

Applying this and the naturality axiom, Theorem 3.1 [49], yields 

(5.17) »(By(A) • R n,V = »(R B z i t ) - 1 Aurait)-1 A*z(l) • V*) . 

Now, we consider the homotopy fB s go<s<i defined by 

B s(t) : = B ^it)'1 Ausist)'1 A$$(s) , t G [0,1] 

and the Lagrangian path As(t) := B s(t) • V*. This homotopy has the 
property that for all s 

As(0) = B ̂ iO^A^is) • V* = A^(s) • V* 

= (Q(s)®Q*(s)-1)(U*®Ui) 

= (Q(s)U*) © (Q(s)U ^)1- G Ek(R n), 

A s ( 1 ) = B ( 1 ) - 1 - V * G S , ( R n), 

where k = d i m S , £ = d i m T ^ ( T z (0 )o M) n T z{1){N*S) and 

Sk(R n) := fV G A(n) j d i m V n R n = k g . 

In other words, the homotopy As is a stratum homotopy with respect to 
n in the sense of [49]. By Theorem 2.4 [49], we conclude //(R n, A0) = 

/i(R n, Ai). However we have 

A0(t) = B $ ( t ) - 1 - V * , 

Ai(t) = B ( t ) - 1 A ^ ) - 1 A ^ ) • V*, 

and hence 

Combining this with (5.17), we have proven 

»(Bm.R n,V*) = »(R n,Bm-i.V*). 

By applying the naturality axiom Theorem 3.1 [49] to the right-hand 
side again, we have finished the proof. q.e.d. 

Now, we are ready to define the canonical Maslov index of z. 
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Defini t ion 5.9. The Maslov index of z of a solution of (5.10) is 
denoted as /J,S(z) and given by 

ßS(z) = _Aj( Gr(B*) , R n © V*) = - / i ( B * • R n, V*) 

for a trivialization (and so for any trivialization) $ in T . 

The sign is so chosen that we have (5.4) and (5.5) in Theorem 5.1 
not with the opposite signs. 

Proof of Theorem 5.1 (1). The statement uS + 1/2 dim S G Z is an 
immediate consequence of Theorem 2.4 [49], and so we will just prove 
the second statement. Let u : R x [0,1] —> T*M be a solution of 

r u + J ( u -X H(u)) = o, 
(5.18) Iu(T,0)£o M, 

[u{T,1) GN*S. 

We denote 

-dJH u ) : = u + J{u-X H{u)). 

Under the assumption 

4>H(o M) tN*S 

the linearization operator E u : T u F X ' 1 —> L u becomes a Fredholm oper­
ator. We recall 

W ̂ '2 := T u F 1 ' 2 

= f i G W ̂ ' u T X ) j e ( r ,0) G T u ( T ) 0 )O,e(r , 1) G T u ( T ) 1 ) ( N S ) g , 

L 2 = L 2 u T X ) , 

and E u := D J H i u ) , the covariant linearization of <J,H with respect 
to the canonical connection induced from the Levi-Civita connection on 
X = T*M. Again we trivialize the bundle u*TX so that 

(5.19) *(H u{r,t)) = R n, HV u{T>t)) = (R nY 

for all (r, t), which is again possible because R x [0,1] is contractible. We 
denote by Index$(u) the Fredholm index of the push-forward operator 
L* := $*E : W^i ->• L where 

W'J :=fC G Wl>2(R x [0,1],C n) j C M ) G R n,Ç(r, 1) G A*(r)g, 

L 2 = L 2 ( R x [0,1],C n). 
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To compare I n d e x e u ) and /j,S(u(±oo)) defined in Definition 5.9, we 
require that the trivialization 

$ : u*TX 4 R x [ 0 , l ] x C n 

extends the trivializations at r = ±00 fixed in advance 

$ ± : z*±TX -+ [0,1] x C n, z± = u (±oc) , 

which are in the class T• Such an extension is always possible be­
cause one can prove that the class T is connected in an obvious sense. 
Next, we consider the push-forward operator <&*E u : W^, —> L?. By a 
straightforward computation, one can prove that this operator becomes 
an operator of the Cauchy-Riemann type 

C ( r , 0 ) G R n, C ( r , l ) e A f ( r ) , 

where J and T satisfy the following properties (Compare with the con­
ditions (CR-1,2,3) in Section 7 [50].): 

(1) The almost complex structures J : R x [ 0 , 1 ] —> End (R2n) satisfy 

(5.20) lim sup | |J(r,t) - J(±oo,t)|| = 0. 
T ^ ± O O 0 < t < 1 

(2) The function T : R x [ 0 , l ] - > End (R2n) satisfies 

(5.21) lim sup ||T(r,t) - T ( ± o o , t ) | | = 0. 
T ^ ± O O 0 < t < 1 

We denote the asymptotic operators T(±, •) by T±. 
(3) Let DX H(z) be the covariant linearization of X H along the Hamil-

tonian path z. Then 

(§±).tDX H{z±) = J(±00, t) • T (±oo , t). 

(4) Let ^ T± '• [0,1] —> Sp(2n) be defined by the equations 

dt 

* T ± ( 0 ) = I . 

J {±00, t)T (±00, t)^ T± = 0 , 
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Then the Lagrangian subspaces ^ T± (R" ) are transverse to A*± respec­
tively. 

We denote, for each (J, T, A), its asymptotic limits by (J±,T±, A±) 
and the asymptotic operators of ÔJ ;T,A by 

d 
A± = J±—+T± on 

W^2 = fie W1'2^, 1],C n) j £(0) G R n, £(1) G A±g respectively. 

Now, we quote a theorem from [50] that applies to the class of op­
erators considered above. 

L e m m a 5.10 [Theorem 7.42 [50]]. The Fredholm operator 

<9J,T,A*
 : WA* ~~*" L2 has the index given by 

Index ôJ)T)A* = - / i ( G r ( * - ) , R n © A*~) + / i ( G r ( * + ) , R n © A*+) 

(5.22) 

+ / i (A,R n © A * ) 

= -fi(V- -R n , A * - ) + / i ( ^ + -R n,A*+) + / i ( R n ,A*) , 

where A is the diagonal in C n © C n. 

R e m a r k 5.11. We would like to note that in [50] the authors 
considered operators of the type, in our notation, 

^-J ^ + S 
dr d t + -

Incorporation of these differences change the signs of the terms in the 
formula from Theorem 7.42 [50]. 

We now note that in (5.22), the first two terms are exactly, 

ßS{u(-oo)) - ßS(u{+(X>)) 

and therefore to prove Theorem 5.1(1), we have only to prove 

//(R n , A * ) = 0 . 

However, from the definition A*(r) = <fr(T u(T^(N*S)) and the way we 
choose the trivialization $ , we have 

A*(T) = U$(T)®(U$(T))-L, 
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where U#(r ) C R" is a subspace of dimension k = dim S'. In other 
words, Af (T) lies in the same fixed s t ra tum Ek(R n) for all r . Now the 
zero axiom from [49] immediately implies 

//(R n ,A*) = 0, 

which finishes the proof. q.e.d. 

Proof of Theorem 5.1(2). Recall first that the Hamiltonian flow of 

the Hamiltonian F = f o n is just the vertical linear translation given 

by 

(5.23) 
(q,p) ^(q,p + tdf(q)), i.e., 

4t F(^p) ={qip + tdf(q)), 

where f : M —> R is a smooth function. When we choose f(x, 9) = f S(x) 
in a tubular neighborhood identified with the normal bundle of S in M, 
if(plF(q,p) G N*S, then we have 

0=0 (i.e., q= (x,0) G S), 

df S(x) = 0 (i.e., x is a critical point of f S). 

The corresponding Hamiltonian path is given by 

z x(t) = (x, 0,0,0) 

in this splitting. By choosing the canonical coordinates around x, i.e., 
on T*M\ where U is a neighborhood of x in M , we may assume that 
M = R n, S = R k x {0} C n and (x,9) is the coordinates in terms of 
the splitting R = R k © R n~k. 

We denote the corresponding conjugate coordinates by (p x,pe)- In 
terms of this coordinates, the map (5.23) can be written as 

df s 
(5.24) ^{x.e.p x.pe) = {x^e^p x + t—^^pQ). 

Therefore, we can write 

(5.25) T F i x A p xipe) 

1 I 0 0 0 \ 
0 I 0 0 

td2f S(x) 0 I 0 
V o o o I / 
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in this coordinates. On the other hand, we have 

(5.26) V* = (R f e©{0})©({0}©(R n-k)*) 

in R n © (R n)* = C n. One can easily check that since we assume 
<P1F(o M) t N*S, i.e., that d2f S(x) is nondegenerate for each (x,6) G 
(ßlF(o M) H N*S, we can conclude that for p = (x^O^p x ̂ pg) 

(T t F(p) ,p)ER n © V * 

if and only if 
t = 0, 0 = 0 and x G Crit fs. 

We now recall the definition from [49] of the Maslov index for a curve 
A : [a, b] —> A(n) and a fixed V: 

//(A, V) := \ sign T(A, V, a) + ^ sign T(A, V, t) + ± sign T(A, V, b), 

where T(A, V, t) is a quadratic form defined on A(t) n V, which is called 
the crossing form in [49]. Therefore, we have for the path t H- T<ft F • 
R n,0 <t < 1, 

(5.27) / i ( T ^ - R " , V * ) = ± s i g n r ( T ^ - R n,V*,0), 

and so it remains to compute the signature of the crossing form 
r(T t F • R n,V*,0). Using the expressions (5.23), (5.26) and Theorem 
1.1 [49], it is straightforward to check 

sign r(T</t • R n, V*,0) = sign d2f S(x) 

= dim S — 2/zf S (x), 

where Hf S{x) is the index of dif S(x). Hence we have 

ßS(z x) = -KT4t F • R n, V = - \ dimS + Mfs(x), 

which finishes the proof of Theorem 5.1(2). q.e.d. 

5.2. Coherent orientations. 

In this section, we will give a complete proof of Theorem 5.2 (1) and 
follow the line of the reasoning given in [22] for the proof of Theorem 
5.2 (2). A more general discussion on the orientation question in the 
context of A ̂ -structure will be given elsewhere. 
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The central problem in the approach of [22] (or in the orientation 
problem of other moduli spaces in general) is to prove that the deter­
minant bundle 

Det^M J(za,zß) 

is trivial for all (za, zß) C CF(H, S : M). Once this has been done, the 
rest of the arguments proving the existence of the coherent orientations 
compatible to the gluing procedure, is well described in Section 4-5 [22], 
which can be also applied to our case. In fact, our case will be simpler 
than [22] in the proof by two reasons: First, there occurs no bubbling 
in our case and secondly we have a canonical class of trivializations of 
u*TX that satisfy (5.19). 

We would like to take this chance to emphasize that in the general 
relative Floer theory where the bubbling phenomenon exists, it is not 
true in general that the above determinant bundle is trivial. Even the 
simpler moduli space of pseudo-holomorphic discs may not be orientable 
in general, which one should compare with the fact that the moduli space 
of pseudo-holomorphic spheres is always orientable. The orientation 
problem in the relative Floer theory is different from other orientation 
problems from the periodic orbit problem (in symplectic geometry) or 
from the gauge theory, in that the former is in the realm of the index 
theory of the elliptic boundary value problem, while others do not involve 
boundary values. Furthermore neither the moduli space M J(za,zß) is 
simply connected, nor the space 

F(za,zß) = fu£Coo(Rx[0,l],T*M) j u ( r ,0 ) G o M, u{T, 1) G N*S, 

lim u(T) = za, lim u(T) = zß g 
T - > - 0 0 T—S-OO 

nor the space of the corresponding operator family is contractible in 
general. Therefore there is no a priori reason why the determinant 
bundle is trivial and so we really have to carefully analyze the family 
of operators involved in this index theory. For this purpose, let us first 
study the linearization operator of 8H,J at u G M J(H, S). 

For each u G M J(za,zß) = M J ( H , S : za,zß), we consider the 
linearization operator 

E u := DdH,J(u) : W u'2 -»• L2u, 

which we will study through the trivializations $ = <1>u : u*TX —> 
(R x [0,1]) x C n that satisfy (5.19). As we have mentioned before, the 
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operator (^ u)*E u = u o £ u o $ u 1 is of the form 

J,T,A* ••=Yr+Jm+T 

that satisfies (l)-(4) in Section 5.f, which acts on the space 

W M C e W l R x l O . l l . C ) j C ( r , 0 ) G R " , C ( r , l ) G A * ( r ) g , 

where Af (r) = U*(T) © (U*(r))± C R n © (R")* with dim U ^{T) = 
dim S =: k. We denote 

J = f J : R x [0,1] ->• End(R2n) j J 2 = - id , J compatible to w0 

and satisfying (5.20) g, 

S = f T : R x [ 0 , l ] - > End(R2n) j T satisfies (5.21) g, 

L = fA : R ->• A(n) j A(T) ->• A(±oo) a s r - > ±oo g, 

S = f A G L j A(T) G Ek(R") g, 

n = f A e L j A(r) = U(r) © (U(r))± , U(T) G Gr k(R n) g. 

Note from the definitions that O C S C L. For each given asymptotic 
operators A± = (J±,T±, A±), satisfying (4) in Section 5.1, we define 

{J xS x L)A± = f{J,T,A) eJ XS X L :(J,T, A) satisfies (1), (2) 

and (4) in Section 5.1 g, 

and (J x S x £ ) A ± and (JxSx Q)A± similarly. We also define 

L ± = fA G L j A(+oo) = A+, A(-oo) = A_ g, 

and similarly for S A ± or QA± • 
For each u G M J(za,z13), we trivialize u*TX by the parallel trans­

port described as before and denote this canonical trivialization by <&. 
Then the assignment u H- {<&).¥E u defines a map from M J(za,z13) to 
{J x S x Q)Aoß C {J x S x L)Aa0 where Aaß is the asymptotic opera­
tors naturally induced from the operators (<!>)*_u. Note that all (<!>)*_u 
have the same asymptotic operators Aaß as long as u G M J{za

Jzl3) for 
fixed za, z@. We denote this "Gauss" map by 

G:M J(za,zP)^(JxSxL)Aaß, 

and then the bundle Det —> M J(za,z13) is just the pull-back bundle by 
the map G of the universal determinant bundle 

(5.28) Det ^ (J xS x L)A aß 
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The fiber of this universal bundle is defined as follows: For each 

(J,T,A)e(JxSxL)Aaß, 

we form the operator 

on the space 

W ^ { ( e W Rx lo . i l .C ) j C(T,O)GR",C(T, I )GAg, 

which becomes a Fredholm operator due to the conditions (1), (2) and 
(4), and so both Ker (<9J,T,A) and Coker(J;T,A) become finite dimen­
sional real vector spaces. Hence we can form the one-dimensional (real) 
vector space 

det(J,T,A) == Amax(Ker J,T,A) ® Amax(Coker J,T, A)-

Since the image of G lies in {J x S x Q)Aaß, to prove the triviality of 
Det —> M J(za , z@), it will be enough to show that the restriction 

(5.29) D e t ^ ( J x S x Q)Aaß 

of the universal determinant bundle (5.28) is trivial. We start with the 
following lemma but omit the proof which is an easy consequence of 
the facts that both the space of compatible almost complex structure 
and the space of endomorphisms are contractible and that So(R n) is 
contractible. 

Lemma 5.12. The fibration 

{JXSXL)A±^LA±, ( J , T , A ) ^ A 

has (weakly) contractible fibers where the union is over all A± satisfying 
(1), (2) and (4), and in particular so does the restriction 

(J x S x Q)A± ->• nA± 

when A± = U±® (U±)± with U± G Gr k{R). 

Noting that when S = M, O = f the constant map, R n g (recall that 
Gr n(R n) = fR n g), we have the following immediate consequence of this 
lemma: 
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Corollary 5.13. For each (za,z ^), the determinant bundle D e t —> 
M.J{za

Jzl3) is trivial when S = M. 

For the general submanifold S C M , we have to further analyze the 
inclusion map QA± "—^ £A± • The main proposition then is 

Propos i t i on 5.14. Let A± = U i © U ) 1 - G Sk(R n) C A(n). Then 
the inclusion map QA± "—>• A\± is homotopic to the constant map. 

Once we have proven this, the triviality of the bundle (5.29) will 
immediately follow because it is the pull-back bundle of the universal 
bundle (5.28) under the inclusion map 

(J x S x Çl)A± ^(JxSx C)A± 

which is homotopic to the constant map. Therefore to finish the proof 
of Theorem 5.2, it remains to prove Proposition 5.14. In fact, we will 
prove that the inclusion map 

^ A ± •->• £ A ± 

is homotopic to the constant map. Recall that by definition, both E A ± 

and A A ± are the subsets of the paths connecting A_ and A + in Ek(R n) 
and A(n) respectively. Hence, the above assertion will be an immediate 
consequence of the following theorem. 

T h e o r e m 5.15. For each (open) stratum Sk (1n ) ; the inclusion map 

j : £ k ( R n ) ^ A ( n ) 

is homotopic to the constant map. In other words, each stratum Ek(R n) 
is contractible to a point in A(n). 

R e m a r k 5.16. We would like to emphasize that the space Ek(R n) 
itself is not contractible. In fact, it is a fiber bundle over Gr k(R n) with 
fiber Ao(n — k) = Sym (R n~ ). Therefore Ek(1n) is a deformation re­
tract to Gr k(R n) . Only when k = 0 or k = n, the Ak(R n) is contractible. 
Although the latter is a well-known fact, Theorem 5.15 does not seem 
to be known previously in the literature, as far as we know. 

To prove Theorem 5.15, we need some preliminary known facts on 
the Lagrangian Grassmannian A(n) (e.g., see [3]). 

Defini t ion 5.17. The train of a given point of A(n) is the set of all 
Lagrangian subspaces which are not transverse to the given one. The 
given point is called the vertex of the train. 
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For example, the train of n C C n is just the standard Maslov cycle 
Ai(n) = S i ( R " ) . 

Definit ion 5.18. We call positive vectors on A(n) the velocity vec­
tors of the motions of Lagrangian planes under the action of the systems 
with positive-definite quadratic Hamiltonians. 

It was proven in [3] that positive vectors do not belong to the tangent 
cone of any train, and the set of positive vectors at V G A(n) forms a 
cone in T VA(n). We denote this cone by C VA(n) C T VA(n), and by 
C + (A(n) ) the union of these cones over A(n), which becomes a fiber 
bundle when restricted to each s t ra tum Sk(R n) . We denote this cone 
bundle by C+(Sk(R n)) ->• Ek(R n) . The following lemma enables us to 
prove Theorem 5.15. 

L e m m a 5.19. The bundle C + (Sk (R n)) —> A(n) has a canonical 
section defined by 

s{V) =d e ie. Vi 
dB 6»=o 

where we consider 6 H- e ieV as a curve in A(n). 

Proof . This is obvious because the curve is generated by the 

Hamiltonian H = \{P i=\ jz i j2)- q.e.d. 

Recall that the tangent space of A(n) at any point V can be canoni-
cally identified with the quadratic forms on V. We denote this quadratic 
form Q(V : V) for each V G T VA(n). Then the following lemma can 
be easily proven from the definition of Sk(R n) and the positive vectors 
(see [3] for a proof.) 

L e m m a 5.20. At V G T,k(R n), the form Q(s(V) : V) is positive 
definite on V n n . 

Now we are ready to prove Theorem 5.14. 

Proof of Theorem 5.15. We first choose a compact set K C 
Ek(R n) that is a deformation retract of Ek(R n) . Such a compact subset 
exists because Ek(R n) has a fibering over Gr k(R n) with the fiber Ao(n — 
k) ^ Sym(R n"k) . Note that Sym(Jn-k) is contractible. Denote this 
deformation by F t : Ek( Jn ) ->• Sk(R n) . Now considering s : Ek(R n) -)• 
C+(Ek(R n)) C TA(n)jEk (R n) as a vector field along Ek(R n) in A(n), we 
can define a smooth deformation of K in k(n) G : K x [0,1] —> A(n) so 
that for all V G K 

ßG 
G(V,0)=j(V) a n d — = s(V). 

ot t=o 
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By Lemma 5.20 and the compactness of K, there exists some e > 0 such 
that 

G(V,t) G S OlR") 

for all V G K and 0 < s < e. Recall So(R n) is contractible, and 
denote a homotopy to a point Vo by H : So(R n) x [0,1] —> A(n) with 
H(- ,0) = id and H(-, 1) = Vo G A(n) where Vo is a fixed element 
in A(n). Now we compose these homotopies to obtain a homotopy 

L: EkQR n) x [0,2 + e] - • A(n) by 

L ( V , t ) = G ( F ( V , l ) , t - l ) 

{H(GeoF1(V),t-(l + e)) 

0 < t < 1, 

1 < t < 1 + e, 

l + e < t < 2 + e 

which is a homotopy from j : Ek(R n) <—>• A(n) to the constant map Vo 
This finishes the proof. q.e.d. 

6. General cons truct ion of symplec t i c invariants 

^From now on to the end of this paper, we will fix the canonical 
coherent orientation a G Or ([S] : M) so that HF?(H,S,J : M) is 
canonically isomorphic to the singular homology H*(S,Z). With this, 
we will also suppress a from the notation HF^(H, S, J : M). 

In this section, we give the general construction of certain symplectic 
invariants based on the machinery developed in Part I. With regard to 
the critical point theory, this general construction should be regarded 
as a direct approach for using the Floer theory to detect the linking 
properties of the mini-maxing sets; we will use this construction below 
to select the corresponding critical values. We will be interested in the 
most primitive form of the invariants in this paper and postpone the 
construction and applications of more refined invariants in the future 
works. 

We first note that the equation 

uT + J ( u -X H(u))=0, 

(6.1) u(T,0) G o M-, 

u{T,1) eN*S 

is the negative gradient flow of A H jQ(S) with respect to the metric 
(( , ))J on Çl(S) and so preserves the downward filtration given by 
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the values of the action functional A H- In other words, the map 

T ^ A H{u{T)) 

is monotonically decreasing for any solution u of (6.1). This fact is 
analytically encoded in the identity 

(6.2) d A u(r)) = - Z j u - X H(u)j2J dt. 

Let S C M be a given compact submanifold and let (H, J) G N reg(S') 
be defined as in (4.6). For a e R, we define: 

CF a(H, S:M) = fz£ Cri H jfi(S) j A H(z) < ag 

= fz : [0,1] ->• T*M j z(0) G o M, z ( l ) G N * S , z = X H{z) 

and A H(z) < a g, 

C - a = the Z-free module generated by them, and 

CF[a,b) = CF bjCF a_ 

Then the boundary map, defined in (5.7), 

d(H,J) • CF*(H, S:M)^ CF*(H, S : M ) 

induces the (relative) boundary map 

d{HyJ) = d1HJ : CFÌa'b)(H, S:M)^ CF\a'b){H, S : M ) 

for any b > a, which will obviously satisfy 

d[a,b) ß[a,b) _ 0 
°{H,J) ° °(H,J) - U-

Hence, we can define the relative homology groups by 

(6.3) HFÌa'b) (H, S,J:M):= Ker c H J / Im c H J . 

^From the definition, there is a natural homomorphism 

j : HFÌa'b) -+ HFÌc'd) 

when a < c and b < d. In particular, there exists a natural homomor­
phism 

(6.4) j ; A : HFÌ-°°'X) - • H F * = HF^00^. 
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Defini t ion 6 .1 . Let S C M be a compact submanifold, and let 
(H, J) G Areg(S). We define the real number p(H, S, J) by 

p(H, S, J) := inffA G R j j X : HFÌ~°°'X\H, S,J:M) 
A 

->• HF*(H, S,J : M), is surjectiveg 

L e m m a 6.2. For (H, S, J) as in Definition 6.1, p(H, S, J) is a finite 

number which becomes a critical value A H jQ(S)-

Proof. Since N*S t 4>1H{o M), there are only finite many solutions 
of 

(z = X H(z), 

z(0)eo M,z(l)GN*S, 

i.e., there are finitely many critical points and so finitely many critical 
values of A H jn(S)- We recall from Theorem 5.5 that 

(6.5) HF*(H,S,J :M) ^ H*(S,Z) ^ f0g. 

Furthermore since there are only finitely many critical values and in 
particular the set of critical values is bounded, we have 

(6.6) HFÌ-°°'X) (H, S,J:M) = f0g 

for sufficiently negative A. Combining (6.5) and (6.6), we immediately 
derive 

p(H, S, J) > - o o 

from the definition. Again from the boundedness of the critical values, 
the inclusion homomorphism 

j;A : HFÌ~°°,A)(H,S,J-.M)^ HF,(H,S,J-.M) 
becomes an isomorphism if A > K for sufficiently large K G RL This 
proves 

p(H, S, J) < oo. 

Finally the fact that the finite value p(H, S, J) is a critical value easily 
follows from the fact that for A2 > Ai, the natural map 

j : HF^'^iH, S,J:M)^ HF^'^iH, S,J : M) 
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is an isomorphism as long as there are no critical values of A H jQ(S) with 

Ai < A H{z) < A2. 

This finishes the proof of Lemma. q.e.d. 

Next, we study the J-dependence of p(H, S, J) for fixed S and 
H G H S when J varies among J(S,H)-

Lemma 6.3. Let Ja,Jß G J(S,H)- Then we have 

p(H,S,Ja)=p(H,S,Jß). 

Proof . Using the fact that J c is contractible and in particular con­
nected, we can choose a path J = f J s go<s<i in J c connecting Ja and 
Jß so that the solution set of 

( 6 7 ) /§u + J ( T ) ( u -X H(u))=0, 
u(T,0) eo Mlu(T,i) eN*S 

satisfies the regular property required before, provided K > 0 is suffi­
ciently large. Recall that the canonical homomorphism 

haß : CF*(H, S,Ja)^ CF*(H, S, Jß) 

is defined by 
haß{za) = Y,naß{za,z^i 

where naß(za, zß) = #(M K(za,zß)) that induces an isomorphism 

HF*(H, S, Ja :M) -+ HF*(H, S, Jß : M). 

To see how p(H, S, J) vary under the change of J, we need to estimate 
the difference 

A H(zß) - A H(za) 

whenever naß(za, zß) ^ 0 and so in particular when there exists a solu­
tion u of (6.7) with 

lim u(T) = za, lim u(T) = zß. 
T—> — OO T—»OO 

For such u, we then write 

Z°° d 
(6.8) A H(zß) - A H(za) = —A H(u(T))dr. 

ÌT 
OO d ' 
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However, we have 

—A H(u{T)) = dA H(u{T)) • -du 
dT dT 

„ < u , u , _ d H , , u , u from(,17) 

Z 1 du 
j — X H{u)j P (T) from the equation (6.7) 

o vt J t 
<0. 

Note that the boundary term from (2.17) drops out due to the fixed 
boundary condition required in (6.7). Hence, we have proved that when­
ever there exists a solution u as above, we have 

A H(zß) < A H(za). 

This shows that the map haß : CF*(H, S,Ja) ->• CF*(H, S, Jß) restricts 
to a map 

haß : CF<T°°>XXH, S, Ja) -+ CFÌ-°°'X)(H, S, Jß) 

for any A G R and so induces a homomorphism 

haß : HFÌ-°°'X)(H, S, Ja : M ) - • HFÌ~°°'X)(H, S, Jß : M ) . 

Now consider the commutative diagram 

HF(-oo,X) H S ) J a . M ) j 4 a HF* (H, S, Ja : M) 

l haß l haß 

HF(-oo,\) H S ) Jß :M) ^ HFjf ( H S ) Jß :M). 

Since hQ/g on the right-hand side is an isomorphism, if (jx)a is surjective, 
so is (jx)ß- Therefore, from the definition we have proved 

p(H,S,Ja) >p(H,S,Jß). 
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Changing the roles of a and ß yields 

p(H,S,J?)>p(H,S,Ja), 

which finishes the proof of p(H, S, Ja) = p(H, S, J13) q.e.d. 

Lemma 6.3 now allows us to define the invariant p(H, S, J) for any 
J G J c by simply extending the definition to all J c by continuity. 

Definit ion 6.4. Let S C M be a compact manifold and H G H S-
We define 

p(H, S) := p(H, S, J) 

for a J G J (S, H) (and so for any J G J). 

Next, we study the dependence of p(H,S) on (H,S). Since our 
primary interest is the study of a given Lagrangian submanifold ^ ( o M ) , 
we will fix H G H and vary S first. 

Propos i t i on 6.5. Let So C M and let Iso (So : M) be the isotopy 
class of So in M. Then the assignment 

Sa .->• p(Sa,H) 

on Sa G Iso H(So : M ) is continuous on Sa in the C1-topology of 
Iso (So : M). Hence we can extend the definition of p(S,H) to all 
S G Iso (So : M) by continuity in Cl-topology ofIso (So • M). 

Proof . The idea of the proof of this proposition is similar to that 
of Lemma 6.3. Similar arguments will appear again and again in this 
paper. Let Sa and S@ G Iso H(So : M) and let S s be a generic isotopy 
between them. It will be enough to consider the case where Sa and S ̂  
are sufficiently C1-close so that the map </> : Sa —>• S@ defined by the 
nearest point becomes a diffeomorphism. We now consider the equation 
for J G H(H,S") n H(H,S'3) 

(6.9) 

u + J ( u -X H(u))=0, 

u(r ,0 ) G o M , u ( T , 1 ) G N * S ^ ( T ) , 

limr^-oo u(T) = za, l im^.00 u(T) = zß 

for each za EM J(H,Sa) and z? G M J(H,Sß). As before, we estimate 

A H(zß)-A H( (za) 
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for the pair (za,z@) with nal3(za, zß) 7̂  0 (and so (6.9) has a solution). 
This time from (2.17) we have 

—A H{u{T)) = dA H{u{r)) • -du 
dT dT 

1du 
J j u - X H{u)j J dt + hTnu(T, l),u(r, 1)i 

<h|:(7rou)(T,l)u(T,l)i-

Recall that u(T, 1) G N*SPK(-TÏ and so TTOu(T, 1) G S^T). Therefore, the 
component ( Jf (TT O u)(T, 1))^ to Sp^T-) has the inequality 

(6.10) IrOrouXr,!))-1! <,/(,-) 
0S s 

9s 

Furthermore, by the C°-estimate (3.8), we also have 

(6.11) juT, i ) j g<C, 

where ju(T, l)j g is the norm as an element in T*, , D)M. Combining 
(6.10) and (6.11), and integrating R ^ -d A H(u(T))dT, we get 

A H(zß)-A H(za)<C PK{T) 
dS s 
ds 

< C max 
se[o,i] 

= C max 
se[o,i] 

dS s 
ds 

dS s 

dT 

p'K(T)dT 

ds 

Obviously, one can choose the path fS s go<s<i so that 

dS s 
max I——I ~ d Ci(Sa, S"), 

s£[0,l] ' Os ' 

and hence, 

A H(zß) - A H{za) < Cd C(Sa,Sß) := eaß, 

when Sa and Sß are C1-close. As before, the natural homomorphism 
haß : HF*(H, Sa,J : M) ->• HF*(H, S?,J : M) induces the commuta-
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jî̂  

ji+'aß 

HF, 

HF, 

(H,Sa,J 

i haß 

XH,SP,J 

: M) 

:M) 

tive diagram: 

HFÌ~°°'X\H,Sa,J:M) 

l haß 

HF^X+eaß)(H,S^J:M) 

Again since haß on the right-hand side is an isomorphism, we conclude 

p(Sß,H) < p(Sa,H) + Cd C l(Sa,SP). 

By changing the roles of a and ß, we prove the other side of the in­
equality and so 

jp(S^H) -p(Sa,H)j < Cd C , (S a
ì S ^)ì 

which in particular proves the continuity of p(-, H). q.e.d. 

Remark 6.6. We would like to emphasize that in the proof of 
Proposition 7.5, we have used the a priori C°-estimate (3.8) in an es­
sential way. 

In the next section, we will study the most important property of 
p(H, S), the dependence of p(H, S) on H. 

7. Basic properties of the invariants p(H, S) 

In this section, we fix S C M and start with considering H7s in H S-
We first prove the following easy lemma. 

Lemma 7.1. When H G H S and kHk Ci —> 0, then p(H, S) —> 0. 

Proof . Let z be any solution of 

(z = X H(z), 

z(0) e o M,z(l) G N*S. 

Then 

A H{z) = Z z*9- Z H(z(t),t)dt 
o 

hTTT(z),zi - Z H(z{t),t)dt 
o o 
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and hence 

jA H(z)j< jTTT(z)jjzj + maxjHjdt. 
o o x 0 O 

By the equation z = X H{z) it is immediately seen that 

(7.1) jA H(z)j <C Z max(jdHj + jHj)dt 
o x 

for all solutions z. Using the fact that p(H, S) is a critical value and so 
p(H, S) = A H(z) for some solution z of the equation, the lemma follows 
from (7.1). q.e.d. 

The following theorem summarizes the basic properties of p(H, S). 

Theorem 7.2. Let S C M be a compact manifold and assume that 
H,Ha,Hß eH S. Then, (1) We have 

— max (H? - Ha)dt <P(HP, S) - p{Ha, S) 

(7-2) o x 

< Z - min {Hß -Ha)dt, 
o x 

which particularly together with Lemma 7.1 leads to 

(7.3) Z -maxHdt<p(H,S)< Z - min Hdt. 
o x o x 

(2) From (1) we obtain 

jP(HP,S) - p(Ha,S)j <kHß - Hak Co, 

which in particular implies that for fixed S, one can extend the assign­
ment H H- p(H, S) to all H as a continuous function in the C°-topology 
ofH. We will continue to denote the extension by p(H,S). 

Remark 7.3. By combining Proposition 7.5 and Theorem 7.2 (2) 
we can now extend the definition of p(H, S) to the set 

H Co x Iso Ci(So : M), 

where 

H Co = the set of asymptotically constant C°-functions on T*M x [0,1], 
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Iso Ci(So : M) = the set of C1-embeddings which are isotopic to So­

In fact, one can see that we can even extend the definition to 

H Co x Iso Lip (So : M). 

It would be interesting to study the geometric meaning of p(H, S) for 
the cases where H G C° but not in C1. 

Proof. The proof of (2) immediately follows from (7.2) and so we 
need only to prove (1). Consider the linear homotopy 

H s := (1 - s)Ha + sHß. 

Although this homotopy may not be regular in the sense of Theorem 4.2 
(1), we will pretend it is so for the moment and explain the necessary 
justification in the end. Consider the equation 

du 

(7.4) 

u + J ( u -X HP{T)(u))=0, 

u(T,0) E o M,u(r , l ) G N*S, 

limT^_00u(T) = za, lim-Kx, u(T) = zß. 

For the notational convenience, we just denote p = K below. As before, 
for the pair (za,zß) with naß(za,zß) / O w e compute 

Z 

-
d_ 

dr 
A HP(r)(u(T))dT 

and 

d (A HP{T)(u(r))) = dA HP{T)(u(r))(du) - J (SHì)(uìt)dt. 
dr 

Here as before 

dr 

dA HP(r)(u(T))(—) 
1 du 

j dt 
X HP{T)(u)j2J dt<0, 

(7.5) 
H ) ( u , t ) d t = - Z p'(r)(Hß -Ha)(u,t)dt 

o 

< -P'(T) Z min(Hß - Ha)dt, 
o x 
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and hence, 

Z o o l 

-P'(T) Z min(Hß - Ha)dtdr 
-oo O x 
l — oo 

= Z -min(Hß-Ha)dt p/[r)dT 
O x oo 

= -min(Hß -Ha)dt. 
o x 

By the similar arguments as before this estimate implies 

p(Hß, S) < p(Ha, S)+ Z - min(Hß - Ha)dt, 
o x 

i.e., 

(7.6) p(Hß,S)-p(Ha,S)< Z -min(Hß-Ha)dt 
o x 

by considering the homomorphism 

haß : HFÌ-°°'X)(Ha, S,J:M)^ HFÌ~°°'X+^\HP, S, J : M), 

where eaß = — R min x(Hß — Ha)dt. Changing the roles of a and ß also 
leads to 

p(Ha, S) < p(Hß, S)+ Z - min(Ha - Hß)dt, 
o x 

i .e . , 

(7.7) 
p(Hß, S) - p(Ha, S) > Z min(Ha-Hß)dt 

o x 

= Z -max(Hß -Ha)dt, 
o x o 

where we have used the identity 

- m a x f ( x ) = min(—f(x)). 

Combining (7.6) and (7.7), we will have finished the proof if we can 
justify the use of the linear homotopy which might not be regular. To 
do this, we proceed as follows. For each given e > 0, we approximate 



r e l a t i v e f l o e r t h e o r y 565 

the above linear homotopy by C1-close regular homotopies H so that 
for all t e [ 0 , l ] 

(7.8) max I H (x, t, s) - (Hß - Ha) (x, t) I < e. 
x,s us 

Then for this homotopy, (7.5) will be replaced by 

dHp(Tî Z1 dH 
dT )(u,t)dt = - p'(T) — (u,t,p(T))dt 

u ^ 1 dH, 
< p (T) — min—— (s, t, s)dt 

Q x,s as 

< P'(T)( Z - min(Hß - Ha) + e)dt, 
o x's 

which implies 

A Hß(z
ß) - A H«(za) < ( Z -min(Hß -Ha)+Adt. 

By letting e —> 0, we are done for (7.2). To prove (7.3), we set Hß = H 
and Ha —> 0 in C1-topology and apply Lemma 7.6 and (7.2). This 
finishes the proof. q.e.d. 

8. Symplec t i c invariants of Lagrangian submanifo lds 

In the previous section, we have defined p(H, S) for each pair (H, S). 
It turns out that p(H, S) depends only on the Lagrangian submanifold 
L = <PH(o M) up to a universal normalization independent of S C M. 

To explain the normalization, we recall that the wave front set of 
exact Lagrangian submanifold L (e.g., L = 4>H{o M)) is uniquely defined 
up to the vertical translation o n M x R We now recall Proposition 2.6: 
When H H- L is given, we select the wave front of L as 

W H = {{q,r)jq = Tr(p), r = A H{z p H), p G L). 

Then Proposition 2.6 (1) implies (if we assume L is connected) 

W K = W H + c& 

for some c G R , provided H,K H- L, i.e., 4>H(o M) = 4>K{o M) = L. And 

Proposition 2.6 (2) implies that 

W H+c = W H + co& 
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for any constant co G R. The following theorem shows that p(H, S) is 
the invariant of L = 4>H{o M) up to the normalization. 

T h e o r e m 8.1 . Suppose that H,K H- L and that W H = W K- Then 

p(K, S) = p{H, S) for all S CM. 

Proof . We will use a transformation between the geometric and 
the dynamical versions of the Floer theory in an essential way. To prove 
the theorem, we have to show that for H, K as in the theorem, 

U Ì p(H, S, J) = p(K, S, J) 

for any S G Iso H fi Iso K and J G J H,S H J K,SÏ and then the theorem 
will follow by the continuity property of p for all S and J . 

We first explain some simple but crucial transformation between 
two versions of the Floer theory, one the geometric version used by 
Floer [17] and the present author [38] previously, and the other the 
dynamical version that is being used in the present paper. In the present 
paper, we have defined HF* (H, S, J : M) by considering the solutions 
of Hamilton's equation 

J.2) 
z = X H(z), 

z(0) G o M z ( 1 ) G N*S, 

and the perturbed Cauchy-Riemann equation 

(8.3) 
u+J -X H(u)) = 

u(T,0) G o M, 

u ( T , 1 ) eN*S 

for the path u : R —> Q(S), i.e., a map 

u : R x [ 0 , l ] - > T*M. 

On the other hand, one can define an equivalent object for a suitably 
chosen J which we denote by HFÌ„((PH(o M)Ì^ S,J e considering the 
intersections 4>H(o M) H N*S and the Cauchy-Riemann equation 

(8.4) 

du ïdu au I eau 
dr ~r J dt o, 
u(T,0) G 4>H(o M), 

u ( T , 1 ) eN*S 



r e l a t i v e f l o e r t h e o r y 567 

for the path u : R —> Q(L, N*S) where L = 4>H(o M) and 

Q(L, N*S) = {7 : [0,1] ->• T*M j 7(0) G L, 7(1) G N*S}. 

The important feature of both equations is that they are the gradient 
flow of A H jÜ(S) and the Floer's functional a S defined as in (2.27) respec­
tively. An advantage of the geometric version is that it depends only on 
the Lagrangian submanifold L = 4>H(o M) not on H, but as mentioned 
in Proposition 2.8, one can assume that under a suitable normalization 
of a S as in Proposition 2.8 

(8.5) A H(z p H)=a S(p) 

for all p G 4>H{o M) H N*S. We denote by a H this normalized a S. The 
following is an easy but crucial lemma that we shall use. 

Lemma 8.2. (1) The map $H • fi(S) ->• Ü(L,N*S) defined by 

7 h-». H ( ^ ) _ 1 7 

gives rise to the one-one correspondence between the set 4>H(o M) H 
N*S C Q(L, N*S) as constant paths and the set of solutions of (7.12). 

(2) The map u t-> &H(u) also defines a one-one correspondence 
from the set of solutions of (8.3) and that of 

{
du 1 H 9 u n 

ÖT ~r J dt — U ' 

uï(r,0)GH(o M), 
u(T,1) eN*S, 

where J H = {J H}, J t1 '•= ( H ( ^ H) - 1 )*J - Furthermore, (8.3) is regular 
if and only if (8.6) is regular. 

We will omit the proof by referring to [41, Appendix] for the proof 
of a similar statement. One immediate corollary of this lemma is 

Corollary 8.3. For the regular H, S and J, the isomorphism 

($H)* : HF*(H, S,J : M) -)• HF*(L,N*S, J H) 

preserves filtrations, i.e., restricts to the isomorphism 

($H), : HFÌ-°°'X)(H,S,J: M) -+ HF^00^ (L,N*S,J H), 

where the filtration on the left-hand side is given by A H and that on the 
right is given by a H. 
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In the same way as we defined p(H,S,J), we can define, for the 
regular J (in the sense that all the solutions of (8.4) are regular), 

p(L, S, J e = inf {A j e :HFÌ-°°>X)(L, N*S, J e 
A 

HF*(L,N*S,J e is surjective . 

Furthermore one can also prove in the same way as in the proof of 
Lemma 7.3 that for a fixed normalization of a S 

(8.7) p(L,S,J e ) = p ( L , S , J e ) 

for regular J e and J e . Now, we go back to the proof of (8.1). Corollary 
8.3 implies that under the normalization of a in (8.5), we have 

(8.8) p(H,S,J)=p(L,S,J H). 

Similarly one can normalize a so that 

(8.9) p(K,S,J)=p(L,S,J K), 

and denote by a S K the corresponding function. Now, we have only to 
show that the two normalizations used for H and K agree and then 
(8.7) applied to J H and J K will finish the proof. To prove a S H = a S KJ it 
is enough to prove 

(8.10) a ( p ) = a ( p ) 

for some p G 4>H{o M) H N*S C Q(L, N*S). However from (8.5) we have 

A H(z p H) = a S H(p), 

A K(Zp K) = a S K(p) 

for all p G L fl N*S. We just pick any point among them. Now the 
hypothesis W H = W K implies that 

A H(z p H) = A K(z p K). 

Combining these, we have a S H{p) = a S K{p) and so a S H = a S K. This finishes 
the proof of (8.1) and so the proof of Theorem 8.1. q.e.d. 

R e m a r k 8.4. One might a t tempt to prove (8.1) by the more fa­
miliar continuity argument of finding a path fH s g from H to K and of 
using Proposition 2.7, the fact that Spec(H, S) is nowhere dense subset 
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of iL To apply this argument, we have to make the sets Spec(H s,S) 
fixed for all s. However besides the normalization problem which can 
be solved easily as before, this approach faces a difficult problem of the 
connectivity question: Whether the set of Hamiltonians H generating a 
fixed Lagrangian submanifold L is connected or not. This is exactly the 
reason why we bypassed this difficult question using the above transfor­
mation between the geometric and the dynamical versions of the Floer 
theory. One might consider this transformation the analogoue to the 
gauge invariance of the generating function approach. 

Now, Theorem 8.1 allows us to define various kinds of homotopy 
theoretical invariants of the Lagrangian submanifold L = 4>H(o M)- We 
call these invariants capacities of L relative to S C M. 

Definit ion 8.5. Let So C M be a compact submanifold and 
Iso (So : M) be the isotopy class of embeddings of SQ. We denote 

by [So] the corresponding isotopy class on M. For a given L = (J)H(o M), 
we define 

(8.11) j(L : So) := max p(H, S) - min p(H, S) 

for any H H- L, and call it the capacity of L relative to the class [So]-

Note that the right-hand side of (8.11) is independent of the choice 
of H as long as H H- L. 

9. Wave front and normal izat ions 

The special case S = {pt} is particularly interesting in that it is 
closely related to the structure of the wave front of the Lagrangian 
submanifold L = 4>H(o M)- In this case, for each given H, the assignment 

q H- p(H, {q}) on M 

defines a continuous function on M, which is a consequence of Proposi­
tion 7.5. We denote this function by f H '• M —> M, i.e., 

f H(q)=p(H,{q}) 

and call it the basic phase function of H or of L = 4>H(o M)- The 
assignment 

H^f H: U^ C°(M) 



570 YoNG-GEUN o h 

defines a continuous map with respect to the C -topology of H and f # . 
Furthermore, it has the property 

(9.1) 1(L:{pt})=oscf H<\\H\\, 

where | |H| | is the Hofer's norm. By taking the infimum inf H^L \\H\\ in 
(9.1), we have derived the inequality 

(9.2) j(L:{pt})<d(o M,L). 

T h e o r e m 9.1 . Let G f H be the graph of f H- Then G f H C M x M is 
a subset of the wave front of L, and so f H is smooth away from a set of 
codimension at least one, and at smooth points q we have 

{q,df H{q)) G 4>H{o M) = L. 

Proof . The first statement follows from the definition of f H = 

p(H, {q}) and the fact that f Hiq) is a critical value of A H jn({q}) and so 

f H(q) = A H(Zp H) for some p G 4>H(o M) H T*M. 

The second statement follows from the general property on the wave 
front set (See [12] for example) because the only possible non-smooth 
points are those corresponding to the crossings of two different branches 
of the wave front set of L. q.e.d. 

R e m a r k 9.2. In the terminology of [12], the graph G f H selects a 
semi-simple part (or a graph part) in a canonical way. We suspect that 
this canonical choice will be useful in the study of structure of the wave 
front in low dimensions, which should involve finer understanding of the 
Floer cycles. 

Theorem 9.1 gives rise to an easy proof of the nondegeneracy of the 
Hofer's distance defined in (2.10). 

T h e o r e m 9.3. The distance defined in (2.10) is nondegenerate, 

i.e., d(Li,L2) = 0 if and only if L\ = L ̂ -

Proof. We first consider the case where L\ = o M- In this case, we 
have by definition 

d(o M,L2) = inf \\H\\. 
H^L2 
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Now, suppose that d(o M,L2) = 0. Then (9.2) yields 

j(L2 : {pt}) = 0, 

i.e., the basic phase function f H is a constant function on M , and so f H 
is smooth everywhere and 

df H(q) = 0 

for all q G M. Therefore, we have proved 

(9.3) o M C L 2 = 4>H{o M)-

Using the compactness and connectedness of M, it is easy to show that 
(9.3) indeed implies 

o M = L2, 

which finishes the proof for the case where L\ = o M- For the general 
cases of 

L\ = 4>{o M) and L2 = ip(o M), 

we first note that 

d(L1,L2) = d(ri(L1),ri(L2)) 

for any r] G D ( T * M ) . Therefore one can reduce the general case to the 
special case L\ = o M- q.e.d. 

To illustrate the meaning of the f H, we give an example for the case 
where M = Sl. 

E x a m p l e 9.4. Let us consider the Lagrangian submanifold L C 
T*S pictured as in the following figure. Here we denote by z's the 
intersections of L with the zero section, by x's the caustics and by y 
the point at which the two shaded regions in the picture have the same 
area. The corresponding wave front can be easily drawn as 
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Figure 2 

Figure 3 

Note that the points z's correspond to critical points of the action 
functional, x's to the cusp points of the wave front and y to the point 
where two different branches of the wave front cross. Using the conti­
nuity of the basic phase function f # where H t-ï L, one can easily see 
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that the graph of f H is the one bold-lined in Figure 3. We would like 
to note that the value min ̂ M F H(q) is not a critical value of A H-

Now, we are ready to provide a universal normalization which is 
continuous with respect to the Hamiltonian H. This will take care of 
the indeterminacy in defining the invariants of Lagrangian submanifolds 
L = <PH(o M)- We have defined the basic phase function f H'-M^K 
by .H(q) = p(H,fqg), and from the very beginning we have fixed a 
Riemannian metric g on M and so have the induced measure on M. 
We define the constant 

(9.4) b {H):=—±— Z f H dvol. 
vol(M) 

The following is easy to prove 

Lemma 9.5. For each H,K t-ï L, we have 

c(H,K)=b(H)-b(K), 

where c(H,K) is the constant in (2.23). 

Therefore combining Proposition 2.6, Theorem 8.f and Lemma 8.3, 
we now define the normalized version of p(H, S) by 

p(H,S) = p(H,S)-b(H), 

which now depends only on the final Lagrangian submanifold L = 
4>M{o M)-, and obviously share all the properties similar to Theorem 7.2. 
We denote the common number by p(L, S) = p(H, S). 

Definition 9.6. For each S C M, we define 

p(L,S) = p(H,S) 

for a H H- L (and so for any H). 

Theorem 9.7. Let S C M be a compact submanifold. Then p 
is a continuous function with respect to the Hofer's distance of L and 
C1 -topology of S. 

Remark 9.8. One could also take 

b(H) = minffl-(x) or maxf#(x) 
xGM x£M 

or any distinguished value of f H, if there is. We would like to note that 
for Viterbo's invariant, there is no obvious continuous universal nor­
malization. In fact, many statements in [56] should be restricted to the 
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case where the Lagrangian submanifolds coincide with the zero section 
in some neighborhoods of a fixed point in terms of the normalization 
problem. In that case, by assuming that H = 0 on the neighborhood, 
there is the canonical normalization which gives rise to zero as a distin­
guished value of f H-
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