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RICCI FLOW AND THE UNIFORMIZATION ON
COMPLETE NONCOMPACT KAHLER MANIFOLDS

WAN-XIONG SHI

1. Introduction

In the theory of complex geometry, the complete Kahler manifolds
with positive holomorphic bisectional curvature have been studied for
many years. If M is a complete compact Kahler manifold of complex
dimension n with positive holomorphic bisectional curvature, people
conjectured that M is biholomorphic to CP"™. This was the famous
Frankel Conjecture and was solved by Mori [34] and Siu-Yau [46] in
1979. In the case where M is noncompact, Greene-Wu [18] and Yau
have the following conjecture:

Conjecture. Suppose M is a complete noncompact Kdihler manifold
with positive holomorphic bisectional curvature. Then M is biholomor-
phic to C*.

Several results concerning this conjecture were obtained in the past
few years. In 1981, N. Mok, Y.T. Siu and S.T. Yau [31] proved the
following theorem:

Theorem. Suppose M is a complete noncompact Kdihler manifold
of complex dimension n > 2 with bounded and nonnegative holomorphic
bisectional curvature. Suppose M is a Stein manifold. Suppose there
exist constants 0 < £,Cy, C7 < 400 such that

(i) Vol(B(zo,7)) > Cov*", 0 < v < +o0,
. e

< <
(i) 0< R(z) < T
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where B(zg,v) denotes the geodesic ball of radius v and centered at zg,
Vol(B(zo,v)) denotes the volume of B(xg,v), R(z) denotes the scalar
curvature, and vy(x, xq) denotes the distance between x and xg. Then M
s isometrically biholomorphic to C* with the flat metric.

The method used in Mok—Siu—Yau’s paper [31] is the study of the
Poincare-Lelong equation on complete noncompact Kihler manifolds.
Their result was improved by N. Mok [32] in 1984. In his paper [32] Mok
used some algebraic geometrical techniques to control the holomorphic
functions of polynomial growth on M and obtained the following result:

Theorem. Suppose M is a complete noncompact Kdihler manifold of
complex dimension n with bounded and positive holomorphic bisectional
curvature. Suppose there exist constants 0 < Cp, C7 < 400 such that

(i) Vol(B(zo,7)) > Cov™, 0< 7 < +o0,
Cy

y(x, w0)?

Then M is biholomorphic to an affine algebraic variety.

(i) 0< R(z) < v € M.

Under the direction of S.T. Yau, the author of this paper proved the
following result in his Ph.D. thesis [43] in 1990:

Theorem 1.1. Suppose M is a complete noncompact Kéihler man-
ifold of complex dimension n with bounded and positive holomorphic
bisectional curvature. Suppose there exist constants 0 < Cy, C1 < 400
such that

(i) Vol(B(zo,7)) 2 Cor™, 0 <7y < +o0,
C
(ii) / R(z)dz < —21 - Vol(B(z0,7)), o € M, 0 <7y < 4oc.
B(zo,v) vy
Then M is biholomorphic to C".

The method which we used in [43] to prove Theorem 1.1 is the study
of the following Ricci flow evolution equation of the metric on M:

m 2 gist) = ~2R0),

where g;;(¢) is a family of metrics, and R;;(t) denotes the Ricci curvature
of ¢;;(t). Evolution equation (1) was originally developed by R.S. Hamil-
ton [22] in 1982. Using evolution equation (1) Hamilton proved [22] that
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one can deform the metric on compact three-dimensional Riemannian
manifolds with positive Ricci curvature to a metric with constant sec-
tional curvature. Many papers which are related to evolution equation
(1) have been published since 1982. For examples one can see [9], [10],
[22], [23], [24], [40], [41] and [42].

In [43] we proved that under the assumption of Theorem 1.1, the
evolution equation (1) has a solution g;;(t) for all time 0 < ¢ < 400,
and the curvature of g¢;;(¢) tends to zero as time ¢ — +oo. We then
constructed a flat K&ihler metric on M. Thus we know that M is bi-
holomorphic to C*.

After the graduation of the author from Harvard University in 1990,
we continue to work to improve the result in Theorem 1.1. We have
already found that under some weaker assumptions than that of The-
orem 1.1, the evolution equation (1) still has a solution g;;(t) for all
time 0 < t < +oo. But to study the behavior of the solution g;;(t)
as the time ¢ — 400 is a complicated problem. This problem is now
partially solved by the use of the results of Andersen—-Lempert [1] and
Forstneric-Rosay [16] in 1992 and 1993. In their papers [1] and [16]
some approximations of biholomorphic mappings by automorphisms of
C" were obtained. With the help of their results, we are going to prove
the following main result in this paper:

Theorem 1.2. Suppose M is a complete noncompact Kihler mani-
fold of complex dimension n with bounded and positive sectional curva-
ture. Suppose there exist constants 0 < ¢, C < 400 such that

Cy
dr < ———— - Vol(B M, 0< .
[ B S o OBl ), w0 € M, 05 < o

Then M is biholomorphic to a pseudoconvexr domain in C*.

Because C" is biholomorphic to some proper subdomains Q of C"*
when n > 2. These domains Q are called Fatou—Bieberbach domains.
For examples of Fatou—Bieberbach domains one can see Bochner—Martin
[6], Dixon—Esterle [15] and Rosay-Rudin [38]. Thus to construct a bi-
holomorphic map from the manifold M onto C* is somehow difficult. If
we can prove that the pseudoconvex domain which the manifold M is
biholomorphic to in Theorem 1.2 is a Fatou—Bieberbach domain, then
we know that the manifold M in Theorem 1.2 is actually biholomorphic
to C*. This might be a topic for the future study.

In this paper, §2-87 are modifications of the techniques appeared
in [43] in 1990. Therefore, §2—§7 of this paper can be regarded as a
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modified version of the author’s thesis [43]. The result in Theorem
1.1 of this paper was announced in [44]. The author would like to
thank Professor S.T. Yau for his suggestions and encouragement during
my Ph.D. degree study program at Harvard University. The thanks
are also due to Department of Mathematics, Harvard University and
Alfred P. Sloan Foundation for their financial support during the proof
of Theorem 1.1 in 1989 and 1990.

§9 of this paper contains an application of the results of Andersen—
Lempert [1] and Forstneric-Rosay [16] in 1992 and 1993. With the
help of their results on approximations of biholomorphic mappings by
automorphisms of C*, we complete the proof of Theorem 1.2.

We talked about the result of this paper in the Workshop on Rieman-
nian Metrics Satisfying Curvature Equations held at MSRI at Berkeley
in September, 1993, and also in the Midwest Several Complex Variables
Conference held at Purdue University in May, 1994.

2. Short time existence for the evolution equation

Suppose M is a Riemannian manifold with the metric
(1) ds* = gi;(x)dz'dz? > 0.

We use {R;x1} to denote the Riemannian curvature tensor of M, and
let

Ri; = g"Riji, R=g"Rij = g¢" Ry

be the Ricci curvature and scalar curvature respectively, where (gij) =
1

(gijlﬁor‘ any two tensors such as {7} and {U;;r;} defined on M, we
have the inner product
< Tijrty Uijrt >= 60" g ¢ T Usprs.
The norm of {T};;} is defined as follows:
| Toim)* =< Tijrt, Tijra > -

We use V75 to denote the covariant derivatives of the tensor {77;5}
with respect to the metric ds?, and V™ Tk to denote all of the m—th
order covariant derivatives of {7} }.
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Using the evolution equation to deform the metric on any real n—
dimensional Riemannian manifold (M, g¢;;):

d
(2) % = — 2R,

the first important thing we have to consider is the short time existence
for the solution of the evolution equation (2). In the case where M is
a compact Riemannian manifold, Hamilton in [22] proved that for any
given initial data metric ¢;; on M, the evolution equation (2) always
has a unique solution for a short time interval. In the case where M is
a complete noncompact Riemannian manifold, the short time existence
for the solution of evolution equation (2) is not true in general. It is easy
to find a complete noncompact Riemannian manifold (M, ¢;;) such that
on which the evolution equation (2) does not have any solution for an
arbitrarily small time interval. If we assume that the curvature tensor on
M is bounded by some constant, then the short time existence theorem
for the solution of evolution equation (2) was proved by the author in

[40]. We have

Theorem 2.1. Suppose (M, ¢;;(z)) is an n—dimensional complete
noncompact Riemannian manifold with its Riemannian curvature tensor

{Riju} satisfying
(3) |Riji|? < ko, on M,

where 0 < kg < +o00o is a constant. Then there exists a constant
T(n, ko) > 0 depending only on n and ko such that the evolution equa-
tion
(4) Zgij(x,t) = —2R;(x, 1),
9ij(2,0) = gij(x), Vo € M

has a smooth solution g;;(x,t) > 0 for a short time 0 <t < T'(n, ko),
and satisfies the following estimates: For any integers m > 0, there exist
constants C'(n, m, ko) > 0 depending only on n, m and ko such that

1 m
sup |VmRijkl(x,t)|2 < C(n,m, ko) (—) .
zeEM t

(5) 0

IN

4 S T(n, ko)
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Proof. This is Theorem 1.1 in [40].  q.e.d.
More explicitly we have the following corollary:

Corollary 2.2. Suppose (M, g;;(z)) is an n—dimensional complete
noncompact Riemannian manifold with its Riemannian curvature tensor
{Ri;ni} satisfying

|Rijnl* < ko, on M,

where 0 < kg < +00 is a constant. Then there exists a constant 0 <
6o(n) < +oo depending only on n such that the evolution equation (4)
has a smooth solution g;j(x,t) > 0 for a short time 0 <t < 6y(n)/vko
and satisfies the following estimates: For any integers m > 0, there exist
constants C'(n,m) > 0 depending only on n and m such that

C(n,m)-k
sup [V Rijp(x,t)|* < ¥7
zeM 4
0
(6) foro<t< o(n)

ok

Proof. 1f kg = 1, Corollary 2.2 follows directly from Theorem 2.1. If
ko # 1, we define a new metric on M:

(7) gzy(x) = \/k_ogij(ac), x € M.

We use {]N%”M(ac)} and V to denote, respectively, the Riemannian cur-
vature tensor and the covariant derivative with respect to g;;(z). From
the definition of g;;(z) it follows that

(8) |Rijp(z)]? < 1, on M.

Using Theorem 2.1 we know that the evolution equation
(9) 50ij (2, 1) = —2Ryj(x, 1),
Gij(2,0) = gi;(z), Ve e M

has a smooth solution g;;(z,t) > 0 for a short time 0 < ¢ < y(n), where
0 < 0p(n) < +oo depends only on n. We still have

C(n,m)
tmo

(10) sup |@m]%ijkl($,t)|2 <
zeM

0 S t S 00(71)7
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for all integers m > 0. Now we define

1 - 00(71)
11 gii(x,t) = —g;i(z,Vkot), z € M, 0 <t < .
(11) i(z,1) T i@, Vkol) NG
Then it is easy to see that g;;(z,) > 0 is a smooth solution of the
evolution equation (4) on 0 < ¢ < 6y(n)/\ko and satisfies (6) for any

integers m > 0. q.e.d.

Lemma 2.3. Suppose M is an n—dimensional complete noncompact
Riemannian manifold, and g;;(x,t) > 0 are smooth Riemannian metrics
defined on M x [0,T], where 0 < T < 400 is an arbitrary constant.
Suppose the following assumptions hold:

(12) %gij(x,t) = —2R;;(z,t), on M x[0,17,
(13) sup |Riri(2,0)|* < ko,
M x[0,T]

where 0 < kg < 400 is a constant. Then for any integers m > 1, there
exist constants 0 < ¢(n, m) < +o0o depending only on n and m such that

(14) e 2VERT g (2.0) < gij(x, 1) < 2Vl g (2, 0),
v eM, 0<t<T,
1\ m
(15)  sup [V" Ryjp(w, )| < e(n, m) [kO‘ (_) + kg +1] :
zeM t
0<t<T.

Proof. We can assume without lose of generality that kg = 1. If
ko # 1, we can use the rescaling technique as what we did in the proof
of Corollary 2.2. Thus we only need to prove Lemma 2.3 for the case
ko = 1. From (13) it follows that

(16) |Rijk1($,t)|2 <1, on M X [O,T].
Thus
(17) |R¢j($,t)|2 <n? on M x [0,77],

which, together with (12), yields

0
Egij(x,t) <2n, on M x[0,T],

0
—2ng;;(z,t) < Egij(x,t) < 2ng;;(x,t), on M x[0,17,
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(18)  e7*gij(2,0) < gijz,t) < €"gyj(2,0), on M x [0, 7).
Since 0 < ¢ < T, from (18) it follows that
e_znTgij(w,O) < gij(z,t) < eznTgij(ac,O), on M x [0,T].

Thus (14) is true for the case kg = 1.  q.e.d.

Using (16), (18) and the same arguments as what we used in the
proof of Lemma 7.1 in [40] we know that there exists a constant 0 <
6(n) < +oo depending only on n such that for any integers m > 1, we
have

c(n,m)

(19) sup |V™ Riipi(z,t)]* <

, 0<t<8(n),
zeM tm

where 0 < ¢(n, m) < +oo are constants depending only on n and m.
If 7" < 6(n), then (15) is already true for the case kg = 1 by (19). If
T > 0(n), for any to € [6(n),T], we define a new metric

(20) G;j(z,t) = gij(z, t+to—0(n)), * € M, O(n)—ty < t < T+0(n)—

Combining (12), (16) and (20) gives

0 )
(21) adii(e,t) = —2Rij(2.1), 0 <t < T+ 6(n) — to,
(22) |Riji(z,)> <1, on M x [0, T —to + 6(n)],

where we have used {]%Z'jkl(x,t)} to denote the curvature tensor of
Gij(z,t). Thus by the same reason as (19) we get

c(n,m)

tm

(23) sup |@m]%ijkl($,t)|2 <
zeM

, 0<t<8(n), m>1.
Combining (20) and (23) yields

24 "R t < ,
(24) ;g}\pﬂv Rijri(z,t) c(n,m) (t—t0—|—0 )

for all integers m > 1 and to — 0(n) <t < ty. Now we let t = ty, from
(24) it follows that

(25) ;gﬂ%|vm3ijkl($7to)|2 < ¢(n,m) (ﬁ)m

101
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Since to € [8(n),T] is arbitrary, by (25) for any integers m > 1, there
exist constants 0 < é(n,m) < 4oo depending only on n and m such
that

(26) sup |V Riipi(z,t)]* < é(n,m), 8(n) <t <T.
zEM

Combining (19) and (26) we know that (15) is true for any 7 for the
case kg = 1, and hence complete the proof of Lemma 2.3.

Now we start to discuss Kahler manifolds case. Suppose M is a com-
plete Kahler manifold of complex dimension n with the Kahler metric

=2 _ =~ _ g o3=0
(27) ds® = g, zdz"dz" > 0,
where z = {z!,2% ..., 2"} denotes the local holomorphic coordinate on
M. Suppose

P AR RVAS V-l
(28) k=1,2,...,n.
2* e R, zFt" € R,

Then = = {a!,2%,... 2"} is the local real coordinate on M. Usually
we use «, 3,7,6,..., etc. to denote the indices corresponding to holo-
morphic vectors or holomorphic covectors, @, 5,7, 4, . . ., etc. the indices

corresponding to antiholomorphic vectors or antiholomorphic covectors,
and ¢, j, k, [,..., etc. the indices corresponding to real vectors or real
covectors. Suppose in the real coordinate z = {2’} the Kihler metric
(27) can be written as

(29) d&* = §;;(z)da'da? > 0.

Then (29) is a complete Riemannian metric on M, and M is a real
2n—dimensional Riemannian manifold with this metric.

Applying to Kihler manifolds the result which we obtained for real
Riemannian manifolds, we have

Theorem 2.4. Suppose (M, gaﬁ(ac)) is a complete noncompact Kdhler
manifold of complex dimension n with bounded and nonnegative holo-
morphic bisectional curvature:

(30) 0< R, og5(e) < ko, VoM,



RICCI FLOW 103

where 0 < kg < +00 is a constant. Then there exists a constant 0 <
6o(n) < +oo depending only on n such that the evolution equation

(31) %gij($7t) = —2R;j(z,1),
gij(x,0) = gi;(x), VeeM

has a smooth solution g;;(x,t) > 0 for a short time
0o(n)
ko
and satisfies the following estimates: For any integers m > 0, there exist
constants c(n, m) > 0 depending only on n and m such that

fo(n)
<t < —.
70_ — k‘

0

(32) 0<t<

|2 < C(nvm) : k(zJ

tm

(33) sup |VmRijkl($,t)
zeM

Proof. Since _Raaﬁﬁ(x) > 0 on M, using (30) it is easy to see that
(34) R 5.5(x)]” < 400n*k3, Vo€ M.
If we write it in the real coordinate, we have
(35) |R¢]‘k1($)|2 < 400007@4]6(2), Yo € M.

Thus from Corollary 2.2 and (35) it follows that Theorem 2.4 is true.
q.e.d.

3. The construction of exhaustion functions

In the previous section, we established the short time existence the-
orem for the solution of Ricci flow on complete noncompact Kéahler
manifold with bounded and nonnegative holomorphic bisectional curva-
ture. To control the solution and prove the long time existence for the
solution of Ricci flow, we need to construct some good smooth exhaus-
tion functions on the manifold. For that purpose we use the results and
the techniques which were derived by R. Schoen and S.T. Yau in their
book [39], and also the iteration arguments of J. Moser [35].

Suppose (M, g;;(z)) is an n—dimensional complete Riemannian man-
ifold. We use V to denote the covariant derivatives with respect to the
metric g;;, and

(1) A=gV,V;
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the Laplacian operator with respect to the metric g;; on M. For any
two points zq, @ € M, let v(z, z¢) denote the distance between z¢ and
z. For any point @ € M and v > 0, let B(z,~) denote the geodesic ball
of radius v and centered at x:

(2) B(z,7) = {y € Mly(z,y) <7}
Now we have the result of Schoen—Yau [39]:

Theorem 3.1. Suppose (M, g;;(x)) is an n—dimensional complete
noncompact Riemannian manifold with its Ricct curvature bounded from
below:

(3) R”(ac) > —kogij(ac), Vo € ]\47

where 0 < kg < +00o is a constant. Then there exists a constant 0 <
Cy < 400 depending only on n and ko such that for any fixed point
xg € M, there exists a smooth function o(x) € C*°(M) such that

[+ v(z,20)] < p(a) < Cof1 +7(w, z0)],
(4) Ve(2)| < Co Vo e M.
|Ap(@)] < Cr,

Proof. This is Theorem 1.4.2 in the book of R. Schoen and S.T. Yau
[39]. Since that book [39] is in Chinese, we sketch their proof here.

Suppose A > 0 is a constant to be determined later and v > 1. We
try to solve the following Dirichlet problem:

AUy (z) = NUy(2), @ € Bo,7)\B(wo, 1),
(5) U, (z) =0, x € 0B(x0,7),

Uy (z) =1, x € 0B(xo, 1),
where 0B(zg,v) denotes the boundary of B(zg,7v). If 0B(zo,1) or
JdB(zg,v) has some singular points, we just make a small perturbation
of them such that the boundaries become smooth. Using the classi-
cal theory of the second order elliptic equations we know that (5) has a
smooth solution U, (z) on B(zo,v)\B (2o, 1). By the maximum principle
we have

(6) 0<U,(z)<1, x¢€ B(zxo,v)\B(zo,1).
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If v > v > 1, then

(7)
Aty (@) =y, (2)] = Aoy (@) — Uy, (2], for @ € Blao, 71)\Blzo, 1),
Uy, () — Uy, () =0, x € 0B(20, 1),
uw(x)_u%(x):uw(x) >0, xeaB($077l)'

Using the maximum principle again yields
(8)  Uple)=Uy,(2) >0, for 2 € Blao,y)\Bleo 1.
Combining (6) and (8) shows that as v — +oo the limit

(9) Uir) = lim t(x)

exists for any € M\ B(zo, 1), and satisfies
(10) 0<U(z)<1, Vae M\B(zg1).

For any point 2y € M and 6 > 0, v > 1, if the following condition
holds:

(11) B(z1,6) C B(zo, 7)\B(zo, 1),

then from (5) and (6) we have

(12) AUy (x) = Mdy(x), € B(x,9),
0<U,(z) <1, x € B(zy,9).

By Theorem 6 in [12] for the gradient estimates of the solutions of elliptic
equations,

)
(13) VU, (z)| < C(n,d, ko, A) - Uy (z), Vo€ Bz, 5),

where 0 < C'(n, §, ko, A) < +oo is a constant depending only on n, d, ko
and A. (13) can be written as

(14) sup |Viegl,(z)] < C'(n,é, ko, A).
xEB(wl,%)

Since 0 < U, (z) < 1, from (14) it follows that

(15) sup |VU,(2)] < C(n, 6, ko, A).
xEB(wl,%)
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Combining (12), (15) and the classical Schauder estimates for the solu-
tions of elliptic equations yields that for any integers m > 2, there exist
constants 0 < C'(n,m, 4, g;j|B(+,,5)) < +oo depending only on n,m,§
and the metric g;; on B(zy,06) such that

(16) sup VU (2)] < Cn,m, 6, gijl g, 5))-
2€B(z1,L34(L)m+1.5)

which, together with (15), implies that all of the covariant derivatives of
U, (z) are uniformally bounded on any compact subsets of M\ B(z, 1)
as v — +oo. Thus by Ascoli-Arzela’s lemma, there exists a subsequence
{7}, 7i = 400 as i — 400 such that

(17) U, ($)63>0—> U(z), on M\B(zg,1), asi— oo,
where U (2) is defined by (9). Combining (5) and (17) we obtain

18) {U(x) € 0 (M\B(z, 1)),

AU(z) = M (x), =€ M\B(zo,1).

From the classical theory of elliptic equations it follows that ¢/, (z) in
(5) are continuous up to the boundary 0B(zg,1). Thus combining (8),
(9), (10) and (18) yields

(19) U(x

From (14) we still have

(20) sup |ViegU(z)| < C(n, 6, ko, A).
l’EB(l’l,%)

Since x1 € M\ B(zq, 1+ §) is arbitrary, we get

(21) sup |Viogl(z)| < C(n,d, ko, A), V&>0.
zeM\B(zo,1+6)

Now we are going to show that /(z) actually tends to zero expo-
nentially as # — oo if A is large enough.

Lemma 3.2. Suppose M is an n—dimensional complete noncompact
Riemannian manifold with its Ricci curvature R;;(z) satisfying

(22) R”(ac) > —kogij(ac), Vo € ]\47



RICCI FLOW 107

where 0 < ko < +00 is a constant. Then there exists a constant 0 <
Cy < +oo depending only on n and kg such that

(23) Vol B(x,1) > e~¢47(#:%0) . Vol B(x0, 1)

for any x, 9 € M, where Vol B(x,1) denotes the volume of the geodesic
ball B(z,1).

Proof. For a fixed point @ € M and any y € M we define a function
(24) ply) =7(z,y).

Since R;; > —ko on M, using the Laplacian operator comparison theo-
rem we obtain

Ap(y) < 525+ +/(n = Dko,

(25) Yy € M.
[Vp(y)| < 1,

At the nonsmooth points of p(y), we know that (25) is still true in the
sense of distribution. Thus

(26) Ap? < 2n+2y/(n — 1)kop, on M,
and for any ¢t > 0,
(27)
/ Ap(y)?dy < / 2ndy + 2/ (n — 1)ko/ p(y)dy,
B(z,t) B(z,t) B(z,t)
(28)
/ Ap(y)*dy < 2n - Vol B(z,t) + 2t/ (n — 1)k - Vol B(z, t).
B(z,t)

By the Stokes theorem we have
2 dp?
(29) Ap(y)“dy = —— =2t - Vol(0B(z,t)).
B(r) (e.0) Ot
On the other hand,

(30) Vol(90B(z,t)) = %VolB(x,t).



108 WAN—-XIONG SHI

Combining (28), (29) and (30) gives

(31) Qt% Vol B(z,t) <2n - Vol B(z,t)
+ 2t/ (n — 1)ko - Vol B(z,t),
(32) t% Vol B(z,t) <n - Vol B(z,t)

+ty/(n—1)ko - Vol B(z,t),

(33) %[t‘n cemV =Dkt ol Bz, 1)] <0, 0 <t < +00.

Thus if ¢t > 1, then
(34) teV =Dkt o] B(a, 1) < e”V (DR LYol B(z, 1).
Now we choose t = y(z, zg) + 1, by (34) we obtain

[1+7(2,20)] 7" - emVrm Dol =20l Vol Bz, 14 5(x, 20))
(35) < e~ Vn=hko .ol B(z,1).

Since B(zg,1) C B(z,1+v(z,z0)), from (35) it follows that
(36) Vol B(x,1) > [1+7(z, 20)] ™" - e~V (= Dhov(@:20) o] B(z, 1).

Thus (23) is true.  q.e.d.

Coming back to the proof of Theorem 3.1, from Lemma 3.2 we know
that there exists a constant 0 < C'y < 400 depending only on n and kg
such that

(37) Vol B(x,1) > e~47(#20) .Nol B(2,1), Va, 20 € M.

Suppose 0 < a < +00 is a constant to be determined later, and U, ()
are the solutions of (5) for v > 3. Using the Stokes theorem and (5) we
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have
/ V2N Y () AU () - dae
B(zo,v)\B(%0,2)
U, (x)
_ o) g (). o
/33(x0,2) (@) v
- / Vile® @ (2)] - Vilh, (2) da
B(zo,v)\B(20,2)
U, (x)
38 =e2? / U,(z) —12=
(38) B (@) —
/ @) [V (2)Pda
B(zo,v)\B(20,2)

/ V2N (1) -V iy (, w0) - Vildy (2) - du,
B(zo,v)\B(%0,2)
where v is the outer unit normal vector of dB(z¢,2). Thus

o (z)

14

(39) < |V, (z)], ¥z € dB(xo,2).

From (15) it follows that

(40) sup VU, (z)| < C(n, ko, A).
xEB(xo,w—%)\B(xo,Q)

Combining (39) and (40) yields

o (2)

(41) sup 5

z€OB(®0,2)

< C(n7 kOv A)

Since 0 < U, (z) < 1, by (41) we get

(42) e / Uy ()25 g ) - € Vol(0B (20, 2).
8B (w0,2) v

Since AU, (z) = M, (z) on B(zo,v)\B(z0,2), from (38) and (42) we
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know that

/\/ eV 2Ngf ()2
B(zo,v)\B(%0,2)

:/ V@)L () AU () dae
B(l’O 7'7)\B(l’07 )

(43)
< C(n, ko, A) - €2 - Vol(0B(x0,2))

- / e V@20) |71 ()| dae
B(zo,v)\B(0,2)
— / ae @Y () - Viy (2, 20) - Villy () dz,
B(@ov)\B(%0,2)
for v > 3.
Since we still have
(44) IVy(z,z0)| <1, VaelM,

combining (43) and (44) gives

/\/ eV 2oNpf ()2
B(zo,v)\B(%0,2)

< C(n, ko, A) - €2 - Vol (9 B(0,2))

- / e V2|1 (2)2dee
B(zo,v)\B(%0,2)

+a / Uy () - =20 |V ()| dae
(l’OW)\B(l’Ov )

< C(n, ko, A) - €2 - Vol (9 B(0,2))
L& / aw(x’l’o)uw(x)de.
4 (0, )\ B(20,2
(/\ — —) / e V2L ()2
4/ JB(zo)\B(x0.2)
(45) < C(n, ko, A) - €** - Vol (9B(20,2)), for any v > 3.

Now we choose

(46) A=
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Then by (45) we get
/ e MmN () da
B(zo,v)\B(%0,2)
(47) < CO(ny ko, A) - €2* - Vol (9B(zg,2)), fory > 3.

Let v — +o00. Then from (17) and (47) it follows that
(48) / e @Y (2)2de < C(n, ko, A) - €22 - Vol (9B (0, 2)).
M\B (z0,2)

For any point y € M\B(zo,3), we want to use (48) to estimate U(y).
Since y € M\ B(z,3), we have

(50) 7($7$0) > 7(y7$0) - 17 Vae B(y7 1)
Combining (48) and (49) yields

(51) / e @)Y (2)2dx < C(n, ko, A) - €22 - Vol (9B (0, 2)).
B(y.1)
From (50) and (51) it follows that
eah(yﬂfo)—ll/ Ulz)dz < C(n, ko, \) - €2* - Vol (9 B(x0,2)),
B(y.1)

(52)
/ U(z) de < C(n, ko, A) - €37 7W20) Nol(dB(x, 2)).
B(y,1)

Using gradient estimate (21) we get

(53) |logl (z) — logl (y)| < C(n, ko, A),
Ve Byl).
(54) U(z) > e~ CkoNy(y), Ve e By, 1).

Combining (52) and (54) gives
e7200k0 N 14 (y)? - Vol B(y, 1)
< C(n, ko, A) - €297 Vo1 (9B (20, 2)).
(55)

3

U(y) < Cln, ko, A)Z - e 3 F0(mko )

—5v(y,z0)

o

N

s VyEM\B(xO,S)

Vol(9B(zo, 2))
Vol B(y, 1)
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By (37) we obtain
Vol B(y, 1) > e~ C1r(:wo) - Vol B(zo,1), y € M,

where 0 < C'y < 400 depends only on n and ky. Thus

Vol(0B(zo,2)) Carlvo) . Vol(0B(zo,2))

M.
Vol B(y,1) ~ Vol B(zg, 1) Ve

(56)

If we let © = z¢ and t = 2, from (28), (29) and (34) it follows respectively
that

4 Vol(0B(zo,2)) <2n - Vol B(zg, 2)

(57) + 44/ (n — 1)ko - Vol B(zo, 2),
o el i VT,
and

(%) ¢—2v/(n=Dko . Vol B(zg, 2)
<e=V=Dke ol Bz, 1)

2n .e (n—l)ko‘

Vol B(zo, 2)

(59) Vol B(zg,1) —
Combining (58) and (59) yields

Vol(9dB(zo, 2)) < C5(n, ko),

(60) Vol B(zo,1) —

where 0 < Cs(n, ko) < +oo depends only on n and kyg. By (55), (56)
and (60) we have

(61) U(y) < Cgs(n, ko, N a) - e~ 21(wwo) eécﬂ(y’xo),

where 0 < Cg(n, ko, A\, a) < 400 depends only on n, kg, A and a. Now
we choose

(62) a=2+Cy.

Then a depends only on n and kg. From (46) we know that

1
(63) /\:1+Z(2+C4)2
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depends only on n and ky. Combining (61), (62) and (63) we get
(64) U(y) < 07(717 ko) : 6—7(1/71’0)7 v (/NS M\B($07 3)7

where 0 < C7(n, ko) < +0o0 depends only on n and ko.

In (64) we obtain the upper bound estimate for ¢/(z). Now we want
to control U (z) from below.

Suppose 0 < m < +o0 is an integer to be determined later. v(xz, ()
denotes the distance between x and z9. We define a function

(65) f@) = 1= 2 € M\fao).
Then
(66) Vif(@) = Z)mﬂvﬁ(x, z0).
M) = — e A n) = I o)
(67) = ,Y(xw—nz)mﬂ Axy(z, z0) — ,%;;3 [V (2, zo) |

Since R;; > —ko on M, using Laplacian operator comparison theorem
we obtain

Avy(z,z0) < W(nl’—T;O) + +/(n — Dk,
(68) z e M.
IVy(z,z0)| =1, ae.

Combining (67) and (68) gives

o AW S e L i D - D

v(@, 20)™* | v (2, 2o) (@, zo) 7
x € M\{xzo}.

Now we choose an integer m such that

(70) 24/(n — Dko+n+2(A+1) <m < 2y/(n — ko+n+2(A+1)+1,

113
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where A is defined by (63). Then for any points @ € B(zq, Q#H)\B(xo, 1),
we have

1

(71) 1 < ~y(z,a9) <2mH1T < 2,
=l ey (mt )
(™) S R AL LI P

Sm_wg 1

Combining (69), (70), (71) and (72) we get

(73)  Af(e) < —— _(-1)< -2

<-A-1
N 7($7$0)m—|—1 - 7

¥ 2 € B(xg, 2771 )\ B(wo, 1).

Remark. The function f(z) defined in (65) may not be smooth at
some points of M\{zp}. For example, if x is within the cut—locus of
zg, then f(2) may not be smooth at z. But if we study the behavior of
the distance function v(z, zg) carefully, we know that at the nonsmooth
points of f(z), (69) and (73) are still true in the sense of distribution.
Thus by making a small perturbation of f(z) (for example, making a
small perturbation of f(z) by the use of mollifier technique) we can
assume without loss of generality that f(z) is a smooth function on
M\{zo}, and (69) and (73) are true in the classical sense.

Since 0 < U(x) < 1 on M\B(wo,1), (18) implies
(74) AU(z) <A, Y a € M\B(zo, 1).
Combining (73) and (74) yields
(75)  AlU(z)+ f(2)] < =1, ¥z € B(zo, 279 )\B(zo, 1).
By (19) and (65) we obtain
(76) Uz)+ fx) =1, = € dB(xo,1).

By (19), (65) and (71) we get

o U@ @) 2 T =1 (5) e % > 1



RICCI FLOW 115

Using the maximum principle, from (75), (76) and (77) we know that

, YV @ € Blag, 27%)\B(xo, 1).

=

(78) Ulz)+ f(z) >
For any z € B(zo, (%)#)\B(xo, 1), by (65) we get f(z) < %. Thus (78)
implies

2)F N\ Blao, 1),

On the other hand, from (21) it follows that

(79) Uz) > % ¥ o € Blao, (

30)  [Vlogl(e)] < Culn ko, Aom). ¥ & € M\B(ao. (3)7)
Combining (79) and (80) gives
(1) Ua) 2 eI ) A\ B(ao. 1),

where 0 < Cs(n, ko, A, m) < 400 depends only on n, kg, A and m. From
(63) and (70) we know that A and m depend only on n and ko. Thus
(81) implies

(82) U(w) > Okl @004 e M\ B(2o, 1),

where 0 < Cy(n, ko) < +0o0 depends only on n and k.

Lemma 3.3. Under the curvature assumption of Theorem 3.1, for
any point xo € M, there exists a smooth functionU(x) € C°(M\B(xo,2))
such that

0<U(z) <1,

AU(z) = NU(z),

(83) vV z € M\B(z0,3),
|Viogl(x)| < Cro(n, ko),
U(z) < Cro(n, ko) - e=7(E%0),
U(x) > 6—010(717160)'%907900)7

where 0 < Cho(n, ko) < 400 depends only on n and ko, X is defined by
(63).

Proof. Combining (18), (19), (21), (64) and (82) shows that the
Lemma is true. q.e.d.
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Under the curvature assumption of Theorem 3.1, for any fixed point
xo € M, suppose U(z) € C°(M\B(z¢,2)) is the function obtained in
Lemma 3.3. We then define another function w(z) € C°(M\B(zo,2))
such that

(84) w(z) = —logU(z) + log Cio(n, ko) + 1, € M\B(zo,2).
By the definition of w(z) we have
(85) Vuw(z) = —Vlegl(z),
AU (z)
U(z)
(86) Aw(z) = =X+ |VioglU(z)|*, = € M\B(zo,3).

Combining (83), (84), (85) and (86) we know that there exists a
constant 0 < C11(n, ko) < 400 depending only on n and kg such that

Aw(z) = —Alogl(z) = — + |V logU ()2,

L4 (2, 20) < w(w) < Cull +7(2, 20)],
(87) [Vw(z)| < Chy, V & € M\B(zg,3).

[Aw(z)] < Ch,
To prove Theorem 3.1 the only thing we need to do is to try to extend
the function w(z) which we obtained in (87) to the whole manifold M
in a suitable way such that we can still control |Vw| and |Aw| on the

whole manifold M and only in terms of n and kg. Suppose y € M is a
point such that

(88) v(2o,y) = 5(1 4 C).
Using Lemma 3.3 again we can find another function
q(z) € C*(M\B(y,2)) such that
L+y(z,y) < g(x) < Cull + (2,9,
(89) [Va(z)| < Cha, Ve M\B(y,3).
|Aq(z)] < Ch,

It is easy to find a smooth function 8(¢) € C°°(R) such that

O(t) = 07 —oo <t < 56’117
(90) 0<6(t) <1, 5Cy <t <2450,
O(t) =1, 245C1H <t< +o0o,

(01) 0/(t)] <1, —o0<t< +o0,
07(t)] < 4, —oo <t < 4oo.
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Now we just define

q($>7 forz € B($07 %)7
p(z) = 0(w(z)) - w(z) +[1 - 8(w(2))] - q(z),
for € B(xo, % + 5C11)\B(zo, %),
e(x) = w(x), for x € M\B(zo,3 + 5C11).
By the definition it is easy to see that ¢(x) € C°°(M). Since Cy
depends only on n and kg, combining (87), (88), (89), (90), (91) and (92)

we know that there exists a constant 0 < Cs(n, ko) < 400 depending
only on n and kg such that

c%)[l + 7($7 xo)] < @(x) < 03[1 + 7($7 $0)],
(93) V()] < Cs, Ve M.
[Ap(e)] < Cs,
Thus we have completed the proof of Theorem 3.1.

Corollary 3.4. Suppose (M, g;;(z)) is an n—dimensional complete
noncompact Riemannian manifold with nonnegative Ricci curvature:

(94) R”(ac) >0, VzeM.

Then there exists a constant 0 < Ch2(n) < +oo depending only on n
such that for any fized point xq € M, there exists a smooth function
p(z) € C°(M) such that

=L+ v (2, 20)] < p(@) < Cafl + v(2, 20)],
|Ap(2)| < Cra,

Proof. We let kg = 0 in (3). Then from Theorem 3.1 we know that
the corollary is true. q.e.d.

More generally, we have

Theorem 3.5. Suppose (M, g;;(z)) is an n—dimensional complete
noncompact Riemannian manifold with nonnegative Ricci curvature:

(96) Rij(ac) >0, VzeM.
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Then there exists a constant 0 < Cq3(n) < +oo depending only on n
such that for any fized point xog € M and any number 0 < a < 400,
there exists a smooth function ¢(x) € C*(M) such that

asll+ AW20)] < o) < Ol 4 Lol
(97) V()| < Sz, Vel

|Ap(a)] < S,

Proof. If a = 1, Theorem 3.5 follows directly from Corollary 3.4. If
a # 1, we define a new metric on M:

(98) gij(x) = a_égij($)7 x e M.

Then §;;(x) is still a complete Riemannian metric on M with nonnega-
tive Ricci curvature. Thus from Corollary 3.4 we know that there exists
a smooth function p(z) € C°°(M) such that

A1+ (2, 20)] < @) < Crall + (2, 20)],
(99) [Vo(e)] < Cha, Vaeel
[Ap(@)] < Cha,

Where 0 < C14 < 400 is a constant depending only on n, and (z, 2¢),
V and A denote the distance between 2 and zo, the covariant derivatives
and the Laplacian operator respectively, with respect to the metric g;;.
Combining (98) and (99) hence shows that (97) is true.  q.e.d.

If one reads [40] and [41] carefully, one would see that to establish
the maximum principle for the solution of Ricci flow on M the key point
is to construct a smooth function ¢(z) € C°°(M) such that

o1+ (2, 20)] < pl@) < Cis[l +v(2, 20)],
(100) [Vo(z)| < Cis, Ve M,
ViV;e(x) < Cisg5(2),

where 0 < C'15 < 400 is some constant. In this section we want to prove
the following result:

Theorem 3.6. Suppose (M, ¢;;(z)) is an n—dimensional complete
noncompact Riemannian manifold with its Riemannian curvature tensor

{Ri;ni} satisfying
(101) |Riinl|® < ko,  on M,
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where 0 < kg < +oo is a constant. Then there exists a constant
0 < Cie(n, ko) < oo depending only on n and ko such that for any
fized point xg € M, there exists a smooth function ¢(x) € C*° (M) such
that

=1+ v(z,20)] < p(a) < Ol + 7(2, 20)],
(102) |VQO($)| < (e, Ve M.
(ViVie()| < Ce,

Proof. By assumption (101) we have

(103) sup |Ri;(z)]* < n’ko.

zeM
Thus the Ricci curvature R;;(z) > —ny/ko for any « € M. From The-
orem 3.1 it follows that there exists a constant 0 < Cy7(n, ko) < 400

depending only on n and kg such that for any fixed point z¢ € M, there
exists a smooth function ¢(z) € C°°(M) such that

a1+ (2, 20)] < p(a) < Crall + (2, 20)],
(104) |[Vo(z)| < Cyr, Ve M.
[Ap(2)] < Cir,

Now we want to use the mollifier technique to modify () such that
after the modification, V;V;¢(2) can be bounded by some constant
depending only on n and kg. This mollifier technique was given by
Greene-Wau in their paper [19]. We choose

(105) po=r (k_lo) .

For any point 2 € M and any vector V € T, M, we use T, M and [|V]||
to denote the tangent space of M at x, and the length of V' respectively.
For any v > 0,

(106) B.(0,7) ={V € T.M[||V]| < 7}

denotes the ball of radius + in the tangent space T, M. Since |Rijk1|2 <
ko on M, using the comparison theorem we know that for any point
x € M, the exponential map

-~

(107) exp,: By (0, po) = M
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is smooth. Now we choose a smooth function «a(t) € C*°(R) such that

alt) =1, —o0 < t < 1po,
(108) 0<a(t) <1, gpo<t< gp0,
at) =0, 1po <t < 4o,
(109) lo/ (t)] < p%, —00 < t < +o00,
o (1) < 40 _oo <t < +o0.

0

We define a new function #(z) on M:
(10) v = [ allVI)-glexp, VIV, Y€,
VelzM

Then as what Greene-Wu did in their paper [19], ¢ (z) € C*°(M) is
a smooth function and there exists a constant 0 < Cis(n, ko) < +00
depending only on n and kg such that

ol v(z20)] < ¥(2) < Cis[l + (2, o),
(111) |V¢($>| < C’lg7 Ve M.
ViV (2)| < Cs,

Thus we know that Theorem 3.6 is true.  q.e.d.

If we use the iteration argument of J. Moser [35] to control V;V; U (z)
for the function ¥ (z) in Lemma 3.3, then by the use of technique (92)
we can also construct a smooth function ¢(z) € C*° (M) such that (102)
is true. This is what we did in §3 of [43].

4. Maximum principles on noncompact manifolds

In the previous section, we constructed some smooth exhaustion
functions on complete noncompact Riemannian manifolds. In this sec-
tion, we are going to use these exhaustion functions to establish the
maximum principles on complete noncompact manifolds for the solu-
tions of parabolic equations. In this section we always make the follow-
ing assumption:

Assumption A. Suppose (M, g;;(z)) is an n—dimensional complete
noncompact Riemannian manifold with its Riemannian curvature tensor
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{éijkl}- Suppose 0 < T, ko < 400 are some constants and g;;(z,t) > 0

is the smooth solution of the evolution equation

(1) %gij(x,t) = —QRZ'j(ac,t), on M x [O,T],
9ii(x,0) = gij(x), @€ M,

and satisfies the following estimate:

(2) sup |Rijui(z,t)|* < ko.
M x[0,T]

Under the stronger assumption that M has positive sectional curva-
ture at time ¢ = 0, some maximum principles were established by the
author in [41]. Using the similar arguments as what we did in [41] and
the exhaustion functions constructed in the previous section one can es-
tablish the maximum principles under Assumption A. Since the proofs
are basically the same, we omit many details, which can be seen in [41].

Under Assumption A, we use

(3) d3* = gi;(x)da'da’ > 0,
(4) ds? = gii(x,t)da'da’ >0, 0<t<T,

to denote the metrics on M, and use V to denote the covariant deriva-
tives with respect to ds?, use V or V? to denote the covariant derivatives
with respect to ds?. We use A or A; to denote the Laplacian operator of
ds?. For any two points x,y € M, we use v;(z,y) to denote the distance
between z and y with respect to metric ds?.

Lemma 4.1. Under Assumption A, we have

(5) e” Wkl gt < ds? < e2Vrholgs? 0 <t < T,

e—\/nkot ) S 6Vnk0t

70($7y)§7t($7y 70($7y)7 x,yEM.

Proof. This is Lemma 4.1 in the author’s [41]. q.e.d.

From Lemma 4.1 it follows that for any ¢ € [0, 7], the metric ds? is
equivalent to the metric ds?. Thus ds? is also a complete Riemannian
metric on M.
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Lemma 4.2. Under Assumption A, for any integers m > 1, there
exist constants 0 < C'(n,m) < 400 depending only on n and m such
that

1\" m
6) sup V" Rijua(r, O] < C(n,m) [k (;) s “], 0<t<T.
zeEM

Proof. This actually is Lemma 2.3. q.e.d.

Lemma 4.3. Under Assumption A, we have

T
T 2
(7) / |VRijk1($,t)|dt < QC(n, 1)51 |:\/T ko + 5} . ké:| , x €M,
0
where C'(n, 1) is the constant in (6).

Proof. Let m = 1. By (6) we get

k 3
sup |VRyu(z,0)]> < C(n,1) - [70 + kg] L0<t<T,
zeM

2 3
(8)  sup |[VRiu(x,t)] < C(n,1)7 - [ﬁ + kg] L0<t<T,
zeM \/Z
T T 3 3
/ |VRijk1($,t)|dt < C(n, 1)51/ [ﬁ + ké:| dt, » € M.
0 o LVt

Thus (7) is true.  q.e.d.

Lemma 4.4. Under Assumption A, for any fived point zqg € M,
there exists a function (x) € C(M) such that

22l 4 70(2, 20)] < (x) < Cofl + yo(, 20)],
9) IVip(a)] < Cy, VzeM,
IViVi(2)] < Co,

where 0 < Cy < 400 depends only on n and ky.

Proof. By definition we have Ry(2) = Rijui(2,0). Thus by (2) we
get

(10) sup | Rijn(2)|? < ko,
zeEM

and Lemma 4.4 follows directly from Theorem 3.6. q.e.d.
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Lemma 4.5. Under Assumption A, suppose 1(z) € C*(M) is the
function which we obtained in Lemma 4.4. Then there exists a constant
0 < C3 < 400 depending only on n, ko and T such that

L1+ (2, 20)] < ¥(e) < Coll + (. a0,
(11) Viv(z)] < Cs, on M x [0,T].
IViViv ()] < Cs,

Proof. From (5) it follows that

(12) eV Ty (e y) < yile,y) < eV Ty () y),
z,ye M, 0<t<T,
(13) e 2Vrho TG () < gij(a,t) < VTG (2),
0<t<T.

Using (9) and (12) we have

(14) C%;[l + ez, 20)] < P(x) < Cyll +velz,20)], on M x[0,T],

where 0 < Cy < +oo depends only on n, kg and T'. Since (z) is a
function,

(15) Vig(z) = Vi(z), on M x [0,7],
which together with (9) and (13) yields
(16) |Vf¢($)| < 05(717 kOvT)v on M x [OvT]

By definition we have

S S _ (@) d(z)
VZV]¢($) - 8$28$] - F”($,0) 8$k 3
0*¥(x) 9 ()
Avl = B L3
where {Ffj(w, t)} denote the Christoffel symbols of g;;(x,t). Thus
9y (@)

ViVip(z) = ViViy(a) — [[f(x,t) — TF(2, 0)] o

(18) o B
ViVig(e) = ViV (e) = [ (e, 1) — I5(2,0)] - Vitb(z).
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Using (13), Lemma 4.3 and the arguments developed in the proof of
Lemma 4.3 in [41] we obtain

(19) |Ffj(ac,t) — FZ(QE,O)P < Cg(n, ko, T), on M x[0,T],
which together with (9), (13) and (18) implies
(20) [ViVip(e)| < Cr(n, ko, T), on M x[0,T].

Combining (14), (16) and (20) we know that (11) is true.  q.e.d.

Lemma 4.6. Under Assumption A, for any constant 0 < Cg <
+oo, we can find a function 0(x,t) € C*(M x [0,T]) and a constant
0 < Cy < 400 depending only on n, ko, T and Cg such that

(21) 0<6(z,t) <1, on M x[0,T],
cyt Cy

22 — 9 <f(x,t) < ————— on M x [0,1],

(22) L+ 7o(z,0) ~ (1) < L+ vo(=, zo) 10, 7]
0 2|V ,0/?

(23) %gAO— WOP = 4, on M x 0,71,

Proof. Basically this is the same as what we did in the proof of
Lemma 4.4 in [41], the only difference is that we replace the function
¥ (2) in Lemma 4.3 of [41] by the function (z) we obtained in Lemma
4.5 of this paper. q.ed.

Now we can prove the following maximum principle on noncompact
manifold M.

Lemma 4.7. Under Assumption A, suppose o(z,t) is a C™ func-
tion on M x [0,T] such that

22 = Ap+Q(p,a,t), on M x[0,T],

at

(24) lp(z,t)] < Crg < 400, on M x [0,T],
¢(z,0) <0, on M,
Qp,z,t) <0, if ¢ > 0.

Then we have

(25) e(z,t) <0, on M x[0,T].
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Proof. Using Lemma 4.6 and the same arguments as what we did in
the proof of Lemma 4.5 in [41], we know that Lemma 4.7 is true.
q.e.d.

Theorem 4.8. Under Assumption A, suppose p(z,t) is a C* func-
tion on M x [0,T] such that

aa—wIAQO+011|Vk99|2—I—Q(QD,$,t), on M X [OvT]v

0
(26) p(z,1) < Chp < o0, on M x [0,T],
¢(z,0) <0, on M,
Qp, 7, t) < Crap, if o >0,

where 0 < C'g,Ch11,Cha < +00 are some constants. Then we have

(27) e(z,t) <0, on M x][0,T].

Proof. Basically the same as the proof of Theorem 4.6 in [41], the
only difference is that we use Lemma 4.7 of this paper instead of Lemma
4.51in [41].  q.e.d.

Now we are going to establish another kind of maximum principle
on M.

Lemma 4.9. Under Assumption A, for any fized point xqg € M and
constants € > 0, h > 4, there exist a function 8(x) € C*°(M) and a
constant 0 < C13 < +oo depending only on n, kg and € such that

0<0(z)<1, onM,
(28) 6(z) =1, V z € Bo(zo, h),
f(z) =0, V & € M\Bo(zo,2C2h),

IN

o (1) vaco

(29)

g%(ﬁ)lﬁ, Ve

where Cy is the constant in (9) and

Bo(zo, h) = {z € M|yo(z,z0) < I},

(30) Q= {2 € M|#(z) > 0}.
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Proof. From (96), (99) and (101) in §4 of [41] it follows that there
exist two functions x(¢) and 7(¢) such that

X(t) € C[0, 3h),

X(t) =1, 0<t<2h,
(31) x(t) > 1, 0<t<ZIh,

0 < X/(t) < Gy()Fe, 0<t < Ih,

(6] < G, 0<t < gh,

() = <y 0<t<ZIh,
(32) n(t) =0, Th <t < +oo,

n(t) € C*[0, +00),

where 0 < C14 < 400 depends only on £. Suppose ¥ (z) € C*(M) is
the function which we obtained in Lemma 4.4, we define

(33) 6(z) =n (%f)) , x € M.

Since h > 4, by (9) we get

Cs
YU > 9h, ¥ @ € M\By(wg, 2C2h).

b =

- {w:) < 2h, Vax € By(xo,h),

Combining (31), (32) and (34) yields that §(z) € C*°(M) and (28) is
true. Hence (29) follows from (9), (31) and (33). q.e.d.

Lemma 4.10. For the function 0(x) which we obtained in Lemma
4.9, there exists a constant 0 < (5 < 400 depending only on n, kg, e
and T such that

1 Cis (1 \'™
2 < 2
vl(@(x) =7\ , Ve,
(35) 0<t<T.

7% () | < 5 (o)

Proof. Using Lemma 4.9 and the arguments which we used in the
proof of Lemma 4.5 we know that (35) is true.  q.e.d.
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Lemma 4.11. Under Assumption A, suppose there exist constants
0 <e, Cig, Ci7 < +o0 and p(z,t) € C°(M x [0,T]) such that

aa_f:A@+Q(%$7t), on M x [0,T],
(36) p(z,0) < Cie, on M,
Qp,x,t) < =Crrp'ts, if o > Chs.

(37) QO($,t) < 6(167 on M X [07T]

Proof. Using Lemma 4.10 and the arguments which we used in the
proof of Lemma 4.9 in [41] we know that Lemma 4.11 is true.  q.e.d.

Lemma 4.12. Under Assumption A, suppose 0 < e,C4g, C17,Cg <
+oo are constants and ¢(x,t) € C°°(M x [0,T]) such that
%—f:A@—I—Q(@,x,t), on M x [0,T1],
(38) ¢(2,0) < Cye, on M,
Q(S‘Qv $,t> < %|V2§0|2 - 017991+67 Zf@ > 016-

Then

(39) QO($,t) < 6(167 on M X [07T]

Proof. Using Lemma 4.11 and the arguments as we used in the proof
of Lemma 4.10 in [41] we know that Lemma 4.12 is true.  q.e.d.

Lemma 4.13. Under Assumption A, suppose
0 <e, Cr6,C17,C18,Cr9 < +00
are constants and p(x,t) € C°(M x [0,T]) such that

%—f:A@+Q(@,x,t), on M x [0,T],
o(z,0) < Cig, on M,
Qg w,t) < L2V + - Vigp

—Chglti|*p — Crr'te, if o > Clg,

(40)
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where {1;} is a tensor. Then

(41) p(z,t) < Ci,  on M x[0,T].

Proof. The proof follows from Lemma 4.12 and the inequality

A\
;- Vo —C i 25 < |—
Vi - Vip — Ciglth]"p < 1Chog

Theorem 4.14. Under Assumption A, suppose @(x,t) € C*°(M X
[0,T]) and 0 < &, Cy1,C13,C16,C17,C1s,C19 < +00 are constants such
that

%:A@+Q(@7xvt)7 07”&]\4)([0#?]7
o(x,0) <0, on M,
(42) Qp, z,t) < C11|Vip]? 4+ Crap, if 0 < o < Che,
Qg w,1) < L2Vl + ¢ - Vigp
—Chgltil*p — Cizp™te, if ¢ > Che,

where {1;} is a tensor. Then

(43) e(z,t) <0, on M x[0,T].

Proof. From Lemma 4.13 it follows that
p(z,t) < Ci, on M x[0,T].

Using Theorem 4.8 we thus complete the proof. q.e.d.

5. Preserving the Kahlerity of the metrics

Suppose ¢;;(z,t) > 01is the smooth solution of the evolution equation
J
(1) %gij(x,t) = —2R;;(x,t), on M x[0,T].

In this section we want to show that if ¢;;(z,0) is a Kdhler metric on
M, then g;;(z,t) are also Kdhler metrics for any ¢ € [0,77]. To prove
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this statement we need to use the maximum principles established in
the previous section.

Theorem 5.1. Under Assumption A of §4, if M is a complex man-
ifold and g;;(x) is a Kdhler metric on M, then g;;(x,t) are also Kdhler
metrics for any t € [0,T].

Proof. Since M is a complex manifold, we suppose that M has
complex dimension n, so that M is a real 2n—dimensional noncompact
manifold. Suppose z = {z!,22, ..., 2"} is the local holomorphic coordi-
nate on M, and

P AR RVAS V-l
(2) k=1,2,...,n.
2k e R, 25" € R,

Then » = {z', 2%, ..., 22"} is the local real coordinate on M. We use
1,7, k,l,... to denote the indices corresponding to real vectors or real
covectors, a, 3,7, 0, ... the indices corresponding to holomorphic vectors
or holomorphic covectors, @, 3,7, 8, . .. the indices corresponding to an-
tiholomorphic vectors or antiholomorphic covectors, and A, B,C, D, ...
to denote both a, 3,7,4,... and @, 3,7,9, . . ..

As a real 2n—dimensional Riemannian manifold, M has real tangent
space TrM and real cotangent space Ty M:

2n
0
TrM = R - -
(3) R @ 8$Z 1
2n '
(4) M = PR - da'.
=1

If we complexify TrM and TZAM, we get the complex tangent space
TcM and complex cotangent space TM of M as a complex manifold:

2n
0 0
(5) T@zw:Tsz@@(C:Q}(C-M:Q}(C87
=1 A

13} 13}
:@C@ ?Cﬁ7

129
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2n
(6) TeM =TgM @ C= @ C - da’

=1
=@c i =pcC-d="PcC-d7’,
A o I}

{afa =3 (5om — V- Toemm)
7= =5 (5o= +V-T7ze)
dz® = dz® + /—1dz°t",
{d?a = dz® — \/—1dz*t".

If we denote

J J

(1’0) = - (071) — -
(9) T M @@My, 7O N @@%a,
10 700 =R C-d*, T*OYMm =EDC.dz",
(10)
then we have the following decompositions:
(11) TeM = TUO M g 7O g,
(12) TeaM =700 g 7OV,

Under Assumption A of §4, we let
(13) ds? = gii(x, t)da'de? >0, for0<t<T.

Using (8) we can write ds? in terms of complex coordinates on M as
follows:

ds? =gap(z, t)dzAdzB
(14) =gap(2, 1)dz"d2" + g.5(z, 1)dz"dz"
+ gap(z, 0)dzdz" + g _5(z, 0)dz"dz", 0 <t <T.

Since (14) comes from (13), it is easy to see that the following property
is true:

905(27 t) = 955(27 t)7
(15) on M x [0,T],

955(27 t) = gaﬁ(27 t)7
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which can be simply written as
(16) gaB(2,t) = ggg(z,t), on M x[0,T],

where we have denoted
(17)

By the definition of Kihler metric, ds? is a Kihler metric if and only if

9ap(2,1) =0, g55(2,1) =0,
(18) Vze M.

agag(z,t) _ agvg(z,t)
FEal - FEE

Similar to (¢") = (g;;)~" in the case of real coordinate, in complex
coordinates case we define

(19) (9*7) = (9a8)~".

The Riemannian curvature tensor { R;;z(,t)} can also be extended lin-
early uniquely to Tc M from Tr M, thus we get a 4-tensor { Rapcp(z,t)}
on TcM. The new curvature tensor {Rapcp(z,t)} has the same prop-
erties as {Rj;jn(z,t)}:

Rapep = —Rpacp = —Rappc = Repag,
(20) Rapcep + Rpcap + Rcap =0,
VeERaBcDp + VaRprep + VBREACD = 0.

Similar to (16) we still have

(21) W:Rzggﬁ(z,t), on M x [0,T].
We can also define

(22) Rap(z,t) = ¢“P(2,t) - Racsp(2,t), on M x [0,T],
(23)  R(z,t) = g*P(z,t) - Rap(2,t), on M x[0,T].

It is easy to see that { R4p(z, )} is also the linear extension of { R;;(x,t)}

from TrM to TcM. Since g;;(z,t) is the solution of evolution equation
(1) on M x [0,T], we have

d
(24) E!}AB(ZJ) = —2Rup(z,t), on M x[0,T].
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For the evolution of the curvature tensor, we have

Lemma 5.2. Suppose gap(z,t) satisfy (24) on M x [0,T], then we
have

Jd
ERABOD =ARapcp + 2(Bapep — Bappe — Bapse
(25) + Bacep) — 9" (RepopRrA + Rapcp RrB
+ RaprpRrc + RapceRrp),
Jd
(26) ERAB =ARap +29“P ¢ RoappRpr
—29“PRac Rpp,
Jd
(27) ER =AR+ QQABgCDRAcRBD,

_ ,EF _GH
where BABCD =g q REAGBRFCHD'

Proof. Since g;;(x,t) satisfy evolution equation (1), from Theorem
7.1, Corollary 7.3 and Corollary 7.5 in R.S. Hamilton [22] we have

0
ERZ'W =ARijn + 2(Bijr — Bijik — Bajr + Birji)
(28) — ¢" (RpjiRyi + RipriRy;

+ Riipi Ryr + RijrpRyl),

8 T S
(29) ERZ']‘ :ARZ']‘ + 2¢g%" ¢? RyigiRrs — QquRpqu]‘,
9 g
(30) SR =AR+ 20" gM Rip. R;1,

where B;iri = ¢ g% Rpiq; Rrksi. Writing (28), (29) and (30) in terms of
complex coordinates, we know that (25), (26) and (27) are true.  q.e.d.

Using Bianchi’s Identity (20), it is easy to show that

(31)

EF GH
Bappc — Bapep = 977 97" RpapaRrucp,
Bapcp = Bpapc = Bepas,

which together with (25) yield

Jd
ERABCD =ARagcp — 20" ¢“ " RpapaRrnep
(32) — 20" M R aapRrere + 29" ¢“Y Rpaco RrBED

— ¢ (RgpopRra + RapcpRrB

+ RapepRrc + RapceRrip).
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By the definition of {Rapcp(z,t)} we obtain
(33) |Ragop(z,t)1* = |Riju(z,6)|*, on M x[0,T],
where

(34) |Rijri(2,1)]> = 9797 "9" 9" Rijri Rpgrys,
|Rapep(z,t))? = g2 PgBl¢g““gPHR spcp Rurcn.

Thus under Assumption A of §4, we have

(35) sup |RABOD(Z7t)|2 < kg.
M x[0,T]

To avoid the complicated computation on the change of the metrics
gaB(z,t) among the proof of Theorem 5.1, we use the abstract tangent
vector bundle method which was originally derived by R.S. Hamilton in
[23]. We pick an abstract vector bundle V' which is isomorphic to the
complex tangent bundle TcM defined by (5), but with a fixed metric
Gap on the fibers of V. We choose an isometry U = {U5} between
V and TeM at time t = 0, and we let the isometry U evolve by the
equation

J
(36) Eug‘ =g Replty, 0<t<T,
where ¢g4“ and Rcp are defined by (19) and (22) respectively. Then
the pull-back metrics

(37) gaB(z,t) = gcp(z, 1) -Z/{g(z,t) -Ug(z,t)

remain constant in time, it is easy to see that

(38) %ﬁAB(z,t)EO, 0<t<T,

and U remains an isometry between the varying metric gap on TcM
and the fixed metric gap on V. We use U to pull the curvature tensor
on TeM back to V:

(39) EABCD(ZJ) = Rprcn -Ufugugug, 0<t<T.

We can also pull back the Levi-Civita connection I' = {T'G 5} on Te M to
get a connection I' = {I'{ 5z} on V, the covariant derivative of a section
w = {wA} of V is given by

dw? o
9.8+

(40) Vpw? = [
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Moreover, we can take the covariant derivatives of any tensors of V' and
TcoM. In particular we have

(41) ViUE =0, Vaijpe=0, 0<t<T.
We can also define the Laplacian operator
(42) ARupep = g"'VEVrRapep

to be the trace of the second order covariant derivatives. Similar to (32)
it is easy to show that

EEABCD :AEABCD - 2§EF§GHEEABG§FHCD

(43) — 205G Ry aap Risne + 205 39" Ry aco Resip,
where
(44) (G*7) = (Ga) "

For the details of this technique, one can see Hamilton [23].
By the definition of {Ripcp} we have

(45) |Rapcp(z, 0> = |Rapep(z,1)])?,  on M x [0,T],
where
(46) |Rapcp(z,t)|? = gAFGPYGO9GPH R ypop RErFan.

Now we define a function on M x [0, 7T

~&7
S‘Q( ) gaégﬁcgwgg nROfﬁ’WngCcrn —I_g ot ﬁc ’VUg nRaﬁwéRéCm

(47) + GG TG R R e

4 P TR on M x [0,T].

s e

It is easy to see that p(z,t) € C*°(M x [0,71]) is a well defined smooth
function and is independent of the choice of the coordinate {z*} on M.

By the hypothesis of Theorem 5.1, the metric gap(z,t) is Ké&hler
at time ¢t = 0, i.e., gap(z,0) is a Ké&hler metric. Thus by definition
Gg4B(2,0) is a Kéhler metric, and from (18) it follows that

(48) Gop(2,0) =0, Gz5(2,0)=0, Vze M.
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By (38) we obtain

(49) gaB(z,t) =gap(2,0), ze M, 0<t<T,
which together with (48) yield

(50) 9ap(2,t) =0, gz5(2,0) =0, on M x[0,T].

For any point z € M, from (48) we know that there exists a local
holomorphic coordinate {z“} such that

(51) gaﬁ(zv 0) = 5&5
at one special point z. Using (49) we get
(52) 9,5(2,t) =0ap, 0<t<T.

Since (§4P) = (gap)~!, combining (50) and (52) implies

§20(2,t) = 0, F0(2,8) = 0

(53) 35(27 ) 1 g (Z7 ) b
G (z,t) = 0ap.

Similar to (16) and (21) we also have

(54) gaB(z,t) = g7z 5(z,t), on M x[0,T],

(55) Rapep(z,1) = Rygoplzt),  on M x[0,7),

In the following computation we always assume that the local coordinate
{2%} satisfies (51) at one point. Combining (35) and (45) yields

(56) |§ABCD(Z7t)|2 < ko, on M x [O,T].

Thus by (53) we get

(57) Z Rapop - Rapep < ko.
AB.C.D

From (47) and (53) it follows that

22 t) = Y {IRaposl® + 1Bzl + Bl + 1B 5517}
a,B,7v,8

(58) = Y |Rapsl™

A7B7,y75
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Thus

(59) w(z,t) >0, on M x[0,T],
and ¢(z,t) = 0 if and only if

(60) EAng(z,t) =0, forall A, B,~,é.

By (43) we obtain

5 RABWS ARABWS - QQEFQGHREABGRFHw
(61) — 295G Rpacs RFB -
+ 2657 5" Rp sy RrB 1S

From (53) we still have

GG Rpapa Rimys =RpapcRyg,;
(62) :RO‘ABﬁREEwg + RaABERaﬁWg

+ EEABﬁEaEmS + EaABﬁéaﬁw&

PG R acs Rep s :EEAGSEEBGW
(63) =Raoaps Rzpp, + R, a55 Rap sy
+ REABSRO[BQW + R—AﬁgRaBﬁw

777G Ry acy Ripus =RpacRppgs
(64) =RoapBspzs + B, 45, Banss
+ RaAﬁwRaBﬁé + RaAﬁwRQBﬁ‘g

Combining (62), (63) and (64) shows that (61) can be written as
9 ~ - - -
(65) %RABWS = AR4Bvs + Roper * Rarag,

where ECDEF denote the general terms of the curvature tensor, EGHag
denote those terms on which the third indices and the fourth indices are
unbar indices, and * denotes the tensor product and linear combinations.
From (38) and (58) it follows that

dy

0 ~
(66) n = 2R ABys - T — R Bs,
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which together with (65) implies

) - _ _
5’; 2R 4p~s - [ARaB~s + Roppr * Ramag)

(67) = A|R s> = 2|V RaBs)? + 2Ropir * Rotias * Rapys
= Ap — 2|VRaps|* + 2RopEF * RGHap * RABys:

It is easy to see that
(68) 2RcpEr * Rames * Rapys < C(n) - |Reppr| - |Rapqsl,

where 0 < C'(n) < 400 depends only on n. Combining (56), (58) and
(68) yields

(69) 2Rcppr * Ramap * Ragss < C(n) - Vo - ¢,

which together with (67) imply that

%2 < A — 2|V Rapys + Cn) Vo - .

(70) a0

Finally we have

(71) 8@;7 D < Ap(z,t)+C(n \/_ p(z,t), on M x[0,T].

Since by the hypothesis of Theorem 5.1 g4p(z,0) is a Kdhler metric, we
obtain

(72) Raps5(2,0) =0, VA B,7,65
thus from (58) it follows that

(73) v(2,0)=0, Vze M.

By (57), (58) and (59) we still have

(74) 0 <p(z,t) <ky, onMxI[0,T1].

Combining (71), (73), (74) and using maximum principle Theorem 4.8
we get

(75) p(z,t) <0, on M x[0,T],
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which together with (74) implies

(76) p(z,t) =0, on M x[0,T].

Thus from (60) and (76) it follows that

(77) Rapys(z,0) =0, on M x [0,T).

By the same reason we have

(78) Ropap =0, Rypz=0, R, =0, on M x[0,T].
Now we define

(79) Rap(z,t) = P (z,t) Racnp(z,1).

By (39) we have

(80) Rap(z,1) = Rep(z,t) - US - UE,

(81) Rop = Rap -V&-VE,  where (V) = UE)™.

From (37) we have

~AB _ CD . y)A . B

g°P = GAB . u§ - up.

Combining (81) and (82) shows that (36) can be written as

o . ~
(83) Eug‘ = P Rppls.
Suppose the coordinate satisfies (53) at one point. Then
d A D A

By the definition of 4 = {U#} one can choose a base of the vector
bundle V' such that

1 ifA=B
(35) UR(=0) =4
0 if A#B.
From (84) it follows that
0 o _ D o _ D a D a
(86) %uﬁ = Rggly = RgUy + R 55,
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By (53) and (79) we obtain

Raﬁ(zv t) = §CDRaCﬁD = Raﬁﬁp
(87) = Rompy + Bovp,

which together with (77), (78) yields

(88) R.p(z,t)=0, on M x[0,T].
Similarly,
(89) R(2,t)=0, on M x [0,7],

which together with (86) implies

8 (o3 D x
From (85) we have
(91) Ug(z, 0)=0, VYa,p,

which together with (90) yields

(92) Ug(z,t) =0, on M x][0,T].
Similarly,
(93) Ui (z,t)=0, on M x[0,T].

By (39) we get

(94) Rapep(z,t) = Reran(z,t) - VEVEVSVE,
where (V4) = (UF)~L. From (92), (93) it follows that
(95) VE(z,1) =0, Vi(z,t)=0, on M x[0,T].
Combining (94) and (95) we know that

RAng(Z,t) = EEFGH(ZJ) -VEVEVWG}/;I

(96) = Rupap(z,1) - VfVEV;“Vf,
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which together with (77) implies

(97) Rapys(z,t) =0, on M x[0,T].
Similarly,
Rypes(2,1) =0,
(98) Rysap(z,t) =0, on M x [0,T].
R%AB(Z,t) =0,

Combining (81) and (95) we get
Rag(z,1) = Rap(z,1) - VAVE = Ros(z,1) - VIV,

which together with (88) implies

(99) R,p(z,t) =0, on M x[0,T].
Similarly,
(100) Rz(2,t)=0, on M x[0,T].

From (24) and (99) we know that
d
(101) %gaﬁ(z,t) =0, onM x][0,1].
Since g4p(z,0) is a Kdhler metric, from (18) it follows that

9a3(2,0) =0, z€ M,

which together with (101) implies

(102) Gap(z,t) =0, on M x[0,1].
Similarly,
(103) 953(2: 1) =0,  on M x[0,T].

Using (97), (98) and (20) we get

Raﬁwg = Rwﬁag = Rozgwﬁ = RwEaE’
(104) VURaﬁwg = VQRUEWE = VWRaﬁn37 on M X [0, T],
Vallagys = Valiags = Villapm:
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which implies that
(105) VoRgy =VgRey, on M x[0,T].
From (24) it follows that

ﬁ lagaﬁ(zvt) _ aqwﬁ('zvt)]

ot oz 0z

a (0 a [0
106) = 5% (g0.7) - 3= (07)

RS
027 0z’

By definition we have

OR =
_ VB A A
Valt,5 = Er- P Bag — Uigltva,
OR -
_ of A __pA
(107) Vo Rg=—=22 ~ 4R — D5 Raa,
where
1 dgpp | 09ap  0gaB
1 ¢ — 2,0D _ ‘
(108) AB = 59 { 94 T 9B dzP

Combining (106) and (107) gives

9 [%9.5 99.5

ot | 9z 0z
A A

(109) = 2VoR 5 — 2V R 5+ 2T R,z — 2T R =

A A
+ 20 Rg = 20N R,

which together with (105) and the fact that I'Z =2 implies

dg.= 9.3
(110) 8[—‘%5 alE

A _ A
ot | ov 8?] N QFQERWA 2FW5RQA

5 3 . 5 _ X—R _
=20 pltys + 21 gl 5 — 21 gRas = 2 5 R 3,

which together with (99) yields

9 [99.5 995 3 3
(111) E |: 82’7 — 8ZOZ :| = QFQBR'VS - QF’VBRO‘S

141
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From (108) we know that

(112) 7=~ {a‘w 0921 89“5}.

oF T3 FECRR =Ry

Combining (102), (103) and the fact that (¢4%) = (gap)~" we get

(113) ¢°Pz,t) =0, ¢°°(z,t)=0, on M x[0,7],

which together with (112) implies

3 _l 3 89775 G B agaﬁ
(114) Vr=39" 9o T o7 o |

From (102) it follows that %gan = 0, so that, in consequence of (114),

s 135 (9,5 09,3

o 0m n8 of
(115) Faﬁ 59 {82“ 57 }
Similarly,

s 15 (99,5 993
11 F5_ — —46m n8 B ]
(116) 5 2 { dzv 02"

Substituting (115) and (116) into (111), we obtain

9 [99.5 99,5
ot | 9z 0z

wn = | W %9E] g [
W gz 9am @927 92 |

Since gap(z,0) is a Kdhler metric, by (18) we have

8gaﬁ(27 0) B 8gwﬁ(27 0)
0z 0z

which together with (117) implies

99,5(2,1) - 99.5(2,1)
0z 0z

Combining (102), (103) and (119) shows that g4p(z,t) is a Kéhler met-
ric for every t € [0,7]; thus we have completed the proof of Theorem
5.1.

(118)

0, on M,

(119)

=0, onM x][0,T].
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As soon as we have proved that the evolution equation (1) pre-
serves the Kihlerity of the metrics, we are going to show that evolution
equation (1) also preserves the nonnegativity and the positivity of the
holomorphic bisectional curvature. The corresponding statements in
the compact manifolds case were proved by N. Mok in [33].

Theorem 5.3. Under Assumption A of §4, if M is a complex man-
ifold and g;;(x) is a Kdihler metric on M with nonnegative holomorphic
bisectional curvature, then for any t € [0,T], g;;(x,t) are also Kdhler
metrics with nonnegative holomorphic bisectional curvature.

Proof. From Theorem 5.1 we know that for any ¢t € [0,T], g;;(z,t)
are K&hler metrics on M. Thus by (18), (97), (98), (99) and (100) we
have

R 0 =0, R,p—=x(2,t) =0,

(120) a88(7,1) a5 1) on M x [0, T],
Rys4B(2,1) =0, RVSAB(th) =0,
Rop(z,t) =0, R5(2,1) =0,

(121) i ﬁ N g RozAﬁB o g R“Wﬁ(g + g Roz(gﬁW _g Rozﬁ%gv
R(z,t) = ¢*P Rap = gaﬁR =+ gﬁaR— = anﬁR

which together with (32) imply that

0

a7 Bt =ARp5 = 20% 9 Re o5, R
2% R, 5 R i, + 2007 B, R 5

€ip__p - __p— -
— 9" (Bgslag + Bagslg + Rapgllg
(122) + R 5 2Rs),

0

O p o AR == 2R - -

g fams =AR.55 = 20597 R 5k 5y

= 2059 TR 5,58 5en + 2007 R 2 7R 5 5
T T U
-9 (RpsRz+ Bgslagt+ Bgshye

+ R, z.7R5),  on M x[0,T],

where we have used (104) and the fact that R5 5= —R 5 5. Suppose
we use the abstract vector bundle technique as we did in (36), (37), (40)

143
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and (41), and suppose {Rapcp) is defined by (39). Since (53), (77) and
(78) are true, from (61) it follows that

0 ~

o asi7 =AR -5 — 25§ Rz 5, R

EaBo T (TvS

+ 2557 R

aB~ys

_ 29£C9077R5a05R R

Cﬁ my gay Cﬁn5’
0 ~ -
7R_w5 AR Wé_j!gfcgﬁR R

afot tys(T

- &~
e+ 2GR
on M x [0,T].

— 2GR 5,5 R

If we choose a local holomorphic coordinate {z%} such that 9.5 = Oap
at one point, by (123) we get

9 ~ -

s =M. = 2R 55 5
(124) — QRaggngﬁg— + QRO[&U Rgﬁgg,
which can be written as

9 ~ N

(125) ERO‘B’VS = ARaﬁwS Q(Rm)aﬁwg7 on M X [07 /‘T]7
where

QRm) 55 =2R 5,70 50+ 2R 5,5 R 5:7
(126) — QRaEwFRéﬁcrg‘

By definition we know that the holomorphic bisectional curvature is
nonnegative if and only if

(127) ~Rgz >0, V&CeTHOM;
the holomorphic bisectional curvature is positive if and only if
(128) —Rg7z >0, forany& (€ TWEOM, €40, #0.

Combining (39), (92), (93), (94) and (95) we have

(129) 0‘575 ~£ Uﬁ
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thus (127) and (128) are equivalent to

1,0
(130) ~Rgz>0, V&ceTMOm,

(131) ~Rgz >0, VECeTUIM, £40,0#0,

respectively. Therefore to prove Theorem 5.3 we only need to show that

(132) —Rzz(2,0) 20, on M x[0,T].

For any (z,t) € M x [0,T], by definition the holomorphic tangent

spaces TZ(I’O)M are independent of t. Now we define the subspace
(133) S(z) ={¢ e TMOM||1¢))” = 1},

where || ||? are the norms with respect to the metric 9,5(z,t). From
(49) we know that S(z) are independent of time ¢ inside the abstract
vector bundle V. We define a function ¢ on M x [0,T] by

(134)  p(z,t) =sup{b € R[Agz(0,2,1) >0 for any £, ¢ € S(2)},

where the tensor {Aaﬁﬁ(ev z,t)} is defined by

Aoﬁﬁg(ev Zt) = — Raﬁwg(’Z’ t) - Ogaﬁ(z’ t) 'gwg(/z’ )
(135) —09,5(2,1) - 9,5(2,1).

It is easy to see that ¢(z,¢) € C°(M x [0,T]) is a continuous function.
If we define

Aaﬁw3(27 t) = Eaﬁw3(27 t)

(136) - 99(27 t) [gaﬁ(zv t) ' %S(Zv t) + %3(27 t) : gwﬁ(zv t)]v
then by definition

(137) Agez(z,1) 20, on M x[0,T].

For any fixed (z,t) € M x [0,71], since S(z) is a compact subset of

Tz(l’O)ZM7 combining (134), (135) and (136) shows that there exist a, 3 €
S(z) such that

(138) Amsm(z.1) =0,

e

145
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which together with (137) implies
(139) inf{Azz(z, 0|, € 5(2)} =0, on M x[0,T].

By Lemma 3.5 in R.S. Hamilton [23] we have

g%m{%&ﬂ%ﬂﬁCeS@H
(140)

, d
> 1nf{%14aaﬁﬁ(z, )|, B € S(2) such that A -55(2,1) = 0},

which together with (139) yields

. d
(141) 1nf{EAaaﬁﬁ(z,t)|a,ﬂ € 5(z) such that A _.=(z,¢) = 0} < 0.

For any fixed (z,t) € M x [0,T], since S(z) is compact, from (138) and
(141) it follows that there exist a, § € S(z) such that

A —=(z,t)=0
(142) { aaaﬁﬁ(z’) v
EA _ﬁﬁ(zvt) <0,

oy

which together with (137) implies
(143) AA z53(7:1) > 0.

oy

On the other hand, by (38), (136) and (142) we obtain

- ~ ~ ~ 0p(z,t
B0 T 50 (0] Pl
Z _%Raaﬁﬁ(’% t)
Using (41), (136) and (143) we get
—AR, (2, 1) 2[fow (1) - G5(20 1)
(145) + ﬁaﬁ(z, t) - gpa(z, )] Ap(z,t).

Combining (125), (144) and (145) gives

SO ~ - J0p(z,t
[Gomgs5+ 907 gﬁa]%

(146) > [ﬁaaﬁﬁﬁ + ﬁag - gealAp(z,t) + Q(%)aaﬁﬁ'
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Since o, 3 € S(z), we have

§a5(27 t) . 555(27 t) + gaﬁ(z7 t) . 555(27 t)
(147) =141g,5(2,0]* > 0,
which together with (146) yields that

de(z,t) 1

(148) T > Ap(z,t)+

TG oR e fmamss

The function ¢(z,t) may not be smooth at some points of M x [0,77],
but just as what Hamilton did in [23] we can assume without loss of
generality that ¢(z,t) is smooth while using the maximum principle.

Lemma 5.4. Suppose {Aaﬁﬁ} s a tensor which has the same sym-

metries as {Eaﬁﬁ}' We let

Q(A) aBys IQAaEUEAngﬁ + QAaEUEAwﬁSF

~ 24057 Ao
where we assume that ﬁaﬁ = bap at one point. Suppose for a fized point
z € M we have

Az=>0, V TN

Az =0, for somea,peT:""M.
Then
(150) Q(A) 7 2 0.

Proof. The same as what N. Mok did in [33].  q.e.d.
Now suppose {Aaﬁﬁ('zvt)} is defined by (136), and «, € S(z)
satisfy (142). From (137), (142) and Lemma 5.4 it follows that

(151) Q(A) 555 > 0.

On the other hand, by the definition of Q(A)aﬁﬁ it is easy to see that

Q(A),53,5= Q(Rm) 5.5+ ¢(z,t) * Rm
(152) + ()2 %7,
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where * means the linear combinations of the tensor product. Combin-

ing (56), (77) and (78) gives

(153) |R,55(2 0> <ko, on M x[0,T].
Thus by the definition of ¢(z,¢) in (134) and (135) we get
(154) lo(z, )] < Vo, on M x[0,T],
which together with (152) and (153) implies

(155) Q(A) 45,5 — Q(Rm) 5,5 < Caln, ko)lp(z, )],

where 0 < C5(n, ko) < 400 depends only on n and k. Combining (151)
and (155) we obtain

(156) Q(Bm), =55 > —Cs(n, ko)lo(2,1)],  on M x [0,77],
which together with (148) yields

dp(z,1)
d

(157) > Ap(z,t) — Cs(n, ko)|p(z,t)],  on M x[0,17.

On the other hand, by the assumption of Theorem 5.3 we have

(158) ~Ri5(2,0) >0, ¥ z€M;

thus from (134) and (135) it follows that

(159) ©(2,0) >0, Vzel.

Combining (154), (157), (159) and using Theorem 4.8 we know that
(160) w(z,t) >0, on M x[0,T],

which implies that

(161) ~-R__

omsg(7:t) 20, on M x[0,T];

thus by the explanation in (132), Theorem 5.3 is true.

Theorem 5.5. Under Assumption A of §4, if M is a complex man-
ifold and g;;(x) is a Kdhler metric on M with positive holomorphic
bisectional curvature, then for any t € [0,T], the metrics g;;(x,t) are
also Kdhler metrics with positive holomorphic bisectional curvature.
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Proof. From Theorem 5.3 it follows that g;;(x,t) are K&hler metrics
with nonnegative holomorphic bisectional curvature. Using the local
technique as what R.S. Hamilton described in [23] we know that g;;(z,t)
actually have positive holomorphic bisectional curvature for any t €
[0, T provided g;;(x) has positive holomorphic bisectional curvature.

q.e.d.

6. Controlling the volume element

In this section we want to control the volume element of the solution
to the Ricci flow evolution equation. Under the assumptions of Theorem
1.1, the author of this paper derived the techniques which were used to
control the volume element of the solution to the Ricci flow equation
in his Ph.D. thesis [43] in 1990. Later on we found that with some
modifications of the techniques appeared in [43], we can still control
the volume element of the solution to the Ricci flow equation under
much weaker assumptions than that of Theorem 1.1. In this section we
describe the modified version of the techniques appeared in §6 of [43].

We make the following assumption:

Assumption B. Suppose M is a complete noncompact Kéhler
manifold of complex dimension n with its Kéhler metric g;;(z) > 0.
Suppose 0 < 8 < 2, 0 < T, kg, ©Op, C; < 4oco are constants and
gij(z,t) > 0 is the smooth solution to the Ricci flow equation
0 (z,1t) 2R (x, 1) M x [0,T]
a7 G\t t) = — i\, ), Ol y L ]y
(1) ar I i

9ij(2,0) = gi; (@), on M,
which satisfies the following assumptions:

2 () 0SB0 <k, €M,

. Ch
(3) (ii) /Bo(mﬁ) R(z,0)dVy < m - Vol(Bg(20,7)),

29 € M, 0 <v < 400,

(4) (iii)  sup |Rim(z,1)|* < Oq,
M x[0,T]

where we let

(%) {ds% = gi; (v, t)daida?,

2 g2
ds® = ds§,
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and use By(z,v) to denote the geodesic ball of radius v and centered at
x € M with respect to ds?, dV; the volume element of ds?, {R;ju(z, )}
the curvature tensor of ds?, R(x,t) the scalar curvature of ds?, and
Vol(By(z,7)) the volume of By(z, 7).

Under Assumption B, since g¢;;(,0) is a K&hler metric with non-
negative holomorphic bisectional curvature, from Theorem 5.3 it follows
that for any ¢ € [0, 7], g;;(,t) are also Kahler metrics with nonnegative
holomorphic bisectional curvature:

(6) —R 555(2,t) >0, on M x [0,T].

>0, on M x[0,T],
>0, on M x[0,7T].
We define a function F(z,t) on M x [0,77]:

det(g =(z,
(9) F(z,t) =log %.

gaﬁ €z,

By the definition we have

(10) dvy = "@Davy,  on M x [0,T],
oF(z,t) 3 J
o Y (xlt) : Egaﬁ(xvt)
= —anﬁ(x,t)Ra§($7t)7 on M x [0,T],
(11) %F(x,t) = —R(z,t), on M x[0,T1],

which, together with (10) and (8), yields respectively

(12) %th = —R(z,t)dV;, on M x[0,1],
d
(13) EF(x,t) <0, onM x][0,T].

On the other hand, by definition we have

(14) F(z,0020, @€ M,
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which together with (13) implies
(15) F(z,t) <0, on M x[0,T].

What we are going to do in this section is to prove the following
theorem:

Theorem 6.1. Under Assumption B, there exists a constant

C(n, ko, 0,C1) such that

(16)  F(x,) > —C(n, ko, 0,Cy) - (t+2)77, on M x [0,T],

where 0 < C'(n, ko, 8,C1) < 400 depends only on n, ko, and Cy, and is
independent of Og and T.

To prove Theorem 6.1 we need to control the volume growth rate of
gij(z) on M. But for the K&hler manifold (M,g;;(2)) in Assumption
B, we do not know what is the volume growth rate of g;;(z) on M.
To resolve this problem, we replace the K&hler manifold (M, g;;(z)) in
Assumption B by a new manifold

(17) M=M x C?
with the product metric
18 ds? = §i;(2)dzida’ 4+ dw'dw' 4 dw?dw?,
j

where g;;(z)dz'd2’ is the Kihler metric on M which satisfies Assump-
tion B, and dw'dw' + dw?dw? is the standard flat Kihler metric on
C?.

By definitions (17) and (18) we know that (M\, ds?) is also a complete
noncompact Kahler manifold which satisfies:

(19)  0< —Ro5(y) < ko, Vye€ M,

@) [ By < = Vol (Bl ),

B(yo,y) (7 )
VyOEM\, 0 <y < +o0,

where ko and 6 are the constants in Assumption B, 0 < (5 < 400 is
a constant depending only on the constants n,# and C7 in Assumption
B, Raﬁﬁ and R denote the curvature tensor and the scalar curvature

of the metric ds? respectively, and E(yo, 7v) denote the geodesic balls of
ds? on M.
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Moreover, we have
(21) dime M = n+2 > 3.

Since the Ricci curvature on M is nonnegative, using the volume com-
parison theorem in [5] we get

5 2(n+2) .
(22) %S(%) ,VyOEM,O<71§72<—|-oo.
o Yo, 71 1

Since the factor C? is flat, it is easy to see that there exists a constant
0 < 5 < 400 depending only on n such that

Vol(B ! M
(23) O (§(907’Y2)) > (Y (ﬁ) , Vyo eEM, 0 <71 < 72 < o0,

Vol(B(yo,71)) m

Now suppose g;;(z,t) > 0 is the solution to the Ricci flow equation (1)
in Assumption B. If we let

(24)  ds} = gij(x,t)dxidxj + dw'd@" + dw?dw*, on M x [0,77],
then ds? also satisfies the Ricci flow evolution equation on M:

(25) %dé\? = _-92. f{lCCl(dé\%)7 on ZE X [07T]7
3} = d=2, on M.

Thus (M\, ds?) on 0 < t < T satisfy the following assumption:

Assumption C. Suppose M is a complete noncompact Kéahler
manifold of complex dimension n with its Ké&hler metric g;;(z) > 0.
Suppose 0 < 0 < 2, 0 < T, kg,0,(5, C35 < 400 are constants and
gij(z,t) > 0 is the smooth solution to the Ricci flow equation

(26) S9ij(w,1) = =2Ryj(e, 1), on M x [0,
9i;(2,0) = gij(2), on M,
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which satisfies the following assumptions:

(27) (i) dimgM =n >3,
(28) (i) 0< =R 555(2,0) <ko, €M,

(20) (i) (ESZ < w < (ﬁ)zn

v1/) = Vol(Bo(z,71)) = \m
$€M7 0<71§72<‘|’OO7

(30) (iv) /Bo(xom R(z,0)dVy < ('y—lc—1—31)9 - Vol(Bg(20,7)),

29 € M, 0 <v < 400,

(31) (v) sup |Rijkl($,t)|2 < Q.
Mx[0,T]

Since ds? in (24) are product metrics for all 0 < ¢ < T, thus if we can
prove that ds? satisfy inequality (16), then g;;(z,t) in (24) also satisfy
inequality (16). Hence in summary, Theorem 6.1 can be deduced from
the following theorem:

Theorem 6.2. Under Assumption C, there exists a constant

C(n, ko, 0,C4,Cs) such that

(32)  Fle,t) > —C(n,ko,0,Ca,Cs) - (t+2)77,  on M x [0,T],
where 0 < C'(n, ko, 8, Ca,Cs) < +00 depends only on n, ko, 8, Cy and Cs,
and is independent of © and T.

In the remainder of this section, we always assume that Assumption
C holds.

Under Assumption C, since g;;(z,0) is a Kéhler metric with non-
negative holomorphic bisectional curvature, from Theorem 5.3 it follows
that for any ¢t € [0, 7], g;;(x,t) are also Kdhler metrics with nonnegative
holomorphic bisectional curvature. It is easy to see that (6), (7), (8),
(10), (11), (12), (13), (14) and (15) are still true. Since R;;(z,¢) > 0 on
M x[0,T], using the volume comparison theorem in [5] we have

(33)  Vol(Bi(z,7)) < Ca(n) -v*", s € M, 0 <y < 400, 0<t < T,

where 0 < C4(n) < +0o0 is a constant depending only on n. Combining
(8) and (31) we get

(34) 0 < R(z,t) < 4n*VO, on M x[0,T],
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which together with (11) implies

(35) 0> %F(x,t) > —4n?VO, on M x [0,T].
Since F(z,0) =0, we thus have

(36) 0> F(x,t) > —4n*VOt, on M x[0,T].
Combining (10) and (36) yields

(37) dVy > dV, > e~ VOlqy, on M x [0, 1.

To prove Theorem 6.2 we need to use the smooth exhaustion func-
tions constructed in §3. From Assumption C and (7) it follows that

(38) Rii(2,0) >0, VaelM.

Suppose xg € M is a fixed point, and 1 < a¢ < 400 is a constant to be
determined later. Then from Theorem 3.5 we know that there exists a
function 9 (x) € C°°(M) such that

14 2220 < () < C5 |14 2lzzl]
(39) Vp(z)lo< L, VaeM,

|AO¢($)| < %7
where 0 < (5 < +o0 is a constant depending only on n, v(z,zo) is
the distance between z and zg with respect to ds?, V is the covariant

derivatives with respect to ds2, | |o is the norm with respect to ds, and
Ay is the Laplacian operator with respect to ds?. We now let

(40) ole)=e @) 2 e M.

From (39) we have

p(x) € C=(M),

ple) < IHEEL g e,
(41) p(z) > 6_06[1+M], reM,

V(@) < Lp(a),  weM,

|Aop(e)] < SBo(e),  weM,

where 0 < Cg < 400 is a constant depending only on n.
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Lemma 6.3. There exists a constant 0 < C7(n) < +oo depending
only on n such that

(42) /M p(x)dVy < Cr7(n) - Vol(By(zo, a)).

Also there exists a constant 0 < Cg(n,8,Cs) < 400 depending only on
n, 8 and C3 such that

(43) /M R(z,0)¢(x)dVy < % - Vol(By(zg, a)).

Proof. Since (42) is a special case of (43) when R(z,0)=1, § =0
and C'5 = 1, we only need to prove (43). From (41) we have

/ R(z,0)p(z)dVy

M

o o
M

:/ R(z,0) - e~ g0l gyy
Bo(l’o,a)

Z R(z,0) - e~lHa0@e0)l gy,
o / Bo(w0,2¥+1a)\Bo(x0,2%a)

/ R(z,0)dVy
BO (1’0 2k+1a)\B0(x0,2ka)

< (z,0)dVo + —2* / (z,0)dVp,
/Bo(l’m ) ’ Z (z0,2F%1a) ) 0

which together with (30) of Assumption C implies

Cs
/M R(z,0)p(z)dVy §m - Vol(Bg(z0, a))

_ o
+Z " ey VollBolre, 2 a))

Cs
SF - Vol(Bo(zo, a))

N ok Cs
£ gy - Vol(Bo(wo, 2+ a),
k=0
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which together with (29) of Assumption C yields

/ R(z,0)p(z)dV, §% - Vol (By (2o, a))
M

< . C .
<44) #2021 Vol (Bo (o, a)
k=0
Cs(n,8,C
< 8("a€ 2 Nol(By(zo, a))

Thus (43) is true.  q.e.d.
From (37) it follows that

(45) 0< [ ewavis [ gl 0<i<r.
M M
which, together with (42), implies

(46) 0< / p(x)dVy < C7 - Vol(By(zg,a)), 0<t<T.
M

By (12) we get

J J
5 | etoavi= [ gy

(47) =— / e(z)R(z, t)dVy, 0 <t <T.
M

From (7) we know that

(48) %gaﬁ(wvt) = —QRQE(x,t) <0, on M x[0,T],

(49) 9,5(@,t) < g,5(2,0), on M x[0,T]
Combining (10) and (49) gives
R(z,1)dV; = R(z,t)e" @D av,
= anﬁ(x, HER 5z, ) - @Dy,
- det(g 5(z,1))
50 = 2¢4°P z, )R (1 T
o R ]

< 29°%(x,0)R 5(x, t)dVo, on M x [0,T],

0
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where we have used (7). Substituting (50) into (47) yields

6y 2 / @) Vi > =2 / P (@, 0) R (e, ) pl(2)dVi, 0 < ¢ < T.
ot Ju M af

By the definition (9) of F(z,t), we have

(52) % = Raﬁ(w, 0) — Raﬁ(x, t).
Thus
AoF(z,t) =2¢°F(a, 0)%
(53) =29""(,0) R 5(z,0) — 29°" (¢, 0) R 5(x, 1)
=R(z,0) — 29°°(x, 0)R 5z, 1),
(54)  —20°P(x,0)R 5(z,t) = —R(x,0) + Ao F(z,1).

Combining (51) and (54), and using Lemma 6.3 we obtain
9
ot Ju
(55) —I—/ e(2)AoF (2, t) - dVy
M

> %Vol(Bo(wm a)) -|_/ e() Aol (2, t) - dVy,
M

0<t<T.

p()dVy > - /Mm 0) () dVo

Lemma 6.4. For anyt € [0,T] we always have

(56) /M p(2)AoF (2, t) - dVy = /M F(z,t)Aop(z) - dVy.

Proof. By Assumption C and Lemma 2.3 we know that for any
integers m > 0, we have

" m

(57) sup V" Ryl )" < Cn,m) [@ (;) T @7“] 0<i<T,
zeM

which implies

(58) sup |V R(z,t)|* < C(n) [g + @%] , 0<t<T,
zEM
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where V' denote the covariant derivatives with respect to ds?. (58) can
be written as

IR(x,t) OR(w,1) < O

(59) g"(x,1) P 5 < Cn) [7 +®%] , on M x[0,T).

From (49) it follows that ¢%/(z,0) < ¢"(x,t) on M x [0,T], so that, in
consequence of (59),

OR(x,1) OR(,1)

. e 3
17 _ 5
o020 2D < ) |24 0] onar x o)
(60) sup |VR(z,1)|2 < C(n) [? + @%] L0<t<T.
zeM

On the other hand, from (11) we know that

(61) %%iF(x,t) =V, [%F(x,t)] = —ViR(z,1),

which together with (14) and (60) implies
o~ t o~
|IVE(z,t)]o §/ |VR(z,s)|ods
0
f 0 _:]*
(62) < / NGO [; +@5] ds
0
<C(n) [VOI+ 07|, VoeM 0<t<T.

Combining (33), (36), (41) and (62) shows that for any fixed ¢ € [0,7]
we can integrate by part:

/cp(ac)AoF(ac,t)-dVo:/ o(z) - g7 (2,0)V,V,F(x,t) - dVy
M M

T /Mgij(%o) Vig(e) - ViF(x,1) - dVy
= / F(x,t) - g%z, 0)%]462'99(36) -dVy

M
:/ F(z,t)Aop(z) - dVp.

M

Thus the Lemma is true.  q.e.d.
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Combining (55) and Lemma 6.4 yields

B C
o /Mcp(ac)th > a—jvouBo(xo, a))

(63) —I-/ F(a,t)Agp(x) - dVy, 0<t<T,
M

which together with (15) and (41) implies

% [ ety - & Vol (oo, )
(64) r o [ P pt@ave 0<i<T.
—%/Mcp(x)dvt <S5 \ol(Bo(zo, )
(65) - % [ Pl ptaave 0<i<T

Integrating (65) from 0 to ¢ gives

| etavi- /Mso@)dvt

(66) <@ Vol (By(zo,a)) — / / (z, s)p(x)dVods.

Since dV; = e"'(@dVy, from (66) it follows that

/ [1— @) dVy g@ Vol(Bo(zo, a))
M

(67) // (2, 5)p(2) dViods,

0<t<T.
By (13) and (14) we obtain

(68) 0> F(z,s) > F(a,t), VoaeM 0<s<t<T.

159
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Combining (67) and (68) yields

/ [1— " 0o(2)dVy
M
Cygt

SF \/YOI(BO(xo7 a))
Ce [!
(69) -8 [ Flee(e)dveds
as Jo Jm
Clst
:F VOI(B0($O7Q))
Clgt
- ?/MF( Jp(@)dVo, 0<t<T
Now we define
. — : < < ‘
(70) Fuin(t) = inf Fla,t), 0<t<T

Using (14), (36) and (68) we have

Fmin(o) = 07
(71) 0> Fuin(t) > —4n?V0t, 0<t<T,
Fmin(s) > Fmin(t)v 0<s<t< T.

Combining (15) and Lemma 6.3 we get

/ F(x,t)cp(x)dVoZFmin(t)/ p(z)dVy
M M

(72) > C7Fmin(t) - Vol(Bo(zo, a)),
0<t<T.

Substituting (72) into (69) yields

/ [1— F"@Dp(z)avy
M

Cit CeCrt
(73) < a—gé,Vol(Bo(xo, a)) — ‘;—ijin(t) - Vol(By(0, a))
Cst CeCit
= [a_j - E;—QFmin(t) -Vol(By(zg,a)), 0<t<T.

It is easy to see that

F
(74) 1—6F2—? for 0> F > —1,
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which implies

/M[ — f'@D]y dVO_/ 1—e Jeo(z)dVy
+

(1 —e )c,o(x)dVo

\I\/

(75) Je()dVo

z)dVy.

l\')l}—k [\')|>—k

.
w3

Since every term on the right-hand side of (75) is nonnegative, we have

F<— 1}

(76)
_/ Fla, t)p(x)dVo < 2/ [1 — F@D]p(a)d Vs,
{F>-1} .
(77)
/ e(a)dVy < 2/ [ — PN (a)dVe,
{F<-1} o
(78)

Combining (76) and (78) we get
—/ Fz,t)e(x)dVy
M
(79 <201 = Fuinlt)] [ 1= ()t
M

which together with (73) implies

—/ Fz,t)e(x)dVy
M
Cst CgCht

(80) < 1 — Fyin(t)] [— - —Fmin(t)] Vol (Bo(zo, a)),

a? a?
0<t<T.
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On the other hand, from (36) and (41) it follows that
- | P eta)av;
M
>= [ P
Bo(l’o,a)

(81) 2 —/ F(ac,t)e_cfi[l"‘%%(%%)]dvo
Bo(l’o,a)
> —/ F(w,t)e_c6[1+%]dvo
Bo(l’o,a)

20 / Fla, t)dVe.
Bo(l’o,a)

Combining (80) and (81) yields

Lemma 6.5. For any fized point xog € M and constant1 < a < 400,
we have

- / F(xv t)dVO §2€206[1 - Fmin(t)]
Bo(l’o,a)

Cst CeCirt
(82) =7 - Z—ijin(t)] - Vol (Bo (w0, ),
0<t<T.
The next step is to estimate Fiuin(¢) in terms of/ F(z,t)dVy.
Bo(l’o,a)

To do this we need to use the Green’s function on M. Suppose Gy(z, y)
is the Green’s function on M with respect to the metric g¢;;(z,0):
Go(z,y) > 0,
(83) z, y €M,
AoGlo(2,y) = =0 (y),
where 6, (y) denotes the Delta function.

Lemma 6.6. There exist constants 0 < Cy, C'1o, C'11 < 400 depend-
ing only on n and Cy such that for ¥V z,y € M,

(34)
Coyo(z,y)? Crovo(z, y)?
VolBotw. 70w 0] =Y S WlBo(e 7ol 9))
(85) ¥ Go(e, y)lo <o—aiit0lz: 1)

Vol(Bo(z,v0(x,y)))



RICCI FLOW 163

Proof. Using the result of P. Li and S.T. Yau [30], we know that
there exist two constants 0 < C'y2, C13 < +00 depending only on n such
that

c / o dt < Gola, y)
s > T, Y
Lot Vol(Bo(z, Vi) ~
(36) <c / o at
= st Vol (Bo(a, VD))

Va,ye M.

By (29) in Assumption C we obtain

Cyt?
WVol(Bo(x,’Yo(x,y))) < Vol(Bo (2, VD)
(87)
- WVOI(BO(WO(%@)% for t > vo(x, )%,

which, together with (86) implies that (84) is true. Thus (85) follows
from the S.Y. Cheng and S.T. Yau [12] gradient estimate for harmonic
functions. q.e.d.

Now we fix a point 29 € M. For any constant o > 0 we define
(88) Qo = {y € M|Go(zo,y) > a}.
Since (29) in Assumption C implies

Cay* - Vol(By(, 1)) < Vol(By(z,7)) < v*" - Vol(Bo(z, 1)),
(89) VaeeM,1<vy<4oo;

thus by (84) we know that Go(z, y) satisfies

Co

Yo(z,y)?"=2 - Vol(By(z, 1)) < Gol(z,y)

< CIO
= qo(z,y)?- Oy Vol(By(z, 1))’
V$7 y€M7 70($7y)21

(90)
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From (90) it follows that G (z, y) do exist and decay to zero as yo(z,y) —

+00. Thus for any constant o > 0, Q, C M is a compact subset of M
and

(91) Q. ={y € M|Go(zo,y) = a}.

Since Go(zo,y) — a = 0 on 99Q,, by (83) it is easy to see that for any
function U (y) € C*(€,) we have

U(zg) = / [a — Go(zo, y)]Acd (y)dVo(y)

(92) —/8Q U@)W do(y),

where 7/ denotes the outer unit normal vectors of 9Q,, do(y) denotes

the volume element of 0%, at y with respect to the metric g;;(z,0).
For any fixed t € [0,77], let U(y) = F(y,t). Then from (92) we get

F(zo,t) = / [a — Go(zo, y)] Aok (y, t)dVo(y)

(93) - [ e o),

Lemma 6.7. We have

(94) AoF(y,t) < R(y,0), VyeM, 0<t<T.

Proof. The use of (7) yields
(95) 9" (2, 0)R 5z, 1) > 0, on M x [0, ],

which together with (53) implies the lemma. q.e.d.
By the definition of €2, we have

(96) o — G0($07 y) <0, v ye Qoz;
thus from Lemma 6.7 and the facts that R(y,0) > 0 and a > 0,

[0 = Glo(wo, y)]AoF (y, 1) >[ov = Go(wo, y)]R(y,0)

>
Z - G0($07y)R(y70)7 v ye Qoz-

(97)
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Substituting (97) into (93) gives
Fao,t) > = [ Golan,y) R(y. 0)dVe(y
{la

(9%) - [ rtgy ZR W o)

On the other hand, from (89) it follows that

1 72

<
v27=2 Vol (By(x0, 1)) ~ Vol(Bo(wo,7))
< ! )
~Cyv? - Vol(By(z0,1))
for 1 <~ < 4o0.

(99)

Now we assume that o satisfies
1

(100) U< B 1)

Then from (99) we know that there exists a number v(a) > 1 such that

7(e)?
101 = .
Hou Vol (Bo{0. 7(a))
For any y € 09Q,, from (91) it follows that Go(zo,y) = a. Thus com-
bining (84) and (101) we get: for V y € 0Q,,

Covo(zo,y)? < 7(a)?

Vol(Bo(z0,7v0(%0,y))) ~ Vol(Bo(zo, v()))
010’70(3507 y)z

(102) “Vol(Bolo, 10(w0, )
0970(9007 y)? _ Vol(Bo(zo,y0(20,¥)))
v(@)? = Vol(Bo(zo,v()))
(103) §C10%7

which together with (29) in Assumption C implies
(104) 0127(04) < 70($07 y) < 0137(05)7 Vye 890(7

where 0 < Ch2,C13 < 400 are constants depending only on n and Cj.
Thus

(105) B0($070127(04)) CcQ,C B0($070137(04)).
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Combining (85), (102) and (104) yields

(106) IVGol(zo, y)lo < VOI(;1€;0(703(Q)))7
3G0($07y)‘ < Cray (o)
ov = Vol(Boy(zo,v(e)))’

where 0 < (14 < 400 is a constant depending only on n and C5, and 7
is the outer unit normal vector of 9€2,.
Since F'(y,t) <0 on M x [0,T], we have, in consequence of (107),

_/ F(y,t)w do(y)
90a v

Ci47(a) /
108 > Fy, t)do(y).
1o VollBatro, 1 (@) g, 1471
Since Go(zo,y) > 0, R(y,0) > 0, from (105) it follows that

Vy e 0Q,,

(107) ‘ Vy € o,

. Go(zo, y) R(y, 0)dVo(y)

< / Go(wo, y) R(y, 0)dVo(y)
Bo(20,0137v())

(109)
< / Go(wo, y) R(y, 0)dVo(y)
Bo(l’o,l)
+Z/ Gl (w0, y) Ry, 0)dVo(y).
BO l’o,?k \BO l’o,?k 1)
where
(110) Szl—l—max{[M], 0}.
log 2
By (28) in Assumption C we get
(111) 0 < R(y,0) < 4n’ky, Yyc M.

Thus

/ Glolo, y) R(y, 0)dVo(y)
Bo(l’o,l)

(112) < 4n2ko/ Go(wo, y)dVo(y).
Bo(l’o,l)
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Combining (29) of Assumption C, (84) and (112) we get

/ Giolo, y) R(y, 0)dVo(y)
BO (1’0,1)

Croyo(®o, y)?
< 4n’k /
’ Bo(wo,1) Yol(Bo(zo,Y0(z0,y)))

2
= 4n kOCmZ/ Yo(@o, y)*dVo(y)

dVo(y)

Bo(x0,55=1)\Bo(= ) Vol(Bo(xo, Y0(T0,¥)))
(113)
< 4dn koCmZ/ (%)%_2 — dVo(y)
Bo( 1’072k N\ Bo(zo, k) VO](BO($07 Qk))

1)\ 2F—2 Vol(By(zo, ;_))
< 4n2kocloz (5) B 2l1
k=1 VO ( 0($07 Qk))

2 G 1 2hoe 2n
<4n kocmz 5 <27 < (s,
k=1

where 0 < C5 < 400 is a constant depending only on n, kg and C5. On
the other hand, from (84) it follows that

/ Go(o, y) R(y, 0)dVo(y)
Bo(l’o,Qk)\Bo(l’o,Qk_l)

</ 01070(96079)2

- Bo(w072k)\30(x072k—1)VOl(BO(JUOy’YO(QCOvy)))
(114)

R(y, 0)dVo(y)

22k010
< )
Bo(l’oﬂk)\Bo(l’o,?k_l) \/YOI(BO($07 2 ))
45 Cyg /
< R(y,0)dVo(y),
B VOI(BO(x(th_l)) Bq(zo,2%) (y ) O(y)

which together with (29) and (30) of Assumption C yields

R(y, 0)dVo(y)

/ Gio(wa, y) R(y, 0)dVi(y)
BO (l’o,?k)\Bo(l’o,Qk_l)

(115)
< 4k010 ] 03
= Vol (Bo(zo, 2F-1))  (2F + 1)7
2—0 VOI(B0($072k))
\/YOI(BO($07 Qk_l))

Vol(By(zo, 2’“))

< C3C0(28) < 232720,



168 WAN—-XIONG SHI
Combining (109), (113) and (115) we get

. Go(zo,y) R(y,0)dVo(y)

(116) <Cis+ Z 22n03010(2k)2_€ < 016(25)2_07
k=1

where 0 < (14 < 400 is a constant depending only on n, ko, 8,Cs and
(3. Combining (110) and (116) implies

(117) Gol@o, y) R(y, 0)dVo(y) < Crry(a)*~,
Qa
where 0 < C7 < 400 is a constant depending only on n, ko, 8, Cs and
(3. Combining (98), (108) and (117) yields
F(zo,t) > — Ci77(a)*™?
Cray (o) /
118 + F(y,t)do(y).
e Vol Bo(r0.7 (@) Jog, " 217

Suppose « > 0 satisfies (100). Then for any g € [%,a], from (118) it
follows that

F(xo,t) > — 0177(5)2_0
Cr4v(5)

(119) ol Bo (0.7 (7)) /8Q F(y,t)do(y),
% <p<a
By the definition of v(54) in (101),
7(a)? <2
2- \/YOI(BO($07 7(0&))) _VOI(B0($07 V(ﬁ)))
7(a)? a

(120) “TolBoleo 7 (@) 2 ==

v(8)* _Vol(Bo(z0,7(8))) _ ., 7(8)?* « N

7@l <VolBofao, () = 3P 2 <75

which together with (29) of Assumption C implies

(121) Crgy(a) < y(8) < Croy(a),

|9

<p

IN

&,
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where 0 < C1g,Ch9 < 400 are constants depending only on n and Cj.
Combining (119), (120) and (121) gives

P’($07 t) Z — 0207(04)2_0
Chov()
Vol (Bo(v0,1())) /89 Flydo(y),

<p<a,

(122) +

) e

where 0 < Cy < 400 is a constant depending only on n, ko, 8, Co and
Cs3. Integrating (122) from 5 to a, we obtain

Flao, 1) :% /j Flao, t)d3

(123) > — Choy(a)?*

Capffo) 2 [ )
Vol (Bo(zg, 7 ())) a/% /Q%F(%t)d (y)dp3.

For any y € 09Qg, if we use 7/ to denote the outer unit normal vectors of
083, then

— 8G(O($07 y)

(124) dg -

dv.

Combining (107), (120), (121) and (124) we know that

da(y)dﬁ _ 3Goélﬂio7y)

= |20l ) = |
Cray(B)

~ Vol(Bo(zo,7(8)))
Cor1v(a)

~ Vol(Bo (2o, 7(a)))

do(y)dv

8G0($07 y)

o0 v

(125) dVo(y)

dVoly), y € 09y, % <pf<a,

where 0 < (9 < 400 is a constant depending only on n and Cs5. Since
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F(y,t) <0on M x [0,7], from (105) and (125) it follows that

/ g . o)

Cary(a)
~ Vol(Bo(zo,v())) /Q%\Qa Flo, 0)dvaly)

C217(a)
(126) ZVOI(BO($O77(Q)))/£2 F(y, t)dVo(y)

fe3
2

0217(04)
~ Vol(Bo(zo,v())) /Bo(xo,Clm(%)) Fy,t)dVo(y).

Combining (101) and (126) we obtain

L[ ), oo

2021/
> Fy,)ydVo(y),
7(04) Bo(x0,C137v(%)) ( ) 0( )

which together with (123) implies

(127)

F(xo,t) > = Cyoy(a)*™*
2C5C /
+ F(y, )dV(y).
Vol Bo w0 @) Jpogen cuniayy | DO

(128)

Given number a such that

(129) a>1+ (,/ + 1) Chs,
Cs

we let

(130) a=2 (CLB)Z Vol(Bo(; =

From (29) of Assumption C it follows that

2 (C13)\? 1
O<a<— (=)
<« — ( a ) Vol(By(zo, 1))
1

(131)
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thus « satisfies (100). Combining (101) and (130) shows that (%) can
be chosen as

o a

132 =) ==
(132) 15 =
Now (128) implies

F(zo,t) > — Cyoy(a)?™?
2C5C /
+ F(y, )dV(y).
Vol (Bolwo, 1) Jogeo | 21 VOW)

(133)

By (121) we get

[a%

(134) Cusy(0) < 4(3) < Cu (o),
which together with (132) yields
(135) <) < o

013019 - 013018‘

Combining (29) of Assumption C and (135) we have

Vol(Bo(zo,7(a)))

(136) C2 S By (wo, 0))

S C1237

where 0 < Csg,(33 < 400 are constants depending only on n and Cj.
Combining (133), (135) and (136) shows that the following lemma is
true:

Lemma 6.8. For any fized point xog € M and number a which
satisfies (129), we have

F(xo,t) > — Cpga*?
C(24 /
137 +—-— Fy,t)dV ,
( ) VO](B0($07Q)) By (w0,a) (y ) O(y)
0<t<T,

where 0 < Coq < 400 is a constant depending only on n, kg, 8,Cy and
Cs.

For any fixed t € [0,T], we choose a point zy € M such that
F(zo,t) < $Fmin(t) < 0. Suppose the number a satisfies (129). Then
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from Lemma 6.5 and Lemma 6.8 it follows that

Fuin(t) > 2F (w0, t) > — 2C34a* "
2C 4 /
e Fy, t)dVo(y
Vol(Bo(20,a)) JBy(x0,0) (v, 1)aol)
(138) > = 2024612_9 - 40246206[1 - Fmin(t)]
[Gr - e

4 2

a

Fmin(t):| , 0<t < T
a

Now we let,

2
a=1+ (“C_Q—I_l) Ci3
(139) + 469\ /CeCrCou(t + 2)3[1 — Fin(1)]2.
Then a satisfies (129). Substituting (139) into (138), gives

2—6

Fin(t) > — Cas(t +2)F [1 — Fin ()] 5

1
(140) + ZFmin(t)7 0<t<T,

where 0 < Cs5 < 400 is a constant depending only on n, kg, 8, Co and
C's. From (140) we get

(141)
2—0 2—6
1_Fm1n(t) S (1‘|’_CQ5) (t‘|’2)T[1 len(t)]T7
0<t<T,
(142)
7

1_Fm1n(t)§(1+_025> (t+2)T7 0<t<T
Thus
(143) Fuin(t) > —Chs(t +2)%5°, 0<t<T,

where 0 < Cs6 < 400 is a constant depending only on n, ko, 8, Cs and
(3. Combining (70) and (143) yields

(144) Fa,t) > —Che(t +2)7, on M x [0,T].
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Thus the proof of Theorem 6.2 is completed. Since the constant C5 in
(23) depends only on n, as we already mentioned, Theorem 6.1 now
follows from Theorem 6.2.

Remark. If the constant 8 = 2 in Assumption B, then the corre-
sponding statement of Theorem 6.1 is

(145) F(z,t) > —C(n, ko, Ch) - log(t + 2), on M x [0,T],

where 0 < C'(n, ko, C1) < +00 is a constant depending only on n, kg and
C1, and is independent of ©g and 7. The proof of (145) is the same
as the proof of Theorem 6.1. Under the assumptions of Theorem 1.1,
(145) was proved by the author of this paper in [43] in 1990.

Corollary 6.9. Under Assumption B, there exists a constant 0 <
Cyr < +00 depending only on n, kg, 0 and Cy such that

2—6

(146) gaﬁ(xv 0) > gaﬁ(wv t) > 6_027(t+2)T : gaﬁ(xv 0)7
on M x [0,T],
2-6
(147) dst > ds? > e~ Cor(t4+2)77 -ds?, 0<t<T.

Proof. Under Assumption B, from Theorem 6.1 we know that there
exists a constant 0 < Cy7 < 400 depending only on n, kg, @ and C; such
that

(148) Fa,t) > —Cyr(t+2)7, on M x [0,T].
Combining (9) and (148) we have

)
(149) det9ap(*, )))) e=Om(t+2)” 9, on M x [0,T],
)

det(g,7(z,

which together with (49) implies (146) and (147). q.e.d.

7. Long time existence

In this section, we are going to prove the long time existence for the
solution to the Ricci flow equation

{%gzj(% t) = —2R;;(x,1),

(1) gij(2,0) = gij(x), ze€M
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under the following assumption:

Assumption D. (M, g;;(2)) is a complex n—dimensional complete
noncompact Kahler manifold which satisfies

() () 0<-Ro(n,0) ko, s M,
Ch
(3) (ii) / R(z,0)dVy < ————— - Vol(Bg(z0,7)),
Bo(l’o,’y) (P)/—I_ 1)0
29 € M, 0 <~v <400,
where 0 < 8 < 2 and 0 < kg, (C'y < +0o0 are constants.

Under Assumption D, from Theorem 2.4 we know that the Ricci
flow equation (1) has a smooth solution g;;(x,t) > 0 for a short time:

6
(4) 0<t< ol
ko
and satisfies the following estimates:
)
(5)  sup [V™Rin(z, )] < M7 0<t< 00(n)7 m >0,
zeM tm kO

where 0 < 6g(n) < 4oo is a constant depending only on n, 0 <
C'(n,m) < +oo are constants depending only on n and m. Thus we
have

Lemma 7.1. Under Assumption D, there exists a constant 0 < T <
+oo such that the following Assumption E holds on M x [0,T].

Assumption E. Suppose (M,g;;(z)) is a complex n—dimensional

complete noncompact Kahler manifold, and g;;(z,t) > 0 is a smooth
solution to the Ricei flow equation (1) on M X [0,77] such that

(6) i) 0< —Raaﬁﬁ(ac, 0) < ko, z€M,
. Ch
(7) (ii) /Bo(xom R(z,0)dVy < m - Vol(Bo(zo,7)),

$0€M70§7<+OO7



RICCI FLOW 175

00(71)

(8) (iii) <T < 400,
ko
C -k
(9) () sup [V7 Ry )2 < C Ko
rEM tm
o<i< ™ sy
ko
(10) (v)  sup |Rim(x,t)]* <O,
Mx[0,T]

where 0 < © < 400 is a constant, and the other constants in (6), (7),
(8) and (9) are defined by (2), (3), (4) and (5).

Lemma 7.2. Under Assumption E, g;;(x,t) are Kdhler metrics for
any t € [0, T] and satisfy the following estimates:

(11) — R 553(2,) 20, on M x[0,T],
(12) Fla,t) > —Cy(t+2)7, on M x[0,T],
2—6
(13) gaﬁ($7 0) Z gaﬁ($7 t) Z 6_02(t+2)T ) gaﬁ($7 0)7

on M x [0,T1],

where 0 < Cy < 400 is a constant depending only on n, ko, 0 and C'y.

Proof. Since Assumption E implies Assumption B in §6, by Theorem
5.3, gij(x,t) are Kdhler metrics for any t € [0,T], by (6) of §6, (11) is
true, by Theorem 6.1 and Corollary 6.9, (12) and (13) are true.  q.e.d.

To prove the long time existence for the solution to the Ricci flow
equation (1) we have to establish some prior estimates of ¢;;(z,¢) on
M x [0,T] under Assumption E. More precisely, we are going to es-
timate the derivatives of g;;(z,t) only in terms of n, ko, 8,C; and t.
Especially they are independent of ©. Since the Ricci flow equation (1)
is the parabolic version of the complex Monge-Ampere equation on the
Kéhler manifolds, we know that inequality (13) is the parabolic ver-
sion of the corresponding second order estimate for the Monge-Ampere
equation. The derivative estimate for g;;(z,t) is the parabolic version
of the corresponding third order estimate for the Monge—Ampere equa-
tion. The third order estimate for the Monge-Ampere equation was
developed by E. Calabi in [8] and later used by S.T. Yau in [48]. In
this section we want to establish the parabolic version of the third order
estimate for the Monge-Ampeére equation.
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At the beginning we let

fo(n)
ko '

(14) T0 =

We use V = V™ to denote the covariant derivatives with respect to the
metric dszo7 and A = A, to denote the Laplacian operator with respect
to the metric ds? . From (9) we get

(15) sup |%mRZ’]‘k1($7T0)|2 < CA'(n,m)kng, m >0,
zeM

where 0 < 6(n,m) < 400 are constants depending only on n and m.
We also denote

(16) gij(x) = gij(x,70), x€ M,
(17) Riju(z) = Riju(z, 1), = € M.
Thus

0 0?
Egaﬁ(w, t)=—2R z(z,t) = QW log det(g.5(x,1))
92 det(g z(z,1))

=2 — log

Dz 0z" det (gwg(% 70))
det(gﬁ(% t))
det(g.3(x, 70))
=2V,lg" (2, 1) Vg0 52, )] = 2R 5(x, 70)
:2g”3§aﬁﬁgwg + 2%@]”3 . %ngg - 2]/%

— 2Raﬁ($7 To)

(18) :2%a§510g — 2R _5(x, 7o)

ozﬁ'

On the other hand, since gaﬁ(w,t) are Kihler metrics on M for any
t €[0,7] by Lemma 7.2, we have

Vagpy = V9o,
(19) on M x [0,T].

Vagpy = Vagsa,
Suppose we choose a coordinate system such that gaﬁ = 043 at one
point. We have the interchange formulas of the covariant derivatives:



RICCI FLOW

Suppose {V,} and {Vz} are any covectors of (1,0) type and (0, 1) type
respectively. Then

VaVsV, = VsVaVs,
(20) ?“?WV - ?ﬁ?“‘%’ ~

0951 = T58ubs 4 Rzt

VaV3Va = VaVals — R 55 V5.
Using (19) and (20) we get

VoV30.5 = VaV30.3
(21) = ViVag,5+ Ro520e — Rusesoye
= ViVat5 + R0 — Rosoe

(22) V5Va9,5 = Vo V0,5 + Rosg0az — R s.g0es
Since Ea?ﬁ = Eﬁagv from (21) and (22) it follows that
(23) VaVa0,5 =V Vg5 + R segtaz — Hosgose

5
Combining (21) and (23) implies
2VaV59.5 =V5Vad,g t+ VaVsd g
(24) + B 5,595 T B 55907 — 2Ra05659.
where we have also used the curvature property that Ea?{ﬁ = Ea_gi'
On the other hand, it is easy to see that
(25) Vag”’ = =0 9"Vag s
Substituting (24) and (25) into (18) gives
oo I 3. _D
51928 =9 V5Vadap + 9 VaVsdag + 97 95l 5z
3. _p [ 3
(26) T 97 9uzRoses — 2Rapesd " 95z
- QQW{(]CSVQ‘(]CE . Vﬁgﬁg - QRQE'
Since by (121) of §5, Eaﬁgigﬁng = Eaﬁgi = _Eaﬁv where Eaﬁ denotes
the Ricci curvature of §aﬁ, by (26) we get
O Vg4 0TV ngm + TR
9tJoB =9V T 9T VEVTYaF T Y Iep tonaE

(27) + ggﬁgagRgﬁgﬁ - QQUggCﬁvagcg . vﬁgaﬁ-

177
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Since gaﬁgwﬁ = 04+, We have

which together with (27) yields

5 5 8 TS 5 48 TS S
97 == 979" g VeV eg 5 — 979" 9" Ve Vg 5

S

8§ BT, D _ 8, BT, _ B
(28) — 9799795 5z — 9797979 7 R i3
+2¢%°9" 9 9V 9.5 - Vigom-
On the other hand, by (25) we get
VeVeg™ = = Vz(9™9" Vg 5)
3 TS FS_ af . S
== 979" VeV 5 - 9" Veg™  Veg 5
3/\ =y o~
— gOf VEgWﬁ . Végﬁ
5,70 7,005y .
=— 99" VeVeg 5+ 97979 Vg5 Veo s
+97°9"°9""Nz9,5 - Vea 5
. .
(29) —9°°9"" 4% VeVeg 5 = ¢°VVeg™”
B -
— 999" 9" V9,5 Ved, 3
g - - = A~ A~
— g~ gwé’gwﬁngVngg . Végﬁ-
Similarly,

— gaégWﬁg&VgVE‘qwg
e
(30) =" VeVzg™ — 799" 4"V eg, 7 - Vo5
.
PN P A
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Substituting (29) and (30) into (28), we have

%9“5 =5 VVeg? + gV Vzg??
— g% 5N 2g, 5 Veg 5

— g9 g g 5 Veg 5

(31) ~ 9979 ¢ N g7 Vg5
PTG g g

+2¢°%97%97 gV g2 - Vo7

g —_— _—
~ 9" R 55— 9797 Romya.

)

Combining (19) and (31) implies

8 o o m o
5797 =0"VeVeg™ + g5 Ve Vg™

(32) -29"°9"79""9*Veg.5 - Veg,z

3 —_— - —_—
— 9”9 R 15— 679" Rz

For any two tensors A and B, let AxB denote the linear combination
of the tensor product of A and B. Let §,g~', Rm, g, ¢~ " and Rm denote

-~
o~ ~cy

9,59 ﬁ, Rijkhgaﬁ,gaﬁ and R respectively. Let

9> =gxg, °=gxgxg,...,

(33) g =g xg g =g kg g7 L

1

Since R;; = gklRikﬂ, the Ricci curvature can be denoted as ¢ * Rm.

Thus (27) can be written as

9797 =9*VeVeg, 5+ 9%VeVzo,g
(34) — 2979V agiz - Vagor + 97 kg g

e

L« Rm.

179
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Differentiating both sides of (34) yields

90,5 =% (0.7) = T e+ 07V,
— 2978V ag ez %Egaﬁ +g  xgrg s ]/%;1]
=gtV V= Vgg s+ 3v ngcg 7+ \AALI v Vgg

(35) + V.05 VeVeg,5 - 2070V ag iz - V- Vgom

~ 2079 N53007 - Vo Vag z

—2¢°€ .V, g7 - %9& : ﬁﬁggﬁ

_ QgCﬁ . @ngg . @agcg . ﬁﬁggﬁ

+ Vg kg g s B,

Using formulas (20) we obtain

<D
2
3

<P
S

[l
sk

<]>

@ ozﬁ—l_R Veg

Q
I

VCED
~Ca ‘Vﬁgeﬁ Rw(é’ﬁvfgaé’

_|_
Do>

(36)

ggaﬁ—l—Rm*g « Vg

ks,
< <b

v
56%%5 + Rm « g1« @5;7

VW Vg Vzg ozﬁ
eVeVadag + Bzs96s — Bozapdag)

(37) =Ve[VeV,g,5+9 %"+ Rm)

VeVaVeg,g
v

:VSVZV%%B + Rm * T @g
+g%§ '+« VRm,

which together with (35) yields

N VeVer 5+ 95V, VeVey g
(38) =" VeVeVag,5+ 9 VeVeVog,g
+g7!

*I/%Fz*ﬁ_l*@g—kg_l*g*g_l*@%.
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From (25) it follows that

~

<

29% - VeVeg 5+ Vg™ - VeV, 5
(39)

= 99"V 9,7 - VeVeg,5— 9°°

Substituting (38) and (39) into (35) implies

+29"°9" N 9,5 - Vadz - Vagon
—|—g_1 *]/%;1*57_1 *@g
+glxgxgt *@%—I—@W(‘q_l *g* g1 *%)

We now define a function ¢(z,t) on M x [0,T]:

(41) p(e,t) = g°"g""g"" V9,5 Vxgum > 0
Then
899 AT, VB AN 0=
a0 —2Relg™9" g Vg - 5;V-9.5)
29" = xe ~
+ 2Re {7 g ﬁngwgaﬁ . Vygyg}

709" &

+9°7g" == Vo053 Vaum

181
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which together with (32) and (40) implies
899 QT VB AN (o_ O .o
T Re{g 9" g V30,ml0 VeVeVa9,3
+95VeVeVag,3
VeVeg,z = 99" Vag,5- VeVzg

- 9%%9“V.9,7 9.7
— 299V a9z - Vo V300m — 2079V 590w - Vo Vag
(42) + QQUggcegwﬁvwguﬁ . Vozggg . Vﬁgaﬁ
+297979" V19,5 Vo - Vgon
—|—g_ *Rm*§_1*§g—|—g_1*g*§_1 *@%
FO (g g g EFM}
+2Re{g"7 g™V, 0,5 - V30.5[g5 VeV eg T + gV Vg™
—29°%g PG5 g 5 Veg, 5+ 972 % G Rm))

+ goﬂguﬁvwgaﬁ . ngyﬁ . [ngvzvégw\ + gﬁCvgvzgw\

e

P99 Vzg,5- Veg,5+ 972 x5!+ Rm).

— 29
If we choose a coordinate system such that at one point
A1
0
. Az
(43) gaﬁ = 50‘57 (gaﬁ) = ?
0
An
then
ATt
0
o7 3 A7
(44) g7 =bap (977) = :
0
/\—1
2.
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By (42) we get

9 = = e - o~ o~
a—f =2Re{g""9" g V30.ml0* VeVeVa9,5 + 05 VeVeVag 50}
+2Re{g"?9"'V, 9,5 - V30lg* VeVeg™ + g5V Vzg°T]}

+9°79"°N 19,5 Vg - [95°VeVeg™ + 95 VeVzg™

1 V. - o~
i Re{_mvv‘qﬁa ) vwggg : VEV&%B
[0 ¥ f C
" T Nahene 9 Vadee VeVelap
. va‘qﬁa Va9iz Vay Ve
- vagﬁa : Vﬁgcg . vaaggz
20, + 20, + g« Vg [g7 x Rm+ 51+ Vg
+gxgtxg "k %]/%;14_ %W(g—l fgr Gl %)]}
+2Re{—203 4+ 97" 4§~ « Fm + Vg x Vg}
{204+ g %G "« Rmx Vg Vg},
where
_ 1 R ~ ) i
e vaw “Vo9eg - Vadg Vadee
s = 1 S o . .
3= W . Wgozﬁ “Vxgsm - Egpﬁ Vegom,
1 \V; < = o~
o Ay Y 19eR T Vgem VEg Veder

Using the property (19) we obtain

(47) Q1 =0y, P3=1204.
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From (22) it follows that

(48) .

d¢
ot

1 ~ ~ ~
+ NN Re{=8V=ypz - Vg7 VeVedo s
(49) — AV5gsz - V597 Vo agC£}
1

FXmoraey RelsVsm - Vot Voogs - Ve

— 6V,9,5 Vg7 - Vegor - Veo s}
—|—g_4*§_1*%*@g*@g—l—g“‘*g*ﬁ‘l*ﬁﬁﬁ”e*@g
+ g% @g *@(g‘l xgkg L EF@)
On the other hand, by the definition we have
g Pe | g 0%
02807 07028
Iggzﬁz%@ + 953656399

Ap =g
=2Re{g" g4 Vsgum - (05 VeVeVog,5 + 0V VY g, 5]
+9"79V 0,5 Vo7 - [05VeVeg T + g5V V20
+9°70" 7V 0,5 Vo - [0V eV eg"™ + 05V Vg™
+ 2¢°"g vB ngCV v v9.7 " VeVt
+29°7g" g g VeV 9,5 VeVs0m
(50) + 8 Rely vp “g&vcg . VeVag,z - Vxogur]
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+8Relg 7y gV egT - V2V 0,5 Vi)
+4Re[gTg"P g Uz - VeV 0,5 - Vru7]
+4Re[g“ g”ﬁg“%‘fﬂA VeVa9,5 Vigm)
[9”
[g"”

+4Re cgm Veg"" Vog.5- V397l
+ 8Re g7 . Vgg”A . ngaﬁ - Vxgum)-

Combining (25) and (44) gives

~ — i P 1 =
vaaﬁ — _gacgfﬁvvgéz = —/\al—/\ﬁV79557

which together with (50) implies

Ap =2Re{g"7g"" 9" Vg7 - [9°VeVeVag,5+ 9% VeVeV,ag,7]
+9"7 9"V 9,5 Vygum - 10 VeVeg™™ + 5 VeV P
+9779""N 9,5 Vigum - [95°VeVeg™ + 5 Ve Vg™

+ Vs V’Vgozﬁ Vévwgﬁa

2
oA
9 N
+ Wvévwgaﬁ VeVagsa

~ ~

8 ~
ool S VS

~
<P
2
)
Q
s

TR A BT YR Vet

IS W Vegxs - Vxgpa - VeValag
4
YWY
8
NN A

+ : Vggm : vﬁgﬁﬁ : ngaﬁ . VTguE

+ "Veduz  Vedwy Vad,5° ngﬁn}v
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which together with (19) yields

W[QVEV%@&B VeVsgpm +2VeVag,5 - VeVagpal
o Y

1 - = o~
AadgAAedy Re{=12Veg,7 - Vigpm - VeVa,5

_|_

—12Vegum - Vagps - vawgaﬁ}

12 _ o !
TR AN, Re[Vgga - Vegsr - Vagum - Vagazl-

Combining (49) and (53), we get

1% 2 ~ o~ ~ ~
A — = V- . —(
5 0] WMWY [ngwga VeVagsa

+VeVa9.5 - VaVaysal
2 . . .
P, R Yo VeVeds
+ 4%7955 . %Eggz . ﬁwﬁaggg}
2 . . . N
(54) oy Re{=2V595m - Va9 Vedim - Vedaz
- 3§Wga5 . @7953 : ﬁggea ) ﬁgggg}
—|—g‘4*§_1*]§;®*%g*§g
+9  vgx G« VRm Vg

—|—g_3*§g*§[g_1 * gk gL *%]



RICCI FLOW

Lemma 7.3. We have

dop

T AaAgAe ),

(55)

—|—g_4*§_1*%*@g*%g—l—g“‘*g*ﬁ‘l*%%*%g

A~ o~

1

|vawgaﬁ - AC

2 P -
=Ap— —————|Vz e g - 2
B @ /\a/\ﬁ/\g/\JVg%gaﬁ /\Cvcgw5 Vg3l

~ ~ 1 ~ ~ 5
Vedyg: Vadp = 3 Vadz Vel

—|—g_3*§g*§[g_1 *g*g L *%]

We now define a function ¢(t):

(56)

where (Y is the constant in Lemma 7.2. From (13) in Lemma 7.2 it

follows that

(57)

2—6
2

g(t) = 2T o<t < T,

1
dst > ds? > — ds?,

q(t)

0
Since Egij = —2R;; <0, we have

(58)

0<t<T.

dsg > d572—0 > dsf7 To <t <T,

which together with (57) implies

(59)
Thus
(60)
(61)

(62)

1
ds® > dsf > —— ds?

70

qt) ™’

187
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From (15), (60), (61) and (62) we get the estimates of the terms in (55):
g7g " Bmx Vg« Vg < Coln, ko) - a(1)' Vo

(63) < Cs(nsko)q(t)'e(a,1), 7o <t <T,
g_4>kg * g—l * %EF@ * %g < 04(717 ko)(](t)4|%g|
(64) < Calmko)g(t)*o(e,t)?, m<t<T,

where 0 < C3(n, ko), Ca(n, ko) < +00 are the constants depending only

on n and kg. Since Vg L= g2« Vg, we have

g 2% Vg x %[g‘1 TN EFZ]
:g_5*g*§_1*§771*§g*§g
+9°
(65) T I v A
<Cs(n, ko)g()°|Vgl* + Cs (n, ko)q(t)'[Vg
+ Cs(n, ko)a(1)*|Vg|

SCG(n7 ko)(](t)599($7 t) ‘I’ 05(717 kO)q(t)499($7 t)517
To S t S T7

*g_l*%*ﬁg*ﬁg

where 0 < C5(n, ko), Cs(n, ko) < +00 are constants depending only on
n and ko. Combining (55), (63), (64) and (65) yields

92 <Ap+ Crlon, ko)g(1)°p(, 1)

(66) + Cr(n, ko)g(t) (e, 1)2, T <t <T,
92 <Ap+ Gl (1), 1)

(67) + Cs(n, ko)q(t)®, mo<t<T,

where 0 < C7(n, ko), Cs(n, ko) < 400 are constants depending only on
n and kg. On the other hand, from (27) it follows that

J

50°79.5) =0° VeV el3*0,7]

+ 9" VeV 9.5 + 97950 R - 2
(68) + ggngaggaﬁRgﬁgﬁ - Ug g aﬁvaggg : Vﬁgaﬁ
=A[3°%g,5)+ 97950 R 7

+9779,70° R ms — 20795° 7V a9z - Vo7
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Combining (11), (62) and (68) we get

0 u3 3 2
—[6%Cq = 9Py o] - 2

(69) 8t[g gaﬁ] S A[g gaﬁ] q(t)@(%t)’ on M X [T07T]‘

On the other hand, combining (10) and Lemma 2.3 shows that there
exists a constant 0 < Cg < 400 depending only on n such that

(G]
(70) sup |VRijkl($,t)|2 < Yy |:7 + @%:| , 0<t<T.
zeM

From (14) we know that 1o depends only on n and ko, so that, in con-
sequence of (70),

(71) sup |VR; (2, t)| < Croy, 10 <t <T,
zeEM

where 0 < C1g < 400 is a constant depending only on n, ky and ©. By
the definition we have

J ~ ~ J ~
Evk!}ij =V (Egij) = =2V R;;

(72) = —2ViR;; + Rm x gt g7« Vg,

which together with (10), (62) and (71) implies

d = ~
(73) ‘%V!]‘ <O+ Cug(t)?|Vgl, mo<t<T,
Jd =~ ~ ~
(74) ‘EVg‘ < Ciy + Crg(T)* Vg < Cha + C1a|Vyl,
70 S t S /‘T7

where 0 < (11 < 400 is a constant depending only on n, kg and O, and
0 < Ch3 < 400 is a constant depending only on n, kg, 8,C7,T and O.
By the definition we know that

(75) @kgij(x,ro) =0, VaeM,

which together with (74) implies

76 sup [Vg(z,1)] < Ci3e912t < Cu5e“12T < Oy, 70 <t < T,
M
TE

189
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where 0 < (13, ('14 < 400 are constants depending only on n, ko, 8,C1, T
and ©. Combining (41) and (62) we get

pl,t) < q(t)* Vg (e, )] < Chyg(t)®
(77) <SCLe(T)? <Cisy e M, o<t <T,

where 0 < Ci5 < 400 is a constant depending only on n, ko, 8,C1,T
and ©. For any ty € 19,7, from (67) and (69) it follows that

(78)

o

a—f < A+ Csq(to)>p(, 1) + Csqlto)®, @ € M, 1o <t < to,
(79)

d..3 2
—[§%Pg =] < A[°Pg =] — ——(a,1), 2 € M, 70 <t < to.
579" 9.5 < Alg™"g,7] (](to)@( ) 0 <t <t

Now we define a function ®(z,¢) on M X [, to]:

(80) D(x,t) = p(w, 1) + Csq(to)°7*" g5 — Caq(to)’t.
By (78) and (79) we obtain
(81) %@(x,t) < A®(x,t), on M X [ro,t].

Combining (60), (77) and (80) yields
®(x,1) < p(a,t) + Csq(to)*5°%g,

(82) < Chs + anq(to)G, on M X [rg, to].
From (75) and (80) we know that

®(x,m0) < ¢(x,70) + Csq(to)*5°°7.5
(83) < 04 nCsq(to)® = nCsq(te)®, = € M.
Using Theorem 4.8 from (81), (82) and (83) we get
(84) ®(z,t) < nCsq(to)®, on M x [ro,to].
Combining (80) and (84) leads to

(85)
oz, t) < anq(to)G + C’gq(to)?’t, on M X [rg, to].
(86)
o(x,to) < nCsq(to)® + Csq(to)’to < Cheq(to)®, € M,
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where 0 < (14 < 400 is a constant depending only on n, kg, 8 and Cf.
Since ty € |10, T] is arbitrary, we have

(87) sup p(z,t) < Ceq(t)®, 10 <t <T.
zEM

Combining (62) and (87) we get

Lemma 7.4. There exists a constant 0 < Cig < +oo depending
only on n, ko, 8 and Cy such that

(88) sup |[Vg(z,t)]* < Creq(t)®, 70 <t <T.
rEM

Now we want to estimate the second order covariant derivatives
|IVVg|?. From Lemma 7.3 we know that there exists a constant 0 <
Cy7(n) < 400 depending only on n such that

d 1
G_f <Ap — W
(89) + Crr(n)p(z, )2 + g~ x g7t « Bm « Vg Vg
+g‘4*g*§_1*§§;®*§g
+ g% %g * @[g‘l *gxg L ]/%;1]

(IVeVa9.5° + VeVag,51°]

which together with (63), (64), (65) and (87) implies

1% 1
A ——
ot S T e

(90) + Cisq(t)'?, 1<t <T,

IVeVag,51° + VeVag,zl°]

where 0 < (15 < 400 is a constant depending only on n, kg, 8 and Cf.
On the other hand, (40) can be written as

0 %105 =07V 0,5+ 07T V0,5
(91) —|—g‘2*§g*§%g—|—g_3*§g*§g*§g
—|—g_1 *%g*ﬁ‘l*%—l—‘q—l *g*g_l *%%
+ %W[g_l *gkg Lk EF@]
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Differentiating both sides of (91) yields

Je & ~ (0o
91 VTV 9.5 =V5 (vagaﬁ)
=V5lgVeVeVag,7
(92) + 05 VeV g5+ 972« Vg« VVyg
+g—3*§g*§g*§g—|—g_1*%g*ﬁ‘l*%
+ g wgxg x VEm + %W(g_1 * gk gl %)]

From (20) it follows that

(93) =V VeVsV,g,5+ G+ Rm+ Vg)

(94)

Combining (25), (92), (93) and (94), we get

9~ ~ o~ N
57 VTVA9.7 =0 VeVeVsVag,5+ 0% VeVeVsVog 3

PN

+¢72xVgxVVVyg
—|—g‘1*§_1*§771*§§g
—|—g_1*57_1*@]/%;1*@94—9_2*%@9*%@9
—|—g_3*§g*§g*€§g

(95) +¢ 4% VgxVgxVg* Vg
+g‘2*§_1*§;@*§g*§g
+g‘2*g*§_1*§§;®*%g
+g‘2*g*§_1*§;@*§%g

+¢ t4gxg '« VVRm

+g7°

*g*ﬁ‘“&%*@g*%f},



RICCI FLOW 193

%%ﬁwgag =0 VYV 0,5+ 05V VsV g, 5
+ g‘2 * @g * @@%g + g_2 * @@g * @@g
—|—g_3*§g*§g*§§g
(96) + g % VgxVgxVgxVyg
—|—g_1*g*§_1 *@%%—I—‘q_?*g*ﬁ_l *@%*@g
—|—g‘2*g*§_1 *%*@@g
+g‘3*g*§_1*§;@*§g*§g.

On the other hand, (32) can be written as

0 ) (S S aB S S af
E‘q B :ngvzvgg ﬁ—l—g£CVgVEg B
(97) + g % VgxVg+g 2xg s Rm.

In the remainder of this section, we always use | |? to denote the norm
with respect to ds?. We have

V3Va9.31° = 979" 9" V5V 0.5 - VaVagsm
(98) =g 4« VUVgxVVy,

which together with (96) and (97) implies

59,512 =0T T T3 0,51 + 00T,
—2VeV3V,0,5° - 2IVEV5V, 0.5
+g %% %g * @%g * @%%g
+g_7*§g*§g*§§g*§§g
—I—g_3*§§g*§§g* [g_4*§g*§g—|-g_2 % gt *%]
(99) + g VUV [ 24 Vg« VUV + ¢ 2% VVgx VVyg
—|—g_3*§g*§g*§§g—l—g_4*@g*%g*@g*%g
—|—g_1*g*§_1 *%%%—I—g‘z*g*g_l*@%*%g
-I-g_z*g*ﬁ_l*%*@%g
-I-g_?’*g*ﬁ_l*%*%g*%g],
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where we have used the similar arguments as what we did in the proof
of (54). By the definition we obtain
2

. _ . - 92
AIV5V, 9,57 = ¢*¢ V3Vag.5" + 9% o= IV5Vag.51°

_W —
(100) = " VeVelV5V,0.5° + 0% VeV V5V, 0,512
Using (15), (60), (61), (62) and Lemma 7.4 we get
(101)
978 Vg x Vg« VUVg < Cigq(1)°|V Vg - [VV V),
o<t <T,
(102)
g« VVgx VVg*VVg < Cgoq(t)6|%§g|3,
o<t <T,
(103)
g TxVgxVgxVVgxVVyg < Cglq(t)13|§§g|2,
T0 <L < T,
(104)
g8« VgxVgx Vg Vg VVg < ngq(t)20|§§g|,
o<t <T,
g% VUV g « [g7txgxgtx VVEm
—|—g_2*g*§_1 *@%*@g
+g‘2*g*§_1*§;@*§§g
—|—g_3*g*§_1*§771*§g*§g]
(105)

< Cosq(1)B 9V g| + Cauq(t)*|VV 9|2,
To S t S T7

where 0 < Chg,Cy,C21,Cag, 3,24 < 400 are constants depending
only on n, ko, 8 and Cy. Now substituting (100)-(105) into (99), we have

%I%%HQEIQ <AIV3V,g,50% = 21VeV3V 0,5
— 2995V, 9,517 + Casq(1)°| 9V 9] - [TV Vg
+ Casg(t)°|VV g + Carq(t) 2|V V g|?
(106) + Casq()P|VVy|, 1o <t <T,
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where 0 < (5, Chg, Co7,Cas < 400 are constants depending only on
n, ko, @ and C;. Similarly,
Jd e 2 R v 2 OO 2
E|V§v’ygaﬁ| §A|V5V’Vgaﬁ| - 2|vaévﬁgaﬁ|
— 2|§E§5§W«qaﬁ|2
(107) + Casq(t)°|VVg| - [V V]
+ Casg(1)°[VVg[* + Corq (1) [V Vg
+ Cosg()°|VVgl, mo <t <T.
By the definition we know that (where A, B, C, D = «a or @)
IVVg|* =IVeVpganl* = 21VsV,g,5° + 21 V5V 9,51
(108) +2|V5V59.5 + 2|V5V5g,5/°
=4|V;5V,9,5° + 4V5V49,50%
IVVVg|? =4[|[VeV5Vag,51° + [VEViVag,51°
(109) +|VeVsVog,50° + VeVsVag,5°]
Combining (106), (107), (108) and (109) we get

9 o~ R PR
571 VVal? SAIVVg[? = 2[VVVg[?

(110) +8Ca3q(t)°|VVg| - [VVVg| + 8Caeq(t)°|V Vg ?
+8Chrq(1) 2|V g[? + 8Chsq(1) |V V],
70 <t<T,
%Iﬁ%l2
(111) <A|VVg? — [VUVg[? + Caoq(t) 2V V g[? + Ca0q ()™,
70 <t<T,

where 0 < Cgg, Csg < +00 are constants depending only on n, ko, # and
C.
Similar to (108) we have

(112) Vgl = 419,951 = 4p(e.1);

thus from (90) it follows that

d ~ ~ ~~
(113) E|Vg|2 < AVgP? = |[VVg? +4C18q(0)*2, 1o <t <T.

195
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Suppose a > 0 is a constant to be determined later. Then

o ~ ~ ~
Guy et IVePT < Al V9] = [V + 4Cusa (1)
70 S 4 S T.

Now we define a new function
(115) (1) = [a+ Vgl [VVg[%
Then from (111) and (114) we obtain

0 —at (9ol G 90l + 190l oo + 9
(116) <[a+ Vgl IAIVV g +[VVg| - Ala+ Vgl
~[a+ [T [FTTP
+ Caoq()?[a+ [Tg ] - |9 TP
+ Caog ()l + [TgP?) - [F¥g]!
‘|‘4018(I(t)12|§§g|27 o <t <T,

D e o ee 2 e -
57 Slat IVaPIAVVgP + VY9 Ala + [Vg[’]

. o 1 m

(117) —la+[Vgl]- [VVVg[* = 5[VVg|*
+ 031‘](t)48[a + |§g|2]4 + C3of](t)30[a + |§g|2]
+ CBQQ(t)247 To S t S T7

where 0 < (31, (52 < 400 are constants depending only on n, kg, # and
(7. On the other hand we have

[a+[Vg|PJAIVVg|” + [V Vg *Ala+ [Vg|*]
= A — 27V |VVg|* - Vila+ [Vg|]
(118)
= Ay = 2gV;|VVg* - V| Vgl
= A+ g« @i[g_3 « Vg @g]
* ﬁj[g_‘l «VVg * @@g]
:Alb—l—g_l*[g‘%k@g*@@g—l—g“l*@g*@g*@g]

A~ A

* [g_4 * @@g * VVVg+ 9_5 * %g * 6§9 * §§9]7
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which together with (60), (62) and Lemma 7.4 yields
[a + [Vl JAIN V| + [V Vg|*Ala + [Vg ]
AP+ Cagq () [VVg[? - [V V]
+ 034q(t)15|§§g|3 + C35q(t)18|§§g| . |§§§g|

+ Casq(H) 2|V Vg2
02
(119) <A¢+—vam2 —224(1)*|VVg|"

2 .
+ %q(lt)?’tﬂ)IVVgI2 + C34q(t) | VV g

+ Casq ()2 VV g

02
<A+ 5[VVVg + —2q(1)”| Vg

8C3
—|VV |4 a35 ( )72 + 8034‘]( )
+ 80?36(]( ) 3 To S t S T7

where 0 < Cs3, (34, C35, Css < +00 are constants depending only on
n, ko, 8 and C4. Substituting (119) into (117) we get

oy 4] L [OTT
<Ay [S 4+ |TgP] - [FEVy
1 3 8C3
(120) -3 S w -

+ 8C5,q(1)%° + 8C55q(t)* + Csaq(t)
+ Ca1q()*®[a + | Vgl + Caoq(t)[a + |Vg]?,

70 S 4 S T.
For any ty € [19, 7], from Lemma 7.4 we get
(121) sup [Vg(z,0)|* < Creq(to)®, 70 <t < to.
zeEM
Now we choose a such that
(122) a=1+16(C6+ C33)q(t0)**.
Then
~ 5 17
(123) a<a+|Vg(z, b)) < 1—6(1, on M X [rg,to],
1 C2 1
124 - — 3By > = <t <tp.
(124) 1 aq()_8’ Tos 1< 1o

197
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Combining (120), (122), (123) and (124) we obtain

J A ~~~ 1 ~~
(125) 8—Qf < AY = SIVVVg[* = 2| VVg[* + Carglto) ™, 70 <t <o,

where 0 < (37 < 400 is a constant depending only on n, kg, 8 and (7.
Since from (123) we have

¢2

(126) VVg|' = ————
[a +[Vg|?]?

1
> @zﬁ 70 <t < to,

which together with (125) implies

12y Loapo L

a0 S 32a2¢2 + Carq(to) ™%, 70 <t <to.

By the definition, ¢ (2, 79) = 0 on M. Using Lemma 4.11 from (127) we
get

(128) V(a,t) < Cssq(to)®®a, 10 <t < to,

where 0 < (33 < 400 is a constant depending only on n, kg, 8 and (7.
From (123) it follows that

(129) blat) 2 al VY, 1o <t <to,
which together with (128) implies

sup [VVg(z,1)|* < Casq(to)®, 70 <t < to.
zeEM

Let ¢t = tg. Then

(130) sup |§%g(a€,to)|2 < ngq(t0)68.
zeEM

Since ty € [19, T] is arbitrary, we have

Lemma 7.5. There exists a constant 0 < C3g < +oo depending
only on n, ko, 8 and Cy such that

(131) sup [VVg(z,1))? < Casq(t)®, 7 <t <T.
rEM
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Combining (18) and (25) we know that

R 5= g« @@g +g %% @g * @g + Eaﬁ
(132) =g '« VVg+ g 24 VgxVg+5 "« Rm,
which together with (11), (15), (60), (62), Lemma 7.4 and Lemma 7.5
implies
(133) 0 < R 5z, 1) < Caoq(t)g,5(2), mo<t<T,
(134) sup |Ra5(ac,t)|2 < Caoq(t)™?, 1<t <T,

zEM
where 0 < Cs9, Uy < +00 are constants depending only on n, kg, 0
and €. Combining (11) and (134) we get
(135) sup [Riju(z, ) < Cng(t)™, mo<t<T,

zEM

where 0 < (41 < 400 is a constant depending only on n, ko, # and Cf.
From (9) it follows that

(136) sup |R¢jkl(x,t)|2 < C(n,O)k%, 0 <t <,
zeM

which together with (135) yields

Lemma 7.6. Under Assumption FE, there exists a constant 0 <
Cyo < +00 depending only on n, ko, 8 and Cy such that

(137) sup |R¢jk1($,t)|2 < C42q(t)72, 0<t<T.
zeM

Now we want to estimate the covariant derivatives of the curvature
tensor. For any ¢y € (0,77, from (137) we know that

(138) sup  [Rijr(z, 1)|* < Cazq(to) ™,
MXI:tTO,to]
which together with Lemma 2.3 implies

sup |VmRijkl($, t) |2
zeM

(139)

1 " m
< C(n,m) - Caglto)™ { (t T ) + 0422(](t0)36m} ;
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where m > 0 is any integer, and C'(n, m) are constants depending only
on n and m. Let t = t3. Then by (139) we get

sup |VmRijkl($, to) |2
zeM

2m m

(140) < C(n,m) - Cazq(to)™ {W + 0422q(t0)36m} _
0

Since tg € (0,77] is arbitrary, from (140) follows

Lemma 7.7. Under Assumption F, for any integers m > 0, there
exist constants 0 < Cysz(m, n, ko, 6,C1) < +oo depending only on
m, n, ko, 8 and Cy such that

sup |VmRijkl($, t) |2
zeM

(141) S 043(7’)17 n, k‘07 07 Cl) { (%) _I_ q(t)36(m+2)} 7

Let t =T. Then by Lemma 7.6 we obtain

(142) su]\% |Rijri(z, T)|* < Caaq(T)™.
€

Suppose 0g(n) is the constant in Corollary 2.2, we define

_ fo(n)
(143) =14

Then from (142), Corollary 2.2 and Lemma 7.7 it follows that the solu-
tion g;;(x,t) of (1) on M x[0,7] can be extended smoothly to a solution
gij(z,t) of (1) on M x [0,T}] satisfying

(144) sup |Rijkl($,t)|2 < C(n,0)- C'42q(T)727 T <t <17,
zEM
where C'(n,0) is the constant in Corollary 2.2. (144) together with

Lemma 7.6 yields

(145) sup | Rijri(z, )] < [1+C(n,0)] - Caoq(T)™
MX[O,Tl]

Therefore we have
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Lemma 7.8. Suppose g;;(z,t) > 0 is a smooth solution of the
Ricci flow equation (1) on M x [0,T] such that Assumption E holds on
M x[0,T]. Then g;;(x,t) can be extended smoothly to a solution of the
Ricci flow equation (1) on M x[0,T1] such that Assumption E still holds
on M x [0,T].

Under Assumption D, by Lemma 7.1 there exists a constant 0 <
T < 400 such that the Ricci flow equation (1) has a smooth solution
gij(z,t) > 0on M x [0,7T] and Assumption E holds on M x [0,7]. Now
using Lemma 7.8 repeatedly we know that g;;(z,t) can be extended
smoothly to a solution to the Ricci flow equation (1) on M x [0, 00)
such that for any Ty € [T, 00), Assumption E still hold on M x [0, Ty].
Hence

Theorem 7.9. Under Assumption D, there exists a smooth solution
gij(z,t) > 0 to the Ricci flow equation (1) on M x [0,00) such that for
any Ty € [10,00), Assumption E hold on M x [0, Tg].

Since for any Ty € [m9,00), Assumption E holds on M x [0,T],
combining Lemma 7.2, Lemma 7.6 and Lemma 7.7 we get

Theorem 7.10. Under Assumption D, there exists a smooth so-
lution g;;(z,t) > 0 to the Ricci flow equation (1) on M X [0,00) such
that

(A)  g¢;;j(z,t) are Kdhler metrics for any 0 <t < 400,
(B) — R zg5(2,t) >0, on M x[0,00),

(C) Flz,t) > —Ch(t+2)5°, on M x [0,00),
1

(D) dsg > dsf > M ds(zJ7 0 <t < +oo,
(E) su]\p4|Rijkl(ac,t)|2 < C42q(t)72, 0 <t < 4oo,

re

1 m

(F) su]\p4 |VmRijkl($,t)|2 < 043(771) {(;) + q(t)36(m+2)} ,

re

m >0, 0<t<4oc.

8. Controlling the curvature tensor

Suppose ¢;;(z,t) > 0 is the smooth solution on M x [0, 00) of the

201
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Ricci flow equation
o {%gij(ac,t) = —2Ry;(z,1), on M x [0,00),

gi;(2,0) = gi;(z), on M,

which we obtained in Theorem 7.10. In Theorem 7.10 (E) we also
obtained some estimate for the curvature tensor { R;;xi(2,¢)}. However,
that estimate is not optimal. To prove our main result Theorem 1.2,
we need a better estimate for the curvature tensor {R;;r(z,t)} than
the estimate obtained in Theorem 7.10 (E). Under the assumptions of
Theorem 1.1, the author of this paper derived a complicated integral
estimate technique to improve the curvature tensor estimate obtained
in Theorem 7.10 in his Ph.D. thesis [43] in 1990. Later on H.D. Cao
[10] and R.S. Hamilton [24] proved the Harnack’s inequality for the Ricci
flow equation in 1992. The consequence of their results improves the
curvature tensor estimate which we obtained in Theorem 7.10 (E). In
this section we use the noncompact version of their results.

Theorem 8.1. Suppose that g;;(x,t) > 0 is the smooth solution to
the Ricci flow equation (1) on M x [0,00) which we obtained in Theo-
rem 7.10, and that the holomorphic bisectional curvature of g;;(x,t) is
strictly positive, i.e.,

(2) —R 5552, 1) >0, on M x[0,00).

oy

Then the scalar curvature R(x,t) of g;;(x,t) satisfies the inequality:

OR _|VLR]? 1
9 -
(3) a1 7t

R>0, onM x(0,00).

Proof. Suppose M is a compact Kahler manifold, and gaﬁ(ac, t)>0
is a smooth family of Kdhler metrics on M such that

0
(4) Egaﬁ(w’t) = —QRQE(x,t), on M x [0,T],

where 0 < T < 400 is a constant. Suppose that the holomorphic
bisectional curvature of gaﬁ(w, t) is strictly positive:

(5) —R 555(2,t) >0, on M X [0,T].

e

We now define

~ 1 s —s
(6) 9,50z, 8) = o7¢ 9,5, T(1—e7*)), on M x[0,00).
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Then f}\aﬁ(x,s) > 0 is also a smooth family of Kéhler metrics on M,
which satisfies the normalized Ricci flow equation:

0 . = ~
(7) %gaﬁ($7 5) = _Raﬁ(x7 S) + gaﬁ($7 8)7 on M x [07 C)O)7

where ]/% 3(2, 5) denotes the Ricci curvature of g 5(, s). It is easy to see
that the holomorphlc bisectional curvature of gaﬁ( s) is also strictly
positive, i.e.,

(8) Raaﬁﬁ( s) >0, on M x[0,00).

From Corollary 4.1 in H.D. Cao [10] it follows that the scalar curvature
R(z,s) of gaﬁ(w, s) satisfies the inequality:
Ok  |V.R|? R

9) i —|—1_6_5>07 on M x (0, 00),

where V denote the covariant derivatives with respect to gaﬁ(w,s).
Combining (6) and (9) implies that the scalar curvature R(z,t) of
gaﬁ(w, t) satisfies the inequality:

OR _ IV.RI

(10) A

+ R>0 on M x (0,7),

where V denote the covariant derivatives with respect to gaﬁ(w, t).

Now suppose g;;(x,t) > 0 is the smooth solution to the Ricci flow
equation (1) on M x[0, c0), which we obtained in Theorem 7.10, and sup-
pose assumption (2) in Theorem 8.1 holds. For any constant
0 < T < 400, from Theorem 7.10 (E) we know that the curvature
tensors of g;;(z,t) are uniformly bounded on M x [0,77]:

(11) sup |Rijk1($,t)|2 <0,
Mx[0,T]

where 0 < © < 400 is a constant depending only on T" and the constants
n, ko, € and C7 in Assumption D in §7. Since under Assumption D,
the manifold M is complete and noncompact, we have to try to control
the curvature of g;;(z,t) and the other tensors near the infinity of M
if we want to use the method in the paper of Cao [10] to prove that
the scalar curvature R(z,t) of g;;(x,t) still satisfies the inequality (10)
on M x (0,7). In his paper [24] R.S. Hamilton derived some kind
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of cut—off function technique which was used to control the curvature
and the other tensors near the infinity of the manifold when Hamilton
proved the Harnack estimate for the Ricci flow equation on complete
noncompact manifolds with bounded and positive curvature operator.
From (2) and (11) it is easy to see that the cut—off function technique in
the paper of Hamilton [24] can still be used in our case. Thus combining
the techniques in [10] and [24] we know that the scalar curvature R(z, )
of g;;(x,t) in Theorem 8.1 satisfies the inequality (10) on M x (0,7).
Since T' € (0,00) is arbitrary, we know that (3) is true on M x (0, c0).

Now suppose g;;(2,t) > 0 is the smooth solution on M X [0, co) to the
Ricei flow equation (1) which we obtained in Theorem 7.10. We want to
use Theorem 8.1 to improve the curvature tensor estimate obtained in
Theorem 7.10. We assume that the holomorphic bisectional curvature
of g;;(2,t) is strictly positive:

(12) —R 555(2,t) >0, on M X [0,00).

Suppose F'(z,t) is the function defined by (9) of §6. From (11) and (14)
of §6 it follows that

F(z, (z,0) / —F(z,s)
(13) = —/0 R(z,s)ds, on M x [0,00),
which together with Theorem 7.10 (C) implies
(14) /OtR(x,s)dsgcz(Hz)%e, on M x [0, 00),

where 0 < Cy < 400 is a constant depending only on n, kg, € and (7.
By (12) we have

(15) R(z,t) >0, on M x[0,00).

From Theorem 8.1 we know that R(z,t) satisfies the inequality:

|V RI* 1
(16) 8t > 2 T ;R, on M x (0, 00),
which together with (15) yields
OR 1
(17) E > —;R7 on M X (0700)
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Combining (14), (15) and (17) we get
(18) 0< R(x,t) < C5(t+2)7, on M x [0, 00),
where 0 < C3 < 400 is a constant depending only on n, kg, 8 and

Cq. From (12) it follows that there exists a constant 0 < Cy < 400
depending only on n such that

(19) |Rijri(z,t)| < CyR(x,t), on M x[0,00).
Combining (18) and (19) thus leads to

Theorem 8.2. Suppose that g;;(xz,t) > 0 is the smooth solution
to the Ricci flow equation (1) on M X [0,00), which we obtained in
Theorem 7.10, and that the holomorphic bisectional curvature of g;;(x,t)
is strictly positive:

(20) —R 553(2,8) >0, on M x[0,00).

Then there exists a constant 0 < Cs < +0o depending only on n, kg, 0
and C4 such that
2—26
(21) sup |Rijm(z,t)] < Cs(t+2)77 , 0<1t< +oo.
zeM

If we replace Lemma 7.6 by Theorem 8.2, then by the same technique
as the technique used in the proof of Lemma 7.7 we get

Theorem 8.3. Suppose that g;;(xz,t) > 0 is the smooth solution
to the Ricci flow equation (1) on M X [0,00), which we obtained in
Theorem 7.10, and that the holomorphic bisectional curvature of g;;(x,t)
is strictly positive:

(22) —R 553(2,8) >0, on M x[0,00).
Then for any integers m > 0, there exist constants

0 < Cs(m, n, ko, 0, Cy) < 400
depending only on m, n, ko, 8 and Cy such that

sup |VmRijkl(x,t)|2

ceM

(t + 2)(5F)(m+2)
(t+2)2tm 7

0<t < +oo.

(23) < Cg(m, n, ko, 8, Cy) -

205
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Remark. In Assumption D in §7, we assumed that 0 < 8 < 2. If
the constant § = 2 in Assumption D, using (145) of §6 and the same
method as that used in the proof of Theorem 8.3 we know that (23) is
replaced by

sup |VmRijkl($, t)|2
zeM
(24)
[log(t 4 2)]"+?

< CG(mv n, ko, Cl) ) (t—|—2)2tm )

0<t < +oo.

Under the assumptions of Theorem 1.1, a result similar to (24) was
proved by the author of this paper in [43] in 1990.

9. Constructing the biholomorphic maps

In this section we always assume that the assumptions in Theorem
1.2 hold. Suppose

(1) d3% = §ij(x)da'da’ > 0

is the complete Kahler metric on M with bounded and positive sectional
curvature:

(2) 0< EUU($> <ky, VazeM,

and satisfies

3) fB(xo,w) R(z)dz < (w-l-(fﬁ -Vol(B(zo,7)), x0€ M,

0 <~v < +o0,
where 0 < ko, €1 < 400, 0 < € < 1 are constants. From (2) it
follows that the holomorphic bisectional curvature of ds? is bounded
and positive:

(4) 0 < —R,y5(x) < 2ko, Vo€ M.

By the assumptions in Theorem 1.2, (M, g;;(z)) is a complex n—dimensional
complete noncompact Kahler manifold. Thus Assumption D in §7 holds
with the constant 6 = 1 4 <.
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Lemma 9.1. There exists a smooth solution g;;(z,t) > 0 to the
Ricei flow equation

(5) { %gw (a

gij(z,0)

on M X [0,00) such that

t) = =2R;;(x,t), on M x[0,00),
= ( ), on M,

(A)  g¢;;j(z,t) are Kdhler metrics for any 0 <t < 400,
(B) —R__.5(x,t) >0, on M x][0,00),

aa@pf
(C) Fla,t) > —Cy(t+2)7%,  on M x [0,00),
(D) dsi>ds? > % dsf, 0<t< +oo,
q
(E)  sup |Rim(z,t)] < Cs(t+2)~ 1+E 0 <t < +oo,
zEM
1—¢

t+2)TF) (n+2)
F "R HI? < N >
(1) sup IV R0 < ot - L2 0

0<t<4o0,

where 0 < Cy, C3 < 400 are constants depending only on n, kg, and
C1, 0 < C4(m) < 4oo are constants depending only on m, n, ko,
and Cq, F(z,t) is defined by (9) in §6,

(6) ds? = gii(x,t)de'de?, 0 <t < +oo,
1—¢

(7) g(t) = DT 0 <t < fo0.

Proof. From Theorem 7.10 we know that there exists a smooth
solution g¢;;(z,t) > 0 to the Ricci flow equation (5) on M X [0, 00) such
that (A), (C) and (D) of Lemma 9.1 hold. Combining (4), Theorem 7.10
(E) and Theorem 5.5 yields that Lemma 9.1 (B) holds. From Theorem
8.2 and Theorem 8.3 it follows that (E) and (F) of Lemma 9.1 hold.

q.e.d.

For any two points z, y € M, let v4(z,y) denote the distance be-
tween @ and y with respect to ds?. Let B;(z,7) denote the geodesic ball
of radius v and centered at € M with respect to ds?.

Now we fix a point 29 € M. We use T,, M to denote the space of all
the holomorphic tangent vectors of M at zg. For any two holomorphic



208 WAN—-XIONG SHI

vectors Vi, Vy € Ty o M, let (V1, V), denote the inner product of V; and
V5 with respect to the metric ds?. Since {ds?|0 < ¢ < 400} is a family
of Kahler metrics on M, which depends on ¢ smoothly, it is easy to see
that we can find Vi (¢), Va(t),...,V,(t) € T M for 0 < t < 400 such
that Vi(t), Va(t),..., V,(t) depend on ¢ smoothly and satisfy

(8) Vo), V)t = bap, a,8=1,2,...,n, 0 <t < +o0.
Thus

T, M = é TV, (t)

a=1
9) :{z:za‘/cy(tﬂzl,zz,...VZ”E(C}7 0 <t < +oo.
a=1

For each t € [0,00), we define a linear map 1

th: TxOM —>(Cn7
(10)

Wy (ZzaVa(t)) = (21222, VL e

a=1

Then {¢4]0 <t < 4oo} is a family of invertible linear maps between
Ty, M and C*, which depends on ¢ smoothly. For each ¢ € [0, 00), we
use

(11) exph, i TooM — M

to denote the exponential map with respect to the metric ds?. We now
define maps

\ptl c? —>M7
(12) Uy = expl, ot ', 0< ¢ < +o0.

Then {W|0 < ¢t < +oo} is a family of smooth maps from C" to M,
which depends on t smoothly and satisfies

(13) U,(0) = 29, 0<t< +00.
Suppose

(14) C*={z= (2% ..., 2" 2. .., 2" € C},
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and use
(15) ds? = " dzdz”
a=1

to denote the standard flat Kdhler metric on C*. For any z € C"* and
v >0, let

(16) B(z,7) = {w € C'[Jw - 2| < 7}

denote the geodesic ball of radius v and centered at z with respect to
ds?. Let V denote the covariant derivatives with respect to the metric
ds?. From Lemma 9.1 it follows that

SUpaens [V Rijia(e, 1)] < Cs(m) - (¢ +2) T 0"+,

1
(17) m >0, 2 << 400,

where 0 < C5(m) < 400 are constants depending only on n, m, ko,
and Cy. Thus the curvature tensor {R;;r(z,t)} together with its co-
variant derivatives tend to zero uniformly on M as time t — +o00. We
now define

(18) Us(t) = (t+2)T%, 0<t< +oc.

Then by (17) there exists a constant 0 < Cg < 1 depending only on
n, ko, € and Cy such that for any ¢ € [2,00), the map W; is nonsingular
on B(0,Celp(t)). Thus we consider the pull-back metric

(19) s (ds?) = g% 5(z,0)d=4d=P, = € B(0, Celdo(t)),

where A, B = « or @. Since W; are not holomorphic maps in general,
the metrics in (19) are not Kéhler with respect to z in general. However,
by the definition of W; in (12), g% 5(z,t) depend on ¢ and z smoothly.
From (12) and (17) it follows that there exists another constant C'7, 0 <
C7 < Cg < 1, depending only on n, kg, € and Cq, such that for any
t €[2,00),

*

=)
o
|

2 -~
— Gapl < BEL 2 € B(0,Cao (1)),

Z2 -~

— gl < FEELL 2 € B(0, G (1)),
2 o~

<L 2 e BO.Cao(1),

< @y 3
< EL 2 e B(0,Ctdo (1),

=y

(20)

N
Q %
=

o %
»
P T e N NS N
I
o~
NN N

*

&)
9l
=l

(21) Vg (= 1) < = € B(0,Citho (1)),

(22) V¥ gis(z 0] <
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where 0 < Cg < 400 is a constant depending only on n, ko, £ and
(4. Let J denote the complex structure on M. Then W5(J) defines
a complex structure on E(O,CGZ/{O(t)), and Wj(ds?) is a Kihler metric
on B(0, Celdp(t)) with respect to the complex structure Wy (.J) for every
t € [2,00). Suppose 9 is the d—operator on M. For any t € [2,00), let

9" denote the d-operator on E(O7 Celdo(t)) with respect to the complex
structure Wy (.J). It is easy to see that

(23) D=0 @), 2<t<+oo.

Define n holomorphic functions p!(z), p?(z),...,p"(z) on C":
(24) pi(z) =2, Ve=(212% ...,z eC", a=1,2,...,n.
Then by (20) and (23) we have

Cy|z|?
Up(t)*’

(25)  [9p(2)] < 2 € B(0,Clho(t)), a=1,2,...,n,

where 0 < Cy < 400 is a constant depending only on n, kg, € and (7.
We define

€

(26) Ut) = (t+2)20+), 0 <t < 4oo.
Then
(27) 1< U(t) =Up(t)? < Up(t), 0< 1< +oo.

Combining (20), (21), (22), (25) and (27) we get

* C )
29 lgin(e0) -5l < gt = € BO.CRU),
o CIO ~
@) [Vgis01 < it =€ BO.CAU),
S Cho
B0 [99gs(e 0] < it <€ BO.CU0),
(31) |5tpa(z)| < %, z € E(O,Cﬂ/{(t)), a=1,2,...,n,

and where 0 < (19 < 400 is a constant depending only on n, kg, € and
017

1, if A=3B,
(32) 5A§ = { . -
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Let A(y,t) denote the eigenvalues of the second fundamental form of
dB(0,v) with respect to the metric Uy (ds?). From (17), (28), (29) and
(30) it follows that there exist constants

0 < Chy1,Cha,C13 < +00

depending only on n, ko, € and ('} such that

C C
(33) %gx(w)g$, 0 <~ <CUt), 24 Ciy <t < +oo.

Thus for any ¢t > 2+ Cq1 and 0 <y < CHU(¢), 8@(0,7) is convex with
respect to the metric W (ds?). For any t > 2 + (3, using L? estimate

theory for the d operator which appeared in the book of L. Hérmander
[25], from (17), (28), (29), (30) and (31) we know that the J equations

_ — ~ 1
(34)  D0°(z,0)=0p%(2), z € B(0,5CUM), a=12,....n,
have smooth solutions {0°(z,t)|la=1,2,...,n} such that

) {w%z’m < &4,

~ 1
~ z € B(0,=C7U(t)), a=1,2,...,n,
|V~ (2,1)] < Lﬁ—g)gv 2

where 0 < (14 < 400 is a constant depending only on n, kg, € and Cy. If
we choose the solutions 6(z,t) of (34) such that 8”(z,¢) are orthogonal
to ker @ in certain L2 Hilbert function spaces on B(0,CA4(t)), and
choose those L? function spaces such that those spaces depend on ¢
smoothly, then 6¥(z,t) depend on ¢ smoothly. For how to choose those
L? function spaces, one can see L. Hérmander [25] for details. Since
U(t) — +oo as t — 400, we can find a constant 2 + C; < C5 < +00
depending only on n, ko, € and C such that for any ¢ > (5 we have

(36) CHU(t) > 2,

167 (2,8)] < 55, ~1
37 " n € B(0,=C5U(t)), a=1,2,... n.
( ) {|V0a(27t)|§%7 z ( 2 7 ()) « n

We now define a map ¥; = (\Tl%,\flf, ces ,\Tl?):
~ o~ ]
U, B(O,§C7U(t)) —C",
(38)
~ ~ 1
U (z) = p*(z) — 0% (z,1), z € B(O7§C’7L{(t))7 a=1,2,...,n.
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From (34), (36) and (37) it follows that for any ¢ > (5, the map U, is
nonsingular on B(0, 3C72(t)) and satisfies

(39) [B0(=) 2| < 5, = € B0, 5CU(),
(10) Gu(B(0, 2CU0)) € BO,CUD),
(41) U (2) =0, = € B(0, 1071,1@)).

By the definition, \Tlt depend on t smoothly. We let
~ o~ ]
(42) ¢t :\IItO\IIt: B(O,aC?U(t)) — M.

Since W, is nonsingular on E(O,%Cﬂ/{(t)) and ¥, is nonsingular on
B(0,CU(1)), from (40) and (41) we know that {®|Cy5 < t < 400} is a
family of nonsingular (nondegenerate) holomorphic maps from
E(O,%Cﬂ/{(t)) to M, which depends on ¢ smoothly. From (13), (28),
(35) and (39) it follows that for any ¢t > Cfs,

(13) oo, 0(0) <5 (14 5705
(44) (1 - u%f?) ds% <7 (ds?) < (1 + %) ds?,

on B0, %Cﬂ/{(t)),

where 0 < C'1g < 400 is a constant depending only on n, kg, € and (7.
Since U(t) — +oo as t — +o0, we get

Lemma 9.2. There exist constants 0 < C7,Cig < +oo depending
only on n, ko, € and Cy such that {®4|C17 <t < 400} is a family of
nonsingular (nondegenerate) holomorphic maps from B(0,Cqgld(t)) to
M, which depends on t smoothly and satisfies

(45) Y20, ®4(0)) < 1, Ci7 <t < 400,
1 .
(46) 0% < @7(dsf) < 2457, on B(0, C1ald (1)),

Ci7 <t < 4oc.
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By assumption (2) the sectional curvature of g;;(x, 0) is strictly pos-
itive on M. Thus from the result of D. Gromoll and W. Meyer [21], M
is diffeomorphic to R?". Using the result of R.E. Greene and H. Wu
[19], we know that M is exhausted by a family of convex domains, M
is a Stein manifold. Namely, there exists a family of domains Qp C M
for k =1,2,3,... such that Qj is convex with respect to the metric ds?
for every k > 1 and satisfies

(47) (i) QU C g1, k=1,2,3,...,
(48) (H) B0($07 4k> C Qk C B0($07 pk)7 k= 17 27 37 SRR
where p; < pg < ps < ... is a sequence of increasing positive numbers.

Since U(t) — 400 as t — 400, for any integer k > 1, we can find a
number ¢ such that

(49) (1) Cir <ty <tpsr, k=1,23,...,
(50)

(11) Clgz/[(t) > 4pk—|—47 tr <1 < o0, k= 172737... .
For any ¢ EA[tl, o0), from Lemma 9.2 it follows that ¢, is a holomorphic
map from B(0,C1sld(t)) to M, which is nonsingular at every point z €
B(0,C1sU(t)). Thus @, is a holomorphic covering map and is locally
biholomorphic on B(0,Cqgl4(t)). By (45), (46) and (50), there exist a

small neighborhood Wy of 29 on M and a biholomorphic map ; from
Wy to ¢ (Wy) C C* such that

(51) () ®lp(e) =2, W,
(52) (i) lor(wo)] < 2.
Since ®; depend on t smoothly, we can choose ¢; such that ¢; depend

on t smoothly. For any integer £ > 1 and any t € [t;, o), from (48) and
Lemma 9.1 (D) we have

(53) xg € Qp C B0($0,pk) C Bt($07pk)-

Since Q. is convex with respect to the metric ds3, Q. is simply con-
nected. Since ®; is locally biholomorphic on E(O,Clgl/{(t)), from (46),
(49), (50), (51), (52) and (53) we know that for every ¢ € [t;, 00), there
is a unique biholomorphic map ¢y, ¢ from Q to ¢y () C C* such that

(54) (i) Pi(pre(a)) =2, z€Q,
(55) (i) ene(@)| <206 +2, x € Qy,
(56) (iil) epe(z) = @i(x), 2 € QnNW,.

213
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Since ¢ depend on ¢ smoothly, we know that ¢ ; depend on ¢ smoothly
for t;, <t < 4o00. By the uniqueness of holomorphic extension and (56)
we get

(B7)  pmi(@) = opi(x), 2 €Q, m>k>1, t, <t<+4oo.

Lemma 9.3. For any integer k > 1 and any t;, <t < 400, @p ()
s a bounded domain and is Runge in C".

Proof. By (55), ¢k,:(%) is a bounded domain in C*. A domain
Q2 C C" (not necessarily pseudoconvex) is said to be Runge in C" if every
holomorphic function on €2 can be approximated by entire functions,
uniformly on compact sets in 2. Suppose f(z) is a holomorphic function
on ¢y +(Qk), we want to prove that f(z) can be approximated uniformly
on compact subsets by entire functions. Since ¢, is biholomorphic
in Q, fo @k, is a holomorphic function in Q. Since €y is a convex
domain in the Stein manifold (M, ds2), using the @ theory appeared in
[25] we know that f oy can be approximated uniformly on compact
subsets of Qj by holomorphic functions h(z) defined on M. Thus from
(50), (54) and (55) it follows that f can be approximated uniformly on
compact subsets of ¢y (%) by holomorphic functions h o ®; defined
on §(0,4pk + 4). Since §(0,4pk + 4) is a standard ball in C*, using
the 0 theory appeared in [25] again we know that those holomorphic
functions h o ®; can be approximated uniformly on compact subsets of
§(0,4pk + 4) by entire functions. Therefore f can be approximated
uniformly on compact subsets of ¢y (%) by entire functions. Thus
k() is Runge in C*.  q.e.d.

For any integer k£ > 1, we have already constructed biholomorphic
maps ¢k ¢ from Q into C*. Now we want to construct the global bi-
holomorphic map from M into C*. To do this we use the results of
Andersen—Lempert [1] and Forstneric-Rosay [16] in 1992 and 1993. In
their papers [1] and [16] some approximations of biholomorphic maps
by automorphisms of C* were obtained. By (48), Bo(zg,4) C ;. Since
{e1lt1 <t < ty} is a family of biholomorphic maps from €4 into C*
which depends on t smoothly, thus there exists a constant a; > 0 such
that

(58)  |p14(z) = @1(y)| > arvo(z,y), t1 <t <ty, x,y € Bo(zo,2),

where vo(2,y) is the distance between z and y with respect to the metric

dst. We define
(59) Ji(2) = 140014, (2)), 2 € P10, (), 1 <t <ty
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Then {fi|t; <t <ty} is a family of biholomorphic maps from ¢ 4,(€2)
into C*, which depends on ¢ smoothly and satisfies

(60) () fu(z)=2 =z€oi,(h),
(61) (i) filern (1)) = e14(), t <t <ty

For any t; <t < g, by Lemma 9.3, 1 +(£21) is a bounded domain and is
Runge in C*. Using the results of Andersen—Lempert [1] and Forstneric—
Rosay [16] we know that { f;|t; <t < 3} can be approximated uniformly
on compact subsets of ¢; 4, (1) by families {h¢|t; < t < t3} of auto-
morphisms h; of C*, which depend on ¢ continuously and piecewise
smoothly, and satisfy

(62) he,(2) =2, z¢€C".

Thus {p14t; <t < t3} can be approximated uniformly on compact
subsets of ©; by families {hs o @2 4,|t1 <t <t} of biholomorphic maps
hiops s, from €y into C*, which depend on ¢ continuously and piecewise
smoothly, and satisfy

(63) hy, o 992,752(96) = 9927752(96)7 z € (.

The approximation of 1+ by ht o g4, comes from (57) and (59). Since
Bo(zg,4) C 24, using the derivative estimate for holomorphic functions
we see that if 1 ; — hy 0 g, is very close to zero on By(zg, 3), then the
derivatives of ¢y ;—hioipg 4, are very close to zero on By(zg, 2). Therefore
there exists a family {9 +|t; <t < ¢y} of biholomorphic maps ¢ ; from
Qs into C* which depends on t continuously and piecewise smoothly
such that

(64)

. 1 -

(1) |S‘92,t($) - S‘Ql,t(wﬂ S 57 UANS BO($072)7 tl S t S t27
(65)

. 1 -
(i) [Vip2e(2) = @re(@)]l € gar, @ € Bo(wo,2), ty ST <ty

where V denote the covariant derivatives with respect to the metric ds.
For any two points z,y € Bg(zo, 1), we can find a geodesic A from z to
y such that the length of A is equal to vo(z,y) < 2. Thus A C By(2o, 2),
which together with (65) implies

[p2.0(2) = pr4(2)] = [P2,:4(y) = Pra(W]|
(66) S %QIPVO(xvy)v 9579630(90071)7 ty §t§t2-

215
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Combining (58) and (66) we get

7
|S‘927t($) - 992775(y)| > §a170($7 y)7
(67) $7y€BO($071)7 tl StStQ

By the construction,

(68) @Q,t(w) = ht(@?,tg ($))7 RS 927 tl S t S t27

where h; are automorphisms of C*. Thus
(69) ©2,1(2) = hi(p2,1,(Q22)), t1 <t < ty.

By Lemma 9.3, ¢24,(€22) is a bounded domain and is Runge in C".
Thus for any ¢1 < ¢ < {3, p2+(€2) is a bounded domain and is Runge
in C*. From (63) and (68) it follows that {@o+|t; < t < 400} is a
family of biholomorphic maps 3 ; from €25 into C*, which depends on ¢
continuously and piecewise smoothly. By (69) and Lemma 9.3 we know
that for any t; <t < 400, ¢2(€2) is a bounded domain and is Runge
in C".

Now we repeat the process. For any integer k > 2, using the results
in [1] and [16] we can find a family {eg|t; <t < ¢4} of biholomor-
phic maps ¢y from € into C* which depends on ¢ continuously and
piecewise smoothly such that

(i) {e@relts <t < +oo} depends on ¢ continuously and piecewise
smoothly,
(i) For any ¢y <t < 400, ¢ (Q) is a bounded domain and
is Runge in C",
(70)

1! -
(i) Jori(®) = pr-1,6(2)| < (5) , © € Bo(zo,2k — 2),

<t <ty



RICCI FLOW 217

(V) lprt(@) = or1.e(2)] = [Pre(y) — Pr-1.:(y)]]

(71) < (%)Mak—l'm(% Y)s

z,y € Bo(zo, k= 1), t; <t <ty,
where aj_; is a constant such that
(72) 0<ap_q <ap_o<...<az <ay,
(73) [or—1.4(2) — Pr—1,(y)| > ar—170(2, ),
z,y € Bo(o,2k —2), t; <t < ty.

By (71), (72) and (73) we get

3
|S«9m,t($) - @myt(y” 2 Zak70($7 y)7
(74) €, y€B0($07k)7 t1 Stﬁtk+1, mZkZ 1.
Using (70) we obtain

k—1
1
|om,i(z) — rs(@)] < (5) ,m>k>1,

(75) T € Bo($07 2]6)7 t1 S 4 S tk_|_1.

From (75) it follows that {¢g |k = 1,2,3,...} converges uniformly
on compact subsets of M to a holomorphic map ¢ from M into C*:

76 = i . e M.
(76) e(z) k_lg_loo@k,tl(w) x

By (74) we have

3 -
(77) |99($) - @(y)| Z Zak70($7y)7 k Z 17 T, Y € BO($07k)-

Thus ¢ : M — ¢(M) C C" is a biholomorphic map since a; > 0 for any
k > 1. Since M is a Stein manifold by the result of Greene-Wu [19],
@(M) is a pseudoconvex domain in C". Hence the proof of Theorem
1.2 is complete.
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