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CURVY SLICING PROVES THAT TRIPLE
JUNCTIONS LOCALLY MINIMIZE AREA

GARY LAWLOR & FRANK MORGAN

Abstract
In soap films three minimal surfaces meet at 120-degree angles. We use a
novel curvy slicing argument to prove that small pieces minimize area for
given boundary. The argument applies in general dimension and codimen-
sion.

1. Introduction

The Belgian physicist J.A.F. Plateau [18] observed and recorded two
types of singularities in soap films:

(1) three minimal surfaces meeting smoothly at angles of 120 degrees
along a curve,

(2) four such curves meeting smoothly at angles of about 109 degrees
at a point.

J. Taylor [20] proved that certain locally area-minimizing surfaces
((M,0,5)-minimal sets) have precisely these two types of singularities.
For the first type, our Theorem 5.1 proves conversely that any such
configuration is locally area minimizing in a stronger sense (among sep-
arators of regions). We extend our result to general dimension and
codimension. Even for a regular piece of minimal surface, such area
minimization is by no means obvious, and we begin with a new simple
proof of this case (Theorem 2.1).

Whether "tetrahedral" singularities of type (2) locally minimize area
remains an open question, although paired calibrations [LM] prove the
tetrahedral cone itself minimizing in all dimensions. A more general
conjecture states that a stationary singular surface minimizes area in
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a neighborhood of any point where it has a strictly area-minimizing
tangent cone. Some such results for minimal surfaces with isolated
singularities were proved by Hardt and Simon for one notion of "strictly
minimizing" [7, §3] and by Lawlor [12, Thm. 6.3.1] for a related notion
[12, 6.1.1].

Curvy slicing. Before discussing our new curvy slicing, we recall
the proof by standard slicing that a piece S of three vertical halfplanes
meeting along the z-axis at angles of 120 degrees is area minimizing.
Each slice by a horizontal disc is a uYn consisting of three line segments
meeting at angles of 120 degrees. Each Y is length minimizing. Since
S is perpendicular to the horizontal slicing discs, its area equals the
integral of the lengths of the slices, and hence is as small as possible.

In the general case, when S is a piece of three minimal surfaces
meeting at angles of 120 degrees, we slice by curvy discs orthogonal
to S. Because the distance between such discs is variable, the area of
S equals the integral of the lengths of the slices in a certain weighted
metric, in which the slices consist of geodesies. The crucial estimate
is that the metric is C 1 ' 1 (although not in general C2). The requisite
Lemma (Proposition 4.1) states that a geodesic Y in a C 1 ' 1 metric is
locally length minimizing. For a general C1>α metric for a < 1, even a
single geodesic can fail to be locally length minimizing.

Organization. To illustrate our methods, Section 2 gives a simple
proof by curvy slicing that regular minimal surfaces are locally area
minimizing. Sections 3 and 4 provide the needed lemmas on C 1 ' 1 met-
rics: normal coordinates and locally minimizing Y's. Section 5 contains
our main result, that triple junctions are locally minimizing.

2. Regular minimal surfaces are locally area minimizing

Theorem 2.1 illustrates our slicing methods with a new, simple proof
that a regular minimal surface is locally area minimizing in general di-
mension and codimension, even in competition with unoriented surfaces.

Classical geodesic field theory first proved for m = 1 that geodesies
are locally minimal and later proved for m = n — 1 that minimal hy-
persurfaces are locally minimizing, but never succeeded for general ra,
despite extensive work by many mathematicians, including Weyl and
Caratheodory (see [6]). Finally Federer [4, 1975] gave an intricate proof
for general m in the category of oriented surfaces (rectifiable currents).
Morgan
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[13, Cor. 3.4, 1984] admitted unoriented competitors in a weak compact-
ness proof using White's spaces of immersions and Allard's regularity
theory. Lawlor [12, Thm. 6.2.8, 1991] gave a simpler proof using projec-
tions. The following proof based on Lawlor's slicing theory [11] seems
to be the best yet.

2.1. Theorem. A smooth m-dimensional minimal surface S in
R n is locally area minimizing {even in competition with unoriented
surfaces).

Here "locally area minimizing" means that about every point of S
there is a small ball B in which S is area minimizing in competition with
any oriented surface S' (rectifiable current) with the same boundary (or
such that dS1 — dS = 2X for some rectifiable current X). The extra
boundary 2X allows one to orient an otherwise nonorientable S" . (We
are not admitting the most general nonorientable surfaces of geometric
measure theory, which present technical difficulties for slicing.)

Proof. We will slice S into curves by curvy (n — m + l)-dimensional
surfaces {/ = c} orthogonal to 5, note that the slices are geodesies in
an appropriate metric, and conclude that S is locally area minimizing.
For convenience we use coordinates rr, yi,... , yn-m, z\, , ̂ m-i on R71

with S tangent to the x-z plane at the origin and prove S area mini-
mizing in a small ball about 0. Let B\ be a small ball about 0 and let
C be the slice of S Π B\ by the y-z plane. In a smaller ball JE?2 about 0,
let PQ denote nearest point retraction onto C and let Pi denote nearest
point retraction onto S. We confine our attention to B2. For our slicing
function we take the smooth nonsingular map f = P$ o Pγ. The level
sets {/ = c} slice S orthogonally into curves Sc. By the coarea formula
[14, 3.13], we have

= / /
Jc Jsc

/ / l/Jm-i(/|S)<fc = / / l/Jm-ifdc.
c Jsc Jc Jsc

Here Jm-\ is the Jacobian; for surfaces of dimension m = 2, Jm-\ —
J\ — l^/l The second equality follows because by construction the
level sets of / are perpendicular to S. In general, the restricted Jacobian
Jm-i{f\Sf) from the coarea equality is smaller than J m _i/, since it is
a supremum over a smaller collection. The equation can be restated as

area 5 = / length(5c),

where length is measured in the metric ( l/J m -i/) times the standard
metric on {/ = c}. Since S is stationary, it follows that Sc consists of
geodesies in this metric, which are minimal inside some smaller ball B$.
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Now consider any competing surface Sf (in B3) with the same bound-
ary as S (or dSf - dS = 2X). For almost every c,dS'c consists of the
same two points as dSc ([14, 4.11], [5, 4.3.1,4.3.8]), possibly plus addi-
tional points of multiplicity 2. In any case, S'c includes a path between
the points of dSc and hence length(5c) < length^). Therefore (in £3)

area 5 = / length(5c) < / length^) < area 5'.
Jc Jc

(The last inequality need not be equality since S' need not be orthogonal
to {/ = c}.) We conclude that S is locally area minimizing.

3. Normal coordinates for a C1}1 metric

Proposition 3.1 provides normal coordinates for a C 1 ' 1 metric, as
needed in Section 4. The result is standard for a C2 metric and in
general false for a C l j Q metric with a < 1.

3.1. Proposition. Consider a ball B(p,εo) C R n with a C 1 ' 1 met-
ric which is the standard metric at p. Then in a smaller neighborhood
there are biLipschitz normal coordinates in which for some positive con-
stant a distances are bounded above and below by the metric in polar
coordinates

(1) dr2 + {l±ar2)r2dθ2.

Here dθ is the standard metric on the unit sphere, so that dr2 + r2dθ2

is the standard metric on Rn. The size of the smaller neighborhood and
the constant a need depend only on a lower bound on the radius εo of
the original ball and an upper bound on the C 1 ' 1 norm of the metric.

Remarks. In biLipschitz coordinates, the Riemannian metric tensor
may be undefined on a set of measure 0, but the length of a Lipschitz
curve is welldefined via the original coordinates. If the metric turned
out to be Holder continuous in the new coordinates, they would have to
be C1 by a theorem of Calabi and Hartman [3].

The standard theory of differential equations provides a unique C2

geodesic in every direction from p and therefore a well defined exponen-
tial map, but requires a C2 metric to conclude the exponential map is C 1

and hence a local diffeomorphism. If the metric is merely Cι>a(a < 1),
geodesies can fail to be locally minimizing or fail to be unique for a
given initial direction [9, §5].
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P. Hartman [8, Thm. 1.3] proved for example the existence of C1

normal coordinates for a C 1 ' 1 metric with Riemannian curvature tensor
continuous except at isolated points, a correction of [9, III]. In our appli-
cation, a uniform version of Hartman's Theorem could replace Proposi-
tion 3.1.

Proof. By shrinking εo, we may assume the metric stays within a
factor of 2 of the standard metric. We consider a smaller ball B(p, 9ε),
with 4ε < TΓ/2KQ, where KQ is a bound on the absolute value of the
sectional curvature. On B(p, 8ε), consider a nice sequence of smoothings
converging to the given metric. Then the corresponding sequence of
exponential maps fa satisfy

(3) B(P,2ε) C Λ(B(0,4ε)) C B(p,8ε).

By the Rauch Comparison Theorem, for some constant α, for all x G
B(0,4ε), in the norm from the metric,

(4) (1 - ^α|x|2)|e| < \\Dfi{x)(ξ)\\ < (1 + \a\x\2)\ξ\.

(The factors of 1/8 and 1/2 are for future convenience.) By shrinking
ε if necessary, we may assume aε2 < 1/2. In particular, fa is a local
diffeomorphism.

We now show that for 0 < r < ε, on B(0, r), each fa is a biLipschitz
map with

\r2)\Δx\ < ||Δ/,|| < (1 + \ar2)(5) (1 - \ar2)\Δx\ < ||Δ/,|| < (1 + \ar2)\Δx\.

The second inequality follows immediately from (4). To prove the first,
let x\)X2 £ B(O,r). Let ̂ 1,̂ 2 denote the images of 0α;i,0rr27 &nd let
£3 denote a shortest path from f(xχ) to /(x2)5 which must lie inside
/ΐB(0,2r) C B(p, 4ε). Since fa is a local diίfeomorphism we can lift the
triangular region t\i2h to B(0,2r); let l3 denote the lift of iz. By (4),

length^ < (1 - -α(2r)2) lengthί3.8

Therefore |Δx| < (1 - \ar2)-ι\Δfa\, proving (5).
On B(0,ε), the fa converge to a biLipschitz map / satisfying (5).

The images of rays from 0, as limits of minimal geodesies, are minimal
geodesies, so / is the exponential map and |/~1(g)| = dist(p, q). Conse-
quently whenever f~ι is differentiate (almost everywhere), Vr = d/dr,
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and ds2 = dr2 + dτ2, with dτ tangential. Since / satisfies (5), we have

dr2 + (1 - ±ar2)2r2dθ2 < ds2 < dr2 + (1 + \ar2)2r2dθ2

and hence

(6) dr2 + (1 - ar2)r2dθ2 < ds2 < dr2 + (1 + ar2)r2dθ2

almost everywhere.
Now we show that the length of any Lipschitz curve 7 in the given

C 1 ' 1 metric is bounded by its lengths in the metrics (6). If not, the
reverse inequality can be maintained under smoothing 7 in the original
coordinates, then taking a small embedded piece, then translating so
that (6) holds almost everywhere on 7, to achieve a contradiction.

Finally note that the size of our final small neighborhood and the
constant a depended only on the radius εo of the original ball and the
C 1 ' 1 norm of the metric.

4. A geodesic Y in a C1 '1 metric is locally minimizing

4.1. Proposition. Let Y be three geodesies meeting at angles of
120 degrees atp in the unit ball with a C 1 ' 1 metric which is the standard
metric at p. Then the portion of the Y inside a small ball about p is
uniquely length minimizing. The size of the small ball need depend only
on an upper bound on the C 1 ' 1 norm of the metric.

Proof. By Proposition 3.1 and scaling, there are biLipschitzian
normal coordinates at p in which distances are bounded below by the
spherical metric

ds2 = dr2 + sm2rdθ2.

Moreover, if the original metric is the identity at p, the size of this
coordinate neighborhood need depend only on a lower bound on the
size of the original coordinate neighborhood and an upper bound on
the C 1 ' 1 norm of the metric. Since Y is no shorter in this metric, it
suffices to prove the result for this metric, i.e., for p the north pole on
a relatively small spherical cap. Consider a somewhat smaller piece of
the Y, with endpoints pi, such that the shortest network must lie inside
the spherical cap. Distance from pi is a convex function, strictly convex
except in the direction of p{. Hence the sum of the three distances
is a strictly convex function. Since the three geodesic arms of the Y
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meet at 120 degrees, p is a critical point, and hence the unique absolute
minimum.

Remarks. The hypothesis that the metric be C 1 ' 1 is necessary. For
any a < 1, Hartman and Wintner [9, §5] exhibited a C1 > a metric on the
plane for which the positive y-axis is a geodesic but no initial piece is
minimal, namely

ds2 = dx2 + (1 - |z | 1 + α)ώ/ 2 .

This metric arises on a C 1 surface of revolution in R 3 [9, §6, Remark
p. 138].

5. Triple junctions are locally minimizing

Theorem 5.1 provides the main result of this paper, that three mini-
mal surfaces meeting smoothly at 120 degrees are locally area minimiz-
ing. The result holds in general dimension and codimension.

5.1. Theorem. Three minimal surfaces S{ meeting smoothly (C4)
at 120-degree angles along a curve C in R 3 are locally area minimizing.
The same result holds for three (k + 1)-dimensional surfaces meeting
along a k-dimensional surface in Rn .

"Locally" means that about every point of S = USi there is a small
ball B in which S is area minimizing. The proof actually shows that the
size of B need depend only on the C 4 norm of the surfaces and singular
"curve" (which may in general be A -dimensional). For the main case of
hypersurfaces, as competitors we could allow any set Sf which (together
with S Π Bc) continues to separate locally the three regions Ri of the
complement of S. In particular, S is (M, 0, <5)-minimal.

To admit higher codimension, where surfaces do not separate space,
we give two of the surfaces similar orientations, and we give the third the
opposite orientation with multiplicity two (so that there is no boundary
along the singular "curve"). Our proof then shows that S minimizes size
(area without counting multiplicity, i.e., simply the Hausdorff measure
of the underlying rectifiable set). In particular, S is (M, 0, J)-minimal.
For basic facts about size-minimizing rectifiable currents see [15]. Note
that the boundary of almost every 1-dimensional slice will be three
points ([14, 4.11], [5, 4.3.1, 4.3.8]). Proposition 4.1 implies that a small
geodesic Y, suitably oriented, is size minimizing.

For hypersurfaces, such size minimization implies area minimization
among separators of regions. Indeed, any competing separator S' of
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space into regions i?i,i?2,i?3 can be turned into dR\ — dB,2 (boundary
as currents), which is a competitor to minimize size. Moreover by [5,
4.5.6, 4.5.12], the size of dR\ — <9i?2 is less than or equal to the area
(Hausdorff measure) of 5".

An earlier proof [16, Theorem 2.1] using strict calibrations in the
larger category of constant-mean-curvature surfaces considered only com-
petitors S' with singular "curve" C" close to the original C in the C 1

norm.

It actually suffices to assume the three surfaces meet with smooth-
ness class Cι'a at 120-degree angles, since it follows that they meet real
analytically [10, Thm. 5.1].

Proof. We will show how to slice the surfaces orthogonally into Y's
which are geodesies in an appropriate C 1 ' 1 metric, apply Proposition 4.1
to infer the F's minimizing, and thence deduce the surfaces minimizing.

Since it is known that a small piece of a regular minimal surface is
area minimizing, we consider a point p in the singular "curve" C and
let Si be a smooth extension of Si to a nice small neighborhood of p.
We confine attention to this small neighborhood.

Let Pi denote nearest point retraction onto Si. Let φ give local
coordinates on C. Let PQ denote nearest point retraction onto C. Let
(r, 0, z) be cylindrical coordinates on each plane {Po = c} with {θ =
0,z — 0} tangent to S\ at C. Let u(θ),u'(θ) be nice bump functions
equal to 1 near S2, S3. Then as r -> 0,

(1) u = O(l) and Dmu = O(r~m).

The slicing function. Define as our slicing function

f =φo P0oP1+ u(ψ o P0o P2-φo P0o Px)

+ u'(φ oPQo P3- φo PQo Pi)

=Pl + U(p2 ~ Pi) + u'{p3 - pi),

where Pi is the smooth function ίpof 0oPj, which gives in local coordi-
nates projection onto C via Si.

Clearly / is continuous. To show that / is Lipschitz for example,
it suffices to show that Of is bounded for r > 0. First note that the
Po ° Pi and hence the pi satisfy

(2) Pi - Pj = O(r2), D(pi - Pj) = O(r), Dm

Pi = 0(1).
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We claim that for unit vectors v, w, with v orthogonal to the level plane
of Po at a point,

(3) D{pi-Pj)(v) = O(r*),D2{pi-pj)(v,w) = O{r).

The second estimate holds because on C, by (2), D(pi-pj))(w) = 0. The
first follows from the second. Hence for r > 0, by (l)-(3) we have

Df =DPl + Du{p2 - pi) + uD{p2 - p\)

(4) + [similar terms in v!,p% — pi, henceforth omitted]

=DPl + O{r-ι)O{τ2) + O(l)O(r) = DPl + 0{r) = 0(1),

so / is Lipschitz for all r;

D2f=D2

Pl+D2u(p2-Pl)

(5) +DuQ D(p2 - pi) + uD2(p2 - Pi)

=O(1) + O(r-2)O(r2) + O{r~ι)O{r) + 0(1)0(1) = 0(1)

where

DuΘD(p2-pi)(υι,v2) =

so / is C1 '1. Since Df is nonsingular on C, each level set {/ = ψ{c)}
is a graph over its tangent plane {PQ = c} at C\ let q be the associated
C 1 ' 1 map from {Po = c} to {/ = φ{c)}. Similarly,

D3f =D3pλ + D3u{p2 - pi) + D2u Θ D(p2 - pi)

(6) +DuQ D2(p2-pι) + uDs(p2-pι)

=0(1) + 0{r~3)0(r2) + 0{r-2)0{r) + O(r-x)O(l)

+ 0(1)0(1) = 0{r-1).

Even though D3f in general is 0(r~1), the essential fact will be that
the portions of D3f which appear as terms in the second derivatives of
Jkf are 0(1).

The metric. By the coarea formula [14, 3.13], we have

area S= f t -?-= / length(5c),
JC JSΠ{f=φ(c)} JkJ JC

where S = USi,Sc = S Π {/ = φ(c)} is a slice of £, and length is
measured in the metric (1/(</&/)) times the standard metric on {/ =
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φ(c)}. Since S is stationary, it follows that Sc consists of geodesies in
this metric (meeting at 120-degree angles). To show that this metric
is C 1 ' 1 in the coordinates of its tangent plane {Po = c}, we show first
that the standard metric on {/ = φ(c)} is C 1 ' 1 and second that the
weighting factor J^f is C 1 ' 1.

The standard metric. Recall that for a graph of a function h, ds2 =
dx2 + dh2. In our case, {/ = φ(c)}, in the coordinates of P = {Po = c},
has metric

ds2(υ) = l + \(Df\P±)-1(Df(υ))\2,

where ds is evaluated at x and Df is evaluated at q(x). (For convenience
we are assuming P Π C = {0}.) To show the metric C 1 ' 1, it suffices
to consider fixed v and bound the second derivatives of the metric on
P — {0}. Since the first two derivatives of / are bounded, we need only
consider the third derivative term arising from differentiating the same
factor twice, which by (6) is O(r"ι)O(r) = 0(1).

The weighting factor. Therefore we just need to show that the
weighting factor Jkf{q{x)) is C 1 ' 1 on P or that Jkf as a function on R n

is C 1 ' 1 on {/ = φ(c)}. We already know f C 1 ' 1 and hence Jkf Lipschitz.
For convenience, we use the smooth coordinates (r,θ,z;φ o PQ) on R n

so that with orthonormal basis ei, . . . , en,

(7) Du(βi) =0 for i>2<n-k.

(Since these coordinates amount to composition with a smooth function,
estimates (l)-(6) continue to hold.) Fortunately in the complementary
directions, where Du is big, Df is small. Let

be the associated orthonormal basis for ΛfcR/\ Then

(Λ/) 2 = | l>/(0l 2 + Σ|Z>/(&)|2,

D2{Jkf)
2 =0(1) + 2(D2Df(ξ)) . Df(ξ) + Σ(D2Df(ξi)) . Df(ξi)

=0(1) + O(l)D2Df(ξ) + O(r-ι)O(r),

where Df(ξϊ) — O(r) because & contains an ej with
1 < j < n - k,Df(ej) = 0 on C Π {/ = ψ(c)}, and Df is Lipschitz.
Now by the general formula for a third derivative (6) and (1) we have

D2(Jkf)
2 =0(1) + 0 + O(r-2)D(p2 -Pι)(ξ)

+ O(r-1)DD(p2-Pl){ξ)

=0(1)
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by (3). Therefore the weighting factor Jkf and hence the whole metric
is C1 '1.

Conclusion. For any competitor S' with the same boundary as S,
almost every slice S'c = Sf Π {f = φ(c)} has the same boundary as 5C,
by general slicing theory [5, 4.3.1, 4.3.8]. Because each slice Sc consists
of three geodesies meeting at 120-degree angles in a C 1 ' 1 metric, by
Proposition 4.1, length(S'c) < length^). Therefore

area(S) = Mength(5c) < / length^) < area(S')

by the coarea formula [14, 3.13]. (The final inequality need not be
equality since S' need not be orthogonal to the slicing sets {/ = φ{c)}.)
Hence we conclude that S is area minimizing.

5.2. Area minimization at boundary. There are 10 conjectured
types of smooth boundary singularities of soap films in R3, as pictured
in Figure 5.3 (see [17, 11.3], [19]):

(1) a smooth minimal submanifold with boundary,
(2) a minimal submanifold that just happens to contain a given

smooth boundary curve,
(3) a triple junction that just happens to contain a given smooth

boundary curve tangent to the singular curve at the point,
(4) a portion of a triple junction with given smooth boundary in

one surface tangent to (or partly contained in) the singular curve, the
outside portion of that surface discarded,

(5) two minimal surfaces meeting smoothly at an angle a > 120°,
(6) a smooth transition from (2) to (5), called creasing, as occurs

in a portion of a neighborhood of a classical branch point with one
self-intersection curve as boundary,

(7) a smooth transition from (5) to (4) (type (4) includes trivial
examples with a = 120°),

(8) a generalization of (3) allowing creasing (6),
(9) a smooth tetrahedral singularity which just happens to contain

a given smooth boundary curve,
(10) a generalization of (9) allowing creasing.
It follows immediately from Theorems 2.1 and 5.1 that types (2),

(3), and (4) are locally area minimizing. The methods likewise show
that types (1), (5), (6), and (7) are locally minimizing (where smooth
means C4). Of course (9) would follow from the corresponding result
without boundary, currently known only for the flat tetrahedral cone
itself. Types (8) and (10) remain open; it is easy to imagine that if
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the creasing is severe, the surface need not be locally minimizing. No
examples of types (8) or (10) are known.

(10)

FIGURE 5.3. Of the 10 conjectured types of boundary singularities,
at least (l)-(7) are locally area minimizing.

As in 5.1, "area minimizing" means size minimizing for an appro-
priate assignment of orientations and multiplicities. For cases (2), (5),
and (6), the surfaces are oriented so that the boundary has multiplicity
2. For cases (3) and (8), the three surfaces are oriented so that the
boundary has multiplicity 3; when the boundary diverts along one sur-
face, the inside portion has the opposite orientation with multiplicity 2.
Cases (4) and (7) are similar, without the outside piece of surface; the
boundary has multiplicity 2. For cases (9) and (10), the surfaces can be
oriented with multiplicity 1 or 2 so that the boundary has multiplicity
2.

More generally consider singularities where the boundary curve leaves
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the surface, as in generalizations of cases (2), (3), (6), (8), (9), and (10),
as pictured in Figure 5.4. Cases (2'), (3'), and (9'), in which the given
boundary is incidental, remain locally area minimizing. For cases (6'),
(8'), and (10'), there is of course no way to orient a surface to give it
just part of a curve as boundary. One requires another setting, such as
Brakke's covering spaces [2]. Some such singularity, probably usually
(6'), must occur in Brakke's minimizers, but no particular minimizing
example is known. Case (6'), which as (6) arises in a classical branch
point, was analyzed in some detail by Brakke [1]. If the boundary curve
leaves the surface on the side of the exterior of the creasing angle, then
the surface is probably not locally area minimizing in any sense; any
setting which allowed the curve to so separate would presumably allow
more of the surface to pull of the wire in a favorable direction.

Λ I2.OC

FIGURE 5.4. Of these 6 conjectured types of generalized boundary
singularities, where the boundary curve leaves the surface,

only the trivial ones (2'), (3'), (9') are known to be
locally area minimizing, although some nontrivial type

must occur in Brakke's minimizers.
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