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Abstract
In this article we establish a topological sphere theorem for compact, simply
connected, odd dimensional manifolds Mn with pinched sectional curvature.
The pinching constant tfodd that appears in our hypotheses is < \, explicit,
and independent of the dimension. Furthermore, in the even dimensional
case we can find a pinching constant δew < j which guarantees that the
integral cohomology groups of M n coincide up to torsion groups of odd
order with the cohomology groups of a sphere or a projective space.
Both results are reduced by means of the diameter sphere theorem of Grove
and Shiohama to proving Berger's horse shoe conjecture under a suitable
condition on the diameter. The geometric arguments rely on refined Jacobi
field estimates, which might be useful in other contexts as well.

Introduction

Berger's rigidity theorem provides a classification of all compact, sim-
ply connected manifolds Mn which carry a Riemannian metric with pos-
itive, weakly ^-pinched sectional curvature [6]. This result has already
been known in 1961. Then it has taken more than twenty years before
the tools have been available to analyze weaker pinching conditions.

In fact, the pinching below-| theorem for even dimensional manifolds
[10] obtained by Berger in 1983 has been the first major application of
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Gromov's compactness theorem [18, 30]. The hypothesis about the par-
ity of the dimension has been necessary, since at the time an appropriate
lower bound for the injectivity radius was not available for odd dimen-
sional, compact, simply connected manifolds with sectional curvature
pinched below \. In [1] we have established such an estimate, and, as a
first application, we have extended Berger's result correspondingly.

Both results, Berger's pinching below-| theorem for even dimensional
manifolds and the sphere theorem for odd dimensional manifolds in
[1], are based on Gromov's compactness theorem and on limiting argu-
ments. Therefore the pinching constants in these results are inherently
inexplicit, and they depend on the dimension.

However, the sphere theorem for odd dimensional manifolds can be
improved substantially.

Theorem A. There exists a constant δoάά G (0, | ) such that any odd
dimensional, compact, simply connected Riemannian manifold Mn with
δOdd-pinched sectional curvature is homeomorphic to the sphere § n .

We emphasize that the constant δoάά is independent of the dimension
and explicit. In fact, our proof works for δoάά = | ( l + εOdd)~2 where
£Odd = 10~6. It is an interesting question whether similar techniques
can be used to improve Berger's pinching below-| theorem as well. We
have the following partial result on the cohomology level:

Theorem B. There exists a constant δev G (0, \) such that for any
even dimensional, compact, simply connected Riemannian manifold Mn

with δev -pinched sectional curvature the cohomology rings H*(Mn]R)
with coefficients R G {Q,Z2} are isomorphic to the corresponding co-
homology rings of one of the compact, rank one, symmetric spaces Sn,
QPn / 2, HΠPn/4, CaP2, or the rings H*(Mn;R) are truncated polynomial
rings generated by an element of degree 8.

Again the constant δey is explicit and independent of the dimension.
In fact, our proof works for δev = | ( l + ε e v ) ~ 2 where εev = 27̂ 00*

Recall that ίΓ(CαP2;i?) = R[ξR]/{ξ3

R) where deg£Λ = 8. How-
ever, we cannot exclude the possibility that H*(Mn] R) = *1

where deg£# = 8 and m > 2. For instance, we cannot apply J. Adem's
result [3, Theorem 2.2], since we do not have enough control on the
cohomology ring of Mn with coefficients Z3.

The proofs of Theorems A and B do not rely on Gromov's compact-
ness theorem at all. They are rather based on direct comparison meth-
ods and on some results from algebraic topology. In fact, the geometric
arguments for Theorems A and B are essentially the same, whereas the
topological arguments reflect the substantial difference between the even
and the odd dimensional case.
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The main ideas will be explained in more detail in the next section.
There we shall also describe the organisation of the paper. We proceed
discussing the context of Theorems A and B.

In low dimensions much stronger results are known. By the Gauβ-
Bonnet theorem any compact, simply connected 2-manifold with pos-
itive sectional curvature is diffeomorphic to the sphere. For compact,
simply connected 3-manifolds we refer to the work of Hamilton.

Theorem 1.1. (R.S. Hamilton 1982 [21]) Let (M3,g) be a compact,
connected 3-manifold with Ricci curvature ric > 0 everywhere. Then g
can be deformed in the class of metrics with ric > 0 into a metric with
constant sectional curvature.

It follows that any compact, simply connected 3-manifold (M3,</o)
with positive Ricci curvature is diffeomorphic to the sphere. The 4-
dimensional case has been studied by Seaman.

Theorem 1.2. (W. Seaman 1989 [33]) Let M4 be a ̂ -dimensional,
compact, oriented, connected Riemannian manifold without boundary.
If the sectional curvature KM of M4 satisfies

0.188 * . 1 = < KM < 1
1 + 3Λ/1 + 2*/4 5 x / 2 ~ -

then M4 is homeomorphic to S4 or QP2.
We do not know the optimal value of the pinching constant in Theo-

rems A and B above. Examples of compact, simply connected manifolds
Mn other than spheres and protective spaces that have strictly positive
sectional curvature are scarce.

As shown by Berger [7], the only other normally homogeneous exam-
ples are the spaces M 7 = Sp(2)/SU(2) and M 1 3 = SU(5)/(Sp(2) x S1).
Their pinching constants δM •= minify/maxUTM are ^ and ^ γ ? re-
spectively [14, 22]. Further homogeneous, odd dimensional examples are
the Aloff-Wallach spaces Mlt = SU(3)/§£Z where the integers fc,Z label
the various embeddings of S1 into the maximal torus T2 C SU(3). It has
been computed in [23] that the pinching constant of the left-invariant
metric defined in [4] approaches ^§7 as j —» 1. Berard Bergery has
shown that there do not exist any other odd dimensional, homogeneous
spaces of positive curvature [5].

The even dimensional, homogeneous spaces with KM > 0 have been
classified by Wallach [36]. Besides the spheres and the projective spaces
there are just the three flag manifolds M 6 = S U ^ / T 2 , M 1 2 =
Sp(3)/(SU(2) x SU(2) x SU(2)), and M 2 4 = F4/Spin(8). As shown
in [38], the pinching constant for the Wallach spaces M6,M12 and M 2 4

are all equal to JJ. This value is optimal in the class of homogeneous
metrics.
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In addition, there is one 6-dimensional inhomogeneous orbit space
and there is an infinite family of 7-dimensiona! inhomogeneous orbit
spaces [15,16]. These examples are constructed as quotients of SU(3) by
a twosided T2-action or by an infinite family of twosided S1-actions, re-
spectively. They resemble the Aloff-Wallach examples in many respects.
Recently, extending Eschenburg's construction, Bazaikin [37] has ob-
tained an infinite family §p1)...>P5\ί7(5)/(Sp(2) x S1) of 13-dimensional
double quotients which are related to the Berger example M 1 3 men-
tioned above. Yet, the twosided actions that lead to spaces of positive
curvature are not completely classified.

In view of these facts the pinching constant in Theorem A must be
strictly greater than ^ , and the pinching constant in Theorem B must
be greater than ~.

2. Main ideas

Optimal injectivity radius estimates have already been an essential
ingredient in the proof of the classical sphere theorem due to Klingen-
berg [25]. They are also crucial for our main results. The pinching
condition that is required for these estimates depends in a significant
way on the parity of the dimension. Currently the best results are the
following two theorems.

Theorem 2.1. (W. Klingenberg [24]) Let Mn be a compact, simply
connected, even dimensional Riemannian manifold of positive sectional
curvature. Then its injectivity radius injMn is controlled in terms of
its conjugate radius conj Mn

injMn = conjMn > π/VmaxKM .

Theorem 2.2. (c.f. Theorem 1.1 in [1]) There exists α constant <5inj E
( | , | ) such that the injectivity radius injMn and the conjugate radius
conj Mn of any compact, simply connected Riemannian manifold Mn

with δmj-pinched sectional curvature coincide:

injMn = conjMn > π/VmaxKM -

Recall that the latter theorem holds for 5inj = | ( 1 + εinj)~2 where
εinj = 10~6. Pinching constants Jinj < | are obstructed by the Berger
metrics on odd dimensional spheres. Notice that the same lower bound
for inj Mn has been established by Klingenberg in [25] under the stronger
hypothesis that the sectional curvature of Mn is strictly ^-pinched, and



218 UWE ABRESCH & WOLFGANG T. MEYER

it is this result that has played a major role in the proof of the classical
sphere theorem.

Since the injectivity radius provides a lower bound for the diameter
of the manifold, the classical sphere theorem follows when combining
the preceding injectivity radius estimates with the following diameter
sphere theorem.

Theorem 2.3. (K. Grove, K. Shiohama [20]) Let Mn be a complete
Riemannian manifold with sectional curvature KM > δ > 0 and diame-
ter diamMn > -^=. Then Mn is homeomorphic to the sphere Sn.

In our context the diameter sphere theorem and the injectivity radius
estimate do not fit together that well. Nevertheless, Theorems 2.1-2.3
provide a considerable reduction; it turns out that it is sufficient to
prove the following version of the horse shoe conjecture discussed by
Berger in 1962 [8].

Theorem 2.4. (Horse Shoe Inequality) There exists a constant
δ G (0, | ) such that for any complete Riemannian manifold Mn with

δ < KM < 1 and π < injMn < diamMn <

the following holds: for any p0 G Mn and any υ G S"" 1 C TPoM the
distance of the antipodal points exppo(—πv) and exppo(τπ;) is bounded
by π:

distMn (exp (-πv), exp (πυ)) < π .

In fact, the constant δ in this theorem is explicit and independent
of the dimension. Our proof even shows that the horse shoe inequality
holds for δ = | ( 1 + ε)~2 where ε =

It should be pointed out that a horse shoe inequality has already
been established in the work of Durumeric [12, Lemma 6]. However, his
version of the inequality is only valid for manifolds which are not simply
connected; the basic idea of his proof is to analyze the geometry of the
Dirichlet cells in the universal covering of Mn.

The major work in this paper, which will be carried out in §4 and §5,
is to prove Theorem 2.4. We have to develop an entirely new approach,
in order to cover simply connected manifolds as well. It has already been
known to Berger that the preceding theorem imposes strong restrictions
on the topology of M n . In particular, he already knew how to deduce
Theorems A and B. The main steps are as follows:

Corollary 2.5. (c.f. Proposition 2 in [8]) Let δ G (0, \) be the
constant from Theorem 2.4. Then any compact Riemannian manifold
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Mn with

S<KM<1 and π < inj M n < diam M n <

admits a continuous, piecewise smooth map f: KPn ->• Mn of degree 1.
Here deg / denotes the standard integral mapping degree, if Mn is

odd dimensional and orientable. Otherwise deg / has to be understood
as the Z2-mapping degree.

The next two results are of purely algebraic topological nature. The
first of these theorems goes back to Samelson [32], whereas the second
one can be extracted from [9, p. 135fϊ].

Theorem 2.6. Let Mn be a simply connected, compact, odd dimen-
sional manifold. Suppose that there exists a continuous map f: KPn —>•
Mn with deg z/ = 1. Then Mn is a homology sphere.

Theorem 2.7. Let Mn be a simply connected, compact, even dimen-
sional manifold. Suppose that there exists a continuous map f: MPn —»•
Mn with degZ 2/ = 1. Furthermore, let R G {Q,Z2}. Then

where m > 1 and ξR is a homogeneous element of degree deg ξR = ^ .
Moreover, deg£β G {2,4,8} for m>2.

The fake projective spaces discovered by Eells and Kuiper [13] show
that in the even dimensional case it would not be sufficient to recover
the integral cohomology rings to recognize the manifold Mn up to home-
omorphism, and the assertion of Theorem 2.7 is even weaker. The the-
orem determines the integral cohomology ring H*(Mn]Z) only up to
the Serre class of torsion groups of odd order. This ambiguity reflects
the fact that we can only work with the modulo 2 mapping degree of
/. The corresponding freedom for the homeomorphism type of Mn is
illustrated in Examples 3.6.

In the presence of the preceding results Theorems A and B can be
established as follows:

Proof of Theorem A. By Theorem 1.1 it is sufficient to consider
manifolds Mn of dimension n > 5. We define δoάά as the maximum
of the constants ίinj and δ from Theorems 2.2 and 2.4. For ease of
exposition we scale the metric on Mn such that δoάά < KM < 1.

Because of the diameter sphere theorem of Grove and Shiohama we
only need to consider manifolds with diamMn < π/(2\/<$odd). By The-
orem 2.2 inj Mn > π, and thus it follows from Corollary 2.5 that there
exists a continuous, piecewise smooth map / : KPn -> Mn of degree
deg z/ = 1. With Theorem 2.6 we conclude that the manifold Mn is a
homology sphere. Since by hypothesis Mn is simply connected, Smale's
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solution of the Poincare conjecture in dimensions n > 5 can be applied
[28, p. 109]. q.e.d.

Proof of Theorem B. The argument is very similar to the preceding
proof. Since the injectivity radius can be estimated by means of The-
orem 2.1 rather than Theorem 2.2, we can define δev as the constant δ
from Theorem 2.4. As above, we obtain a continuous, piecewise smooth
map / : KPn -> Mn.

In the present case, however, we only know that degZa / = 1. This is
still sufficient to apply Theorem 2.7, and Theorem B follows since the
truncated polynomial rings -R[£H]/(£J?+1) are precisely the cohomology
rings of Sn, CP n / 2 , or HΠPn/4, if the degree of the generator is n, 2, or 4,
respectively, q.e.d.

The paper is organized as follows: for convenience we provide com-
plete proofs for Corollary 2.5 and Theorems 2.6 and 2.7. These argu-
ments will be given in §3.

The actual work, however, will be to establish Theorem 2.4. The
proof of this theorem turns out to be surprisingly involved. Most of the
arguments are contained in §4; however, the new technical tools that
are required are developed in §5.

The basic idea for the proof of Theorem 2.4 is quite simple though.
The diameter of Mn is an upper bound for the distance of the points
expPQ(-^(l+ρε)πυ) and exppo(±(l+ρe)πv) for any number ρε > 0. Our
goal is to derive from this inequality an upper bound for the distance
d(exppo(—πv) ,exppo πv) that is smaller than the injectivity radius of
Mn. For this purpose we shall consider a ruled surface Σ with a conical
singularity at p0. The construction and the basic properties of Σ will be
explained in §4. It then turns out that we need refined estimates that
relate the lengths of various circles of latitude in a ruled surface with a
conical singularity like Σ.

These estimates, however, do not follow from standard Jacobi field
estimates. They rather comprise a new tool in comparison geometry,
which may be useful in other contexts as well and which will be devel-
oped in §5. The results are summarized in Theorem 5.4. The proofs
involve bounds for the angular velocity1 of Jacobi fields, which are de-
rived by means of the Riccati comparison theorems. It seems that there
is no simple argument which is based on the maximum principle instead.

The new estimates are used to establish Proposition 4.5, which is the
crucial step in the proof of Theorem 2.4. In this context, it also becomes
clear for which parameters the new inequalities provide a significant gain
over the standard Jacobi field estimates.

1c.f. Proposition 5.12.
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In the appendix the comparison functions that have been introduced
in order to state Theorem 5.4 are analyzed in more detail. Formally,
these results are neither required for the proof of the theorem itself nor
for the proof of the horse shoe theorem. However, they provide a better
understanding of the theorem and of the way in which it is used in the
proof of Theorem 2.4. In particular, Proposition A.6 justifies Figure 2
on page 237, and Corollary A.7 provides some background information
concerning the numerical computations in the proof of Proposition 4.5.
Moreover, the results in the appendix may be useful for other applica-
tions of Theorem 5.4.

3. Arguments from topology

The purpose of this section is to prove Corollary 2.5 and Theorems 2.6
and 2.7. We begin with the construction of the map / : RF1 -> Mn.

Proof of Corollary 2.5. We fix some point p0 G Mn. Then for any
unit vector υ G § n - 1 C TPoM

n it is asserted by Theorem 2.4 that

distMn (exppo (-πt;), exppo (πv)) < π < inj Mn ,

and hence there exists a unique minimizing geodesic cv: [—π, π] -> M n

from the point cυ(—π) := exppo(—πυ) to cv(π) := exppo(πυ). Evidently,
the geodesies cυ depend differentiably on the unit vector v G Sn~1 C
TPoM

n. Thus we can define a continuous, piecewise differentiable map
/: JB(0,2TΓ) C TP0M

n -> Mn by means of

for 0 < |w| < π ,

w\) for π < |tϋ| < 2π .

By construction f(w) = cw/\w\(0) = C-w/\w\(0) = f{-w) for any it; G
5(0,2π) C TP0M

n, and therefore / factors over a map / : lRPn =
B(0,2π)/^ -> Mn which is still continuous and piecewise smooth.

It remains to verify that this map / has degree 1 provided that
the orientations are chosen appropriately. Since the mapping degree
can be computed locally, it is sufficient to show that the preimage
f~ι(po) consists of precisely one point. By construction d(po,cv(—π)) =
d(po,cυ(π)) = π, and thus the triangle inequality shows that d(po,cυ(t))
> \π > 0 for any t G [—π, π] and any υ G § n - 1 . Hence f(w) φ p0 for
any w in the annulus J3(0,2τr)\2?(0,7r), and the proof is complete as
inj Mn > π. q.e.d.

The proofs of Theorems 2.6 and 2.7 make repeated use of the Poincare
duality theorem, the universal coefficient theorem, and the Steenrod
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squares. For this material we refer to the books by Dold [11] and Spanier
[35]. In the proof of Theorem 2.7 we shall also employ J.F. Adams's
results on secondary cohomology operations and the Hopf invariant one
problem [2].

The first issue is to understand the structure of the cohomology ring
H*(Mn;Z2). For this purpose we analyze the map /*: H*(Mn;Z2) -»
£P( lP n ;Z 2 ) . As usual, ω denotes the generator of H1(Wn;Z2).

Proposition 3.1. Let f: MPn —» Mn be a continuous map into some
compact, connected manifold Mn', and let ί \— \xή\k > 0 | Hk(f;Z2) φ
0}. Suppose that degZ a/ = 1. Then

(i) /*: if*(Mn;Z2) -> i/*(IRPn;Z2) is injective,
(ii) im/* = Z2[ωi]/(ωn+1) C #*(IRPn;Z2),

(iii) ί divides the dimension n of the manifold, and
(iv) ί = n or £ is a power of 2.

Proof i) Let xk G Hk(Mn;Z2). The Poincare duality theorem
implies that there exists an element yn-k G Hn~k(Mn\Z2) such that
xk U yn-k — CM where CM stands for the generator of Hn(Mn; Z2). Note
that
iϊn(MPn;Z2) is generated by ωn. Thus

fk(xk)Ufn-k(Vn-k) = ΠCM) = degZ2(/).ω* φ 0 ,

and hence fk{xk) Φ 0.
ii) and iii) Since /U(CM) = degZa(/) ωn = α/\ it follows that Poincare

duality holds for the subalgebra im/* C if*(IRPn Z2) = Z2[ω]/(ωn+1).
More concretely,

ω*Gim/* & ωn~keimf* .

Hence im /* = 0 for n—ί < k < n. Finally, we observe that for k < n—ί
the multiplication by ωι defines an injective map im/* —> im/*"1"*.

iv) We assume that i φ n. Thus (iii) implies that n > 2t. This
case can be analyzed with the help of the Steenrod squares Sq\ Since
ωέ G im/*, it follows directly from the axioms for Sq* that

ωιU{l+ωY = (Sq*ω/ = Sq*(α/) € im/* .

Using (ii) we conclude that (*) = 0 mod 2 for 0 < μ < ί, hence the
claim, q.e.d.

Corollary 3.2. Let Mn be a compact, simply connected mani-
fold. Suppose that there is a continuous map / : KPn -> Mn of de-
gree degZ a/ = 1. Then
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where m > 1 and where £ is homogeneous element of degree deg£ =
~ > 1. Furthermore, degξ = n if n is odd.

Proof Using Proposition 3.1, we find ξ G Hι(Mn;Z2) such that
/'(£) = u/. The case I = 1 is ruled out, since H1{Mn;Z2) =
Hom(π1(Mn),Z2) = 0 . q.e.d.

Substantial information about H*(Mn; Z) can be recovered from the
very special structure of H*(Mn; Z2), using just the universal coefficient
theorem and the Poincare duality theorem.

Proposition 3.3. Let Mn be a compact, connected manifold. Sup-
pose that its cohomology H*(Mn;Z2) is a truncated polynomial ring
generated by a homogeneous element ξ of degree deg£ > 1. Then

(i) the natural homomorphisms Hk(Mn;Z) -» Hk(Mn;Z2) are sur-
jective,

(ii) the groups Hk(Mn\Z) do not have any 2-torsion, and
(iii) τkzH

k(Mn;Z) = dimZ 2 iϊ*(M n;Z 2).

Remark 3.4- Consider two primitive elements X{ G i ϊ m < (M n ;Z), i =
1,2, of infinite order such that rrii + ra2 < n. Then their cup product
#i U x2 G Hmi+m2(Mn; Z) is again an element of infinite order. It is an
odd multiple of a primitive element.

Proof of Proposition 3.3. Since degξ > 1, Hι(Mn\ Z2) = 0 and thus
Mn is orientable. Hence H°(Mn-Z) = Z and # n ( M n ; Z ) ^ Z. It is
therefore sufficient to prove statements (i)—(iii) for 0 < k < n.

The first step is to establish (i)-(iii) for any k such that Hk(Mn\ Z2) =
0. Note that in this case statement (i) is trivial. By the universal co-
efficient theorem there exists an injective homomorphism Hk(Mn; Z) ®
Z2 -* Hk(Mn; Z2). Hence Hk(Mn', Z) ® Z2 = 0, and we obtain (ii) and
(iii) as well.

It remains to handle the case that Hk(Mn\Z2) φ 0 for some k.
By hypothesis H*(Mn;Z2) = Z2[ξ]/(ξm+1) for some m, and degξ >
1. Hence k and n are multiples of deg£. This in turn implies that
i f n " Λ + 1 (M n ;Z 2 ) = 0. By Poincare duality the torsion subgroup of
Hk(Mn; Z) is isomorphic to the torsion subgroup of Hn~k+1(Mn; Z), and
by the preceding step we already know that the 2-torsion of
iί n ~ f c + 1 (M n ;Z) vanishes. Thus the proof of (ii) is complete. In par-
ticular, Tor(if*+ 1(Mn; Z), Z2) = 0. Hence the map Hk(Mn; Z) <g> Z 2 ->
Hk(Mn-,Z2) that appears in the universal coefficient theorem is an iso-
morphism, and statements (i) and (iii) follow using (ii). q.e.d.

Proof of Theorem 2.6. The manifold Mn is simply connected. We
shall see that Mn is in addition a homology sphere. Hence the theorem
follows from Smale's solution of the Poincare conjecture in dimensions
n > 5 [28, p. 109], [34].
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We have to show that Hk(Mn\ Z) = 0 for 0 < k < n. Let us assume
the converse. Suppose that there exists some xk G Hk(Mn\ Z), 0 < k <
n, and some prime field F such that xk®l e Hk(Mn\Z) ® F is different
from zero.

Then on one hand fz(xk) = 0. In fact, Corollary 3.2 and Proposi-
tion 3.3 show that xk is a torsion element and that oτάxk is odd. But
Hk (KPn Z2) does not contain any torsion element of odd order.

On the other hand the following argument shows that fz(xk) Φ 0.
To begin with we observe that

/z (CM) = degz(/) CRpn = CRP* ,

where ζM G Hn(Mn\Z) and CRP» G Hn(MPn]Z) denote the generators
that represent the given orientations. By the universal coefficient the-
orem the corresponding generators of Hn(Mn]F) and iϊn(KPn;F) are
the elements

CM ®1 G # n ( M n ;Z)<g>F cHn(Mn;Ψ)

G# n (IRP n ;Z)®F Ciϊn(IRPn;F)

For the same reason if*(Mn;Z) ® F embeds into Hk{Mn;F). Thus
by Poincare duality there exists some y^_k G ifn~*(Mn;F) such that
(xk ® 1) U yl_k = CM ® l Applying / | , we conclude that

= /F (CM β 1) = /ZU(CM) ® 1 = CRI- ® 1 ^ 0 ,

and hence fz{xk) φ 0.
Proof of Theorem 2.7. We begin with the case that R = Z2. By

Corollary 3.2 H*(Mn;Z2) is a truncated polynomial ring generated by
some homogeneous element ξz2 °f degree deg£z2 > l I* remains to
improve the restrictions for the degree of this generator if m > 2. As
explained in [29, page 134], the claim follows from J. F. Adams's work on
secondary cohomology operations and the Hopf invariant one problem

[2]
For coefficients in R = Q the claimed structure of the cohomology ring

follows from the result for Z2-coefficients by means of Proposition 3.3.
q.e.d.

Remarks 3.5. a) All compact, simply connected manifolds Mn have
the same integral cohomology groups in degrees 0, 1, n—1, and n:

H°(Mn;Z) = Z , H1(Mn;Z) = Hn~1(Mn;Z) = 0 ,

and Hn{Mn\Z)^Z.
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Furthermore, H2(Mn;Z) is always torsionfree.
b) The integral cohomology ring of a compact, simply connected 4-

manifold is determined by the second Betti number and by the inter-
section form. Theorem B asserts that this Betti number is < 1, and
thus the classification result due to Preedman [17] implies that M4 is
homeomorphic to S4 or QP2.

c) Seaman's proof is based on Preedman's classification, too. How-
ever, Bochner techniques are used to establish the upper bound for the
second Betti number.

Yet, the conclusion of Theorem B is the best possible result in dimen-
sions n > 6.

Example 3.6. (communicated to us by M. Kreck) i) Let 2 < k < ^,
and let ί > 1. Then there exists a compact, simply connected manifold
S£j with

(Z i f 9 e { 0 , n } ,

Zt i f g e { * , n - f c + l } ,

0 otherwise .

ii) Consider a finite number of manifolds Skjί. as in (i) where 2 < fc^ <
I , ίj > 1, and ίj = 1 (2). Then the connected sum Mn of a compact,
simply connected manifold Vn like Sn, CP n / 2 , HP1/4, or CαP2 with
the Skjl. is simply connected, and the projection Mn —>• Vn induces
isomorphisms

H*(Vn;Q) 4 iΓ(M n;Q) and H*(Vn;Z2) 4 i

But H*(Mn;Z) ψ. H*{Vn;Z).

Construction of the Manifolds S^έ. Consider the cell complex Xkyt
obtained by attaching a fc-dimensional cell ek to the sphere S*"1 by
means of a map of degree I. We may view Xk,t as the (k — 2)-fold
suspension of X2jι By hypothesis n > fc + 3, and thus there exists a
PL-embedding tfy. Xk^ -+ En. Let Y£t C Kn be a small tube around
tftiXki) with smooth boundary dY£t. The compact manifold S%t is
then obtained as the double of Y£t along its boundary.

Computation of πi(Sj^) and H*(Skt\Z) By construction the image
of ι\ t is a deformation retract of Y£έ, and therefore

) = 0 .

Here the second equality sign makes use of the assumption that k > 2.
Since dY£t is connected, the Seifert-van Kampen theorem is applicable,
and hence the double of Y£t is simply connected.
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Observe that Hk-ι(Xkj;Z) = Z/. The other reduced homology
groups of Xki£ vanish. Since iΐΛ ^ki) ιs a deformation retract of Ykί

and of YfoXdYfo, we can compute'H*(Y£έ;Z) and H*(Y^dY^Z)
from the universal coefficient theorem and the Alexander duality theo-
rem, respectively. The nontrivial groups are

[Zέ ifq = n-k+l .

By excision H*(S^Y^) 4 H*(Y»έ,dY£€). Since k < \ , there are
short exact sequences

0 —• JEΓ«(y&,01ft;Z) —)• I Γ ' ί ^ Z) —> fΓ«(y^;Z) —> 0 ,

hence the claim.

4. The geometric setup for Theorem 2.4

The purpose of this section is to prove Theorem 2.4 up to some es-
timates for ruled surfaces that will be provided in the two subsequent
subsections. The argument will be given as a sequence of lemmas and
propositions.

Throughout the entire section we suppose that Mn is a complete Rie-
mannian manifold with 0 < δ < KM < 1 and π < inj Mn < diam Mn <
•£κ. Clearly, these assumptions imply that δ < \. We find it more con-
venient to write δ = 4 *g)2 and think of ε E [0, oo) as the independent
variable.

It will be necessary to impose stronger and stronger bounds for ε as
we proceed.

Configuration (Horse shoe). Let p0 G Mn and v G S71"1 C TP0M,
and consider the points p\ := exppo(—πv) and p2 := exppo(τπ;).

In order to prove Theorem 2.4, we have to show that dM* (pijft) < π

Construction. Suppose that 0 < ε < | . We define a number
Qε € (0, | ) by means of the equation sin( \ ρεπ) = sin(|ε 1/ 3π)" 1 sin(|επ),
and introduce the points

p ( \{l + ρε)πv) .

Furthermore, we consider a minimizing geodesic cε: [0,1] -* Mn joining
<f(0) := fi to <f (!):=$.
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Pi

Pi

FIGURE 1. Configuration of the Horse Shoe

The geometric setup described so far is depicted in Figure 1. In this
Figure we have also indicated some circles of latitude that will be con-
structed later using the estimates from Lemmas 4.1-4.3 in combination
with Assumption 4.4.

By hypothesis L(cε) = dMn(ql,qε

2) < diamMn < π(l + ε). Further
information about the geodesic cε is provided in the following three
lemmas.

Lemma 4.1. Let 0 < ε < | , and consider the horse shoe P1P0P2 and
the geodesic cε constructed above. Then dM*(po ?ce(ί)) > | ( 1 — | ε 1 / 3 ) π
for any te [0,1].

In particular, the geodesic cε: [0,1] —» Mn does not intersect the
metric ball B(po^π) if 0 < ε < ^ , and it does not intersect the ball

),^7r) provided that 0 < ε <
L e m m a 4.2. Let 0 < ε < | ; and consider the horse shoe P1P0P2

the geodesic cε constructed above. Suppose that d(pi,ί>2) ^ τr Then the
angles

a\ :=

can be bounded from below by means of the inequalities:

cos a* < ^ - s i n d ^ s i n t f ^ Γ 1 for i = 1,2.
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Lemma 4.3. Let 0 < ε < ^, and consider the horse shoe P1P0P2
and the geodesic cε constructed above. Suppose that d(p1,p2) > π. Then
d(Po, cε(*))<|π for all t e [0,1].

Proof of Lemma 4-1- Since KM < 1 and injMn > π, it is standard
to define a weak contraction Φ: Mn -» S n as follows: we fix a point
p0 G S n and a linear isometry /: TPoM

n -+ TPo§
n, and set

o / ° exPpo(P) i f

\—βo otherwise

here — p0 denotes the antipodal point of p0 G S n .
Clearly, the points q{ := Φ(q[), po = Φ(po)> and g| : = ^(^2) ^ e o n

a great circle and d(po,9i) = ^(poj^) = | ( ^ "̂  ̂ ) π Moreover, the
geodesic cε maps to a curve cε: [0,1] -> S n such that L(ce) < L(cε) <
π(l + ε) and rf(po,?(i)) = rf(po,c

f (t)) for all ί G [0,1]. Hence

(1)
d{po,c

ε(t)) > inf{d(p o,9) |geSΛ, d(q,q[) + d(q,%) < π(l + e)}

for all £ G [0,1]. The infimum on the right hand side is actually a
minimum, which is achieved at some point q* G S n such that rf(^, q\) =
d(q£,ql) = | ( 1 + ε)π. The great circle through p0 and qε intersects
the great circle through gj, p0, and ^ orthogonally, and by the Law of
Cosines we obtain

cos( |( l + ε)π) = cos( |( l + ρε)π)

or equivalently:

Thus d(po,q
ε) = | ( l — |ε 1/ 3)π, and the lemma follows with inequal-

ity (1).
Proo/ of Lemma ^.2. By symmetry it is sufficient to establish the

lower bound for the angle ot\. Recall that KM > δ = 4 ( 1 j _ g ) 2 . We con-
sider a comparison triangle P0P1P2 in the sphere S | of constant curvature
δ such that

= d(po,Pi) = π ,

= d(po,p2) = π ,

d(pi ,p2) = π <
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On the edgep0P2 we consider the point <% := expPo(l(l+ρε) expp*(p2)).
The Toponogov triangle comparison theorem yields

In order to compute the right hand side, we introduce the mid point m
on p0p2 and apply the Law of Cosines to the triangles p1fhp2 and j
which have angles | at the vertex m. We obtain

The next step is to apply Toponogov's theorem to the triangle
Using the Law of Cosines we conclude that

cos(αf)

The bounds for ε imply that 0 < y/2 sin(f j ^ ) < cos(f ^ - ) , and thus
the right hand side is a monotonically increasing function of L(cε). The
lemma follows, since this length is bounded by π(l + ε).

Proof of Lemma 4-3. We consider the hinges poq{(f (t) if t G [0, | ] and
pQqlcε(t) if t 6 [|, 1]. In either case Lemma 4.2 provides lower bounds for
the exterior angles a\ of the hinge, and applying Toponogov's theorem
with the sphere S2

δ of constant curvature δ as the model space, we obtain
the inequality

d(po,c*(t)) >

- i±ij. sin(|επ) .
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Since by definition ρε depends monotonically on ε, it is easy to compute
that ρε < ^ , and thus we conclude that

> \ cos(^επ) - \ sm{\ρεπ) - ff sin(|επ)
> 0.498 - 0.033 - 0.030 = 0.435

> 0.400 > cos (§§ f π) .

Lemmas 4.1 and 4.3 suggest that we prove Theorem 2.4 indirectly.
For this purpose we impose the following inequality:

Assumption 4.4. Suppose that d(pι,p2) > π for the horse shoe
constructed above.

Construction (continued). Suppose in addition that 0 < ε < ^ .
Then it follows from Lemmas 4.1 and 4.3 that the geodesic cε: [0,1] —>
Mn can be lifted under exppo to a curve

' 16 π / ^ - ±P01V1

The corresponding unit vector field ϋε(t) := ̂ (t)]'1 cε(t) defines a dif-
ferentiable map

7

e:[0,π]x[0,l]^M"

( r , t ) ^ e x p p o ( r ί;e(ί)) .

Notice that the geodesic cε lifts under j ε to the graph of the function
P : t H-> \cε(t)\. More precisely, cε(t) = Y(rε{t),t) for all t G [0,1].
In fact, 7ε|[o,π)x[o,i] describes an immersed ruled surface with a conical
singularity at p0.

By construction ϋε(0) = —v and vε(l) — v, and thus the total angle
at p0 is bounded from below by π:

(4) ψl := f\-§-tϋ
ε{t)\dt > π .

For any r £ [0, π] we denote by tε(r) the length of the corresponding
circle of latitude:

(5) f(r) := f\-§-tΊ

ε{r,t)\dt .
Jo

Since 0 < δ < KM < 1, the standard Jacobi field estimates reveal that
these length are related to the total angle φ% as follows:

(6) ^ sin(r) < P{r) < φε

0 snδ(r) ,

where sn^r) := 4= sin(V^Jr) as usual.
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Proposition 4.5. Let 0 < ε < 27000- Suppose that Assumption 4-4
holds, and consider the ruled surface ηε constructed above. Then there
is a uniform lower bound for the length tε{^π) = (1 + aε) π s i n ( ^ π )
given in terms of the inequality aε > g ^ .

Proof. By construction the total angle φ% of the ruled surface
7 ε : [0,π] x [0,1] -» Mn and the length £e(π) of the small circle seg-
ment at radius π are bounded from below as follows:

φε

0 > π and ίε(π) > d{pup2) > π .

Now the idea is to apply Theorem 5.4 with λ := δ < | , Λ := 1,
Γi := ^^7Γ, and r2 := π. Using the monotonicity properties from
Lemma 5.3(iv), we conclude that

(7) r(rχ) > Φ r i Γ 2 (π,π;5,l) = π • </vlΓ2(l ί, 1) ,

where ψrir2

 a n d ^rir2

 a r e the comparison functions introduced via equa-
tions (20)-(23) in the next section. For clarity, we have extended the
argument lists of these functions by the curvature bounds δ and 1. It re-
mains to evaluate the function h(δ) := sin(r1)~1^nr2(l 5 ^ 1) We have
to show that h(δ) > 1 + ^ = 1.001625 for ^ ^ < δ < \. Our
plan is to compute h{\) explicitly and thereafter to proceed using the
continuity and monotonicity of h.

When computing Λ(|), the parameters in equations (20)-(22) are
λ = \ and Λ = 1, and the function w simplifies as follows:

(8) tS(rOlr) = cos2(|r0) - 2 S in 2 ( | r 0 )

Observe that sin(lr)" 1 sin(|r0) lies in [sin(|ro),l] for 0 < r0 < r <
π. It has been shown in Lemma 5.1(i) that w > 0 on [0, π] x (0, π].
Furthermore, the expression for the function y defined in (21) turns
into

(9) y(ro,r) =<

sin(r) if r < r0 ,

sin(i(r+r0))
+ cos(r0) sin(|(r-r0)) if r0 < r and n = 2 ,

2sin(|r) w(ro,r)1'2 if r0 < r and n > 2 .

By Lemma 5.2(iv) the equation y(ro,π) = 1 has a unique solution f0 in
(0, π). With the preceding expressions for w and y we may rewrite this
equation as follows:

(10)
r l = 2cos 3(|r 0) ifn = 2 ,

\ = cos2(|r0) - 2(l-sin(ir 0)) sin 2( |r 0) if n > 2 .
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The solution r0 can be characterized by means of the equation

;r0) = Tm if n = 2 ,
(11) i , ,

{ sm(2ΓoJ = 2 + s m vϊ8 π J it n > z ,

and thus r 0 < 0.416 304 π if n = 2, and r0 < 0.470 548 π if n >
2. In either case we have r0 < rx = ^ π . Using formula (22) and
Lemma 5.2(iv), we conclude that φrir2(l 5 &i 1) = ί/ί̂ o? JΊ ί, 1) > sin(ri),
provided that δ is sufficiently close to | . With the help of equations (8)
and (9) it is easy to compute that h(\) > 1.020616 if n = 2, and
h{\) > 1.001663 i f n > 2 .

By Proposition 5.5 the map δ ι-> h(δ) is nondecreasing, and a nu-
merical computation based on the original definition of φrir2

 γ ί a equa-
tions (20)-(22) reveals that for ε0 := 27000 w e ^ a v e :

,020612 > 1.001625 ifn = 2 ,

001661 > 1.001625 i f n > 2 .

The interesting feature of the preceding proposition is the factor 1 +
ae in the expression on the right hand side. By our next result this
little gain turns out to be a significant improvement over the standard
estimate (6). For this purpose we consider for any radius rx G (0, fπ)
and any angle φ0 > 0 the spherical ribbon

where g := dr2 + sin(r)2dφ2 is the standard metric of constant curva-
ture 1.

Proposition 4.6.(A Weak Contraction) Let 0 < ε < ^ and 0 <
Γi < | π . Set ψε := sin(ri)"1 tε(rι), and consider the ruled surface ηε

and the spherical ribbon Σ(ri,<£e). Then there exists a diffeomorphism
Φε: [0,1] -> [0, φε] such that the map

id xΦ*: ( [ Γ l , fπ] x [0,1] , (Y)*g) -> ([n , fπ] x [0, φε] , g)

is nonexpanding.
Proof The pull-back metric (-yε)*g is given by dr2 + \Y(r,ΰ)\2 dϋ2

where Y(r,ϋ) := ^ 7 ε ( r , 1?). Hence it is sufficient to show that

(13) sin(r)-1 |Y(r,0)| > \&i

for all (r,i9) € [ri, fπ] x [0,1]. It follows from the definition of tε{rι)

that the expression Φe(t?) := $*sm(rι)~ι\Y(rι,t)\dt yields a bijective,

differentiable map Φe: [0,1] -*• [0, ψε\ such that inequality (13) holds on

x[0,l]
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By Lemmas 4.1 and 4.3 the geodesic ce lies in the annulus
B(pOi f τr)\i?(poj ^ π ) ? a n < l thus its lift cF cannot be radial. In particular,
the vectors (?{ϋ) and -§$&{&) are linearly independent for all ΰ G [0,1],
and the map Φε defined above is a diffeomorphism.

Finally, we apply the infinitesimal version of the Rauch comparison
theorem to conclude that the left hand side of (13) is a nondecreasing
function of r.

Corollary 4.7. Let 0 < ε < 27̂ 00 > an^ suppose that Assumption 4-4
holds. Then the length of the geodesic <f is bounded from below as fol-
lows:

Proof of Theorem 2.4- The preceding corollary states that

π ( l + ε ) < L{cε) < d(q\,qε

2) < diamMn

for 0 < ε < 2τ!o5> which is the required contradiction because of the
given upper bound for the diameter of M n .

Proof of Corollary 4.7. We set rλ := ^ π and ψε := s i n ^ ) - 1 le{rx).
By Proposition 4.5 ψε = (1 + αe)π with aε > g^ir We consider the
spherical ribbon Σ,(rι,φε) introduced in (12). Combining the current
bound for ε with Lemmas 4.1 and 4.3, we see that the geodesic cε is
contained in the annulus B(p0, |π)\S(p o ,π) Notice that the points
ξι := ( |(1 + ρε)π,Q) and q2 := (|(1 + ρε)π,φε) are the images under
id xΦε of the end points (Y)'1^^)) and (7e)"1(c ίΓ(l)). Hence Propo-
sition 4.6 asserts that L{cε) > distΣ(n,<pβ)(9i ^2)-

Replacing a curve c : t 4 (r(ί),(p(ί)) G Σ(rχ,(pe) connecting the
points ξι and q2 by the curve t ι-» (max{r(t), π — r(t)}, φ{t)), we con-
clude that

(14) L{cε) > distΣ{ruφe)(q1,q2) = d i s t Σ ( i π .e)(qx ,ςf2) .

Thus the basic step in the proof of the corollary is to determine a
minimizing curve c: [0,1] -> Σ(|π,<£ε) from qx to q2. Since ψε > π, the
ribbon Σ(~π, ψε) does not contain a segment of a great circle connecting
ξι and g2- Hence c|(0,i) meets the boundary of the ribbon.

The only nonconvex piece of this boundary is the arc that lies on the
small circle {r = | π } . Moreover, the radial projection of Σ ( | π , ψε) onto
this arc is a weak contraction. We conclude that any minimizing curve
c from ξι to q2 consists of three arcs ς i ί i , ίii^? and î Φa The arc XχX2

lies on the small circle {r = | π } , and qχX\ and x2q2 are segments of
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great circles which touch the small circle tangentially. In particular, c
is uniquely determined, and L(qιXχ) = L(x2q2)-

It remains to estimate the length L(c) = 2 L(qιXχ) + L{x\X2) from be-
low. Notice that the great circle through xx and ξι intersects the equator
{r = | π } in some point ( |π, — ξ0) at an angle of | . We consider the
triangle with vertices ( |π, -£ 0 ), (|τr,O), and qx = ( |(1 + ρε)π,0). Ob-
serve that the segment from (§π,0) to ξι has length |&π. Let £1 be the
length of the segment from qx to ( |π, —ξo) An elementary calculation
based on the Laws of Sines and Cosines shows that

(15) sin(£0) = tan(|&π) and sin(£χ) = Λ/2 s in( |^π) ,

where ρε is the number that appears in the definition of the points q\
and qε

2. Clearly, L(ξιXι) = | π — ξτ. Furthermore, xλ = ( |π, | π — ξ0) ?

2̂ = ( |π, ^ 4 π - + | 0 ) , and thus ^ ^ |
Hence

Here we have used Proposition 4.5 and the equations in (15), in order
to control the terms φε — π and 2ξi — \/2ξo? respectively.

5. Estimates for ruled surfaces with a conical singularity

The estimates to be presented in this section provide a new tool that
might be useful in other contexts as well. So we find it appropriate
to work with a generic Riemannian manifold Mn and just assume that
its sectional curvature KM is bounded from above and below, i. e., λ <
KM ^ Λ. We shall consider ruled surfaces in Mn which are given as
differentiate maps

(16) 7 : [ 0 , r 2 ] x [ 0 , l ] - > M "

such that each curve 7^ = 7(.,#) is a normal geodesic emanating from
some fixed point p0 G M n , i. e.,

£ f ? = °> l£l = l> and 7(0,0) =Po
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In general, r2 can be any positive number. However, if Λ > 0, we
suppose that r2 < - ^ . For any r G (0,r2] we consider the length

(17) t(r) :=

of the corresponding small circle arc. By the infinitesimal version of
the Rauch comparison theorem the functions r π-> snλ(r)"1 |§J(^, $)|
are nonincreasing, and thus ί(rλ) > ™xJfy ί(r2) for 0 < rλ < r2. The
preceding lower bound for ί(rι) can be improved by means of the total
angle

(18) /
JO

at the conical singularity p0 as follows:

(19) t(ri) >

We are mainly interested in the case that ψ0 snΛ(r2) < t(r2) <
φ0 snΛ(r2). This condition means in particular that λ < Λ, and the
right hand side of (19), when considered as a function of r l 5 has a corner
at some point rc G (0, r 2 ) . The principal goal in this section is to improve
inequality (19) for all rλ in some interval (ro,r2) C (0,r2) containing rc.

To begin with, we introduce geometrically better adapted comparison
functions. For this purpose we restrict to the case λ < Λ and consider
the real analytic maps w: [0,r2] x (0, r2] —» R given by

[r0,r) :=
cnΛ(r 0)\

()J—^7—r ~ ^ αet / ( I / — T T Ύ
sn2

x(r0) \snx{r0) snA(r0)J Jro Sn
3

x(ρ)
Jro

Notice that the determinant factor has a zero of third order at r 0 = 0,
and thus ΰ)(0,r) = 1 for all r G (0,r2]. In fact, w -> 1 as λ -> Λ.

Lemma 5.1. Let λ < Λ and r2 > 0. Suppose that r2 < -4= if Λ > 0.

Then the function w introduced in (20) has the following properties:

(i) the expression snλ(r)ΰ}(ro,r) extends as a real analytic function
to the closure [0, r2] x [0, r2] of the domain of w, and

limβiiΛ(r)β(ro,r) = 2 det fCn\(r°J cn^»Ά > 0 ,

(ii) w is nonnegative, and w(ro,r) = 0 if and only if Λ > 0 and
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(iii) if Λ > 0 and r2 = -7-, ίΛen £Λe /ϊrsJ couple of terms in the
Taylor expansion

t»(ro,r) = Σαμvίro-^fΓίr-^pΓ

are given by a00 = αi 0 = α2o = 3̂0 = 0 and aμϊ = 0 for all
μ > 0, whereas α 4 0 and aO2 are positive. More precisely, a 4 0 =
±(Λ-λ)a0 2 and a02 = s n ^ 2 ( ^ ) .

The proof of this lemma will be given in §5.1. With the help of w
we can now introduce a continuous map y: [0, r2] x [0, r2] —> [0,00) by
means of

snΛ(r) i f r < r 0 ,

snA(r0) cnλ ( r - r 0 )
+ cnΛ(r0) snλ{r-r0) if r 0 < r and n = 2 ,

(21)j/(ro,r):=<

snλ(r) w(rOi r) 1/ 2 if r0 < r and n > 2 .

Set ^ := {(0,0), (r2,r2)} if Λ > 0 and r2 = ̂ -, and Zv := {(0,0)} oth-
erwise. Notice that the restriction of y to [0,r2] x [0,r2]\Zi? is piecewise
analytic.

Lemma 5.2. Let λ < Λ and r2 > 0. Suppose that r2 < ^ - i/ Λ > 0.
Tften £/ιe function y defined in (21) Λαs ίΛe following properties:

(i) ίΛe function y: [0,r2] x [0,r2] —>• [0, oo) is 0/ cZαss C1 '1,

(ii) ^ y ( r 0 , r) < 0 1/ 0 < r0 < r < r2,

(iii) ~^y(0,r) = — (Λ-λ)snλ(r) for 0 < r < r2,

(iv) for any r E (0,r2] the restriction of y( ,r) to the interval [0,r]
is a surjective, strictly decreasing, real analytic map yr: [0, r] -^
[snΛ(r),snλ(r)].

The proof of this result is also postponed to §5.1. The lemma im-
plies in particular that for λ < Λ and any rx G (0, r2] there exists a
unique, surjective, nondecreasing C l f l-map ψrir2 [snΛ(r2) ,snλ(r2)] -»
[snΛ(r!) ,snλ(ri)] such that

(22) VVir2 ° y( ?r2) = y( ? r i )

The complete setup for the definition of ψrιr2 is shown in Figure 2.
Observe that ψrir2 maps the subinterval [snΛ(r2) ,y(r!,r2)] to the

single point snA(rx), whereas ψ'rιr2 > 0 on the subinterval
(y(π,^2) 5snλ(r2)]. The restriction of ψrir2 to the punctured inter-
val [snΛ(r2),snλ(r2)]\{y(ri,r2)} is real analytic, and ̂ rir2(

snλ(^2)) =
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FIGURE 2. On the Map ψrir2: The picture shows the
qualitative properties of the functions snλ, snΛ, and
yro for fixed parameters 0.186Λ < λ < \A and for
various values of r0. The graphs of the functions yro

are schematic; they are justified by Proposition A.6.
Note, however, that in reality f0 E (0.452rΛ, | r Λ ) and
r0 e (0.470 rΛ, §rΛ) where rΛ := ^ . For further details
we refer to Corollary A.7.
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gn /̂̂ j I n the limit rλ -» r 2 the functions VVir2 converge to the identity
map.

Next we define the comparison functions Φ r i Γ 2 : [0, oo) x [0, oo) ->
[0,oo) that will replace the right hand side of (19). We suppose that
λ < A and 0 < rx < r2, where r 2 < -?= if A > 0, and set:

(23)

ί
α sπΛ^i) if η < a • snΛ(r 2) ,

a • Φrιr2 (£) if ot • snΛ(r 2) < η < a • snx(r2) ,
=^ η ifa-Snx(r2)<η.

The strict inequality in the condition on the middle line implies that
in this case a > 0 and λ < A, and thus the term a φrir2(

a~1v) ι s

well-defined. In the case λ = A the definition of Φ r i r 2 actually reduces
to the first and third line. Since VVir2(

snΛ(r2)) = snΛ(rχ), it is clear thatΦ Γ l Γ 2 is continuous.

Lemma 5.3. Let λ < Λ and 0 < rx < r2, where r2 < -τ= if A > 0.

Then the function Φ Γ l Γ 2 : [0, oo) x [0, oo) -> [0, oo) introduced in (23) has

the following properties:

(i) Φ Γ l Γ 2 is linear on each line through the origin,
(ii) Φ Γ l Γ 2 is continuously differentiate except at (a,η) = (0,0),

(iii) Φ r i Γ 2 is weakly convex,
(iv) Φ Γ l Γ 2 is nondecreasing with respect to both variables,

(v) Φ r i r 2(α,r?) > max{a sn A (r i), ^ g η} for all (a,η).

This lemma will also be established in §5.1, where the basic analytical
properties of the functions w, y, τ/vlΓ2, and Φ r i Γ 2 are investigated in
detail. Notice that — despite of the significant difference in the explicit
expression for y in (21) — the essential qualitative properties of the
functions y, ̂ r i Γ 2 , and Φ r i Γ 2 are independent of the dimension n of the
Riemannian manifold.

Theorem 5.4. Let Mn be a complete Riemannian manifold with
λ < KM < A, and let 0 < rx < r2, where r2 < -7^ if A > 0. Consider
a ruled surface 7: [0,r2] x [0,1] —> Mn generated by normal geodesies
Ίΰ = 7( j#) emanating from a fixed point p0 G M n . Then the lengths
ί{rλ), ί(r2) and the total angle φ0 introduced in (17) and (18) obey the
following inequality:

> <HriT2(φ0,£(r2)) .
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In the proof of Proposition 4.5 it has already become apparent in
which sense this theorem is a substantial improvement over inequal-
ity (19). Of course, Theorem 5.4 is the integrated version of a corre-
sponding estimate for Jacobi fields which we shall state in Theorem 5.6.
Although these two theorems provide subtle curvature controlled esti-
mates, they are by nature not comparison theorems in the strong sense.
In particular, in dimensions n > 2 there are except for trivial cases no
appropriate model spaces on which the estimates turn out to be sharp.
This will be explained further in the addendum to Theorem 5.4.

Nevertheless, the comparison functions Φ r i Γ 2 show the geometrically
expected monotonicity with respect to the curvature bounds λ and Λ.

Proposition 5.5. Let 0 < rx < r2. Then the functions ΦΓir2 in-
troduced via equations (20)-(23) are nondecreasing with respect to the
parameter λ and nonincreasing with respect to Λ, as long as λ < Λ <

This proposition will be established in the appendix.
Theorem 5.6. Let Mn be a complete Riemannian manifold with

λ < KM < Λ, and let 0 < ri < r2, where r2 < ̂  if Λ > 0. Consider
a geodesic 7: [0,r2] -» Mn parametrized by arc length and a normal
Jacobi field Y: [0,r2] -» TM along 7 with initial value Y(0) = 0. Then
the following inequality holds:

\Y{rχ)\ >

We consider this result as a mixed Jacobi field estimate, since the
initial value Y (0) = 0 is augmented by two additional pieces of informa-
tion, knowledge of the absolute value of the initial derivative ^Y(0) and
knowledge of the absolute value |y(r 2 ) | at a second boundary point r2,
in order to obtain a refined lower bound for the absolute value |y(ri) |
at some intermediate point rλ.

Addendum to Theorem 5.6. Consider the case n > 2, and sup-
pose that rλ < r2. Then Φ r ιra 0 ^ ( 0 ) 1 , 1^(^)1) = |^(r i ) | if and only
if the restriction of the Jacobi field Y to the interval [0, r2] is of the
form snλ W or snΛ W where W is a parallel vector field along 7.

The proof of Theorem 5.6 is given in §§5.1-5.3. The cases n — 2
and n > 2 are substantially different, since for surfaces the Jacobi field
equation reduces to a scalar differential equation of second order rather
than to a system of second order differential equations. The analytical
aspects of the argument are contained in Proposition 5.10, whereas the
geometric ingredients are covered by Proposition 5.12. The Addendum

follows immediately from the equality discussion in Remark 5.14.
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Proof of Theorem 5.4- Consider the geodesies 7# which generate
the ruled surface 7 and apply Theorem 5.6 to the normal Jacobi fields

| ( . ,#) along these geodesies to obtain the inequality

By Lemma 5.3(iii) the function Φ Γ l Γ 2 : [0, 00) x [0,00) -> [0,00) is weakly
convex. Hence we can apply Jensen's inequality to conclude that

5.1. Basic analytical properties of the comparison functions
The purpose of this subsection is to establish the basic analytical

properties of all four functions w, y, VVir2>
 a n d Φnr2 I n particular,

we want to prove Lemmas 5.1-5.3. In the next subsection we shall
characterize the maps yro := y(r0,.) by means of differential equations of
second order, and in §5.3 we shall use these differential equations to link
the geometrical properties of the ruled surface 7: [0, r2] x [0,1] ->• Mn

to the comparison functions Φ r i Γ 2 .
Proof of Lemma 5.1. i) First we observe that the terms sn^2(r0)

snl(r0) and D(r0) := d e t Q ^ j »*£j) on the right hand side of equa-
tion (20) are bounded, real analytic functions on the interval [0,r2].
Moreover, D(0) = 0. Since D'(r0) = (Λ — A)snA(r0)snA(r0) for any
r0 G [0, r2], we see that D is a positive, strictly increasing function
on the interval [0, r2] with a zero of third order at r0 = 0. Note that

In order to understand the integral I(ro,r) := /r

r

Q sn^3(
we make use of the fact that sn^3(ρ) (snλ(ρ)— snΛ(ρ)) is a positive, even,
real analytic function on [—r2,r2]. In particular, the expression

fr

/ ( r o , r ) : = / sn^3(ρ). (snx(ρ)-snA(ρ)) dρ

defines a real analytic function on the closed square [0, r2] x [0, r2] which
vanishes on the diagonal {r0 = r}. Furthermore, I(ro^r) = ctλ(r0) —
ctλ(r) - / ( r o , r ) .

The properties of the functions D and / established above imply that
the expression sn\(r)w(ro,r) extends analytically to the closed square,
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and an easy computation shows that

lim snλ( = lim -2J9(ro)snλ(r) (ct λ(r 0)-ct λ(r))

= 2D(r0) .

ii) We continue to denote the determinant and the integral in the
expression for w by D and /, and compute the partial derivatives of w\

(2 4) τkι

(25)

= -2(Λ-λ) snλ(r0) snΛ(r0) I{ro,r) ,

£tS(ro,r) = -2D(ro)^n^3(r)snA(r) .

Clearly, -^w < 0 on the entire domain [0,r2] x (0,r2]. Recall that

the function I(ro,r) = ctλ(r0) — ctλ(r) — /(ro,r) is real analytic on
[0,r2] x [0,r2]. Hence

(26) if 0 < r < r2 ,

(27) ^ti}(ro,r) < 0 if 0 < r0 < r < r2 .

Since ΰ)(0,r) = 1 and tD(r,r) = sn^2(r)sn^(r) for any 0 < r < r2,
we conclude that 0 < w(r,r) < w(ro,r) < i/)(ro,ro) < 1 provided that
0 < r0 < r < r2.

iii) Equation (25) asserts that ^:^(^oi^)|r=7r/VA = 0 for 0 < r0 < r2,
and thus all the coefficients α μ i vanish. The other five coefficients are
obtained by differentiating equations (24) and (25) a few more times.

Proof of Lemma 5.2. i) Recall that the restriction of y to [0,r2] x
[0,r2]\Zv is piecewise analytic. Its partial derivatives are given by

(28)

0

a^y(ro,r) = { -(Λ-λ)sn Λ (r 0 )sn λ (r-r 0 )

)w(r r)'1/2 * d

if r < r0 ,

if r0 < r and n = 2 ,

|#-ίi)(ro, r) if r0 < r and n > 2 ,

and

(29)

cnΛ(r) if r < r0 ,

cnΛ (r0) cnλ(r - r 0 ) if r0 < r

-λsn Λ (r 0 ) sn λ (r-r 0 ) and n = 2 ,

cn λ(r)^(r0, r ) 1 / 2 if r0 < r

+ snλ(r)ti)(ro,r)-1/2 | | :tS(ro,r) and n > 2 .
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If n = 2, it is evident that the preceding expressions are consistent
along the diagonal {r0 = r}, and thus y is a C1)1-function on the closed
square [0,r2] x [0,r2].

If n > 2, it follows from equations (24) and (25) that the preceding
expressions are still consistent along the diagonal. In this case, however,
the consistency in (28) and (29) only implies that the restriction of y
to [0, r2] x [0,r2]\Zy is locally of class C1 '1. It remains to analyze the
behavior of y in a neighborhood of Zv.

In order to investigate the regularity of y in a neighborhood of the
point (0,0), we need to show that the second derivatives of y are uni-
formly bounded on a sufficiently small triangle Δ0(C) := {0 < r0 <
r < ζ}. For this purpose we employ Lemma 5.1(i) to write y(ro,r)2 =
snχ(r)2w(r0,r) as 2rD(r0) + r2h(r0,r), where h is a suitable, real an-
alytic function on the closed square [0, r2] x [0, r2]. Since ιΰ(0, r) = 1
for 0 < r < r2, we conclude that /ι(0,0) = 1. If ζ > 0 is sufficiently
small, it follows that Λ|ΔO(C) > 2 Therefore the quotients .(τζ r ) , Bjζ0^ ,
Sr^°rL j and ^ f ° | are uniformly bounded on the triangle Δ0(C), and an
elementary computation yields:

fD'

0

ar2 y ~ y3 V Or ' l 2 ar2 4 dr dr * dr2 ' * ° y2 y dr

= L (Γ)" _μ l 9 2 M _ l i f^l i JL dh \2

y \ 2~drl' ϋ ^ y 2$ dr0)
DL I r /_a^ , r a2/ι \ _ r /D^ , j ^ _aΛ_\ /D , r L , r2, a^\

aroar it y ^ y \dr0 ^~ 2 drodr ) y \ y "*" 2y dr0 I V y """ y /£f ^ 2y dr I

As explained before all terms on the right hand sides are uniformly
bounded on the triangle Δ0(C), and thus we are finished, unless Λ > 0
and r2 = j - .

If Λ > 0 and r2 = -ΐ-, we use a similar argument to analyze the
behavior of y in a neighborhood of the point (r2ir2) In this case we
refer to Lemma 5.1(iii) to conclude that

= t4

oho(to)+t2h(to,t)

where h0 and h are real analytic functions on the closed interval [0, r2]
and the closed rectangle [0, r2] x [0, \r2], respectively. Moreover, /io(0) =
α40 > 0 and /ι(0,0) = α02 > 0. A similar argument as in the preceding
case shows that the second derivatives of the square root of ίj ^o(̂ o) +
t2h(t0,t) are uniformly bounded on a sufficiently small triangle Δ x (ζ) :=
{0 < t < t0 < C}.

ii) For (ro,r) £ Zv the assertion follows directly from (24) and (26)-
(28). For {ro,r) e Zv we can then refer to the established continuity of
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iii) If n = 2, we merely need to differentiate equation (28) once more.
In the case n > 2 we differentiate (28) and, simplifying the resulting ex-
pression with the help of (26), we see that Jp y(0, r) = snλ(r) | ^ τ ^ ( 0 , r)
for 0 < r < r2. In order to evaluate the right-hand side, we differentiate
equation (24) once more. Thus we obtain

-2(Λ-λ)(cnλ(ro)snΛ(ro)+snλ(ro)cnΛ(ro)) I(ro,r) .

Since I(ro,r) = ctλ(r0) - ctλ(r) - ϊ(ro,r) where J is a real analytic

function on the closed square, we eventually conclude that J^ ιt)(O, r) =

-2(Λ-λ) for 0 < r < r2.
iv) The regularity of the partial maps yr\ [0,r] —>> [snΛ(r),snλ(r)]

follows directly from formula (21), unless n > 2, Λ > 0, and r = r2 =
"7=. In the latter case we have to refer in addition to Lemma 5.1 (iii)
in order to establish the analyticity of yr on the entire domain [0, r]
and not just on [0,r). By assertion (ii) the partial maps yr are strictly
decreasing. Thus for any r G (0,r2] the range of yr is the interval
[frWir(O)] = [snA(r) ,snλ(r)].

Lemma 5.7. Let λ < Λ and 0 < ri < r2 where r2 < -TJ if Λ > 0.
Then the C1'1-function ψrir2: [snΛ(r2) ,snλ(r2)] -> [snΛ(ri) ,snλ(ri)] in-
troduced in (22) has the following properties:

(i) ψ'rir2(snA(r2)) = 0 and φ'rir2(snx(r2)) = =*g} ,
(ii) φrιr2 is convex and strictly convex on [y(ri,r2) ,sn\(r2)] ,

(iii) φrir2(η) > maxisnA^i), ^ g ^ η} for η G [snΛ(r2) ,snλ(r2)] .

Proof, i) Both values are computed from Lemma 5.2(ii) and 5.2(iii)
by means of the chain rule.

ii) By Lemma 5.2(iv) the function ψrir2 is of class C l f l and its restric-
tion to the interval [snΛ(r2) ,y(ri,r2)] is constant. Thus it is sufficient
to verify that φ"ir2{η) > 0 for all η G (y(rur2) ,snλ(r2)) = {y(ro,r2) \
0 < r0 < rx}. Since ^-y( ,r2) < 0 on (0,ri), it is equivalent to show
that

(3°) έKr 2 °y(ro,r 2 )) ^ « r 2 oy(r 0 ,r 2 )) .^y(r 0 ,r 2 ) < 0

for any r0 G (0,ri).
In order to compute the term φ'rir2

 oy{ro,r2), we differentiate equa-
tion (22) with respect to r0. By the chain rule -£ry{ro,rι) = {ψ'r

r i r 2

y{ro >r2)) ' ^2/(^0^2), and combining this identity with formulas (24)
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and (28), we conclude that

f
(31) Ψ'rir2 oy(r0,r2) = I 2 2 χ

I snλ(r2)

where /(r o ,r) = /r

r

Q sn^ 3 (ρ)sn Λ (ρ)dρ as before. Since φ'rιr2 o y(ro,r2)
> 0, it is now sufficient to verify that

^ y ( r 0 , r 2 ) ) < 0

for any r0 £ (0,7^).
If n = 2, we observe that Λ r i r 2(r0) = ct λ (r 2 -r 0 ) - ct λ (r i-r 0 ) , which

is indeed strictly negative. The case n > 2, however, requires a slightly
more elaborate computation. Equations (24) and (31) reveal that

We want to show that the right hand side is strictly negative for 0 <
ro < Γi < r2. For this purpose we may consider the two terms in
parentheses separately. In fact, it follows directly from the definitions
that

= sn;2(r0)sn2

Λ(r0) ^ f f t g ^ ) > 0 ,
/(ri,r2)

_ >
/(ro.ri) /(ro,r2) /(ro,ri)/(ro,r2) ^ W '

iii) Since ψΓ l Γ 2(snΛ(r2)) = snΛ(rχ) and ψrir2(snx(r2)) = snλ(rχ), the
assertion follows directly from (i) and (ii).

Proof of Lemma 5.3. i) By equation (23) it is evident that ΦΓir2 is
positively homogeneous of degree 1.

ii) Combine the fact that V>nr2 is of class C l f l with Lemma 5.7(i) to
conclude that *nr2 |{i}χ[o,oo) is a C1>1-function. Because of Property (i)
we conclude that ΦΓ l Γ 2 G (^((OjOo) x [0,oo)). By definition the re-
striction of Φrir2 to the cone {αsn λ(r 2) < η] is linear, and thus Φ r i Γ 2 is
smooth in a neighborhood (0, oo) x {0} as well.

iii) The function Φ r i Γ 2 is linear on the cones {η < αy(rχ,r2)} and
{αsn λ(r 2) < η}. Thus it is sufficient to verify that ΦΓir2 is weakly con-
vex on the open cone C := {(cέ,η) \ «y(ri,r2) < η < αsn λ (r 2 )}. Clearly,
ΦΓ l Γ 2 |c is real analytic, and it is straightforward to compute that
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for all (α, η) G C. It has been shown in Lemma 5.7(ii) that Φ"ir2(cί~1τj) >
0 on C. Observe that R (a,η) C ker(hessΦΓlΓ2|(α)T7)), and thus
hessΦ r i Γ 2 | ( α t l j ) > 0 .

iv) It is evident from the definition of Φ Γ l Γ 2 in (23) that ^ Φ Γ l r 2 (α, 0) =

0 for any a > 0, and similarly ^ΦriraίO?7?) = 0 f°Γ anY ty > 0. Hence
the monotonicity of the function Φ r i Γ 2 with respect to both variables is
a consequence of the convexity established in (in).2

v) This estimate is an immediate consequence of Lemma 5.7(iii).
5.2. Differential equations for y and basic comparison results

In this subsection we explain the analytical properties of the function
y that are necessary for establishing the link to the geometry of the ruled
surface 7: [0,r2] x [0,1] —» (Mn,g). The issue of the whole discussion
is to prepare the proof of Theorem 5.6 at the end of §5.3. Notice that
in the case λ = Λ the theorem merely summarizes the standard Jacobi
field estimates. It improves on inequality (19) only for λ < Λ. Hence we
shall exclude the constant curvature case for the subsequent discussion.

Note that the functions yro = y(r0,.) are of class C1*1. In fact they
are smooth unless r = r0. Evidently for any r0 G (0,r2), the restriction
of yro to the interval (0,r0) is a solution of the differential equation
£ΪZ + Λ z = 0 with initial data y(0) = 0 and ^y(O) = 1.

Our first goal is to characterize the restriction of yro to {ro^r2) C
(0, r2) by means of a linear differential equation. Recall that r2 < -7=
if Λ > 0, and consider the differential operator Ln: C2((r0,r2)) -*
Co((ro,r2)) given by

i^z + Xz ifn = 2,

(32) Ln(z) :=l&z + (ctx-<ΛA)&z
[ + (λ - ctλ -(ctλ-ctΛ)) z if n > 2 .

Notice that ctλ—ctΛ is a real analytic function on [0, r2) with a simple
zero at r = 0.

Lemma 5.8. Let λ < Λ and r2 > 0. Suppose in addition that
f2 < TJ if Λ > 0. Then the kernel of the differential operators Ln

introduced in (32) consists of the functions

snλ(r) + α2 cnλ(r) if n = 2 ,

s n λ ( r ) ( f l l + α 2 £ s n ^ 3 ( e ) s n A ( ^ ) dρ) i f n > 2 ,ί
2Of course, the monotonicity of Φ Γ l Γ 2 with respect to the variable η is also

direct consequence of the monotonicity of the function ψrir2-
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where aλ and a2 are the constants of integration.

In particular, for any r 0 G [0, r 2 ) the function yro = y(r0,.) introduced
in (21) solves the differential equations

= 0 on (0,r0) ,

(33) { L2(yro) =0 on (ro,r2) if n = 2 ,

on (ro,r2) if n > 2 .

Proo/ of the Lemma. It is straightforward to verify that Ln(zaia2) =
0. In the case n > 2 it saves some work to observe that the general
solution zaia2 is obtained from the special solution Zi>0 = snλ by means
of the standard Wronskian trick.

L e m m a 5.9.(Maximum Principle) Let λ < Λ and r2 > 0. Sup-
pose in addition that r2 < -7= if A > 0, and consider the differen-
tial operators Ln introduced in (32). Furthermore, let r 0 G (0,r2) and
let z £ C°([r0jr2]) n C 2 ( ( r 0 , r 2 ) ) such that z(r0) > 0, z(r2) > 0 and
Ln{z) < 0 on ( r o , r 2 ) . Then z > 0 on the entire interval [ro,r2].

Proof. Notice that the function sn λ is a solution of the linear dif-
ferential equation Ln(z) = 0 on (ro,r2), and snλ > 0 on the closed
interval [r o ,r 2 ] . Hence the lemma follows as explained at the beginning
of Section 2 in [31, Chap. 1].

Our main application is the following comparison result in terms of
the functions ^ r i Γ 2 introduced in (22), which in turn is crucial for our
proof of Theorem 5.6 in §5.3.

Proposition 5.10. Let X < A and r2 > 0, and suppose that r2 < -7=
if A > 0. Furthermore, let y e C°([0,r2]) Π C 2 ((0,r 2 )) such that snΛ <
y < snΛ. Consider the differential operators Ln introduced in (32), and
suppose that L2(y) < 0 if n = 2 and Ln(-^y2) < 0 if n > 2. Then
Ψrιr2 ° y(r2) < y(rι) for any rλ E (0,r 2].

Proof. Since y(r2) € [sn Λ (r 2 ), sn λ (r 2 )], it follows from Lemma 5.2(iv)
that there exists a unique r 0 G [0,r2] such that y r o( r2) = 2/(̂ 2)- By
definition ^ Γ l Γ 2 o yro(r2)) = y r o( ri)? a n d thus we have to show that
Vro ( r) ^ y(r) f°Γ r G (0, r 2 ) . Observe that yro (r) = snΛ(r) for 0 < r < r0,
and thus it remains to verify that j/ r o(r) < y(r) for r0 < r < r2.

If n = 2 we finish the proof by applying the maximum principle from
Lemma 5.9 to the function z := y — yro.

If n > 2 we observe that y > 0 and yro > 0 on [r0, r 2 ], and therefore
it is sufficient to show that

•~~ s n λ * s n λ *ro —
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on (ro,r2). Clearly, z(r0) > 0 and z(r2) = 0, and thus we can again
apply the maximum principle from Lemma 5.9 to finish the proof.

The following observation proves to be useful for some arguments in
the appendix:

Remark 5.11. Lemma 5.9 and Proposition 5.10 remain valid for the
functions z and y that are merely continuous, provided that we work
with upper barriers in order to make sense of the differential inequal-
ities. In particular, if we are dealing with functions z G C°([ro,r2]) Π
C1((r0,r2)) andy G C°([0,r2])nC1((0,r2)) that are piecewise of class C2,
it is sufficient to verify the differential inequalities at those points r in
the open interval where the second derivatives are continuous.

To conclude this subsection we observe that the linear differential
equations of second order for the functions yro given in (33) can be
transformed into differential equations of Riccati type for the functions

«'2 o n ( 0 , r 0 ) ,

on (ro,r2) if n = 2 ,

on (ro,r2) if n > 2 .

Notice that the functions ΰro are the partial maps of a piecewise analytic,
locally Lipschitz continuous function ΰ: [0,r2) x (0,r2] -> E. The dif-
ferential inequalities corresponding to (34) will appear naturally in the
discussion of the geometry of the ruled surface 7: [0, r2] x [0,1] —> Mn in
Proposition 5.12. Further applications of the differential equations (34)
can be found in the appendix.

5.3. Mixed Jacobi field estimates
The purpose of this subsection is to prove Theorem 5.6. We assume

that (Mn,#) is a Riemannian manifold with λ < KM < Λ. As in the
theorem it will be sufficient to consider just a single normal geodesic
7: [0,r2] -> Mn rather than the entire family (7̂ )o<τ?<i that constitutes
the ruled surface. Recall that we are assuming r2 < -^ if Λ > 0.

We consider a normal Jacobi field Y along 7 which has initial data
y(0) = 0 and | J^Y(0)| = 1. Up to a constant factor these are precisely
the data that arise from the ruled surface. The Rauch comparison
theorem asserts that snΛ < |V| < sn λ. Therefore y := \Y| is a strictly
positive and hence smooth function on (0,r2), which extends as a C1-
function to the closed interval [0, r2]. Its initial data are y(0) = 0 and

y(0) !&y(0)| l.
The unit vector field E := - Y along 7|(o,r2) extends continuously to
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the closed interval [0,r2], and E(0) = ^Y(0). The essential ingredient
in the proof of Theorem 5.6 is a bound for the angular velocity \^;E\
of the unit vector field E _L |^. Notice that in the 2-dimensional case
E is a parallel vector field along 7. However, for higher dimensional
manifolds \j^E\ may be nontrivial. This difference in the qualitative
behavior of E is the cause for having two distinct comparison functions
ΦΓ l Γ 2 in the cases n = 2 and n > 2.

Proposition 5.12. Let Mn be a complete Riemannian manifold with
λ < KM < Λ; and let 7: [0,r2] —> Mn be a geodesic parametrized by arc
length. Consider a normal Jacobi field Y: [0, r2] -> TM along 7 such
that y(0) = 0 and \%Ύ\ = 1. Suppose that r2 < ^ if Λ > 0. Then
on (0, r2) £Λe functions y := \Y\, u := - J^y, and £Λe wniί vector field
E = -Y obey the following inequalities:

(35) l^E]2 ~

(36) -A-u2 < j-u < ^ ( - λ ~ c t λ c t Λ

-X-u2 if n = 2 ,

+ (ctλ+ctΛ) u - 2u2 if n > 2 .

Remarks 5.13. i) Since the left hand side of (35) is nonnegative, we
recover the inequality ctΛ < u < ctλ, which is just another way of stat-
ing the infinitesimal version of the Rauch comparison theorem. In the
2-dimensional case the function u can be interpreted as the curvature
of concentric spheres around 7(0), and formula (36) is just the stan-
dard inequality that appears in the comparison theorem for the second
fundamental forms.

ii) Formula (36) consists of the differential inequalities corresponding
to the Riccati equations in (34). Thus the functions ΰro = τ^J^yro

introduced before are comparison functions for u = -J^y.
iii) The right hand side in (35) vanishes for ΰ0 = ctλ, and therefore

this particular function solves both differential equations,

JLU = -λ - u2 and £u = -λ - ctλ ctΛ +(ct λ+ctΛ) u-2u2 .

Since ΰ0 = ^ 5 7 snλ, we see that Zι$ = snλ E ker Ln, where Ln denotes
the linear differential operator introduced in (32).

Addendum to Proposition 5.12. Let n > 2 and rx G (0,r2).
Then the following statements are equivalent:

(i) The norm of j;E\ri coincides with the upper bound given by (35).
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(ii) There exist parallel vector fields Ex and E& along 7 such that
on [0,rχ] the following holds:

• the Jacobi field Y is of the form snλ Έ\ + snΛ E^, and
• R(EXt £ ) £ = XEX and R(EAt &)& = AEA.

(iii) In formula (35) equality holds on the entire interval (0,rχ].

The Addendum has strong implications for the equality discussion
in (36). Inspecting the final step in the proof of the latter inequality,
we obtain

Remark 5.14- I*1 addition to the assumptions of Proposition 5.12 we
suppose that n > 2 and λ < Λ, and let rλ G (0,r2). Then the upper
bound for -j^u given in (36) is sharp at 7*1, if and only if the Jacobi
field y |[o,n] is of the form snλ E, where E is a parallel unit vector field
along 7.

Proof of Proposition 5.12. In order to establish the bound for \^E\
we consider a local distance function dPo to the point p0 := 7(0) along the
geodesic 7. Thus A\r := HesscίPo|7(r) represents the second fundamental
form of the sphere of radius r around p0 along 7. Because of the initial
condition Y(0) = 0 the following differential equations hold:

%Y = A Y and i i l + A a +Λ(.

The standard comparison argument for the Riccati equation shows

(37) ctΛ P < A < ctλ >P ,

where P = Id — (., fj-)fj- denotes the orthogonal projector onto the nor-
mal bundle of 7. Differentiating the identity E = ̂ Y, we obtain

IE = li^Y-uY) = A-E-uE ,

and hence

(38) J E + (u - | (ct λ +ct Λ )) E = {A - | (ct Λ +ct Λ )P) E .

Because of (37) the right hand side is bounded by | ( c t λ - c t Λ ) . Moreover,
the fields E and ^E are always perpendicular, and hence inequality (35)
follows by taking the norm on both sides of (38).

For the proof of inequality (36) we observe that
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Recall that E and ^E are perpendicular. Thus we conclude that

Hence

(39) 0 = £u + u> + KM (span{£,

and the inequalities in (36) follow observing the hypothesis λ < KM < Λ,
the bound on \^E\ in the case n > 2, and the fact that ^E vanishes
for n = 2. q.e.d.

For a geometric interpretation of formula (39) we think of 7 as one
of the geodesies 7^, 0 < ΰ < 1, of an immersed ruled surface Σ with a
conical singularity. Its second fundamental form is

and by the Gauss equations the intrinsic curvature ifΣ of the surface
turns out to be

KΣ = ̂ (span^fi})-!^!2 .

Comparing terms, (39) can be rewritten as -^u + u2 + KΣ, which is
the usual Riccati equation for the curvature u of concentric spheres
around 7(0) in Σ. Of course, this interpretation provides an independent
approach to equation (39).

Proof of the Addendum to Proposition 5.12.

(i) => (ii): Analyzing the step from (38) to inequality (35), we deduce
from (i) that

| ( A - | ( c t λ + c t Λ ) P ) ^ | | r = r i = KctλίrxJ-ctAίrx)) .

Thus E(rι) can be decomposed as E(rχ) = Ex(rι) + EA(rχ), where E\
and E\ are parallel vector fields along 7 such that

= ctx(r1) Ex(r1)

A\riΈA(r1)=

The equality discussion for the Riccati comparison argument leading
to (37) reveals that on the entire interval (0, rx] we have

A Ex = ctχΈx and

A- EA= ctA-EA and
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(ii) => (iii): Clearly, any Jacobi field Y of the form snλ EX + snΛ EA

satisfies

| i y - i ( c t λ + c t A ) y | = | (c t λ -ct Λ ) m .

We conclude that

|(A-!(ctλ+ct A )P) £ | = | (c t λ -ct A )

for E = i y, and thus (iii) follows with the help of formula (38).

(iii) => (i): Evident.

Proof of Theorem 5.6. The Rauch comparison theorems assert that

\Y(n)\ > max{\£Y(0)\ «*(*) , |^£} |F(r2)|} .

Comparing the right hand side to the definition of Φ r i Γ 2 in (23), we see
that it is sufficient to consider the case where λ < Λ and

0 < |£y(0)| snA(r2) < |y(r2)| < |£y(0)| snλ(r2) .

In the remaining case we employ the homogeneity of Φ Γ l Γ 2 as stated
in Lemma 5.3(i) to scale the Jacobi field Y. Hence it is sufficient to
consider normal Jacobi fields Y with Y(0) = 0 and | ^ y ( 0 ) | = 1 and
prove that

(40) y(ri) > Air2oy(r2)

where y := \Y\. By Proposition 5.12 we see that on the interval (0,r2)
the function u := - J^y obeys the following differential inequality of
Riccati type:

dr ~ \ - λ - ct λ ctΛ + (c t λ +ct A ) u - 2u2 if n > 2 .

Since y > 0, this differential inequality transforms into the differential
inequalities L2{y) < 0 if n = 2 and Ln(-^y2) < 0 if n > 2, where Ln

denotes the linear differential operators3 introduced in (32). Now we
can apply Proposition 5.10 to conclude that inequality (40) holds.

3In the case n > 2 the coefficient 2 in front of the u2-term is responsible for
obtaining a linear differential equation in y2 rather than y. The factor ^ has
been introduced, in order to avoid additional singularities in the differential
operator Ln corresponding to higher order zeroes of special solutions.
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Appendix A. Further analytical properties
of the comparison functions

Strictly speaking, Theorem 5.4 is not a comparison theorem, since in
dimensions n > 2 there are no appropriate model spaces except for triv-
ial cases. The theorem rather provides curvature controlled estimates in
terms of some functions Φ Γ l Γ 2 defined via equations (20)-(23). In this
appendix we want to show that the analytical properties of the compar-
ison functions nevertheless tie in nicely with the standard comparison
results for Jacobi fields.

Our first issue is to discuss how the functions Φ r i Γ 2 depend on the cur-
vature bounds λ and Λ. Whenever necessary, we shall indicate this de-
pendence by adding the parameters λ and Λ to the argument lists of the
functions under consideration. We shall also use the notation w£^(r) :=
ΰ)(r o , r ;λ,Λ), y^0

Λ(r) := y( r o , r ;λ ,Λ) , and Φϊ^iη) := -0rir2(r/; λ,Λ).
Similarly, we shall write L2 and L*Λ if n > 2, in order to indicate the
parameters used in the definition of the differential operators in (32).

Remark A.I. Let n = 2 and 0 < r 0 < r 2 . Then it is not hard to
verify that

LX(-XA) = ί - ( Λ - λ ) yr

λ

o

Λ < 0 o n ( 0 , r 0 ) ,

2U/r0 \ - ( λ - λ ) yr

λ

0

Λ < 0 on (ro,r2) ,

provided that λ < λ < Λ < r^"2π2.
L e m m a A.2. Let 0 < r 0 < r 2 and λ < λ < Λ < Λ < r ^ 2 π 2 . Then

for n > 2 the functions t/*o

Λ introduced in (21) satisfy the differential
inequalities

(i) ^ Λ (^7(y r

Λ

0

Λ ) 2 ) < 0 on (0,r0) U (rOir2) ,

(ii) £n A (^(yro Λ ) 2 ) ^ ° o n (°>ro) U (ro,r2) .

Combining the remark and the preceding lemma with Proposition 5.10,
we obtain the monotonicity properties of the functions ψ^A

2 introduced
in (22).

C o r o l l a r y A . 3 . L e t 0 < r λ < r 2 a n d l e t λ < λ < Λ < Λ < r ^ " 2 π 2 .
Then for any η G [snΛ(r2) ,sn^(r2)] the following inequalities hold:

(i)

Proof of Lemma A.2. i) A straightforward computation yields:

(41) λ " ""*
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On the interval (0,r0) we have y*o

A = snΛ, and hence

sn r L* Λ (^(y r

λ

o

Λ ) 2 ) = -2(A-λ) .βni < 0 .

On the interval {r0)r2) we employ the differential equation from (33)
and the definition of ŷ o

Λ in terms of w^ from (21) to conclude that

+ 2ctΛ (ct λ -ct λ ) (yr

λ

0

Λ)2 - 2(λ-λ) (yr

λ

o

Λ)2

= sn2 ( - ( c t λ - c t λ ) | : < Λ

-2 (ct λ -ct λ )(ct λ -ct Λ ) < Λ - 2(λ-λ) w%)

< 2sn2 -(ctλ-ctλ)(£>λ Λ(r0) sn^3 snΛ - (c t λ -c t Λ ) w^) .

In order to see that the expression on the right hand side is nonpositive,
we recall that the map r0 t-̂  £>λΛ(r0) is strictly increasing. Furthermore,
according to inequality (27) the map r0 t-¥ w^(r) is strictly decreasing
for 0 < r0 < r. Since w^(r)\To=r = snλ(r)~2snΛ(r)2, we indeed obtain
the inequality

^ - ( c t λ ( r ) - c t Λ ( r ) ) < Λ ( r )
_ 2 / \

= 0

for 0 < r0 < r < r2.
ii) In this case the computation reveals that on the interval (0,r0) we

have

= - 2(Λ - λ + (ct λ -ct Λ )(ct Λ -ct λ )) sn\ < 0 .

On the interval (ro,r2), however, we observe that ^ (y^) 2 = s nλ '
and thus we obtain the identity:

Again we employ the differential equation from (32). This time we
conclude that

1 τ\Af 1 /-λΛ\2\ _ 1 rλλ/ 1 /-λΛ\2\ 1 rλΛ/ 1 /-λΛ\2\

= (ctA-ctA) * ^ < Λ ^ ° '
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where we have used inequality (25) to determine the sign.

Proof of Corollary A.3. By continuity it is sufficient to handle the
case where η lies in the open interval (snΛ(r 2) ,sn λ (r 2 )) . In this context
Lemma 5.2(iv) asserts that the equation y(r0, r λ, Λ) = η has a unique
solution r 0 £ (0, r 2 ) . It follows directly from the definition in (22) that

Clearly, sn^ < snΛ < y*0

Λ < snλ < sn^, and by Remark A.I and
Lemma A.2 we can apply the comparison result from Proposition 5.10
as extended4 in Remark 5.11 to deduce (i) and (ii).

Proof of Proposition 5.5. Because of the homogeneity property from
Lemma 5.3(i) it is sufficient to consider the restriction of the map Φ Γ l Γ 2

to the ray {1} x [0, oo). According to Lemma 5.3(iv) this restriction
is a nondecreasing function of η. Hence we only need to establish the
monotonicity with respect to the curvature bounds in the three cases
0 < η < s n Λ ( r 2 ) , sn Λ (r 2 ) < η < s n λ ( r 2 ) , and sn λ (r 2 ) < η, respectively.

Notice that sn Λ (r!) is independent of λ and strictly decreasing with
respect to Λ. Similarly, the quotient ^4^4 is independent of Λ and
strictly increasing with respect to λ. Hence in the cases 0 < η < sn Λ (r 2 )
and sn λ (r 2 ) < η the assertion follows directly from the definition of
Φ r i r 2 in (23).

In the remaining case the monotonicity with respect to λ as well as
Λ follows from Corollary A.3.

Our next issue is to understand the relationship between Theorem 5.4
and the infinitesimal version of the Rauch comparison theorem. For
this purpose we shall discuss how the functions Φ r i Γ 2 depend on the
parameter ri, i.e., we shall analyze the qualitative properties of the
maps n ^ y r o ( r i ) .

Lemma A.4. Let λ < Λ and r2 > 0. Suppose in addition that
2̂ ^ "7τ if Λ > 0. Then the logarithmic derivative ΰ := 4 J^y has the

following properties:

(i) ^ ΰ(ro,r) < 0 for 0 < r 0 < r < r 2 ,

(ii) for any r G (0,r2) the restriction of the function ϋ(.,r) to the
interval [0, r] is a surjective, strictly decreasing, real analytic

map ur\ [0,r]4 [ctΛ(r) ,ctλ(r)] ;

4Since y^ G C2((0,ro) U (ro,r2)), it is actually possible to avoid this ex-
tension. However, additional arguments are necessary in order to analyze how
the point f0 depends on λ and Λ.



A SPHERE THEOREM 255

(iii) the functions ΰro depend smoothly on the parameter λ
G (-00,A). More precisely, ^ ^ r o ( r o ) = 0 and jχUro < 0
for 0 < r0 < r < r2.

Remarks A.5. i) The second assertion of the lemma implies that

ctA(r) < £ lnoy r o(r) < ctλ(r) for 0 < r < r2 .

These bounds for ~ (lno yro) coincide with the upper and lower bounds
for the logarithmic derivative of the norm of the Jacobi field Y as stated
in the infinitesimal version of the Rauch comparison theorem.

ii) In case n > 2 and r2 = ^ , Λ > 0, the second assertion in the
lemma does not extend to hold for r = r2. Prom equations (21) and
(25) we rather deduce the identity

Jim ΰ(ro,r) = ctλ(r2) - w(ro,r2)~1 / 2 5^rtδ(ro,r)| r = r 2 = ct λ(r2) ,J
provided that 0 < r0 < r2. In fact, r = r2 is a regular singular
point of the Riccati equation for ΰro = ϋ(ro,.)> and the assignment
r0 »->- limr^.r2 ΰ'ro(r) defines a bijection [0, r2) —» [ct^(r2),oo). Thus the
properties of ΰ at r = r2 differ significantly from the properties of y
established in Lemma 5.2(iv).

iii) Of course, assertion (iii) of the lemma implies a corresponding
inequality for the sign of jχVr^ I n fact, when combining this inequality
with Lemma 5.2(ii), we obtain a second proof for Corollary A.3(i).

Proof of the Lemma, i) Differentiating the Riccati equation in (34)
with respect to the variable r0, we obtain the following linear differential
equation of first order for ^-iZ(ro, ) :

JLMU-j \ = ί-2Uro^ro ifn = 2 ,
βr^θn, ro) j _ ( 4 δ r o _ c t λ _ c t A ) _ g _ δ r o i f n > 2 ,

provided that r £ (ro,r2). Since its coefficients are locally bounded, we
conclude that ^ ϋ ( r 0 , . ) does not change its sign on {ro,r2) If n = 2,
we differentiate equation (21) and conclude that

£ ( o , ) = (J ̂ fc _ X g . * ) ^ = _(Λ-λ)< 0 .
It requires only slightly more effort to establish the corresponding in-
equality in the case n > 2. Equation (21) yields that ϋ(ro,r) = ctΛ(r) +
w(rQ,r)~λ ~w(ro,r) on the triangle {r0 < r}, and with the help of
formula (24) we see that

JLiΓ,(r rλ — ±(± d2™ - ±- ̂ -^-\ — -(K-\\ < Π
d r o U V ° i r ' ~ 2\w drodr ti)2 dτQ dr ) \r=r0 ~ ^ ' ^ '
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ii) By assertion (i) it is sufficient to observe that ύ(r,r) = ctΛ(r) and

ΰ(0,r) = ctλ(r), in order to determine the ranges of the maps ur.

iii) Since ΰro(ro) = c t Λ ( r 0 ) , it is clear that ^ ϋ r o ( r 0 ) = 0. Hence it
follows from the differential equation (34) that the function ΰro depends
smoothly on the parameter λ, and it is straightforward to compute that

1 — 2ΰrn -zrύrn if n = 2 ,

- (4ΰ r o - c t Λ - c t Λ ) j£Uro if n > 2 .

Since ^ ct λ < 0 and ΰro — ctΛ > 0 by assertion (ii), we see that in either
case the right hand side of the preceding differential equation for jχΰro

consists of a term, which is < — 1, and a term, which is linear in jχϋro-
Therefore Gronwall's lemma applies, q.e.d.

With these preparations we can now understand the critical points
of the comparison functions yro, which in turn helps in understanding
Figure 2 on page 24. If Λ < 0, it follows directly from Remark A.5(i)
that the functions yro do not have any critical points in [0, oo). If Λ > 0,
it is sufficient to consider the case that r 2 = - ^ . Clearly, the functions
yro: [0,r2] —> [0,oo) still do not have any critical points in the interval
[ 0 , | r 2 ) .

Proposition A.6. Let Λ > 0, λ < Λ, and r2 = - ^ . Suppose that
n > 2. Then the functions yro defined in (21) have at most two critical
points. More precisely, there are the following four cases:

(i) // | Λ < λ < Λ, then each function yro has precisely one crit-
ical point in the interval (0, r 2 ) , which is a nondegenerate local
maximum.

(ii) // λ = jA, then each function yro has a critical point at r = r 2 .
In fact, there exists a number f0 G (0, | r 2 ) such that

(a) for r0 G [0, f0] the function yro is strictly increasing with
y'ro > 0 on [0,r2), and its critical point at r = r 2 is non-
degenerate unless r0 = f0,

(b) for r0 G (fo,r2] the function yro has precisely two critical
points, a nondegenerate local maximum in [^r2ir2) and a
nondegenerate local minimum at r = r 2 .

(iii) // 0 < λ < jΛ, then there exist f0 G (0, \r2] and rc G [Ir2,r2)
such that

(a) for r0 G [0,f0) the function yro is strictly increasing with

y'ro > o ,
(b) for r0 = r 0 the function yro remains to be strictly increas-

ing, but there is a degenerate critical point at r = rc,
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(c) for r0 e (fo,r2) the function yro has precisely two critical
points, a nondegenerate local maximum in (\r2,r

c) and a
nondegenerate local minimum in (rc,r2).

(iv) If X <0, then the following holds:
(a) for r0 G [0, \r2) the function yro is strictly increasing with

y ' r o

o

(b) for r0 = | r 2 the function yro remains to be strictly in-
creasing, but there is a critical point at r = | r 2 ,

(c) for r0 G ( | r 2 , r 2 ) the function yro has precisely two critical
points, a nondegenerate local maximum at r = \r2 and a
nondegenerate local minimum in (ro,r2].

It seems to be an intriguing fact that for Λ > 0 and n > 2 the qualita-
tive appearance of the comparison functions yro changes significantly at
λ = jΛ. These changes, however, do not occur if n = 2. Furthermore,
we like to point out that for n > 2 the nondegenerate local minimum of
yro that appears as the parameter r 0 gets larger than f0 persists as long
as r 0 < r 2. If n = 2 and λ < 0, the functions yro also exhibit a nonde-
generate local minimum as r 0 gets larger than | r 2 , but this minimum
leaves the interval [0,r2] long before r 0 gets close to r 2 .

Corollary A.7. Let n > 2 and Λ > 0, and suppose that r2 = -7^.

Then for 0 < \<\A the following holds:

(i) the number f0 = sup{r0 G [0,r2] | y'ro > 0} introduced in

Proposition A.6 is a strictly decreasing function of the param-

eter X, which is in fact a bisection (0, \A] A [f£/4, \r2) with

f £ / 4 « 0.452 731 r2,

(ii) the equation yXA{r^r2) = ^ has a unique solution ΓQ G (f o , r 2 ) .
This solution is a strictly decreasing function of the parameter
X, which maps (0, |Λ] into the interval [r λ / 4 ,r 2 ) where r λ/ 4 w
0.470 547r2 < \r2). The value \r2 is attained atXπ 0.185 048 Λ.

Proof of Proposition A.6 i) The bounds from Lemma A.4(ii) imply
that that for any r 0 G [0, r2] all the zeroes of ΰro = ±- -^yro lie in

the interval [|r2, | r 3 ] C [ |r 2 ,r 2 ] where r 3 := ^- . Since | : ΰ r o | r = r 2 <

< 0, it is sufficient to show that ^ ΰ Γ o < 0 at all the zeroes of

the function ΰro itself.

In view of the Riccati equation in (34) we only need to verify that
the expression cn λ ( r)cn Λ ( r) + λsn λ ( r ) sn Λ ( r ) is strictly positive for
r e [ 2

r 2? | r 3] C [ | r 2 , r 2 ] . By differentiation it is easy to see that on
this particular interval the preceding expression is a strictly decreasing
function of r. Moreover, its value at r = | r 3 is strictly positive.
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ii) In this case all relevant expressions can be computed explicitly:

(42) <s(r0>r) = cni( | r 0 ) - 2Λβnϊ(i| 0) (1 - = ^ ) ,

and thus

£(y r o (r) 2 ) = 4cn Λ ( | r) • [ K ( * r 0 ) - 2Λsn2 (§r0)) sn Λ ( | r)

for r0 < r < r2. The factor cn^(^r) vanishes at r = r2, which establishes
the critical point of yro at this particular boundary point.5 Any other
critical point of yro in (ro,r2) corresponds to a zero of the factor in
square brackets, and thus it is straightforward to compute that the
assertion holds, provided that f0 G (0, | r 2 ) is the solution of the equation
sin(|Λ/Λf0) = 1 — 2 sin ^ « 0.652 704. Here the right hand side comes
as the root of the cubic 1 — 3x2 + x3 which lies in (0,1).

iii) and iv) As in (i) our starting point is the observation that a critical
point of yro corresponds to a zero of ΰro, whereas a degenerate critical
point of yro corresponds to a common zero of ΰTQ and its derivative.
Hence by (34) a degenerate critical point of yro can only occur at a zero
of the map r H-> cnλ(r)cnΛ(r) + λsnλ(r) snΛ(r). This map is strictly
decreasing on [0,r2], and thus it is easy to verify that it has a unique
zero rc E (0,r2). Clearly, any critical point of yro that lies between
max{ro,r

c} and r2 is a nondegenerate local minimum, and any critical
point between 0 and max{ro,r

c} is a nondegenerate local maximum.
Moreover, Remark A.5(ii) implies that y'^fa) = ctλ(r2) yro(

r2) > 0 for
0 < r0 < r2.

If λ > 0, we actually find that rc G ( | r 2 , r 2 ), and thus ctΛ(rc) <
0 < ctχ(rc). Hence by Lemma A.4(ii) there exists a unique number
f0 G (0,rc) such that u?0(rc) = 0. The preceding discussion shows that
for these particular numbers f0 and rc we indeed get statements (a)-(c)
in assertion (iii). In particular, yfo is strictly increasing on [0, r c), and
therefore f0 G (0, \r2) C (0, rc) as claimed.

If on the other hand λ < 0, we find that rc G (0, | r 2 ] , and thus
assertion (iv) follows immediately from the preceding discussion.

Proof of Corollary A. 7 i) The monotonicity of f0 with respect to λ
is a direct consequence of Lemma A.4(iii). The proof of assertion (ii) in
Proposition A.6 reveals that sin(|\/Λf£/4) = 1 - 2s in^ « 0.652 704.
Similarly, the proof of assertion (iii) implies that rc -> | r 2 as λ -> 0,
and by Lemma A.4(iii) we conclude that f0 -» | r 2 .

5 This critical point could also have been established referring to Re-
mark A.5(ii), since under the current hypotheses ctλ(r2) = 0.
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ii) Note that sn λ (r 2 ) < -j= < sn λ (r 2 ). Therefore existence and

uniqueness of a solution r$ E [0, r 2) follow directly from Lemma 5.2(iv).

Since -j= = s n Λ ( | r 2 ) , Proposition A.6(iii) yields that max snΛ < maxyfλ

and hence f0 < rfi . The monotonicity of ΓQ with respect to λ is an im-

mediate consequence of Corollary A.3(i). Equation (42) showss that

the number sin(|\/Λro / 4) is a root of the cubic 8x3 - 12rr2 + 3. Thus

sin(|x/Ar£/4) = \ + s i n ^ « 0.673 648 < |Λ/2 = sin( |π), and hence

r^/4 < \τ2 as claimed. Finally, a numerical computation reveals that

| r 2 =r$ for λ « 0.185 048 Λ
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