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EIGENFUNCTION LOCALIZATION IN THE
QUANTIZED RIGID BODY

JOHN A. TOTH

1. Introduction

It has long been known [5],[10],[12],[16],[17] that given a stable,
closed, elliptic geodesic <y, one can associate with this curve a se-
quence of quasimodes ¢, for the corresponding Laplace operator
—A, in the sense that the ¢, have microsupport in a tube of width
O(n~'/2) about v and decay exponentially outside this tube. On the
other hand, in the unstable, hyperbolic case, it is known [13] that un-
der suitable hypotheses, one can associate complex resonances with
hyperbolic orbits. However, analogous general results are not known
for eigenvalues and eigenfunctions (see, however [4],[6],[7]. In this pa-
per we focus on a specific paradigm; namely, that of the asymmetric
rigid body reduced at an S* Noether symmetry. The corresponding
quantum system on S? is integrable with the classical Lamé harmon-
ics as joint eigenfunctions [20]. The classical system inherits a natural
hyperbolic geodesic I' corresponding to the unstable rotation about
the middle-length inertial axis. Given the quantum Hamiltonian H,
we show that there is a sequence of L?-normalized eigenfunctions, 1,,,
with L norm concentrated along I'. More precisely, let ['(n™!) de-
note a tube of width O(n~!) about T, and let V};j = 1,2, 3,4 denote
arbitrarily small (but fixed) disconnected neighbourhoods about the
four umbilic points on I'. Our main results are:

nl/t nl/4
Il"/’n“Lw(I‘(n“)—Uj Vi) = Clogn +0 ((log n)2) ’
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nl/2 nl/?
[¥nllLo(n-1v;) = C@ +0 <W> )

and ||, ||L~ = O(1/logn) outside an arbitrarily small (but fixed)
neighbourhood of I'. Thus we encounter eigenfunction accumulation
along the hyperbolic geodesic I', with additional intensity near the
umbilic points. This corresponds to a focusing effect for geodesic flow
at the classical level (see Proposition 2). Our analysis is based on a
fundamental construction of Helffer and Sjéstrand [14] (see Theorem
1) and subsequent work of Mérz [15] on the behaviour of the Floquet
spectrum of a one-dimensional Schrodinger operator (with periodic,
real-analytic potential) near the potential maximum.

I wish to thank Dmitry Yacobson, Steve Zelditch, and Maciej
Zworski for helpful comments, and, in particular, for calling my at-
tention to the paper [6] of Colin de Verdiére and Parisse.

2. Some classical mechanics

In this section, we show that the aforementioned geodesic is in-
deed hyperbolic and has four umbilic points. Let H' denote the
left-invariant Hamiltonian on T*SO(3) associated with a rigid body
with distinct moments of inertia az! > a;* > o7' > 0. If we re-
duce this system with respect to the component of spatial angular
momentum corresponding to rotation about a fixed reference axis,
we obtain an induced Hamiltonian system on S? [20]. The reduced
Hamiltonian H and the reduced integral in involution P are given
by the formulas [20],[21]:

(1) H = a3(z1&5 — &132)° + 0a(m1€3 — 2361)7 + a1 (2382 — 7283)7,
(2) P = (55152 - 51132)2 + (xzfs - 62373)2 + ($3§1 - 53551)2-

Here, we identify T*S? with the set of points {(z,£) € RS;|z| =
1,z - & = 0}. As we show in [20], H = o(H), where H is a second-
order, elliptic differential operator (essentially, the radial part of a
left-invariant Laplacian on SO(3)), and P = o(—A,), where —A is
the standard Laplacian on S2. Both operators are self-adjoint with
respect to the constant curvature metric on S?.
Proposition 1. The two geodesics T = {(z,¢) € S*(S?);z, =
» = 0} are hyperbolic. Moreover, if © : T*(S?) — S? denotes the
standard projection map, then the four points:

(i (o1 — a)t/? 0 (@ - az)'/?
(al _ a3)1/2’ ’ (al _ 03)1/2

) e (D)
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standard projection map, then the four points:

(a1 - 012)1/2 (az - 03)1/2
+ r
(i (011 - 03)1/2’0, (al —03)1/2) € ﬂ( )

are umbilics for the Riemann metric induced on S* by H.

Proof. Since H is invariant under reflection in the coordinate
planes, it follows that I' is a geodesic. To show that I' is hyperbolic,
we use symplectic reduction. Reducing the above system at unit mo-
mentum with respect to the symplectic S* action given by standard
geodesic flow on T™*S?(i.e., the flow of the Hamilton vector field Xp),
we get the following reduced system on S2:

(3) h(2) = o307 + 0 + 0,23,

(4) p(Q) =+ +Q2=1.

Let r : T*S? — S? denote the reduction map. Then, we have r(I'*) =
p = (0,%1,0) where dh(p) = 0 and d?h has a saddle point at p.
Let ¥ be the initial Poincaré cross-section to I' at py, ¢; be the
flow for Xy and U be a small open neighbourhood of I. Then, r
maps U N ¢;(X) diffeomorphically onto a neighbourhood of p and
H |4,(s) has a saddle-point at ¢;(po) for any ¢. Therefore, I'* must
be hyperbolic. Henceforth, without loss of generality, we put I' = I"'*.

To prove that there are four umbilic points lying on w(T'), it is
best to compare the Riemann metric g induced on T*S? by H, with
the standard metric § (induced from R3?) on the triaxial ellipsoid
E? = {(z1,%2,13) € R 22 /a; + 23 /0y + 72 /a3 = 1}, pulled back to
S? via the homothety (z;,z,T3) = ((y)%xy, (02)/ 2z, (a3)*/?x3).
A simple calculation in elliptic-spherical coordinates (see below, [20])

gives:
. (mf z2 1z
g = o003 o + o + a%) -g.

By elementary surface theory, we know that lines of curvature are
invariant under non-negative conformal scaling of the metric, and so
in particular, the umbilic points of g and § coincide. In the latter
case, these points are well-known [1]. g.ed.

We shall now show that there is a focusing effect at these umbilic
points on I'; that is, all geodesics on the separatrix A intersect I’
at these points. Moreover, the geodesics m(y(t)) are forwards and
backwards asymptotic to I'. As we shall see later, in the quantum
setting there is a corresponding accumulation of L*® norm for the
eigenfunctions 1,,.
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We now restrict our attention to the flow, ¢;, on the separatrix:
A= {(z,§) € T*S* H(z,£) ~ ay - P(z,£) = 0}.

Proposition 2. Let 7(y(t)) be the base projection of a solution
curve ¥(t) of Xy on A. Then, w(y(t)) intersects T' at an umbilic
point po = 7(¥(0)), and there exists T with w(y(T)) = —po, where
—po s the diametrically opposite umbilic on (S?,g). Moreover,

inf lx(y(t)) — pll = O(e™M),

as |t| = co. Here, C > 0 is a constant, and inf || - | denotes distance
in the metric g.

Proof.  Introduce elliptic-spherical coordinates (u;,u;) on S2,
defined by

z, =k sn(B(u1); k)sn(uq; k),

Ty :i—g—cn(ﬁ(ul); k)en(ug; k),

Z3 _Fdn(ﬂ( 1); k)dn(uz; k),

where cn(z; k), sn(z; k), dn(z; k) are the basic Jacobian elliptic func-
tions [22], 0 < k < 1 is the elliptic modulus, and %’ is the complemen-
tary modulus given by the equation k* + k' = 1. Moreover, —K' <
u; <K', 0<u; <4K, B(u;) := K+i(K'—u,), and (z,, 5, 73) € S?,
the modular vectors K and K' bemg defined by the elliptic mtegrals
S =) = E*#2)}/2dt and [, {(1 - #*)(1 — k"t2)}~'/2d# respec-
tively. Applying Hamilton- Jacobi theory, one finds that the defining
equations for w(vy(t)) are:

(5)
dB(u1) _[(on — a)? (50 (ug; k) — )] - (1 — sn*(B(w); k)) %
dt B Snz(u% k) - Snz(ﬂ(ul)a k) ’
(6) _C_l___ _[(al — aZ) (Snz(ﬂ(ul)! k) — 011)] (1 —sn (u21 k))%
dt sn?(B(uy); k) — sn?(uq; k)
From equations (5) and (6), we get the integrated Clairault relation:
(u1(t)) uz(t)
(7 / w(z)dz + w(z)dz =0,
B(u1(0)) u2(0)

where, w(z) = [(q — ap)(sn*(z;k) — )] - (1 — sn?(z;k))"%. On
7([') we have either B(u;) € {K,K + 2:K’'} and u, variable, or
uy € {K,3K} and [((u;) variable. The umbilic points are given
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by (B(u1),u2) € {(K,K), (K,3K), (K + 2:K',K), (K + 2iK',3K)}.
We can, without loss of generality, assume that u; = K (the other
cases are handled in the same way). So, if uy(t) > K ast = T, it
follows from equation (7) that:

B(u1(t))
/ w(z)dz = Clog |us(t) — K| + O(1).
B(u1(0))

Since (w o B)(u1) is in Lj,, away from B(u;) = K,K + 2iK', this
forces B(uq(t)) = K, or K+ 2iK' as t — T'. Since 3(u;) and u, have
opposite sign, it follows that w(y(t)) passes through diametrically
opposite umbilics. To prove the last assertion, we write down another
integrated conservation law:

B(u1(t)) u2(t) 1
[ Ca@de+ [ ne)ds = {(on - c)(en — g} -,
B(u1(0)) u2(0)

where, () = (1 — sn®(z;k))~% = |nc(z; k)|. This identity, together

with the well-known [3] formula, ff nc(z; k)dz = k'~ [log(dn(z; k) +

k'sn(z;k)) — log(cn(z; k)8 gives,
[dn(us(t); k) + k'sn(ua(t); k)][dn(B(u (t))

cn(uy(t); k) - ¢ ( (ur (¢

i k) + k'sn(B(ui(?)); k)]
)); k)
= C'exp(Ct),

where, C = k'{(al—az)(al—o%)}%, and C' is an integration constant.
If t > 0 and 7(y(t)) is a point not on I, it follows that:

len(ua (8); k) - en(B(us (8)); k)| = O(e™°),

and thus,

(8) min{en(uz (t); k), len(B(u: (1); K)[} = O(e™ 7).

So, for any t > 0, either uy(t) = K, or 3K+ O(e~“*) or B(u; (t)) = K,
or K + 2K’ + O(e~“*). Given our characterization of T in terms of
the coordinates u, and u;, we are done. In the case t < 0, replace
en(z; k) by dn(z;k) + k'sn(z; k) in (8), and argue in precisely the
same way. q.e.d.

One can prove analogous statements for geodesic flow on the ellip-
soid and elliptic billiards in the same way. For the latter two systems,
this sort of behaviour is, at least qualitatively, well-known [1].
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3. L*> estimates for generic eigenfunctions

In this section, we use classical WKB theory, and the following
modular identity for the Jacobian sine function sn(z; k) [22],[20]:

9) sn?(K +i(K' — 2);k) = k72 - (1 — k?sn?(z; k"))

to study eigenfunctions. Using the modular relation (9), one can
show [20],(8] that the joint eigenfunctions of the operators H and
—A, are given by the collection of harmonics ¥; (u,) - ¥, (uz) where
1,1, satisfy the following Floquet boundary value problems on the
real line:

(10) (1L Kan(as k) s = A,

Pa(z +4K) = 2(z),

2@ e o iy — (1
(11) {-h dz? + k%sn®(z; k') Yoo = (1 = A(R))en,

P (z + 4K') = 9 (z).

Here, (u1,u;) denote Jacobian uniformizing variables on S? (see [20]
and Section 2), A= {n(n+1)}7*/2;n = 1,2, ... and for h sufficiently
small, we restrict A\(h) to the range 0 < A(h) < 1. By generic
eigenfunctions, we mean those that are associated with arbitrary
energy levels, E (i.e., 1 — A(h) — E), with max{k'’sn?(z;k")} =
k' > E > 0 = min{k"*sn?*(z; k') }.

Suppose 1 — A(h) — E in this range. Then, it is well known that
a given ¥, (u;; h) with ||4,||2 = 1 will have L*™ norm concentrated
at the caustics (i.e., the turning points). More precisely [9], if z, is
a turning point, then, to the right of z,:

(12) (w3 h) = AV0[ ()] 72 Ad[=h*F g (u)] + O(1)
where, 2/3(¢(z))%/? = [T [k?sn?(t) — E]'/2d¢, with similar formulas

Zo

for < zo. Using well-known [9] asymptotic expansions for the Airy
function Ai(z), it follows that,

(13) l9p(ur; Bl = C(E)RTY® +O(1)

Notice that since 1 — A\(h) < k%, then A(h) > k2. So, in the comple-
mentary variable u,, we pass over the potential barrier k?sn?(u,; k),
and thus the function 1, (u,; i) has an asymptotic expansion:

(14) o (ug; B) = eF¥D/ g (uy: ) + O(e ).
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Here, k(z) = [; k sn(t)dt, and a(z; h) ~ ao(z) + a1 (z)h+ ... is a clas-
sical analytlc symbol [18] of order zero. Exactly the same argument
works in the case k2 < E < 1 with the roles of u; and u, reversed.
For 1 — A(h) € [0,Ch] (i.e., ground state), the expansion (12) for
1 (uy; B) is replaced by:

(15) hy (ug; B) = B 4e™ ) Pa(us; h) + O(e /).

Again, one can reverse the roles of u; and wu, to get asymptotic
formulas corresponding to eigenvalues 1 — A\(h) € [1 — Ch,1 + CHJ.
Summing up, we have proved:

Proposition 3. The L*-normalized Lamé harmonics 1 (u;, uy; h)
:= 91 (u1; h) -1 (ug; B) with eigenvalues \(h) — E where E € [0,k*)U
(k2,1] satisfy:

1 (1, s 1) e = C(B)R™Y° + O(1),
whereas, for A(R) € [0,Ch] and \(h) € [1 — Ch,1+ CHh]:
9 (1, ug; B) || = CR™Y* 4 O(RY).

4. Microlocal analysis near the potential maximum

We now address the more interesting question of estimating eigen-
functions pointwise near the top of the potential k2sn?(z; k). As we
shall see, these eigenfunctions have an accumulation of L* norm in
an O(h) neighbourhood of ', with additional accumulation near the
umbilic points.

To begin, put E = k? in equation (10). Since this is a singu-
lar energy level for the potential k?sn®(z;k), the standard ansatz
of geometric asymptotics [11] breaks down, and we must use other
methods. The fundamental construction is the following (see [6] for
the C'* analogue):

Theorem 1. (Helffer-Sjostrand [14]) Let P(z,hD,.;h) be a for-
mal classical analytic pseudodifferential operator of order 0, formally
self-adjoint, with symbol defined in a neighbourhood of (z,£&) = (0, 0).
Let p be the principal symbol, and assume that p has a non-degenerate
saddle point at (0,0) with critical value 0. Then there is a real-valued
analytic symbol; F(t,h) ~ Y5 f;(t)h?, defined for t in a neighbour-
hood of 0, and a formal unitary analytic Fourier integral operator U,
whose associated canonical transformation (in the classical sense) is
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defined in a neighbourhood of (0,0), and maps this point onto itself,
such that microlocally,

U*F(P,K)U = %(th, + AD,z).

The first step in the proof of Theorem 1 is to construct a real-analytic
canonical transformation on a sufficiently small open set € (0,0)
with k : @ — Q and k(0,0) = (0,0). This is done in two stages.
First, one constructs
K1 : Q2 —Q,
K1 (Oa O) = (O’ 0)7
such that,
p- K1(z,€) = a(z, §)z¢.

By applying a suitable function f to p, we may assume that a(0,0) =
1. In the case of a Schrodinger operator P(h) = —h%292 + V(z) with
V(z) real-analytic, V'(0) = 0 and V"(0) < 0, it is easy to show that:

dK,l (0, 0) = K,,r/4,

where ko denotes the rotation by 6 in (z,£) space. The second step
is more difficult, and consists of constructing:

Ko : Q= Q,

k2(0,0) = (0,0),
with the property that,

DKy ’52(1:,5) = (1){,
with
dk2(0,0) = id.
One then associates with x := k; - kK, a (formal) unitary analytic
Fourier integral operator U, of order zero. To finish the proof, one

constructs a (formal) analytic pseudodifferential operator R of order
zero, solving the equation:

R-P= %((L‘th + hD,z) - R.

So U = R-U, and since dk(0,0) = K 4, it follows that for sufficiently
small z and y, the generating function ¢(z,y) satisfies:

(,ZS(.’L', y) = ¢0(a:,y) + (9((z,y)3),

where,

1 1
bo(z,9) = 52" + V2zy — S
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Let x € C§° with support in a sufficiently small neighbourhood Y of
y = 0 and identically 1 near 0. If ¢ € D'(Y) then,

(16)  Ulaih) = Ch™2 [ 49z, s iyx(y)b(u)dy.

Here, z € X, a sufficiently small neighbourhood of z = 0, and
o(z,y; h) is an elliptic, classical analytic symbol of order zero. Since
all distributional solutions of the eigenvalue equation (1/2)(zhD, +
AD,z)u = 7' -u are linear combinations of uS (z) = H(z)|z| /2" /k
and u°® (z) = H(—z)|z|~'/?+"' /" the natural approximate eigenfunc-
tions (defined for z € X)) of P(h) solving the equation (P —n)u =0
are just uy(z;h) := Uul(z) and u_(z;h) := Uul (z). These func-
tions will be our basic building blocks. Without loss of generality,
we will henceforth work with u, (z;h). To study this function near
z = 0, we must estimate the integral:

UUUAam=ﬁ“”/ewmmﬁmw%&me@%y“%%
0
where, 0 = F(n; h), and supp(x) C {y;|y| < e}.

Lemma 1. There exists n € [—~C'h, C'h], such that for |z| < Ch,
|uy (z; B)| has the uniform asymptotic expansion:

h—-l/4
RV — (. B-1/4

where C' is a suitable constant.
Proof. To eliminate the z variable, write:

$(z,y) = $(0,y) + 2(z,y),
where
®(z,y) = O(z?) + O(zy).
It follows that:
@/ g (g i B) = 0(0,y; B) + O(y) - 0(0,y; k) + O(h).

We can thus write the integral in (17) as:
C . -h1/2 /E ei[#(0,y)+n’ log y]/"a(O, y; B)x(y)y~2dy
0

€
+On2 [ e oty ()o!(0, 4 By~ 2dy + O(R),
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where 0'(0,y;h) = O(y) - 0(0,y; ). Using the fact that ¢(0,y) =
—y*+ O(y®), we rescale the second term by introducing the variable
w = h™*/2y, and do one integration by parts to get:

wy(z;B) = CA™1/? / e+ 1Ay (1)) 50, Ry~ /2 dy+O(HH/*)
0

— Ch-1/2 / " 800 oW /Ry =12y, | (R,
0

since, by the unitarity of U it follows that [15] 0(0,0) = 1. Making a
change of variables w?> = —¢(0,y), and rescaling the above integral
by z = h~Y?w, yields
(18)

u(z; )

_ Ch—1/4eig,';~1ogn/

0

E'~h_l/2

ei(—22+3]ii log2) ,=1/2, | O(RL/4).

We now recall a result of Marz [15] on the structure of the Flo-
quet spectrum in an energy band of size O(h) about the poten-
tial maximum, and then compute the last integral, using a well-
known asymptotic expansion for the indefinite Gamma function,
[(z;@) := [; e~*t*~'dt. In [15], Marz shows that if || < Ch and
n' := F(n;h) = n+ O(h?) is contained in a gap, then the length of
this gap is,

2h ' h
————(arccos[(1 + e~2™ /M) 712y + O (———) .
log(1/m el A\ )

If ' is contained in a band, one replaces arccos by arcsin. So, we
choose an eigenvalue 7, with:

, _ h
(1) 1) =0 (ziizmy)-

Putting r = 22, we must evaluate the integral,
E“~rl—1 ) . .
(20) / e~ rT it iy,
0

Using the asymptotic expansion [3]:

-1
I'(z;a) ~T'(a) — e 727! [1 +2 p, + ]
valid as z — oo in |arg z| < 37/2, the lemma follows. q.e.d.
Let us now suppose that we are in the Floquet case, and so, in
particular, the potential, V(z), satisfies V(z + 27) = V(z). Then,
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for ¢ > 0 sufficiently small, one can extend (see [15]) u; and u_
to functions defined on (—¢, 27 + €), by applying analytic stationary
phase outside an arbitrarily small (but fixed) neighbourhood of z =
0, and get us(z) = 3, €@/ hay (z; k) + O(e=/*). Here, + denote
various microlocal contributions from {(z,¢);¢2 + V(z) = E, ¢ > 0},
and {(z,¢£); &>+ V(z) = E, ¢ < 0} respectively. Furthermore, uy can
be constructed so as to satisfy,

(P = n)us(z; k) = O(e™/")

pointwise, on such an interval. In [15], Mérz derives a formula for
the approximate translation matrix, T'(n; k) corresponding to the
basis, u (z; k), which, as it turns out, is within O(e~*/*) of the exact

translation matrix, T'(n; h). Applying the Floquet condition,
Trace T'(n; k) = %2

one readily verifies that, for |§| < Ch, the eigenfunctions (up to
rescaling) of T'(n; k) must be of the form:

uy(z; B) £ u_(z; k) + O(e™/™).

If we require the symmetry condition, V(z) = V(—z), then, it is
well-known that Floquet eigenfunctions fall into four categories: that
is, each eigenfunction solves one of four distinct Sturm-Liouville
boundary-value problems. By Lemma 1, the functions of interest to
us are u, (z; i) +u_ (z; h). To show that there are true eigenfunctions
close to these functions, we argue as follows. Since, V(—z) = V (z), it
is not difficult to show that the canonical transformation « : § —
is odd, and thus, ¢(—z, —y) = ¢(z,y). It follows that,

(21) uy(0; B) = u_(0; h).

Furthermore, if u(z; k) is a solution of the Schrodinger equation on
(=7 — €, 37 + €), we have the well-known pointwise estimate (see, for
example, [15, Lemma 7.1] ):

(22) (Ih0,u(z)® + lu(2)|)"/? < Cee/™(|hByu(y)® + |u(y)[*)'/.

Here, y € [-m,37n], and z € [y,3n], and € > 0 is arbitrary. Com-
bining (21), (22), together with the characterization of the Floquet
eigenfunctions as solutions of Sturm-Liouville boundary-value prob-
lems, yields that there exist eigenfunctions u(z; k) corresponding to
eigenvalues n = O(#/|log i|), with,

(23) lu = (s +u) e = O(e™7).
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We shall now address the question of L?-normalization (see also [6,
Proposition 14] ). Since, u; have standard WKB expansions outside
a fixed neighbourhood, {z;|z| < €}, it follows that,

(24) / o @) (@ Rz = 0(1),

To compute the L?-norm inside {z; |z| < €}, it is useful to note that U
is a microlocally, unitary Fourier integral operator on a sufficiently
small open neighbourhood, €, containing (0,0). Furthermore, the
microsupport of uy(z; k) is contained in  for z sufficiently small. It
therefore follows, modulo terms that are O(e~*/%), that:

[ luslwmfde=cnt [ dg) [ emietmionny (@) ol
lz|<e 0 0
Estimating this last integral, leads to that, for |n| < Ch/|log A,

/ lus (23 B)[2dz = Clog (1) +00)
le|<e h
and,
/ uy (z; Byu_(@; R)dz = O(1),
|z|<e

Summing up, we have proved:

Proposition 4. Suppose, V(—z) = V(z), and n is a Floquet
eigenvalue with |n| < Ch / |log h|. Then, there ezists a subsequence

of n’s, such that, for |z| < CH, the corresponding L*-normalized
eigenfunctions satisfy,

h-1/4 K174
lu(z; )| = C[log DEE +0 (llOg ﬁ|3/2) :

5. Eigenfunction localization along I'

We are now ready to prove our main result:

Theorem 2. Let I'(n~!);n = 1,2,3,.. denote a tube of width
O(n~') about T, and let V;;5 = 1,2,3,4 denote arbitrarily small
(but fized) disconnected neighbourhoods about the four umbilic points.
Then, there exists a sequence of Lamé harmonics (uy,uq;n) =
Y1 (ug;n) - Pa(ug;n);in = 1,2, ..., such that:

nl/4 nl/4
@) Wlimcen-Uw = Clogn +© (m) ’
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nl/? nl/?
2 o (n=-1V.) — — - y
(26) 1]l (n=1V5) Clogn +0 ((Iogn)2>
noindent and ||¢Y||r~ = O(1/logn) outside an arbitrarily small (but
fized) neighbourhood of T'. Here, C > 0 is a constant.
Proof. Let h = [n(n+ 1)]7'/%;n = 1,2,... and %, (u;;h) be an
eigenfunction of (11) with eigenvalue

1 — A(h) € [k — Ch/|log K|, k" + CH/| log H]).

The corresponding eigenvalue A(%) of 12 (us; i) also lies in the interval
[k* — Ch/|log k|, k* + Ch/|logh|]. So we are working at the top of
the potential in both Floquet problems. If we denote X := {T'(n™!) —
Uj=1 V;}¢, then

(27)
X C{(u,u) € 8% -K' +e<u; <K' —g¢,
K —eh <uy < K +€h}.

Here, € > 0 is sufficiently small, and ¢ denotes the connected compo-
nent with z > 0 (the other cases are handled in the same fashion).
Since k?sn?(u,; k) has a non-degenerate maximum at u, = K, from
Proposition 4 it follows that for (u;,u,) € X,

nl/4 nl/A
|92 (ua; )| = CW +0 ((—IW) ;

and moreover,

1 1
ll%h1 (ur; )| Lo x) = CW +0 <W> :
The first part of Theorem 2 then follows, since ¥(u;,uq;n)
= 11(u1;n) - Yo(uz;n). To prove the second part of the theorem,
note that both Floquet potentials k%sn?(u,; k) and k'2sn?(uy; k') at-
tain their maxima at the umbilic points u; = +K',u, = K, 3K, and
apply Proposition 4. q.e.d.
Remark. Suppose,

1
Qg = 5((11 + a3).
In this case, we have

R I. Sl N

a,—az 2
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It is well-known (8],{20] that the Lamé Schrodinger operator P(h) =
—h?82 4+ sn®(z) has 1 as an eigenvalue (i.e., an eigenvalue precisely
at the potential maximum, independent of k), provided we restrict
F to the subsequence {[2n(2n + 1)]7'/2;n = 0,1,2,...}. Shifting the
potential down by % in order to adhere to our convention, we put:

n' = F(0;) ~ fo(0)R* + f5(0)R° +

since fo(0) = f1(0) = 0. Thus, by the asymptotic expansion for the
indefinite Gamma function (see above), we obtain that:

E"'ﬁ.—l .
/ e~ . p iy = T'(1/4) + O(KY4).
0

This implies, by the estimates in Lemma 1, and Proposition 4, that
the error in (25) is improved to O(n~'/4/logn), whereas the error in
(26) is O(1/logn).

Remark. In [19], Seeger and Sogge show that for a given self-
adjoint, elliptic pseudodifferential operator P € W7 (M), with strict-
ly convex principal symbol p(z, &), there is a universal upper bound
for the L2-normalized eigenfunctions, given by:

palle < CAB,

where, ¢, is an eigenfunction corresponding to the eigenvalue A, and
n = dim M. In our case, it is plausible that the upper bound is
attained by the eigenfunctions associated with I" at the four umbilic
points (£pg, £p;). This would imply that the the actual upper bound
is, ever so slightly, better than the universal Seeger-Sogge prediction.
However, there are gaps in the asymptotics of uy which must be
worked out if one is to prove this rigorously.
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