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VOLUME INCREASING ISOMETRIC
DEFORMATIONS OF CONVEX POLYHEDRA

DAVID D. BLEECKER

Abstract
In this paper, we prove that the surface of a generic convex polyhedron
in E3 can be isometrically deformed so as to enclose greater volume. Our
deformed surfaces have at least seven times more faces than the original sur-
face. They are extrinsically nonconvex, but have the same intrinsic geometry
(e.g., area, angle deficits, etc.). Roughly put, the deformations are obtained
by simultaneously delivering karate chops to the edges of the polyhedron.
While the edges implode, to preserve the intrinsic geometry, portions of
the faces move outward, leading to a net increase of volume. The regu-
lar tetrahedron can be isometrically deformed to enclose over 37.7% more
volume, while the cube, octahedron, dodecahedron, and icosahedron enjoy
increases over 21.8%, 11.5%, 9.3%, and 3.6%, respectively. Many questions
have arisen. In particular, what is the nature of an isometric embedding,
if any, of an abstract surface which encloses the maximum volume? We
propose that the term "sandbag" be used to describe such an embedding.
What kinds of singularities can they have? Are they unique up to Euclidean
motions?

1. Introduction

A deformation of a surface S in Euclidean 3-space E3 is a continu-
ous map Λ : S x [ 0 , ε ] —> E3, such that for ht(-) := h(- , £), we have
that h0 is the inclusion of S in E3. The deformation h is an isomet-
ric deformation if the length of any rectifiable curve 7 in S is constant
under the deformation; i.e., L(ht ° 7) — £(7)5 for all t E [0, ε]. Thus,
the intrinsic geometry (in particular, the area and Gaussian curvature
measure of S) is preserved under an isometric deformation. In our main
results, the surface S will be a generic convex polyhedral surface with
triangular faces, such that each pair of faces with a common edge meet
at a dihedral angle strictly less than π. However, we also consider the
cube and dodecahedron. It seems likely that the assumption of trian-
gular faces is only a technicality and probably can be dropped. For the
specific isometric deformation h that we will construct, for t > 0, ht(S)
will also be a polyhedral surface, but with 7 times as many true faces
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FIGURE 1

as S in the generic triangular case, 54 faces in the cubical case, and
132 faces for the dodecahedral case. For t > 0, ht(S) will not be con-
vex, since by a theorem of Aleksandrov [2], which generalizes Cauchy's
theorem ([3], [7], [13]), there are no isometric deformations within the
class of convex surfaces, which are not induced by motions of E3. The
most significant property of our isometric deformation is that ht(S) en-
closes more volume in E3 than S does, for sufficiently small t > 0. In
other words, the guaranteed ([1], [6], [10]) convex isometric embedding
of a generic intrinsically convex abstract polyhedral surface does not
maximize the enclosed volume functional on the space of all isometric
embeddings of the surface in E3. What sort of isometric embedding, if
any, does maximize the enclosed volume? This is apparently completely
unknown, even for a regular tetrahedral or a cubical surface. We will
find that upon applying the isometric deformation ht to a regular tetra-
hedron that one can increase the enclosed volume by more than 37.7%,
whereas we obtain more modest increases for the other platonic surfaces,
which are given in the table in the last section.

Before getting into the details of the construction of the deformation,
a picture of a stage of the deformation as it is applied to a regular tetra-
hedron is shown in Figure 1. The result might be intuitively described
by saying that each of the edges of the original regular tetrahedron is
imploded at the midpoint by a karate chop. One might think that this
would decrease the enclosed volume. However in the process, a triangu-
lar portion of each face is translated outward from the center, thereby
producing a net increase in the volume enclosed, for sufficiently mild
karate chops. The bulk of the paper is spent proving this assertion for
a generic convex polyhedral surface with triangular faces.

2. Isometric deformations of a triangle

Let T be a triangular region in E3 with angles aλ, α2 and α3 at the
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FIGURE 2

vertices pu p2 and p3, respectively. Let L l 5 L2 and L3 be the sides of T
opposite pu p2 and p3, and let their lengths be Zq, L2 and L3. Denote
the midpoints of Lx L2 and L3, by 61, b2 and 63. Let Πi,Π2 and Π3

be closed half-planes with edges including the sides L l 5 L 2 and L3, and
making acute angles | — βu | — β2 and \ — βz with T, respectively. We
assume that Πx Π2 and Π3 are on the same side of the plane containing
T. Eventually we will take Πi, Π2 and Π3 to be the planes which bisect
the dihedral angles formed by T and the faces adjacent to T in some
convex polyhedral surface in E3.

We arbitrarily select an origin O in £73, and for r G (0,1], let Dr be a
contraction of E3 about O, which decreases distances by a factor of r.
We denote the image of T under Dr by T(r). Similarly, let the images of
pu Li, bι and Π̂  (i = 1,2,3) under Z)r, be denoted by Pi(r), &i(r), L^r)
and Ui(r). Refer to Figure 2. Since r G (0,1], there are unique points
qi(r) G Πi(r), such that ^ ( r ) , ^ ) ) = d(^(r),pfc(r)) = | L ί 5 for all
distinct i, j , A;, where d(u,v) denotes the Euclidean distance between
points u and υ in E3. For a;; > 0, let qi(r,Xi) be the point which is at
distance Xi along the ray which issues orthogonally from Πi(r) at qi(r)
toward T(r); note that ^(r,0) = #i(r).

Let 6j(r, α̂ ) (not illustrated) be the point in T(r) which is at distance
Xi along the perpendicular bisector ray of L^(r) which issues from bi(r)
into T(r). We denote an arbitrary cyclic permutation of (1,2,3) by
(i,jf,fc). For any (i,j,fc), let

2 2

(1) fi{r,xj,xk)\=d{qj{r,xύ),qk{r,xk)) - ^(6^(1,^),6fc(l,a;Λ)) ,
Note that ^(1,0,0) = 0. If, for some r G (0,1], there are simultaneous
solutions xx,x2,x3 of the 3 equations fi(r,Xj,xk) = 0, then we have the
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- x2 sin α 3 - x3 sin α 2 |

P3

FIGURE 3

following 10 congruencies of triangles:

= A{b1(l,x1),b2(l,x2),b3(l,x3)),

(2) forall(i,j,ife)

, ^ ! ^ ) , ^ ! , ^ ) ) , for all t φ j.

Thus the union, say ί/(r), of the 10 triangles on the left is a polyhedral
surface that is intrinsically (i.e., except for folding) the same as the union
T of the 10 triangles on the right. If we can find simultaneous solutions
Xi depending continuously on all r close to 1, then we can obtain an iso-
metric deformation of T, by moving each point of T to its image in U(r)
under the congruencies (2). To this end we will produce an explicit ex-
pression for fi(xj,xk,r) = d(φ,xj),qk(r,xk))2-d(bj{l,xj),bk{l,xk))\

Note that cί(^(l ,^),6 f c ( l ,^)) 2 is readily found from Figure 3 above
in which the hypotenuse of the right triangle with dashed legs is
d(&2(l,a;2), 6(1 ))
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sin βj - δj cos

δj cos β

FIGURE 4

Thus, for all (i,j,k), we have

d(bj(l,Xj),bk(l,xk)) = {\Li -XjS'mak -xks'maj)

(3)

J cos ak — xk cos Cίj)

2 + x2= x2 + x2

k + 2(sinαfc sina^ — cos ak cos ctj)xjXk

— Li(xj sinα* + xk sino^) + jL2

= x2 +x2

k~2 cos(ak + aj)xjXk

— Li(xj sinα fc + xk sinα^ ) + -L2

— x2-'' + x\ + 2 cos Oίi XjXk

L( i + xk i ) + L2

We compute d(qj(r, Xj), qk(r, xk)) as follows. The points p»(r), 6j(r)
and ^ ( r ) form a right triangle with right angle at bj(r). Therefore,

d{pi(r)Mr))2 +d(bj(r),qj(r))2 = d(Pi{r),φ))2 = (\L3)
2.

Since d{Pi{r)Mr)) = \rLά, we have d(6, (r),^(r)) 2 - (|L,)2(1 - r 2).
Thus setting r = cost for 0 < t < f, we have d(^(r),^(r)) = \Lj sint.
In Figure 4, d(bj(r),qj(r)) — \Lj sin £ is denoted by δj. In this figure, we
are viewing a cross section by a plane, which is orthogonal to the edge
Lj(r) at its midpoint bά(r). Hence, we are viewing T(r) and Πj(r) edge
on. The orthogonal projection of qj(r,Xj) onto the plane of T(r) is at
a distance of δj s'mβj + Xj cosβj along the perpendicular bisector ray of
Lj(r) issuing from bj(r). So, this projection is 67(r, δj s'mβj + Xj cos βj).



510 DAVID D. BLEECKER

Let x'j = δj sinβj + Xj cosβj. If we apply (3) to the points bj(r,x'j) and
6*(r, x'k) in T(r), we obtain

x'k

2

(4) - rL^x'j sinak + x'k sinc^ ) + \r2L?.

This is the square, say iί?*, of the length of the orthogonal projec-
tion onto the plane of T(r) of the segment qj(r,Xj)qk(r,xk). To get
d(qj(r,Xj), qk(r,xk)) , we must add to L*k the square, say V?k, of the
difference in distances of qj(r,Xj) and qk(r,Xk) from the plane of T(r).
Prom Figure 4, it is seen that

Vfk = (XJ sinβj - δj cosβj - (xk sin/?* - δk cos/?*))2 .

Therefore, with r = cost and recalling that δj = \Lj sint, we have

= ί \hj sinί sinβj + Xj cos βj j

+ l^Lksint sin/?*+x*cos/?*J

+ 2 cos oti ( ^Lj sin t sin βj + Xj cos βj 1

• ( i L* sinί sin^9* + x* cos/?* j

— Li cos t \{\Lj sin ί sin βj + Xj cos βj) sin α*

(5)

+ (i-L* sinί sin/?* + x* cos/?*) sinc^ 1 + j cos21 L2

+ ί Xj sinβj — -Lj sinί cosβj — x* sin^S* + -L* sinί cos/?* j

— ί a;| + x* + 2 cos «i rrjX* — Li(xJ sinα* + a:* sinα^) + ^L? j
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j(cos/?7 cos/3*. — 1) — s'mβj s'mβk)XjXk

+ (Lk sin t (cos Oίi cos βj sin βk + sin βj cos βk)

+ Li sinαfc(l — cost cos βj)jXj

+ yLj sint (cos Qii sinβj cos βk + sin/?fc cos /3j)

+ Li sin0,(1 — cost cosβk)jxk

+ j sin21 \2LjLk(cos aι s'mβj sin/?fc — cos βj cos

+ L) + L\ - 14)

— L^sint cost (Lj sin βjSmak +Lks'mβksinajj.

Consider the mapping F tfxR3 —> R3 given by F := (Fu F 2, F3),
where Fj(t,x) := ^(t,^1,^25^3) •'— fi{cost,Xj,Xk) for a cyclic permu-
tation {i,j,k) of (1,2,3), i.e.,

F(t,x) =

Note that F is real-analytic, and F(0,0,0,0) = (0,0,0). If we can
show that det[9^.^(0,0)] φ 0, then we may apply the implicit function
theorem to deduce that there are neighborhoods (—ε,ε) of 0 E R and
B about 0 G l 3 , such that for t G (—ε,ε), there is a unique x(t) G i?
with F(t,x(t)) = 0. Moreover, x : (-ε,ε) —> B C E3 is a real-
analytic curve. For distinct i, j , k we have 9^.1^(0,0) = 9^/4(1,0,0) =
Li sinak(l — cosβj). Using 1 — cos/?j = 2sin2(|/?j), it readily follows
that

(7) det[Sβ.Fi(0,0)] = 16 Π L * s inα f c s in 2 (^) 7̂  0.

We also need Xi(t) > 0 (i = 1,2,3) for sufficiently small t > 0, and for
this it suffices to prove that x7 (0) > 0. Taking the t derivative of the
equation F(t,x(t)) = 0, we obtain at t = 0, (1^(0,0) + (VFi)(0,0) •
x'(0) = 0 [i — 1,2,3). Solving these 3 equations in the unknowns 2^(0),
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one finally obtains x'^O) — \LiCθt(\βi). We check this explicitly:

(Fi)t(0,O)+ (VFi)(0,0)-x/(0)
j j Lk sin/ f c ^)

(8) + Li s ina k ( l - cos β^^Lj cot(iβj)

+L{ sin aj(l - cosβk)%Lkcot(%βk)

= 0,

since cot(|/3j) = smβj/(l - cosβj). Thus, as noted before, the solution
curve x(ί) gives rise to an isometric deformation of the triangle T via
the congruencies (2).

3. Deforming a generic closed convex surface

Theorem 1. Let S be an embedded convex polyhedral surface in
E3 which has triangular faces, with the dihedral angle formed by any
pair of adjoining faces strictly less than π. Then there is an isometric
deformation h : S x [0,ε] —> E3, through isometric embeddings, such
that for t > 0 sufficiently small, υ(t) > v(0), where v(t) is the volume
enclosed by ht(S).

Proof For each triangle T of S, we use the same notation as in
Section 2, and we let Π 1 ? Π2, and Π3 be the half planes which bisect
the dihedral angles formed by T and the three triangles adjacent to
T. Since the isometric deformations of all of the triangles agree on all
of the common edges, we obtain a well defined isometric deformation
h: [0,ε] xS —> 5 of all of S.

By choosing ε smaller if necessary, we argue that ht : S —> ht(S) is
an isometric embedding for all 0 < t < ε, so that υ(t) is well defined,
as follows. Note that deformations of interiors of triangles sharing a
common edge lie in different half-spaces. For triangles TΊ and T2 sharing
but one common vertex p, note that each sufficiently small segment of
Ti issuing from p into 7\ is mapped by ht to segment issuing from ht (p)
whose direction changes continuously with t. Since the directions of the
segments of T2 issuing from p are bounded away from the directions
of segments of Tλ issuing from p, no sufficiently small neighborhood of
ht(p) in ht(Tι) will meet a sufficiently small neighborhood of ht(p) in
ht(T2)i except at ht(p). Since we have just shown that distinct points
which are sufficiently close cannot have the same image under ht for
t sufficiently small, the fact that ht is an embedding for t sufficiently
small follows easily from the fact that h0 is an embedding.

It remains to show that v(t) > i>(0), for t > 0 sufficiently small.
We accomplish this by computing the difference, say n(£), between v{t)
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FIGURE 5

and the volume w(t) enclosed by Dcost(S) for a contraction Dcost by a
factor of cos t about the arbitrary point O of E3. We know that w(t) —
cos3tw(0) = w{0)+O{t2). Ύhnsv(t) = w(t)+n{t) = w{0)+n{t)+O{t2).
Consider a fixed triangle T(r), where r = cost. The planes Πχ(r), Π2(r)
and Π3(r) meet transversely at some point in E3, and divide E3 into 8
solid angles, one of which, say c(r), contains T(r). Now T(r) truncates
c(r) to form a solid tetrahedron, say cτ(r). Moreover, the deformation
U(r) of T also cuts off a solid piece of c(r), say cu(r). If cu(r) — cτ(r)
denotes the set-theoretic difference, then

(9) n(ί) = - vol(cr(r) - Cu(r))),

where the sum ranges over all T comprising S. We will show that
vol(cτ(cosί) — cu(cost)) = O(t2), while vol(c[/(cost) — cτ(cost)) > Kt
for some K > 0. For small t > 0, cτ(cost) — cc/(cost) consists of 3
components each of which is a pair of thin solid tetrahedrons which are
joined at a common face, as shown in Figure 5.

Indeed, the common face of one of these pairs is the triangle
Δ(6j(r),gj(r),mj(r)) in Figure 4, where rrij(r) is the point where the
segment qj(r)qj(r,Xj(t)) pierces the interior of T(r). Note that for small
t, qj(r) and qj(r,Xj(t)) are on opposite sides of the plane of T(r), since
(using cot(|0) s'mθ = 1 + cos#)

- δj{t) cos βj = ^ 0{t2)

(10)

for sufficiently small t. The volume of cτ(cost) — cu(cost) is easily seen

to be Σj iδjirftenβjLj = ^ (χ\ t a n β L?) sin21 = O(t2). In order
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to estimate vol(cf/(cosί) — Cτ(cost)) note (see Figure 5) that there is a
center piece of C[/(cos t) — cτ(cos t) consisting of a solid triangular prism
which is swept out as the triangle A(q1(r,x1(t)), q2(r,x2(t)), <73(r, Xs(t)))
is orthogonally projected onto T(r). The height of this triangular prism
is initially 0 at t — 0, while the triangular base in T(r) of this triangular
prism is initially \A, where A is the area of T = T(cos(0)). The average
height of the prism is | Σj(χj(t) sin/?,— δj(t) cosβj) = ^(Lι+L2+L3)t+
O(t2). Thus, the volume of the prism is ^A(Lλ + L2 + L3)t + O(t2). The
remaining part of Cu (cos t) — c^(cos i) also makes an O(t) contribution to
the volume, but already we have vol (c[/(cos t) — cτ(cos t)) > ^
L2 + L3)t for sufficiently small t > 0.

Remark. More precisely one can show that

(11) vol (cc/(cos ί) - cτ(cos ί)) = \A(Lλ +L2+ L3)t + O(t2).

Thus, under the deformation /i, the enclosed volume of ht(S) increases
at an initial rate equal to !Σn^4n^n> where An and Pn are the area
and perimeter of the n-th face of 5, respectively.

4. The regular convex polyhedra with triangular faces

In this section we assume that S is a convex polyhedral surface
with unit edge lengths and equilateral triangular faces (i.e., a regu-
lar tetrahedron, octahedron, icosahedron, and the degenerate case of
a double- covered triangle). We will compute the enclosed volume
ht(S). Using the previous notation, there are many simplifications
in the equations fi(r,Xj,xk) = 0, under the assumption of equilat-
eral triangular faces. First, it is reasonable to seek solutions in which
the Xi all have the same value, say x. Recall that fi(r^x^xk) :=

2 2

d(qj(r,xj),qk(r,xk)) - d{bj{l,xά),bk{l,xk)) . Certainly, fi(r,xά,xk) =
Ois equivalent tod(ςfJ (r,a;J ),gfc(r,a;jfe))-d(6J (l,a;j),&*;(1,xk)) = 0. When
the Xi are equal, the segment b2(l,x2)b3(l,x3), which is the hypotenuse
of the right triangle in Figure 3, is parallel to Lλ. Hence, using s'mak =

(12) d(b2(l,x2),b3(l,x3)) = \hi -^s inα* - z* sin a,- = \ - V3x.

Moreover, in the identity d(qj(r,xj),qk[r,xk))2 = H]k + V2

k, we have
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d{qj{r,xά),qk{r,xk)) = Hjk = \ - VsUj sin/3, + xά

FIGURE 6 FIGURE 7

V3

2

k — 0 under the current assumptions. Thus, referring to Figure 3,

(13)

where | — β is half of the interior dihedral angle between the faces.
Hence, under the current assumptions, the equations fi(r,Xj,Xk) = 0
are equivalent to

-(±-y/3x) = 0, or

(14)

x = x(t) = \

For the tetrahedron, the cosine of the interior dihedral angle between
the faces is | . Thus, | = cos(π - 2β) = -cos(2/?) = -2cos2/? +
1, or cos/3 = >/l/3. For the octahedron we obtain cos/3 = \/2/3,
and for the icosahedron we have cos/3 = | ί l + \/5j \/3. In each case,
| s i n t cot(|/3) achieves the maximal geometrically allowed value for
x(t), namely |\/3, for some t < f. Let

(15) y = := d(g2(cosί,a;(ί)),g3(co8ί,a:(ί)))

For the tetrahedron, we compute the volume enclosed by ht(S) as
follows. Consider a solid tetrahedron V of edge length 2x + 2y and
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attach four hexagonal pyramids with alternating base edge lengths of
2x and y to the faces of T", as shown in Figure 6.

The distance from the apex of any pyramid to a closest edge of T"
is chosen to be \. Truncate T" so that what remains is the solid in
Figure 7, say T", with triangular faces of side length y along with the
triangular faces of the pyramids. The faces of T" form the deformation
ht(S) (where x — x(t) in (14)) of a unit edge tetrahedron S. The volume
of T" is the volume of the truncated tetrahedron, j^y/s(2x + 2y)3 — 4
^\/2y3, plus the volumes of the four pyramids. The pyramid base area is
\V3{2y+2x)2-3 \V3y2 = y/3{x2+2xy+±y2), while the pyramid height

i s ( ( | ) 2 - ( | \ / 3 ( 2 x + 2y)) 2 ) ' = [\-\{x + y)2)h. Thus the volume of

ht(S) in Figure 7 is

(16)

= ±Λ/2 (2(X + yf - y3) + \{±x2 + 8xy + y2) (f - (x + y)ή * .

Since y = | — \/3 x, we can find F a s a function of x. Setting V'(x) = 0,
we eventually obtain the sixth-degree equation

(398208 - 230272^) x6 + (400384 - 230272%/3) x5

(17) +(117392 - 68032\/3) xA + (5184 - 3296\/3) x3

+(-1792 + 1096>/3) ^ 2 + (-176 + 112>/3) x - 3 = 0,

which defies a solution in terms of radicals. In arriving at this equation,
and other analogous sixth-degree equations below, a square root is dis-
posed of by squaring. Thus, extraneous zeros are introduced. However,
in the present case (and in each of the cases below) there is only one
nonextraneous zero x0 in the relevant range |0, | \ / 3 | . For (17), this
zero is given approximately by x0 = 0.1354198180198074... . One might
have conjectured that the maximum volume V is achieved when y = 2x,
so that the pyramids in Figure 7 have regular bases. However, y — 2x
yields x - 1 - \y/l = 0.13397459... . We have V(x0) = 0.16230252... ,

while V (l - |Λ/3) - 0.16229774... . Since V{xo)/V(0) = 1.37718257...,
V(x0) is over 37.7% greater than the volume of the undeformed regular
tetrahedron.



VOLUME INCREASING ISOMETRIC DEFORMATIONS 517

FIGURE 8 FIGURE 9

Suppose now that S is an octahedron with edges of unit length. If
x and y given by (14) and (15), then we still have y = \ - y/3x. In
a manner analogous to the case of the tetrahedron, we can decompose
the region enclosed by ht(S) into 6 irregular octagonal pyramids with
edges of length y and 2x and a truncated cube of original edge length
2x + \/2y. Figures 8 and 9 show the construction before and after the
truncation of the cube. The distance from an apex of a pyramid to a
nearest edge of the cube is \. By adding the volumes of the components,
we find that the volume enclosed by ht(S) is given by

(18)

A computation shows that V'(x) = 0 implies

(I253184Λ/6 - 3069696) x6 + (l627648v/3 - 1993344^ ) x5

+ (366096\/6 - 896816) xA + (β3904χ/3 - 78336^ ) x3

+ (940\/6 - 228θ) x2 + (328V^ - 2 6 4 ^ ) x + 21 - 9\/6 = 0.

(19)

Again there is only one root x0 in the relevant range, which is approx-
imately given by x0 = 0.1354140138298575.... This first differs in the
sixth place from the a;0 for the tetrahedron. Now V(x0) = 0.52599693... ,
V(0) - ίy/2 and V(xo)/V(0) = 1.11580800... . Thus, the maximum
percentage as is increase in the volume for our deformation of the octa-
hedron is about 11.6% compared to 37.7% for a tetrahedron.
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FIGURE 10 FIGURE 11

For the icosahedron, we compute the volume of the region enclosed
by ht(S) by decomposing the region, as in Figures 10 and 11, into 12
pyramids with irregular ten-sided bases with edge lengths 2x and y,
and a truncated dodecahedron with twenty equilateral triangular faces
of edge length y. The volume enclosed by ht(S) is then

15)(2z + y ( x / 5 - l ) ) 3 - ^ ( 3

- 2) - 4zy(\/5 + 3) -

kE2\/5 + xy(5 —

(20)

2(9

While V'(x) = 0 again implies that x is a zero of a sixth-degree poly-
nomial, we could not simplify the coefficients of the polynomial so that
it would fit on a single page. However, there is only one relevant zero in
[O, |Λ/3J and it is given approximately by x0 = 0.1354116696972618... .

We have V(0) = ^ (3 + y/E ), V(x0) = 2.26091586... and V(xo)/V(0) =
1.03631161... . Thus, under the deformation, there is a maximum gain
in volume of only about 3.6% in the case of the icosahedron.

There is an abstract polyhedral surface which consists of two equi-
lateral triangular regions with unit edge length joined together along
their boundary, but without identifying interior points. The convex re-
alization of this surface in E3 is simply a pair of coincident triangles,
known as a double-covered triangle. It encloses no volume and is not an
embedding. We can still apply our deformation to the double-covered
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2x

FIGURE 12

triangle, say 5, to produce a nonconvex embedding of the abstract sur-
face, enclosing a positive volume. For 5, the interior dihedral angles are
zero, and hence the angle β is | . Thus, x(t) = \ cot(|/3) sinί = \ sint,
and as before, y = | — Λ/3^ The solid enclosed by the deformed sur-
face ht(S) consists of three square pyramids attached to the 2x by y
rectangular faces of an equilateral prism, as is shown in Figure 12.

The volume of this solid is V = ^y/3y2x+xy(l-y2)^. Here V'(x) = 0
implies

36288z6 - 28224^z 5 +12144x4 + 2400\/3z3

There is but one relevant zero x0 = 0.1354446662193181..., and V{x0) =
0.04292061..., which is a big improvement over V(0) = 0.

The cube and dodecahedron
Although the proof of Theorem 1 breaks down for polyhedra with

nontriangular faces, we can define analogous volume increasing isometric
deformations for the cube and the dodecahedron, due to their symmetry.
To produce the deformation for the unit cube, start with a regular
octahedron of edge length 2x + 2y, where y = Λ/2 ( | — x) and 0 < x < \.
As in Figure 13, we attach hexagonal pyramids to these faces, so that the
distance from apex of a pyramid to a nearest edge of the octahedron is
| . As in Figure 14, truncate the octahedron, so that the 6 new square
faces have edge length y. The 8 original faces of the octahedron are
truncated to generally irregular hexagons of edge lengths 2x and y.

Since y — y/2 ( | — x), the bounding surface of the resulting solid is
intrinsically isometric to the surface of a cube. The volume of the solid
is the volume of the truncated octahedron plus the total volume of the
8 hexagonal pyramids, namely
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FIGURE 13 FIGURE 14

\y2) ( * - y)2)

(22)
+%V3(x2 + 2xy + ±y2) (j

Now V'{x) = 0 implies the 6-th degree equation

(236160\/2 - 334080) x6 + (554624 - 391808Λ/2

(23) + (235968\/2 - 334288) x4 + (88288 - 62400\/2 ) x3

+ (6280Λ/2 - 8776) x2 + (lO4\/2 - 16θ) x + 55 - 40>/2 = 0.

The relevant zero is x0 = 0.2188616575649390... . We have V(x0) =
1.21865263... . Since V(0) = 1, the maximum gain in volume is about
21.9 %.

To produce the deformation for the dodecahedron with unit edge
length, we start with a regular icosahedron of edge length 2x + 2y,
where y = cos(f) - 2sin(|)x and 0 < x < \ cot(f). Again, as in Figure
15, we attach hexagonal pyramids to these faces, so that the distance
from apex of any pyramid to a nearest edge of the icosahedron is \. We
truncate the icosahedron, as in Figure 16, so that the 6 new pentagonal
faces have edge length y. The 20 original faces are truncated to hexagons
of alternating edge lengths 2x and y. Since y = cos(|) - 2sin(|)rc, the
bounding surface of the resulting solid is intrinsically isometric to the
surface of the dodecahedron with unit edge length. The volume of the
solid is the volume of the truncated icosahedron plus the total volume
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FIGURE 15 FIGURE 16

of the 20 hexagonal pyramids, namely

V=
(24)

2xy + \y2) ( * -

The only relevant zero of the cumbersome sixth degree equation im-
plied by V'(x) = 0 is x0 = 0.2863889425606750... . From V(x0) =
8.37883569 and V̂ O) = £(15 + 7y/E), we obtain V{xo)/V(O)
— 1.09339757...; i.e., about a 9.3% increase in volume.

Summary of the regular special cases
The solids enclosed by the deformations of the surfaces S bounding

the platonic solids are each composed of a truncation of a dual solid D
and a number of pyramids attached to the truncations, say F ί 5 of the
original faces of D. The newly formed regular faces of the truncation
of D, we will denote by Gj. In each case, the bases F{ of the pyramids
are not regular polygons for the solid of maximal volume in the family
of deformations. For the solid of maximal volume, the irregularity of
the Fi is measured by the deviation of 2xQ/y0 from 1, where 2x0 is
the length of the segment joining a pair of closest vertices of a pair
of neighboring GjS, and y0 is the length of a side of any Gj. Always,
y0 = cos(^) — 2sin(^)x0, where n is the number of sides per face of the
original surface S. All of the results obtained are tabulated below. The
results for x0 (and 2xo/yo) are sensitive to the value of n, but when
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n — 3 these results are remarkably insensitive to the number of faces of
S.

Polyhedron

double covered triangle

tetrahedron

cube

octahedron

dodecahedron

icosahedron

xo

0.1354446662193181...

0.1354198180198074...

0.2188616575649390...

0.1354140138298575...

0.2863889425606750...

0.1354116696972618...

2xo/yo

1.02067187...

1.02031916...

1.10094241...

1.02023679...

1.21262201...

1.02020352...

V(xo)/V(O)

CO

1.37718257...

1.21865263...

1.11580800...

1.09339757...

1.03631161...

5. Some open questions and problems

1. We have seen that it is possible to isometrically embed a double-
covered equilateral triangle in E3. The proof of Theorem 1 shows this for
any triangle. Is it possible to isometrically embed any double-covered
planar region in E3Ί If one can translate Russian, one can ascertain
whether the case of polygonal regions was in fact entirely disposed of
in [5]. Indeed, this paper reportedly has a proof that any compact,
orientable, abstract polyhedral surface (in particular a flat torus) admits
a piecewise linear isometric embedding in E3. For double-covered planar
regions with smooth boundary very little is known, but the present
author has shown (unpublished) that the double-covered disk can be
isometrically embedded in E3.

2. Although not every compact C2 Riemannian surface can be C2

isometrically embedded in E3, there is a nice result due to Kuiper and
Nash [12] which states that any compact, orientable, C1 Riemannian
surface can be C 1 isometrically embedded in E3. One might try to
prove that the enclosed volume functional achieves its supremum on
the (nonempty) set of all C1 isometric embeddings (or immersions) of
a given compact, orientable, abstract Cι Riemannian surface. R. Con-
nelly (private communication) has obtained some positive results in this
direction, in his work on the bellows conjecture (see [8]). Both E. Calabi
and F. J. Almgren, Jr. have pointed out to the author that a sequence of
isometric embeddings with enclosed volumes tending to the supremum
of the enclosed volume functional might not converge to an isometric
embedding. W. H. Paulsen's article [14] contains an instructive example
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of this. In [14], it is argued that the limiting shape of a mylar balloon
(double-covered disk) when it is fully inflated is a smooth ovaloid which
is flat only at the poles (originally the centers of the two disks). On the
way to the limit, the surface of the balloon will experience wrinkling and
crimping which is responsible for the shortness of the parallels (circular
cross sections) of the ovaloid compared to their original lengths in the
disks. Paulsen computes the precise shape of the ovaloid and the area
decreasing factor (due to the shrinkage of the parallels), which he calls
the crimping factor. This example suggests that one will not much have
success looking for isometric embeddings which maximize volume, but
rather one ought to look for a maximizer on the set of mappings which
do not increase lengths of curves. There is some strong evidence that if
one has such a maximizer then there is an arbitrarily close C° approxi-
mation to the maximizer by an isometric mapping. For example, in [12]
there is a proof that a C1 embedding of a compact C1 Riemannian n-
manifold in En+l which is "short" in the sense that the induced metric
is strictly less than the original metric can be C° approximated by a
C1 isometric embedding. While the enclosed volume maximizer (if any)
is most likely "nowhere long", rather than strictly short, by shrinking
the map slightly, there is hope that an isometric embedding enclosing
approximately the same volume is not far away in the C° sense.

3. What should we call the "nowhere long" mappings (or their im-
ages) of an abstract Riemannian n-manifold into En+1 (or some other
Riemannian (n+l)-manifold) which maximize the "enclosed volume"
functional? The author was thinking that "sandbag surfaces" (or sim-
ply "sandbags") might be appropriate, since one can imagine that they
are as full of sand as possible, and sandbags do not stretch much. The
term "maximal surfaces" is misleading. Also, to include the abstract
polyhedral surfaces, one should not restrict the nowhere long mappings
to the C1 category, but rather allow continuous mappings which pre-
serve rectifiability of curves and which do not increase lengths of curves
(e.g., Lipschitz embeddings with Lipschitz constant 1). One can also
introduce the notion of a "weak sandbag" whose enclosed volume does
not increase under any continuous deformation through nowhere long
mappings. Are there weak sandbags which are not sandbags? One can
also consider infinitesimal nowhere long deformations, just as infinitesi-
mal isometric deformations of various orders have been considered in the
past [10], and hence one has the notion of infinitesimally weak sandbags
of various orders. In general, various restrictions on the class of nowhere
long embeddings or deformations lead to possibly different types of sand-
bags.
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4. If possible, show that the regular polyhedral surfaces can be iso-
metrically deformed to enclose more volume than was obtained here.
More generally, show that any compact polyhedral hypersurface can
be isometrically deformed to enclose greater volume (i.e., there are no
polyhedral sandbags). It is quite likely that this can be done, in view of
some recent progress the author has recently made in the smooth case
as the following theorem indicates.

Theorem 2. (cf. [4]). Let F : M -> E n + 1 be a compact, embedded,
C°° hypersurface in En+ι, and let p > 0 be the function on M which
assigns to each point x G M the value of the reciprocal of the largest
positive normal (or principal) curvature at the point x. If none of the
normal curvatures of M at x are positive [as in a planar or inwardly
dented region], then p(x) is defined to be +oo. Let VM be the volume in
En+1 enclosed by M, and let vM be the volume n-form on M. If we have
IM PUM > ( n + 1)VM> then M can be continuously deformed through C1

isometric embeddings F(t) : M -> £ n + 1 (0 < t < Γ, with F(0) = F)
such that the enclosed volume V(t) is a strictly increasing function of
t.

In other words, if a smooth compact hypersurface is sufficiently close
to being planar in an average sense (or inwardly dented anywhere), then
it cannot be a sandbag. As a corollary, any C°° embedded hypersur-
face which is planar (or inwardly dented) on an open subset cannot
be a sandbag. Since polyhedral hypersurfaces are largely planar, this
result suggests that any polyhedral hypersurface can be isometrically
deformed to enclose more volume. More precisely, one can C° approxi-
mate any polyhedral hypersurface by a C°° hypersurface which is planar
away from the (n — l)-skeleton, and the C°° approximation can be iso-
metrically deformed to greater volume. Moreover, an examination of
the deformation in [4] which is used in proving Theorem 2, reveals that
the volume gains do not diminish with the closeness of the C° approx-
imation. However, it is not clear that the deformation can be made
piecewise linear in the limit. Thus, the results of the current paper
are not subsumed by Theorem 2, and the general question of whether
any compact, polyhedral hypersurface can be isometrically deformed to
larger enclosed volume (piecewise linearly or not) remains open, but
quite plausible.

5. If the supremum in item 2 is achieved by some nowhere long
mapping (sandbag), is the image unique up to a motion of the ambient
space? What is the nature of the singular set of a sandbag?

6. Are there simple necessary and/or sufficient conditions which guar-
antee that the boundary of a convex body is a sandbag? Background
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material may be found in [2], [3], [6] and [15]. Using Theorem 2 it is
proved in [4], that an ordinary quadratic oblate spheroid in E3 with
axis ratio greater than A/8 /3 is not a sandbag, or even an infinitesimal
sandbag. Thus, there are analytic, strictly convex hypersurfaces in E3

which are not sandbags. By the isoperimetric inequality, a standard
sphere is a sandbag. However, the author has not yet met R. Connelly's
challenge to conclusively prove that there are sandbags other than stan-
dard spheres. Paulsen's inflated mylar balloon is a very likely candidate,
but his demonstration assumes rotational symmetry, and the existence
of a regular solution. One might begin by trying to prove that any pro-
late spheroid is a sandbag, or at least an infinitesimal sandbag (i.e., by
perturbing via sufficiently smooth vector fields, one cannot increase the
enclosed volume without increasing the metric somewhere).

7. If possible, generalize the results here to higher dimensions and
ambient spaces of nonzero constant sectional curvature. For this, note
that Theorem 2 above holds in higher dimensions, and one may wish to
consult [9], [11] and [15].
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