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DONALDSON INVARIANTS OF 4-MANIFOLDS
WITH SIMPLE TYPE

RONALD FINTUSHEL & RONALD J. STERN

1. Introduction

The Donaldson invariant of a smooth simply connected 4-manifold X
with odd b+ > 3 is a linear map

Dx : A(X) = Sym*(H0(X) Θ H2(X)) -> R

defined on the graded algebra A(X), where elements of Hi(X) are de-
fined to have degree | (4 — i). Since its presentation by Simon Donaldson
[8], this invariant has proven indispensible for distinguishing smooth
4-manifolds with the same homotopy type. Roughly, if x E H0(X),
a E H2{X), and z = aaxb E A(X) has degree d, one can define Dx by
the formula

Dx(z) = (μ(a)aμ(x)b,[M2

x

d}),

where [Λ4^] is the fundamental class of the (compactified) 2cί-dimensio-
nal moduli space of anti-self-dual connections on an SU(2) bundle over
X, and μ : H*(X) —>- H*~*(M2χ) is a canonical homomorphism. The in-
stanton moduli spaces ΛΛ2χ have formal dimensions congruent to
—3(1 + bχ) (mod 4), and Dx is defined to be 0 in degrees other than
| ( l + 6+) (mod 4).

Despite its utility, the Donaldson invariant has proven difficult to
evaluate, and its general form has remained elusive. In this paper we
investigate the general structure of this invariant through a study of its
behavior in the presence of embedded spheres. A turning point in the
study of the invariants arose with the results of P. Kronheimer and T.
Mrowka [24] concerning the structure of the Donaldson invariants un-
der the technical assumption of "simple type." This assumption states
essentially that for the generator x of H0(X) and arbitrary z E A(X),
Dx(x2 z) = ADx(z). Their results are obtained through a study of
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connections with singularities at an embedded surface of positive self-
intersection. It turns out that our study also gives a rather full under-
standing of the form of the Donaldson invariants, as well as determin-
ing strong lower bounds for the number of positive double points for
immersed representatives of 2-dimensional homology classes, for simply
connected smooth 4-manifolds with simple type. Further, we show that
many manifolds do indeed have simple type; in particular all elliptic sur-
faces, complete intersections, and certain branched covers of C P 2 and
S2 x S2 have simple type (cf. Theorem 3.9). To prove our results we
use gauge-theoretic "neck-stretching" arguments which involve splitting
a 4-manifold along a 3-manifold and analyzing how the moduli spaces
of anti-self-dual connections over the 4-manifold decompose into pieces.
The complexity of these arguments is proportional to the complexity of
the character variety of the 3-manifold along which the 4-manifold is
split. In this paper we split along the most elementary 3-manifolds, the
lens spaces L(p, 1), with the most elementary nontrivial character vari-
ety, a finite collection of points. This accounts for the relative simplicity
of the arguments of §4.

Given a simply connected 4-manifold X of simple type we study the
formal power series Όx : H2(X) -> R, the Donaldson series of X [24],
defined by

It is also convenient to define the formal power series K^ =
exp(—Q/2)ΌX on H2(X), where Q is the intersection form of X. There
are also Donaldson invariants corresponding to 50(3) instanton mod-
uli spaces and corresponding formal series. These depend on an SΌ(3)
bundle P over X and an integral lift c G H2(X; Z) of (the Poincare dual
of) the second Stiefel-Whitney class w2(P). The corresponding invari-
ants are denoted DXc and D χ c . The structure theorem of Kronheimer
and Mrowka is:

Theorem (Kronheimer and Mrowka [24], [25]). Let X be a simply
connected ^-manifold of simple type. Then the following hold:

(i) There exist finitely many homology classes κl7 ... , κp G H2(X, Z)
and nonzero rational numbers a\, ... , ap such that

Όx = exp(Q/2)

as analytic functions on H2(X). Each of the 'basic classes' κs is char-
acteristic, i.e., κs x = x - x (mod 2) for all x G H2(X\ Z).
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Further, suppose c E H2(X; Z). Then

s=l

(ii) IfuE H2(X\ Z) is represented by an embedded surface of genus
g with self-intersection u2 > 0, then for each s

2g — 2 > u2 + \κs - u\.

Here we view the homology class κs as acting on an arbitrary ho-
mology class by intersection, i.e., ns{u) = κs u. The main goal of
this paper is to give an alternative proof of part (i) of this theorem
without using the theory of singular connections. Instead, by studying
immersed 2-spheres in manifolds X of simple type, we are able to show
that the formal power series K.χ satisfies a system of homogeneous lin-
ear ordinary differential equations with constant coefficients and distinct
characteristic roots. This is our key result. It follows that the formal
power series K * is an analytic function, in fact a linear combination of
exponentials. This proves (i).

Because we are working with immersed spheres rather than embed-
ded surfaces, our version of part (ii) of the structure theorem is slightly
different. It turns out that the characteristic roots of the system of
ordinary differential equations which are satisfied by K^ are geometri-
cally significant, and as a corollary to their computation we have the
following version of (ii):

Theorem 1.1. Let X be a simply connected l^-manifold of simple
type and let {κs} be the set of basic classes as above. IfuE H2(X\ Z) is
represented by an immersed 2-sphere with p > 1 positive double points,
then for each s

(1) 2p-2 >u2 + \κ8 -u\.

Theorem 1.2. Let X be a simply connected J^-manifold of sim-
ple type with basic classes {κs} as above. If the nontrivial class u G
H2(X; Z) is represented by an immersed 2-sphere with no positive dou-
ble points, and

{κs\s = l , .. ,2ra}

is the collection of basic classes which violate the inequality (1), then
κs u — ±u2 for each such κs. Order these classes so that κs u =
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The above theorems are at the same time weaker and stronger than
part (ii) of Kronheimer and Mrowka's theorem. Because one can always
desingularize a double point, (ii) is stronger than the above theorems for
classes of nonnegative self-intersection, where Kronheimer and Mrowka's
theorem applies. However our theorems apply as well to classes of neg-
ative self-intersection.

Because we have avoided the use of singular connections, our proof
of the structure theorem is reasonably short. This paper is not self-
contained in that it uses techniques of C. Taubes in determining Mayer-
Vietoris formulas for the Donaldson invariant when splitting off the
neighborhood of an embedded 2-sphere. (See §4.) A relatively short
proof of these formulas from first principles is provided by the thesis of
W. Wieczorek [39]. Combined with this paper, it gives a rapid approach
to the structure theorem.

As we have stated, our method is to study the effect on the Donaldson
series of an embedded sphere with negative self-intersection. To parlay
this into an understanding of the effect of an arbitrary immersed sphere
we need to understand how blowing up a 4-manifold, i.e., forming the

22

connected sum X # C P , alters the Donaldson series. We have given
such a formula in [14]. Under the simple type assumption, our result
states that for c e H2(X;Z), K χ # ^p2 c = Kχ?ccosh(e) where e E

22

H2(CP Z) is (the dual with respect to the intersection form of) the
exceptional class. Further K χ # ^p2 c + e = —Kχcsinh(e). It is then easy
to compute the Donaldson series for what turn out to be important 4-
manifolds for our theory, the simply connected elliptic surfaces without
multiple fibers and with Euler characteristic 12n, denoted E(n). In
particular we show that

KE(n) = sinhn-2(/),

where / G H2(E(n)) is the homology class of a generic fiber. There are
corresponding computations for the SO(3) Donaldson series.

With these important computations under our belt, we begin the
gauge theory which will evolve into showing that the formal power se-
ries Kx satisfies a system of homogeneous linear ordinary differential
equations with constant coefficients. At bottom, we show that the Don-
aldson invariant for arbitrary smooth 4-manifolds, when evaluated on
products of powers of a homology class α G H2(X) which is represented
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by an embedded sphere and arbitrary z G A(α±), satisfies specific rela-
tions with coefficients that only depend upon the self-intersection of the
homology class. It is here that we rely upon recent work of C. Taubes
([35], [36], [37], [38]) to give us techniques for calculating Donaldson in-
variants in the presence of reducible connections. As we have pointed
out above, we are able to avoid the complete generality of Taubes' the-
ory because we are splitting along lens spaces.

Our main results concerning the structure of the Donaldson invari-
ants for manifolds with simple type are a formal consequence of these
fundamental relations. First, we translate these relations into relations
among the derivatives of K* with respect to a when evaluated on classes
orthogonal to a. We then use the blowup formula to extend these dif-
ferential equations to all of H2(X). The universality of the coefficients
in our fundamental relations implies that coefficients of these equations
are constant. Utilizing the specific computations for the elliptic surfaces
and their blowups, it is then an easy task to compute characteristic roots
of our differential equations.

The next step is to choose a basis for the homology of X, represent
this basis by immersed 2-spheres, and then blow up X until all these
immersed spheres are represented by embedded spheres. The homol-
ogy class of the immersed sphere changes under this operation, but the
change depends only on the number of positive double points of its im-
mersion. Using the blowup formula we see that K^ satisfies a system of
constant coefficient homogeneous linear ordinary differential equations
whose coefficients now only depend upon the self-intersection of the ba-
sis elements and the number of positive double points in their immersed
representatives. The main results follow from this.

This gives a rather complete qualitative description of the Donaldson
series as well as strong lower bounds for the number of positive double
points for immersed representatives of 2-dimensional homology classes
under the assumption of simple type. Our blowup formula [14] and
fundamental relations for embedded spheres (Theorem 4.8) are proved
without the assumption of simple type, and the formal aspects of the
argument to determine the existence of the basic classes can be ex-
tended to give results concerning arbitrary simply connected smooth
4-manifolds. However, it could very well be that any simply connected
smooth 4-manifold with 6+ > 1 has simple type.

2. The Donaldson invariant

In this section we outline the definition of the Donaldson invariant.
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We refer the reader to [8] and [11] for a more complete treatment. Given
an oriented simply connected 4-manifold with a generic Riemannian
metric and an SU(2) or SO (3) bundle P over X, the moduli space of
gauge equivalence classes of anti-self-dual connections on P is a manifold
Mχ(P) whose dimension is

8 c 2 ( P ) - 3 ( l

if P is an SU(2) bundle, and is

- 2 P l ( P ) - 3 ( l

if P is an 50(3) bundle. It will often be convenient to treat these two
cases together by identifying Mχ(P) and Mχ(&d(P)) for an SU(2)
bundle P. Over the product Λ4χ (P) x X there is a universal S0{3) bun-
dle P and there results a homomorphism μ : Hi(X) -> HA~i{Mχ{P))
obtained by decomposing the class ~px{P) G H4(Mχ x X). (Ho-
mology is always taken to have real coefficients unless it is otherwise
adorned.) The basic idea of Donaldson's theory is that one should eval-
uate cup products of classes in the image of μ against the fundamental
class of Mχ(P). To do this, one first needs to orient Mχ(P). This is
accomplished by orienting H+(X) (see [9]). If P is an SO(3) bundle,
we fix an integral lift of w2{P) G H2(X] Z2) and always identify such a
lift with its Poincare dual c G H2(X; Z). The Pontryagin number Pi(P)
is congruent to c2 (mod 4). If c and d are two integral "lifts" of w2(P)j
then the difference in induced orientations is given by (—1)̂ £^£"̂  . We
say that c and d are equivalent if they are congruent (mod 2) and

(--1)(£"3£") = +1. The combination of the orientations of X and H\(X)
together with an equivalence class c of lifts of w2(P) is called a "ho-
mology orientation" of X. (In case P is an SU(2) bundle, one chooses
c = 0.) For a Kahler surface X with Kahler class Kx, there is a natural
orientation induced from the Kahler structure and a choice of a lift c
gives an orientation which differs from this one by (—l)^c + c K χ ) [9].

The moduli space Mχ(P) is, in general, noncompact and needs to be
compactified before a fundamental class can be defined. The Uhlenbeck
compactification Mχ(P) is well-suited to this. However, this compact-
ification is a stratified space and is not usually a manifold. Thus, to
define a fundamental class one needs to insure that the singular set
has codimension at least 2. This turns out to be the case where ei-
ther w2(P) φ 0 or w2{P) = 0, d > f (1 + &£). In practice, one is able
to get around this latter restriction by blowing up X and considering
bundles over X # C P which are nontrivial when restricted to the ex-
ceptional divisor [29]. In [19] it is shown that for a G H2(X;Z) the
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classes μ(a) G H2(MX(P)) extend over MX(P). When &£ is odd,
dimMχ(P) is even, say equal to 2d. In fact, a class c G H2(X;Z)
and a nonnegative integer d = —c2 + | (1 + 6+) (mod 4) determine an
£0(3) bundle PC}d over X with w2(Pc4) = c (mod 2) and formal di-
mension dimMχ(PCid) = 2d. For α = (aλ,..., ad) G H2(X; Z)d, write
μ(ά) = μ(θίι) U U μ(θίd) Then one has

(μ(ά),\Mx(Pc,d)]) = L
JM

when μ(α) is viewed as a 2d-form.
If [1] G iJo(^ Z) is the generator, then v = μ([l]) = -jPi(/3) G

ii 4(Aix(P)) where β is the basepoint fibration Mχ(P) ->• Λlχ(P)
with Λ4χ(P) the manifold of anti-self-dual connections on P modulo
based gauge transformations, i.e., those that are the identity on the
fiber over a fixed basepoint. The class v extends over the Uhlenbeck
compactification Mχ(P) if w2(P) φ 0, and in case P is an SU(2)
bundle, the class will extend under certain dimension restrictions. Once
again, these restrictions can be done away with via the tricks mentioned
above [29].

Consider the graded algebra

A{X)=Symm(H0(X)®H2{X))

where Hi(X) has degree | (4 — i). The Donaldson invariant Dc = Dx,c

is then an element of the dual algebra A*(X), i.e., a linear function

Dc : A(X) -> R.

This is a homology orientation-preserving diίfeomorphism invariant for
manifolds X satisfying 6j > 3. Throughout this paper we assume
&£ > 3 and odd.

We let x G H0(X) be the generator [1] corresponding to the orienta-
tion. We shall reserve the use of 1 G A(X) to denote the unit in degree
0. In case a + 26 = d > | (1 + &£) and a G H2{X),

Dc(aaxb) = (μ(a)av\[Mx(Pc4)}).

It will be convenient to extend μ over A(X), and write for z G A(X)
of degree cf, Dc(z) = (μ(z), [Mχ(PCid)])- Since such moduli spaces
Mχ{Pc,d) exist only for d = - c 2 + | (1 + 6j) (mod 4), the Donaldson
invariant Dc is defined only on elements of A(X) whose total degree
is congruent to —c2 + | (1 + &£) (mod 4). By definition, D c is 0 on all
elements of other degrees. We say that

^ (mod 4).
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When P is an SU(2) bundle one simply writes D or Dx.
If Y is a simply connected 4-manifold with boundary, one can sim-

ilarly construct relative Donaldson invariants. A good reference for
this is [28]. One formally works with bundles over the manifold Y U
(dY x [0, oo)) with a cylindrical Riemannian metric on the end. Since
the notation would become cumbersome if this were always denoted,
we shall denote both Y and Y U (dY x [0,oo)) by Ύn. Each based
finite energy anti-self-dual connection A on a G = SO(3) or SU(2)
bundle P over Y is asymptotically flat and has a well-defined bound-
ary value dA G 1ZG(dY), the variety of G-representations of πχ(dY).
(We identify based gauge equivalence classes of flat connections with
representations.) We let χo(dY) denote the character variety TZG(dY)
modulo conjugacy. In general, connections in cylindrical end moduli
spaces need not decay exponentially to dA (cf. [28]). However, in this
paper all such decay is exponential, since we shall be working with man-
ifolds Y for which χG(dY) is a finite nondegenerate set {λ<}. We shall
denote by Mγ(P) the moduli space of based finite-action anti-self-dual
connections on P which decay exponentially to a flat connection on dY.
The map d : Mγ(P) -> TZG(dY) is continuous and 50(3) equivariant
[28], and so it induces a continuous map d : Λ4γ(P) -» χG(dY). Recall-
ing that χG(dY) is a finite set {λj, we denote by Mγ(P)[λi] the union
of the components of Mγ(P) consisting of connections whose boundary
value is in the conjugacy class \. Again, there is a compactification
of Λίy(P)[λj], the Uhlenbeck/Floer compactification, which carries a
fundamental class. The classes μ(a) and v are defined as well in this
cylindrical end situation, and in the obvious way we have the relative
Donaldson invariants

Dγ,c\\\ : A(Y) -> R.

Note here that we are viewing c G H2(Y,dY;Z). Now suppose that
X = Yι U Y2 with dYi = —dY2 a 3-manifold with, say χG(dYi) a finite
set {λi}. Consider a G bundle over X with an integral lift c E H2(X; Z)
of w2. Let Ci be integral lifts of w2\Yi. Assume that H2(dYf,Z) = 0.
Then

H2(X]Z)->H2(Yud',Z)®H2(Y2,d;Z)

is injective, and we can unambiguously write c = cx + c2. If Ui G
for i = 1,2 then

DX}C(uuu2) = (DYliCl,Dγ2tC2)(uuu2) =

Generally, if dY is a homology sphere, even though χG(dY) may
not be discrete, one obtains formulas as above through the use of Floer
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homology HF*{dY) [16], [1], [10]. In this case one has relative invariants

DYtC : A(F) -> HF*(dY).

It is then a theorem of Donaldson that if by. > 0 for both i,

where the pairing is the Kronecker pairing of HFj(dY1) with

Following [24], one considers the invariant

Dx,c:Sym*(H2(X))->R

defined by Dx^c(u) = DχtC((l + ̂ )u). Whereas Dx,c can be nonzero only
in degrees congruent to —c2 + | (1 + b+) (mod 4), DXc can be nonzero
in degrees congruent to —c2 + | (1 + 6+) (mod 2). The Donaldson series
Όc = D χ c is defined by

D χ » = Dx,c(exp(a)) = £ ^ [ ^

for all a G H2(X). This is a formal power series on H2(X).
A simply connected 4-manifold X is said to have simple type if the

relation DXiC(x2 z) — 4Dx,c(z) is satisfied by its Donaldson invariant
for all z G A(X) and all c G H2{X]Z). This important definition
is due to Kronheimer and Mrowka [24] and was observed to hold for
many 4-manifolds. In terms of DXc, the simple type condition is that
DXtC(zx) = 2Dx,c(z) for all z e A{X) and all c E H2(X]Z). The
assumption of simple type assures that for each c, the complete Don-
aldson invariant DXc is determined by the Donaldson series D χ c . Fur-
ther, as we observed in [14], the simple type condition naturally arises
when certain Weierstrass elliptic functions associated with the Donald-

2

son invariant of X # C P degenerate. It is an open question whether all
4-manifolds are of simple type. As we shall see (Corollary 3.11), all man-
ifolds which contain a copy of the Milnor fiber B{2,3,7) of the (2,3,7)
Brieskorn singularity have simple type. This includes, for example, all
simply connected elliptic surfaces with pg > 1. We shall show in Theo-
rem 5.14 that X has simple type provided that the condition Dx(zx2)
is satisfied for its SU(2) invariant (with no a priori conditions placed on
other invariants DXc). This result has also been proved independently
by Kronheimer and Mrowka.

We conclude this section with some conventions regarding symmet-
ric functions. Two important symmetric functions are the degree d
homogeneous part of the Donaldson invariant, D$c G ^
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and the intersection form of X, Q E Sym2(H2(X)). Further, for each
a E H2(X;Z) there is the dual form a E Sym^i^pΓ; Z)) defined by
ά(/3) = a β. We will usually drop the "tilde" and identify each a with
its dual. Of course, we can also identify ά with the Poincare dual of
α, i.e., as an element of H2(X). Beware that if a E H2(X), there is
the possible, but unlikely, opportunity for confusion between use of the
same notation for the degree 2 element α 2 E A(X) and the intersection
number α 2 = a a. If ψi € Symdi(H2(X)) for i = 1,2, then the product

E Symdl+d2(H2(X)) is defined by

where Sdl+dι2 is the symmetric group on dλ + d2 letters.

3. Elliptic surfaces without multiple fibers

The smooth simply connected elliptic surfaces E(n) without multiple
fibers are classified up to diίfeomorphism by their holomorphic Euler
characteristic, χ(E(n)) = n, or alternatively by their Euler number 12n.
With this notation, the if3-surface is ϋ?(2). The Donaldson invariants
for E(n)j n > 2, are important for our theory. In this section we show
how the blowup formula [14] and a particular inductive construction
of E(n) from E(n — 1) allow the full computation of their Donaldson
invariants. In particular we show that each E(n), n > 2, has simple
type and

Theorem 3.1. The Donaldson series of the elliptic surfaces E(n)
are given by

2 2 ( / ) ifc-f = 0 (mod 2),

2 ( / ) i/c / = l (mod 2),

where f E H2(E(n)\ Z) is the homology class of the fiber.
3.1. Manifolds split by Σ(2,3,ll)
Let X be an oriented simply connected 4-manifold with b+ odd and

> 3. Suppose that X = Xλ U X2 with dXλ = -dX2 = Σ an integral
homology 3-sphere. As we mentioned in the last section, it is a theorem
of Donaldson that if both Xλ and X2 have b+ > 0, then the Donaldson
invariants of X may be expressed as a pairing

(2) Dx>c = (DXuCl,DX2tC2)
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where the DχiCi are relative Donaldson invariants, taking their values
in the Floer homology of Σ (and c = cλ + c2). Now assume in addition
that X has simple type and that Σ = Σ(2,3,11), the (2,3,11)-Brieskorn
homology 3-sphere. We shall see in §3.4 that the simply connected
elliptic surfaces with pg > 1 can be split in this way. The fact that is
needed about Σ(2,3,11) is that its Floer homology is uncomplicated, as
is shown in [12].

Lemma 3.2. The Floer homology #F*(Σ(2,3,11)) is a copy of Z
in odd dimensions and vanishes in even dimensions.

Let Xj denote the generator of ϋ/F*(Σ(2,3,11)) in dimension j , and
let DYijC.[\j] denote the relative invariants in ί/Fj(Σ(2,3,11)). Let c =
d + c2e H2(Xύ Z) Θ H2(X2; Z) & H2(X Z), and let u{ e A{Xi) have
degree d{. Suppose that d\ + d2 = άegDx,c (mod 2). Let

ji = -2di - 2c] - 3(1 + &£.) (mod 8).

Then jι = — 3 — j 2 (mod 8); so, letting j = jΊ we have

DX2)C2[Xj+4](u2 | )

since X has simple type.

To correct for this factor of 2, we view the Floer homology of
Σ(2,3,11) as Z4-graded. The generators of the Floer homology are
then a in dimension 1 (mod 4) and β in dimension 3 (mod 4). So a
corresponds to Xx and λ5 and β to λ3 and λ7. If jΊ = —3 — j 2 (mod 4),
then for 7 = a or β we have

for jι = —3 — j 2 (mod 8), and

X

= (•Dχi,ci[λ, 1](til),I>JΓa,ca[λΛ+4](ti2 g )
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for j x + 4 = - 3 - j 2 (mod 8).
In other words, if jΊ = — 3 — j 2 = 1 (mod 4) then

and if j i = — 3 — j 2 = 3 (mod 4) then

Lemma 3.3. The Donaldson series of the above X is given by

Dχ, c = (ΌXltCl[a],Όχ2tC2[a]) + (ΌXltCl\β\,Όχ2tC2\β\).

The pairing of these relative Donaldson series is multiplication of the
corresponding formal power series.

Next suppose that as before, X has simple type and that X = Xι U
X2 with dXλ = -dX2 = Σ(2,3, l l) , but now assume that 6 ^ = 0
and bχ2 > 0. The Mayer-Vietoris argument that gives Donaldson's
theorem (2) is now complicated by the fact that there may be reducible
connections on Xx. Each of these will have as boundary value the trivial
flat connection ϋ over Σ(2,3,11). However, in the next lemma we see
that these reducible connections cause problems in only half the possible
cases.

Lemma 3.4. Suppose that X = Xι U X2 with dX\ — —dX2 =
Σ(2,3, l l ) , and assume that b\χ = 0 and b^2 > 0. Let c{ G H2(Xi]Z),
i = 1,2. If Ui has degree d{ in A(Xi) and dλ ψ c\ (mod 2), then

Dx,Cl+C2(Ulu2) = (DXuCl[β](Ul),DX2ίC2[β}{u2)).

Proof. The proof will use techniques which are discussed at more
length in §4. These techniques show that contributions to Dx,Cl+C2 (uιu2)
arise from products of based moduli spaces Λ^xJC] x Mχ2[CL divided
out by the diagonal 5Ό(3), where ζ denotes α, /?, or ΰ. We are concerned
with the case ζ = ϋ. Since the stabilizer of ϋ is 3 (> 0)-dimensional, a
counting argument shows that the divisor corresponding to Uι does not
intersect ΛiXl [ΰ] transversely and that the based moduli space Λ4Xl [ΰ]
contains reducible nontrivial orbits as weak limits. Each of these re-
ducible orbits is a 2-sphere. The class μ(^i] extends to an 50(3) equiv-
ariant cohomology class μ(ι*i) G Hl%(3)(MXl[ΰ];Ίl) (see [37] and §4).
Since each (based) connection in AiXl [ΰ] has the same asymptotic value,
which we can identify with 1 G SΌ(3), there is an SΌ(3)-equivariant
push-forward map

M*R-) -> H*SO(3)({1};R) .
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This push-forward map is not given by a standard construction because
the fibers of d are not compact. The necessary construction is given by
Taubes [38]. The fiber dimension of the map d : Mχx -> SO(3) is equal
to dimMXl[ΰ] = —2c\ — 8k for some k. There is similarly a pullback
map

#*: H*SO(3)({I} R) ->

Furthermore, since SΌ(3) acts freely on Λίχ2[ί?], there is an isomor-
phism

Then the corresponding contribution to the Donaldson invariant is ob-
tained from the pairing (π*d*d*μ(u1) U μ(u2), [Mχ2[ΰ]]), which is de-
fined by integration. (Again, see [35], [36], [37], [4] and §4 for this.)
However, under the hypothesis of the lemma, 2dχ + 2c\ = 2 (mod 4);
so

dφ(uλ) G Hld^c*+sk({l};R) * H2d^2c^8k(BSO(3);K) = 0.

This means that the boundary value ϋ does not contribute to the calcu-
lation of the invariant Dχ^Cl+C2(uιU2). The correct boundary value lives
in iϊF7(Σ(2,3,ll)), where

j = ~{2c\ + 3 + 2di) = -(2 + 3) (mod 4).

Thus it must be β.
3.2. Embedded —2-spheres and Donaldson invariants
We next study 4-manifolds which have a homology class σ represented

by an embedded 2-sphere S of self-intersection σ2 = —2. We shall see
that such a class has a profound effect on the Donaldson invariants of
X. Let (σ)-1 denote {a E H2(X)\σ a = 0} and let

A(a x ) = Axiσ^ = Sym*(H0(X) Θ (σ^).

We begin by reviewing two basic relations proved in [14]. The first is
due to D. Ruberman.

Theorem 3.5 (Ruberman [32]). Suppose that σ G H2{X]Z) with
σ2 = —2 is represented by an embedded sphere. Let c G H2(X; Z) satisfy
c - σ = 0 (mod 2). Then for all z G A(σ±) we have

Dc(σ2z) = 2Dc+σ(z).

We also need a formula for spheres of square - 3 .
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Theorem 3.6. [14] Suppose that σ E H2(X\ Z) is represented by an
embedded 2-sphere with self-intersection —3. Let c E H2(X]Z) satisfy
c σ = 0 (mod 2). Then for all z E A(σ ± ) we have

Dc(σz) = -Dc+σ{z).

In [14] we also showed
Proposition 3.7. [14] Suppose that σ E H2(X; Z) is represented by

an embedded 2-sphere with self-intersection —2, and let c E H2{X\Z)
with c σ = 0 (mod 2). Then for all z E A^)

Dc(σ*z) = -ADc(σ2xz)-ADc(z) .

For a 4-manifold X and a class « E H2(X;Z), let ΌiSκ(X) be the
group of orientation-preserving diίfeomorphisms / of X which satisfy
/*(«) = K. Also, let Aut(X) be the group of automorphisms of H2(X; Z),
which preserve the intersection form Q. Then X is said to have a i>2# dif-
feomorphism group with respect to n if the image of ΌΊSK(X) in Aut(X)
has finite index. For example, the simply connected minimal elliptic sur-
faces with pg > 1 have a big diίfeomorphism group with respect to their
canonical class [19]. From the assumption of big diίfeomorphism group
with respect to K it follows that for each d, the degree d homogeneous
part Dχc of the Donaldson invariants Dχc and Dx^c(^) (and hence
DχiC) are polynomials in the intersection form Q and the class K when
viewed as linear maps Sγm*(H2(X)) -> R. If | ( 1 + b\) = 0 (mod 2),
we can then write

- 1 ) ! (2*)!

1 Zd{2dγ:

and if | ( 1 -f- 6j) = 1 (mod 2) we can write

Qd Qd~t
 K

+ •••-

The crucial fact here is that if X contains an embedded 2-sphere of self-
intersection —2 which is orthogonal to κ;, the coefficients Cj are indepen-
dent of the homogeneous degree. Related results were first observed by
Peter Kronheimer (unpublished).
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Proposition 3.8. Suppose that σ G H2(X;Z) is represented by an
embedded 2-sphere, and suppose also that σ2 = — 2 and σ K = 0. Then
the coefficients Cj above are independent of the homogeneous degree d of
Dx . Similarly, if we express Dχ^ω as a polynomial in Q and K with
coefficients c'j, and if also ω σ = 0 (mod 2), then the c'j are independent

of the degree d of Dψω.
Proof. To fix notation, assume that \{l + b~χ) = 0 (mod 4). Write

\ x σ ^ 2 d ι ( d l ) \ 2 2 d 2 ( d 2 ) ! 2 ! '(2d-2)\ x'σ ^2d-ι(d-l)\ 22d-2(d-2)!2!

Consider an a € H2(X) which satisfies a σ — a n = 0. Then

2dd\ (2d)\ ^ v

But, by Theorem 3.5 we have

Thus c'o = —c0.

Next take β e H2(X) with β2 = 0, β K = 1, and β σ = β a = 0.
Then for j > 1

( 2 d - 2 j - 2 ) l
,_,_, 2 d_2 j_2

_ ( 2 d - 2 j - 2 ) l ,_,_, 2d_2,_2

- c W 2 - - J - » ( d - i - l ) ! y ( α j>

Thus d2j = -c2j for all j > 0.
We now perform the same procedure on the SΌ(3)-Donaldson invari-

ants ΌXσ. Write

(2d - 4)! * ~ ° 2d~2(d - 2)! ' 2 2d- 3(d - 3)! 2!
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Note that Theorem 3.5 implies that for all z G A(σJ-),

DχΛ°2z) = 2DXt2σ(z) = 2(-lΓ2Dx(z) = 2Dx(z).

Using the expansion of Dx

d~4^ and applying Theorem 3.5, we get

Thus C'Q = —C'Q and so c0 = CQ. In a similar fashion we obtain that
C2j = (%j for all j .

Finally consider Dx

d~2>j = Dx

d\^). Because X has a big diffeomor-
phism group we can write

Γίd—l nd—2

Proposition 3.7 implies that

Expanding as above, and using the fact that CQ = c0, we have c0 = c0,
and continuing as above, Q = Q for all i. This completes the proof in
the SU(2) case with | ( l + 6j) Ξ 0 (mod 4). A similar proof suffices
when | ( 1 + b~χ) φ 0 (mod 4), and the same proof also works in the
50(3) case.

We now show that such manifolds have simple type. This implies,
for example, that all simply connected elliptic surfaces (with 6+ > 3),
complete intersections, and Moishezon [27] and Salvetti [33] surfaces
have simple type.

Theorem 3.9. Let X be a simply connected ^-manifold which has
a big diffeomorphίsm group with respect to a class K G H2(X;Z), and
let ω £ H2(X',Z). Suppose that σ G H2{X;Z) is represented by an
embedded 2-sphere of square —2 such that σ K = 0, and σ ω = 0
(mod 2). Then for all z G A(X), we have DXiUJ(zx2) = 4DXtU(z). If
ω2 + f (1 + 6+) = 0 (mod 2) then

'{2ί)\ '
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and ifω2 + | ( 1 + 6+) = 1 (mod 2) then

^xω = exp(Q/2) ^ c 2 i + l ί α >'(2i + l) ! '

Proof. For simplicity of notation, consider the 577(2) case ω — 0 with
\(\ + bx) = 0 (mod 4) as above. Then Proposition 3.8 shows that for

vtrΎϊ ri = _

x share the same coefficients in that

Qd~ι
 A

^2ί7wZ77~j TTTTί

each d = | ( 1 + 6+) (mod 4) the homogeneous invariants Dχd+4\^) =

( 2 d + 4 ) r x = > p
x K 2 } ^ 2ι(2d + 2)\ ^

The technique of Proposition 3.8 also shows that

_2 d+2

independent of degree. Thus also,

1 3r\
j^i2*-i{d-i)\ (2t)!

so Dx,ω(zx2) = 4:Dx,ω(z). The other cases are similar.
Corollary 3.10. The K3 surface, E(2), has simple type, and

Proof The diίfeomorphism group Diff(£7(2)) acts on H2(E(2); Z 2)
with exactly 3 orbits, namely {0}, {a φ 0|α2 = 0 (mod 4)}, and
{α|α 2 = 2 (mod 4)}. These are represented by 0, /, and s2, the class of
a section. Thus, keeping in mind the rule Dc> — ( — 1 ) ( £ ^ ) 2 J D C for c = c'
(mod 2), we may assume that c is one of these 3 classes.

In case c = 0 or s2, we let σ = s2- If c = / ,then there is a different
elliptic fibration whose section σ — s'2 satisfies s2 / = 0. Now E(2)
has a big diffeomorphism group (with respect to n = 0); so we may
apply Theorem 3.9 to see first that E(2) has simple type, and second,
that ΌE(2),C — ac exp(Q/2) for some constant ac. For c2 = 2 (mod 4)
it is known that -DE(2),C(1) = — 1. For c2 = 0 (mod 4), find a class σ
orthogonal to c and represented by an embedded 2-sphere of square - 2 .
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Then DE{2),c(σ2) = 2DE{2)iC+σ(l) = - 2 by Theorem 3.5. It follows that

for any c, αc = (—l)ΐc . Hence we obtain the equation for D#(2),c-
Corollary 3.10 has been known for some time.
Corollary 3.11. Any simply connected \-manifold (with b+ > 3

and odd) which contains the Brieskorn manifold J3(2,3,7) has simple
type.

Proof. Write X = 5 ( 2 , 3 , 7 ) U 7 with 5(2,3,7) ΠY = Σ(2,3,7).
The Floer homology of Σ(2,3,7) is HFi(Σ(2,3,7)) = Z for % = 3,7
and is 0 in other dimensions [12]. Let λ3 and λ7 be generators. If
α 2 G # 2 (£(2,3,7)) and a2 G H2(Y) and ^ + d2 - d ~ -c2 + \{l + 6+)
(mod 4) and c = CB + cγ, then

(3) Dx,c{aϊ<xϊx2) = (^(2,3,7), C B [λ,](αί^ 2 ),Z?y ) C y [λ j ]«))

for j = 3 or 7.
Similarly, £7(2) = £(2,3,7) UJE710. Note that b%l0 = 1. If j = 3 set

CE = 0, and if j = 7 let c# be any class in ^(-Eαo! Z) with square —2.
Then since £7(2) has simple type,

K ' z 2 ) = (I>B(2>3,7),cfl[λί ](α?'a; 2),ί)S l 0,C j I[λ j](l))

But DE(2),C'(l) = — 1 for any c' of square congruent to 2 (mod 4). Thus
DEw<CE[X-](l) φ 0; so

It then follows from (3) that

as required.
3.3. The blowup formula
In [14], formulas were given for £ > X # C P 2

 c

 a n ( ^ ^ X # C P 2 c+e ^n t e r m s

of ϋχ ) C . (Here e denotes the exceptional class.) Restricting to the case
of manifolds of simple type, the following formulas were obtained.

Theorem 3.12. [14] Suppose that X has simple type and c G

H2(X;Z). Then the Donaldson series o / X # C P 2 are

e2
e

D X # C P 2 , C = Dχ,c exp(-y)cosh(e),

e2

D x # c p 2

> c + e = -Dχ,c+e e x p ( - y ) s i n h ( e ) .
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In particular, we note the following facts which except for (7) have
been known for some time.

Lemma 3.13. Let c € H2(X;Z). Then for all z e A(X) :

) = 0 for all k>0.

(3) Dx#m>c(e>z) =

(4) Dχ#75W>c(e4z) =

(5) DX#CP2 c+yk*) = 0 f°r aU k^Q-

Item (7) was first proved by Austin and Braam [4] and Leness [26],
and item (6) by Kotschick [23].

3.4. An inductive construction of E(n)
First we establish some notation. For positive integers p, q, and r,

let B(p, q, r) denote the Brieskorn manifold associated to p, g, r; i.e., the
Milnor fiber of the link of the isolated singularity of xp + yq + zr = 0
in C 3. Then B(p,q,r) is a smooth 4-manifold with boundary, and if
p, g, and r are pairwise coprime then dB(p,q,r) — Σ(p,q,r) is the
corresponding Brieskorn homology 3-sphere. In general, b2{B(p, q >r)) =
(p—l)(q — l)(r — l) (cf. [5]). Two simple examples are B(2,3,5) which is
a plumbing manifold whose intersection form is E$ (negative definite),
and 2?(2,3,11) whose intersection form is 2E$ φ 2H.

We claim that E(n), n > 2, can be decomposed into three pieces

E(n) = £(2,3,11) U C(n) U 5(2,3,6n - 11).

The first is the Milnor fiber 5(2,3,11). The second is a cobordism C(ή)
between —Σ(2,3,11) and —Σ(2,3,6n — 11) with intersection form

which is obtained from Σ(2,3,11) by attaching two 2-handles. In Figure
1, the result of attaching the four 2-handles with framing —1 to the 4-ball
has boundary Σ(2,3,11). The cobordism C(n) is obtained by attaching
the further 2-handles with framings 0 and —n. (In all of our handlebody
pictures, the boundary of the handlebody to which we attach handles
is indicated with framings that are within parentheses.) These two 2-
handles represent the homology class / of the fiber and the homology
class sn of a section. The third piece is the Milnor fiber 5(2,3,6n — 11).
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Proposition 3.14. For n>2, 5(2,3,11) U C(n) U 5(2,3,6π - 11)
is diffeomorphic to E(n).

Proof. For n = 2, this is a well-known fact [22]. The elliptic
surfaces E(n), n > 2, can all be constructed as fiber sums, E(n) =
E(2)#fE(n - 2). Generally, E(m) has a decomposition E(m) = GmU
5(2,3,6m - 1) with the union along Σ(2,3,6m - 1) [21]. The manifold
Gm with boundary —Σ(2,3,6m — 1) is known as the "Gompf nucleus"
of E(m). It is a regular neighborhood of the union of a cusp fiber and
a section of E(m).

Using these facts we can write our fiber sum decomposition of E(n)
as

E(n) £* 5(2,3,11) U (G 2 # / G n _ 2 ) U 5(2,3,6n - 13).

There is a standard embedding of 5(2,3,6n -13) in 5(2,3,6n -11) (cf.
[13]). Since 62(5(2,3,6n - 13)) = 2(6n - 14) and 62(5(2,3,6n - 11)) =
2(6n — 12), the difference is a cobordism V(ή) with b2(V(n)) = 4 and
dV(n) = Σ(2,3,6n-ll)-Σ(2,3,6n-13). The cobordism V(n) is illus-
trated in Figure 2. It is composed of the two —1, —2-pairs. (The other
six 2-handles when attached to the 4-ball have boundary Σ(2,3,6n —
11).) The fiber sum G2#fGn-2 is shown in Figure 3 (cf. [21]). Com-
paring the two handlebodies we see that G2#fGn-2 = V(n) U C(n). It
follows that

E(n) = 5(2,3,11) U C(n) U V(ή) U 5(2,3,6n - 13)

= 5(2,3,11) U C(n) U 5(2,3,6n - 11).

Let W(n) = C{n) U 5(2,3,6n - 11) with dW{n) = -Σ(2,3,ll), so
that

Now 95(2,3,11) bounds another interesting manifold (7(2,3,11) ob-
tained as the union C(2,3,11) = 5(2,3,5) U D, where D is constructed
by attaching one 2-handle to Σ(2,3,5) along the —1- framed knot in
Figure 4.

Proposition 3.15. C(2,3,11) U W{n) = E(n - 1)#CP \
Proof. Note that

E(n - 1) = 5(2,3,5) U Gx#fGn-2 U 5(2,3,6n - 13),

so that

E(n - 1)#CP = 5(2,3,5) U G 1 # / G n _ 2 # C P U 5(2,3,6n - 13).
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The cobordism G i # / G n _ 2 # C P is given in Figure 5 and is obtained
by attaching seven 2-handles to Σ(2,3,5). By sliding e over e\ we ob-
tain Figure 6. Thus D C G i # / G n _ 2 # C P 2 . The complement of D in

can be seen to be G 2 #/G n _ 2 by sliding /i over e + eλ

and then over βi to obtain Figure 3. Therefore
-2

E{n - 1)#CP = 5(2,3,5) U G 1 # / G n _ 2 # C P U 5(2,3,6n - 13)
= 5(2,3,5)UDU G 2 # / G n _ 2 U 5(2,3,6n - 13)
= C(2J3,ll)UW r(n).

-2
In our study of E(3) and E(2)#CP we shall need specific informa-

tion about some important homology classes in the various pieces. As
usual, let / and Sn G H2(E(n)\ Z) denote respectively the homology
classes of the fiber and a section. Let e G H2(D; Z) denote the gener-
ator for the homology class of D so that e2 = — 1. Figure 7 shows the
cobordism from Σ(2,3,5) to Σ(2,3,7) in £ ( 2 ) # C P 2 arising from the
embeddings 5(2,3,5) C 5(2,3,7) C E(2). Sliding "s2" over V gives
Figure 8. This can also be obtained from Figure 1 with n = 3 by sliding
"e" over "/". This shows that s2 = s3 + e and that e = e — f. Define
cr3 = 3/+2s3 G H2(E(3); Z). It is crucial to note that W(3) is contained

in both E{3) and £ ( 2 ) # C P 2 . Since /, σ3 G #2(VF(3); Z), we may view
them as elements of either H2(E(3); Z) or H2(E(2)#(JP2; Z). We have
o\ — 0, σ3 / = 2, σ3 e = 2, σ3 e = 0, e e = —1, and / e = 0.

3.5. The low coefficients for 25(3)
For most of this and the next subsection we will drop the bound-

ary value in the notation for relative Donaldson invariants. Here, an
important comment concerning the relative Donaldson invariants for
5(2,3,11) is in order. Recall that as in Lemma 3.3, we have the gen-
erators α,/? of ί/F*(Σ(2,3,11)) with the grading reduced to Z4. Since
5(2,3,11) has a big diffeomorphism group, all its homogeneous relative
invariants D^L 3 nx ωB are simply multiples of powers of the intersec-
tion form. In particular, they all have even degree and boundary value
β. Now let (JUB be any class with ω2

B = —2 (mod 4). Then — 1 =

DE{2),uB{l) = < £ B ( 2 , 3 , 1 1 W ( 1 ) , £ G 2 ( 1 ) ) ; SO -1)5(2,3,11)^(1) = A*a(l)
= ±1. (Recall that 1 G A(X) is the unit in degree 0). We take as
standard the orientation of the moduli spaces which comes from the
complex structure inherited from E(2) so that As2(l) — +1-

Lemma 3.16. The relative Donaldson series o/5(2,3,11) is

DB(2f3,ii),c,B = i-1)^1 exp(Q/2) »/3.
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Proof. Let a G H2(B(2,3,11)). For each d,

Lemma 3.17. L>£;(3)(s3) = 1 = -£>£?(3),53(1)
Proo/. That £>(s3) = —1)53(1) follows from Theorem 3.6, and

DS3(1) = ± 1 by [13]. When the moduli space MS3 is given the ori-

entation induced from the Kahler structure on i£(3), the sign is ' + ' .

Since the canonical class of E(3) is KE^ = /, this complex orientation

compares with the one obtained using cγ = s3 by (—l)έ(s3+s3 /) _ _\

SoZ?,,(l) = - l .
Let ω G H2{E(3)\ Z) satisfy ω / = 1 (mod 2). Then by Theorem 3.9,

(4) Ds(3),α, - exp(Q/2)
i=o ^ z ^

L e m m a 3.18. In the expression above, cOjU — (—l)h(ω 2 + ω 'f).

Proof. The group Difffc(X) acts on the set of ω G H2(X; Z2) satisfy-
ing ω-f = l (mod 2) with four orbits, according to whether ω2 and ω /
are congruent to 1 or 3 (mod 4). This follows from the existence of suf-
ficiently many spheres in E(3) of self-intersection —2; cf. [17], [19]. If σ
is represented by a sphere of self-intersection —2 in 5(2,3,11), the four
orbits are represented by σ + 53, 3s3, s3, and σ + 3s3. We have just seen
that JD£ ( 3 ) , 5 3 ( 1 ) = —1. By comparing orientations, DE(3)^S3(1) = 1.
Applying Theorems 3.6 and 3.5 thus yields

^ ( 3 ) , σ + S 3 ( 1 ) = -DE(3),σ(ss) = --DE{3){σ2 s3) = 2-DE(3)(s3) = 1,

where the next-to-last equality follows from Lemma 3.16. Again, com-

paring orientations shows that DE(3^σ+3s3(l) = —1. All these results

are checked to be consistent with cOjU; = (—l)2(w2+w /).
Next let ω G H2(E(3); Z) satisfy ω f = 0 (mod 2). Then by Theo-

rem 3.9 we have
00 f

(5) ΌE{3hω = exp(Q/2) ] P c 2 i + 1 , „ jc2 i + 1,„ j

i=o l z ι

Lemma 3.19. Let ω G H2(E(3);Z) with ω / = 0 (mod 2)
ω - s3 = 0 (mod 2). TΛerz C l ^ = (- l) i (« '+" Λ.

Proof. By Theorem 3.6 and Lemma 3.18 we obtain
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3.6. The Donaldson series for E(ή)
We shall now complete the proof of Theorem 3.1. Recall our notation

α, β for the generators of ϋF*(Σ(2,3,11) when graded by Z 4 .
Lemma 3.20. Suppose that ξc e H2(C{2,3,11); Z) and ξc e = Q

(mod 2). Then Dc{2i3ΛlUc(e)_ = -(-l)*tt.a+€.-e> . βm

Proof. Write ξc = τ + ^ e where r G H2(B(2,3,5)) and m is even.
Since e = e — /, we have ξc — ω + ^ ^ with ω E H2(E(2); Z). Applying
Lemma 3.3 and Theorem 3.12 yields

since m is even and σ3 = 3/ + 2s2 — 2e.
Similarly, calculating the SU(2) invariant on £?(3), and using Lem-

mas 3.3, 3.19 and (5) we obtain

(DB(2,3M){1), Dw(3)(σ3)) = DE(3)(σ3) = f(σ3) = 2.

But i?B(2,3,n)(l) = β\ s o w e s e e that 25^(3)(^3) — 2β. The lemma now
follows from our first equation.

Lemma 3.21. Suppose that ξc e H2(C{2,3,11); Z) and ξc e = 1
(mod 2). ΓΛen ^e have Dc(2^n)iξc(l) = (-l)έ«2+^ e) . /?.

Proo/. As above, write ξc = u + me where ω G H2(E(2)\ Z) and m
is odd. Lemma 3.3 and Lemma 3.13 imply that

2s2 - 2e)

By Lemmas 3.16 and 3.19 we have

(β,Dw{3)(σ3)) = DE{3){σ3) = 2,

so Dw(3){σ3) = 2 /?, and the lemma follows.
Next we calculate the relative Donaldson series of C(2,3,11). The rel-

ative invariant 2?c(2,3,n),ξc ^ a s components -Dc(2,3,ii),ξc[α] a n d
•^c(2,3,n),ξσ[/ ]̂j a s w e ^ a s a contribution from the trivial connection. In
cases where we can apply Lemma 3.3, we can determine A?(2,3,iiUc[β]

Lemma 3.22. Let ξc e #2(C(2,3,11);Z). // ξc e = 0 (mod 2),
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and if ξc ' e = 1 (mod 2), then

DC(2,3,iiUc[/?] = (-l)i{^ξc'e)exP(Q/2)cosh(e) β.

Proof. First consider the case ξc - e = 0 (mod 2) and write ξc =
ω+rae, withα e = 0 and m even. Since ξc £ ^2(C(2,3,11)), ξc'f — 0;
so recalling that e = e + /,we have ξc ' & — ίc e. Prom Theorem 3.12,
it follows that

,ω exp(-e2/2) cosh(e)

e xp(g/2) cosh(e)

•{cosh(e) cosh(/) + sinh(e) sinh(/)}.

Note that ^ Ξ ( c e Ξ 0 (mod 2); so Lemma 3.3 implies that the
odd degree term in e of this expression is

Thus up to a sign, DC(2,3,ii),ξc \β]is e xP(Q/ 2) sinh(e) ^. By Lemma 3.20,
we have J5c(2,3,n),Cc(g) = - ( - l ) i ( ^ + ξ c " ^ /?, and therefore

( , u nh(e) - β,

since e2 = — 1. If ξc ' & = 1 (mod 2), then we similarly obtain

•{cosh(e) sinh(/) + sinh(e) cosh(/)},

and from Lemma 3.3 the even degree term in e is

(Όc{2,3,nuc[β},Όw{3)[β)).

Similarly to the other case, the result now follows from Lemma 3.21.
Next we assume inductively that Theorem 3.1 holds for E(n — 1). We

now inductively determine the relative invariants of W(n).
Lemma 3.23. Let η G H2(W(n);Z). Ifη f = O (mod 2),

Vw(n),M = (-l)i(η2Mn-2)ηf) exp(Q/2)smhn-2(f) /?,

then and if η f = 1 (mod 2), then

BwwM = (-l)^"2 + ("-2 ) l ? / )exp(Q/2)cosh"-2(/) • β.
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Proof. Let η / = ra, and set ξ = me + η G H2(E(n - 1)#CP Z).
Then ξ e = ξ (e + /) = 0, and we may view ξ as an element of
H2(E(n-1);Z).

Assume first that m = 0 (mod 2). By the inductive hypothesis and
Theorem 3.12,

D*(«-i)#ep'.ί = (-l)§ ( ξ 2 + ( n"-3 ) ξ / )exp(Q/2)sinh"-3(/)cosh(e)

= (_l)i(€2+("-3)ί/) exp(Q/2){sinhn-3(/) cosh(/) cosh(e)

+ sinhn-2(/)sinh(e)}.

Applying Lemma 3.3, we see that the odd degree term in e of the above
expression is

By Lemma 3.22,

DC(2,3,ii),me[/3] = ( - l ) f exp(Q/2) sinh(e) β

= (-l)i( » /)exp(Q/2)sinh(e) • β.

Hence D m , | ^ = (-l)i("a+(»-2)" /) exp(Q/2)sinh"-2(/) )9.
Next, if η f = m = 1 (mod 2), then

D *(n-i) # cP 2 , ξ = (-l)" ( ξ 2 + ( n- 3 ) ξ / )exp(Q/2)cosh^ 3(/)cosh(e)

• {coshn"2(/) cosh(e) + coshn-3(/) sinh(/) sinh(e)}.

This time, Lemma 3.3 implies that the even degree term in e in the
above expression is

and the lemma follows as in the other case.
By Lemma we have for any ωB G H2(B(2,3,11); Z),

Dβ(2,3,ii),.B = (-1)^- exp(Q/2) - β.

Thus for any ω — ωB + η G H2{E(n); Z),

Dj^),* = ( ( - l ) * ω i exp(Q/2) • ^ D ^ )
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If ω • f = 0 (mod 2), then

exp(Q/2)sinhn-2 (/)

Hn-2)u.f) e x p ( g / 2 ) s inh n - 2 (/),

and if ω • f = 1 (mod 2), then

exp(Q/2)coshn-2 (/)•/?)

+(n-2W) e x p(Q/2) cosh n " 2 (/).

This completes the proof of Theorem 3.1.

4. Relations for embedded 2-spheres

The goal of this section is to prove the following theorem, which is
the foundation of the theory expounded in this paper.

Theorem 4.1. Let X be an oriented simply connected J^-manifold of
simple type, which contains an embedded 2-sphere S representing an ho-
mology class σ with self-intersection σ2 < — 2. Then there are constants
Aifk and Bj^ depending only on σ2, such that for z G A ( σ ± ) ;

D(σ2kz) = Y^A^kD{σ2k-^z) + Ak+1ΛDσ(z) if σ2 = -(2k), and
3=1

2i-lz) + BkιkDσ(z) if σ2 = -(2k + 1).

As we have mentioned earlier, the case σ2 = —2 is due to D. Ruber-
man [32]. His result served, in part, to motivate the above theorem.

Consider first the case where σ2 = —(2k + 1). Let N be a tubular
neighborhood of S. It is the 2-disk bundle over S2 of degree —(2k + 1),
and dN is the lens space L = L(2k + 1,-1). Let Xo be the closure of
X \ N; so X = N U Xo and ΘX0 = L = L(2k + 1,1). Let ζ be the
generator of the character variety χsu{2)(L) of SU(2) representations of

( mod conjugacy. For 1 < m < k the p-invariant of ζm is

2k+ 1'

(see e.g. [28]) and p(ζ°) = 0.
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It will be important to understand the anti-self-dual reducible con-
nections on N (with an infinite cylindrical end L x [0, oo)). Let λ be the
complex line bundle over N with (cχ(λ), σ) = — 1, and let MN(X£ θ λ*)
be the moduli space of finite action anti-self-dual connections on λ^φλ^.
Such connections are asymptotically flat, and their boundary value is
conjugate to ζ£. Let δ(ί) be the dimension of the stabilizer of ζe. Since
σ2 = -(2k + 1), we have for 1 < ί < k, δ(£) = 1, and 5(0) = 3.
Furthermore, the Atiyah, Patodi, Singer's Theorem [2] gives

ίoτΰ<t<k. Here, c2{Xe θ λ') = ^
For a fixed K < A;, we wish to calculate D(σ2κ~1z) for an arbitrary

monomial z sitting, say, in degree d in the graded algebra A(σ±) (and
so that, say, degl? = 2n — 1 + deg^ (mod 4)). To make this calcula-
tion we shall use important techniques due to Cliff Taubes [35], [36],
[37], [38]. As we have stated in the introduction, an alternative ap-
proach is provided by the thesis of W. Wieczorek [39]. His technique
involves a partition of the compactified moduli space into compact do-
mains equipped with fixed framings of the basepoint fibration over the
boundaries. Using this partition, he is able to prove Propositions 4.5,
4.6 below by evaluating relative cohomology classes.

First we need the following notation:

Λίjv.&H denotes the cylindrical end moduli space consisting
of finite action anti-self-dual connections on N asymptotic to ζι

and of dimension 4i — 3 + 86, b > 0.

-M.χOtKib[j] denotes the cylindrical end moduli space consisting
of finite action anti-self-dual connections on Xo asymptotic to
ζi and of complementary dimension

(2d + 4κ - 2) - (4j - 3 + 86 + ί(j)), 6 > 0.

>M>L,t[hJ] denotes the cylindrical end moduli space consisting
of finite action anti-self-dual connections o n i x R asymptotic
to ζι at —ex) and to ζi at +oo and (by Lemma 4.2 below) of
dimension 4(j — i) — δ(i) + 8ί, t > 0.

Since JMΛΓ,OW = MN(X{ θ λ*) and instantons can be grafted into
this moduli space, the moduli space MNA^\ ιs nonempty and contains
a reducible anti-self-dual connection. All connections in these moduli
spaces decay exponentially at oo (and at —oo). The moduli spaces
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-Λ^L^jj] were studied in David Austin's thesis [3] and by Puruta and
Hashimoto [20].

Lemma 4.2. For 0 < i,j < k, any nonempty moduli space on
L x R with boundary values ζι at — oo and ζ"-7 at +oo has dimension
4(j - i) - δ(i) + 8t for some t > 0.

Proof. Let M^h j] be the moduli space in question, and first assume
that the reduced moduli space M'L[i, j] = M^hj]/^ the quotient by
translations, is compact. According to [3], [20] each compact λί'L[i,j] is
either 0 or 2-dimensional. Prom [3, §§4.2, 6.2] we see that if the compact
moduli space ΛΊ^fijj] is nonempty, then it comes from a bundle over
L xΈL which has c2 = —ab/(2k + 1) where a = j + i and b = j — i. If we
write j = i+r, then c2 = — r(2i+r)/(2k+l). Using the p-invariants of L
given above, the index theorem [2] gives dim M'L [i, i + r] = 4r — δ(i) — 1.
When i φ 0, this moduli space can be compact only when r — \ (and it
is 2-dimensional). When i = 0, if compact, then dimAf^O,.?'] = 4j — 4;
so j = 1, and JM^O, 1] is 0-dimensional.

To prove the theorem in general, use the fact (see [16]) that for any
•A îr̂ 'jj] w e c a n expand an end of Λ4'L[i,j] into compact pieces; i.e.,
write an end locally as

M'L[toA] x Gfr) x R x ... x Gίlt-ύ x R x M'L[lt-nttl

where ί0 = i, ^ = j , each M'L[ίi-ι,ti] is compact, and
Stab(ζ^). If 0 < i < j < k, then the shortest such path is given
by ί<m — i + m, t = j — i, and the theorem follows.
This lemma does not depend on the fact that πx (L) has odd order.

To apply Taubes' techniques, we study the cylindrical end based mod-
uli spaces MNA^\ a n d Mχo,*,&M °f anti-self-dual connections modulo
gauge transformations which are asymptotic to the identity. Here, the
basepoint is taken at oo; this is the same as considering the orbifold
obtained by coning off the lens space L and using the cone point as
basepoint. If δ(i) = 1, we have the boundary value map

where S2[i] C SΌ(3) is the conjugacy class (* of representations of πi(L)
on 5O(3) = SU(2)/center, and similarly we have dχOtKib[i\. If δ(i) = 3
then the map djv,&[i] is the (trivial) map to {1} C SO(3). Recall that
to define dNjb[i] at some A G MN^]- o n e n e e ds to trivialize P over the
cylinder, and then look at the limit of the restriction of A over L x {t}
ast^oo ([28]).

Using the boundary value maps we form fiber products MNA^I
 xi

MχOίKib[i] over S2[i] or {!}, as the case may be. The boundary value
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maps satisfy the following compatibility properties. (See e.g. [35], [36].)

Proproposition 4.3. The boundary value maps dNίb[i], dLtt[%],

9LAJ]J
 and dχo,κAJ] are continuous maps. Furthermore, MNA^\ X «

M'Lt[h j] c a n be identified with a subset of MN,h+t[j), and M'Lttl[i,j] Xj

M'LM[j,£] can be identified with a subset of M'Lttl+t2[i,ί\, etc. The

boundary value maps are compatible with these identifications in that the

restriction of dN,b+t[j] to the image of MN^\ χt*M'Ltt[hJ] ^s eQua^ to

the map induced from d^tU], etc. Furthermore, there are identifications

l[i,j] XjM'LM\j,(\) xtM'Ltt3[e,m]

= M'Lttl[i,j] xj {M'LM\jA xtM'Ltt,[i,m]),

as subsets o/jM^ ί l + ί 2 + ί 3[i,77i] ; compatible with the boundary value maps.

Prom the gluing theorems of Mrowka [31], Morgan and Mrowka [30],
and Taubes [34], it follows that

i b

Thus, letting r be a 3-form which integrates to 1 over the fibers of the
basepoint fibration over ΛΊχ0, one needs to integrate

(6) / . r Λ A(a)2*-1 Λ μ(z).
JMNAi]χiMχo,κ,b[i\

The form μ(z) on MχOiKtb[^\ P u ^ s back from the form μ(z) on Mχo^tb[^]
which contains no reducible connections. However, since δ(i) =
dim(Stab)(O) > 1, it follows that dim MNA^\ < 4κ — 2; so μ(σ) does
not pull back from MNA^I (Otherwise we would have μ(σ)2κ~1 = 0
by dint of a dimension count.) This means that the SO(3) action on
M-NA^} which gives the basepoint map is not free. (In order to make
this argument precise, first one needs to blow up X at a point in Xo and
then to use the relation Dχ#cp2

 e{σ2κ~λze) = Dx(σ2κ~1z) [29] as we
22

mentioned in §2. Since there are no flat connections on X 0 # C P with
w2 = e (mod 2), the counting argument goes through unencumbered.
We assume this done, and for simplicity we do not change notation.)

Now μ(σ)2κ~ι vanishes near the trivial connection; so if our integral
is to be nonzero, .Mjv,δM m u s t contain a sequence of connections which
converges weakly to a nontrivial reducible connection. This situation
has also been studied by Taubes in [36]. Although μ(σ) does not pull
back from the base, it does define an SO(3) equivariant cohomology class
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as follows. If m : 5O(3) x MNA*\ ~^ M-NJ>]}]
 ι s the 50(3) action, and

p : 50(3) x MNA^\ ~* M>N,b[i] 1S projection on the second factor, then
there is a smooth form ω on 50(3) x .Mjv^i] such that m*(μ(σ)) =
p*(μ(σ)) + dω. This allows the construction of an 5 0 (3)-equivariant
extension μ(σ). As explained in [36] (also cf. [4]), it is important to
note that the construction of the extended form μ(σ) cannot be made
solely in terms of data derived from N. Prom Xo one needs the choice
of a connection on the principal 50(3) bundle .Mχo>Λ}&[i] ~^ Mχo,«,&M
Taubes has shown [37] that there is an enlargement of the moduli space
-M-N,b[i] χ ί <MχOiKib[i] which has a compactification as a manifold with
corners, and the forms μ(σ), μ(z), and τ are push-forwards of forms
which extend over this compactification. Furthermore, the pullback of
the top-dimensional form r Λ μ(σ)2κ~1 A μ(z) pulls back from lower
strata when restricted over the corners. Thus the integral (6) is finite
and well-defined.

According to [37], [38], the push-forward map (dw,&[i])* to equivariant
cohomology is well-defined, and

. τAβ(z)Aβ(σ)2κ-1

Njb[i]XiMχ0,κ,b[i\

= I τAμ(z)A(dXo^M'
JMχo,κ,b[i\

where (dχOiK,b[i\)* denotes pullback from equivariant cohomology. Tau-
bes has shown by similar considerations as above that this last integral
is well-defined.

For z = 0, <9jv,&[0] : MNA®] ~* {1} has fiber dimension equal to

dim.M;v,&[0] = 86. So the cohomology class represented by the cocycle

(^ΛΓ,6[i])*(A(σ)2'c~1) 1S 0> because it lives in

.) - 0.

If 1 < i < Λ, then dNib[i] : MNA^\ ~* ̂ 2[*] ^as fiber dimension 4i+8b—2,
and

But HgO^(S2[i]) = ϋΓ*(CP°°) is generated by a 2-dimensional cocycle

v. This means that (^Λr,6[ϊ])*(/i(σ)2κ~1) is some multiple
mk(κ,ijb)v2^κ~i>}~4b. Notice that this implies

0 < i < ft and b < — — .

To calculate (dχOiKtt[i])*(^)5 note that the fact that we have dχOyKib[i] :

Mχo,κ,b[i] -> 52[i] implies that the basepoint fibration βχo,κ,b[i] '
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-> Mχo^b[i] reduces to a principal S1 bundle

for a point s{ G S2[i]. Now (dχo,κ,b[i])*(v) represents a class in

Hso(3)(Mχ0tltM*') - H2{MXo^h[ϊ\ ΈL) since the SO(3)-action on

MχOiK,b [i] is free. The following fact is pointed out by Austin and Braam

in [4] where a differential-geometric proof is indicated.

L e m m a 4.4. Under the identification of H^o^ΛM.χ0^yb[i])'R) with

H2(MχQ,κ,b[i\,Ίl), the pullback (dχOtKtb[i])*(v) represents ε, the Euler

class of the S1 fibration 7jro,Λ,&[i].
Proof One can factor the classifying map of ηχQ,κ,b[i] as follows:

d~ι{si) —> d-1(si)xESO{2) —> {si}xESO(2) -̂ > ESO(2)

Φ 4, ψ ψ

This pulls back the universal class v to d*v.

We now have

r Λ μ(z) Λ μ(σ)2κ~1

= mk(κ,i,b) I_ τΛμ(z)Λ(dXo,

= mk{κ,i,b) I /i(2)Λε2M"41

μ(z) Λ vκ~ι~2h,

where Mk(κ,i,b) = (—4)κ~ι~26?τijk(κ,i,6), since ε2 = Pi(/0χo,κ,6[i]) and
v = -τPΛβxo^Λi])' T h e integral

is a relative invariant on Xo. Alternatively, one may view this invariant
as a Donaldson invariant of the orbifold obtained by collapsing the 2-
sphere S C X to a point and using bundles with rotation number i over
the cone point.

So far we have contributions

i=l 6=0
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to the calculation of D(σ2κ~1z). This does not give the complete calcu-
lation because multiple counting may have occurred. For example, the
double fiber product

MNtb[i] *iM'Ltt[iJ] Xj MχOiKtb+t\j]

is contained in both MN,b\i] XiMχOtK,b[i] and MN,b+t\j] xjMXo,Kib+t[j].
Thus we need to appropriately add or subtract contributions from higher
order fiber products. For example, computing as above,

. . τAμ(z)Aμ(σ)2κ-1

Nth[ϊ\XiM'Lt{ij]XjMχQ,Kίh+t[j]

= ml _ rA~μ{z)h{dLMT^2(κ~i)~ib)
JM'Lt[i,j]xjMχ0, κ,b+tlj]

= mnί r Λ μ(z) A (dXΰ<κ,b+t\j]y(υ2^
JMχo,κ>b+t[j]

since the fiber dimension of dL^[j] is 4(j— i)+8ί, and where the constants
ra,n depend only on σ2, K, i, j , 6, and t. This is then a multiple of
Dχo\j](zxκ-•?-2(6+ί)) as before. Adding (or subtracting as necessary) all
these correction terms, we obtain

Proposition 4.5. Let σ2 = -(2fc + 1) and 0 < n < k. Then for all
z E A(σ^),

i=l 6=0

where the coefficients Γfc(κ, i,6) depend only on σ2', K, i, and b.

In fact, one might reasonably attribute this last proposition to Taubes
[37], [38]; we have simply provided a reader's guide. (Cf. also [39].)

In the even case, σ2 = —2/c, we need to evaluate D(σ2kz). Our
above arguments work in this case with very minor modifications. First,
the argument which rules out the trivial boundary value no longer ap-
plies. In this case, the boundary value map dN}b[0] : MNJI®] ~* {1} ̂ a s

fiber dimension 86; so (dNib[0])*(μ{σ)2κ) G ^ ^ ( { l j R) = R. Since
ίfso(3)({l};R) — ίf*(B5O(3); R) is a polynomial algebra generated by
a 4-dimensional cocycle w, we get (d;v,&[0])*(μ(cr)2") = m'k(κ,0, b)uκ~2b.
By a dimension counting argument, the trivial moduli space of for-
mal dimension —3 does not contribute to the calculation of D(zσ2k)
if K > 0. Furthermore, dχOfK)b[0]*(u) = pι(βχ0). So one gets terms
DXo[0](zxK-2b) in the calculation for b > 1 and K > 2. For 0 < i < K,
the fiber dimension of dNtb[i] •' MNJ,]}] -> S2[i) is 4ΐ + 86 — 2; so
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1 . This means that we have
to integrate terms of the form

= (-4)κ" i-2 6 / μ{z) Λ uK-l-2b Λ ε,
JMχo,Kίh[%l

since ε2 = Pi(β) = —4ZΛ For obvious reasons, we shall denote this
last integral as DXo[i](z xK~{~2b+^). For i = fc, we have ί(fc) = 3, and
arguing similarly to the case i = 0 we see that the only contribution to
the calculation is m'k(k,i,b)DχQ\k](z).

Proposition 4.6. Let σ2 = —2k and 0 < K < k. For z E A(σ±)J if
K < k, then

Dχ(σ2"z) =
i=l 6=0

[f]

6=0

and

Dx(σ2kz) = sk(k,k,0)DXo[k](z) + E Σ
i=l 6=0

6=0

where the coefficients Sk{κ,i, 6) depend only on σ2', K, i, αncί 6, and i/

K > 0 ίΛen s*(/c,O,O) = 0 .

We are now in a position to prove Theorem 4.1. Consider first σ2 =

-(2A; + 1). Prom Proposition 4.5 we have D(σz) = r Λ ( l , l,0)DXo[l](z).

We claim that r f c(l, 1,0) ^ 0. To see this let X be E{3)#(2k - 2 ) C P 2

with / a fiber class and s a section class in £7(3), and let e i 5 i =
2k-2

1,. . . , 2A; — 2, be the exceptional classes. Then σ = 5 — Σ e% ι s r e P "
2 = 1

resented by an embedded 2-sphere in X, and σ2 = — (2k + 1). Prom
Theorems 3.1 and 3.12 it follows that the SU(2) Donaldson series of
X is Όx = exp(<2/2)sinh(/)Πcosh(ei). In general, | ( 1 + 6^(n)) = n
(mod 4); so Dx can be nonzero only on elements of A(X) in degrees



610 RONALD FINTUSHEL & RONALD J. STERN

congruent to 3 (mod 4). Thus Dx(σ^) = f s = 1. Since rk(l, 1,0) is
independent of X, it must be nonzero.

Assume inductively that for 1 < i < K — 1 we have:

(1) for z e A(a x ) such that 2i-l + άegz = άegDx (mod 4),

where the coefficient tk(l,i) depends only on t, i, and s2.

(2) rk(ί,ί,Q) 7^0.

For z e A^- 1),

ί=l 6=0

= rk{κ,κ,0)DXo[κ](z)

The assumption of simple type implies that Dx(wxr) = 2rDx(w) for
all w G A(X); so the above expression simplifies to

κ-1

rk (K, K, 0)DXO [K] (Z) + Σ ]

2 = 1

To see that rk(κ, K, 0) ^ 0, let X = £7(2κ + l)#2(fe - «)CP and let
2(k-κ)

σ = s — X) e» where s is a section of J5(2κ +1) . Then σ is represented
i=l

by an embedded 2-sphere in X, and σ2 — —(2k + 1). We have seen that
the Donaldson series of X is

Όx = exp(Q/2)sinh2^1(/)Πcosh(e i),

where / is the fiber class of E(2κ + 1). We get

Dx{σ2κ'1) = (2κ - I ) ! / 2 " " V - 1 ) = (2κ - 1)!,

and also D x (σ2 '"1) = 0 for £ < K. It thus follows that (2κ - 1)! =
Dχ{σ2κ~1) = rk(κ,κ,0)DXo[κ](l); so rk(κ,κ,0) 7̂  0, completing the
induction.
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For K = k and any z G A(σ±), we thus get

(7) Dx(σ2h-ιz) = rk(k,k,0)DXo[k](z) -

Our final task in proving Theorem 4.1 for σ2 = — (2k + 1) is the
identification of DXo[k], the relative Donaldson invariant for Xo, with
boundary value ζk. Let η denote the generator of χso(3)(£)ί the char-
acter variety of 50(3) representations of πi(L) mod conjugacy. Then
we may identify ζ with ad(() = η2. By viewing SU(2) connections
over Xo as 50(3) connections with w2 = 0, we may identify DXo[k] =
DXoAv2k] = DχoAv]> s i n c e V2k = V'1 = V in Xso(z)(L).

Consider the calculation of DXi<τ(z) for z G A(X0). Let w = ^ in case
Ξ degDx^σ (mod 4), and lί; = \zx in case deg2: = degDx^σ +

2 (mod 4). So Z?χjσ(z) = Dχtσ(tϋ). A standard neck-stretching and
dimension counting argument show that all connections in the cut-down
moduli space Λ4χ,σΓ\Vw, where Vw is the divisor associated to μ(w), can
be obtained by grafting connections in Λίχo[77J to a nontrivial reducible
connection over AT, which lies in a moduli space of formal dimension
< —1. There is just one such connection, the reducible connection
corresponding to the 50(3) bundle λ 0 R over N. Hence DXy(T(z) =
±DXθtO[η](z) = ±DXo[k](z). Theorem 4.1 for σ2 = -{2k + 1) now
follows from (7).

To prove the theorem in the even case σ2 = — 2fc, we have a similar
induction argument which we start with the two calculations

Dx(z) = DXo[0](*),

Dχ(σ2z) = 8k(l,l,0)DXo[l](zχi),

the second equation by Proposition 4.6. To compute the top term
Dχo[k](z), we once again pass to 50(3). This time ζk = η2k = r/°,
the trivial 5O(3) character; so ί)χo[k](z) = DXttr(z). Theorem 4.1 for
σ2 = -2k follows.

In proving Theorem 4.1 we have not made use of the entire hypoth-
esis of simple type. Rather, we have only needed the assumption that
Dx(zx2) = ADχ(z) for all z G A(X). Hence by from our formula we
obtain

Lemma 4.7. Suppose that Dx(zx2) = 4Dx(z) for all z G A(X)
and that c G H2(X',Z) is represented by an embedded sphere of self-
intersection < —2. Then
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for allzeA(cL).
Finally, we remark that in case we do not make the assumption that

X has simple type, by keeping track of the powers of x which occur, our
proof still gives a relation.

Theorem 4.8. Let X be an oriented simply connected J^-manifold,
which contains an embedded 2-sphere S representing an homology class
σ with self-intersection σ2 < —2. Then there are constants Aj^,
Bj,b,k depending only on σ2, such that for z G A(σ±)J

Diσ^-'z) = Bo,oΛW + Σ Σ B^kD{σ
j=l 6=0

if

and

Σ Ajtb,kD(σ

if σ

2 = -2k ,

j=l b=0
2

and furthermore, Aij0,jfc = 0.

In the next section, we shall see that the structure theorem for man-
ifolds of simple type follows from Theorem 4.1 and the blowup formula,
Theorem 3.12, by purely formal arguments. Similar arguments should
obtain a structure theorem in general from Theorem 4.8 and the general
blowup formula [14]. We have not yet worked out the details.

5. Structure theory for the Donaldson series

5.1. The Donaldson series as a solution to a differential
equation

Throughout this section, X will denote a simply connected 4-manifold
of simple type. Suppose that c G H2(X',Z) is represented by an em-
bedded sphere of square < —2. Write Όx — exp(Q/2)Kχ and ΌXc =
exp{Q/2)KX)C where for aeH2(X),

K j r (α)=ϋΓ(exp(α)),

which defines K G A*(X). Similarly, Kx>c(a) = Kx,c(exp(a)). We first
rewrite our relations of the last section in terms of differential equations
for Kx and KXc.

For u G H2(X) and F G A*(A"), the interior product

^jP(t ) = (deg(v) + l)F(uυ)
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gives a derivation. On the formal power series F on H2(X) defined by
F(α) = F(exp(a)) this induces

duF(a) = F(uexp(a)),

which is just the formal derivative of F in the direction u. Similarly, for
higher order derivatives, d^F(ά) = F(ukexp(a)). Also, note that the
linearity of F implies that du+υF = duF + dvF.

An induction argument shows that

(8) df exp(Q/2) = exp(Q/2) f^{u • «)'

and

(2fc-2t)!
U) U

where ύ is the dual form of u E H2{X) with respect to the intersection
form Q. For At G H2(X) we have

(10) at4(elc) = (κ ti)e\

Using equations (8) and (9) we can restate the relations given in
Theorem 4.1.

T h e o r e m 5.1. Suppose u G H2(X', Z) is represented by an embedded
sphere. Let k > 1 be an integer. If u2 = —2k, then there are constants
Q>i,k depending only on u2 such that on (u)-1,

(d2

u

k + alth%
h-2 + •-• + ak^kd

2

u + a M ) K * + ak+1%kKx%u = 0.

If u2 = — (2k + 1), then there are constants biίk depending only on u2

such that on (u)1-,

{d2

u

k-λ 4- bhkd
2

u

k"3 + + bk_hkdu)Kx + bk,kKXiU = 0.

Note that the equations in Theorem 5.1 involve both iSί7(2)-invariants
Kx and 5Ό(3)-invariants Kχ)U. We first use the blowup formula (The-
orem 3.12) and our computations for the elliptic surfaces E(2k) (The-
orem 3.1) to determine differential equations, which do not involve the
Kχ)U, and are valid on all of A(X). At the end of this section we will
return to Theorem 5.1 to show that the 5Ό(3)-Donaldson invariants are
determined by the SfC/(2)-Donaldson invariants.

It is convenient to define the differential operators

Δl,k = dM - 2>)(d2

u - 42) • (dl - (2k - 2)2)
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and

Suppose u G H2{X) and let e G H2(X#CP Z) be the exceptional
class. Then the following differentiation formulas can be verified by
induction on k using the fact that du+e = du + de:

(11) Δ^eik(K

(12) 4 ° + e i J f c (K

= cosh(e)d1ιΔlk(Kx) - 2ksinh(e)Δlk(Kx).

Theorem 5.2. Suppose u E H2(X; Z) is represented by an embedded
sphere. If u2 — —2k, k>l, then on ( u ) x ,

Proof. We first show that there are constants d^k depending only
on u2 such that on (u)1-

(13) ( c f - 1 + d1Λd
2

u

k-3 + ••• + dk.ltkdu)Kx = 0.

2

To do this, consider u + e G H2(X#CP Z). It is represented by a
sphere which has square — (2k + 1). By Theorem 5.1, on (u + e)L

0 =(βK--1 + bhkd
2

u

k+-3 + + &*_!, A + e ) K χ # ϋ p 2 + 5*

HdlX~l + bltka%? + ' • + h-hkdu+e)Kx cosh(e)
-bkikKXjUs'mh(e).

For the last equality we use the fact that

which follows from Theorem 3.12. Differentiating and using du+e

du + de,
 w e Se^ constants diίk and d[ k with

- sinh(e){((2A; -

Now (« + e)-1 = {y + (u y)e|y G ̂ 2 ( ^ ) } Note that

cosh(e)((?/ + (u ί/)e)m) = cosh(u)(ym),

sinh(e)((y + (u • y)e)m) = -smh(u)(ym).
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Hence restricting the last equation to (u + e)1- we get

cosh(U){d 2

u

k - 1

( 1 4 ) + shύi(u){((2k - i)d2

u

k-2 + d hkdlk-* + ••• + d ' k _ l i k ) ( κ x )

Restricting to («) x thus gives the desired equation.

To determine the universal constants d^k we substitute

KE(2k) = sinh2 f c-2(/)

into (13) where u is a section of E(2k); so u2 = —2k and u f = 1.
(Note that if v = u + 2kf then v u = 0 and v / φ 0; so we are not
applying the equation to a trivial situation.) For each 1 < r < fc - 1 we
get the equation

(15) {(2r)2 Λ"1+Σ<
t=l

The characteristic equation of (13) is given by

(16)
t=l

and from (15) it follows that z = 0, ±2, ±4, ±2(A; — 1) are the charac-
teristic roots, which are precisely the characteristic roots of Δ*uk.

L e m m a 5.3. Suppose that u G H2(X;Z) is represented by an
embedded sphere. If u2 = — 2k, k > 0, then there are constants d^k and
d{ k depending only on u2 such that

*- 1 + dhkdlh-3 + ••• + dk_hkdu}(Kx)

smh(u){((2k - l)dlk-2 + d'hkdlk"4 + + d'k_hk)(Kx)
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holds on all H2(X). If u2 = — (2k + 1), k > 0, then there are constants
hiik and h'ik depending only on u2 such that

cosh(u){d2

u

k + hhkd
2

u

k~2 + • + hk.1Λd
2

u + hk,k}(Kx)

+ sinh(u){((2k)d2

u

k-1 + h'hkd
2

u

k"3 + + h'k_ltkdu)(Kx)

+ h'kikKx,u} = 0

holds on all H2{X).
Proof. The u2 = — 2k case is (15) above. The odd case is proved

similarly.
Theorem 5.4. Suppose u G H2(X; Z) is represented by an embedded

sphere of square u2 = —(2k — 1) < —3. Then on all of H2(X),

cosh(tι)a t t^ ϊ i k_1(K J f) + (2k - l)ώήk{υ)Δlk_1{Y.x) = 0.

In particular,

duΔ°Uik_1(Kx)=0

on (u)1-.

Proof Again consider u+e E H2(XifCψ2\ Z). Then (u+e)2 = -2k
and u + e is represented by a sphere. Thus, by Theorem 5.2, on (u + e)-1

0 - Δe

u+e>k(Kχ#^) = Δl+eik(Kx cosh(e)).

Now apply the differentiation formula (12) and restrict to H2(X), as in
the proof of Theorem 5.2, to obtain the desired differential equation.

Corollary 5.5. Suppose that u G H2(X;Z) is represented by an
embedded sphere of square u2 — —(2Λ; — 1) < —1. Then on all of H2(X),
K.χ satisfies the constant coefficient homogeneous linear ordinary dif-
ferential equation

Proof If u2 = —1, the result follows directly from Theorem 3.12.
Suppose that u2 < —3. By Theorem 5.4,

C08h(u)5 t t^ ι i f c.1(Kx) + (2k - l)8inh(ti)^ f j f c.1(K j r) = 0

on all of H2(X). Differentiate this equation to get

0 = a t t(cosh(ti)a u^ i t_ 1(K x) + (2k - 1) 8iDh(u)Δo

Utk_1{Kx))

= cosh(u)(cζ - (2Λ - l ) 2 ) ^ . ^ ) - cosh(u)Δo

u>k(Kx),

and the result follows.
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Corollary 5.6. Suppose u G H2(X; Z) is represented by an embed-
ded sphere. If u2 = -2k < - 2 , then on all of H2(X),

Proof. Again consider u + e € H2(X#CP Z). Then (u + e)2 =
— (2k + 1), and u + e is represented by a sphere. Thus

0 = ^ + e , f c + i K χ # c p a = ^ e ) H i ( K χ cosh(e))

on all of H2(XHzCP ). Since cosh(e) and sinh(e) are linearly indepen-
2

dent functions on H2(X#CP ),

We shall also need the following stronger result.
Theorem 5.7. Suppose u G H2(X; Z) is represented by an embedded

sphere of square u2 — —2k < 2. Then on all of H2(X),

u ) ^ ( c £ + 2k){Kx) + (2k + 1) s i n h ( u R ^ ( K x ) = 0.

Proof. The proof is similar to that of Theorem 5.4. Consider
———— 2

H2(X#GP Z). It is represented by a sphere of square — (2k + 1). By
Theorem 5.4, on (u + e)1-

0 = du+eΔ°u+eikKχ^2 = ^ ^ ( K x cosh(e)).

Apply the differentiation formula (13), and project back to H2(X), as
in the proof of Theorem 5.4, to obtain the desired differential equation.

Now, for arbitrary u E H2(X\ Z), we determine differential equations
with respect to du that K.χ satisfy. For this, the following differentiation
formulas, again proved by induction on k using du-2e — du — 2de, are
essential:

e)) =cosh(e)Δlk_ι(d2

u +4k(k -

(17) + 2(2* - 1) s i n h ί e ) ^ ^ (Kx),

^ - 2 e . t ( K χ cosh(e)) =cosh(e)^°> t_ 1(^ + (2* + 1)(2* -

(18) +4ksinh(e)duΔltk_1(Kx).

Theorem 5.8. Suppose u 6 H2(X;Z) can be represented by an
immersed sphere with pu positive double points (and an arbitrary number
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of negative double points). Ifu2 = 2k + l^ then on H2(X), K.x satisfies
the differential equation

Ifu2 = 2k, then on H2(X), Kx satisfies

Proof To begin, suppose that u E H2{X',TL) with u2 = 2k + 1
is represented by an immersed sphere with pu positive double points
and nu negative double points. Then in X = X # P u C P # H u C P the
homology class u = u — 2βχ — — 2ePu is represented by an embedded
sphere with ύ2 = 2k +1 — 4pu = — (2(2pu — k) — l). If a simply connected
4-manifold contains an embedded essential sphere of nonnegative self-
intersection, then all the Donaldson invariants of the manifold vanish
[28]. Thus ύ2 < 0. By Corollary 5.5, we have

Consider the differentiation formula (18). In this formula, note that if

^-2e l f c (Kχcosh(e)) = 0

everywhere, then on H2(X) one obtains the two differential equations,

K,k-i(d2u + (2* + 1)(2Λ - 1))(K*) = 0

and

ft,^ιA_1(Kjr) = 0.

The common solutions satisfy

Δl^Kx = 0.

Thus for each of eλ,..., ePu, the differential equation which results from
applying (18) has two fewer characteristic roots. Thus, px applications
of this differentiation formula to

yields the desired result. A similar argument applies when u2 = 2k.
Note that if Όx ^ 0, this theorem implies that pu > \(u2 — 1) if u2 is

odd and pu > \{u2 — 2) Ίίu2 is even. We shall improve this considerably
in Theorem 5.10 below.

5.2. The structure of the Donaldson series
In this section we shall show how the constant coefficient linear homo-

geneous ordinary differential equations given by Theorem 5.8 determine
the qualitative structure of the SU{2) Donaldson series.
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Theorem 5.9. IfX is a simply connected ^-manifold of simple type,
then there exist finitely many homology classes κλ, . . . , κp £ H2(X, Z)
and nonzero rational numbers ax, . . . , ap such that

5 = 1

as analytic functions on H2(X). Each of the classes κs is characteristic,
i.e., an integral lift ofw2(X), and the collection {κs} is a diffeomorphism
invariant of X.

Theorem 5.9 was first proved by Kronheimer and Mrowka [24] through
their detailed study of singular connections. The classes κs are called
basic classes. Note that since D * is an even function if fr£ = 3 (mod 4),
and an odd function if 6 j = 1 (mod 4), the nonzero basic classes come
in pairs, κs and —κs. Thus we can rewrite Όx as follows. If b~χ = 3
(mod 4), then

r

Όx = exp(Q/2) Σbscosh(κs),
s=l

and if b~χ = 1 (mod 4) then

r

Όx = exp(Q/2)Σbssinh(κs).
S=l

Beware that there are ambiguities when writing D * this way. We will
adopt the convention which dictates that both κs and — κs do not occur
as an argument of these hyperbolic trigonometric functions. If we re-
place the chosen κs by —κs when b~χ = 3 (mod 4), then the coefficient
bs remains unchanged. However, when bJ = 1 (mod 4) the sign of the
coefficient bs changes.

Proof of Theorem 5.9. Write Όx = exp(Q/2)K x . Let uu ..., ub e
H2(X) be a basis represented by immersed spheres and ordered so that
u\ = 2kt + 1 for t = 1,. . . , I and u\ = 2kt for t = ί + 1,. . ., b. Using the
blowup formula, Theorem 3.12, we may assume that no ut is represented
by a sphere of self-intersection —1. Let txj,..., ul £ H2(X;Z) be a dual
basis satisfying u* Uj = 5^. By Theorem 5.8, Kx satisfies the system
of constant coefficient linear differential equations given by

Δ°UuPut-k(Kx) = 0 (4 = 1 , . . . , * ) ,

Δlt>Put_k+1(Kx) = 0 (t = £ + l , . . . , 6 ) .

Note that each equation is an ordinary differential equation in a single
variable while the other variables are held fixed. The roots of the corre-
sponding characteristic polynomials are distinct and lie in sets of inte-
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gers iVi,..., Njj of orders p l 5 . . . ,p&, respectively. More specifically, Nt =
{±1, ± 3 , ±2(put -kt)-l} for t = 1,... ,*; and Nt = {0, ±2, ±2(ί>Ut -A;,)}
for ί = ί+1,..., 6. For each t = 1,. . ., 6, let us denote the characteristic
roots lying in Nt by r t j t for j t = 1,... ,p t . Solving the first equation
gives

where each dUlΦJλ = 0. Substitute this expression for K^ into the
second equation. The fact that u{ u2 = 0 implies that each ΦJX satisfies
the second equation. Solving gives

φ . . e

r*.i2U2

32 = 1

where each dU2Φjuj2 = 0. Also since dulΦjx = 0, each dUlΦjuj2 = 0 as
well. Hence

Inductively, we get

where the coefficients Φj1}...jb satisfy dUtΦjlim,.jb = 0 for < = 1,... ,6.
I.e., the coefficients are constant; so we have

(19) K x ^
s = l

as advertised. Since the functions ea : H2{X) ->• R are linearly inde-
pendent for distinct α, it follows that the set of classes κa corresponding
to αs φ 0 is a diffeomorphism invariant of X.

To see that the coefficients αs must be rational, assume, e.g. that
b~χ = 3 (mod 4); so as above

v
D x = exp(Q/2) ]Γ&scosh(κs),

8=1

where bs = 2αs. Consider any u G H2(X\ Z) and nonnegative integer d

with D(ud) φ 0, an integer. Then
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where the coefficients ηs(u,d) are rational numbers. If we can find p
such pairs (ui,di) such that the p x p matrix of coefficients {ηs{ui^di)}
is nonsingular, then it follows that the b8 and hence the as are rational.
However, if we cannot find p such pairs, then choose among all such pairs
so that {ηs(ui,di)} has maximum rank r, and renumber the pairs and
the κs's so that the upper lefthand r x r submatrix Ar is nonsingular.
Then for j , t > r, we can solve

where ζt is a subdeterminant of the first r rows of {ηs(v>i,di)}. This
means that we can express

r

Όx = exp(Q/2)

contradicting the diffeomorphism invariance of the set of basic classes.
Since each rtijt = u2 (mod 2), each of the basic classes rι^Ύu{ H h

rbjbut ι s characteristic.
5.3. Generalized adjunction formulas
Let X be a simply connected 4-manifold of simple type with a non-

trivial Donaldson invariant. According to our comments above, its basic
classes come in pairs {/ss, — κ s}, and

Ώx= _

Theorem 5.10. Let X be a simply connected ^-manifold of simple
type and let {κs} be the set of basic classes as above. IfuE H2(X] Z) is
represented by an immersed 2-sphere with p > 1 positive double points,
then for each s

(20) 2p-2 >u2 + \κs -u\.

Theorem 5.11. Let X be a simply connected l^-manifold of sim-
ple type with basic classes {κs} as above. If the nontrivial class u G
H2{X]fi) is represented by an immersed 2-sphere with no positive dou-
ble points, then let

{κs\s = l,...,2ra}

be the collection of basic classes which violate the inequality (20), and
thus κs u — ± u 2 for each such κs. Order these classes so that κs u =
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-u2 (> 0) for s = 1,..., m. Then

+

(21) $> se
K>+" - (-1)-** 5 > . e — - t t = 0.

β = l a = l

The exceptional cases in Theorem 5.11 do indeed occur; e.g. when
2

u is the sum of (±) exceptional divisors in X#kCP . It could be that
these are precisely the exceptional cases.

Proofs of (5.10) and (5.11). We have

To begin, suppose that u G i/2(X;Z) is represented by an embedded
sphere with u2 = — (2k — 1) < —3. Applying Corollary 5.5 to Kx yields

s=l

Now the κs are characteristic; so /ίs u φ 0, and d^(eKs) = (κs u)neKa.
Thus for each s, κs u is a, characteristic root of Λ°u k1 hence κs u =
± 1 , ± 3 , . . . , dt(2k — 1). Inequality (20) is satisfied unless κs u = ±(2k —
1). Apply Theorem to K^ to obtain

(22) ^

+(2k - 1) smh(u){ΣP

s=1 α.ΔZ^ie"-)} = 0.

The left-hand side of (23) is 0 for all those κs with κs u φ ±(2k — 1),
for such κs u are characteristic roots of Δ°uk_λ. To deal with those s
with κs - u = ±(2A; — 1) we reorder the basic classes as in the statement
of the theorem so that κ i 5 . . . , Km are those satisfying κs-u — +(2k — 1)
and then —ACI, . . . , — κm are the others. Hence (23) becomes

0 =

+(2k - 1){- cosh(u)

= (2* - 1) q(2k - 1) { £ αse
κ'+u - δ

s=l
m m

s = l

1 + bĵ

where J = (—1) 2 ? and ̂  is the characteristic polynomial of Δ°uk_λ.
(Note that q is an even function.) Since 2k — 1 is not a characteristic
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root of Δljk_lt q(2k -ί)φθ, it follows that

se~Ks~u = 0.
5=1 5=1

Remark that the case left out, namely that u is represented by an
embedded 2-sphere of square —1, is dealt with handily by the blowup
formula, Theorem 3.12.

Similarly, if u2 = —2k < 0, apply Corollary 5.6 to K* to get

5 = 1

so that ns-u is a characteristic root of Δe

u Λ + 1, hence κs u = 0, ±2, ± 4 , . . . ,
±2k. Again, (20) is satisfied unless ks u = ±2k. As above, we use the
stronger differential equation given by Theorem 5.7 to obtain

8=1 5=1

where ks u — —2k for 5 = 1,..., m.
The upshot of all this is that unless

s=l s=l

we have that for all 5,

-2>u2 + \κs >u\.

More generally, suppose u G H2(X\ Z) is represented by an immersed
sphere with p > 0 positive double points and n negative double points.
Then, in X = X#pCP2#nCP2 the homology class ύ = u-2e1

2ep is represented by an embedded sphere and ύ2 = u2 — 4p, which is
negative if Dx φ 0. The basic classes of X are of the form

ks = κs ±e1 •• ± e p + n .

Let {±l}p+n = {£(1),..., ξ(2p+n)}. If there is an exceptional case of the
theorem occuring here, then there are basic classes hs,n = κs + ξ(n)ιe1 +

h ξ(n) p + n e p + n such that

(23) Σ α ^ e " 5 > n + ώ - * Σ α .» e 'Λ ' "'Λ = °
However,
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so classes {ks,n + ?̂ ~kSyTn — ύ} are distinct. Hence the exponentials
occuring in (23) are linearly independent, a contradiction. Thus there
are no exceptional cases and

- 2 > ύ2 + max{|(/c, ±e1--± e p + n ) •{u-2e1 2ep)|}.

This also satisfies the inequality

2p — 2 > u2 + max |κβ u|.

Finally, if p = 0, and we are in the exceptional case, then we obtain
the analogue of (21) for ά, and the exceptional classes factor out leaving
the desired equation.

Suppose that X is a simply connected compact complex algebraic
surface, and let κx denote its canonical class. If C is an algebraic
curve representing an homology class c E H2(X] Z), then the adjunction
formula gives

2g(C) -2 = c2 + κx-c,

where g{C) is the genus of C. There are currently no known examples
where nx is not also a basic class for X. This problem has been studied
by R. Brussee [6]. At any rate, suppose that it is the case where some
κ s = «χ, and suppose that there is a smoothly immersed 2-sphere T in
X, with p positive double points, which also represents the class c of
the algebraic curve. Applying Theorem 5.11 we obtain

2p - 2 > c2 + κx c = 2g{C) - 2,

except in the exceptional case of Theorem 5.11. In the exceptional case,
T is embedded, and we can introduce a positive-negative pair of double
points, and then apply the theorem.

Theorem 5.12. Let X be a simply connected compact complex
algebraic surface, and suppose that its canonical class κx is a basic
class. Let C be an algebraic curve representing an homology class c E
H2(X\7i), and let T be a smoothly immersed 2-sphere with p positive
double points also representing c. If p > 0 or if p = 0 and κx does
not give the exceptional case of (5.11), then p > g{C). Even in the
exceptional case of (5.11), p = 0 and g(C) < 1.

This theorem for c2 > 0 follows from the work of Kronheimer and
Mrowka. However for algebraic curves of negative self-intersection, these
are the first known bounds.

5.4. 50(3) Donaldson invariants
We shall show how our basic recurrence relations precisely determine

the relationship between the SU(2) and 50(3) Donaldson series. The
following theorem has also been proved by Kronheimer and Mrowka.
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Theorem 5.13. Let X be a simply connected J^-manifold of simple
type, and let c G H2(X; Z). Then

Dχ,c = exp(Q/2) Σ(-l)il*+c'Ka)«.e"
s=l

Proof Write D^ = exp(Q/2)Kχ, and suppose first that c G
H2(X\ Z) is represented by an embedded sphere with c2 = — 2k, k > 0.
Apply Lemma 5.3 to

to see that there are constants d^ and d'ik depending only on c2 such
that on H2(X),

-smh(c)d'kkKXyC

p

= cosh(c) y2αseKa{(κs ' c)2k~λ + dιtk{κs c)2k~3

s = l

+ - + dk_lyk(κs c)}

+ sinh(c) Σαse«*{{2k - 1) (κa c)2k~2 + d'hk(κs - c)2k~4

s = l

+ • • • + d'k-2,k(κ° • cf + d'k-i,k-}

It will be convenient to define polynomials Ak(z) and Bk(z) by

Ak(z) = z2k~λ + ditkz
2k~3 H i-dk-itkz,

Bk{z) = (2k-l)z2k-2+d'hkz
2k-4 + --- + d'k_2ιkz

2 +d'k_hk,

SO

P

- sinh(c) d'ktkKXiC = cosh(c) ^ Ak(κs c)αse
Ka

s=l

P

(24) + sinh(c) ^ Bk(κs c)αse
Ks.

Let X = E(2k) with c the class of a section. By Theorem 3.1, we
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have

K-E(2k) —

and

,c = cosh2*-2(/)

91c — 9 \

Now substitute this into equation (24). Since sinh(c) cosh(2r/) and
cosh(c) sinh(2r/) are linearly independent as functions on H2{E(2k)),
for r = 1, ...,& — 1, we get equations

( 2 5 ) A k ( 2 r ) = ( 2 r ) 2 k ~ ι + d h k ( 2 r ) 2 k - 3 + --• + d k - 1 % k ( 2 r ) = 0 ,

Bk(2r) = (2fc - 1) (2r)2 f c-2 + d' M (2r) 2 f c - 4 + • + d/

fc_2fc(2r)2 + d'k_ιk

Note that if d ^ = ±d'k_lk = 0 then ± 2 , . . . , ±(2fc - 2) together with
0 of multiplicity 2 are solutions of the polynomial equation of degree
2k - 2: Bk(z) = 0. Thus d'kk φ 0.

Returning to the case of a general c represented by an embedded
sphere with c2 = — 2fc, let ^(z) be the characteristic polynomial of
Λe

ck+1. By Corollary

v v

s=l ' s = l

Since the functions eKs are linearly independent, the integers κs • c are
characteristic roots of Δe

ck+1, and so each |/cβ c| = 2r5 < 2&. Relabel
the basic classes so that as in Theorem 5.11, κs c = +2A; and Aί5_j_j = — ns

for s = 1, , m, and \κs c\ < 2k — 2 for s = 2m + 1,... ,p. Then

s=l s = l s = 2 m + l
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where δ = 1 if b£ ΞΞ 3 (mod 4) and δ = - 1 if 6j = 1 (mod 4). Plug
(25) with 2rs = ±κs c into (24) to obtain

m m

- sinh(c) d!ktkKχίC = cosh(c)^(2fc){^ a,e*' - ί ^ a.e"^} + 0
8=1 8=1

m πι

(26) +sinh{c)Bk(2k)Q2ase
κ' +

s = l s = l

-sinh(c) Σ (-l)k+r'd'ktkase
κ'.

Note that (-l)k+r- = (-l)cJjτ^. If we write

s=2m+l

then
771 771

=cosh(c)Afc(2fc){5^αβe
#c - ί ^ α

5 = 1 8=1

m m

8=1 8=1

But by Theorem 5.11 we have

s=l s=l

and therefore

8=1

1 m

(27) - ^ ( ^ ( 2 * ) - Bk(2k)) X)
s = l

Next, let .ftΓ be the if3 surface blown up 2k times, and let c = βi +
he2A;. It follows from Theorem 3.12 and Corollary 3.10 that the basic

classes for K are κs = ±βi ± e2 ± • ± e2k with

and
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where p = 22k. Label the basic classes for K so that κι = —c and
κ2 = c. These are the only two basic classes for which \κs c\ = 2k. In
this case, (27) gives

-2d'kk sinh(c) cosh(c) = (Ak(2k) - Bk(2k)) sinh(-2c)

= -2(Ak(2k) - 5^(2*)) sinh(c) cosh(c)

d'Kk=Ak(2k)-Bk(2k).

Thus (27) becomes

•i 771 -i

— sinh(c)L = - V* aae
Ka~c — -I

Z 8 = 1 Δ 8=1

Λ 771 Λ 771

8=1 8=1

since the term in braces is 0 by Theorem 5.11. Adding terms gives

-sinh(c)L = — sinh
8=1 8=1

as desired.
A similar argument works for c2 odd, and to obtain the general for-

mula, just represent c by an immersed surface, blow up to obtain a
2

sphere and then use the fact that the basic classes for X#kCP are of
the form Ks ± ex ± e2 ± - ± ek.

We conclude by giving a somewhat simpler characterization of the
simple type condition, namely that it suffices to check the condition
only on the SU{2) invariant.

Theorem 5.14. Let X be α simply connected 4-mαnifold whose
Donaldson invariant satisfies the condition Dχ(zx2) = ADχ(z) for all
z G A(X). Then X has simple type.

Proof. We must show that the condition is also satisfied by all the
SO(3) invariants DXc. Let c G H2(X\ Z) and consider an immersed 2-
sphere with p positive double points representing c. Blow up as usual to
obtain a class c = c-2e1 2epeH2(X;Z) where X = X#rCP2.
Let X - h X # C P with exceptional class e, and let c = c + e. Lemma 4.7
implies that Dχ^(zx2) = ADχ^(z) for all z G A ^ ) . Embed H2(X) in
(c±) by sending y to y + (y c)e. Using polarization identities, it suffices
to consider z = ynxk G A(X) for arbitrary y G H2(X). We shall prove
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the theorem by showing that Dx^c(zx2) = 4:Dx,c(z) by induction on n.
To do this we need to use a fact proved in [14], namely that there are
polynomial functions Sj(x) such that

and furthermore, S2j{x) = 0 for all j , and Sι(x) = 1.
In case deg(DXiC) = 0 (mod 2), begin the induction by applying

Lemma 4.7 to X and c to get

DXtC(xk+2)=4Dχ9e(xk),

since x <E A^). If deg(Dx,c) = 1 (mod 2), then deg(Dχd) = 0
(mod 2), and we start the induction by applying Lemma 4.7 to X and
c. Let y - c — m; so y + me £ (c±), and

Dχd(y + mefxk+2) = 2mDχj(yS1(x)xk+2) = 2mDXιC(yxk+2)

= 4DχMv + m^ΐ χk) = 4 (2m) DXyC{y xk),

since Sι(x) = 1 and S0{x) = S2(x) = 0.
Suppose inductively that Dx>c{yj xk+2) = 4:DχtC(yj xk) for all j < n

and all k. Then Dx/((y + me)"'+1 xk+2) = 4DχiB((y + me)n + 1 xk). But

((y + me)n+1 xk+2) =Dxe((mynS1(x)

+ m3fr + 1)y«~2S3(x) + .. )xk+2)

=mDx,c(ynxk+2)

and

4DXrc((y + me)"+ 1 xk+2) =4mDXtC(ynxk)

+ 4m3 ί n + Λ Jθx,c(y"-253(x)^) +

so inductively, DΛ-,c(yn^Λ+2)
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