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1. Introduction

Topological σ models, proposed by Witten [25], have become increas-
ingly important in string theory and many of its important applications
like quantum cohomology and mirror symmetry. But Witten proposed
it based on physical intuition. Until recently, its rigorous mathematical
foundation remained to be established. The first step was taken by the
first author in [19], where he established the mathematical definition
of topological σ model invariant, k-point correlation function, for ra-
tional curves. One of the main features in [19] is, predicted by Witten,
the use of symplectic topology, in particular, of pseudo-holomorphic
curves. As Witten pointed out [25], the topological σ model is a 1 + 1
topological field theory. A key topological field theory axiom is the
composition law. In this paper, we will first define a mixed invariant
for arbitrary genus, which combines the topological σ-model invariant
with the Gromov invariant. Such a mixed invariant is natural in con-
sidering the composition law of the Gromov invariant. The main part
of this paper is to give a mathematical proof of the composition law of
our mixed invariant, which includes the topological σ model invariant.
There are many applications of this composition law. The obvious one
is to compute any fc-point correlation function in terms of 3-point func-
tions. In this paper, we will give three other important applications.
The first application is a mathematical proof of the existence of quan-
tum ring structures on cohomology groups of semi-positive symplectic
manifolds. The existence of quantum ring structures was first sug-
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gested by the physicist C. Vafa in a different way. Our approach here
follows a suggestion of Witten [25]. We will also compute the quantum
ring structures for some Kahler manifolds using the composition law
we proved. In [23], one can find more examples of applying the theory
here to compute the quantum ring structure. The second application
is to the mirror symmetry conjecture for algebraic manifolds. The last
application is to compute the enumerative geometric invariants such
as the degree of the moduli space of rational curves in CPn of fixed
degree. This is a classical and difficult problem in enumerative alge-
braic geometry. We compute them in terms of recursion formulas. In
fact, our method also yields recursion formulas for the Gromov invari-
ants of more general Fano manifolds of Picard number 1, for examples,
hypersurfaces or complete intersections. But it seems to be difficult
to determine if the Gromov invariants are enumerative invariants. We
believe that this is the case if the degree of rational curves is suffi-
ciently large. The Gromov invariants for rational curves are indeed
enumerative invariants in case of complex projective spaces, complex
Grassmannian manifolds (cf. Lemma 10.1), Del-Pezzo surfaces.

Let us first sketch how to define the mixed invariant using pseudo-
holomorphic curves. Its definition is analogous to the definition of the
Donaldson polynomial invariants. We refer the readers to section 2 for
details. Let (Σ,j) be a Riemann surface with a fixed complex structure
j . Let (V,ω) be a semi-positive symplectic manifold, and A G H2(V, Z)
with Cι(V)(A) > 0. Choose a generic almost complex structure J on
F, tamed by ω. Let v be an inhomogeneous term defined to be an
anti- J-linear section of Hom(π*TΣ, π^TV) on Σ x F, where π; is the
projection from Σ x V to its i-th factor. A (J, z/)-perturbed holomorphic
map, or simply, a (J, ί/)-map, is a smooth map / : Σ —>• V satisfying
(djf)(x) = v(x, f(x)) The last equation is an inhomogeneous Cauchy-
Riemann equation. The mixed invariant is defined as follows:

Fix a set of marked points (#i, , Xk) 6 Σ (k + 2g > 3), where g is
the genus of Σ. Let au , ak, βu , βt be integral homology classes
in iϊ^(V,Z) satisfying:

- degα,) + £ ( 2 n - 2 - degβ) = 2d(V)(A) + 2n(l - <?),

where g is the genus of Σ. Every integral homology class can be repre-
sented by a so called pseudo-manifold. A pseudo-manifold is a singular



A MATHEMATICAL THEORY OF QUANTUM COHOMOLOGY 261

space P together with a map F : P —> V such that the singularity of
P is of codimension 2. Every two such pseudo-manifolds representing
the same homology class are the boundary of a pseudo-manifold cobor-
dism in the usual sense. For simplicity, we shall also use Au Bj to
denote the pseudo-manifolds representing those homology classes α i 5

βj. Then we can choose a generic almost complex structure J and a
generic inhomogeneous term v such that there are only finitely many
(J, z/)-perturbed holomorphic maps / : Σ —> V satisfying: f(xi) £ Aι
(1 < % < k), /(Σ) Π Bj φ 0 ( 1 < j < Z), and /,[Σ] = A. For each
such /, the set {(j/i, - - -, 2/ι); f{Vj) € Bj} is also finite. We define the
multiplicity m(f) to be the algebraic sum of the elements of this set
with appropriate sign according to its orientation. Then, we define the
mixed invariant

One can prove that this number Φ(A,ω,g)(aij " ' ? ak \ β\ > * • ? βι) is inde-
pendent of the choices of J , v, marked points #1, , x^ in Σ, pseudo-
manifolds representing c*i, β^ and the complex structure on Σ. Fur-
thermore, the number depends only on the semi-positive deformation
class of ω. Therefore we obtain a mixed invariant
Φ(Λ,u;,0)(tti J , Oίk I βι, , # ) , where ^ is the genus of Σ. This invari-
ant is nothing else but Witten's topological σ-model invariant or k-point
correlation function in case 1 = 0. It is also clear that
Φ(i4,o;,o) (<*i j <*2 j <*31A >"" > A) is just the Gromov invariant
Φ(Λ,ω,o)(«ijQί2j«3jAj" J A ) F° r convenience, we would like to ex-
tend Φ ( A ϊ ϋ ; ^ ) ( α i , . . . , α j b | A r " >A) for a nY α ή A regardless of their
degree. We just simply define it to be zero unless

- degα,) + ]Γ(2n - 2 - degft) - 2d(y)(A) + 2n(l - ff)
i=l i=l

The invariant Φ(A,^,0)(«i, ,<xk\βu , A) i n t h e case of rational
curves was already defined by the first author in [19] for k = 0 or
1 = 0. In fact, he only defined the invariant over rational numbers
since he assumed that α^ and βj can be represented by the bordism
classes. It is well-known that not every integral homology class can be
represented by a bordism class. It was Gang Liu who pointed out to
the first author that a pseudo-manifold (5.1) can be used in place of
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a bordism class in the definition of the invariant. The use of pseudo-

manifolds does not cause any extra difficulties. The construction of

Φ(Λ,u/,0)(αij"" i<*k\βiim" ->βι) f° r higher genus can be processed in a

similar fashion. However, for higher genus, one possible difficulty is

that a sequence of J-holomorphic curves could degenerate to a lower

genus curve. For example, a sequence of elliptic curves can degenerate

to a cusp elliptic curve, whose normalization is a holomorphic sphere.

Contrary to intuition, the dimension of moduli space will increase when

the genus decreases. This is thought to be a major difficulty to com-

pactify the moduli space of pseudo-holomorphic curves of higher genus.

A key observation in our work is that the phenomenon we just describe

will NOT happen for perturbed J-holomorphic maps for a generic in-

homogenous term. In principle, the freedom of choosing inhomogenous

terms allows us to show that perturbed J-holomorphic curves only de-

generate to stable curves in the sense of Deligne-Mumford. Hence, we

have a good control over "bad degenerations" like cusp elliptic curves.

Therefore we can use perturbed J-holomorphic maps, instead of J-

holomorphic maps, in defining our mixed invariants for higher genus in

much the same way as for genus 0. Some applications of special cases

of the mixed invariant have been considered by [5], [15], [20], [21].

Let Λ49ik be the moduli space of fc-point stable smooth curves

(ΈgiXι,-— ,£*), i.e., Deligne-Mumford stable curves, where Σ^ is a

smooth Riemann surface of genus g. Then Φ(A,ω,g) can be considered

as a constant function on λΛg^ Now we let A -point stable smooth

curves degenerate to a singular A -point stable curve C in Λ49ik- The

composition law associated to this degeneration is a formula which com-

putes Φ(A,ω,g) m terms of the mixed invariants on the components of C.

The general formulation of the composition law is rather complicated.

We will leave it to section 7. Let us first discuss two special cases,

which play an important role in the general theory and applications.

Write the Deligne-Mumford stable curve C as (Σ,Xχ, ,xk). In the

first case, Σ has two components Σχ,Σ 2 satisfying: (1) Σi and Σ 2 have

genus <7i,#2 (ffi +92 = g) and intersect at a double point F; (2) Σi

carries m marked points xλ, , xm {k + 2g2 — 2>m>2 — 2g1) and Σ 2

carries the rest of the marked points. Then, the composition law states

that Φ(A,ω,g) c a n be calculated by the invariants corresponding to Σ*

and contributions from the double point P. More precisely, we can do

as follows: Let {Hσ} be a basis for the torsion free part of iϊ*(V, Z),
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and Δ be the diagonal of V x V. By the Kύnneth formula, we can
write

where {ηστ} is the intersection matrix of the basis {Hσ}. Thus the
composition law for this case is

e ( σ )= T TTT e ( σ ) vΊδ

A=B1+B2j=0 σ 7 ) ί J ί' 3)'

where σ runs over all permutations of 1, , Z, and e(σ) is the sign of
the permutation induced by σ on odd dimensional /3/s.

The second case is that Σ is a genus g — 1 curve with a node. Then
the composition law for this case is

(1.2)

7,r

In the general case, a Deligne-Mumford stable curve C may have many
components with complicated intersection pattern, but all intersection
points are ordinary double points. Thus the general composition law
can be derived from the above formula by induction. We refer the
readers to section 7 for more details. Our main theorem is

Theorem A (Theorem 7.2). The composition law of the mixed
invariants holds for any semi-positive symplectic manifold (V,ω).

Corollary 1.1. The composition law of the topological σ-model in-
variants holds for any semi-positive symplectic manifold (V,ω).

The first application is to establish a quantum ring structure on
the cohomology of a semi-positive symplectic manifold. The fc-point
function ΦΛ,W(^IJ "" >αfc) w a s defined in [19] and coincides with the
mixed invariant Φ(A,α;,o)(̂ i5 • jCκ*| ); it a l s o depends on a homology
class A. We can drop this condition by summing the contributions over
all possible A. So, we can formally write the A -point function as

(1.3) Φω(au... , ^ \
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We define

(1.4) fa0Ί = Φω(Ha,H0,HΊ)(t)

and

(1-5) f'aβ = η"δfaβl

Let {H*} be the basis of H*(V, Z) dual to {Hσ}. Then, we define the
quantum multiplication

(1-6) HlxQH*β

The associativity is not obvious and is equivalent to the following iden-

tity:

Σr)στΦΛHa,Hβ,Hσ) Φω(Hτ,HΊ,Hδ)

( 1 7 ) '

This is a consequence of the composition law for 4-point functions,
where two different stable degenerations give the two sides of (1.6).
Therefore, we have

Theorem B (Theorem 8.1). The quantum multiplication is as-
sociative; consequently, there is a quantum ring structure on the coho-
mology of a semi-positive symplectic manifold V.

Prom Theorem A and Theorem B it follows that

(1.8) H:ixQ...χQH:k

There is a convergence problem with the series in (1.3). There may be
infinitely many homology classes which contribute to the summation
in (1.3), such as, in the case of Calabi-Yau 3-folds or CP2 blown up at
9-points. But for a symplectic manifold with positive first Chern class,
the summation in (1.3) is always finite (cf. section 3). However, for a
general semi-positive symplectic manifold, the Novikov ring can be used
to be the coefficient ring of the quantum cohomology to get around the
problem of convergence (cf. section 8). The quantum multiplication
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on the cohomology with the Novikov coefficient ring is also associative
(Theorem 8.4). The idea of using the Novikov ring was first used by
Hofer and Salamon in the context of Floer homology [8].

The mirror symmetry conjecture relates the quantum cohomology
with the variation of Hodge structures of its mirror (may or may not
exist). A crucial step to prove the mirror symmetry conjecture is to
construct a family of flat connections on iϊ*(V,C), which deform the
trivial connection. Those flat connections should be different from the
Gauss-Manin connections, which come from the variation of Hodge
structures. Using the composition law of mixed invariants (not just σ
model invariants), we can construct such a family of flat connections.

Let W = H*(V,Z) ® C. For simplicity, assume that H*(V,Z) is
torsion-free. Then any w in W is of the form

where L is the dimension of W. Write w* = Σ/Li tjHj a s the point in
H*(V, C) corresponding to w. We extend the mixed invariant Φ(A,ω,o) to
H*(V, C) by linearity. Following E. Witten [25], we define a generating
function

W ( O Σ *-"{A) Σ h
(1.9) AeH2(v,z) ™=3 m

This function is a power series in ί1? , ίχ, From Theorem A in the
case k = 4 it follows that Φ^ satisfies the WDVV equation:

y - =yy η =y
^-f dtadtpdtσ dtΊdt§dtτ ^-j' dtadtΊdtσ

If we define A — {AΊ

aβ} by

then V€ = Vo + eA defines a family of connections on the tangent
bundle TW over W', where Vo is the trivial connnection on W. The
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WDVV equation is equivalent to the flatness of the connections Ve.
Therefore, we have

Theorem C (Theorem 9.1). Ve is aflat connection and a defor-
mation of the trivial flat connection Vo

Finally, we give an application of this theorem to a classical problem
in enumerative algebraic geometry. Let σn,d{ji,J2i" -,3s) be the num-
ber of rational curves of degree d in CPn intersecting linear subspaces
of codimension j Ί , . . . >3s where ji > 2 and Σ ^ — 1) = (n + l)d + n.
It is a difficult problem in enumerative algebraic geometry to calcu-
late σ n , d (j i , j 2 , Js) One of these σn,d(j1j2,-' Js) has the fol-
lowing interpretation. Given any degree d algebraic curve C in C P n ,
its Chow coordinate XQ is a hypersurface in the Grassmannian man-
ifold G(n — l ,n + 1) and consists of all (n — 2)-subspaces in C P n ,
which have nonempty intersection with C. This Chow coordinate XQ
is, unique up to multiplication by constants, defined by a section in
H°(G{n - l , n + 1), 0(d)), where Ό{\) is the positive line bundle gen-
erating the Picard group of G(n — l , n + 1). Let N(n,d) + 1 be the
dimension of H°(G(n — 1, n + 1), O(d)). Then there is a subvariety in
QpN(nyd) c o n s i s t i n g of Chow coordinates of rational (possibly singular)
curves in CPn. We denote by n^ the degree of this subvariety. Then
we have

nd = σnid(n - 2, n - 2, , n - 2).

Using the symmetry, we may arrange j i > j 2 > > j s For conve-
nience, we put σnid(juJ2, ' Js) = 0 if jι > n and σn ? d( , j a _ u 1) =
dσUyd( , j8-ι). Then from Theorem C follows

Theorem D (Theorem 10.4). The following recursion formula
hplds

°n,d{h->32,jz,3±,-- Jk) =<7nA3li32 + 1,7*3 ~ lj^"' Jk)
+dσnfd(j1 + js - 1, j 2 , J4, ,3k)
-dσ^dijx + j 2 , J 3 ~ 1, J*4, * ,jk),
mod(σ n ) 1 , ,σ n , d _!).

The explicit expression of the lower order terms will be given in
section 10.

Corollary 1.2. Let nd be the degree of the subvariety of degree d
rational curves in the space of all degree d homogeous polynomials over
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CP2. Then

j -2tP + 6d1d2)(3d - 4)!

- 1)! n * n *

/n particular, ni = 1, n2 = 1, n3 = 12.
This recursion formula of computing nd for CP 2 was first derived by

Kontsevich, based on the composition law predicted by physicists. Its
generalization to CPn in Theorem D was also derived by M. Kontse-
vich and Y. Manin [10] from some axioms, which were first suggested
by physicists and formulated by them. Here we give a different and
mathematically rigorous proof. We also generalize our method to Fano
manifolds with Picard number one like hypersurfaces and complete in-
tersections. In particular, we give a recursion formula of our invariants
for rational curves on those manifolds. We conjecture that our in-
variants on any Fano manifold are indeed the enumerative geometric
invariants in case the degree of rational curves is sufficiently large. A
precise formulation of this conjecture will be given in section 10. How-
ever, it is not hard to show that our mixed invariants are enumerative
on any Del-Pezzo surface.

Let us briefly describe our method of proving the composition law.
Let Σi be a sequence of genus g Riemann surfaces with fc-marked points,
and fi : Σj (4 V be a (J, z/)-perturbed holomorphic curve for each
i. In the Deligne-Mumford compactification, Σ» degenerates to a k-
point stable curves C. Geometrically, one can obtain C by collapsing a
disjoint union of simple close curves. Collapsing of each simple closed
curve gives rise to a double point. To achieve the degeneration which we
need to prove the composition law, we take advantage of inhomogeneous
Cauchy-Riemann equations and let the inhomogeneous term degenerate
along some prescribed circles in the Deligne-Mumford compactification.
By taking a subsequence, we may assume that /f converges to a limit
map / whose domain is the stable curve C with some bubbles. There
might be some bubbles at the double points. Such a situation did
not exist in previous compactness theorems. On each component of
C, / satisfies an inhomogeneous Cauchy-Riemann equation. On each
bubble, / satisfies a homogeneous Cauchy-Riemann equation. Then
by counting dimensions, one can show that the space of such / with
some bubbles will be of smaller dimension. Thus, in order to compute
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the mixed invariant in terms of the perturbed holomorphic maps from
C, we have to prove that any / from C can be deformed into a (J, v)-
perturbed holomorphic map from Σά into V for sufficiently large i.
We also need to show that such a deformation is unique for a given
inhomogeneous term v and has the same orientation as that of /. In
general, such a deformation is impossible to achieve. However, due
to the freedom in choosing inhomogeneous terms, we can prove the
existence of deformation with the required properties. This will be
done by using the Implicit Function Theorem.

The paper is organized as follows: The definition of our symplec-
tic invariants will be given in the next section. Then we will prove
the transversality and compactness theorems on moduli spaces of per-
turbed holomorphic maps in sections 3 - 6 . They are necessary for
both defining our invariants and proving their composition law. We
will prove the composition law in section 7. The quantum cohomology
will be discussed in section 8, and its application to the mirror sym-
metry conjecture will be discussed in section 9. In last section, we give
applications to enumerative algebraic geometry.

The main results of this paper were announced in [22] with the same
title. In a forthcoming paper, we will allow the conformal structure to
vary in the definition of the mixed invariants and prove the composition
law for them. During the preparation of this paper, we were informed
that G. Liu and D. McDuίf [11] could also prove some results related to
the composition law for 4-point functions of rational curves for mono-
tone symplectic manifolds. We also received a preprint of Kontsevich
and Manin [10]. In [10], among other things, they also derived the
formula in Theorem D for CPn by assuming the associativity for the
mixed invariants. The first author would like to thank Kontsevich to
share with him his elegant idea of deriving the recursion formula for
rational curves in CP2. We would also like to thank Dr. Siebert for
his many suggestions towards the improvement of this manuscript.

Very recently, we received a preprint from B. Crauder and R. Mi-
randa [4]. In the preprint, they discussed the quantum cohomology
ring for a general rational surface; by a "general" surface they mean
one in which all linear systems have the expected dimension.
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2. Mixed invariants

In this section, we will construct a mixed invariant for any given

genus. The construction is based on two propositions, which we will

prove in the following sections. Such a mixed invariant generalizes

Gromov's and Witten's invariants defined by the first author in [19]

for genus zero. The basic idea in constructing the mixed invariant is

similar to that in [19]. The same idea was previously used by Donaldson

in defining his celebrated polynomial invariants for 4-manifolds. There

are two motivations for our generalization. First of all, it is necessary

for our applications to mirror symmetry and enumerative geometry.

Secondly, it is needed in the composition law. Let us begin with a brief

discussion on the topological idea behind our construction.

Consider the evaluation map

) x Σ -> F.

Given any a G if*(V,Z), there are two ways to induce a cohomology

class on Map(Σ,F): μ(a) = ev*(a)/[Σ] or μ(a) = eυ*(a)/\pt], where

"/" is the slant product. The first operation μ descends to the quo-

tient of Map(Σ, V) by the automorphism group G of Σ, which gives

rise to the Gromov invariant. The second operation μ gives rise to

Witten's topological σ-model invariant. We combine both μ and μ in

the definition of our mixed invariant.

To define the mixed invariant rigorously, we need to introduce in-

homogeneous Cauchy-Riemann equations. Let (V, ω) be a symplectic

manifold, Σ be a Riemann surface of genus #, and A 6 H2(V, Z) with

Cι(V)(A) > 0. Let J be an almost complex structure on V. There are

two relative tangent bundles over Σ x V with respect to π* (i = 1,2),

where TΓ̂  is the projection from Σ x F t o its i-th factor. A section v of

Hom(πJEΓΣ,π2TVr) is said to be anti-J-linear if for any tangent vector

v in TΣ,

(2.1) u(jΣ(υ)) = -J(v(v)),

where jΣ is the almost complex structure on Σ. Usually, we call such

ai/an inhomogeneous term.

Definition 2.1. Let v be an inhomogeneous term. A (J, i/)-perturbed

holomorphic map, or simply a (J, ̂ )-map, is a smooth map / : Σ —> V
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satisfying the inhomogeneous Cauchy-Riemann equation

(2.2) (djf)(x) = v(x,f(x)),

where dj denotes the differential operator d+ J d- jΈ.

We denote by Λί^(Σ, J, v) the moduli space of (J, z^)-perturbed holo-
morphic maps from Σ into V, such that /*[Σ] = A. By (4.12) for a
generic pair (J, z/), the moduli space Λ4A(Σ, J, v) is smooth and admits
a canonical orientation induced by the linearization of the Cauchy-
Riemann operator at each (J, z/)-map.

Let {αi}i<ΐ<fc, {βj}i<j<ι be integral homology classes of V satisfying

(2.3) ^ ( 2 n - d e g ( α i ) ) + Σ ( 2 n - d e g ( f t ) - 2 ) = 2C1(V)(A)+2n(l-g).

Note that by the Index Theorem, the real dimension of M^(Σ, J, v) is

2Cι(V)(A) + 2n(l - 5). We denote by α*, β* the Poincare duals of au

βj. Intuitively, the mixed invariant should be defined to be

- μ(αj) U U μ(αj) U μ{β{) U • U A(/?Γ)[>ίA(Σ, J, i/)],
where Λί^ίΣ, J, z/) is a suitable compactification of Λ^^(Σ, J, v) (cf.

section 3). To make it rigorous, we have to use the following construc-

tion through intersection theory.

Let #i, , Xk be a set of distinct points on Σ, which is a Riemann

surface of genus g. One can think of (Σ;xi, ,£&) as a Riemann

surface with k marked points. Then we can define the evaluation map

where X = {xi, ,rr^} is the set of the marked points. Clearly,
e(E,x,j,i/) is smooth. On the other hand, every integral homology class
can be represented by a so called pseudo-manifold. A dimension d
pseudo-manifold (Y, F) is a dimension d stratified space Y together
with a continuous map F : Y —> V satisfying: each lower stratum is
of codimension at least two, and F is smooth on each stratum. Any
two such pseudo-manifolds representing the same homology class are
the boundary of a pseudo-manifold cobordism in the usual sense. Now
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we choose pseudo-manifolds (Yi.Fi) (Zj,Gj) representing α i5/?j, where
i = 1, , k and j = 1, , I. We define

(2.5)

We will denote by P the domain pseudo-manifold of the map F. Clearly
the pseudo-manifold (P, F) represents the integral homology class
Yliai x Yljβj m H*(Vk+ι,Z). Prom our assumption on the degrees
of Oίi and βj it follows that the images of e(£,χfj,i,) and F have compli-
mentary dimensions in Vk+ι. Moreover, we have

Proposition 2.2. For a generic almost complex structure J and a
generic inhomogeneous term υ, we can choose F (5.4) such that the
following hold:

(i) The maps β(Σ,x, j,ι/) o,nd F intersect transυersally at finitely many
points. More precisely, there are only finitely many (/;yi, ,yz) in
•MA(Σ, J, V) x (Σ)1, αndp in P such that c ( Σ Λ J | I / ) ( / ; y i ? , yξ) = F{p),
and furthermore, at each such intersection point, p is a smooth point
of P, and the image of the tangent space TPP under F is transversal
to the image of the tangent space

under the evaluation map. In particular, there are only finitely many
(J,v)-perturbed holomorphic maps f : Σ ~> V satisfying: f{xi) G
Im(F<) (1 < i < fc), /(Σ) Π Ίm{Gj) φ 0 (1 < j < I), and Λ[Σ] = A.

(ii) There are no sequences {fs}s>ι in M.A{Έ,J,V) such that as s
goes to infinity, fs(%i) converges to a point in Fi(Yi), and / S (Σ) con-
verges to a subset in V which intersects any Gj(Zj).

The proof of this proposition needs some results from the following
sections, so we will postpone its proof until the end of section 5. In fact,
it follows easily from a dimension count that for a generic pair (J, z/),
the image of e(Σ,χ,jfι/) does not intersect any lower strata of F(P). Here
by a lower stratum of F ( P ) , we mean the image of a lower stratum of
P under F.

Now we can define our mixed invariant as follows: Fix a pair (J, v)
such that e(Σ,χ,j,i/) and MA(Σ, J, v) satisfy all properties described in
Proposition 2.2. First we associate a multiplicity m(f) to each / in
Λ Ί Λ ( Σ , J, V). We define rn(f) to be zero if either f{x{) is not in Fi(Yi)
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for some i, or /(Σ) does not intersect with one of Gj(Zj). If/ is as given

in Proposition 2.2, there are finitely many (y si, ,ys/) (1 < s < m)

such that f(ySj) £ Gj(Zj). We put e(/, s) to be ± 1 ; the sign is deter-

mined by the orientations of jVί^Σ, J, v) x (Σ)* (See Remark 4.12),
P, Vk+χ at (/; j / β l , , y s ί), etc., and the Jacobians of the maps e^,x,j}v)

and F. Define

771

(2.6) m(f) --

and finally the mixed invariant

(2.7) Φ(A,u,,*)(αi, , α * | A , , f l ) = Σ m ( / )

For convenience, we simply define

(2.8) Φ(Λ,u,,,)(αi, ,α*|/?i, - ,A) = 0

in case Σ i ( 2 ^ — deg(α f)) + Σi(2™ - deg(βj) — 2) is not the same as
2C1(V)(A)+2n(l-g).

The following proposition assures that Φ(A,ωtg) is indeed an invariant,
although we chose special representatives in its definition.

Proposition 2.3. Φ^w^ί^i» * * ? <** I βi> ' J A) *5 independent of
choices of the J, v, marked points #i, ,a;jfc in Σ, pseudo-manifolds
(Yi,Fi), (Zj,Gj) representing ai} βj, and the conformal structure on Σ.
Furthermore, the number depends only on the semi-positive deforma-
tion class of ω.

As before, we will postpone the proof of Proposition 2.3 until sec-
tion 5. First we collect a few properties of our invariant. These prop-
erties can be easily proved by using (2.5), and Propositions 2.2, 2.3.

Proposition 2.4. Assume that g — 0. Then the mixed invariant
Φ(Λ,u;,o)(αi5 * * * j ak I βij'' * 5 A) coincides with the Witten invariant
Φ(A,α;)(^ij *' ->&k) (cf. [19]) in case I = 0, and with the Gromov
invariant Φ(Λ,ω)(<^i5^27^3?βi ,' * 5A) (cf [19]) in case k = 3

This follows directly from (2.7) and the definitions of the Witten
invariant and the Gromov invariant in [19].

Proposition 2.5. The mixed invariant
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is multilinear on a{ and βj. Furthermore, we have the following:

(1) The invariant Φ(A,ω,9) is identically zero if the "virtual" dimen-

sion 2CΊ(V){A) + 2n(l - g) < 0.

(2) Φ(A,ω,g){<Xi,' - ,otk\βw" >A) is zero if one of βj is of degree
greater than 2n — 2.

(3) // k + 2g > 4, ak is the fundamental class [V], then Φ(A,ω,g)

(au - ,ak\βu- ,/?,) is equal to Φ{Λ,ω,g)(aw' ,α*-i \βw" ,/?/)•

(4) Φ(A,ω,9)(ai,- ,ak\βι,- ,A) is equal to
dΦ{Aίωt9)(aι, - ,ock \βw" ,A-i); if βι i s °f degree 2n - 2 and d =
AΠ βι is the intersection number.

(5) In case A = 0, Φ{A,ω,o){aii'" ,ak\βw- ,A) «5 ^ r o if I > 0
and the intersection number α x Π Γ\ak if I = 0.

Proof. We only prove the linearity in a special case:

(2.9) Φ ^

= Φ{A,ω,g)(<Xl,-' ,θLk\βU " , A ) + Φ(A,ω,g) (<*[, ' ' ,αife|)9i, ,/?/).

The proof for other cases is identical.

Let (Yi, Fi), (Zi, Gi) be as before. Suppose that (F/, F[) is a pseudo-
manifold representing a[. We may assume that ^(Yj), Gj(Zj), F[(Y{)
are in general position. Then,

UF;)

represents the homology class (c*i + αj) x 11^2°^ x Πj=i βj m

H*(Vk+ι,Z). Let / be any map in Λ Ί ^ Σ , J, v) satisfying:
f(Xl) e F^YJUFKY;), f(Xi) 6 FiίKO forz > 2, a n d / ( Σ ) n G , (Z j) ^ 0.
Then / contributes to both Φ(Atωtg){otι, ,ak\βu • ,βι) and

Φ(>ifu;fp)(αi, - ,α*|j0i, ,A), h e n c e

? ( 2 9 ) follows.
Next we prove (l)-(5). (1) is trivial, since the moduli space

MA{Σ, J, V) is empty for a generic (J, v) by the standard Transversality

Theorem (cf. [16]). For (2), we may assume that βt is of degree greater

than 2n — 2. If the invariant is nonzero, for any generic (J, z/), there is

at least one / in MA(Σ, J, v) such that f(xi) G F^Yj) (1 < i < k) and

/(Σ) nGjiZj) is nonempty (1 < j < I - 1), where (Y^F;), (Z^Gj) are

pseudo-submanifolds given as above. However, since dim(Z/) > 2n — 2,
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we have

k /-I

(2.10) Σ(2n - d im^)) + ^ ( 2 n - 2 - dimZά) > ά\mMA{Y>, J, v).
i=l j=l

Therefore, by counting dimensions and using the Sard-Smale Transver-
sality Theorem, one can show that such a / can not possibly exist for
a generic (J,v), so (2) is proved. Similarly, one can prove (3) and (4).
For (5), we may assume that v — 0; then all (J, z/)-maps are constant
maps and the moduli space ΛΊΛ(Σ, J, V) is naturally identified with V.
A map / in MA&,J,v) satisfying: /fa) G F^Yi) and /(Σ) Π Gj{Zj)
is nonempty, is in one-to-one correspondence with an intersection point
in Πi Fi(YJ Π Π, Gj(Zj). Hence (5) follows.

Proposition 2.6. Let (Vι,ωλ), (V2,ω2) be two symplectic manifolds.
Let V = V\ x V2, and ω = ωλ 0 ω2. Then we have

(2.11)

where Φv, ΦVl and ΦV2 denote the mixed invariants on V, V\ and V2,

respectively.

This is a straightforward corollary of the definition of the mixed
invariants.

Proposition 2.7. The invariant Φ(A,ω,g) is symmetric in the fol-
lowing sense:

Φ( ,ak \βu " ,β

where 1 < i < k — 1 and 1 < j < Z — 1.

This follows directly from the definition of our mixed invariants.
Remark 2.8 (about relaxing the genericity condition). Usu-

ally, it is difficult to check if a particular (J, v) satisfies the properties
stated in Proposition 2.2 and required in the definition of our mixed in-
variants. This amounts to establish certain vanishing theorems, which
do not hold in general, for such a pair (J, v). However, when we cal-
culate the invariants in applications, we often use a particular (J, ι/),
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such as (Jo,0), on an algebraic manifold with complex structure Jo.
Therefore, we would like to relax the genericity condition used in the
definition of our invariants.

In fact, we only need to assume that the singular part of ΛΊΛ(Σ, J, V)

is of real codimension at least two. Then we can perturb pseudo-
manifold representatives to achieve all the properties needed in the
definition of our mixed invariants. This is very useful for computing
the invariants for algebraic manifolds, since the moduli space involved
in these cases is usually a variety, possibly with some singularities.
Given any sequence {fs} in ΛΊΛ(Σ, J, Z/), by taking a subsequence, we
may assume that fs converges to a (J, z/)-map f^ from Σ and finitely
many holomorphic maps from S2 into V (cf. Proposition 3.1). Putting
all these limits together, we obtain the Gromov-Uhlenbeck compactifi-
cation MA{Σ, J, v) of MA{Σ, J, v).

Definition 2.9. A pair (J, v) is said to be A-good if the set of / E
Λ1A(Σ, J, V) such that CokerLf φ 0 is of codimension 2, and the set
of curves, which are in the image of maps in MA(Σ, J, ΊS)\MA{Σ, J, v),
has dimension less than dimΛ(Λ/ίA(Σ, J, u)) — 2 — r(Σ), where r(Σ) is
the dimension of the automorphism group of Σ, and Lf denotes the
linearization of the inhomogeneous Cauchy-Riemann equation at /.

If (J, v) is A-good, we can define the mixed invariant Φ(A,ω,g) by using
(J, ̂ )-maps and generic pseudo-manifold representative (Theorem 5.4).

Remark 2.10 (When can we let v — 0?). There are two places
where we need to use the inhomogeneous term f, namely, multiple cov-
ering maps and A = 0, g > 1. The second situation is quite subtle.
For example, consider the genus-one holomorphic curves in CP2 with
zero homology class. Obviously, they are constant maps, so the moduli
space has real dimension 4. But it follows from the Index Theorem
that the "virtual" dimension is 0. Therefore, we have to use perturbed
holomorphic maps in this case. This phenomenon also affects the in-
variant for genus-one curves of degree one. It is well-known that there
are no holomorphic genus-one curves of degree one. But our invari-
ant is not zero in this case, which can be seen from the composition
law that we prove in section 7. What happens here is that the com-
ponent of degree-zero genus-one curves creates a large component of
cusp curves in the Gromov-Uhlenbeck compactification of the moduli
space of genus-one degree-one curves. Our invariant depends on the
compactification of the moduli space instead of the moduli space itself
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only. This large component of cusp curves will make nontrivial contri-
butions. When we perturb the Cauchy-Riemann equation by adding ι/,
we will have solutions for the inhomogeneous Cauchy-Riemann equa-
tion even though there are no solutions for the homogeneous one.

There is also a problem with the Gromov-Uhlenbeck compactifica-
tion MA(Σ, J, 0). A sequence of maps fn in MAΦ, J, 0) can converge
to a cusp curve with a bubble, such that the homology class of the
bubble is A. Therefore, MA{Σ, J, 0) has a component consisting of J-
holomorphic maps from S2 with homology class A. This DOES happen
in algebraic geometry. Note that

dimMΛ{Σ,J,0) = 2Cι{V){A) + 2n{l - g)
< 2Cι(V)(A) + 2n = dimMA{S\ J,0).

Hence, it is more difficult to prove that the boundary
ΛΊΛ(Σ, J, 0)\>ί^(Σ, J, 0) has smaller dimension in the case of higher
genus curves.

To overcome this difficulty, we need a finer compactness theorem
than the Gromov-Uhlenbeck compactness theorem (Proposition 3.1).
In algebraic geometry, there is a notion of arithmetic genus for holomor-
phic curves (smooth or singular), which takes into account mulplicities
of singularities, order of tangency between different components and
some algebraic data. The arithmetic genus is upper-semi-continuous
for flat deformations of holomorphic curves. We conjecture that there is
a notion of arithmetic genus for J-holomorphic curves, which is lower-
semi-continuous with respect to Gromov-Uhlenbeck convergence. If
this conjecture is true, then we will be able to show that in the situa-
tion we described, the bubbles will develop sufficiently many singulari-
ties and give a finer compactification. This will enable us to show that
the boundary components of the compactification of ΛΊΛ(Σ, J, 0) have
smaller dimension. Using an estimate of the minimal surface theory,
we can affirm this conjecture in the case of genus-one curves.

The moduli space JMΛ(ΣI,J, 0) may contain maps of the form
h 7Γ, where h is a map in ΛΊ^Σ', J, 0) and π : Σ »-> Σ' is a branched
covering map of degree m. Note that A — rπB. We will see later
that such multiple covering maps do not make any contributions to the
mixed invariant Φ(A,ω,g) under some numerical condition (cf 2.13). A
particularly interesting case is when Λ^Λ(Σ, J, 0) contains only maps of
the form h π as above. Let {θίi}\<i<k, {βj}ι<j<ι be homology classes
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of V in (2.3). If we further have

(2 12) Σ ( 2 n ~ 2 " d eg(^)) + Σ ( 2 n " 2 "
> 2CΪ(V)(B) + 2n(l - </) - r(g')

where g' is the genus of Σ', r(0) = 6, r(l) = 2 and r(gf) = 0 for #' >
2, we may choose pseudo-submanifolds (Xj,^), (Yj , Gj) representing
c^, /?j, such that no holomorphic map in ΛΊβ(Σ;, J, 0) intersects with
all Fi(Xi), Gj(Yj). For any small inhomogeneous term v, since all
(J, z/)-maps have their image in the vicinity of the image of maps in
MB(Σ', J, 0), there is no (J, ι/)-map which intersects with all Fi(Xi),
Gj(Yj). It follows from the definition of the mixed invariant that

- ,<Xk\βu - ,βt) = 0.

On the other hand, because of (2.3), (2.12) is equivalent to

(2.13) 2(ro - l)d(V)(B) + r(g') > 2k + 2n(g - </),

and therefore, we have the following vanishing theorem.

Theorem 2.11. Let ΛΊΛ(Σ,J,0), MB(Σ', J,0) be given as above.

Assume that (2.13) holds. Then Φ(Λ,α;,p)(^ij"" i&Aβi-, * * ?βι) vanishes

for any homology classes ai7 βj.

This theorem is often very useful in computing our invariants.

3. A compactness theorem

In this section, we prove a compactness theorem, which is needed in
both defining the mixed invariant and proving the recursion formula;
its proof is based on certain estimates of Uhlenbeck and Sacks, Schoen
on harmonic maps, and a result in [17]. There have been various com-
pactness theorems, which are all based on Gromov's original idea, for
J-holomorphic maps (see [16], [17], [26]). In our situation, we allow de-
generation of Riemann surfaces, so we have to analyse bubbling from
singular points of the domain.

An admissible curve is a connected Riemann surface, possibly singu-
lar, with at most nodes as singularities. Recall that a degeneration of
admissible curves is a holomorphic fibration π : S »-> Δ E C1 satisfying:
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(1) S is an (ra + l)-dimensional complex variety with normal crossings;

(2) all fibers of π are admissible. A special class of such degenerations
consists of all surface fibrations π : S •->• Δ in C with smooth generic
fibers.

We denote by Js the complex structure on £, and J an almost com-
plex structure on a compact symplectic manifold (V,ω). Assume that
J is ω-tamed. An inhomogeneous term v over S is simply a homo-
morphism from the tangent bundle TS of S into TV satisfying: v is
anti-( Js, J)-linear, i.e., J v = —v J 5 . It is easy to show that any
inhomogeneous term on the central fiber τr~1(O) extends over S.

Now we fix a degeneration π : S >-» Δ in Cm. Let {^} be a sequence
converging to the origin 0 in Δ as i goes to infinity. We denote π~ 1(ί ί)
by {Σi}, and Ϊ/|Σ. by i^. Then Σ; converges to an admissible curve Σoo =
π - 1 ( 0 ) , and v{ converges to a smooth inhomogeneous term v^ = ly^^
in C4-topology. Namely, there are continuous maps r{ : Σ» »->• Σ ^ and
compact subsets ifi in Σ ^ satisfying: (1) \JK{ = Σoo\{double points};
(2) Ti restricts to a diffeomorphism from r"ι(Ki) onto K{\ (3) for each
j , both | | j Σ o o dτi - dTi jΣ.||c4(/c, ) and ||i/oo ^ - i/iHc^^ ) converge
to zero as i goes to infinity.

Consider

( 3 . 1 ) M A ( Σ i , J , v i ) = {f:Σi-

where A E H2(V, Z) is a fixed homology class, and j Σ . is the conformal
structure on S .̂

Let fi : Σi »-)• V be a smooth map for each i. Then we say that fι
converges to /«, : ΣQQ H-> V if ||/oo τ» — /i| |c3,/o c converges to zero as i
goes to infinity (cf. [17 ( p.386)]), where r, is given as above. We want
to study the limit of Λ Ί ^ Σ j , J, ^ ) . In general, lim MA(ΣΪ, J, i/») may

not be contained in jM^CΣIoo, J, ί>Όo)
Proposition 3.1. Le£ /» 6e m A^^ίSi, J,!/»). TΛen ^Λere w a con-

nected curve Σ, which is the union of the smooth resolution Σoo 0/ Σoo
and finitely many smooth rational curves, such that a subsequence of
{fi} converges to a (J,ί>)-perturbed holomorphic map f on Σ, where
the inhomogeneous term v coincides with v^ on Σoo &nd vanishes on
those rational curves. Moreover, we have /*(Σ) = A.

The rest of this section is devoted to proving this proposition. For
reader's convenience, we may sketch the proofs of some known lemmas.
We recommend [17] for more details on these lemmas.
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Without loss of generality, we may assume that Σ f is smooth. In the
general case, we can replace Σ^ by its desingularization and proceed as
we are doing in the following.

First we make a reduction. Put W = S x V. We can introduce
an almost complex structure Jw on W as follows: any tangent vector
on W is of the form (u,υ)> where u is in TS and v is in TV, define
Jw(u>,v) = (Js(u), J(v) + u(Js{u))). It is easy to check that this is an
almost complex structure, tamed by some symplectic form ωw on W of
the form ωs + ω, where ωs is some symplectic form on S. Moreover, if
we define F{ : Σ; \-> W by Fi(x) = (x, fi(x)), where x is in Σ i 5 then Fi
is JvK-holomorphic. Therefore, it suffices to show that a subsequence
of {Fi} converges to a holomorphic map F : Σ *-> W with F*(Σ) =
Fi* (Σ*), where Σ is given in Proposition 3.1. Thus we reduce the general
case to the case that the inhomogeneous term v is actually zero. Prom
now on, we assume that each /< is J-holomorphic. We also fix a J-
invariant metric ΛonF.

Lemma 3.1. There is a uniform constant CA, depending only on
A, such that for fi G .M^Σi, J, 0), we have

(3-2) / mldμ < CA,

where μ is any hermitίan metric on Σ .̂
Proof. Fix a Σ = Σj and a map / = /*. Then we have

/ f*ω = / ω = / ω.
JΈ Jf(Έ) JA

The last integral is a fixed number.
At each point x eV, choose a local unitary basis βi, , en of T^°]

with respect to h. Then

ω = 2Re (α;g>0) ej Λej)+ α g^ej Λ e/,

where {e*} is the dual basis of {e }̂. Let {txi, u2} be a local orthonormal
basis of (Σ,/i), such that jγ,Uι = u2 , JΣ^2 = ~~̂ i 5 then

df(Ul) + J • df(u2) = 0,

i.e.,

fid + f'J(ei) + /ίe- + flJfa) = 0,
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and therefore

/; = -Λ/=Ϊ/2*, fl = Λ/=Ϊ/|,

We denote by {u\,ul} the dual basis of {ίii,i42}. Then

ωg'^/ (β? Λ ej) = ωl ί̂ΛVl - MΠ Λ «;

= -Λ/ ϊ̂ωg '^/i// + Λ7IK Λ «;

We also have

ωf^Γie* A e ) = J™<Jifi - MH A u*2 = 0.

Since J is α -tamed, there is a constant c > 0 such that

so that the lemma follows.

Lemma 3.2. There are e0 > 0 and C > 0, swcΛ £Λα£ for any J-

holomorphic map f : Σ ι-> V, and any metric μ on Σ wi£Λ curvature

bounded by 1, if fB ,, \df\2

μdμ < e0 and the injectiυity radius at x is

not less than 2r, where x G Σ and r > 0, then we have

(3.3) sup \df\l < £ ,

Br(x) is the geodesic ball centered at x and with radius r. Con-

sequently, \\f\\c4(Br(x)) < C4 for some constant C4, which may depend

on the C5-norm of μ.

Proof. This is essentially Theorem 2.3 in [17]. For the reader's

convenience, we sketch a proof here. By scaling, we may assume that

r — 1. Let p 0 be the maximum of the function 4p2 s u p ^ ^ ) |d/|μ

Choose x0 in B2-2p0{x) such that

\df\l(χo) = sup \df\2

μ = eo;
B2-2PO(X)

then for any y in J5Po(y), \df\2

μ(y) < 4e0. By switching to the metric

μ' = eo/i, the ball D = Bpo(xo) has radius R = poy/e$. We claim

sup \df\2, < 16;
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otherwise, R > 2. Since supD \df\2

μl < 1, by the standard Bochner-type
formula, one can show,

for some constant a depending only on V. Therefore, by the Mean-

Value Inequality (cf. [7 (Theorem 9.20)]), one can deduce

l = \df\2

μ,(x0)<C(l + a)jB

where C is a uniform constant. Using the invariance of the Dirichlet

integral under conformal transformations, one can easily see that the

above integral is less than e0. Therefore, we derive a contradiction if e0

is sufficiently small, and the lemma is proved.

Let μi be a sequence of metrics on Σ^ satisfying: (1) The curvature

K(μι) is bounded by 1; (2) the injectivity readius InjRad(μi) > 1; (3)

μι converges uniformly to a complete metric μ^ on the nonsingular part

of Σoo in C6-topology; (4) the limit metric μ^ is cylinder-like near the

singular points of ΣQQ. The existence of such metrics μι is well-known.

Set r m = 2 " m . Definer m

EmΛ = {xe Σi\x 6 /
JBrrn(x,μi)

where e0 is given in Lemma 4.2. Clearly, Em^ is contained in Em^i if

m > m'.
Claim. For i sufficiently large, each Emyi can be covered by balls

B8rm(xii,μi), ^B^^xii^μi), where I is independent of i.

Proof. We fix i. By the standard covering lemma, we can find
xΨ->"' iχ7km

 m Em,i such that E^^ is covered by balls

B2rm(x?,μϊ),~' ,£2rm'(*]Γm,μi), and

Brm (xJ, μi) Π Brm ( ^ , μi) = 0, if a φ β.

This implies

k

CA> I mldμi > £ / \dfi\ltdμi > kme0,

i.e., km < ^ Δ , where CA is the constant in Lemma 4.1. Note that

km = 0 for m sufiiciently large.
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We will select xλi, , xti from those points x™ (m > 1, 1 < a < km)
as follows: We say that {xζ } m i < p < m 2 is a string if xζ is contained in
^2r p _i(^α~\^i) f° r a ^ m i < P ^ m 2 Clearly, for any mi < p <
q < m2, B2rp{xp

ap,μi) is contained in B6rp{ooQ

aq1μi). Such a string is

maximal if it is not contained in another string. The last point in
a maximal string is called a maxiaml element. We put all maximal
elements together and order them as x^, ,Xu. By using Lemma 3.1
and the standard covering lemma, one can show that / is uniformly
bounded. Hence the claim is proved.

Without loss of generality, we may assume that for each α, the se-
quence {xai} converges to a point xaoo Note that xaoo can be a singular
point of ΣOQ.

By Lemma 3.2, there is a constant C^, which depends only on m,
such that

H/i||c4(Σi\iVrm(£;m,i)) ^ Cm?

where Nrm(Em4) is the tubular neighborhood {x G Σi\d(x,Em^) <

4r m } . By the Ascoli Theorem and taking a subsequence if neces-

sary, we deduce that fi converges to a J-holomorphic map fm on

ΣooWrm(i?m,oo Π Σ'^) in C 3- topology, where Σ ^ is the nonsingular

part of ΣQQ. Since JEm>oo is contained in Em>iOO for m > ra', we can glue

fm together to obtain a map / on ΣOO\.EOO. Clearly, fi converges to /

on ΣO O\EO O, and / is a J-holomorphic map. Moreover, we have

L \df\2dμoo < oo.

Lemma 3.3. Let f be any J-holomorphic map from a punctured
disk D — {0} in a Riemann surface into V, and let μ be a metric on
D. If JD \df\2

μdμ < oo, then f extends to a smooth J-holomorphic map
on D.

This is Theorem 3.6 in [17] (also see [16]). It is essentially the Re-
movable Singularity Theorem of Uhlenbeck. We omitted its proof.

Applying this lemma, we can extend / to be a J-holomorphic map
on the smooth resolution Σoo of Έ^. We still denote this extension by

/•
We need to examine the behavior of fi near x H , ,xH. For sim-

plicity, we may assume I = 1, say x{ = xai for each i. The general case
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can be treated identically. There is a point yu in ί f i^ ,/^), such that

(3.4) \dfi\2

μi(yu) =

We may assume that ê  diverges to infinity. We change the metric μι
on B1(xi^μi) as follows: Let η be a cut-off function satisfying: η(t) = t
for t < 1 + βi, 7?(t) = βi for t > 2 + ei? and |f7;(ί)| < 1. Let p be the
distance function from yu of /v Define

(3.5) μί =

Then

(3.6) \4fi\Avu) =

in particular, |dfi|μ'. < 9 for ^/e^p < 4. Since fo is J-holomorphic, by
the standard elliptic estimates, one can easily show

(3.7)

where δ is a positive number independent of i. Note that μ\ coincides
with /if, and |d/i|μi is bounded by a uniform constant in
Bι(xi,μi)\B±(xi,μi). If \dfi\μ*. is not uniformly bounded on B1(xiiμi)1

then there is a y2i in -Bi(xi,μi)\S4(yii,/i^), such that

|4f<β,(V2i)=

Now ê  diverges to infinity as i increases. We change μ\ in a small
neighborhood of y2i as we did for μ{ in a neighborhood of yu. For
saving notation, we still denote by μ\ the changed metric. If \df^μ>
is not uniformly bounded, we repeat the above arguments and obtain
2/3ήί/4i5 so on. Suppose that we have found yu, ,7/^. Then

ί'i) Π Bι(yβi^μί

i) = 0, for a φ β,

ί . r .2 /

Since the Dirichlet integral is conformally invariant, from these we de-
duce that k < ^f . Therefore, after repeating the above arguments in
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finitely many steps, we obatin a metric μ\ such that \dfi\μ> is uniformly

bounded on Bι(xi,μi). Moreover, by taking a subsequence if neces-

sary, we can find y^, • ,yLi, where L is independent of i, such that

\dfi\μ'.(yai) = 15 each J3Λ.(yαi,μ^) is biholomorphic to a ball in C, and

BRi {yau μ\) Π BRi {yβi, μ1,) = 0, for aφβ,

where limϋi = 00. It follows that for each α, /» |BH (yβi,μ'.) converges

to a J-holomorphic map fa from C into V. By Lemma 3.3, such a fa

extends to be a J-holomorphic map from S2 into V.
Let us examine the limiting behavior of the restriction of fa to

tiBRi(yauμ'i)' D e f i n e

(3.8) Ft = {x E B1(xuμ)\ \J BRi(yaUu) | / \dU\\M > c},

where e is any fixed number less than e0 in Lemma 3.2. By Lemma 3.1
and our construction of μ\, one can show that each F/ is strictly con-
tained in a disjoint union of pants or annuli Pβ{ (1 < β < Ni) satisfying:
(1) the diameter diam(PJ i) < r, where r > 0 depends only on e; (2)
each boundary component of P ^ is connected to either Σi\B1(xi, μ) or
one of the balls -B^ίj/αij/Ό by a connecting cylinder. Each connecting
cylinder Ce

Ίi is of the form S1 x [0,Γ7<], where 1 < 7 < M{. Note that
T 7 i can be zero. Since both Mt and N{ are bounded independent of
i, by taking a subsequence if necessary, we may assume that they are
equal to fixed integers M and JV, which are independednt of i and e.

Lemma 3.4. (cf. [17]) There is a uniform constant c such that for
each 1 < 7 < M and i > 1,

(3-9)

Furthermore, if p denotes the distance function from the boundary of
the cylinder C^, then there is a uniform constant λ < 1 such that for
any R > 0,

(3.10) / mlM^ceX*
Jp>R

Proof. We will always denote by c a uniform constant. We fix a

pair 7,i. By Lemma 3.2, \dfi\2

μ, < ce. It follows that the boundary of
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/i(C^) consists of two circles I\ and Γ2 satisfying:

Length(ΓΊ) < y/ce, Length(Γ2) < y/ce.

Since e is small, I\, Γ2 span two disks Z?i, D2 in two small balls of
radius 2^/ce. Let S be the closed surface in V obtained by gluing Z?l5

D2 to fi(CΊi) along Γ1? Γ2, respectively. Then S is homologeous to zero
in V. This can be easily seen as follow: Cut C^ into cylinders with
diameter less than one, and glue disks to boundaries of these cylinders
as above; thus we obtain a number of spheres of bounded size in V. By
the gradient estimate on /;, each such sphere is contained in a small
ball of radius 2i/ce, so it is homologeous to zero. Now S is homologeous
to the sum of those small spheres, so it is homologically zero, too. Since
S bounds a 3-dimensional set, by the Stokes' Theorem, we have

0= ί ω = ί f*ω+ ί ω- ί ω.
Js JcΊi JDI JD2

On Dι, we can integrate ω to get an 1-form u\ such that ω = duλ and
< Ayfce on Dγ. Then by the Stokes' Theorem,

/ ω = uλ < Length(Γχ) sup \uχ\ < Ace.
J Dι JΓι D\

Similarly, one can show

/ ω < Ace.
J D-2.

Therefore, we have

Ic f:ω-8cβ

Hence (3.9) follows from this and the ω-tameness of J. In [17], (3.10)
was derived from (3.9) by an isoperimetric inequality. One can also
derive (3.10) directly. Since a similar estimate will be given in the
proof of Lemma 6.10, we omit the proof of (3.10) and refer the readers
to Lemma 6.10.

Since fι is J-holomorphic, for each 1 < β < ΛΓ, by taking a sub-
sequence if necessary, the restriction of fi to PJ i converges to a J-
holomorphic map f€

0oo as i goes to zero. We can arrange Pβ{ C Pjί
for e > e'. Then for each β, we can glue fe

0oo together to obtain a J-
holomorphic map f'β from a punctured sphere into V. By Lemma 3.3,
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this fβ extends to be a J-holomorphic map from S2 into V. Note that
fβ can be a trivial map. Since P^ is connected to either Σi\Bι(xi^μi),
or some i?Λ.(yαi,μ;) by some cylinder C^, using Lemmas 3.2, 3.4, one
can easily show the image of fβ must intersect with either /(Σoo) ° r

one of fa(S2). We define / to be the sum of J-holomorphic maps /,
fa and fβ. Let Σ be the domain of /. In fact, one can take Σ to be an
admissible curve.

Finally, we show that /*(Σ) = A. Let φ be any closed 2-form on V.
Then for any sufficiently small e, by Lemma 3.4 we have

The restriction of /< to Σi\Bι(xi,μι) \J J5Λ.(yαi,/i^) \JPβi converges to
/|c/e, where Ue is an open subset in Σ such that Ue>o U€ *

s eQual to Σ
with punctures. Therefore, by letting e go to zero, from the above we
deduce

f fΦ= f KΦ= f Φ>
JΣ JΣi JA

so that /*(Σ) = A. Hence Proposition 3.1 is proved.

4. Transversality of compactification

From Proposition 3.1 it follows that the moduli space MA(Σ, J, v)
admits a natural compactification .MA(Σ, J, z/), which contains all ge-
ometric limits ("cusp" curves) of sequences in Λ4A(Σ, J, v) (see para-
graph 5 for details). Such a compactification is called Gromov-Uhlen-
beck compactification. In this section, we prove a structure theorem
for MA(Σ, J, V) (Theorem 4.2). For the purpose of proving the com-
position law, we also need to consider the case that Σ is only a stable
curve (possibly singular).

Recall that an l-point genus g stable curve C = (Σ,Xχ, ,#/) is a
reduced, connected curve Σ, whose singularities are at most ordinary
double points, plus k distinct smooth points Xi in Σ, such that every
smooth rational component of C contains at least three points which
are either x^s or double points of Σ. Geometrically, one gets an Z-point
genus g stable curve by adjoining a set of curves with double points,
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and adding some marked points to each rational component. We will
call a double point of C a distinguished point on the component of Σ
on which it lies.

Let Σ be a stable curve and have m components Σ l 5 , Σ m . An in-
homogeneous term v over Σ is a set of inhomogeneous terms vx, , vm

such that each v{ is an inhomogeneous term on Σ^ (cf. (2.1)). A map
/ : Σ —> V is (J, ̂ )-perturbed holomorphic if its restriction / | Σ . to
each Σj is a (J, ̂ -perturbed holomorphic map. As before, we de-
note by MA(Σ, J, V) the moduli space of (J, ι/)-perturbed holomorphic
maps from Σ into V with /*(Σ) = A. Note that ΛΊΛ(Σ, J, v) contains
many components M(Au-:,Am)(Σ, J, v) whose elements are (J, ι/)-maps
/ : Σ !->• V with /*(Σ;) = A{ for 1 < % < m, where the sum of the
Ai is A. The goal of this section is to prove a structure theorem for

Definition 4.1. A Σ-cusp (J, ̂ )-map / is a continuous map from
Σ' to y, which is smooth at smooth points of Σ', where the domain Σ'
of / is obtained by joining a chain of S '̂s at some double point of Σ to
separate the two components at the double point, and then attaching
some trees of S '̂s. We call components of Σ principal components and
others bubble components. For each principal component, the restric-
tion of / is (J, i/)-perturbed holomorphic. The restriction of / to a
bubble component is J-holomorphic, i.e., djf = 0. A Σ-cusp curve is
an equivalence class of cusp maps modulo the parametrization groups
of bubbles PSL2C. Because we take into account of constant holomor-
phic maps, we allow the image of a principal component under / to
have zero homology class. But the image of any bubble component
under / will always have nonzero homology class. Furthermore, we
will always use intersection points to denote the intersection points
between the components of the domain.

By our definition, a cusp curve is just a collection of curves whose
domains interest according to the intersection pattern sepecified by the
homeomorphism type of domain of a cusp map. By Proposition 3.1,
we can compactify J M ^ ( Σ , J, v) by adding Σ-cusp curves with total
homology class A. We will divide the set of cusp curves by some equiv-
alence relation and study the structure of the quotient. There are two
cases: (i) Some of the bubble components may be multiple covering
maps, and it is well-known that transversality theory fails for multiple
covering maps [14]. In this case, we will simply forget the multiplicity
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and take the reduced map onto its image; (ii) Adjacent or consecutive
bubbles have the same image, in this case, we will collapse them into
one bubble. Clearly, the resulting curves are still cusp curves with pos-
sibly different total homology class. Let MA(Σ, J, V) be the quotient
of the cusp-curve-compactification of ΛΊA(Σ, J, V) by this equivalence
relation. Then Λί^(Σ, J, v) — Λ4A(Σ, J, v) is just a union of cusp curves
with possibly different total homology class. We will prove the following
structure theorem.

\

Principal Components

FIGURE 1. DOMAIN OF A CUSP MAP

Theorem 4.2. Let (V,ω) be a semi-positive symplectic manifold.
For a generic (J,v), .M^Σ,«/,v) is a smooth, oriented manifold, and
.M^Σ, J, v)—ΛΊΛ(Σ, J, V) consists of finitely many pieces (called strata),
and each stratum is branchedly covered by a smooth manifold of codi-
mension at least 2.

Remark 4.3. There is a problem whether or not MA(Σ>, J, v)
carries a fundamental class. To prove the existence of a fundamental
class, we need the additional property that .MA(Σ, J, v) — MA(Σ, J, V)

has a neighborhood which is a deformation retract to itself. This is
much stronger than what we gave in Theorem 4.2. It is a difficult
problem to show the existence of a fundamental class, and involves
much more analysis. However, we do not need the fundamental class
in this paper.

The rest of this section is devoted to the proof of Theorem 4.2. First
we shall decompose ΛΊΛ(Σ, J, v) — Λί^(Σ, J, v) into strata. A stratum
is the set of cusp curves (possibly with total homology class different
from A) satisfying: (1) they have domain of the same homeomorphic
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type; (2) Each connected component has a fixed homology class. Fur-
thermore, for technical reasons, we need to specify those components,
which have the same image even though they may not be adjacent to
each other, and their intersection points having the same image. There-
fore, the strata of MA{Σ, J, V) — MA(Σ>, J, V) are indexed by datas: (i)
homeomorphism type of the domain of cusp curves with distinguished
points at appropriate intersection; (ii) a homology class associated to
each component; (iii) a specification of components with the same im-
age and their intersection points with the same iamge. We denote by
D a set of those three data. Let £>Σ be the collection of such JD'S.
Note that when we drop the multiplicity from a multiple covering map,
we change the homology class. However it is still A-admissible in the
following sense:

Definition 4.4. Let D be given as above. We define [D] to be
the sum of homology classes of components in (ii). Let Pi, , P m be
principal components and £?i, , Bk be bubble components of D. We
say that D is callled A-admissible if there are positive integers 6χ, , bk

such that
m /z

(4.1) A

where [PJ, [Bj] are the homology classes of P*, Bj. We say that D
is (J, ̂ -effective if every principal component can be represented by
a (J, ί/)-map, and every bubble component can be represented by a
J-holomorphic map.

We will always denote by Σ; the domain of the (J, u)-maφ repre-
senting P{. Let T>AU

Σ C P Σ be the set of A-admissible, (J, ^-effective
D.

Lemma 4.5. The set V^Έ is finite.
Proof. First we remark that for any given stable curve Σ and

the number of principal and bubble components, there are only finitely
many homeomorphism types of possible domains of cusp curves. There-
fore, it is enough to show that the number of possible homology classes
of principal components or bubble components is finite. For each D in
^Λ,Σ> let Pi, , P m be the principal components of D, and JBI, , Bk

be the bubble components of D. Note that m depends only on Σ,
so it suffices to bound k uniformly. Assume that P i 5 Bj are repre-
sented by /P i, fBj We denote by E(Pi) the energy of /p., and by
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E(Bj) the energy of fBj- Then by Lemma 3.1, there is a uniform con-
stant c such that E(P ) < c(ω(Pi) + 1) and E(Bj) < cω(Bj). Since

Ϊ

m

Σ E(Pi) + < c (ω(A) + m).

On the other hand, there is a uniform constant e > 0 such that
E(Bj) > e for all j . This implies that k is finite. Also, E{Pi), E(Bά)
are uniformly bounded from above, so from the Gromov-Uhlenbeck
Compactness Theorem (Proposition 3.1) it follows that there are only
finitely many possible homology classes, for P ,̂ Bj. Therefore, Ί)^Σ is
finite.

FIGURE 2. CREATE A CYCLE

One can consider V^ ^ as the set of indices of strata. For each
D e VJχ^ let Mγ,(D, J, v) be the space of Σ-cusp curves such that the
homeomorphism type of its domain, homology class of each component,
and components and their intersection points, which have the same im-
age, are specified by D. Now we make another reduction by identifying
the domains of those components which have the same image, and
change the homology class accordingly. Furthermore, we identify the
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corresponding intersection points with the same image. Suppose that
the resulting new domain and homology class of each component are
specified by D. This process may destroy the tree structure and creat
some cycles in the domain. The total homology class also changes.
However, it remains to be A-admissible. The following two diagrams
illustrate this process.

Given such D and I), we can identify Mx(D,J,v) with the space
of (J, z/)-maps whose domain and homology class of each component
are specified by D. Let us denote this space by λΛγ,(D, J, u). Then for
each / in Mγ,(D,J,v), bubble components have different images. As
before, let Pi, , P m be the principal components, and let i?i, ,2?*.
be the bubble components. Now we shall construct a smooth branched
covering of MA?Σ(Z), J, v). Let Σ^, be the domain of maps in the stratum
Mχ(D, J, v). This is a union of Σ; and some 52's. Consider

J,u) = {f:ΣD^V\ fPi [ ]

fBjeM*{Bj](S2,J,0), lm(fBj)^lm(fBjt) i£ j φ j'} ,

where Λ4ΐB.ΛS2, J, 0) C λd[Bj](S2, J, 0) is the space of non-multiple
covering maps. Sometimes, we drop (J, v) in case there are no confu-
sions. For each bubble component, there is a parametrization group
G = PSL2. Therefore Gk acts on MΣ{D,J,v), and MΈ{D,J,ι>) =
MΣ{D,J,v)/Gk. Clearly,

(4.3) Mχ(D,J,v)

But Λ4χ(D,J,v) is not smooth in general. We would like to desin-
gularize M.γ,{D,J,v). More precisely, we will use an idea in [19] to
construct a smooth manifold Nv{D, J, v) and a branched covering map
π : J\ίΈ(D,J,u) -» MΣΦ,J,U). Note that Mχ{D,J,v) is a proper
subset of Π M[Pi](Σi, J, Vi) x T[M[B.](S2, J,0), whose components in-
tersect each other according to the intersection pattern given by D.
Let hi be the number of intersection points on the component P .̂ Note
that we count a self-intersection point twice. Here, the intersection
points between the components are the points in their domain, not
in their image. Among them, there are pi many distinguished points
and marked points which are bubbling points. Suppose that they are
z[, , zι

p.. Similarly, let h? be the number of intersection points on
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the bubble component Bj. Consider the evaluation map

where h^ = Σ ^ί + Σ ^J"> a n d e £ i s defined as follows: We first define

(4.4) ePi : M[Pi](Σu J,^) x (Σ?)

ePi{f,xu- ,Xhi-pi) = (/(^ϊ)r 5/(4i

For each £,, we define eBj : ΛΐfB.](S2, J,0) x (S 2 )^ -> ΐ ^ ' by

(4.5) eB.(f,yu ,yΛJ ) = (/(y i), J(yhή).

Then we define e^ = Π ePι x Π eBά Recall that if M, N are submani-
folds of X, M ΠN can be reinterpreted a s M x i V Π Δ , where Δ is the
diagonal of X x X. This means that we can realize any intersection
pattern by constructing a "diagonal" in the product. Let us construct
a submanifold Δ^ C Vh which plays the role of the diagonal. Let
2i j " ' , ztβ be all the intersection points. For each z8, let

Is = {Ph j " " 5 Piq 5 -Sj i , . . . , Bjr}

be the set of components which intersect at zs. Now we will construct

a product Vs of V such that its diagonal describes the intersection at

z8. This is done as follows: We allocate one or two factors from each

of Vhi*, , VΛ<«, according to whether or not zs is a self-intersection

point of the corresponding principal component. We allocate one factor

from each of Vhn, , Vh3r. Here Vhi or Vh3 are the image of ePi or eBj.

Then, we take the product of those factors and denote it by Vs. Let As

be the diagonal of Va. Then the product Ap = Δ x x x At£> C Vh£> is

the diagonal to realize the intersection pattern between the components

of D. Let π be the natural projection from

Π( Λ v<]( Σ « 7> i/ί)χ (Σi)hi)χ n C ^ w 5 2 ' j ' ° ) χ (s2)hj)
onto

^ ^ 15 J-)Vi) X
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Then π(ejf(Δ&)) D Mχ(D,J,v). But they may not be equal because
we require that bubble components have different image. Moreover, the
group Gb£> acts on e^Δ^,) and T Γ " 1 ^ ^ , ^ ) ) , where bp = Σhj.

Definition 4.6. We define

and

(4.6) ΛfΈ(D,J,v)=λfχ(D,J

Clearly, π : Nγ,(D, J, v) -> Mγ,{D, J, v) = Mχ{D, J, v) is a branched

covering. The fiber over / in Mγ,(ϊ), J, v) is the set of unordered tuples

of intersection points between components of / .

Theorem 4.7. For a generic {J,v), J\ίΣ(D,J1iy) is a smooth mani-

fold of dimension

+ 2n - 6) + 2hD - 2uΈ - 2sD - 2n{hD -

where gι is the genus of Έi7 uΣ is the number of distinguished points,

i.e., twice of the number of double points of Σ, s^ is the number

of marked points which are bubbling points and t^ is the number of

intersection points of D. Moreover, for generic (J, v) and (J ;,z/') ;

there is a generic path (Jt,vt) connecting (J, v) and (J1',*/) such that

Ute[o,i] ̂ Σ(-D? JU
 vt)x {0 ^ a smooth manifold of one dimension higher.

By the construction of D, it is evident that tp < tD and h^ <hD.

But, hp — tf) = hD —tD. Therefore, we have

Corollary 4.8. Under the conditions of Theorem 4-7, the dimension

of dimAfΣ(D, J, v) is less than or equal to

2n - 6) + 2hD - 2uΈ - 2sD - 2n{hD - tD).

Proof of Theorem 4.7. In [13 (Lemma 4.8-4.11)], McDuff proves the
theorem for rational curves. The proof for general cases is identical.
For the reader's convenience, we give a sketched proof here. Let J be
the space of α -tamed almost complex structures equipped with Sobolev
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norm W1'2 for a sufficiently large I. It is a Banach manifold. For each
J G J, the inhomogeneous terms are elements of ΠΓ Homj(TE i 5TF),
i.e., sections of the bundle of anti-J-linear homomorphisms from TP{ to
TV over PixV. So our space of inhomogeneous terms is a vector bundle
over J with fiber Π Γ H o m j ( T Σ ή τ ^ ) equipped with the H^'2-Sobolev
norm.

For each P;, we have a universal moduli space

(4.7) HPi = {(/, J, i/έ

For each β^ , we also have a universal moduli space

(4.8)
U*> = { ( / ' J)\f' S2-*Vi I m(/) = B3, djf = 0;

/ is not a multiple covering}.

It is well-known (cf. [13], [19]) that those universal moduli spaces are
smooth Banach manifolds. We define an evaluation map

(4.9) eD : Π(«« * (Σ*)*-*) x
i j

and the diagonal Δβ as before. On the other hand, there is a projection
map

(4.10) Θ : l[(UPi x (E,)*'-1*) x Y[(Ή*Bj x (5 2 ) Λ i ) v

Let Δ^ C (J)m+k be the diagonal.
Lemma 4.9. Q~x(Aj) is a smooth Banach manifold.
Proof. There is another way to construct θ"1(Aj) as follows:

Consider the space V of inhomogeneous terms, which is a vector bundle
over J with fiber ΓLHonij (TΣ^TF). For a fixed J G J , we can form

a Hubert bundle ΩΌ/(e*PiTV) or ίl°/(e*BjTV) over Map^^Σi, F) or

Mapj^.]^2, V) in the same way as one did in [19]. Then by varying J,
we obtain a bundle

Y[Ma.pίPi](ΣuTV) x ΠMap^.](52,F) x V.
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There is a canonical section S — (dj — vx,..., dj — vm, dj, , dj)
of this bundle. Then Q-λ(Δj) is a fiber bundle over S~ι{ϋ) with
fiber U(^i)hi~Pi x (S2)6*. To show that β " 1 ^ ) is a smooth Banach
manifold, we only need to show that S is transversal to the zero zection.

Let a = (/i, ,/ m ,CΊ, ->Ck^J^v) E S~x($$). We want to show
that the differential δS(a) is surjective to the fiber

As we showed in [19], the differential δS is surjective on each factor
Ωj 1 (e*p.TV) regardless of J. So it suffices to show that δS is surjective
on each factor Ωfy1 (e*B TV). Let (a 1 ? . . . , ak) be in the cokernel of δS.
Then Oίj satisfies the equation L*faj = 0, where

Lf : Ω°(

is the linearization of the Cauchy-Riemann operator dj at /, which is
an elliptic operator. Choose a point Xj G S2 such that dCj(xj) Φ 0
and C~1(Cj(xj)) = {XJ}. We want to show that otj is identically zero.
By the Unique Continuation Theorem for elliptic operators, it suffices
to show that α̂  vanishes in a neighborhood of Xj. If k = 1, this
is a classical argument [14]. Let us sketch the argument. We can
perturb the almost complex structure in a neighborhood of Xι such
that the image of δS contains all the local sections of Ωj 1 (e*B TV) at a
neighborhood of Xi, which vanish outside a slightly larger neighborhood
of Xι . Since aλ is orthogonal to the image of 5<S, this implies that aλ

vanishes in a neighborhood of X\. In the general case, we can always
suppose that x1? , xk are distinct and perform the same argument at
a disjoint union of neighborhoods of Xj. Then, the proof of the general
case is identical to the case k = 1.

Next we claim that e : Θ~ι(Δj) ->• Vh is transversal to Δ^.
Let (vi, ,Vtfl) be a point in Δ̂ > = Δ x x x At£>. Let Is =

- ,Ck,yk,J,v) e e~ι{{vU'" ,vt£))).

Then, fh(Xil) = . . - = fip(xip) = Ch{yh) = ••• = Cjr(yjr) = v8.

We claim that there are only finitely many accumulation points of
lmCjΠlmCj> (see [13 (Lemma 4.4)]). Its proof is standard and can be
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outlined as follows: The Hartman-Winter Lemma ([9 (Lemma 2.6.1)])
implies that the derivative of Cj or Cj> vanishes at most at finitely
many points; consequently, Im(Cj) or lm(Cj>) is smooth outside finitely
many points. If the claim is false, then there is an accumulation point
y' where both Im(Cj) and Im(Cj/) are smooth. Near y', one can choose
local coordinates (zi, , z n ) of V such that zk Cj = 0 for all k > 2.
Since ImCj ^ ImCj/, zk Cj> is not identically zero for some k > 2.
Using the Hartman-Winter Lemma again, one can show that zk Cj'
vanishes only at finitely many points, a contradiction to our assump-
tion on y'. Then the claim follows. Therefore, for each Cja, we can
choose a small disc Dja around yJa such that there is a smaller disc D' a
satisfying that the anulus Dja — D'ja does not intersect other bubble
components. By the work of McDuff [14], given any tangent vector
X G TVsV, there is a perturbation C£ of Cja on Dja such that C£ is

still J-holomorphic, C£ = Cja and -^(j/jΛ)|t=o — -X"- We can patch
Cja with CjM\s*-DJa t ° g e t Cja defined on S2 such that Cja\Dja-D'. does
not intersect other bubble components either. Here we also need to
perturb the almost complex structure J to Jt in a small neighborhood
of ImCja\Dja-D'. such that Cja is Jj-holomorphic. Clearly, other bub-

dCι

bles are also Jt holomorphic. But - ^ - ( y j j | ί = o = X- For a principal
component /;θ, the argument is even easier. We can just choose an
arbitrary perturbation /£ on a small disc Dia around xia (xia could
be a distinguished point) such that -£-(Xia)\t=o = X Then we patch

it with fia\zi-Dia to get a globally defined /£ with —£-(xia)\t=0 = X.
Then we simply perturb via such that z/?β = djffa on the graph of / £ .
Then //s satisfies an inhomogeneous Cauchy-Riemann equation with
inhomogeneous term v\a. Applying this argument to each vs and every
point in e^1(Δ^>), we show that

is transversal to Δ^. Therefore, Θ~ 1(Δj) Π e~1(Δ^>) is a smooth Ba-

nach manifold. Moreover, we have a Fredholm map

By the Sards-Smale Transversality Theory, for a generic element (J, v)
of V: its preimage Λfχ(D, J, v) is a smooth manifold. Gbϋ acts freely on
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NAV{D,J,V). Therefore, Afx(D,J,v) = ΛΓΣ(D, J,v)/Gb* is smooth. A
routine counting argument yields the dimension. The proof of second
part of theorem is identical.

A special case is that D only has one principal component Σ, where
we call D to be sectional in [19]. In this case, λΛγ,(D,J,v) is in the
boundary of JMΛ(Σ, J, V).

Corollary 4.10. Suppose that D is sectional. Then for a generic
{J,v), NΣ,{DIJ,V) is a smooth manifold, and for generic (J*,^),
\JtAfΈ(D,Jt,i't) x {t} is a smooth cobordism.

We need this corollary in the definition of the mixed invariant. An-
other special case is

Corollary 4.11. If D has no bubble components at all, then for
a generic {J,v), JM>I(E,J,v) = Nγ,{D,J,v) is smooth, for generic
(Ju"t), \JtMΛ(Z,Jui/t) x {<} = U M ; ( A Λ , ^ ) x {*} w a smooth
cobordism.

Remark 4.12 (on orientations). Compared to Donaldson gauge
theory, the theory of pseudo-holomorphic curves is considerable more
complicated in many aspects like compactness. But the orientation
problem for pseudo-holomorphic curves is much easier. In fact, there
is a canonical orientation over MA{Σ, J, V) [13] [19] for genus 0 case.
The argument for higher genus case is completely the same. For the
reader's convenience, we sketch the argument here.

First of all, we can view a (J, ̂ )-map as a holomorphic map t o Σ x V
(the paragraph before Lemma 3.1). Without loss of generality, we
can assume that v — 0. Recall that the linearization of the Cauchy-
Riemann operator dj at / E JMA(Σ, J,0) is

Lf : Ω°(f*TV) -> Ω0Λ(f*TV).

The tangent space T/Λ^Λ(Σ, J, 0) = KerLf.. The determinant line
bundle det(TMA{Σ, J, 0)) = det(L/), which is defined over MapΛ(Σ, V).
An orientation of jA/ί>i(Σ, J, 0) is just a nowhere vanishing section of
det(TMA(Σ, J, 0)) up to a multiple of positive function. We shall omit
" up to a multiple of positive function without any confusion" with-
out any confusion. Therefore, to construct a canonical orientation of
MA{Σ, J,0), it is enough to construct a canonical section of det(L/)
over whole MapΛ(Σ, V). Choose a J-linear connetion V over V. Then,
Lf can be written as

Lf = V/ + Zf,
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where V is the induced J-linear connection over f*TV, and Zf is the
zero order term. Let

Then, det(Lfj) is isomorphic to det(L/)0) Hence, det(Z^) is isomorphic
to det(V/). On the other hand, both A erV/ and cokerVf are complex
vector spaces. Therefore, there is a canonical section of real determi-
nant line bundle det(V/) corresponding to the complex structure. We
refer to [19 (Theorem 3.3.1)] for the argument of the independence of
this canonical section from the choice of V. By the same argument, one
can show that U^cij-M^E, J ί 5 vt) x {t} carry a canonical orientation.

Next, we compute the codimension of Afz(D, J, v). First we consider
an easy case.

Proposition 4.13. Suppose that Σ is a genus g stable curve. Then

dimMA(Σ, J, u) = 2d(V)(A) + 2n(l - g).

Proof. Clearly, /ιΣ = txΣ = 2£Σ and sD = 0. Hence

dimMA(Z, J,V) = 2C1(V)(A) + 2n(l - ] £ # ) + 2n(m - 1) - 2ntΣ.

Recall that we can obtain Σ by adjoining sΣ-many disjoint simple closed
loops on a genus g Riemann surface. Collapsing of each loop will corre-
spond to a double point. We shall prove Proposition 4.13 inductively by
collapsing the loops one by one. Let Σλ be a stable curve. We collapse
a circle on some component of Σx and obtain another stable curve Σ 2 .
Suppose that we collapse a circle 7 on a component B of genus g. There
are two cases. First, we separate the component B into two compo-
nents Bι,B2 of genus #i, #2- Then g = gλ +32? wι increases by 1 and sΣ

increases by 1. Therefore, 2CΊ {V)(A) + 2n(l - Σ 9%) + 2n(m -1) - 2nίΣ

remains the same. If collapsing of 7 does not separate the component
J5, then it creates a self intersection on the component B. In this pro-
cess, the genus drops by 1, m remains the same, but sΣ increases by 1.
Clearly, the dimension formula remains the same.

Proposition 4.14. Suppose that (V,ω) is a semi-positive symplectic
manifold. Then for a generic (J, v) and a D in T>A"Έ,

(4.11) dimλίΣ(D, J, v) < 2d(V)(A) + 2n(l - g) - 2kD - 2sD,

where kD is the number of bubble components of D (not D).
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Proof. By Corollary 4.8, the dimension of λfχ(D, J, v) is less than
or equal to

+2n(l - J > ) + 2n(m - 1) + (2n - 6)fc5

+2ΛD - 2uΣ - 2sD - 2n(/ιD - tD).

For a generic J,

+ 2n - 6 = άιmM\Bj]{S2, J,0)/PSL2 > 0.

If some bubble component Bj happens to be the image of two or more
bubble components of D, then

dimΛ/"Σ(A J,i/) < ^2C 1 (F)([D]) + 2n(l - J^ft) + 2n(m -
+(2n - 6)fcjo + 2hD - 2uΣ - 2n{hD - tD).

Since (V,ω) is semi-postive, Cι(V)(Bj) > 0 for a generic J. Since D is
A-admissible, Ci(7)([B]) < Cι{V){A). Let

= (2n — 6)kD + 2/i£> — 2n(hD — sD).

By Proposition 4.13, it is enough to show that λ^ < λΣ — 2kD =
2/ιΣ — 2n(/ιΣ — ίΣ) — 2kD. We will prove this by induction on k. When
k = 0, it follows from Proposition 4.13. Suppose that it is true for k
and D has k + 1 many bubble components. We consider two cases:

Case 1. There is a bubble component B such that there is only
one intersection point on the f?-component. In this case, there is a
bubble tree in £), and B is at the tip of one branch. Therefore, we can
remove a 5-component and obtain the domain of a Σ-cusp curve D1

with fc-many bubble components. Suppose that the intersection point
is z. Then, there are two situations. First, there are at least three
components intersecting at z.
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In this case, after the removal of a 5-component, we still have the
same number of intersection points. Then,

ho = ho> + 1, so = SD'

So,
AD < \D> + 2n - 6 + 2 - 2n < λΣ - 2(k + 1).

Suppose that there are only two components intersecting at z. After
the removal of a J5-component, we will have one fewer intersection point
on the component intersecting the β-component. Thus,

ho — hD< + 2 , S£> — Spi + 1.

Hence,
λD < λD/ + 2n - 6 + 4 - 2n < λΣ - 2(k + 1).

Case 2. Every bubble component has at least two intersection
points. Then, there is no bubble tree on D, and D is obtained by
joining chains of bubbles to separate double points. In this case, every
bubble component has exactly two intersection points.

Now we collapse any bubble component, say B, to end up with D',
a domain of a Σ-cusp curve with k many bubble components. Clearly,

I I , C\ I "I
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Hence,

\D = \D, + 2n - 6 + 4 - In < λΣ - 2(jfe + 1).

Finally, we have
Proof of Theorem J^.2 (Structure Theorem). It follows from Lemma

4.5, Theorem 4.7, Proposition 4.13 and 4.14.

5. Proof of Propositions 2.2, 2.3

After our work on compactness and transversality theory in last two
sections, we are ready to prove Propositions 2.2, 2.3, which were used
in section 2 to establish the existence of the mixed invariant and its
independence from various parameters. Hence, the mixed invariant is
a symplectic invariant. We also consider transversality between inter-
secting components of (J, z/)-map from a stable curve. This is needed
in the gluing argument of next section.

In order to prove Propositions 2.2, 2.3, we need an additional transver-
sality result, i.e., transversality of moduli spaces with a pseudo-manifold
representative of a homology class in the target space V. As we men-
tioned in section 1, every homology class can be represented by a
pseudo-submanifold. Now it is the time to give a precise definition.

Definition 5.1. A dimension-n finite simplical complex P is called
an abstract pseudo-manifold if Preg = P — P n_ 2 ((n — 2)-skeleton) is
an open smooth oriented n-dimensional manifold. P is called an ab-
stract pseudo-manifold with boundary if Preg is a n-dimensional ori-
ented smooth manifold with boundary dPreg. Let dP = dPreg. Then
dP Π Pn-2 is a subcomplex of dimension less than or equal to n — 3.
A pseudo-submanifold is a pair (P, /), where P is an abstract pseudo-
manifold, and / : P —> V is a piece-wise linear map (PL) with respect
to some triangulation of V such that / is smooth over Preg. A pseudo-
submanifold cobordism between pseudo-submanifolds (P, /) , (Q, h) is a
pair (UΓ, H) such that K is an abstract pseudo-manifold with boundary
with dK = PU — Q, and H is PL with respect to some triangulation of
V and smooth over Kreg with H\PU-Q = / U —Λ, where — means the
opposite orientation.

Furthermore, we have the following lemma on transversality.
Lemma 5.2. Let (P, /) be a pseudo-submanifold representative of

a homology class a, and hi : X{ -> V be smooth maps from smooth
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manifolds X{. Then, there is a small perturbation f : P -> V such that
f is transverse to each hi, i.e., f is transverse to hi as a PL map and
transverse over Preg as a smooth map.

Proof. This lemma is the consequence of standard transversality
results in PL topology [18], [12].

Let {(Ui,Li)}?=1, {(Wj.Mj)}^ be pseudo-submanifolds. Let X =
{#!,..., xc} be a set of marked points on Σ. We consider the evaluation
map

(5.1) _^γc+dχVc+d^

e(Έ,xj,v)(/, yi,.. •, yd) = (/(si), , / ( O , /(l/i), , fiVd)).

Let Ax be the diagonal {(*i, ,sc+d,si, ,*c+d)} C F c + d x
Write C/ = UiUi, W = Πj Wj and L = Π^i, M = Π ^ Then,
(/,"•) e (e(Σ|χfJfI,) x L x M)" 1 (Δ X ) if and only if f(Xi) e Im(Li),
/(Σ) Π ImίMj) τ4 0. For simplicity, we write e~r£x Ju)(L x M) for
(e(Σ,x,j,ι/) x i x M)~ 1(ΔX). Similarly, if {(Jt,i/t)} is a path, we can
define

(e(E,x,{jt,,t})) xLxM: {JMA{Σ,Jt,ut) x {ί} x (Σ)d x ί / x l f

Put

Theorem 5.3. For a generic (J,v), we can choose L,M such that
e(Σ,x,j,i/)("^ x -W) *5 α smooth manifold. For a generic path {Jt,vt}, we
can choose L,M such that e^x^JtUty^(L x M) is a smooth cobordant.

This theorem obviously follows from Lemma 5.2.
Let C = (Σ,#i, ,xc) be a stable curve, and X = {#!,••• ,xc}

is the set of marked points. Now we want to consider the set of
/ £ Aij:(D,J,v) = .MΣ(Z), J,ι/), where J9, D are as in section 4,
such that f(xi) G Im(Li) and /(Σ)Πlm(Mj) ^ 0. As we showed in last
section, Afz(D,J,t/) is a smooth manifold for a generic (J, z/). There-
fore, we shall use Afx(D,J,v) instead of Mz(D,J,v) to formularize
transversaltity theorem. To do this, we also need an additional data
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which is the intersection pattern Γ of components of / with Im(Mj).
Without loss of generality, suppose that Im(Mi), ,Im(Mp) intersect
principal components and the rest intersect bubble components. Fur-
thermore, suppose that Ms (1 < s < p) intersects Pia -component and
Ms (s > p) intersects Bjs-component. If Mi intersects more than two
components, we simply choose one of them. Then we can define

p

ex,τxLxM :λίc{D,J,v)x JJ Σia xGd-P (S2)d~p x U x W

Note that G = PSL2C. Let Δ τ C Vc+d x Vc+d be the "diagonal"
corresponding to the intersection pattern T (cf. section 4). Define

e ( D , j ^ x ' , τ ) ( L x A f ) = ( e X 9 T x L x

Then, f(xi) e Irn(Li),andIm(/) nlm(Mj) φ 0 implies that

Similarly, we can define e^^JtUtyx^(
Theorem 5.4. For α generic (J, v), we can choose L,M such that

e~ip J v x' T) (-k x M) is a smooth manifold of dimension

dimλfΣ(D, J, v) + 2d - codim(L) - codim(M)
< 2d(V)(A) + 2n(l - g) - 2 - 2sD + 2d - codim(L) - codim(M),

where sD is the number of marked points which are bubbling points.
For a generic path, for any D G T>^Έ and X',T we can choose L,M
such that {Jt,vt}, e^^Jtί/tyX,τ^(L x M) is a smooth cobordant of one
dimensional higher.

The proof follows from Lemma 5.2
Definition 5.5. When Theorem 5.4 holds, we say that Nγ,{D, J, v)

(resp. \]th!γι{Ό, Jt,Vt)) is transversal to L x M for X,T.
Proof of Proposition 2.2. We will adopt the notation in section 2.

We fix a generic (J, v). First we prove Proposition 2.2,(ii). If Proposi-
tion 2.2,(ii) fails, by the compactness theorem (Proposition 3.1), there
is a sectional cusp curve / in Mz(D, J, v) for some D G X ^ Σ satisfy-
ing: (1) fj(Σ) Π lm(Gj) φ 0 (1 < j < /); (2) for each marked point x>
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(1 < i < A;), either fi(x{) G Im(Fi), or a bubble occurs at x^ in this

case, f(x{) may not be in Im(i^), but Im(i^) will intersect the bubble

tree coming out of xiu Note that lm(Gj) may intersect a bubble tree in-

stead of the principal component /(Σ). Therefore, we should view that

/ has few marked points and the number of homology classes corre-

sponding to unmarked part of mixed invariant increases. Let X' C X

be a subset of marked points which are not a bubbling point. Sup-

pose that X' has p many points, say a;1? , xp. Then I + k — p is the

number of homology classes which intersect with Im(/). Let Ui C Yi

and Wj C Zj be the smooth submanifolds (possibly non-compact) such

that f(xi) E Fi(Ui) for 1 < i < p, Im(/) Π F^U-) φ 0 for i > p, and

Im(/) Π Gj(Zj) φ 0. Suppose that / intersects those manifolds in the

intersection pattern T. As we discussed before, it implies

On the other hand, by Theorem 5.4, if (J, v) is generic, we can choose

F such that e^ JvX,^{F) is a smooth manifold of dimension

dimλfΈ(D, J, i/) + 2(1 + k - p)) - codim(JJ U{) - codim(J] Wά)

< 2d{V)(A) + 2n(l - g) - 2 - 2(fc - p ) + 2(1 + k -p) - codim(P)

< - 2 .

Hence, e^J J l / X , T)(F|rτ UiXr\ w.) = 0 This is a contradiction. So

(ii) is proved. Moreover, if / is in .MA(Σ, J, z/), /(xi) E Fi(Ui) and

Im(/) Π Gj(Zj) φ 0 for all i, j , then the above arguments also show

that Ui is an open stratum of Y^ and Wj is an open stratum of Zj.

Thus Proposition 2.2 follows from Theorem 5.4, since Σ is compact.

The same arguments as above also yield the following generalization

of Proposition 2.2.

Proposition 5.6. Let C = (Σ,X!, ,xk) be a k-point genus g

stable curve, and {Y^Fi), (ZjyGj) be in (2.5) satisfying (2.3). Then all

properties stated in Proposition 2.2 still hold.

Let (P,F) be as in (2.5). For simplicity, we denote by \e^XJ^(F)\

the algebraic sum of elements in e^x j ^ ( F ) , where the sign of a / in
e(Σ,jr,J,V)(F) ι s assigned according to the orientations of MA(Σ, J, v) x

(Σ)', P, Vϊfe+ι at (/;yβi, ,ysz), etc., and the Jacobians of the maps
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e(Σ,x,j,i/) and F. Now we divide the proof of Proposition 2.3 into a
series of lemmas:

Lemma 5.7. Let (J\uf) be another generic pair. Then

Proof. Choose a generic path {Jt,Vt) connecting (J, v) to (J',ι/),
such that

MA(Σ,{Jt,vt}) = \JMA(Σ, Juut) x {t}
t

is a smooth, oriented cobordism between MA(Σ, J, V) and ΛΊ ̂ (Σ, J', i/).
Consider an evaluation map

i, ,Xk>yu - ,yι) = (f(xi)r- J(yι))

By Theorem 5.4, we may assume that ep,x,{jt,vt}) is transversal to F,
and Λ/Σ(^D, {«Λ,̂ t}) is transversal to F for any X', T, where I ' d ,
and

is a smooth, oriented cobordism for a generic path {Jt, vt}. A dimension
counting shows that ^m ut vt},x>,τ)(F) = ® f°Γ a n y X'-> T Since the
singular set of P is of codimension at least 2, lιn(e^^χ^jtiUty)) does
not intersect the restriction of F to lower stratum of P. Therefore,
e(Σ,x,{jt,ι/t})(^) 1S a n oriented, smooth compact 1-manifold. Clearly,
the boundary

= eϊlx^iF) (J -^j ^F),

where "—" means opposite orientation. Then the lemma follows.
Lemma 5.8. \e7% x ju){F)\ ί 5 independent of the complex structure

onΣ.
Proof. The proof is exactly the same as that of Lemma 5.7.
Lemma 5.9. \e7%x ju)(F)\ is independent of the representative

P,F.
Proof. Suppose that (P',F') be another representative. There is a

cobordism (Q, H) such that

d(Q)=P[J-P',H\d(Q)=F{J-F'.
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We can choose a generic (J, v) and F such that e^tχtjt1/) and Λ/Έ (D, J, ^)
is transverse to F,F' and i ϊ for any D, X1 C X,T. Then, a dimension
counting argument will show that

Furthermore, the same argument as before will prove that

e~1(Σ,X, J, v)(Q) is an oriented, smooth, compact 1-manifold with

boundary

e-1 (Σ, X, J,i/) (F) [J - e - 1 (Σ, X, J,ι/) (F').

Hence, | e ^ i J > v ) ( F ) | - l e g j ^ F ' ) ! .

Lemma 5.10. \e7£x Ju\{F)\ is independent of the set X of marked

points.

Proof. Let X' be another set of marked points. Choose a diffeomor-

phism φ : Σ —>• Σ such that φ is isotopic to the identity and map X to

X'. Let Σ' - 0*Σ. Then, \e^χι^v){F)\ = \e^^j^{F)\. Therefore,

this lemma follows from Lemma 5.8.

Lemma 5.11. $(A,uj,g)(®i, * * >&k\βι >'- 5A) is independent of semi-
positive symplectic deformation.

Proof. This is obvious, since (J, ι/) does not depend on the sym-
plectic form ω as long as it is ω-tamed, and the tamedness is an open
condition.

Next, we prove a technical result about the transversality of compo-
nent of cusp curves, which is important in the gluing argument of next
section. In this case, there are no bubble components. Then we have
a (J, ι/)-perturbed holomorphic map from Σ into V such that its com-
ponents intersect each other at distinguished points. We would like to
show that the subset where two components intersect nontransversally
is of codimension 2. Without loss of generality, we can assume that Pi
intersects P2? and z\,z\ are distinguished points on Pi,P2 correspond-
ing to the intersection. If it is a self-intersection, we just let Pλ = P2.
Then we can define

eZuZ2 : M Λ (Σ, J,I/) -> Rom(TZlΣ9l,TV)®ΐlom(TZ2Σ92,TV),

where eZuZ2 = d/ifo) Θ df2{z2) for fx G MίPl](Σu J, uλ) and f2 E

Λί[jy(Σ2,J>2).

A generic element in Hom(ΓZlΣ^1,TVr) ΘHom(TZaΣ^a,TV), which is
a smooth fibration over V and of dimension lOn, has maximal rank 4.
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If /i, f2 does not intersect tranversally, then its image will have lower
rank. The set of homomorphisms of lower ranks is a union of smooth
submanifolds consisting of homomorphisms of rank 0 ( which is the zero
section), 1, 2, 3. Let us denote them by i?i,i?i,R2lR%, each of which
is a fibration over V. They have dimensions 2n, 4n + 3,6n + 2,8n + 1.
Thus their codimensions are 8n, 6n — 3, An — 2,2n — 1.

Theorem 5.12. For a generic (J,v), eZliZ2 is transversal to
Ro,Rι,R2,R3. Hence, e~*Z2(Ri) for i < 3 have codimension at least
2n — 1. For generic (J, v) and (J, v1), there is a path {J, vt} connecting
(J, v) and (J, v') such that

ΘHom(TZaΣ2,TV)

is transversal to Ri Hence (e* 1 ) Z 2)~ 1(i?i) is a smooth cobordism of one

dimension higher.

Proof. First of all, we can define

EZuZ2:HPl ( Σ 1 ? J,i/χ) x ••• x W p m ( Σ 2 , J,i/fc)

-> Eom(TZlΣuTV) ®Rom{TZ2Σ2,TV)

in the same way as we did in the proof of Lemma 4.9. We claim that
EZltZ2 is a submersion onto its image. Let a G Ή.om(TZlΣι,TV) Θ
Hom(TZ2Σ2,TυQV) be in the image of EZltZ2 and a = aλ Θ α2, where
cii : TZlΣ9l -> T^F. Locally, we can always choose /* on a small
neighborhood D(zi) of Zι such that

fi — / ή fi (Zi) — V0, "77 1*=0 — Ai.

We can patch f\ with /i|se.-£>(*<) to get a globally defined //. Then
ΓK/o^t) ^ Π^Pί(Σij^j^t) a n d j7(ezi,z2(Π(Λ*)z>'ί)))|ί=o — β It implies
that EZuZ2 is transversal to R0,R1,R2,R3i whose preimage is a Banach
submanifold. By the Sards-Smale theory, for a generic ẑ , e~^Z2(Ri) are
smooth manifolds of codimension 8n, 6n — 3,4n — 2,2n — 1. The proof
of the second part is the exactly the same.

6. Gluing J-holomorphic maps

In this section, We will apply the Implicit Function Theorem to
study the deformation theory of perturbed holomorphic maps from a
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singular curve. For this purpose, we have to estimate spectrum of
certain linear elliptic operators. Unlike the case of Floer homology,
the lowest eigenvalue is not uniformly bounded away from zero. This
causes difficulties in proving injectivity and, in particular, surjectivity
of the deformation map. In this section, we call fc-point stable curves
Deligne-Mumford stable curves (cf. section 4). As before, we denote
by J a generic, ω-tamed almost complex structure on V, and by v a
generic inhomogeneous term on Σ x V.

We recall a degeneration of stable curves is a holomorphic fibra-
tion π : S •->• Δ C C with sections σi, ,σ*. satisfying: (1) for
t E Δ and t ^ 0, the fiber Σ t = π - 1 ( ί) is smooth; (2) for each ί,
(Έt;σι(t)j - ,σfc(t)) is a Deligne-Mumford stable curve. We fix an
inhomogeneous term v on S x V. This is simply a smooth anti-( J, Js)-
linear section of the vector bundle Hom(ΓSf, TV) over SxV. Note that
any inhomogeneous term on Σo x V can be extented to S x V.

Consider the moduli space of (J, ι/t)-perturbed holomorphic maps

(6.1) MA(Σt, J, ut) = {/ : Σ f -> V | df + J • df • j Σ t = vt, / . Σ t = A} ,

where vt is the restriction of 1/ to Σ t, and A is a fixed homology class
mH2(V,Z).

By the discussions in section 4, the moduli space Λ4A(ΣQ, J, v$) is a
smooth manifold. From the Riemann-Roch Theorem it follows that for
a generic (J, ẑ ), we have

dimΛ'MΣ,, J, ut) = 2d(V) A + 2n(l - g(Σt)),

where 2n is the real dimension of V, and g(Σt) is the genus of Σ*. By the
Transversality Theorem in section 3, we may choose a pair (J, v) such
that jVf>i(Σo, J, v) is smooth, i.e., any / in Λ Ϊ Λ ( Σ 0 , J , V) is a regular
(J, ι/0)-perturbed holomorphic map.

Theorem 6.1. Let f0 be any map in ΛΊΛ(Σ 0 , J, *Ό) Then there is
a continuous family of injective maps Tt from W into ΛdA(Σt, J, Vt),
where t is small and W is a neighborhood of f0 in JMΛ(ΣO, J, *Ό)> such
that (1) for any f in W, as t goes to zero, Tt(f) converges to f in
C°-topology on Σo and in C3-topology outside the singular set of Σ o ;
(2) there are e, δ > 0 satisfying : if f is in ΛI^Σt, J, vt) and

dv(f'(x),fo(y)) < e, whenever x G Σ f ,
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where dy, ds are the distance functions of a J-invariant metric hv on
V and a Js-invariant metric hs on S, then f is in Tt(W). Moreover,
for each t, Tt is an orientation-preserving smooth map from W into
MA{ΣuJ,vt).

Before we prove this theorem, we give one corollary of it. Let
αi, ,αjfe,/?i, ,βι be pseudo-submanifolds in V representing inte-
gral homology classes. Each c^ or βj is the image of a simplicial com-
plex under a piecewise smooth map. We denote by a\ or βj the regular
part of Oίi or βj. We assume

Σ - 2 - dim/?,) = 2CX{V) A + 2n(l - g(Σt)).
t = l j=l

Define the evaluation map

evt : MA(ΣU J, vt) x Σ{ H> Vk x V\

r- J(yι)).

Note that A4A(^I, J, Vt) has a canonical orientation (cf. section 1). If

the image Im(e^) intersects the product Π*=i a i x Πj=i βj transversally

at a point (/; 2/i, , yι), then we can assign a sign to (/; yu , yt) by

using the orientations on MA{ΣU J,ut) x Σ[, Vk x V1 and Γlt=i α ί x

By the discussions in sections 3-5, we have known that for a generic

(J, ι/), the map ev0 intersects Πi=i ai x Πj=i βj transversally at finitely

many points in MA(Σ0, J, v0) x Σι

0. Let (/O J/OIΓ • ,2/oz) be one such

intersection point.

Corollary 6.1. Let (J,v) be generic and (/o,yoi? * 5J/o/) δe as

above. Then there are e, δ > 0 sucΛ £Λa£ /or £ sufficiently small, there

is a unique point (/*; j/ti, - ,ϊ/ί/) in the space MA{Σt,J,vt) x Σ[ sat-

isfying: (1) ds(ytj,yoj) < e, where 1 < j < I; (2) ft{σi{t)) e a'if where

1 < i < k; (3) dv(ft(x),fo(y)) < e whenever ds{x,y) < δ. Moreover,

the sign associated to {ft\ytit * * * ->ytι) is the same as the sign associated

to (/O Ϊ/OIΓ 5yoz)
The rest of this section is devoted to the proof of Theorem 6.1.
First we make a reduction as we did in section 3. Put W = S xV.

As in section 3, one can define a tamed almost complex structure Jw
on W as follows: any tangent vector on W is of the form (?/, υ), where u
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is in TS and υ is in TΎ, and Jw{u,v) = (Js(u),J(v) + iy(Js(u))). Then
any map ft in J M A ( ^ , J, ut) can be converted into a J^-holomorphic

map Ft into by assigning x in Σ* to (x,ft(x)) in W. Let τrm be the

projection from W onto its mth factor. Then TΓI Ft is an identity.

Conversely, if we have a J^-holomorphic map Ft into W such that

τri F t is a biholomorphism, then ft = π2 F t (πx F t)~ x is a (J, i/$)-

perturbed holomorphic map ft. On the other hand, if F o comes from a

(«/, &Ό)-pβrturbed holomorphic map /0, and Ft is a deformation of Fo,

then πi Fί is indeed a biholomorphism. Therefore, we may assume that

v = 0 and J is generic. Note that although W may be noncompact,

the objects under study lie in a compact region.

In the following proof of Theorem 6.1, we will always use C to denote

a uniform constant independent of t and / near / 0 . The actual value

of C may vary in different places.

Let / be a J-holomorphic map from Σ o into V and is very close to

/ 0 . We will first construct an approximated J-holomorphic map from

Σt into V for each small t. Let p be any double point of Σ o , and Up

be a small neighborhood. We may assume that Up is in a coordinate

chart. Choose local coordinates zΐp, z2p of S near p such that

(6.2) Up Π Σt = {zlpz2p = 11 \zlp\, \z2p\ < 1}.

There is a coordinate system (j/i,... ,2/2n) of V near /(p), such that

(6.3)

where |y| = y Σ?=i \Vi\2 There are two connected components in Up Π

Σ o :

Upι = {z2p = 0\\zιp\ < 1}, and Up2 = {zlp = 0||^2p | < 1}.

Let /pi, / p 2 be the restrictions of / to Upl, Up2. Then we have the
following expansions:

(6.4) fpi(zip) = fpi(zip) + higher order terms ,

where fpi is a homogeneous polynomial in zip. We identify a neigh-
borhood of f(p) in V with an open subset in Cn by putting Wi =
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Ίji + \f—ϊyn+i {i = 1,2,... n). By Theorem 5.10, we can assume that
/pi and fp2 intersect at p transversally. Then by choosing yx, , y2n

properly, we have

),o, ,o) + o{\zlp\
2) eC",

/p2(^2P) = ( < W , 0 , • ,0) + O(\z2p\
2) G Cn.\"'d) / /„ \ _ ί(\ „ Γi n\ i /n/l~ |2

By changing local coordinates y l 5 . . . y2m
 w e m a Y further assume

),0, ,0),
(6-6) / p 2 K ) = (0,z2 p,0,-- ,0).

We can construct an approximated J-holomorphic map ft : Έt H-> V

for each £ small as follows: Let </>t be a smooth family of diffeomorphisms

from ΣQ, where Έ'o is the nonsingular part of Σ o , into Σ ί 5 such that

φo = id and

/£? y \ II ± 7V/II *C ^ \f\

for any small neighborhood U' of the singular set Sing(Σ0) in Σ o , where

Cu> is a constant depending only on t/', and the norm is taken with

respect to the fixed metric hs on 5. Note that in (6.7), both φ and Id

are considered as maps into S. Then for any p in Sing(Σ0), we have

(6.8) ||/|Σtnι/p — /taoπt/p * Φ~ϊ Wc4(Έtn{±<\zip\<i ,i=i or 2}) < C\t\,

where / is the map: {zιp,z2p) £ Up —> (Zιp,z2p,0,... ,0) G V. In this
section, C always denotes a constant independent of t. Since

(6.9) f\Upl = fPi, /|ί/p2 = /P2,

by (6.8), there is a homotopy F t on

\pGSing(Σ0)

satisfying:

(6.10) | |F t - /|Σonc/p Φtl\\c*{γ.tr\{\<\zip\<ι,i=ι or 2}) < C\t\,
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(6.11) = f\ΣtΠUp on

(6.12) Ft = f\ΈoΠUp φ~ι on Σt Π {— < \zip\ < l , i = 1 or 2}.

We define ft(x) = f φlι{x) for X outside UPeSing(Σ0) Up, and

(6.13) ft(zip,z2p) =

p,z2p) if - < \zlp\ < 1,

0, . . . ,0) if \zlp\ < -,\z2p\ < - ,

Ό,z2p) if - < \z2p\ < 1.

Then /ί is a well-defined map on Σt and close to a J-holomorphic map
on Σ o . To examine the asymptotic behavior of ft more closely, we need
to introduce metrics on Σt. Let μ be a Kahler metric on S which is flat
in each Up. If zlp,z2p are the local coordinates chosen above, then for
t small,

(6.14)

Let p be a smooth function on S\ Sing(Σ0) satisfying:

0 < |p| < 3,
(6.15) | "

Clearly, p2(zlp, z2p) = |z i p | 2 (l + ^ ) on Σ t Π Up for i = 1,2. Define

(6.16) μc = p - y

Then for t small, the metric μc\τ,t is cylinder-like near each p. The
following lemma can be easily proved by using (6.7)-(6.16).

Lemma 6.1. We denote by D the coυariant deriυature of μ, and by
Dc the coυariant deriυatiυe of μc. Then for 1 < k < 5,

(6.17) o
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or

(6.18) \D*JλμΛx)<C

where \ | μ , | \μc denote the norms with respect to μ, μc, and C^, C'k are
constants depending only on the integer k > 0.

Let J o be the standard complex structure on Cn. Near each double
point p, ft is J0-holomorphic on Σt Π {\zip\ < \ , i = 1,2}, i.e.,

dft + Jo dffjt = 0 on Σ t Π {\zip\ <^i = X ' 2 } '

where j t = j Σ t . Put

(6.19) vt(x) = (dft + J.dft.jt)(x).

Then in Σ t Π {\zip\ < | , i = 1,2},

(6.20) vt(x) = (J-J0)-df~t.jt(x).

Since / is J-holomorphic on Σ o Π {|^p| < | , i = 1,2}, we have

0 0 ) ( ) J ( 0 0 ) ( )

a n d a a
2 p , - , 0 ) ( ^ — ) = J ( 0 , z 2 p , ,0)(

Thus we can derive from last lemma,

L e m m a 6.2. For 1 < A; < 4, ^Λere are constants Ck,C'k > 0

(6.21) I^LW<

or

(6.22) PcSkW

We want to perturb ft into a J-holomorphic map from Σ^ into V.

Let exp be the exponential map of the Hermitian metric hv on V. Let
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}t be a map from Έt into V. If this map is sufficiently close to /t, then
we can write

(6-23) ft(x)=expft{x)(u(ft(x))),

where u is a vector field of ffTV on Σt. We need to find a vector field
u such that ft is J-holomorphic.

Let V be the Levi-Civita connection of hv. Since J may not be
integrable, V needs not to be J-linear, but we can construct a J-linear
connection VJ from it as follows:

(6.24) VJX = )-(VX - JV(JX)), X e TV

Obviously, VJ(JX) = J(V JX), i.e., VJ J = 0. For any vector field u of
ft TV on Σ t, we denote by πt(ti, α:) the parallel transport from Tft(x)V to
Tft(x)V with respect to VJ along the path { exp ft(x)(su(ft(x)))}0<s<u

where ft is defined in (6.23). Since VJ is J-linear, we have

(6.25) J(ft(x)) πt(u,x) - πt(tι,x) J(ft(x))

Let AOyl(f?TV) be the bundle over Σ t of all anti-(J,jί)-linear homo-
morphisms from ΓΣ t into /t*ΓV, i.e.,

Λ
( 6 ' 2 6 ) = {̂  E Hom(TxΣ,, (Λ*T7)X) | J(/t(x)) β = -θ

We will use T{A°Λ(f;TV)) and Γ(/;*ΓVr) to denote the spaces of the
sections of Λ0Λ(ftTV) and of f*TV over Σ t. Define

Φt :Γ(ft*TV)

(6.27)

Note that the image of Φt is indeed in Γ(Λ0>1(/t*Ty)), since for any
w € TxΣt,

Φt(u)(jt(w)) = π*(u,x) • (dft jt(w) + +J(ft(x))(ftUΪH)))
= -J(ft(x)) • nt(u, x) • (J(ft(x)) • dft • jt(w) + dft(w)
= -J(Λ(ar)) Φt(«)(u;).
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We put

(6.28) Lt(σ) = DΦt(0)(σ).

Lemma 6.3. For any σ 6 TφTV),w e Γ(ΓΣt), we have

(6.29) Lt(σ)(w) = Vwσ + JVjtWσ + \ {(VσJ)(jtw) - J(VσJ)(w)} .

Here we identify T(ftTV) with Γ(ft(Σt),TV), so we may consider V

a covariant derivative on Γ(f^TV).

Proof. Define a map / : [ 0 , l ] x Σ t i 4 7 by

f(s,x) = exp ft(x)(sσ(ft(x))).

Then f{0,x) = jt(x) and ff(O3z) = σ(ft(x)). Using the fact that

πt(sσ, x) is the parallel transport of VJ along the path

we can compute

dΦt(sσ)
Lt{σ)(w) = — ^

(6 30)
Jdf(a,

Since [σ,/.(u;)] = [Λ(^),ΛH] = /.[&,«;] = 0, we derive

VίΛH = ̂ (Vσ/»H - JVσ(J/,H))

(6.31) = i (V A . ( β ) σ - J(VσJ)(f~t.(w)) - J2V

Similarly,

v^(Λθ») = vAu,σ -

Thus (6.29) follows from this, (6.30) and (6.31)



316 YONGBIN RUAN & GANG TIAN

Let L* : Γ ί Λ 0 ' 1 ^ * ^ ) ) -> Γ(ftTV) be the adjoint of Lt with respect
to the Hermitian metric hy on V and the metric μc on Σ*.

Lemma 6.4. Assume that ( , •) is the induced metric on ffTV by
hv. For any section ξ in Γ(Λ°'1(#TVr)),

L;(ξ) = -2Vβ(£(e)) - 2Vjte(ξ(jte)) + (ζ(e), (VJ)(jte))*

where {e,jte} is any local unitary basis ofTΈt with respect to μc, and
(X,VY)* is the vector field in f*TV defined by

where X,Y,Z eftTV.
Proof. Fix a local unitary basis {e,jte} of TΣ£, for convenience, we

write βi = e,e2 = j^e. Let {ej,ej} be the dual basis of {ei,e2},. Then
2̂ = -i* eί Write

ί = 6el+6e;, ξieft*τv, i = 1,2.

Since ξ is anti-(J,jί)-linear, we have

6 = -Jξu

SO

Let σ be a section of ffTV with support in a small open subset.
We denote by ( , )μ c the induced metric on Λ0>1(/£TV) by /iy and μc.
Then

(L*tξ,σ)dμc= ί (ξ,Lt(σ))μcdμc

= ί ((6,Lί(

= 2 / (ξi,Vβσ

Thus the lemma follows.
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Remark. If ξ is a section in Γ(Λ°'1(/ί*TVΓ)) and r(p) is a positive
function in p, then

/ r{pf (JVJ

eiξ2 - JV e

J

26 , JVJ

eiξ2 - JVJ

e2,Jψ

/ r(p)2 {VJ

eiξ2 - V£&, VJ

eiξ2 - VJ

e£i)dμc

Tr 2 V7 VJ Ψ V -2VJ VJ

r(p)2 f(VJ £o, V J £o) + (VJ £i , V J £i) — 2(VJ £1 , V J fo)

+4 / r(p) (V e i r(6, V^26) -Vear (^
JΈt

which implies that

/
i l l

= 5 / Kp)2(|V 7 ξ | 2 -

+2

Both V — V J and [V;f2, VfJ are zero-order operators, the coefficients
of which depend only on the curvature tensor of hv, μc, the almost
complex structure J and the gradient of the map ft Therefore,
(6.32)

/ r\L*tξ\2dμc > ί r(p)2\Vξ\ldμc

-C I (r{pf \dft\l\i\lc + \r'(p)n\l) dμc.
Έt

We will apply the Implicit Function Theorem to construct the map
Tt. First we need to estimate the lower bound of the spectrum of
Πt = LtL*t.

Lemma 6.5. Let D be a disk in Cand μc be the cylindrical metric
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on D\{0}, i-e > V>c — ψjr Suppose that fD:D-ϊVisa J-holomorphic

map, and ξ is a C2-smooth section of Λ°Λ(fpTV) over D\{0} satisfy-

ing:

(6.33) L*oξ = O on D\{0},

where LQ be the adjoint of Lo with respect to μc, and

(6.34) /
JD\{O]

Then the limit \\mξ(z) exists and is a vector in 2/D(0)V. Such a limit

is called residue of ξ at z = 0.
Proof. Without loss of generality, we may identify fpTV with

D x ί ? n . The almost complex structure J on V becomes a family of
complex structures J(z) on ί? n , parametrized by z in D. Put r =
-log |z | . Then

μc = dτ2 + dθ2.

By Lemma 6.4,

(6.35) L*ξ = - 2 ^ - 2 J ^ + σ(e- τ | ί | ) = 0,

where ξ = ξ^τ + ξ2dθ, ξ2 = -Jξ1. Thus

( 6 3 6 >

Put ξ = ξ — ̂  /0

 π ξdθ. By the Poincare inequality on the unit circle,
we have

Wti»>l \ΰfΆ.">l lit*.
Prom (6.35) and (6.36) it follows that

Jo

By the standard elliptic estimates, one can show

Γsup \ξ\2(τ, θ) < C ί Γ (ill2 + e~2τ\ξ\2) dr'dθ
<θ<2π J\τ'-τ\<\Jθ V y

(6-37)
<C

J\τ'-τ\<l
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where C denotes a uniform constant. Together with (6.34), this implies
that £(τ, θ) converges to zero as r goes to infinity. Integrating equation
(6.36), we obtain that

J- Γξ(τ,θ)dθ-±- Γ ξ(τo,θ)dθ = O( Γ e-T'\ξ\(r',θ)dr'),
2iTT Jo Zπ Jo Jr0

so that -^ JQ

π ξdθ converges to a vector in T/D(0)V. Hence the lemma

is proved.

Recall that Lo is the linearization of the Cauchy-Riemann equation

at /o, and LQ is the adjoint of Lo on Σ 0 \Sing(Σ 0 ), where Sing(Σ0) is

the set of nodes in Σ o . We denote by Ker(Lβ) the set of those sections

ξ of A°Λf*TV over Σ 0\Sing(Σ 0) satisfying:

(6.38)

and for every node p in Sing(Σ0), if Up is any small neighborhood of p
with two irreducible components ί7p l, Up2, then

(6.39) Km ξ(z) + lim ξ(z) = 0,

namely, the two residues of ξ at p sum up to zero.

Proposition 6.1. For a generic pair (J, v), Ker(Lg) is trivial.

Proof. The proof is simply an application of the Sard-Smale

Transversality Theorem. We will outline a proof here. Let ΣOi ( 1 < i <

k ) be the irreducible components of Σ o , and U be the number of nodes

in Σoΐ Then Σi=i U ι s twice of the number I of nodes in Σ o . Without

loss of generality, we may assume that C I ( V ) ( / O * ( Σ O Ϊ ) ) + n ( l — 9%) — hn

is nonnegative for i < k' and negative for i > k', where 1 < k1 < k

and gi is the genus of Σ o i . Put Σg = Σ 0ΛSing(Σ 0), and L*oi = IfJ|Σo..

Define two spaces

ί
Jτ°oi

= {ueT(f;TV)\ I \u\2dμc<oo}.

Then L*Qi is a Predholm map from n1^^, A0'1 f^TV) into

£ 2 ( Σ Q J , f^TV). By Lemma 6.5, one can compute the index of L^:

(6.40) Ind(L*oi) = - 2
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Therefore, Ind(L*oi) < 0 for i < k' and Ind(L*Oi) > 0 for i > k'. Using
the Sard-Smale Transversality Theorem, one can show that for a generic
(J, v), Ker(Loi) is trivial for i < k' and of real dimension I n d ^ ^ ) for
i > k1. It follows

(6.41) VΓ=i

£ ( ( ) ( ( Σ o i ) ) - 2n(l - 9i)

On the other hand, since Λ1yi(Σo, J, v) is nonempty for a generic (J, u),
we have

(6.42) £ (2C1(V)(fo.p*i)) + 2n(l - Λ ) - l[n) > 0,

where l[ is the number of nodes in ΣOj, which are not in any ΣOj for
j < k'. Clearly,

Therefore, from (6.41) and (6.42) we deduce

(6.43) dim ( Π Ket(L*Oi)) < £ (2h - Qn = 2ln.
\i=l / i>k'

Given each node p, let ΣOi(p) and Σoi>(p) be the two components of Σ o

containing p. We assume that i(p) < i'(p). Define a residue map

Res : Π K e r ^ ) ^ Π TMp)V x Tfΰ{p)V
i=l p6Sing(Σo)

by Res(ξ) = Πp(lim^Σ o i ( p ) , l im£| E w / ( j ι ) ) . Then Res is a continuous

linear map. We also define a diagonal

Δ = Π {{v,-v)\veTMp)V} Π TMp)VxTMp)V.
p6Sing(Σ0) pESing(Σo)

Clearly, Δ is a linear subspace of real dimension 2/n, and Ker(LJ) =
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Res~1(Δ). For a generic (J, ̂ ), the map Res is transversal to Δ, so

dimKer(L*) <dim j f fKer^)) +dimΔ

-dimί Π Tfoip)VxTfoip)v) <
\p6Sing(Σ0)

Hence the proposition is proved.

Prom now on, we will fix a generic (J, v) such that Ker(Lo) is trivial,

its existence is assured by Proposition 6.1.

Lemma 6.6. There is a constant c > 0, independent oft, such that

fort sufficiently small, the first eigenvalue λ1(D ί) ofΠt is bounded from

below by jφ^.

Proof. We prove it by contradiction. We will always use C, c to

denote uniform positive constants. Suppose that the lemma is not true.

Then without loss of generality, we may assume that (logί)2λi(G ί)

converges to zero as t tends to zero. Let ξt be the eigenfunction of

λi(D t) satisfying

(6.44)

Then

(6.45) / \ξt\
2

μcdμc<C(-log\t\)

and

(6.46) / P

2\ξt\ldμc<C,

where p is the function defined in (6.15). Using Otζt — λi(Dt)^, we

deduce from (6.45),

(6.47) (log \t\)2 ί \L*tξt\
2dμc = (log 1*1)%^)

It follows from the definition of ft that

(6.48) maxfldΛUOO, \Vdft\μc(x)}.

0 as t -> 0.
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Therefore, replacing \dft\μc by Cρ(x) in (6.32) and using (6.46), (6.47),

we obtain

(6.49) / \Vξt\lcdμc<C.

By using the standard elliptic estimates, from (6.44) and (6.49) one

can deduce

(6.50) sup \V%\μe <C for i = 0,1,2,3.
Σ t

Thus by taking a subsequence if necessary, we may assume that ξt

converges to a smooth section £0 of Λ0>1(/*TV) over Σ o \ Sing(Σ0), sat-
isfying LQ£ = 0 and

&IJL + P2\ξo\l) dμc < oo.

In order to derive a contradiction, we will show that ξ0 is a nonzero

section in Ker(ί/Q). Note that at this moment, we do not even know if ξ0

is nonzero. Let p be a given node of Σ o, and Ups = {|^ip| < δ, \z2p\ < }̂

for J > 0. On Σ t Π C/pi, we can choose ^ = zlp as a local coordinate;

then 2|t| < |JZΓ| < | , and

where τ = — log \z\ + \ log |ί|.

Without loss of generality, we may assume that ffTV is a trivial

bundle over Σt Π Upι. We define

(6.51) ξttave(r) = ± J\t(τ,θ)dθ.

Then for any s > 0,

ξo(z,0)dθ,

(6.52) " " \ J\*\γM

t<aυe(--log\t\-s) = - 6(0, z)dθ.
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Put βi = J-;, e2 = -§g on Σt Π Upi. Then by Lemmas 6.3, 6.4,

(6.53) LtL;ξt = -

where O(A) denotes a quantity bounded by C A. By (6.15) and (6.48),
we have

max{|d/ t |
2

c, \Vdft\l}(x) < C\t\(e2r + e~2r) on Σ t Π Upi,

where x = (τ,0). So from (6.53) and (6.50) it follows

LtLUt - - 2 ^ 6 - 2 ^ 6 + O(\t\(e^ + e"2 ')) = ^ ( D , ) ^ .

Integrating this over θ G [0,2τr], yields

d2

(6.54) TΓ^ξt,ave + \ξt,aυe = 0>t,

where λ̂  = y 1 ^ and at(r) = O(\t\(e2τ+e~2r)). It is an easy exercise

in ODE to show that the solution of (6.54) is of the form

(6.55) ξt,aυe = {aί s in(±λ t τ + β\)} + Γ α « ( τ ) S m ( Λ t ( τ " S)) ds,
Jo *t

where αj, β\ are constants, \β\\ < | and i = 1, ,2n. Since \r\ <

- \ log |ί | and λi(D t)(log |<|)2 -> 0 as t -* 0, we have

and therefore

(6.56) I Γ

and

, M 7 ) Ig:

Prom (6.44), (6.56) it follows that |α js in(±λ t τ + βξ)\ < C for all i, in

particular, \a\ sϊnβH < C for all i. By taking a subsequence if necessary,
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we may assume that for each i, a\smβι

t converges to 7* as t tends to
zero.

Claim. For each i between 1 and 2n, a\ sin(±λίT + βι

t) converges
uniformly to 7* as t tends to zero, where \τ\ < — \ log \t\ — log 2.

Proof There are two cases: (1) \β\\ > c > 0 for all t; (2) β\.
converges to zero as tj tends to zero, where {tj} is a subsequence of {t}.
In the first case, \a\\ < C. Since \τ\ < — log |t|, by our assumption on
λi(Dt), λt T converges uniformly to zero, so a\ sin(dzλtr + βι

t) converges
uniformly to Y as t tends to zero.

Let us consider the second case. For simplicity, we assume that
{tj} = {t}. Put

ζt = ζt ~~ ζt,aυe

Then

Γξt(τ,θ)dθ = 0.
Jo

Using this and Lemma 6.4, we deduce

Γ \L*tξt\2dθ
(6.58) J° 2 π

= Jo (\L;ξt,ave\
2 + \L*tξt\

2 + O(\t\{e2τ + e-2τ)\ξt\D) dθ,

and therefore, in consequence of (6.44),

(6.59) j i \L*t^ave\
2dτ < C (-X2

t log \t\ + yj\t\\

On the other hand, by Lemma 6.4,

which together with (6.56), (6.57) and (6.59) yields

{a\\tf ί
i | r | < -

(6.60)
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Since both λt log \t\ and β\ converge to zero, (6.60) implies that
a\ Xt log \t\ converges uniformly to zero as t tends to zero, so ot\ sin(±λ tτ+
βι

t) converges uniformly to 7*. Hence the claim is proved.
By using (6.52), (6.55) and (6.56), we can derive from the above

claim that for any s > 0,

/ ξo(z, 0)dθ = {Y} + O(e~s) = ί 6,(0, z)dθ,
J\z\=e— J\z\=e —

in particular, the two residues of ^0 at p sum up to zero. To prove that
£0 is nonzero, we choose a node p for each t such that

(6.61) sup 161 > c > 0 .
Σtnc/p£

We may assume that p is independent of t. Prom (6.58) it follows

(6-62) /
<C / p2(τ,θ)\ξt\ldμc-Xι(Dt)log\t\],

\Jτ:,nuri j

where ξt = ξt — ξttave. By (6.32) and the Poincare inequality on S1, we
derive from (6.62),

< JΆnϋr

(6.63)

l f P2(r,θ)\ξt\ldμc -

L
If ξ0 = 0, then by (6.44), (6.63) and the above claim, the integral
/ o

π / |τ- τ \<ι \ζt\ίcdτdθ converges to zero as t tends to zero, where \τo\ <



326 YONGBIN RUAN & GANG TIAN

— | log | ί | — log 2. Applying the Mean-Value Inequality to LtL\ζt —
λi(Dt)£t> w e deduce that ξt converges to zero on ?7pi, which contradicts
to (6.61). Therefore, we obtain an nonzero section ξ0 in Ker(LJ). This
is impossible! Hence the lemma is proved.

We denote by Φt the map from T{ftTV) into T(A°Λ{ft*TV)) defined
in (6.27). Define

(6.64) Φt(f) = Φt(L;ξ).

To find a J-holomorphic map ft of the form (6.64), it suffices to show
that Φt(ξ) has a zero ξ. Let vt be given in (6.19). Then we can expand
Ψ*(ξ) in ξ as follows:

Φt(/,0)=v f ,

where Ht(u, λξ) — O(λ2) is the higher order term in ξ. We denote by
|| ||fc,i the C* * - Holder norm on either T{A°^{f;TV)) or Γ(/;TV) by
using the metrics hv on V and μc on Σ (, where k is any nonnegative
integer. Then we have

\\Ht(ξi) -

(6.66)

and therefore, in consequence of Lemmas 6.1, 6.2,

(6-67) | |/ t | |5,i < C,

(6.68) | | V t | | 4 i i < C\t\.

We define

(6.69) Γ'ΉΛ^U T V ) ) = {ξe τ(A0^(f;τv)) \ \\ξ\\kti < oo},

where A; = 0,1,2, Clearly, from (6.64) - (6.69) it follows that

Φ t : Γ 2 * ( Λ 0 > 1 ( / ; :ΓV)) -> r°'*(AO i l(
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We recall that Ot is the linear operator LtL\ on Γ(A°Λ(f*TV)).

Lemma 6.7. Let ξ be in Γ2>i{ft*TV) and ζ be in Γ°^(f;TV). As-

sume

(6.70) Otξ = ζ on Σ t .

Then we have

Proof. First we remark

(6.72) Vol(Σ t,μc) = C(-log | ί | ) ,

which implies

(6.73)

Multiplying both sides of the equation in (6.70) by ξ, integrating by

parts and using (6.73), we deduce

\L*tξ\2dμc= ί (ξ,ζ)μcdμc

t JΣt

Together with Lemma 6.6, this implies

(6.74)

Then (6.71) follows from (6.74) and the standard elliptic estimates (cf.

[7])
Proposition 6.2. There is a t0 > 0 such that for any 0 < |ί| < t0,

there is a unique ξ G Γ^^Λ0'1 f£TV) satisfying

(6-75) ||ξ||2,i < y/\t\

and

(6.76) Φt(O=0 on Σt,
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i.e., ft = expjt(Llξ) is a J-holomorphic map from Σ t into V.

Proof. Let B/^(0) be the ball in Γ2'i (Λ^ftTV) with radius y/\Γ\

and the center at the origin. Then Φt(£) = 0 for some ξ G B /jπ(O) is

equivalent to

(6-77) £ = D t-
χ(-υ t + ff«(0),

where D t

- 1 is the inverse of D t ) which is from Γ°<i (Λ0'1 ftTV) into

Γ 2 '5(Λ 0^*Ty). By Lemma 6.2, 6.7, there is a constant C > 0 such

that

- Ht(ξ2))\\2ti < C(-log\t\)i\\Ht(ξ1)-Ht(ξ3)\\0ti

Thus the proposition follows from the Implicit Function Theorem.

Assume that / 0 is a smooth point of MA(ΣΌ, J, 0). By the Transver-

sality Theorem in section 3, the tangent space of «MA(S 0 , J,0) at / 0

is naturally identified with the kernel Ker(L0), where Lo is defined in

(6.28), i.e., a tangent vector at f0 is a continiuous section u in Γ ( / Q T F )

over Σ o, such that Lou = 0 on Σ'o. This implies that there is a local

diίfeomorphism from a neighborhood of 0 in Ker(L0) into MA(£O, J, 0).

We choose W so small that it is contained in the image of such a dif-

feomorphism. We may assume that for any / and / ' in W,

(6.78) ||/-/Ίlc<(Σo)<C|l/-/Ίlco(Σo).

Given any / in W, there is a unique section ΰtf in Γ(/oίTVΓ) such

that

(6.79) ft(x) = expf-ot(x)(ύtf(fot(x))) x € Σ t .

It follows from a straightforward computation:

(6.80) \Vύtf\μc(x)<Cp2(x),

and for /, / ' e W,

(6.81) \\ΰtf-ύtf,\\CHΣt) <
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We define Tt : W ̂ -» MA{ΣU J,0) by assigning ft in Proposition 6.2
to each / in W. Clearly, Tt(f) converges to / as t goes to zero. It is
easy to see that Tt is smooth. We want to examine the invertibility of
the differential of Tt at any point in W. For simplicity, we do it at /0.

Lemma 6.8. Let πt(u,x) be the parallel transport along the path
{expfQ,xJsu(fot(x)))}o<s<ι. Then there is a uniform constant C > 0
such that

(6.82) ||vot - π(δ f / , >)υt\\co < Cy/\t\\\f - /o||co(Σo).

Proof. Choose a diίfeomorphism φ from a neighborhood of fot(Σt)
onto a neighborhood of/ t(Σ t) satisfying: (1) | |0- ld | |c* < C||/o—/||c7β;
(2) for each node p in Σo, let C/p, zlp, z2p and w\, , wn be as in (6.2),
(6.6); then

fo(zip,Z2P) = Φ~X f(ziP,Z2p) = (^iP, ̂ 2P? 0, • • , 0) in Up.

If z in Σ>t is far enough away from Sing(Σ0), then by the definition of
fot and /ί, we have

ft(z) = /(ΦΓ1 (*)), fot(z) = ΛίΦΓ1^)),

where Φt is the diίfeomorphism as in (6.10). Since both / and /0 are
J-holomorphic, we have

vot(z) = dfo + J dfo -jt = J df0 (Φ^1 j t - joΦΓ* 1)

a n d

υt(z) = J df-(Φ?jt-joΦ7Ϊ).

It follows

IfotW-^WtWI
= \(J • dfo - φZιJ • df)(Φ^jt - joΦTM*) < C\t\\\f - / o | | σ . .

If z is in I7p, where p is a node of Σo, and Up is a small neighborhood
of p, then

2p, 0, ,0),

implies
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Since φ~ι / is φ~ι J (/vholomorphic, we have

Φ~ι J Φ.(zlp,o) = J0 = Φ;1 J 0 (o,s2p).

We may assume that |^ip | > \z2p\ at 2r. Then

^ ^ t W = (Φ*1 ' J φ*(ziP,
z2p) -Φ*1 ' J' Φ*(ZIPIQ)) -dfot-jt-

On the other hand, we also have

vot(z) = {J(zlp,z2p) - J{zlp,0)) dfot - jt

Therefore, by the Mean-Value Theorem, we deduce

< sup \V(J-φ~1' J Φ*)(zlp,ez2p)\\z2p\\dfot\(z)
0<c<l

Moreover, use of the definition of ft and fot in (6.13) leads to

(6.83) \\vot - Φ Wlco <

Hence the lemma follows from (6.83), (6.68) and the fact that \\πt(ύtf,

Let ξi and £2 be the sections in Proposition 6.2 such that Tt(f0) =
L^ξx) and Tt(f) = expft(L^2)- In consequence of the fact that

Tt(f), Tt(f0) are J-holomorphic, we have

(6.84) 0 = υot + LotL'tofo) + Hot(ξ1) f*mTV),

where υt, vOt are defined in either (6.19) or (6.20). By Proposition 6.2,
we obtain ||£i||2,±, H&lk.j < λ/RΪ> a n d therefore

(6.86) ||(π t(fi4/ϊ .)LtL*t - LuL^tfaf, ))(6)llo,| < Cy/\t\\\f - / 0 | | c o,
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and

(6.87) ||7rt(ut/, -)Ht(ξ2) - Hot(nt(ΰtf, )6)llo,i < cj\t\\\f - fo\\c°.

Substracting (6.84) from (6.85), yields

ot{ξ^ o t M t f f ) 6 ) B

From (6.86) and (6.87) it follows that

(6.89)

Applying Lemma 6.7 to (6.88) and using Lemma 6.8 and (6.89), we
deduce

Ilex - *,(«*/, 06lki < Cy/\t\(- log |ί|)*||/ - /ollσo.

Therefore, the map Tt is injective near /0. Moreover, if DfTt de-
notes the derivative of Tt at /0, then for any u in Ker(L0), we have

(6.90) (1 - C|t|*)N|o,o < ||2?/Γt(u)||Ofo < (1 + C|t |i) |M|O f O.

We denote by Lt the linearization of the Cauchy-Riemann equation at
fot. Note that Lo = Lo.

Lemma 6.9. Let Ker(Lt) be the set of all solutions for Ltu = 0.
Then Keτ(Lt) converges uniformly to Ker(L0) as t goes to zero. In par-
ticular, the dimension ofKeτ(Lt) stays as a constant for t sufficiently
small.

Proof. We just sketch a proof here. Let utl, , utί be an orthonor-
mal set of Ker(L^) with respect to the inner product induced by /i|st ?
i.e.,

/ (utuutj)dμ =/

Since the Sobolev inequality holds uniformly for the metrics μ|Σt, by
the standard iteration, one can show that (1) there is a uniform bound
on ||uίi||o,o; (2) for any e > 0, there is a δ0 > 0 such that

<(a;i) -uti(x2)\\xa G Σt,d5(α;α,Sing(Σo))
<ίo, α = l ,2}<€.
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Therefore, by taking a subsequence if necessary, uti converges to uoi on

Σ o . Moreover,
r

(uoi,uOj)dμ =/

i.e., {uti} form an orthonormal basis of a subspace in Ker(L0) Thus
the lemma follows from (6.90).

Corollary 6.2. The derivative DfTt is an isomorphism between
Ker(Lo) and Ker(Zt) satisfying (6.90).

Remark. The orientation of ΛΪΛ(Σ*, J,vt) at ft = Tt(f) is given
by the canonical orientation on the kernel Ker(9/t), provided that the
cokernel of dft is trivial, where dft denotes the first derivative part of
ίt at /t, i.e., Lt — dft is an zero-order operator. Note that dft induces
a natural holomorphic structure on Kerθ/ t, which is isomorphic to
Keτ(Lt). Since J is generic, we may assume that the cokernel of d/t is
trivial for any t small or zero. Then by using the same arguments in
the proof of Lemma 6.10, one can show that the canonical orientation
on Ker(9/t) is preserved when t tends to zero. It follows that Tt is
orientation-preserving.

It remains to show (2) in Theorem 6.1. Let / ' be as given in Theo-
rem 6.1. For any / in W, let ft be Tt(f). Then there is a unique vector
field Uf such that

(6.93) f(x) = expMx){uf(ft(x))),

Furthermore, we have ||M/||O,O <! £', where e' is small and depends only
on W and e in Theorem 6.1. We want to show / ' coincides with one of
ft in Proposition 6.2.

Lemma 6.10. Let p be the function in (6.15), and F be either f or
one of ft. Then there is a uniform constant λ < 1 such that

(6.94) / \dF\2

μcdμc < 4λ*.
J-i log \t\>-logp>R

Consequently, for some uniform β0 > 0,

(6.95) β

Proof. Since F is J-holomorphic, (6.95) follows from (6.94) and the
standard elliptic estimates. Therefore, it suffices to show (6.94). We
will always use C to denote a uniform constant.
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Let ωh be the Kahler form of the J-invariant metric hv on V. Then

\dF\l=F*ωh\Σt.

Choose a cut-off function ηR such that r/Λ(ί) = 1 for t > i?+l, τ/ϋ(t) = 0
for t < R, and \η'R\ < 1. By the assumptions on /' in Theorem 6.1 or
construction of / ί ? for p(x) sufficiently small, the image F(x) lies in a
small coordinate chart, say a J-ball, of V. Therefore, we can deduce

-\ogp>R+l
\dF\ldμc< ί ηR(-\ogp)F*ωh

<C ί \VηR(-logP)\μc\dF\μcdv{F,y)dμc

+ / ηR{-\θgp)\dF\ldv{F,y)dμc

f r
< C / dv(F,y)\dF\μcdμc + δ / \dF\2

μdμc

JR<- log p<R+l J-\og p>R+l

where y is a point in V. By the well-known Poincare inequatlity, we
can choose y such that

dv(F,y)2dμc<4[ \dF\2

μcdμc

JR<- logp<R+lR<- log p<R+l JR<- logp<R+l

for instance, we can take y to be the average of ft over the region
{x\R < — \ogρ(x) < R + 1}. Therefore, we have

\dF\ldμc <C ί
/ - log p>R+l JR<- log p<R+l

and consequently, for λ = 7τ?τ,

\dF\ldμc <\ I \dF\ldμc.
- log p>R+l J- log p>R

Hence the lemma follows from a standard iteration and the fact that

Lemma 6.11. If e, \t\ are sufficiently small, then there is f in W
such that

(6.96) IKIko < C\tf\

where β0 is given in (6.95).
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Proof. By cutting Σ* along the loops in {x £ Σt\p(x) =
and gluing disks to the boundary components of the resulting surface,
we obtain finitely many surfaces Σti (1 < i < I). Putting Σt to be
the disjoint union of those surfaces, we can naturally embed Σt\{x £
Σt\p(x) = y/2\t\} into Σt as a submanifold. Then we can extend the
conformal structure j t on Σt to be a natural conformal structure j on
Σt.

Prom Lemma 6.10 It follows that

(6.97) l4fV(s) < CΊtΓ*,

whenever y/2\t\ < p(x) < lθy/\t\. Therefore, we can extend /' to be a
map / from Σt into V satisfying:

(6.98) | |ΰ | |o,j<C|ί | 2 ' 3 0,

where v = df+J df j . We denote by L the linearization of the Cauchy-
Riemann equation at /, and by L* its adjoint. Then by the same
arguments as in the proof of Lemma 6.6, one can show that the first
eigenvalue of LL* is not less than c(— log |ί |)~2, where c is independent
of / and t. Thus, by applying the Implicit Function Theorem (cf. the
proof of Proposition 6.2), we can find an ξ in Γ(ΛOilf*TV) such that
fh = expf(L*ξ) is J-holomorphic. Moreover, if t is sufficiently small,
than we have

Clearly, it follows that the distance between Im(/') and lm(fh) is less
than C\t\~^. The map fh may not be in MA{ΣO, J, 0). However, using
(6.97) and the fact that MA{ΣO, J,0) is smooth at /0, one can show
that fh lies in a l^^-neighborhood of some ft in W, as long as both \t\
and e are sufficiently small. Thus the lemma follows.

Let ft = Tt(f) be given by Lemma 6.11. Without loss of generality,
we may assume that / = /0. Let ξ be the unique solution: LtLlξ —
LtUf. Multiplying this equation by ξ and integrating by parts, we
obtain

(6.99) / \L*tξ\ldμc<cJ[ \Ltuf\ldμcί
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By the same argument as that in the proof of Lemma 6.6, one can show

(6.100) / | ^ c d μ c < C ( l o g | < | ) 2 / \L*tξ,\2dμc,

which together with (6.96) and (6.99) implies that for t sufficiently
small,

(6.101)

Since LtLlξ = LtUf = C?(||ιi/||iϊ0), we have

and consequently,

Now we want to find a new /i in W, which is very close to / = /0, such
that ufl = Llξi for some ξ1.

Using the equation /' = expfx (u^) = expf(ιif), we can define a map
St from a neighborhood of /0 into Ker(Zt) at /0:

St{fι) = π(/O ϊ / i ) K - Lt*6), where Ltuh = LtL*t^

π(/i) denoting an isomorphism from the kernel of Lt at /i onto that
at /o, which depends smoothly on flm Clearly, St is a smooth map. By
the same arguments as in the proof of (6.90), one can show

(1 - C | ί | ^ ) N | o , o < \\DfSt(u)\\OtQ < (1 + C| ί |^) |H| o ,o.

Then by the Implicit Function Theorem, there is a /i such that St(fι) =
0 and H^/Jli,! < C|t|"^. For simplicity, we may assume that fλ coin-
cides with /. Then Uf — L^ξ. Since both /' and ft are J-holomorphic,
from (6.65) it follows

(6.102) Ώtξ = -Ht(ξ).

Multiplying (6.102) by ξ and integrating by parts, one can deduce

(6.103) / \L*tξ\2dμc < C\\L*tξ\\ofi f \ξ\lcdμe.
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However, ||£Jξ||o,o < C7|t| "s2", so for t sufficiently small, (6.103) is im-
possible unless Uf = L^ξ = 0, i.e., / ' = ft. Hence Theorem 6.1 is
proved.

7. Composition law

In this section, we prove the composition law for our mixed invari-
ants (Theorem A). A special case would be the composition law for
topological σ-model invariants. The composition law was predicted by
physicists based on physical intuitions. Our proof will be based on
degenerating stable curves in the sense of Deligne-Mumford.

Let C = (Σ,#i, ,xk) be a fc-point genus g stable curve, and
MA{Σ, J, V) be the moduli space of all (J, ̂ )-maps from Σ into V with
the total homology class A. By Corollary 4.11, for a generic (J, v),
J M Λ ( Σ , J, V) is a smooth manifold, which may have many components.
Let Σi, • , Σ m be connected components of Σ, and Ai, , Am be ho-
mology classes with A = Y^λ Ai. As before, M(AU--- ,Λm) (Σ, J,v) be
those (J, i/)-maps / with /*(Σi) = A^. We will use this moduli space to
construct a generalizd invariant. The construction is exactly the same
as that of the mixed invariant in section 2. Let us outline this con-
struction as follows: Suppose that αi, , α^, βi,m— ,βι are integral
homology classes satisfying

They are represented by pseudo-manifolds (Y^Fi), (Zj,Gj) as in sec-
tion 2. Let e(c,j,v) and F be defined in (2.4), (2.5) with Λ 4 Λ ( Σ , J, v)
replaced by Λ/ί(A1,.,Am)(Σ, J, v). Then we can define an invariant
Φ(i4i, ,Λm,u;,c) a s follows: Fix a pair (J, v) such that e^c,j,v) and
Λί>i(Σ, J, v) satisfy all properties described in Proposition 5.6. We
first associate a multiplicity m(f) to each / in e ^ j ^ Δ ) , and then
define m(f) to be zero if either f(xi) is not in Fi(Yi) for some z, or
/(Σ) does not intersect one of Gj(Zj). If / is as given in Proposi-
tions 5.1, 5.2, then there are finitely many (ysi, ,ysj) (1 < s < m)
such that f(ySj) E Gj(Zj) and each ysj is a smooth point of Σ. We
put e(/, s) to be ± 1 ; the sign is determined by the orientations of
M(Λu...}Λrn)(Έ, J,v) x (Σ)1, P, Vίb+i at {f;ysU ' ,2/,/), etc., and the
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Jacobians of the maps e>(cj,v) and F, where P is the domain of F.
Define

m

(7-2) m(/) = £ e ( / , S ) ,

and finally,

(7.3) Φ(Λlf...,Am,*,c)(αi, ,<** I A , • , A) =

For convenience, we simply define

(7.4) Φ(Ali....AmfWfc)(αi, ,α f c | i9i, ,A) = 0,

in case (7.1) does not hold.
As before, one can show that this is independent of the choices of J ,

is, the A -point, genus g curve C and the pseudo-manifold representatives
of au βj.

Remark 7.1. One can define a more refined invariant by speci-
fying components of Σ, which intersect with βj. Let q be a map from
{1,...,/} into {1,. . . , ra}. Then we consider

ec,q : MA{C,

(7 5)

Choose a generic (J, ι/) such that ecΆ is transversal to F. On the other
hand,

By the same arguments in the proof of Proposition 2.2, one can show

that for a generic (J, ι/), e^(Im(F)) does not intersect the boundary

of Λί(Ai, . ,Λm)(Σ, J, v). Therefore, one can define an invariant

Φ(^1,...fΛmtα;,clff)(αir - 5 α*IA, ,A)

by counting points in e ^ ( I m ( F ) ) with sign. Moreover, if Q denotes

the set of all maps g, then

(7.6)
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We can sum all Φ(Ai, - ,Am}ω,g) to obtain an invariant

(7.7) Φ(Λ,ω,c) =
Λ=Aχ-\ Am

Theorem 7.2 (the composition law). Suppose that (V,ω) is a
semi-positive, symplectic, compact manifold and, C is a k-point genus

g stable curve. Then for any integral homology classes α l 5 , α^,

/?!,-•• ,/?/, we

(7.8) Φ(Λ,u )̂(

Proof Fix a degeneration π : 5 —> Δ of fc-point genus g smooth
stable curves, such that the central fiber is C, and other fibers are
smooth genus g Riemann surfaces with k marked points, where Δ
denotes the unit disk in C1. For example, in case g = 0, we can
take S to be the blow-up of S2 x Δ at a point in S2 x {0}. Let
v be an inhomogeneous term on S (cf. section 3), whose restriction
on C is an inhomogeneous term v0 on C (cf. section 4, paragraph
3). Let us use vt to denote i/|Σt, where Σ t denotes the fiber over t.
Let Xt = (#*,••• ,x\) be the k disjoint sections of £, whose restric-
tion to each fiber gives the marked points. Suppose that for t ^ 0,
ifuVir" ,0?) is in e^ t Σ t J l / t )(Im(F)), where F is defined in (2.5).
Then ft(x\) e I m ^ ) , /t(yj.) G I m ^ ) . Using Proposition 3.1 and
taking a subsequence if necessary, we may assume that ft converges to
/o in Λ4Λ(ΣO, J, ^O) as £ tends to 0. By Propositions 5.3, 5.4, if (J, v0)
is generic, than /0 is actually in MA{Σ0, J, ι/0) Let ŷ  be the limit
of y). Clearly, /0(s?) G Im(Ή) and /0(y?) G Im(G,) ^ 0. Therefore,
(/o,y?,* ,y?) 6 e^ o Σ o J l / o ) (Im(F)) . Thus the theorem follows from
Corollary 6.1.

Next, using an idea of Witten, i.e., decomposing the diagonal class by
the Kήneth formula, we shall prove that Φ(A,ω,c){&ii * &k\βι<>''' ->βι)
can be explicitly calculated in terms of the mixed invariant
of each component of C and contributions from double points.
There are two kinds of double points on a stable curve, i.e., intersection
of two different components or self-intersection of one component. We
shall give formulas for computing Φ(A,ω,c) ι n two special cases corre-
sponding to these two types of intersections. The formula in general
case can be derived inductively from these two special cases.
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Case 1. Suppose that C = (Σ0,a:i, ,£*) has exact two compo-
nents ΣQI, Σ02 of genus gu g2 satisfying: (1) ΣOi and Σ02 intersect at
a double point p\ (2) ΣOi carries m marked points X\, - , x m and Σ02
carries the rest of marked points. Then Φ(A,ω,c) c a n be calculated as
follows:

Let {Hσ} be a basis for the torsion free part of H*(V, Z). Consider
the diagonal A CV xV. By the Kύnneth Formula, the homology class
of the diagonal is given by

7,r

where ηΊT = HΊΓ\HT, and {ηΊT} is the inverse of the intersection matrix

{ηΊr}- Let q be the map: q(l) = = q(Γ) = 1, q(l' + l) = = q{l) =

2.

Theorem 7.3. Let Ax, A2 be two homology classes. Then we have

and consequently,

(7.9) Φ(i4i,α;,Λi)(αi, , « m , ̂ 7 I βσ(l) , * * " i^σ(i))

•Φ(i42,ω,pa)(αm+1? " J αik? ^ | βσ(j+ΐ) j " * * >/?σ(Z))j

where σ runs over all permutations of 1, ,Z, and e(σ) is ίΛe 5i^n o/

fΛe permutation induced by σ on odd dimensional βj.

Proof. The invariant Φ(ΛifΛ2fω,cfί)(αii *' * α *IA 5 * *' > A) c a n be re-
defined as follows: Suppose that 2 G ΣOi, ̂ ' G Σ02 are the intersection
p. We define an evaluation map

e v

to be
e cx χ e C a ( / i , y i , iVvf2iyv+ι,'- ,yι)
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Let a be a homology class in fΓ»(V*+2, Z) satisfying:

2n(k + 1+2)- deg(α)
(7.11) = dim.MAi(Σoi,J,ι/i)+dimΛ4>ιa(Σo2,J,i/2) + 2/

= 2CΊ{V)(A1 + A2) + 2n(l - (9l + g2)) + 2n + 21,

For generic J, J Ί , ^ , by the same arguments in defining the mixed in-
variant, one can define an integral invariant ^AuA2{

a) by counting the
number of elements in ev~1(Im(F)) with sign according to orientations
of the domain of ev, Vk+ι+2, etc., where F : Y -» Vh+W is a pseudo-
manifold representing α. This invariant Φi41,Λ2(

α) *s independent of
^^15^2) the complex structure of C, the pseudo-manifold representa-
tive F of α. Moreover, like the mixed invariants in Proposition 2.5,
Φ(AI,A2)

 ιs linear on α.
Now we take a to be the homology class

(7.12) αx ® ® α m ® βλ ® βv ® [Δ]

Suppose that F{ : Y{ ->• V, Gj : Zj -ϊ V are pseudo-manifold represen-
tatives of α i ? jSj. Then

x Π G i x Δ x Π Fix Π °i•••
1 m+1 i'+l

m /' ik /

, x Hz,^ x v x Π γ> x Π ̂  -> ̂ +i+2

1 1 m+1 /'+1

is a pseudo-manifold representative of a. Using the representative F,
one can easily see

(7.13) ΦΛ1 >Λa(«)=Φ(i4 l ϊAa,ω,C,ίr)(αlΓ > « * I A , - " »A)

On the other hand, applying the Kήneth formula to [Δ] as Witten
suggested in [25], we have

a = Σ ^ α i ® * '®am®βι ®βv®HΊ®Hδ®θίm+ι <8>ί**<8>A'+i

Therefore,

ak
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But from the definition it follows trivially that

* * ® am ® A ' * * ® A' ® # 7 ®

•• ® α f c ® A ' + i " " ' ® A)

This finishes the proof.

Remark 7.4. In case g\ = g2j there is another intepretation of

^(A1,A2,ω,c,q) in terms of the mixed invariant of U = V x V with sym-

plectic form Ω = π*α; + TΓ̂ U;, where π^ : i7 •->• V is the projection onto

the ith-factor. More precisely, if Φ(^> Ω ) 5 l) denotes the mixed invariant

of (17, Ω), where B = Ax ® 1 + 1 ® Λ , then

Then one can use this to give another proof of Theorem 7.3 in this

special case.

Case 2. C = (Σ o , Xi, , #*), and Σ o is a genus-(<7 — 1) curve with

k marked points a^, , α;*. and a self-intersection point. Then we have

Theorem 7.5.

H
δ\βu - -

Proof. The proof is similar to that of Theorem 7.3. Let Zι,z2 be

distinguished points on the normalization Σ' of Σ o ; i.e., Σ' is a genus-

(g — 1) curve, and there is a holomorphic map π : Σ ; —> Σ o such that

π(zι) = π(z2) = p. Combining the marked points with distinguished

points, we can define an evaluation map

by

ev(f,yi, ,Vι) = (f{xi), , f{xk), f(zi), f(z2), f(yι), • ,f(yι))

In the same way as before, for any homology class a of Vk+ι+2 satisfy-

ing:

2n(k + 1 + 2)- deg(α) = dimMA(Σ', J, u) + 21,
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one can define an invariant Φyi(α) by counting the number of elements
in eυ~1(Im(F)) with sign, where F : Y —» Vk+ι+2 is a pseudo-manifold
representative of α. Moreover, one can show that ΦΛ(CO is independent
of the choices of J, v, complex structures of C as well as pseudo-manifold
representative F of a. Let a = ®»αi ® [Δ] ®j βj. Using its pseudo-
manifold representative

^ xΔxjjG, :[[YiXV x
i j i j

one can show

ΦΛ(θή = Φ(^)U;)C)(®i^i ® [Δ] ®j βj).

On the other hand, using the Knneth formula as above, we deduce

which implies

Since

the proof is complete.

8. The quantum cohomology ring

In this section, we will establish a quantum ring structure on the
cohomology of a semi-positive symplectic manifold. The key point is
the associativity. This will be proved by using the composition law
of last section and certain algebraic arguments in [25]. We will also
compute the quantum rings for some simple algebraic manifolds.

We put

(8.1) Φ(Atω)(<*W ,<*h) =Φ(A,o/,0) (
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where αi, , α* are integral homolgy classes. This is the Witten's k-
point correlation function (cf. [19]), and depends on a homology class
A. We can also drop this dependence by summing contributions over
all possible A. So we can formally write the fc-point function

(8.2) Φ ω ( α 1 , . . . ,

where t is a parameter. There may be infinitely many A which con-
tribute the summation in (8.2). Calabi-Yau 3-folds or CP2 blow-up at
9-points are such examples. Therefore, there is a problem on the con-
vergence of the series in (8.2), which we will not address here. However,
for a symplectic manifold (V,ω) with first Chern class Cι(V) > cω for
some c > 0, the Gromov-Uhlenbeck Compactness Theorem (cf. Propo-
sition 3.1) implies that there are only finitely many nonzero terms in

(8.2) for each fixed set of homology classes αi, , α*.
We define quantum multiplication by a* xQβ* for α*, β* in H*(V, R)

by the condition that

(8.3) (a*xQβ*)(Ί) = Φω(a,βΠ),

where cycles a , /?, 7 are the Poincare duals of cocycles α*,/3*,7*.

Such a quantum multiplication is defined over the integer ring Z in

the following sense: if α*, β* are in H*(V,Z), then the evaluation of

a* XQ/3* at t = 0 lies in H*(V, Z). Prom Proposition 2.7 It follows that

(8.4) α*xQ/3* = (- l ) d e g ( α * ) d e g ( r ) /3* x Q α * .

It is also useful to write the quantum multiplication in terms of a
basis of i2*(V, Z) as follows: Choose a basis {Hσ} of iϊ*(V, Z) modulo
torsions. Let {ηΊσ} be the intersection matrix associated with the basis,
i.e., ηΊσ = HΊΓ\Hσ. Note that ηΊσ = 0 if the degrees of HΊ and Hσ do
not sum up to the dimension of V. We define

(8.5) faβΊ(t) = Φω(Ha,Hβ,

and

(8-6) fUt)=*'Sf°fh{t)

where {ηΊσ} is the inverse matrix of {r/7σ}.
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Let {H;} be the basis of H*(V, Z), which is dual to {Hσ}. Then the
quantum multiplication in terms of {H*} is given by

(8-7) H*axQH*β

which implies

(8.8) "

= Σ p
σ \ δ /

Similarly,

(8.9) H: XQ (H; XQ H;) (t) =Σ(Σ &(*)&(*)) H:( ) ( )
σ \ δ J

Therefore, as Witten observed in [25], the quantum multiplication is
associative if and only if the following equations hold:

(8.10) fiβ(t)fί,(t) = ίδ

0Ί{t)fσ

aS{t).

Using (8.2), (8.5), (8.6), one can easily see that (8.10) is equivalent to
the following identities
(8.11)

= Σ
where A, Ha,Hβ,HΊ,Hδ are given. By the symmetry of the Witten
invariants (cf. Proposition 2.7), we have

(8.12) Φ{A2,ω)(Ha,Hσ,Hδ) = (^l)ά^H^ά^H^Φ{A^ω)(Hσ,Ha,Hδ).

On the other hand, Φ(^2U;)(iϊσ, ifα, Hδ) is zero unless the sum of degrees
of Ha, Hσ and Hδ is an even integer. Therefore, from (8.12) it follows
that (8.11) is the same as

A=A\+A2 σ,r

= (_1)deg(i/β)(deg(/ίoι)+deg(/ί5))

(8.13) x Σ Ση^Φ{Auω)(HβiHΊ,Hτ)Φ{A2,ω)(Hσ,Ha,Hδ).



A MATHEMATICAL THEORY OF QUANTUM COHOMOLOGY 345

In the case of Calabi-Yau 3-folds, both sides of (8.13) are equal to zero,
so the quantum multiplication is automatically associative. In general,
(8.13) is not obvious. By the composition law in last section, the left
side of (8.13) is the same as Φ(Atω)(Ha, Hβ,HΊ, Hδ), while the right side
is equal to

(8.14) {^

Thus (8.13) is a direct consequence of the symmetry of the 4-point func-

tion, and the invariant in (8.14) is zero unless degrees oϊHβ, HΊ, Ha, Hs

sum up to an even integer. Therefore, we have

Theorem 8.1. The quantum multiplication is associative; conse-

quently, there is a quantum ring structure on the cohomology of any

semi-positive symplectic manifold V.

From the composition law in last section it follows that

(8.15) H:ix

We should remark that both sides of (8.10) are infinite sum, whose

convergence in general remains to be checked. However, the above

equation is well posed as a sequence of equations involving only finite

sums.

We will call the cohomology H*(V, R) with the quantum multiplica-

tion the quantum cohomology of V, where V is a semi-positive sym-

plectic manifold. By Proposition 2.6 we hence have

Proposition 8.2. The quantum cohomology of the product of two

semi-positive symplectic manifolds is the product of quantum cohomolo-

gies of the two manifolds.

We observe that the quantum product a XQ β does not preserve the

grading of the ordinary cup product. The quantum product may be

the sum of several cohomology classes of different degree. This can

be seen from (8.4). However, one can check that it always decreases

the degree by 2Cι(V)(A) for some second homology class 4̂, as long as

Φ^ φ 0. Assume that V is a compact symplectic manifold with positive

first Chern class C\(V). I.e., for any nonconstant J-holomorphic map

/ : Σ •-> V, f*(Cι(V))(Σ) > 0; this is particularly true if Cι(V) > cω

for some positive constant c. Let α*, β* be any two cohomology classes,

and 7 be a homology class. Then
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only if

(8.16) deg(7) < deg(α*) + deg(/T),

where α, β are the Poincare duals of α*, β*. This is because
Φ(Λ,ω,o) («,/?, 7) is nonzero only if

deg(c**) + deg(/3*) + 2n - deg(7) = CX{V){A) + 2n> 2n.

If Φ(^>α;jo)(«>/5,7) is nonzero, then there is at least J-holomorphic map
/ from S2 into V with /,(S2) = A. It follows that Cλ{V){A) > 0, if A
is not the zero class. Consequently, in case the equality holds in (8.16),
we have

(8.17) (**xQβ*(Ί) = *(o,w) (*,& 7)

Hence we can deduce the following from Proposition 2.5,(5).
Proposition 8.3. Let V be a symplectic manifold with positive first

Chern class, and α*; β* be two cohomology classes in H*(V,Z). Then

(8.18) a XQ β = a U β + terms of lower degree .

As we mentioned before, there is a problem with the convergence of
the power series in (8.2), if (V,ω) is no longer a symplectic manifold
with positive first Chern class, such as Calabi-Yau manifolds. It was
conjectured that the power series in (8.2) is convergent whenever t is
sufficiently large. But we can use the Novikov ring to avoid this problem
of convergence. The use of the Novikov ring is extensively discussed
in [16]. Here we will only give a brief discussion on formulation of the
quantum cohomology ring in terms of the Novikov ring.

The symplectic form ω induces a homomorphism, still denoted by
α;, from H2(V, Z) into R. Fix such a homomorphism, we can define a
Novikov ring Λ^ as follows: Each A G H2{V,Z) induces a homomor-
phism

(8.19) p(A) : H2(V,C/Z) = H2(V,C)/H2(V,Z) -> C*

by p(A)(a) = e2«^~ι<A\ Clearly, p(Aλ + A2) = p(A1)p(A2). For
simplicity, we will denote p(A) by e

2ητy^~^A. Then the Novikov ring Aω

consists of the Fourier series of the form

(8.20) \
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where A runs over all integral homology classes in H2(V,Z), and the
coefficients λ^ satisfy

(8.21) {A\\A^0,ω(A) < c} < oo

for any c > 0. If μ = Y^AμA^2π^~iA be another element of A^, we
define the multiplication by

(8.22) \*μ=
A,A'

It is straightforward to check that \*μ satisfies the finiteness condition
(8.21). The Novikov ring also carries a natural grading defined by
deg(e2 π^ I T A) = 2d(V){A). We will use Λ, to denote all elements of
degree j in Λ^. Note that if we choose a basis of H2(V^ Z) and expand

e2τrvcTΛ o v e r ^jg basis^ w e c a n w r i t e λ as a power series.

The quantum cohomology ring can be now defined to be

(8.23) H*Q{V) = H*(V,R) ® Aω *

This can be graded by
2n

(8.24) Hk

Q(V) =

Now we define a new 3-point function

(8.25) Φ Λ > , / ? , 7 )

From the Gromov-Uhlenbeck compactness theorem it follows that

^ Λ J ^ A T ) £ At,,. Furthermore,

(8.26) deg(ΦΛω (α, β, 7)) = 4n - deg(α) - deg(/?) - deg(7).

For any α*, β* in H*(V, ϋ), their quantum multiplication a* *Q β* is

defined by the condition

(8.27) (α**Q/3*)(7) = ΦΛ>,/?,7),

where α,/? are Poincare duals of α*, β*, and 7 is any homology class.

Then we extend this quantum multiplication to any two elements of

HQ{V) by linearity.
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One advantage of this new definition is that the quantum multipli-
cation preserves the grading, i.e.,

(8.28) deg(α**Q/r) = άeg{a*)deg{β*).

Again, the same argument as before will show
Theorem 8.4. The quantum multiplication α* *Q β* is associative;

consequently, there is an associative quantum ring structure on the co-
homology HQ(V) of any semi-positive symplectic manifold V with co-
efficient ring Aω.

Example 8.4. Let V be a if 3-surface. It is well known that for a
generic complex structure on a if3-surface, there are no non-constant
holomorphic curves. Therefore Φ^ = Φ(o,u>)> and consequently, the
quantum cohomology ring is the same as the ordinary cohomology ring.
In fact, the same is true for any hyperkahler manifolds.

Example 8.5. Let V be the complex projective space CPn with
the Fubini-Study form ω as its symplectic form. This is a semi-positive
symplectic manifold. Now let us compute the 3-point function of
CPn. Note that for any three homology classes α,/?,7, the sum of
their codimensions 6n — deg(α) — deg(/?) — deg(7) < 6n. Let ί be
the generator of H2(CPn,Z) represented by a complex line. Since
dimMdi{S2, Jo, 0) = 2d(n + 1) + 2n, where Jo is the standard complex
structure on CPn, only Mdt{S2, Jo,0) for d — 0,1 will give any non-
trivial contributions to the 3-point function. In these cases, the moduli
space Mdi(S2, Jo,O) is automatically compact and smooth, so we can
use it to calculate the 3-point function.

First we compute Φ(i^(pt,pt, if), where H is a generic hyperplane in
CPn. Note that the moduli space Λ^(5 2 , JOj 0) consists of holomorphic
maps from S2 into CPn such that its image is a line in CPn. An
elementary fact about lines is that there is a unique line through any
two points in CPn. Fixed two distinct points X\,x2 in CPn and a
hyperplane H not through xλ and x2. Let L be the unique line passing
through Xι, x2, and intersect H at x3. Fixed three points, say 0,1, oo G
S2. By parametrizing this line properly, we can find a holomorphic
map / from S2 onto L, such that /(0) = Xi, /(I) = rz;2, /(oo) = # 3.
Such a / is unique since any element of PSL2 is uniquely determined
by three points. Therefore, Φ^^ω)(pt,pt,H) = 1 and

Φω{pt,pt,H){t)=e -t
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We now compute the quantum cohomology ring of CPn. Let x
be the Poincare dual of H. Then x generates H*(CPn,Z). We will
use xk to denote the ordinary λ;t/ι-power of x, and XQ to denote kth

quantum power of x. Note that Cι(CPn) = (n + l)x. For k < n,
Φ(o,u;)(̂ 5 ,#) is the only nonzero term in (8.15) with a{ = x. Hence,
x^ — χk. Similarly, Φ(e,ω) is the only term which contributes to the
quantum product XQ+1. By counting degrees, one can easily show XQ+1

is of the degree zero, i.e., XQ+1 is a number. This number is equal to
Φ(ί,ω)(pt,H,pt) = e~*. It follows XQ+1 = e~*. Higher powers of x can
be computed by this and the associativity. Therefore, the quantum
cohomology ring of CPn is the quotient of the polynomial ring R[x] by
the ideal generated by xn + 1 — e~l.

Example 8.6. Let V be the surface obtained by blowing up
CP2 at one point. Then H*(V, Z) is generated by x,y, where x is the
pull-back of a line in CP2, and y is the exceptional divisor from the
blowing-up. The relations are x2 + y2 = 0, xy = 0, i.e., the ordinary
ring is isomorphic to the quotient of R[x, y] by the ideal generated by
χ2 + V2-) XV Note that for simplicity, we will identify a cohomology
class with its Poincare dual. We choose ω to be the first Chern class
Ci(V), which is positive. Then ω(x) = 3 and ω(y) = 1. There are two
homology classes 2y, x — y with Cι(V)(2y) = Cι(V)(x — y) = 2, two
classes 3y, x with Cι(V)(x) = Cι(V)(3y) = 3 and three classes A = 4y,
or 2(x — y), or x + y with Cι(V)(A) = 4. For dimensional reasons, these
are only homology classes contributing to the 3-point function Φω. Let
Jo be the complex structure on V, and J be a generic almost complex
structure near Jo. It is clear that M2y{S2, Jo, 0) consists of only double-
branched covering maps onto y. Therefore, all maps in M2y(S2

1J,v)
have their image near the exceptional divisor y, where v is a small in-
homogeneous term. The expected dimension of M2y(S2, J, v) is 8. It
implies that Φ(22/,α;)(α,/3,7) is zero unless one of the cycles, say α, has
its degree less than 2, so one can choose a pseudo-submanifold repre-
sentative of a which does not intersect y at all. If (J, v) is sufficiently
close to (Jo50)? the pseudo-submanifold does not intersect any (J, v)-
maps in M2y{S2,J,v). It follows that Φ(2y|W)(α, β, 7) is identically
zero. Similarly, M3y{S2, Jo,0), M4y(S2, J0,0) and M2{x-y){S2, Jo,0)
contain only multiple covering maps. Then one can show by the same
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arguments that

Φ(3y,w) = Φ(42/,u/) = Φ(2(x-y),ω) = 0.

We claim that the 3-point function Φ(x+ytω) = 0 as well. We observe
that Mx+y{S2, Jo, 0) = 0. But there are cusp curves of the form L + y,
where L is a line. The space of such cusp curves is of real dimension 8,
which is four less than the expected dimension of Mx+y{S2, Jo,0). So
the complex structure Jo is (x + y)-good and Φ^+y^j = 0.

On the other hand, the moduli spaces My{S2, Jo, 0), Mx-y{S2, Jo, 0),
.Mx(S2,Jo,0) are all smooth and quite simple. More precisely,
My(S2, Jo, 0)/PSL2 = {y}, Mx-y(S2,J0,0)/PSL2 is the space of lines
in CP2 passing through the blowing up point, and MX(S2, Jo, 0) is the
space of lines of CP2. It is not hard to compute contributions to the
3-point function from these moduli spaces. We summarize the results
as follows:

(8.29)

XQ
 = = X ~r 6 ,

2 2 *

x xQy = x xy + e~2t = e~2t.

It follows that the quantum cohomology ring of V is the quotient of the
polynomial ring i?[x, y] by an ideal generated by x2 + y2 — e~ιy — 2e~2t

and xy — e~2t.

9. Mirror symmetry conjecture

The Mirror Symmetry Conjecture relates rational curves on an al-
gebraic manifold with the variation of Hodge structures of its mirror
manifold. An crucial step in solving this conjecture is to construct a
family of flat connections on Hm(V,C) which deform the trivial con-
nection. These flat connections are different from the Gauss-Manin
connections, which come from the variation of Hodge structures. In
this section, we will use our mixed invariants and their composition
law to construct such a family of flat connection.

Let W = H*(V, Z) ® C = H*{V, C). As in last section, we choose a
basis {Ha} of if*(V, Z) modulo torsions, and let {#*} be its dual basis
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of H*(V, Z). Any point w in W can be written as

L

(9.1) w =
3=1

where L is the dimension of W. One can regard ίi, ,tL as the
coordinates of w in W. We denote by w* the corresponding point

By Proposition 2.5, the mixed invariant Φ(A,ω,g) ι s multilinear, so
we can extend Φ ^ , ^ ) to be a multilinear function on H*(V,C) in an
obvious way. Following E. Witten [25], we define a generating function

(9.2) ~ ^ - t

This function is a power series in t 1 ? , t L . We define a connection V£

for any number e on the tangent bundle TW over W as follows: For
each tangent vector v = vα-^~ in

where {r/^7} is the inverse of the intersection matrix associated with
the basis {Hα} (cf. (8.5), (8.6)). Obviously, Vo is the trivial connection
on W. The following is just Theorem C in the introduction.

Theorem 9.1. The connection Ve is flat and a deformation of the
trivial flat connection on W.

Proof. The flateness of V€ means

(9.4) V£(V€v) = 0

for any v in TW. Using the definition (9.3) of V€, one can easily show
that for e ^ O , (9.4) is equivalent to the so called WDVV equation

( 9 5 )
-^ dtαdtβdtσ dtΊdtδdtτ ^ dtαdtΊdtσ dtβdtδdtτ

Both sides of (9.5) are power series in ί l5 , tL. We observe that there
is a canonical splitting of W, i.e., W = We+Wo, where We consists of all
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cohomology classes of even degrees, and Wo consists of all cohomology
classes of odd degrees; consequently, any w in W is of the form we + wo

and w* = we* + wo*. Since the moduli space of (J, z/)-maps is always
even-dimensional, we have

^(A,ω,9){Wo^WeinWei,\we^" ,We*) = 0 .

Thus from Proposition 2.7 it follows that

Hence, the connection V€ is flat on TWO and determined by its re-
striction to TWe. For simplicity, we may assume that Wo = {0}. By
denoting Φ^ by ^ω(tu ,£L), we have the following expansion:

Σ ^
Vy'O A m=3 1<ai,..,aτn<Lrn'

'Φ(A,ω,0)(Hai, Ha2, Ha3\Ha4, ,Ham)tai

Taking the third derivative on both sides of (9.7), we obtain

(9.8) d ^ k ^
mΦ(A,ω,o){Ha,Hβ,Hσ\Hai, - ,Ham)tai ίttm

Substituting the third derivatives of Φ^ by the power series in (9.8)
and equaling the coefficients can easily show that (9.5) is equivalent to
(9.9)

3=0 p σ,τ

= Σ
J=0 p σ,τ

for all α, /?, 7, £, Z and A, where p runs over all permutations on
{1, ,/}. By the composition law in section 7 (cf. (1.1)), both sides
of (9.9) are equal to the mixed invariant

Hβ1HΊ,Hδ\Hotl, - ,Haι).
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Hence the theorem is proved.
Remark 9.2. (1) The generating function Φω has a scaling prop-

erty: For any complex number s,

(9-10)

Which follows easily from (9.7) and the fact that

vanishes unless

Consequently, the connection Ve admits a scaling property. In case V
has vanishing first Chern class, this scaling property makes TW into
a Hodge bundle. Note that Vc preserves the inner product on TW by
the cup product.

(2) The function Φ^ depends only on even degree cohomology classes,
as shown above. It is possible to modify the definition to include con-
tributions of odd degree cohomology classes. The simplest modification
is to replace ^ in (9.7) by ^ΐ \ where e({αi}) is ± depending on the
induced ordering on odd degree cohomology classes in {Ha} by {α^}.
Since such a genaralization is straightforward, we leave the details to
the readers.

We may assume that the basis {Ha} is chosen, such that (1) there is
an U < L, and deg(Ha) is even or odd according to whether a < L1 or
a > L'\ (2) άeg{Ha) < deg(i3r

/?) whenever a < β < V. In particular,
the degree of HL> is 2n. We further assume that deg(Ha) is 2n — 2 for
N <a<L'.

Proposition 9.3. Let {Ha} be chosen as above. Then we have
(9.11)

L'-l

where (HaΓ\HβΓ)HΊ) denotes the intersection number of Ha, Hβ, HΊ,
and ω* is the dual of ω.
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Proof. If A = 0, by Proposition 2.5.(5), the invariant
Φ(Λyω,o)(Ha, Hβ, HΊ\Hai, ••• , i f α m ) is zero or (HaΠHβnHΊ) according

to m > 0 or m = 0. Therefore, we obtain the first term in (9.11) from
the expression (9.7) of Φ^.

Now we assume that A ^ 0. If one of Hai is of the degree 2n, then
by Proposition 2.5.(3), we have

Thus (9.11) follows from (9.7) and Proposition 2.5.(4).
Remark 9.4. There is also a problem on convergence of the

power series in defining Φ ω . In general, it is unknown if the series in
(9.7) is convergent for any t 1 ? tL, for instance, for Calabi-Yau man-
ifolds. In case V is a symplectic manifold with positive first Chern
class, one should be able to prove that the series in (9.11) is conver-
gent when | ί i | , , |ίz,Ί are small and ω is sufficiently large. This is
because the composition law in section 7 implies a recursion formula
for Φ{Atωt0)(HQl,Ha2,Ha3\HaA' ,Ham) (cf. section 10). But we will
not discuss this convergence problem here.

Example 9.5. Let V be an irreducible complex surface with positive
first Chern class. Then V can be obtained by blowing up CP2 at generic
s points (s < 8). Choose a basis {i?i}i<t<«+2 satisfying: Hi is a point,
H2 is the pull-back of a line on CP2 and Hi is an exceptional divisor
from the blowing-ups for each i between 3 and s + 1. On the other
hand, the first Chern class Cλ{V) is 3H^ — Σi=3 H*i if there is a non-
constant holomorphic curve with homology class A — Σ*ll diHu then
3d2 — d3 ds+ι > 0. We will identify A with (d2, • * , d«+i) Thus

where n(d2, , d s + 1 ) denotes the number of rational curves in V with

homology class (d2, , ds+1) and through generic 3d2—^3 ds+λ — 1
points.
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In case V — CP2, this series is

I f3d-l

(9.13) *ω(tι,t2,t3) = ifot" + Ul) + J^ί

where nd is the number of rational curves in CP2 of degree d.
Example 9.6. Let V be a Calabi-Yau 3-dimensional manifold.

Since CΊ(V) is zero, the "virtual" dimension of any moduli space
MA(S2, J, V) is 6. It follows that if A φ 0, the invariant

vanishes unless each iία. is a divisor.
We denote by n^ the number of J-holomorphic rational curves in V

with homology class A. Then as Aspinwall and Morrison show heuris-
tically in [1], one expects

(9.14) Φ(A

B\A

where B\A means that A is divisible by B, i.e., A — kB for some integer
k. Thus from (9.11) one can deduce

<9Φ
(9-15) Qt^at (<i. ,</,) = (Hα nH0Π HΊ)

e

A yr. n Λ)(ir, π Λ ) W n A)

It is still an open problem how to prove (9.15) rigorously, namely, carry
out mathematically the computation in [1] for the mixed invariants.

In particular, if V is a quintic hypersurface in CP 4 , we have

(9.i6) η%r(*uh, *,, M = 5

where n d is the number of irreducible rational curves of degree d. Note
that ni = 2875 and n2 = 609250. It is still an unsolved problem how
to compute all rid mathematically.
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10. An application to enumerative geometry

In this section, we give some applications of our main theorem to
some well-known problems in enumerative algebraic geometry.

Let V be an algebraic manifold, A be a homology class in H^V, Z),
and J be the complex structure of V. Then, M*A(S2, J, 0) is the moduli
space of non-multiple cover holomorphic maps / from S2 to V such that
f*{[S2]) = A. The linear group G = PGL2 acts on MA(S2, J,0) by
changing the parametrization. Then, the quotient of MA(S2,J,0)/G
is the moduli space of rational curves in V with fixed homology class
A. By the Riemann-Roch Theorem, the virtual complex dimension of
M*A(S2,J,0)/G is Cι(V)(A)+n — 3, where n is the complex dimension
of V. Let us recall the definition of the counting function σA. We
will only define it under some nondegenerate conditions. Given generic
algebraic subvarieties Zi, , Zk (k > 3) satisfying

k

(9.1) Σ n " l ~ dim° Z* = CΛV)(A) + n - 3.

If there are only finitely many rational curves in M*A(S2, J, 0)/G, which
intersect each Zi (i = 1, ,&) transversally at some smooth points,
each such a curve is a smooth point of M*A(S2, J, 0)/G, and there is
no sequence of rational curves with homology A which converge to
a curve (possibly singular and reducible) intersecting all Z^ then we
can define σ^(Zχ, ,ZΛ) to be the number of such rational curves
in Λ4*A(S2,J,0)/G. In general, the function σA has to be defined in
terms of the Euler class of certain "bundles". Note that the number
&A(ZI, , Zk) depends only on the homology classes of Zi, , Zk.

First we give some examples of algebraic manifolds which satisfy the
above nondegenerate conditions.

Lemma 10.1. IfV is the Grassmannian manifold G(r,m) consist-
ing of all r-subspaces in Cm, then the counting function σA(Zχ,..., Zk)
is well defined as above for Schubert cycles Z l 9 . . . , Zk and equal to the
Gromoυ invariant Φ(A,ω)([Zι], ,[Zk]) (cf Proposition 24), where
[Zx], , [Zk] are homology classes of Zu- ,Zk.

Proof. We just give a sketched proof for reader's convenience, since
many arguments in the proof are the same as those in section 4. It is
well known that the tangent bundle TV = TG(m, r) is semi-positive in
Nakano's sense (cf. [6]), so (f*TV)* ® K is negative, where E* denotes
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the dual bundle of 25, and K is the canonical bundle of CP1. Prom
the standard vanishing theorem it follows that the obstruction group
Hλ{CP\rTV), which is equal to H°(CP\ (f*TV)* ® K), vanishes.
It follows that M*A{S2, J,0) and hence MA(S2,J,0)/G are smooth.

Consider the evaluation map

ev:M*A{S2,J,0)xG{CP1)k *-> Vk

Let Zi, , Zfc be generic algebraic smooth subvarieties in V. Since the
counting function σA, if exists, depends only on the homology classes
of Z1 ? , Zfc, we may perturb Zi, , Z^ if necessary. It is easy to
show that the image Im(ev) is an irreducible open subvariety in Vk of
dimension CΊ (V) (A) + n + k — 3. Let Im(ev) be the compactification of
Im(ev) under the Hausdorff topology, and Z be the subvariety Πt=i ^
in Vk. Then dimZ = Σ* = 1 dimZ f.

If the boundary Im(ev)\Im(ev) has complex Hausdorίf dimension
less than CΊ (V) (A) + n + k — 3, then we can perturb Schubert cycles Z;
such that Z is away from Im(ev)\Im(ev), i.e., Im(ev) intersects Z in
Vk at finitely many points away from its boundary. On the other hand,
since each Zi can be deformed in any directions at a specified point, we
may perturb Z\, , Zk such that all intersections are transversal and
occur at smooth points of M.*A{S2, J, 0)/G.

It remains to show that Im(ev)\Im(ev) has complex Hausdorff di-
mension less than Cι(V)(A) + n + k — 3. By the Gromov-Uhlenbeck
compactification theorem (Proposition 3.1), Im(ev)\Im(ev) is the im-
age of

M*A(S2,J,0)/G\M*A(S\J,0)/G

under the evaluation map. Therefore, it is enough to show that
M*A(S2, J, 0)/G\M*A{S2, J, 0)/G is of complex codimension 1. As we
show in section 4 (4.7), one way to prove this is to show that the evalu-
ation map set up in Theorem 4.7 is transverse to appropriate diagonal.
Then, the dimension acounting argument in Proposition 4.14 will im-
ply that M*A(S2,J,0)/G\MA{S2, J, 0)/G is of complex codimension 1.
We proved this type of transverslity in Theorem 4.7 by perturbing the
almost complex structure. Here, we have to work on the fixed complex
structure. Therefore, we need a different proof. In the following, we
adopt notation in section 4.
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By Proposition 3.1, the limit of a sequence of M*Λ(S2, J, 0) is either a
multiple curve or a cusp curve (cf. section 4.1). Only difference is that
the principal component, which is also a S2, satisfies a homogeneous
equation and should be treated as a bubble by dividing reparametriza-
tion group G. If the principal component is a constant map, we just
collapse the principal component, and the resulting map is still a map
from a tree of S2. As we did in section 4, we drop the multiplicity of
a multiple map and consider its reduced map to its image. For the
set of cusp curves, we replace the component of multiple curves and
identify the consective components with the same image as we did in
section 4. Then the quotient space is the Gromov-Ulenbeck compacti-
fication M*Λ(S2, J,0)/G. Note that the quotient of the set of multiple
cover curves is a union of M*B(S2, J, 0)/G such that there is an integer
m > 1 with A = mB. Since Cχ{A) > 0, we have

dim(.Mβ(S2, J,0)/G) = Cλ{V){B) + n - 3 < Cλ{V){A) + n - 3.

Hence it is enough to show that the set of cusp curves with more than
two components is of complex codimension 1. As we showed in the
section 4, we can decompose M*A(S2, J, 0)/G\M*A(S2, J, 0)/G into the
union of Λ4s*(D, J, 0) for D £ T^A°S2- Here, we can suppose that D
has more than two components. Then, it is enough to show that
Ms2{D,J,0) is of complex codimension 1. Recall that Ms*{D, J,0)
consists of J-holomorphic map / from ΣD into G(r, m) such that every
component of / is a non-multiple map, there is no consective bubbles
having the same image. Furthermore, the bubbles which have the same
image are sepecified by D. Here, we drop the last condition and de-
note the first two condition by D°. Suppose that the resulting moduli
space is MS*(D°, J,0). Then, Ms*(D,J,0) C Ms*(D°, J,0), and it
is enough to show that Ms*{D°, J,0) is of complex codimension 1.
Moreover, we can construct λfS2(D°,J,0) in the same way as we did
in section 4. Now we claim that Ns*(D°, J, 0) is smooth for the stan-
dard complex structure J. Then it is easy to show that Λfs*{D°, J,0)
is of codimension 1 by a dimension counting argument (cf. Proposition
4.14).
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Recall that the domain ΣDo of maps in Ms*{D°, J, 0) is a tree. We
can assign a level to each component, starting from zero level at princi-
pal component. For each intersection point z, among the components
intersecting at z, there is a base component, which has the lowest level,
said k. Others are one level higher. In fact, one can imagine them as
several subtrees growing out of the base component at z. Therefore,
each of those non-base components is the base for a subtree, whose
components have the levels higher than k + 1.

Now we order the intersection points Zi, , ztDO in such a way that
l(zi) ^ KZ2) > * > ί ( v ) ? where l(zi) denotes the level of z{. For each
2i, suppose that 5, J3χ,..., BSi are the components of D° intersecting at
zι, where B is the base component. As we mentioned previously, each
Bi is the base of a subtree, say DB{- Let Δ^ C VSί+1 be the diagonal
corresponding to the intersection pattern of D° at z{, and ADo = Δi x
Δ 2 x x Δ ί r > o. Here, we suppose that the first factor of VSί+1 is in
the image of eβ, and (i + l)-th factor is in the image of eβ<, where eB,
ββi are evaluation maps from the moduli spaces of holomorphic maps
corresponding to 5, B{. Let us write VSi+1 as VB x V8i to indicate
this order. Let u = (C(x),Ci(xi), ,CSi(xSi)) in Δ<, where C €
Λ^(S 2,J,0),Ci eΛ4 B ί (SV,0) . Note thsΛTuV

8i+1 ^TuAλ @TuV
Si,

i.e., we skip the factor VB- Since V = G(r,m) is homogeneous, given
(υi, ,vSi) G TUF5, we can find automorphisms φ\ of G(r,m) such
that

Now we use ^ to move the whole subtree DB.. Recall that ê o is the
evaluation map from Ms2 (D°, J, 0) into a product of V. The derivative
of e/)O is a vector of the form

(X,0,^---^,0,0,-.. ,0),

where X is a tangent vector of Πj=i^/ j + 1 Hence, we can prove
that e£>o is transversal to Δ^o by an induction on the level order of
Zι, , zto . Here we need to use the fact that there is no cycle in
the intersection pattern D°, in order to start the induction at the top
branch of each subtree. Then we finish the proof.

Remark 10.2. (1) It is possible to generalize this lemma to genus-
one curves in G(r, m) by using semi-positivity of the tangent bundle. It
is much more difficult to prove this in the case of higher genus curves.
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(2) An analog of Lemma 10.1 can be proved for complex homogeneous
manifolds with positive first Chern class by the same argument as in
the proof of Lemma 10.1.

In case V = CPn, any A in H2(V,Z) is of the form dl, where £
is a rational curve of degree one. We write M*A{S2,J,0)/G as Md,
i.e., Md is the moduli space of rational curves in CPn of degree d.
We denote by W{ (2 < i < ή) the subvariety consisting of all those
curves in Md which intersect a fixed linear subspace in CPn of codi-
mension i > 1. In case d = 1, Md is the Grassmannian G(n + 1,2),
and those Wi are just the classical schubert cycles generating the ho-
mology ring of G(n + 1 , 2 ) . It is a classical problem in enumerative
algebraic geometry to compute the intersection number Wjx Γ\ -Γ\ Wjk

for Σ(ji ~ 1) = (n + l)d + n — 3. Clearly, this intersection number is
just the counting number σde(Hjl, , ίP f c ), where we denote by ϋP a
linear subspace in CPn of codimensionj. For simplicity, we denote this
intersection number by σn}d(jι, ,jk) One interesting special case is
σ n d (2,2, ••• ,2). It can be interpreted as follows: Given any degree
d algebraic curve C in C P n , its Chow coordinate Xc is a hypersur-
face in the Grassmannian manifold G(n — l , n + 1) and consists of all
(n — 2)-subspaces in CPn which have nonempty intersection with C.
This Chow coordinate Xc is, unique up to multiplication by constants,
defined by a section in H°(G(n - l ,n + l),O(d)), where (9(1) is the
positive line bundle generating the Picard group of G(n — 1, n + 1 ) . Let
iV(n, d) + 1 be the dimension of H°(G(n - 1, n + 1), O(d)). Then there
is a subvariety in CPN(n'd>j consisting of Chow coordinates of rational
(possibly singular) curves in CPn. We denote by nd the degree of this
subvariety. Then nd is just σn ? d(2,2, ,2). Note that n x = 1. It has
been a difficult problem to compute nd for higher degree.

The following is simply a corollary of Lemma 10.1 and Proposi-
tion 2.4.

Corollary 10.3. Let V be CPn. Then we have

(10.2) σntd{jw" Jk) = Φdi(H*,H*,H**\Hj\.. , # ' - ) ,

where i denotes the homology class of the line in CPn.
We will use composition law to derive a recursion formula for

0"n,dOi> * * * ->jk) Note that σ n d is a symmetric function. For conve-
nience, we define σn ) d(ji, , jk) to be zero if either some j% > n o r
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Σi=i(ji ~~ 1) ι s n o t equal to (n + l)d + n — 3, which is the dimension of
Aid- We also allow some j< = 1. Clearly, we have

By using the symmetry, we may arrange j x , , j k to be a non-
increasing sequence, i.e., j 1 > j 2 > > ,7*. We also need to introduce
a partial ordering on the sequences of non-increasing integers Inid =
{ji, J2, "jk} such that 2 < j { < n and £ i tfc = (n + l)cί + n - 3 + k.
Let J^ d = {j[, ,j^} be another such a sequence. We say /n)r f -< /^ d

if and only if there is an i such that j λ = j[, , ̂  = j[ and j ^ i < j ' i + ι .
Clearly, the maximal element is of the form n,n,- , n, 5, where s < n.

Theorem 10.4. Assume that jι > j 2 > > ^ > 2. TΛen lί e
Λ̂e following formula:

( ι o 3)

' " Jσ(k)))-

Furthermore, there is a recursion formula for the intersection numbers

Vn,d

Proof. This is a straightforward corollary of the associativity (9.9).
The associativity is proved by using two different degenerations of a
Riemann sphere with 4-marked points. For reader's convenience, we
will apply Theorem A in case k = 4 to rederive (9.9) for CPn. First we
degenerate a Riemann sphere with 4-marked points to a union of two
smooth rational curves such that one component has marked points
Xi,X2 and another component has marked points £3,0:4. Then, by
Theorem A,

m 3 n,
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where σ runs over all permutations of 4, , k. Note that when 0 <
dι < d, all the terms involve only σn>i, ,σn > d_i. When di = 0, we
get a term

", • • , # Λ ) = dσn>d(ji + 32, jz - 1,3*, , J*)

When dι = d, we get a term

Φdt(Hj\H»,Hj>\Hj*,- ,Hiη=σnM(juj2J3,U, ,3k)

Hence,

3 ~ 1,34,-»i*

ifc-3 n ,

Notice that

7Ϊ7
ί=0 σ i=l 'H

, ,ff-<»).

Jσ(k))

On the other hand, we let the Riemann sphere with 4-marked points
degenerate to a union of two smooth rational curves with two marked
points Xχ,X3 in one component and other two X2,XA in another compo-
nent. By a similar argument as above, we can show

Φd£ {Hi\H*,W*-\H\Hi\. ,H») = σn,d(juj2 + l, j 3 - 1, j 4 , • J
k—3 n -I

4- dΦΛHjλ+j*~ι Hh HJ4 • Hjk) 4-

£ σ

Therefore, we have

d-1 k-3 n i i

+ΣΣΣΣ x

,3k) = °nMl 5 J*2 + 1? 3z ~ h Hi ' ' ' 1 3k)

3 - 1,J2,J4, Jk) -σn, d(ji + J2,j3 - 1,J4,
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Obviously, {jiJ2J3J^ Jk} -< {jι + js - hJ2,ΰr" Jkh
{J1J2 + 1,J3 ~ IJii " Jk} and {jx + J2J3J4,-' Jk} Moreover,
if ii = J2 = n, then jx + j 2 > n, j 2 + 1 > n and jΊ + j 3 - 1 > n; conse-
quently, on the right side of the above identity, all the terms involving
σn,d vanish. Therefore, σn)d(jΊ, ,jfc) can be expressed by a recursion
formula in terms of σn>1, , σn>d_i. This finishes the proof of Theorem
10.4.

Corollary 10.5. All the degree nd can be computed.
In the case n = 2, from Theorem 10.2 and easy computations it

follows that

(1° 4 ) " " ί X (3*-1)1(84-1)1 "*"*

Since nx — 1, we deduce from this recursion formula that n2 = 1,
n3 = 12. Such a recursion formula of computing nd for CP2 was first
derived by Kontsevich, using the composition law previously predicted
by physicists and now proved in our paper.

Recursion formulas for other manifolds. We can generalize the
above method to compute the Gromov invariants for Fano manifolds,
i.e., algebraic manifolds with positive first Chern class. Let 7 be a
Fano manifold. Recall that for any A in H2(V,Z), the Gromov in-
variant ΦΛ(^I>^2J " jCKfc) (fc > 3) coincides with the mixed invariant
Φ^(αi,α2,α3|Qf4, ,αjt), where α̂  are homology classes of V. It is
non-trivial to derive the recursion formulas for computing the Gromov
invariants of a general Fano manifold because its cohomology group
could be very complicated. To illustrate the power of our composition
law, we compute the Gromov invariants of odd dimensional Fano man-
ifolds V, whose cohomology groups H2ι(V,Z) = Z. By the Lefschetz
Hyperplane Theorem, Fano hypersurfaces or Fano complete intersec-
tions are examples of such manifolds V. Without loss of generality,
we may assume that the dimension is not less than three. Let H be
the positive generator of H2{V,Z). Then H2i(V,R) is generated by
ϋP. Since H2{V, Z) = Z, A is of the form dl, where ί is the positive
generator of H2(V, Z). We will simply write Φ^ as Φd.

We would like to derive a recursion formula for Φd(Hjl,- ,iϊ J f c),
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where

As before, we will order jΊ, , j s in such a way that ji> -— >j8-
Let Δ be the diagonal in V x V. Then

n

[Δ] = p'1 ΣH*® H"'* 0 Σ(odd degree) ® ( odd degree),
i = 0

where p is the degree of the manifold V, i.e., ppoint — Hn. We will

apply the composition law for Φd{Hjl,iϊ*2, f P 3 " 1 , if | i P 4 , , ίP f c ) .

In case the degree of a is odd, we have for dimension reason

It follows that odd deg homology classes will not appear in the compo-

sition law of

Φd(Hjl, Hh, H*-1, H\H>*, • • • , Hik).

Suppose that q is the intersection number of H and I. Then we have

the following formula

p Φd{H* ,••• ,Hjk) = Φ

+ dq (Φrf

- Φd(Hjl+h, Hh~ι, Hj4, • • • , Hjk)
d—1 k—3 n / j j \

d!=lf=O

(10.5) '(Φdl(Hjl,HJ2,H\Hj*ω,~ ,Hj

>Φd-dι(Hj*-1,Hn-i,Hj*v+1\ ,

An analogous formula of (10.5) can be derived for any Fano manifolds,

but the formula will be much more complicated. Moreover, it is not

clear how to deduce from such a formula that the higher degree Gromov

invariants can be computed in terms of lower degree Gromov invariants.

When the tangent bundle of V is not semi-positive, it is a difficult

problem to determine if the Gromov invariant is the same as the cor-

responding counting function in enumerative algebraic geometry. It is
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easy to see that they indeed coincide if the counting function is well-
defined in the sense described in the second paragraph of this section.
In general, the moduli space of rational curves may behave badly and
the counting function may not be well-defined. However, we propose

Conjecture 10.6. For a Fano manifold V, if Cλ(V){A) » 0, the
counting function σA is well-defined in the classical sense and coincides
with the Gromov invariant ΦA.

In general, one can compactify M*A{S2, J, 0)/G in the Hubert scheme
by one-dimensional subschemes of V. Let us denote this compactifica-
tion by MA(S2, J,0)/G and the Gromov-Ulenbeck compactification

by Λ4*Λ(S2, J, 0)/G . We are compelled to make the following conjec-
ture:

Conjecture 10.7. There is a continuous map from some nor-
TT

malization of the Hubert scheme compactification M*A(S2,J,ϋ)/G to
QU

Gromov-Ulenbeck compactification M*A(S2, J, 0)/G whose restriction
on
M*A{S2,J,ϋ)IG is identity map.

If this conjecture is true, one only has to check that M*A{S2, J, 0)/G
has correct dimension. Then MA(S2, J, 0)/G \MA{S2, J, 0)/G is au-
tomatically of complex codimension 1 and one can solve the Conjec-
ture 10.6.

We also defined the Gromov invariants for higher genue curves in
section 2. The composition law in section 8 implies that these invariants
for higher genus curves can be computed in terms of the invariant
for rational curves. In case V is the Grassmannian manifold G(r,ra),
our composition law gives rise to beautiful formulas, conjectured by
physicists Vafa and Intriligate, for computing these invariants, as shown
in [23]. The problem is to determine when the Gromov invariants are
enumerative geometric invariants. A partial answer to this was given
in [3]. In [3], they use a compactification in the Grothendieck Quot
Schemes, which depends on the sepecific feature of G(r,ra). We also
refer the readers to paragraph 2, 3 in Remark 2.10 on counting higher
genus curves.
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Notes added in the proof:

The results of this paper were fist lectured by the second author in
the seminars at MIT and Harvard, early December, 1993. The full
paper was circulated in May, 1994. After we submitted our paper, we
received a book by D. Mcduff and D. Salamon in September, 1994 and
a preprint by G Liu in October, 1994. In these papers, the authors
gave a new proof of the formula (1.1) for monotone manifolds in the
case that g = 0, k = 4, / = 0.
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